1 //===- ThreadSafetyTIL.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
10 #include "clang/Basic/LLVM.h"
11 #include "llvm/Support/Casting.h"
12 #include <cassert>
13 #include <cstddef>
14
15 using namespace clang;
16 using namespace threadSafety;
17 using namespace til;
18
getUnaryOpcodeString(TIL_UnaryOpcode Op)19 StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) {
20 switch (Op) {
21 case UOP_Minus: return "-";
22 case UOP_BitNot: return "~";
23 case UOP_LogicNot: return "!";
24 }
25 return {};
26 }
27
getBinaryOpcodeString(TIL_BinaryOpcode Op)28 StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) {
29 switch (Op) {
30 case BOP_Mul: return "*";
31 case BOP_Div: return "/";
32 case BOP_Rem: return "%";
33 case BOP_Add: return "+";
34 case BOP_Sub: return "-";
35 case BOP_Shl: return "<<";
36 case BOP_Shr: return ">>";
37 case BOP_BitAnd: return "&";
38 case BOP_BitXor: return "^";
39 case BOP_BitOr: return "|";
40 case BOP_Eq: return "==";
41 case BOP_Neq: return "!=";
42 case BOP_Lt: return "<";
43 case BOP_Leq: return "<=";
44 case BOP_Cmp: return "<=>";
45 case BOP_LogicAnd: return "&&";
46 case BOP_LogicOr: return "||";
47 }
48 return {};
49 }
50
force()51 SExpr* Future::force() {
52 Status = FS_evaluating;
53 Result = compute();
54 Status = FS_done;
55 return Result;
56 }
57
addPredecessor(BasicBlock * Pred)58 unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
59 unsigned Idx = Predecessors.size();
60 Predecessors.reserveCheck(1, Arena);
61 Predecessors.push_back(Pred);
62 for (auto *E : Args) {
63 if (auto *Ph = dyn_cast<Phi>(E)) {
64 Ph->values().reserveCheck(1, Arena);
65 Ph->values().push_back(nullptr);
66 }
67 }
68 return Idx;
69 }
70
reservePredecessors(unsigned NumPreds)71 void BasicBlock::reservePredecessors(unsigned NumPreds) {
72 Predecessors.reserve(NumPreds, Arena);
73 for (auto *E : Args) {
74 if (auto *Ph = dyn_cast<Phi>(E)) {
75 Ph->values().reserve(NumPreds, Arena);
76 }
77 }
78 }
79
80 // If E is a variable, then trace back through any aliases or redundant
81 // Phi nodes to find the canonical definition.
getCanonicalVal(const SExpr * E)82 const SExpr *til::getCanonicalVal(const SExpr *E) {
83 while (true) {
84 if (const auto *V = dyn_cast<Variable>(E)) {
85 if (V->kind() == Variable::VK_Let) {
86 E = V->definition();
87 continue;
88 }
89 }
90 if (const auto *Ph = dyn_cast<Phi>(E)) {
91 if (Ph->status() == Phi::PH_SingleVal) {
92 E = Ph->values()[0];
93 continue;
94 }
95 }
96 break;
97 }
98 return E;
99 }
100
101 // If E is a variable, then trace back through any aliases or redundant
102 // Phi nodes to find the canonical definition.
103 // The non-const version will simplify incomplete Phi nodes.
simplifyToCanonicalVal(SExpr * E)104 SExpr *til::simplifyToCanonicalVal(SExpr *E) {
105 while (true) {
106 if (auto *V = dyn_cast<Variable>(E)) {
107 if (V->kind() != Variable::VK_Let)
108 return V;
109 // Eliminate redundant variables, e.g. x = y, or x = 5,
110 // but keep anything more complicated.
111 if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
112 E = V->definition();
113 continue;
114 }
115 return V;
116 }
117 if (auto *Ph = dyn_cast<Phi>(E)) {
118 if (Ph->status() == Phi::PH_Incomplete)
119 simplifyIncompleteArg(Ph);
120 // Eliminate redundant Phi nodes.
121 if (Ph->status() == Phi::PH_SingleVal) {
122 E = Ph->values()[0];
123 continue;
124 }
125 }
126 return E;
127 }
128 }
129
130 // Trace the arguments of an incomplete Phi node to see if they have the same
131 // canonical definition. If so, mark the Phi node as redundant.
132 // getCanonicalVal() will recursively call simplifyIncompletePhi().
simplifyIncompleteArg(til::Phi * Ph)133 void til::simplifyIncompleteArg(til::Phi *Ph) {
134 assert(Ph && Ph->status() == Phi::PH_Incomplete);
135
136 // eliminate infinite recursion -- assume that this node is not redundant.
137 Ph->setStatus(Phi::PH_MultiVal);
138
139 SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
140 for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) {
141 SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
142 if (Ei == Ph)
143 continue; // Recursive reference to itself. Don't count.
144 if (Ei != E0) {
145 return; // Status is already set to MultiVal.
146 }
147 }
148 Ph->setStatus(Phi::PH_SingleVal);
149 }
150
151 // Renumbers the arguments and instructions to have unique, sequential IDs.
renumberInstrs(unsigned ID)152 unsigned BasicBlock::renumberInstrs(unsigned ID) {
153 for (auto *Arg : Args)
154 Arg->setID(this, ID++);
155 for (auto *Instr : Instrs)
156 Instr->setID(this, ID++);
157 TermInstr->setID(this, ID++);
158 return ID;
159 }
160
161 // Sorts the CFGs blocks using a reverse post-order depth-first traversal.
162 // Each block will be written into the Blocks array in order, and its BlockID
163 // will be set to the index in the array. Sorting should start from the entry
164 // block, and ID should be the total number of blocks.
topologicalSort(SimpleArray<BasicBlock * > & Blocks,unsigned ID)165 unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks,
166 unsigned ID) {
167 if (Visited) return ID;
168 Visited = true;
169 for (auto *Block : successors())
170 ID = Block->topologicalSort(Blocks, ID);
171 // set ID and update block array in place.
172 // We may lose pointers to unreachable blocks.
173 assert(ID > 0);
174 BlockID = --ID;
175 Blocks[BlockID] = this;
176 return ID;
177 }
178
179 // Performs a reverse topological traversal, starting from the exit block and
180 // following back-edges. The dominator is serialized before any predecessors,
181 // which guarantees that all blocks are serialized after their dominator and
182 // before their post-dominator (because it's a reverse topological traversal).
183 // ID should be initially set to 0.
184 //
185 // This sort assumes that (1) dominators have been computed, (2) there are no
186 // critical edges, and (3) the entry block is reachable from the exit block
187 // and no blocks are accessible via traversal of back-edges from the exit that
188 // weren't accessible via forward edges from the entry.
topologicalFinalSort(SimpleArray<BasicBlock * > & Blocks,unsigned ID)189 unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks,
190 unsigned ID) {
191 // Visited is assumed to have been set by the topologicalSort. This pass
192 // assumes !Visited means that we've visited this node before.
193 if (!Visited) return ID;
194 Visited = false;
195 if (DominatorNode.Parent)
196 ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
197 for (auto *Pred : Predecessors)
198 ID = Pred->topologicalFinalSort(Blocks, ID);
199 assert(static_cast<size_t>(ID) < Blocks.size());
200 BlockID = ID++;
201 Blocks[BlockID] = this;
202 return ID;
203 }
204
205 // Computes the immediate dominator of the current block. Assumes that all of
206 // its predecessors have already computed their dominators. This is achieved
207 // by visiting the nodes in topological order.
computeDominator()208 void BasicBlock::computeDominator() {
209 BasicBlock *Candidate = nullptr;
210 // Walk backwards from each predecessor to find the common dominator node.
211 for (auto *Pred : Predecessors) {
212 // Skip back-edges
213 if (Pred->BlockID >= BlockID) continue;
214 // If we don't yet have a candidate for dominator yet, take this one.
215 if (Candidate == nullptr) {
216 Candidate = Pred;
217 continue;
218 }
219 // Walk the alternate and current candidate back to find a common ancestor.
220 auto *Alternate = Pred;
221 while (Alternate != Candidate) {
222 if (Candidate->BlockID > Alternate->BlockID)
223 Candidate = Candidate->DominatorNode.Parent;
224 else
225 Alternate = Alternate->DominatorNode.Parent;
226 }
227 }
228 DominatorNode.Parent = Candidate;
229 DominatorNode.SizeOfSubTree = 1;
230 }
231
232 // Computes the immediate post-dominator of the current block. Assumes that all
233 // of its successors have already computed their post-dominators. This is
234 // achieved visiting the nodes in reverse topological order.
computePostDominator()235 void BasicBlock::computePostDominator() {
236 BasicBlock *Candidate = nullptr;
237 // Walk back from each predecessor to find the common post-dominator node.
238 for (auto *Succ : successors()) {
239 // Skip back-edges
240 if (Succ->BlockID <= BlockID) continue;
241 // If we don't yet have a candidate for post-dominator yet, take this one.
242 if (Candidate == nullptr) {
243 Candidate = Succ;
244 continue;
245 }
246 // Walk the alternate and current candidate back to find a common ancestor.
247 auto *Alternate = Succ;
248 while (Alternate != Candidate) {
249 if (Candidate->BlockID < Alternate->BlockID)
250 Candidate = Candidate->PostDominatorNode.Parent;
251 else
252 Alternate = Alternate->PostDominatorNode.Parent;
253 }
254 }
255 PostDominatorNode.Parent = Candidate;
256 PostDominatorNode.SizeOfSubTree = 1;
257 }
258
259 // Renumber instructions in all blocks
renumberInstrs()260 void SCFG::renumberInstrs() {
261 unsigned InstrID = 0;
262 for (auto *Block : Blocks)
263 InstrID = Block->renumberInstrs(InstrID);
264 }
265
computeNodeSize(BasicBlock * B,BasicBlock::TopologyNode BasicBlock::* TN)266 static inline void computeNodeSize(BasicBlock *B,
267 BasicBlock::TopologyNode BasicBlock::*TN) {
268 BasicBlock::TopologyNode *N = &(B->*TN);
269 if (N->Parent) {
270 BasicBlock::TopologyNode *P = &(N->Parent->*TN);
271 // Initially set ID relative to the (as yet uncomputed) parent ID
272 N->NodeID = P->SizeOfSubTree;
273 P->SizeOfSubTree += N->SizeOfSubTree;
274 }
275 }
276
computeNodeID(BasicBlock * B,BasicBlock::TopologyNode BasicBlock::* TN)277 static inline void computeNodeID(BasicBlock *B,
278 BasicBlock::TopologyNode BasicBlock::*TN) {
279 BasicBlock::TopologyNode *N = &(B->*TN);
280 if (N->Parent) {
281 BasicBlock::TopologyNode *P = &(N->Parent->*TN);
282 N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node.
283 }
284 }
285
286 // Normalizes a CFG. Normalization has a few major components:
287 // 1) Removing unreachable blocks.
288 // 2) Computing dominators and post-dominators
289 // 3) Topologically sorting the blocks into the "Blocks" array.
computeNormalForm()290 void SCFG::computeNormalForm() {
291 // Topologically sort the blocks starting from the entry block.
292 unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
293 if (NumUnreachableBlocks > 0) {
294 // If there were unreachable blocks shift everything down, and delete them.
295 for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
296 unsigned NI = I - NumUnreachableBlocks;
297 Blocks[NI] = Blocks[I];
298 Blocks[NI]->BlockID = NI;
299 // FIXME: clean up predecessor pointers to unreachable blocks?
300 }
301 Blocks.drop(NumUnreachableBlocks);
302 }
303
304 // Compute dominators.
305 for (auto *Block : Blocks)
306 Block->computeDominator();
307
308 // Once dominators have been computed, the final sort may be performed.
309 unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
310 assert(static_cast<size_t>(NumBlocks) == Blocks.size());
311 (void) NumBlocks;
312
313 // Renumber the instructions now that we have a final sort.
314 renumberInstrs();
315
316 // Compute post-dominators and compute the sizes of each node in the
317 // dominator tree.
318 for (auto *Block : Blocks.reverse()) {
319 Block->computePostDominator();
320 computeNodeSize(Block, &BasicBlock::DominatorNode);
321 }
322 // Compute the sizes of each node in the post-dominator tree and assign IDs in
323 // the dominator tree.
324 for (auto *Block : Blocks) {
325 computeNodeID(Block, &BasicBlock::DominatorNode);
326 computeNodeSize(Block, &BasicBlock::PostDominatorNode);
327 }
328 // Assign IDs in the post-dominator tree.
329 for (auto *Block : Blocks.reverse()) {
330 computeNodeID(Block, &BasicBlock::PostDominatorNode);
331 }
332 }
333