1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
27
28 /*
29 * University Copyright- Copyright (c) 1982, 1986, 1988
30 * The Regents of the University of California
31 * All Rights Reserved
32 *
33 * University Acknowledgment- Portions of this document are derived from
34 * software developed by the University of California, Berkeley, and its
35 * contributors.
36 */
37
38 /*
39 * Each physical swap area has an associated bitmap representing
40 * its physical storage. The bitmap records which swap slots are
41 * currently allocated or freed. Allocation is done by searching
42 * through the bitmap for the first free slot. Thus, there's
43 * no linear relation between offset within the swap device and the
44 * address (within its segment(s)) of the page that the slot backs;
45 * instead, it's an arbitrary one-to-one mapping.
46 *
47 * Associated with each swap area is a swapinfo structure. These
48 * structures are linked into a linear list that determines the
49 * ordering of swap areas in the logical swap device. Each contains a
50 * pointer to the corresponding bitmap, the area's size, and its
51 * associated vnode.
52 */
53
54 #include <sys/types.h>
55 #include <sys/inttypes.h>
56 #include <sys/param.h>
57 #include <sys/t_lock.h>
58 #include <sys/sysmacros.h>
59 #include <sys/systm.h>
60 #include <sys/errno.h>
61 #include <sys/kmem.h>
62 #include <sys/vfs.h>
63 #include <sys/vnode.h>
64 #include <sys/pathname.h>
65 #include <sys/cmn_err.h>
66 #include <sys/vtrace.h>
67 #include <sys/swap.h>
68 #include <sys/dumphdr.h>
69 #include <sys/debug.h>
70 #include <sys/fs/snode.h>
71 #include <sys/fs/swapnode.h>
72 #include <sys/policy.h>
73 #include <sys/zone.h>
74
75 #include <vm/as.h>
76 #include <vm/seg.h>
77 #include <vm/page.h>
78 #include <vm/seg_vn.h>
79 #include <vm/hat.h>
80 #include <vm/anon.h>
81 #include <vm/seg_map.h>
82
83 /*
84 * To balance the load among multiple swap areas, we don't allow
85 * more than swap_maxcontig allocations to be satisfied from a
86 * single swap area before moving on to the next swap area. This
87 * effectively "interleaves" allocations among the many swap areas.
88 */
89 int swap_maxcontig; /* set by anon_init() to 1 Mb */
90
91 #define MINIROOTSIZE 12000 /* ~6 Meg XXX */
92
93 /*
94 * XXX - this lock is a kludge. It serializes some aspects of swapadd() and
95 * swapdel() (namely VOP_OPEN, VOP_CLOSE, VN_RELE). It protects against
96 * somebody swapadd'ing and getting swap slots from a vnode, while someone
97 * else is in the process of closing or rele'ing it.
98 */
99 static kmutex_t swap_lock;
100
101 kmutex_t swapinfo_lock;
102
103 /*
104 * protected by the swapinfo_lock
105 */
106 struct swapinfo *swapinfo;
107
108 static struct swapinfo *silast;
109 static int nswapfiles;
110
111 static u_offset_t swap_getoff(struct swapinfo *);
112 static int swapadd(struct vnode *, ulong_t, ulong_t, char *);
113 static int swapdel(struct vnode *, ulong_t);
114 static int swapslot_free(struct vnode *, u_offset_t, struct swapinfo *);
115
116 /*
117 * swap device bitmap allocation macros
118 */
119 #define MAPSHIFT 5
120 #define NBBW (NBPW * NBBY) /* number of bits per word */
121 #define TESTBIT(map, i) (((map)[(i) >> MAPSHIFT] & (1 << (i) % NBBW)))
122 #define SETBIT(map, i) (((map)[(i) >> MAPSHIFT] |= (1 << (i) % NBBW)))
123 #define CLEARBIT(map, i) (((map)[(i) >> MAPSHIFT] &= ~(1 << (i) % NBBW)))
124
125 int swap_debug = 0; /* set for debug printf's */
126 int swap_verify = 0; /* set to verify slots when freeing and allocating */
127
128 uint_t swapalloc_maxcontig;
129
130 /*
131 * Allocate a range of up to *lenp contiguous slots (page) from a physical
132 * swap device. Flags are one of:
133 * SA_NOT Must have a slot from a physical swap device other than the
134 * the one containing input (*vpp, *offp).
135 * Less slots than requested may be returned. *lenp allocated slots are
136 * returned starting at *offp on *vpp.
137 * Returns 1 for a successful allocation, 0 for couldn't allocate any slots.
138 */
139 int
swap_phys_alloc(struct vnode ** vpp,u_offset_t * offp,size_t * lenp,uint_t flags)140 swap_phys_alloc(
141 struct vnode **vpp,
142 u_offset_t *offp,
143 size_t *lenp,
144 uint_t flags)
145 {
146 struct swapinfo *sip;
147 offset_t soff, noff;
148 size_t len;
149
150 mutex_enter(&swapinfo_lock);
151 sip = silast;
152
153 /* Find a desirable physical device and allocate from it. */
154 do {
155 if (sip == NULL)
156 break;
157 if (!(sip->si_flags & ST_INDEL) &&
158 (spgcnt_t)sip->si_nfpgs > 0) {
159 /* Caller wants other than specified swap device */
160 if (flags & SA_NOT) {
161 if (*vpp != sip->si_vp ||
162 *offp < sip->si_soff ||
163 *offp >= sip->si_eoff)
164 goto found;
165 /* Caller is loose, will take anything */
166 } else
167 goto found;
168 } else if (sip->si_nfpgs == 0)
169 sip->si_allocs = 0;
170 if ((sip = sip->si_next) == NULL)
171 sip = swapinfo;
172 } while (sip != silast);
173 mutex_exit(&swapinfo_lock);
174 return (0);
175 found:
176 soff = swap_getoff(sip);
177 sip->si_nfpgs--;
178 if (soff == -1)
179 panic("swap_alloc: swap_getoff failed!");
180
181 for (len = PAGESIZE; len < *lenp; len += PAGESIZE) {
182 if (sip->si_nfpgs == 0)
183 break;
184 if (swapalloc_maxcontig && len >= swapalloc_maxcontig)
185 break;
186 noff = swap_getoff(sip);
187 if (noff == -1) {
188 break;
189 } else if (noff != soff + len) {
190 CLEARBIT(sip->si_swapslots, btop(noff - sip->si_soff));
191 break;
192 }
193 sip->si_nfpgs--;
194 }
195 *vpp = sip->si_vp;
196 *offp = soff;
197 *lenp = len;
198 ASSERT((spgcnt_t)sip->si_nfpgs >= 0);
199 sip->si_allocs += btop(len);
200 if (sip->si_allocs >= swap_maxcontig) {
201 sip->si_allocs = 0;
202 if ((silast = sip->si_next) == NULL)
203 silast = swapinfo;
204 }
205 TRACE_2(TR_FAC_VM, TR_SWAP_ALLOC,
206 "swap_alloc:sip %p offset %lx", sip, soff);
207 mutex_exit(&swapinfo_lock);
208 return (1);
209 }
210
211 int swap_backsearch = 0;
212
213 /*
214 * Get a free offset on swap device sip.
215 * Return >=0 offset if succeeded, -1 for failure.
216 */
217 static u_offset_t
swap_getoff(struct swapinfo * sip)218 swap_getoff(struct swapinfo *sip)
219 {
220 uint_t *sp, *ep;
221 size_t aoff, boff, poff, slotnumber;
222
223 ASSERT(MUTEX_HELD(&swapinfo_lock));
224
225 sip->si_alloccnt++;
226 for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT],
227 ep = &sip->si_swapslots[sip->si_mapsize / NBPW]; sp < ep; sp++) {
228 if (*sp != (uint_t)0xffffffff)
229 goto foundentry;
230 else
231 sip->si_checkcnt++;
232 }
233 SWAP_PRINT(SW_ALLOC,
234 "swap_getoff: couldn't find slot from hint %ld to end\n",
235 sip->si_hint, 0, 0, 0, 0);
236 /*
237 * Go backwards? Check for faster method XXX
238 */
239 if (swap_backsearch) {
240 for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT],
241 ep = sip->si_swapslots; sp > ep; sp--) {
242 if (*sp != (uint_t)0xffffffff)
243 goto foundentry;
244 else
245 sip->si_checkcnt++;
246 }
247 } else {
248 for (sp = sip->si_swapslots,
249 ep = &sip->si_swapslots[sip->si_hint >> MAPSHIFT];
250 sp < ep; sp++) {
251 if (*sp != (uint_t)0xffffffff)
252 goto foundentry;
253 else
254 sip->si_checkcnt++;
255 }
256 }
257 if (*sp == 0xffffffff) {
258 cmn_err(CE_WARN, "No free swap slots!");
259 return ((u_offset_t)-1);
260 }
261
262 foundentry:
263 /*
264 * aoff is the page number offset (in bytes) of the si_swapslots
265 * array element containing a free page
266 *
267 * boff is the page number offset of the free page
268 * (i.e. cleared bit) in si_swapslots[aoff].
269 */
270 aoff = ((char *)sp - (char *)sip->si_swapslots) * NBBY;
271
272 for (boff = (sip->si_hint % NBBW); boff < NBBW; boff++) {
273 if (!TESTBIT(sip->si_swapslots, aoff + boff))
274 goto foundslot;
275 else
276 sip->si_checkcnt++;
277 }
278 for (boff = 0; boff < (sip->si_hint % NBBW); boff++) {
279 if (!TESTBIT(sip->si_swapslots, aoff + boff))
280 goto foundslot;
281 else
282 sip->si_checkcnt++;
283 }
284 panic("swap_getoff: didn't find slot in word hint %ld", sip->si_hint);
285
286 foundslot:
287 /*
288 * Return the offset of the free page in swap device.
289 * Convert page number of byte offset and add starting
290 * offset of swap device.
291 */
292 slotnumber = aoff + boff;
293 SWAP_PRINT(SW_ALLOC, "swap_getoff: allocating slot %ld\n",
294 slotnumber, 0, 0, 0, 0);
295 poff = ptob(slotnumber);
296 if (poff + sip->si_soff >= sip->si_eoff)
297 printf("ptob(aoff(%ld) + boff(%ld))(%ld) >= eoff(%ld)\n",
298 aoff, boff, ptob(slotnumber), (long)sip->si_eoff);
299 ASSERT(poff < sip->si_eoff);
300 /*
301 * We could verify here that the slot isn't already allocated
302 * by looking through all the anon slots.
303 */
304 SETBIT(sip->si_swapslots, slotnumber);
305 sip->si_hint = slotnumber + 1; /* hint = next slot */
306 return (poff + sip->si_soff);
307 }
308
309 /*
310 * Free a swap page.
311 */
312 void
swap_phys_free(struct vnode * vp,u_offset_t off,size_t len)313 swap_phys_free(struct vnode *vp, u_offset_t off, size_t len)
314 {
315 struct swapinfo *sip;
316 ssize_t pagenumber, npage;
317
318 mutex_enter(&swapinfo_lock);
319 sip = swapinfo;
320
321 do {
322 if (sip->si_vp == vp &&
323 sip->si_soff <= off && off < sip->si_eoff) {
324 for (pagenumber = btop(off - sip->si_soff),
325 npage = btop(len) + pagenumber;
326 pagenumber < npage; pagenumber++) {
327 SWAP_PRINT(SW_ALLOC,
328 "swap_phys_free: freeing slot %ld on "
329 "sip %p\n",
330 pagenumber, sip, 0, 0, 0);
331 if (!TESTBIT(sip->si_swapslots, pagenumber)) {
332 panic(
333 "swap_phys_free: freeing free slot "
334 "%p,%lx\n", (void *)vp,
335 ptob(pagenumber) + sip->si_soff);
336 }
337 CLEARBIT(sip->si_swapslots, pagenumber);
338 sip->si_nfpgs++;
339 }
340 ASSERT(sip->si_nfpgs <= sip->si_npgs);
341 mutex_exit(&swapinfo_lock);
342 return;
343 }
344 } while ((sip = sip->si_next) != NULL);
345 panic("swap_phys_free");
346 /*NOTREACHED*/
347 }
348
349 /*
350 * Return the anon struct corresponding for the given
351 * <vnode, off> if it is part of the virtual swap device.
352 * Return the anon struct if found, otherwise NULL.
353 */
354 struct anon *
swap_anon(struct vnode * vp,u_offset_t off)355 swap_anon(struct vnode *vp, u_offset_t off)
356 {
357 struct anon *ap;
358
359 ASSERT(MUTEX_HELD(AH_MUTEX(vp, off)));
360
361 for (ap = anon_hash[ANON_HASH(vp, off)]; ap != NULL; ap = ap->an_hash) {
362 if (ap->an_vp == vp && ap->an_off == off)
363 return (ap);
364 }
365 return (NULL);
366 }
367
368
369 /*
370 * Determine if the vp offset range overlap a swap device.
371 */
372 int
swap_in_range(struct vnode * vp,u_offset_t offset,size_t len)373 swap_in_range(struct vnode *vp, u_offset_t offset, size_t len)
374 {
375 struct swapinfo *sip;
376 u_offset_t eoff;
377
378 eoff = offset + len;
379 ASSERT(eoff > offset);
380
381 mutex_enter(&swapinfo_lock);
382 sip = swapinfo;
383 if (vp && sip) {
384 do {
385 if (vp != sip->si_vp || eoff <= sip->si_soff ||
386 offset >= sip->si_eoff)
387 continue;
388 mutex_exit(&swapinfo_lock);
389 return (1);
390 } while ((sip = sip->si_next) != NULL);
391 }
392 mutex_exit(&swapinfo_lock);
393 return (0);
394 }
395
396 /*
397 * See if name is one of our swap files
398 * even though lookupname failed.
399 * This can be used by swapdel to delete
400 * swap resources on remote machines
401 * where the link has gone down.
402 */
403 static struct vnode *
swapdel_byname(char * name,ulong_t lowblk)404 swapdel_byname(
405 char *name, /* pathname to delete */
406 ulong_t lowblk) /* Low block number of area to delete */
407 {
408 struct swapinfo **sipp, *osip;
409 u_offset_t soff;
410
411 /*
412 * Find the swap file entry for the file to
413 * be deleted. Skip any entries that are in
414 * transition.
415 */
416
417 soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */
418
419 mutex_enter(&swapinfo_lock);
420 for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) {
421 if ((strcmp(osip->si_pname, name) == 0) &&
422 (osip->si_soff == soff) && (osip->si_flags == 0)) {
423 struct vnode *vp = osip->si_vp;
424
425 VN_HOLD(vp);
426 mutex_exit(&swapinfo_lock);
427 return (vp);
428 }
429 }
430 mutex_exit(&swapinfo_lock);
431 return (NULL);
432 }
433
434
435 /*
436 * New system call to manipulate swap files.
437 */
438 int
swapctl(int sc_cmd,void * sc_arg,int * rv)439 swapctl(int sc_cmd, void *sc_arg, int *rv)
440 {
441 struct swapinfo *sip, *csip, *tsip;
442 int error = 0;
443 struct swapent st, *ust;
444 struct swapres sr;
445 struct vnode *vp;
446 int cnt = 0;
447 int tmp_nswapfiles;
448 int nswap;
449 int length, nlen;
450 int gplen = 0, plen;
451 char *swapname;
452 char *pname;
453 char *tpname;
454 struct anoninfo ai;
455 spgcnt_t avail;
456 int global = INGLOBALZONE(curproc);
457 struct zone *zp = curproc->p_zone;
458
459 /*
460 * When running in a zone we want to hide the details of the swap
461 * devices: we report there only being one swap device named "swap"
462 * having a size equal to the sum of the sizes of all real swap devices
463 * on the system.
464 */
465 switch (sc_cmd) {
466 case SC_GETNSWP:
467 if (global)
468 *rv = nswapfiles;
469 else
470 *rv = 1;
471 return (0);
472
473 case SC_AINFO:
474 /*
475 * Return anoninfo information with these changes:
476 * ani_max = maximum amount of swap space
477 * (including potentially available physical memory)
478 * ani_free = amount of unallocated anonymous memory
479 * (some of which might be reserved and including
480 * potentially available physical memory)
481 * ani_resv = amount of claimed (reserved) anonymous memory
482 */
483 avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
484 ai.ani_max = (k_anoninfo.ani_max +
485 k_anoninfo.ani_mem_resv) + avail;
486
487 /* Update ani_free */
488 set_anoninfo();
489 ai.ani_free = k_anoninfo.ani_free + avail;
490
491 ai.ani_resv = k_anoninfo.ani_phys_resv +
492 k_anoninfo.ani_mem_resv;
493
494 if (!global && zp->zone_max_swap_ctl != UINT64_MAX) {
495 /*
496 * We're in a non-global zone with a swap cap. We
497 * always report the system-wide values for the global
498 * zone, even though it too can have a swap cap.
499 */
500
501 /*
502 * For a swap-capped zone, the numbers are contrived
503 * since we don't have a correct value of 'reserved'
504 * for the zone.
505 *
506 * The ani_max value is always the zone's swap cap.
507 *
508 * The ani_free value is always the difference between
509 * the cap and the amount of swap in use by the zone.
510 *
511 * The ani_resv value is typically set to be the amount
512 * of swap in use by the zone, but can be adjusted
513 * upwards to indicate how much swap is currently
514 * unavailable to that zone due to usage by entities
515 * outside the zone.
516 *
517 * This works as follows.
518 *
519 * In the 'swap -s' output, the data is displayed
520 * as follows:
521 * allocated = ani_max - ani_free
522 * reserved = ani_resv - allocated
523 * available = ani_max - ani_resv
524 *
525 * Taking a contrived example, if the swap cap is 100
526 * and the amount of swap used by the zone is 75, this
527 * gives:
528 * allocated = ani_max - ani_free = 100 - 25 = 75
529 * reserved = ani_resv - allocated = 75 - 75 = 0
530 * available = ani_max - ani_resv = 100 - 75 = 25
531 *
532 * In this typical case, you can see that the 'swap -s'
533 * 'reserved' will always be 0 inside a swap capped
534 * zone.
535 *
536 * However, if the system as a whole has less free
537 * swap than the zone limits allow, then we adjust
538 * the ani_resv value up so that it is the difference
539 * between the zone cap and the amount of free system
540 * swap. Taking the above example, but when the
541 * system as a whole only has 20 of swap available, we
542 * get an ani_resv of 100 - 20 = 80. This gives:
543 * allocated = ani_max - ani_free = 100 - 25 = 75
544 * reserved = ani_resv - allocated = 80 - 75 = 5
545 * available = ani_max - ani_resv = 100 - 80 = 20
546 *
547 * In this case, you can see how the ani_resv value is
548 * tweaked up to make the 'swap -s' numbers work inside
549 * the zone.
550 */
551 rctl_qty_t cap, used;
552 pgcnt_t pgcap, sys_avail;
553
554 mutex_enter(&zp->zone_mem_lock);
555 cap = zp->zone_max_swap_ctl;
556 used = zp->zone_max_swap;
557 mutex_exit(&zp->zone_mem_lock);
558
559 pgcap = MIN(btop(cap), ai.ani_max);
560 ai.ani_free = pgcap - btop(used);
561
562 /* Get the system-wide swap currently available. */
563 sys_avail = ai.ani_max - ai.ani_resv;
564 if (sys_avail < ai.ani_free)
565 ai.ani_resv = pgcap - sys_avail;
566 else
567 ai.ani_resv = btop(used);
568
569 ai.ani_max = pgcap;
570 }
571
572 if (copyout(&ai, sc_arg, sizeof (struct anoninfo)) != 0)
573 return (EFAULT);
574 return (0);
575
576 case SC_LIST:
577 if (copyin(sc_arg, &length, sizeof (int)) != 0)
578 return (EFAULT);
579 if (!global) {
580 struct swapent st;
581 char *swappath = "swap";
582
583 if (length < 1)
584 return (ENOMEM);
585 ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent;
586 if (copyin(ust, &st, sizeof (swapent_t)) != 0)
587 return (EFAULT);
588 st.ste_start = PAGESIZE >> SCTRSHFT;
589 st.ste_length = (off_t)0;
590 st.ste_pages = 0;
591 st.ste_free = 0;
592 st.ste_flags = 0;
593
594 mutex_enter(&swapinfo_lock);
595 for (sip = swapinfo, nswap = 0;
596 sip != NULL && nswap < nswapfiles;
597 sip = sip->si_next, nswap++) {
598 st.ste_length +=
599 (sip->si_eoff - sip->si_soff) >> SCTRSHFT;
600 st.ste_pages += sip->si_npgs;
601 st.ste_free += sip->si_nfpgs;
602 }
603 mutex_exit(&swapinfo_lock);
604
605 if (zp->zone_max_swap_ctl != UINT64_MAX) {
606 rctl_qty_t cap, used;
607
608 mutex_enter(&zp->zone_mem_lock);
609 cap = zp->zone_max_swap_ctl;
610 used = zp->zone_max_swap;
611 mutex_exit(&zp->zone_mem_lock);
612
613 st.ste_length = MIN(cap, st.ste_length);
614 st.ste_pages = MIN(btop(cap), st.ste_pages);
615 st.ste_free = MIN(st.ste_pages - btop(used),
616 st.ste_free);
617 }
618
619 if (copyout(&st, ust, sizeof (swapent_t)) != 0 ||
620 copyout(swappath, st.ste_path,
621 strlen(swappath) + 1) != 0) {
622 return (EFAULT);
623 }
624 *rv = 1;
625 return (0);
626 }
627 beginning:
628 tmp_nswapfiles = nswapfiles;
629 /* Return an error if not enough space for the whole table. */
630 if (length < tmp_nswapfiles)
631 return (ENOMEM);
632 /*
633 * Get memory to hold the swap entries and their names. We'll
634 * copy the real entries into these and then copy these out.
635 * Allocating the pathname memory is only a guess so we may
636 * find that we need more and have to do it again.
637 * All this is because we have to hold the anon lock while
638 * traversing the swapinfo list, and we can't be doing copyouts
639 * and/or kmem_alloc()s during this.
640 */
641 csip = kmem_zalloc(tmp_nswapfiles * sizeof (struct swapinfo),
642 KM_SLEEP);
643 retry:
644 nlen = tmp_nswapfiles * (gplen += 100);
645 pname = kmem_zalloc(nlen, KM_SLEEP);
646
647 mutex_enter(&swapinfo_lock);
648
649 if (tmp_nswapfiles != nswapfiles) {
650 mutex_exit(&swapinfo_lock);
651 kmem_free(pname, nlen);
652 kmem_free(csip,
653 tmp_nswapfiles * sizeof (struct swapinfo));
654 gplen = 0;
655 goto beginning;
656 }
657 for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0;
658 sip && nswap < tmp_nswapfiles;
659 sip = sip->si_next, tsip++, tpname += plen, nswap++) {
660 plen = sip->si_pnamelen;
661 if (tpname + plen - pname > nlen) {
662 mutex_exit(&swapinfo_lock);
663 kmem_free(pname, nlen);
664 goto retry;
665 }
666 *tsip = *sip;
667 tsip->si_pname = tpname;
668 (void) strcpy(tsip->si_pname, sip->si_pname);
669 }
670 mutex_exit(&swapinfo_lock);
671
672 if (sip) {
673 error = ENOMEM;
674 goto lout;
675 }
676 ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent;
677 for (tsip = csip, cnt = 0; cnt < nswap; tsip++, ust++, cnt++) {
678 if (copyin(ust, &st, sizeof (swapent_t)) != 0) {
679 error = EFAULT;
680 goto lout;
681 }
682 st.ste_flags = tsip->si_flags;
683 st.ste_length =
684 (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT;
685 st.ste_start = tsip->si_soff >> SCTRSHFT;
686 st.ste_pages = tsip->si_npgs;
687 st.ste_free = tsip->si_nfpgs;
688 if (copyout(&st, ust, sizeof (swapent_t)) != 0) {
689 error = EFAULT;
690 goto lout;
691 }
692 if (!tsip->si_pnamelen)
693 continue;
694 if (copyout(tsip->si_pname, st.ste_path,
695 tsip->si_pnamelen) != 0) {
696 error = EFAULT;
697 goto lout;
698 }
699 }
700 *rv = nswap;
701 lout:
702 kmem_free(csip, tmp_nswapfiles * sizeof (struct swapinfo));
703 kmem_free(pname, nlen);
704 return (error);
705
706 case SC_ADD:
707 case SC_REMOVE:
708 break;
709 default:
710 return (EINVAL);
711 }
712 if ((error = secpolicy_swapctl(CRED())) != 0)
713 return (error);
714
715 if (copyin(sc_arg, &sr, sizeof (swapres_t)))
716 return (EFAULT);
717
718 /* Allocate the space to read in pathname */
719 if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL)
720 return (ENOMEM);
721
722 error = copyinstr(sr.sr_name, swapname, MAXPATHLEN, 0);
723 if (error)
724 goto out;
725
726 error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
727 if (error) {
728 if (sc_cmd == SC_ADD)
729 goto out;
730 /* see if we match by name */
731 vp = swapdel_byname(swapname, (size_t)sr.sr_start);
732 if (vp == NULL)
733 goto out;
734 }
735
736 if (vp->v_flag & (VNOMAP | VNOSWAP)) {
737 VN_RELE(vp);
738 error = ENOSYS;
739 goto out;
740 }
741 switch (vp->v_type) {
742 case VBLK:
743 break;
744
745 case VREG:
746 if (vp->v_vfsp && vn_is_readonly(vp))
747 error = EROFS;
748 else
749 error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL);
750 break;
751
752 case VDIR:
753 error = EISDIR;
754 break;
755 default:
756 error = ENOSYS;
757 break;
758 }
759 if (error == 0) {
760 if (sc_cmd == SC_REMOVE)
761 error = swapdel(vp, sr.sr_start);
762 else
763 error = swapadd(vp, sr.sr_start,
764 sr.sr_length, swapname);
765 }
766 VN_RELE(vp);
767 out:
768 kmem_free(swapname, MAXPATHLEN);
769 return (error);
770 }
771
772 #if defined(_LP64) && defined(_SYSCALL32)
773
774 int
swapctl32(int sc_cmd,void * sc_arg,int * rv)775 swapctl32(int sc_cmd, void *sc_arg, int *rv)
776 {
777 struct swapinfo *sip, *csip, *tsip;
778 int error = 0;
779 struct swapent32 st, *ust;
780 struct swapres32 sr;
781 struct vnode *vp;
782 int cnt = 0;
783 int tmp_nswapfiles;
784 int nswap;
785 int length, nlen;
786 int gplen = 0, plen;
787 char *swapname;
788 char *pname;
789 char *tpname;
790 struct anoninfo32 ai;
791 size_t s;
792 spgcnt_t avail;
793 int global = INGLOBALZONE(curproc);
794 struct zone *zp = curproc->p_zone;
795
796 /*
797 * When running in a zone we want to hide the details of the swap
798 * devices: we report there only being one swap device named "swap"
799 * having a size equal to the sum of the sizes of all real swap devices
800 * on the system.
801 */
802 switch (sc_cmd) {
803 case SC_GETNSWP:
804 if (global)
805 *rv = nswapfiles;
806 else
807 *rv = 1;
808 return (0);
809
810 case SC_AINFO:
811 /*
812 * Return anoninfo information with these changes:
813 * ani_max = maximum amount of swap space
814 * (including potentially available physical memory)
815 * ani_free = amount of unallocated anonymous memory
816 * (some of which might be reserved and including
817 * potentially available physical memory)
818 * ani_resv = amount of claimed (reserved) anonymous memory
819 */
820 avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
821 s = (k_anoninfo.ani_max + k_anoninfo.ani_mem_resv) + avail;
822 if (s > UINT32_MAX)
823 return (EOVERFLOW);
824 ai.ani_max = s;
825
826 /* Update ani_free */
827 set_anoninfo();
828 s = k_anoninfo.ani_free + avail;
829 if (s > UINT32_MAX)
830 return (EOVERFLOW);
831 ai.ani_free = s;
832
833 s = k_anoninfo.ani_phys_resv + k_anoninfo.ani_mem_resv;
834 if (s > UINT32_MAX)
835 return (EOVERFLOW);
836 ai.ani_resv = s;
837
838 if (!global && zp->zone_max_swap_ctl != UINT64_MAX) {
839 /*
840 * We're in a non-global zone with a swap cap. We
841 * always report the system-wide values for the global
842 * zone, even though it too can have a swap cap.
843 * See the comment for the SC_AINFO case in swapctl()
844 * which explains the following logic.
845 */
846 rctl_qty_t cap, used;
847 pgcnt_t pgcap, sys_avail;
848
849 mutex_enter(&zp->zone_mem_lock);
850 cap = zp->zone_max_swap_ctl;
851 used = zp->zone_max_swap;
852 mutex_exit(&zp->zone_mem_lock);
853
854 pgcap = MIN(btop(cap), ai.ani_max);
855 ai.ani_free = pgcap - btop(used);
856
857 /* Get the system-wide swap currently available. */
858 sys_avail = ai.ani_max - ai.ani_resv;
859 if (sys_avail < ai.ani_free)
860 ai.ani_resv = pgcap - sys_avail;
861 else
862 ai.ani_resv = btop(used);
863
864 ai.ani_max = pgcap;
865 }
866
867 if (copyout(&ai, sc_arg, sizeof (ai)) != 0)
868 return (EFAULT);
869 return (0);
870
871 case SC_LIST:
872 if (copyin(sc_arg, &length, sizeof (int32_t)) != 0)
873 return (EFAULT);
874 if (!global) {
875 struct swapent32 st;
876 char *swappath = "swap";
877
878 if (length < 1)
879 return (ENOMEM);
880 ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent;
881 if (copyin(ust, &st, sizeof (swapent32_t)) != 0)
882 return (EFAULT);
883 st.ste_start = PAGESIZE >> SCTRSHFT;
884 st.ste_length = (off_t)0;
885 st.ste_pages = 0;
886 st.ste_free = 0;
887 st.ste_flags = 0;
888
889 mutex_enter(&swapinfo_lock);
890 for (sip = swapinfo, nswap = 0;
891 sip != NULL && nswap < nswapfiles;
892 sip = sip->si_next, nswap++) {
893 st.ste_length +=
894 (sip->si_eoff - sip->si_soff) >> SCTRSHFT;
895 st.ste_pages += sip->si_npgs;
896 st.ste_free += sip->si_nfpgs;
897 }
898 mutex_exit(&swapinfo_lock);
899
900 if (zp->zone_max_swap_ctl != UINT64_MAX) {
901 rctl_qty_t cap, used;
902
903 mutex_enter(&zp->zone_mem_lock);
904 cap = zp->zone_max_swap_ctl;
905 used = zp->zone_max_swap;
906 mutex_exit(&zp->zone_mem_lock);
907
908 st.ste_length = MIN(cap, st.ste_length);
909 st.ste_pages = MIN(btop(cap), st.ste_pages);
910 st.ste_free = MIN(st.ste_pages - btop(used),
911 st.ste_free);
912 }
913
914 if (copyout(&st, ust, sizeof (swapent32_t)) != 0 ||
915 copyout(swappath, (caddr_t)(uintptr_t)st.ste_path,
916 strlen(swappath) + 1) != 0) {
917 return (EFAULT);
918 }
919 *rv = 1;
920 return (0);
921 }
922 beginning:
923 tmp_nswapfiles = nswapfiles;
924 /* Return an error if not enough space for the whole table. */
925 if (length < tmp_nswapfiles)
926 return (ENOMEM);
927 /*
928 * Get memory to hold the swap entries and their names. We'll
929 * copy the real entries into these and then copy these out.
930 * Allocating the pathname memory is only a guess so we may
931 * find that we need more and have to do it again.
932 * All this is because we have to hold the anon lock while
933 * traversing the swapinfo list, and we can't be doing copyouts
934 * and/or kmem_alloc()s during this.
935 */
936 csip = kmem_zalloc(tmp_nswapfiles * sizeof (*csip), KM_SLEEP);
937 retry:
938 nlen = tmp_nswapfiles * (gplen += 100);
939 pname = kmem_zalloc(nlen, KM_SLEEP);
940
941 mutex_enter(&swapinfo_lock);
942
943 if (tmp_nswapfiles != nswapfiles) {
944 mutex_exit(&swapinfo_lock);
945 kmem_free(pname, nlen);
946 kmem_free(csip, tmp_nswapfiles * sizeof (*csip));
947 gplen = 0;
948 goto beginning;
949 }
950 for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0;
951 (sip != NULL) && (nswap < tmp_nswapfiles);
952 sip = sip->si_next, tsip++, tpname += plen, nswap++) {
953 plen = sip->si_pnamelen;
954 if (tpname + plen - pname > nlen) {
955 mutex_exit(&swapinfo_lock);
956 kmem_free(pname, nlen);
957 goto retry;
958 }
959 *tsip = *sip;
960 tsip->si_pname = tpname;
961 (void) strcpy(tsip->si_pname, sip->si_pname);
962 }
963 mutex_exit(&swapinfo_lock);
964
965 if (sip != NULL) {
966 error = ENOMEM;
967 goto lout;
968 }
969 ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent;
970 for (tsip = csip, cnt = 0; cnt < nswap; tsip++, ust++, cnt++) {
971 if (copyin(ust, &st, sizeof (*ust)) != 0) {
972 error = EFAULT;
973 goto lout;
974 }
975 st.ste_flags = tsip->si_flags;
976 st.ste_length =
977 (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT;
978 st.ste_start = tsip->si_soff >> SCTRSHFT;
979 st.ste_pages = tsip->si_npgs;
980 st.ste_free = tsip->si_nfpgs;
981 if (copyout(&st, ust, sizeof (st)) != 0) {
982 error = EFAULT;
983 goto lout;
984 }
985 if (!tsip->si_pnamelen)
986 continue;
987 if (copyout(tsip->si_pname,
988 (caddr_t)(uintptr_t)st.ste_path,
989 tsip->si_pnamelen) != 0) {
990 error = EFAULT;
991 goto lout;
992 }
993 }
994 *rv = nswap;
995 lout:
996 kmem_free(csip, tmp_nswapfiles * sizeof (*csip));
997 kmem_free(pname, nlen);
998 return (error);
999
1000 case SC_ADD:
1001 case SC_REMOVE:
1002 break;
1003 default:
1004 return (EINVAL);
1005 }
1006 if ((error = secpolicy_swapctl(CRED())) != 0)
1007 return (error);
1008
1009 if (copyin(sc_arg, &sr, sizeof (sr)))
1010 return (EFAULT);
1011
1012 /* Allocate the space to read in pathname */
1013 if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL)
1014 return (ENOMEM);
1015
1016 error = copyinstr((caddr_t)(uintptr_t)sr.sr_name,
1017 swapname, MAXPATHLEN, NULL);
1018 if (error)
1019 goto out;
1020
1021 error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
1022 if (error) {
1023 if (sc_cmd == SC_ADD)
1024 goto out;
1025 /* see if we match by name */
1026 vp = swapdel_byname(swapname, (uint_t)sr.sr_start);
1027 if (vp == NULL)
1028 goto out;
1029 }
1030
1031 if (vp->v_flag & (VNOMAP | VNOSWAP)) {
1032 VN_RELE(vp);
1033 error = ENOSYS;
1034 goto out;
1035 }
1036 switch (vp->v_type) {
1037 case VBLK:
1038 break;
1039
1040 case VREG:
1041 if (vp->v_vfsp && vn_is_readonly(vp))
1042 error = EROFS;
1043 else
1044 error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL);
1045 break;
1046
1047 case VDIR:
1048 error = EISDIR;
1049 break;
1050 default:
1051 error = ENOSYS;
1052 break;
1053 }
1054 if (error == 0) {
1055 if (sc_cmd == SC_REMOVE)
1056 error = swapdel(vp, sr.sr_start);
1057 else
1058 error = swapadd(vp, sr.sr_start, sr.sr_length,
1059 swapname);
1060 }
1061 VN_RELE(vp);
1062 out:
1063 kmem_free(swapname, MAXPATHLEN);
1064 return (error);
1065 }
1066
1067 #endif /* _LP64 && _SYSCALL32 */
1068
1069 /*
1070 * Add a new swap file.
1071 */
1072 int
swapadd(struct vnode * vp,ulong_t lowblk,ulong_t nblks,char * swapname)1073 swapadd(struct vnode *vp, ulong_t lowblk, ulong_t nblks, char *swapname)
1074 {
1075 struct swapinfo **sipp, *nsip = NULL, *esip = NULL;
1076 struct vnode *cvp;
1077 struct vattr vattr;
1078 pgcnt_t pages;
1079 u_offset_t soff, eoff;
1080 int error;
1081 ssize_t i, start, end;
1082 ushort_t wasswap;
1083 ulong_t startblk;
1084 size_t returned_mem;
1085
1086 SWAP_PRINT(SW_CTL, "swapadd: vp %p lowblk %ld nblks %ld swapname %s\n",
1087 vp, lowblk, nblks, swapname, 0);
1088 /*
1089 * Get the real vnode. (If vp is not a specnode it just returns vp, so
1090 * it does the right thing, but having this code know about specnodes
1091 * violates the spirit of having it be indepedent of vnode type.)
1092 */
1093 cvp = common_specvp(vp);
1094
1095 /*
1096 * Or in VISSWAP so file system has chance to deny swap-ons during open.
1097 */
1098 mutex_enter(&cvp->v_lock);
1099 wasswap = cvp->v_flag & VISSWAP;
1100 cvp->v_flag |= VISSWAP;
1101 mutex_exit(&cvp->v_lock);
1102
1103 mutex_enter(&swap_lock);
1104 if (error = VOP_OPEN(&cvp, FREAD|FWRITE, CRED(), NULL)) {
1105 mutex_exit(&swap_lock);
1106 /* restore state of v_flag */
1107 if (!wasswap) {
1108 mutex_enter(&cvp->v_lock);
1109 cvp->v_flag &= ~VISSWAP;
1110 mutex_exit(&cvp->v_lock);
1111 }
1112 return (error);
1113 }
1114 mutex_exit(&swap_lock);
1115
1116 /*
1117 * Get partition size. Return error if empty partition,
1118 * or if request does not fit within the partition.
1119 * If this is the first swap device, we can reduce
1120 * the size of the swap area to match what is
1121 * available. This can happen if the system was built
1122 * on a machine with a different size swap partition.
1123 */
1124 vattr.va_mask = AT_SIZE;
1125 if (error = VOP_GETATTR(cvp, &vattr, ATTR_COMM, CRED(), NULL))
1126 goto out;
1127
1128 /*
1129 * Specfs returns a va_size of MAXOFFSET_T (UNKNOWN_SIZE) when the
1130 * size of the device can't be determined.
1131 */
1132 if ((vattr.va_size == 0) || (vattr.va_size == MAXOFFSET_T)) {
1133 error = EINVAL;
1134 goto out;
1135 }
1136
1137 #ifdef _ILP32
1138 /*
1139 * No support for large swap in 32-bit OS, if the size of the swap is
1140 * bigger than MAXOFF32_T then the size used by swapfs must be limited.
1141 * This limitation is imposed by the swap subsystem itself, a D_64BIT
1142 * driver as the target of swap operation should be able to field
1143 * the IO.
1144 */
1145 if (vattr.va_size > MAXOFF32_T) {
1146 cmn_err(CE_NOTE,
1147 "!swap device %s truncated from 0x%llx to 0x%x bytes",
1148 swapname, vattr.va_size, MAXOFF32_T);
1149 vattr.va_size = MAXOFF32_T;
1150 }
1151 #endif /* _ILP32 */
1152
1153 /* Fail if file not writeable (try to set size to current size) */
1154 vattr.va_mask = AT_SIZE;
1155 if (error = VOP_SETATTR(cvp, &vattr, 0, CRED(), NULL))
1156 goto out;
1157
1158 /* Fail if fs does not support VOP_PAGEIO */
1159 error = VOP_PAGEIO(cvp, (page_t *)NULL, (u_offset_t)0, 0, 0, CRED(),
1160 NULL);
1161
1162 if (error == ENOSYS)
1163 goto out;
1164 else
1165 error = 0;
1166 /*
1167 * If swapping on the root filesystem don't put swap blocks that
1168 * correspond to the miniroot filesystem on the swap free list.
1169 */
1170 if (cvp == rootdir)
1171 startblk = roundup(MINIROOTSIZE<<SCTRSHFT, klustsize)>>SCTRSHFT;
1172 else /* Skip 1st page (disk label) */
1173 startblk = (ulong_t)(lowblk ? lowblk : 1);
1174
1175 soff = startblk << SCTRSHFT;
1176 if (soff >= vattr.va_size) {
1177 error = EINVAL;
1178 goto out;
1179 }
1180
1181 /*
1182 * If user specified 0 blks, use the size of the device
1183 */
1184 eoff = nblks ? soff + (nblks - (startblk - lowblk) << SCTRSHFT) :
1185 vattr.va_size;
1186
1187 SWAP_PRINT(SW_CTL, "swapadd: va_size %ld soff %ld eoff %ld\n",
1188 vattr.va_size, soff, eoff, 0, 0);
1189
1190 if (eoff > vattr.va_size) {
1191 error = EINVAL;
1192 goto out;
1193 }
1194
1195 /*
1196 * The starting and ending offsets must be page aligned.
1197 * Round soff up to next page boundary, round eoff
1198 * down to previous page boundary.
1199 */
1200 soff = ptob(btopr(soff));
1201 eoff = ptob(btop(eoff));
1202 if (soff >= eoff) {
1203 SWAP_PRINT(SW_CTL, "swapadd: soff %ld >= eoff %ld\n",
1204 soff, eoff, 0, 0, 0);
1205 error = EINVAL;
1206 goto out;
1207 }
1208
1209 pages = btop(eoff - soff);
1210
1211 /* Allocate and partially set up the new swapinfo */
1212 nsip = kmem_zalloc(sizeof (struct swapinfo), KM_SLEEP);
1213 nsip->si_vp = cvp;
1214
1215 nsip->si_soff = soff;
1216 nsip->si_eoff = eoff;
1217 nsip->si_hint = 0;
1218 nsip->si_checkcnt = nsip->si_alloccnt = 0;
1219
1220 nsip->si_pnamelen = (int)strlen(swapname) + 1;
1221 nsip->si_pname = (char *)kmem_zalloc(nsip->si_pnamelen, KM_SLEEP);
1222 bcopy(swapname, nsip->si_pname, nsip->si_pnamelen - 1);
1223 SWAP_PRINT(SW_CTL, "swapadd: allocating swapinfo for %s, %ld pages\n",
1224 swapname, pages, 0, 0, 0);
1225 /*
1226 * Size of swapslots map in bytes
1227 */
1228 nsip->si_mapsize = P2ROUNDUP(pages, NBBW) / NBBY;
1229 nsip->si_swapslots = kmem_zalloc(nsip->si_mapsize, KM_SLEEP);
1230
1231 /*
1232 * Permanently set the bits that can't ever be allocated,
1233 * i.e. those from the ending offset to the round up slot for the
1234 * swapslots bit map.
1235 */
1236 start = pages;
1237 end = P2ROUNDUP(pages, NBBW);
1238 for (i = start; i < end; i++) {
1239 SWAP_PRINT(SW_CTL, "swapadd: set bit for page %ld\n", i,
1240 0, 0, 0, 0);
1241 SETBIT(nsip->si_swapslots, i);
1242 }
1243 nsip->si_npgs = nsip->si_nfpgs = pages;
1244 /*
1245 * Now check to see if we can add it. We wait til now to check because
1246 * we need the swapinfo_lock and we don't want sleep with it (e.g.,
1247 * during kmem_alloc()) while we're setting up the swapinfo.
1248 */
1249 mutex_enter(&swapinfo_lock);
1250 for (sipp = &swapinfo; (esip = *sipp) != NULL; sipp = &esip->si_next) {
1251 if (esip->si_vp == cvp) {
1252 if (esip->si_soff == soff && esip->si_npgs == pages &&
1253 (esip->si_flags & ST_DOINGDEL)) {
1254 /*
1255 * We are adding a device that we are in the
1256 * middle of deleting. Just clear the
1257 * ST_DOINGDEL flag to signal this and
1258 * the deletion routine will eventually notice
1259 * it and add it back.
1260 */
1261 esip->si_flags &= ~ST_DOINGDEL;
1262 mutex_exit(&swapinfo_lock);
1263 goto out;
1264 }
1265 /* disallow overlapping swap files */
1266 if ((soff < esip->si_eoff) && (eoff > esip->si_soff)) {
1267 error = EEXIST;
1268 mutex_exit(&swapinfo_lock);
1269 goto out;
1270 }
1271 }
1272 }
1273
1274 nswapfiles++;
1275
1276 /*
1277 * add new swap device to list and shift allocations to it
1278 * before updating the anoninfo counters
1279 */
1280 *sipp = nsip;
1281 silast = nsip;
1282
1283 /*
1284 * Update the total amount of reservable swap space
1285 * accounting properly for swap space from physical memory
1286 */
1287 /* New swap device soaks up currently reserved memory swap */
1288 mutex_enter(&anoninfo_lock);
1289
1290 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1291 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1292
1293 k_anoninfo.ani_max += pages;
1294 ANI_ADD(pages);
1295 if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
1296 returned_mem = MIN(k_anoninfo.ani_mem_resv -
1297 k_anoninfo.ani_locked_swap,
1298 k_anoninfo.ani_max - k_anoninfo.ani_phys_resv);
1299
1300 ANI_ADD(-returned_mem);
1301 k_anoninfo.ani_free -= returned_mem;
1302 k_anoninfo.ani_mem_resv -= returned_mem;
1303 k_anoninfo.ani_phys_resv += returned_mem;
1304
1305 mutex_enter(&freemem_lock);
1306 availrmem += returned_mem;
1307 mutex_exit(&freemem_lock);
1308 }
1309 /*
1310 * At boot time, to permit booting small memory machines using
1311 * only physical memory as swap space, we allowed a dangerously
1312 * large amount of memory to be used as swap space; now that
1313 * more physical backing store is available bump down the amount
1314 * we can get from memory to a safer size.
1315 */
1316 if (swapfs_minfree < swapfs_desfree) {
1317 mutex_enter(&freemem_lock);
1318 if (availrmem > swapfs_desfree || !k_anoninfo.ani_mem_resv)
1319 swapfs_minfree = swapfs_desfree;
1320 mutex_exit(&freemem_lock);
1321 }
1322
1323 SWAP_PRINT(SW_CTL, "swapadd: ani_max %ld ani_free %ld\n",
1324 k_anoninfo.ani_free, k_anoninfo.ani_free, 0, 0, 0);
1325
1326 mutex_exit(&anoninfo_lock);
1327
1328 mutex_exit(&swapinfo_lock);
1329
1330 /* Initialize the dump device */
1331 mutex_enter(&dump_lock);
1332 if (dumpvp == NULL)
1333 (void) dumpinit(vp, swapname, 0);
1334 mutex_exit(&dump_lock);
1335
1336 VN_HOLD(cvp);
1337 out:
1338 if (error || esip) {
1339 SWAP_PRINT(SW_CTL, "swapadd: error (%d)\n", error, 0, 0, 0, 0);
1340
1341 if (!wasswap) {
1342 mutex_enter(&cvp->v_lock);
1343 cvp->v_flag &= ~VISSWAP;
1344 mutex_exit(&cvp->v_lock);
1345 }
1346 if (nsip) {
1347 kmem_free(nsip->si_swapslots, (size_t)nsip->si_mapsize);
1348 kmem_free(nsip->si_pname, nsip->si_pnamelen);
1349 kmem_free(nsip, sizeof (*nsip));
1350 }
1351 mutex_enter(&swap_lock);
1352 (void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(),
1353 NULL);
1354 mutex_exit(&swap_lock);
1355 }
1356 return (error);
1357 }
1358
1359 /*
1360 * Delete a swap file.
1361 */
1362 static int
swapdel(struct vnode * vp,ulong_t lowblk)1363 swapdel(
1364 struct vnode *vp,
1365 ulong_t lowblk) /* Low block number of area to delete. */
1366 {
1367 struct swapinfo **sipp, *osip = NULL;
1368 struct vnode *cvp;
1369 u_offset_t soff;
1370 int error = 0;
1371 u_offset_t toff = 0;
1372 struct vnode *tvp = NULL;
1373 spgcnt_t pages;
1374 struct anon **app, *ap;
1375 kmutex_t *ahm;
1376 pgcnt_t adjust_swap = 0;
1377
1378 /* Find the swap file entry for the file to be deleted */
1379 cvp = common_specvp(vp);
1380
1381
1382 lowblk = lowblk ? lowblk : 1; /* Skip first page (disk label) */
1383 soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */
1384
1385 mutex_enter(&swapinfo_lock);
1386 for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) {
1387 if ((osip->si_vp == cvp) &&
1388 (osip->si_soff == soff) && (osip->si_flags == 0))
1389 break;
1390 }
1391
1392 /* If the file was not found, error. */
1393 if (osip == NULL) {
1394 error = EINVAL;
1395 mutex_exit(&swapinfo_lock);
1396 goto out;
1397 }
1398
1399 pages = osip->si_npgs;
1400
1401 /*
1402 * Do not delete if we will be low on swap pages.
1403 */
1404 mutex_enter(&anoninfo_lock);
1405
1406 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1407 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1408
1409 mutex_enter(&freemem_lock);
1410 if (((k_anoninfo.ani_max - k_anoninfo.ani_phys_resv) +
1411 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0)) < pages) {
1412 mutex_exit(&freemem_lock);
1413 mutex_exit(&anoninfo_lock);
1414 error = ENOMEM;
1415 cmn_err(CE_WARN, "swapdel - too few free pages");
1416 mutex_exit(&swapinfo_lock);
1417 goto out;
1418 }
1419 mutex_exit(&freemem_lock);
1420
1421 k_anoninfo.ani_max -= pages;
1422
1423 /* If needed, reserve memory swap to replace old device */
1424 if (k_anoninfo.ani_phys_resv > k_anoninfo.ani_max) {
1425 adjust_swap = k_anoninfo.ani_phys_resv - k_anoninfo.ani_max;
1426 k_anoninfo.ani_phys_resv -= adjust_swap;
1427 k_anoninfo.ani_mem_resv += adjust_swap;
1428 mutex_enter(&freemem_lock);
1429 availrmem -= adjust_swap;
1430 mutex_exit(&freemem_lock);
1431 ANI_ADD(adjust_swap);
1432 }
1433 ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1434 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1435 mutex_exit(&anoninfo_lock);
1436
1437 ANI_ADD(-pages);
1438
1439 /*
1440 * Set the delete flag. This prevents anyone from allocating more
1441 * pages from this file. Also set ST_DOINGDEL. Someone who wants to
1442 * add the file back while we're deleting it will signify by clearing
1443 * this flag.
1444 */
1445 osip->si_flags |= ST_INDEL|ST_DOINGDEL;
1446 mutex_exit(&swapinfo_lock);
1447
1448 /*
1449 * Free all the allocated physical slots for this file. We do this
1450 * by walking through the entire anon hash array, because we need
1451 * to update all the anon slots that have physical swap slots on
1452 * this file, and this is the only way to find them all. We go back
1453 * to the beginning of a bucket after each slot is freed because the
1454 * anonhash_lock is not held during the free and thus the hash table
1455 * may change under us.
1456 */
1457 for (app = anon_hash; app < &anon_hash[ANON_HASH_SIZE]; app++) {
1458 ahm = &anonhash_lock[(app - anon_hash) &
1459 (AH_LOCK_SIZE - 1)].pad_mutex;
1460 mutex_enter(ahm);
1461 top:
1462 for (ap = *app; ap != NULL; ap = ap->an_hash) {
1463 if (ap->an_pvp == cvp &&
1464 ap->an_poff >= osip->si_soff &&
1465 ap->an_poff < osip->si_eoff) {
1466 ASSERT(TESTBIT(osip->si_swapslots,
1467 btop((size_t)(ap->an_poff -
1468 osip->si_soff))));
1469 tvp = ap->an_vp;
1470 toff = ap->an_off;
1471 VN_HOLD(tvp);
1472 mutex_exit(ahm);
1473
1474 error = swapslot_free(tvp, toff, osip);
1475
1476 VN_RELE(tvp);
1477 mutex_enter(ahm);
1478 if (!error && (osip->si_flags & ST_DOINGDEL)) {
1479 goto top;
1480 } else {
1481 if (error) {
1482 cmn_err(CE_WARN,
1483 "swapslot_free failed %d",
1484 error);
1485 }
1486
1487 /*
1488 * Add device back before making it
1489 * visible.
1490 */
1491 mutex_enter(&swapinfo_lock);
1492 osip->si_flags &=
1493 ~(ST_INDEL | ST_DOINGDEL);
1494 mutex_exit(&swapinfo_lock);
1495
1496 /*
1497 * Update the anon space available
1498 */
1499 mutex_enter(&anoninfo_lock);
1500
1501 k_anoninfo.ani_phys_resv += adjust_swap;
1502 k_anoninfo.ani_mem_resv -= adjust_swap;
1503 k_anoninfo.ani_max += pages;
1504
1505 mutex_enter(&freemem_lock);
1506 availrmem += adjust_swap;
1507 mutex_exit(&freemem_lock);
1508
1509 mutex_exit(&anoninfo_lock);
1510
1511 ANI_ADD(pages);
1512
1513 mutex_exit(ahm);
1514 goto out;
1515 }
1516 }
1517 }
1518 mutex_exit(ahm);
1519 }
1520
1521 /* All done, they'd better all be free! */
1522 mutex_enter(&swapinfo_lock);
1523 ASSERT(osip->si_nfpgs == osip->si_npgs);
1524
1525 /* Now remove it from the swapinfo list */
1526 for (sipp = &swapinfo; *sipp != NULL; sipp = &(*sipp)->si_next) {
1527 if (*sipp == osip)
1528 break;
1529 }
1530 ASSERT(*sipp);
1531 *sipp = osip->si_next;
1532 if (silast == osip)
1533 if ((silast = osip->si_next) == NULL)
1534 silast = swapinfo;
1535 nswapfiles--;
1536 mutex_exit(&swapinfo_lock);
1537
1538 kmem_free(osip->si_swapslots, osip->si_mapsize);
1539 kmem_free(osip->si_pname, osip->si_pnamelen);
1540 kmem_free(osip, sizeof (*osip));
1541
1542 mutex_enter(&dump_lock);
1543 if (cvp == dumpvp)
1544 dumpfini();
1545 mutex_exit(&dump_lock);
1546
1547 /* Release the vnode */
1548
1549 mutex_enter(&swap_lock);
1550 (void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(), NULL);
1551 mutex_enter(&cvp->v_lock);
1552 cvp->v_flag &= ~VISSWAP;
1553 mutex_exit(&cvp->v_lock);
1554 VN_RELE(cvp);
1555 mutex_exit(&swap_lock);
1556 out:
1557 return (error);
1558 }
1559
1560 /*
1561 * Free up a physical swap slot on swapinfo sip, currently in use by the
1562 * anonymous page whose name is (vp, off).
1563 */
1564 static int
swapslot_free(struct vnode * vp,u_offset_t off,struct swapinfo * sip)1565 swapslot_free(
1566 struct vnode *vp,
1567 u_offset_t off,
1568 struct swapinfo *sip)
1569 {
1570 struct page *pp = NULL;
1571 struct anon *ap = NULL;
1572 int error = 0;
1573 kmutex_t *ahm;
1574 struct vnode *pvp = NULL;
1575 u_offset_t poff;
1576 int alloc_pg = 0;
1577
1578 ASSERT(sip->si_vp != NULL);
1579 /*
1580 * Get the page for the old swap slot if exists or create a new one.
1581 */
1582 again:
1583 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
1584 pp = page_create_va(vp, off, PAGESIZE, PG_WAIT | PG_EXCL,
1585 segkmap, NULL);
1586 if (pp == NULL)
1587 goto again;
1588 alloc_pg = 1;
1589
1590 error = swap_getphysname(vp, off, &pvp, &poff);
1591 if (error || pvp != sip->si_vp || poff < sip->si_soff ||
1592 poff >= sip->si_eoff) {
1593 page_io_unlock(pp);
1594 /*LINTED: constant in conditional context*/
1595 VN_DISPOSE(pp, B_INVAL, 0, kcred);
1596 return (0);
1597 }
1598
1599 error = VOP_PAGEIO(pvp, pp, poff, PAGESIZE, B_READ,
1600 CRED(), NULL);
1601 if (error) {
1602 page_io_unlock(pp);
1603 if (error == EFAULT)
1604 error = 0;
1605 /*LINTED: constant in conditional context*/
1606 VN_DISPOSE(pp, B_INVAL, 0, kcred);
1607 return (error);
1608 }
1609 }
1610
1611 /*
1612 * The anon could have been removed by anon_decref* and/or reallocated
1613 * by anon layer (an_pvp == NULL) with the same vp, off.
1614 * In this case the page which has been allocated needs to
1615 * be freed.
1616 */
1617 if (!alloc_pg)
1618 page_io_lock(pp);
1619 ahm = AH_MUTEX(vp, off);
1620 mutex_enter(ahm);
1621 ap = swap_anon(vp, off);
1622 if ((ap == NULL || ap->an_pvp == NULL) && alloc_pg) {
1623 mutex_exit(ahm);
1624 page_io_unlock(pp);
1625 /*LINTED: constant in conditional context*/
1626 VN_DISPOSE(pp, B_INVAL, 0, kcred);
1627 return (0);
1628 }
1629
1630 /*
1631 * Free the physical slot. It may have been freed up and replaced with
1632 * another one while we were getting the page so we have to re-verify
1633 * that this is really one we want. If we do free the slot we have
1634 * to mark the page modified, as its backing store is now gone.
1635 */
1636 if ((ap != NULL) && (ap->an_pvp == sip->si_vp && ap->an_poff >=
1637 sip->si_soff && ap->an_poff < sip->si_eoff)) {
1638 swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1639 ap->an_pvp = NULL;
1640 ap->an_poff = 0;
1641 mutex_exit(ahm);
1642 hat_setmod(pp);
1643 } else {
1644 mutex_exit(ahm);
1645 }
1646 page_io_unlock(pp);
1647 page_unlock(pp);
1648 return (0);
1649 }
1650
1651
1652 /*
1653 * Get contig physical backing store for vp, in the range
1654 * [*offp, *offp + *lenp), May back a subrange of this, but must
1655 * always include the requested offset or fail. Returns the offsets
1656 * backed as [*offp, *offp + *lenp) and the physical offsets used to
1657 * back them from *pvpp in the range [*pstartp, *pstartp + *lenp).
1658 * Returns 0 for success
1659 * SE_NOANON -- no anon slot for requested paged
1660 * SE_NOSWAP -- no physical swap space available
1661 */
1662 int
swap_newphysname(struct vnode * vp,u_offset_t offset,u_offset_t * offp,size_t * lenp,struct vnode ** pvpp,u_offset_t * poffp)1663 swap_newphysname(
1664 struct vnode *vp,
1665 u_offset_t offset,
1666 u_offset_t *offp,
1667 size_t *lenp,
1668 struct vnode **pvpp,
1669 u_offset_t *poffp)
1670 {
1671 struct anon *ap = NULL; /* anon slot for vp, off */
1672 int error = 0;
1673 struct vnode *pvp;
1674 u_offset_t poff, pstart, prem;
1675 size_t plen;
1676 u_offset_t off, start;
1677 kmutex_t *ahm;
1678
1679 ASSERT(*offp <= offset && offset < *offp + *lenp);
1680
1681 /* Get new physical swap slots. */
1682 plen = *lenp;
1683 if (!swap_phys_alloc(&pvp, &pstart, &plen, 0)) {
1684 /*
1685 * No swap available so return error unless requested
1686 * offset is already backed in which case return that.
1687 */
1688 ahm = AH_MUTEX(vp, offset);
1689 mutex_enter(ahm);
1690 if ((ap = swap_anon(vp, offset)) == NULL) {
1691 error = SE_NOANON;
1692 mutex_exit(ahm);
1693 return (error);
1694 }
1695 error = (ap->an_pvp ? 0 : SE_NOSWAP);
1696 *offp = offset;
1697 *lenp = PAGESIZE;
1698 *pvpp = ap->an_pvp;
1699 *poffp = ap->an_poff;
1700 mutex_exit(ahm);
1701 return (error);
1702 }
1703
1704 /*
1705 * We got plen (<= *lenp) contig slots. Use these to back a
1706 * subrange of [*offp, *offp + *lenp) which includes offset.
1707 * For now we just put offset at the end of the kluster.
1708 * Clearly there are other possible choices - which is best?
1709 */
1710 start = MAX(*offp,
1711 (offset + PAGESIZE > plen) ? (offset + PAGESIZE - plen) : 0);
1712 ASSERT(start + plen <= *offp + *lenp);
1713
1714 for (off = start, poff = pstart; poff < pstart + plen;
1715 off += PAGESIZE, poff += PAGESIZE) {
1716 ahm = AH_MUTEX(vp, off);
1717 mutex_enter(ahm);
1718 if ((ap = swap_anon(vp, off)) != NULL) {
1719 /* Free old slot if any, and assign new one */
1720 if (ap->an_pvp)
1721 swap_phys_free(ap->an_pvp, ap->an_poff,
1722 PAGESIZE);
1723 ap->an_pvp = pvp;
1724 ap->an_poff = poff;
1725 } else { /* No anon slot for a klustered page, quit. */
1726 prem = (pstart + plen) - poff;
1727 /* Already did requested page, do partial kluster */
1728 if (off > offset) {
1729 plen = poff - pstart;
1730 error = 0;
1731 /* Fail on requested page, error */
1732 } else if (off == offset) {
1733 error = SE_NOANON;
1734 /* Fail on prior page, fail on requested page, error */
1735 } else if ((ap = swap_anon(vp, offset)) == NULL) {
1736 error = SE_NOANON;
1737 /* Fail on prior page, got requested page, do only it */
1738 } else {
1739 /* Free old slot if any, and assign new one */
1740 if (ap->an_pvp)
1741 swap_phys_free(ap->an_pvp, ap->an_poff,
1742 PAGESIZE);
1743 ap->an_pvp = pvp;
1744 ap->an_poff = poff;
1745 /* One page kluster */
1746 start = offset;
1747 plen = PAGESIZE;
1748 pstart = poff;
1749 poff += PAGESIZE;
1750 prem -= PAGESIZE;
1751 }
1752 /* Free unassigned slots */
1753 swap_phys_free(pvp, poff, prem);
1754 mutex_exit(ahm);
1755 break;
1756 }
1757 mutex_exit(ahm);
1758 }
1759 ASSERT(*offp <= start && start + plen <= *offp + *lenp);
1760 ASSERT(start <= offset && offset < start + plen);
1761 *offp = start;
1762 *lenp = plen;
1763 *pvpp = pvp;
1764 *poffp = pstart;
1765 return (error);
1766 }
1767
1768
1769 /*
1770 * Get the physical swap backing store location for a given anonymous page
1771 * named (vp, off). The backing store name is returned in (*pvpp, *poffp).
1772 * Returns 0 success
1773 * EIDRM -- no anon slot (page is not allocated)
1774 */
1775 int
swap_getphysname(struct vnode * vp,u_offset_t off,struct vnode ** pvpp,u_offset_t * poffp)1776 swap_getphysname(
1777 struct vnode *vp,
1778 u_offset_t off,
1779 struct vnode **pvpp,
1780 u_offset_t *poffp)
1781 {
1782 struct anon *ap;
1783 int error = 0;
1784 kmutex_t *ahm;
1785
1786 ahm = AH_MUTEX(vp, off);
1787 mutex_enter(ahm);
1788
1789 /* Get anon slot for vp, off */
1790 ap = swap_anon(vp, off);
1791 if (ap == NULL) {
1792 error = EIDRM;
1793 goto out;
1794 }
1795 *pvpp = ap->an_pvp;
1796 *poffp = ap->an_poff;
1797 out:
1798 mutex_exit(ahm);
1799 return (error);
1800 }
1801