1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include "opt_capsicum.h"
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40
41 #include <sys/systm.h>
42 #include <sys/capsicum.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/filio.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/limits.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/selinfo.h>
57 #include <sys/poll.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/protosw.h>
61 #include <sys/racct.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sbuf.h>
64 #include <sys/signalvar.h>
65 #include <sys/kdb.h>
66 #include <sys/smr.h>
67 #include <sys/stat.h>
68 #include <sys/sx.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysproto.h>
72 #include <sys/unistd.h>
73 #include <sys/user.h>
74 #include <sys/vnode.h>
75 #include <sys/ktrace.h>
76
77 #include <net/vnet.h>
78
79 #include <security/audit/audit.h>
80
81 #include <vm/uma.h>
82 #include <vm/vm.h>
83
84 #include <ddb/ddb.h>
85
86 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
87 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
88 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
89 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
90 "file desc to leader structures");
91 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
92 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
93
94 MALLOC_DECLARE(M_FADVISE);
95
96 static __read_mostly uma_zone_t file_zone;
97 static __read_mostly uma_zone_t filedesc0_zone;
98 __read_mostly uma_zone_t pwd_zone;
99 VFS_SMR_DECLARE;
100
101 static int closefp(struct filedesc *fdp, int fd, struct file *fp,
102 struct thread *td, bool holdleaders, bool audit);
103 static void export_file_to_kinfo(struct file *fp, int fd,
104 cap_rights_t *rightsp, struct kinfo_file *kif,
105 struct filedesc *fdp, int flags);
106 static int fd_first_free(struct filedesc *fdp, int low, int size);
107 static void fdgrowtable(struct filedesc *fdp, int nfd);
108 static void fdgrowtable_exp(struct filedesc *fdp, int nfd);
109 static void fdunused(struct filedesc *fdp, int fd);
110 static void fdused(struct filedesc *fdp, int fd);
111 static int fget_unlocked_seq(struct thread *td, int fd,
112 cap_rights_t *needrightsp, struct file **fpp, seqc_t *seqp);
113 static int getmaxfd(struct thread *td);
114 static u_long *filecaps_copy_prep(const struct filecaps *src);
115 static void filecaps_copy_finish(const struct filecaps *src,
116 struct filecaps *dst, u_long *ioctls);
117 static u_long *filecaps_free_prep(struct filecaps *fcaps);
118 static void filecaps_free_finish(u_long *ioctls);
119
120 static struct pwd *pwd_alloc(void);
121
122 /*
123 * Each process has:
124 *
125 * - An array of open file descriptors (fd_ofiles)
126 * - An array of file flags (fd_ofileflags)
127 * - A bitmap recording which descriptors are in use (fd_map)
128 *
129 * A process starts out with NDFILE descriptors. The value of NDFILE has
130 * been selected based the historical limit of 20 open files, and an
131 * assumption that the majority of processes, especially short-lived
132 * processes like shells, will never need more.
133 *
134 * If this initial allocation is exhausted, a larger descriptor table and
135 * map are allocated dynamically, and the pointers in the process's struct
136 * filedesc are updated to point to those. This is repeated every time
137 * the process runs out of file descriptors (provided it hasn't hit its
138 * resource limit).
139 *
140 * Since threads may hold references to individual descriptor table
141 * entries, the tables are never freed. Instead, they are placed on a
142 * linked list and freed only when the struct filedesc is released.
143 */
144 #define NDFILE 20
145 #define NDSLOTSIZE sizeof(NDSLOTTYPE)
146 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT)
147 #define NDSLOT(x) ((x) / NDENTRIES)
148 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES))
149 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES)
150
151 #define FILEDESC_FOREACH_FDE(fdp, _iterator, _fde) \
152 struct filedesc *_fdp = (fdp); \
153 int _lastfile = fdlastfile_single(_fdp); \
154 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
155 if ((_fde = &_fdp->fd_ofiles[_iterator])->fde_file != NULL)
156
157 #define FILEDESC_FOREACH_FP(fdp, _iterator, _fp) \
158 struct filedesc *_fdp = (fdp); \
159 int _lastfile = fdlastfile_single(_fdp); \
160 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
161 if ((_fp = _fdp->fd_ofiles[_iterator].fde_file) != NULL)
162
163 /*
164 * SLIST entry used to keep track of ofiles which must be reclaimed when
165 * the process exits.
166 */
167 struct freetable {
168 struct fdescenttbl *ft_table;
169 SLIST_ENTRY(freetable) ft_next;
170 };
171
172 /*
173 * Initial allocation: a filedesc structure + the head of SLIST used to
174 * keep track of old ofiles + enough space for NDFILE descriptors.
175 */
176
177 struct fdescenttbl0 {
178 int fdt_nfiles;
179 struct filedescent fdt_ofiles[NDFILE];
180 };
181
182 struct filedesc0 {
183 struct filedesc fd_fd;
184 SLIST_HEAD(, freetable) fd_free;
185 struct fdescenttbl0 fd_dfiles;
186 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
187 };
188
189 /*
190 * Descriptor management.
191 */
192 static int __exclusive_cache_line openfiles; /* actual number of open files */
193 struct mtx sigio_lock; /* mtx to protect pointers to sigio */
194 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
195
196 /*
197 * If low >= size, just return low. Otherwise find the first zero bit in the
198 * given bitmap, starting at low and not exceeding size - 1. Return size if
199 * not found.
200 */
201 static int
fd_first_free(struct filedesc * fdp,int low,int size)202 fd_first_free(struct filedesc *fdp, int low, int size)
203 {
204 NDSLOTTYPE *map = fdp->fd_map;
205 NDSLOTTYPE mask;
206 int off, maxoff;
207
208 if (low >= size)
209 return (low);
210
211 off = NDSLOT(low);
212 if (low % NDENTRIES) {
213 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
214 if ((mask &= ~map[off]) != 0UL)
215 return (off * NDENTRIES + ffsl(mask) - 1);
216 ++off;
217 }
218 for (maxoff = NDSLOTS(size); off < maxoff; ++off)
219 if (map[off] != ~0UL)
220 return (off * NDENTRIES + ffsl(~map[off]) - 1);
221 return (size);
222 }
223
224 /*
225 * Find the last used fd.
226 *
227 * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
228 * Otherwise use fdlastfile.
229 */
230 int
fdlastfile_single(struct filedesc * fdp)231 fdlastfile_single(struct filedesc *fdp)
232 {
233 NDSLOTTYPE *map = fdp->fd_map;
234 int off, minoff;
235
236 off = NDSLOT(fdp->fd_nfiles - 1);
237 for (minoff = NDSLOT(0); off >= minoff; --off)
238 if (map[off] != 0)
239 return (off * NDENTRIES + flsl(map[off]) - 1);
240 return (-1);
241 }
242
243 int
fdlastfile(struct filedesc * fdp)244 fdlastfile(struct filedesc *fdp)
245 {
246
247 FILEDESC_LOCK_ASSERT(fdp);
248 return (fdlastfile_single(fdp));
249 }
250
251 static int
fdisused(struct filedesc * fdp,int fd)252 fdisused(struct filedesc *fdp, int fd)
253 {
254
255 KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
256 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
257
258 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
259 }
260
261 /*
262 * Mark a file descriptor as used.
263 */
264 static void
fdused_init(struct filedesc * fdp,int fd)265 fdused_init(struct filedesc *fdp, int fd)
266 {
267
268 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
269
270 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
271 }
272
273 static void
fdused(struct filedesc * fdp,int fd)274 fdused(struct filedesc *fdp, int fd)
275 {
276
277 FILEDESC_XLOCK_ASSERT(fdp);
278
279 fdused_init(fdp, fd);
280 if (fd == fdp->fd_freefile)
281 fdp->fd_freefile++;
282 }
283
284 /*
285 * Mark a file descriptor as unused.
286 */
287 static void
fdunused(struct filedesc * fdp,int fd)288 fdunused(struct filedesc *fdp, int fd)
289 {
290
291 FILEDESC_XLOCK_ASSERT(fdp);
292
293 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
294 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
295 ("fd=%d is still in use", fd));
296
297 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
298 if (fd < fdp->fd_freefile)
299 fdp->fd_freefile = fd;
300 }
301
302 /*
303 * Free a file descriptor.
304 *
305 * Avoid some work if fdp is about to be destroyed.
306 */
307 static inline void
fdefree_last(struct filedescent * fde)308 fdefree_last(struct filedescent *fde)
309 {
310
311 filecaps_free(&fde->fde_caps);
312 }
313
314 static inline void
fdfree(struct filedesc * fdp,int fd)315 fdfree(struct filedesc *fdp, int fd)
316 {
317 struct filedescent *fde;
318
319 FILEDESC_XLOCK_ASSERT(fdp);
320 fde = &fdp->fd_ofiles[fd];
321 #ifdef CAPABILITIES
322 seqc_write_begin(&fde->fde_seqc);
323 #endif
324 fde->fde_file = NULL;
325 #ifdef CAPABILITIES
326 seqc_write_end(&fde->fde_seqc);
327 #endif
328 fdefree_last(fde);
329 fdunused(fdp, fd);
330 }
331
332 /*
333 * System calls on descriptors.
334 */
335 #ifndef _SYS_SYSPROTO_H_
336 struct getdtablesize_args {
337 int dummy;
338 };
339 #endif
340 /* ARGSUSED */
341 int
sys_getdtablesize(struct thread * td,struct getdtablesize_args * uap)342 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
343 {
344 #ifdef RACCT
345 uint64_t lim;
346 #endif
347
348 td->td_retval[0] = getmaxfd(td);
349 #ifdef RACCT
350 PROC_LOCK(td->td_proc);
351 lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
352 PROC_UNLOCK(td->td_proc);
353 if (lim < td->td_retval[0])
354 td->td_retval[0] = lim;
355 #endif
356 return (0);
357 }
358
359 /*
360 * Duplicate a file descriptor to a particular value.
361 *
362 * Note: keep in mind that a potential race condition exists when closing
363 * descriptors from a shared descriptor table (via rfork).
364 */
365 #ifndef _SYS_SYSPROTO_H_
366 struct dup2_args {
367 u_int from;
368 u_int to;
369 };
370 #endif
371 /* ARGSUSED */
372 int
sys_dup2(struct thread * td,struct dup2_args * uap)373 sys_dup2(struct thread *td, struct dup2_args *uap)
374 {
375
376 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
377 }
378
379 /*
380 * Duplicate a file descriptor.
381 */
382 #ifndef _SYS_SYSPROTO_H_
383 struct dup_args {
384 u_int fd;
385 };
386 #endif
387 /* ARGSUSED */
388 int
sys_dup(struct thread * td,struct dup_args * uap)389 sys_dup(struct thread *td, struct dup_args *uap)
390 {
391
392 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
393 }
394
395 /*
396 * The file control system call.
397 */
398 #ifndef _SYS_SYSPROTO_H_
399 struct fcntl_args {
400 int fd;
401 int cmd;
402 long arg;
403 };
404 #endif
405 /* ARGSUSED */
406 int
sys_fcntl(struct thread * td,struct fcntl_args * uap)407 sys_fcntl(struct thread *td, struct fcntl_args *uap)
408 {
409
410 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
411 }
412
413 int
kern_fcntl_freebsd(struct thread * td,int fd,int cmd,intptr_t arg)414 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, intptr_t arg)
415 {
416 struct flock fl;
417 struct __oflock ofl;
418 intptr_t arg1;
419 int error, newcmd;
420
421 error = 0;
422 newcmd = cmd;
423 switch (cmd) {
424 case F_OGETLK:
425 case F_OSETLK:
426 case F_OSETLKW:
427 /*
428 * Convert old flock structure to new.
429 */
430 error = copyin((void *)arg, &ofl, sizeof(ofl));
431 fl.l_start = ofl.l_start;
432 fl.l_len = ofl.l_len;
433 fl.l_pid = ofl.l_pid;
434 fl.l_type = ofl.l_type;
435 fl.l_whence = ofl.l_whence;
436 fl.l_sysid = 0;
437
438 switch (cmd) {
439 case F_OGETLK:
440 newcmd = F_GETLK;
441 break;
442 case F_OSETLK:
443 newcmd = F_SETLK;
444 break;
445 case F_OSETLKW:
446 newcmd = F_SETLKW;
447 break;
448 }
449 arg1 = (intptr_t)&fl;
450 break;
451 case F_GETLK:
452 case F_SETLK:
453 case F_SETLKW:
454 case F_SETLK_REMOTE:
455 error = copyin((void *)arg, &fl, sizeof(fl));
456 arg1 = (intptr_t)&fl;
457 break;
458 default:
459 arg1 = arg;
460 break;
461 }
462 if (error)
463 return (error);
464 error = kern_fcntl(td, fd, newcmd, arg1);
465 if (error)
466 return (error);
467 if (cmd == F_OGETLK) {
468 ofl.l_start = fl.l_start;
469 ofl.l_len = fl.l_len;
470 ofl.l_pid = fl.l_pid;
471 ofl.l_type = fl.l_type;
472 ofl.l_whence = fl.l_whence;
473 error = copyout(&ofl, (void *)arg, sizeof(ofl));
474 } else if (cmd == F_GETLK) {
475 error = copyout(&fl, (void *)arg, sizeof(fl));
476 }
477 return (error);
478 }
479
480 int
kern_fcntl(struct thread * td,int fd,int cmd,intptr_t arg)481 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
482 {
483 struct filedesc *fdp;
484 struct flock *flp;
485 struct file *fp, *fp2;
486 struct filedescent *fde;
487 struct proc *p;
488 struct vnode *vp;
489 struct mount *mp;
490 struct kinfo_file *kif;
491 int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
492 uint64_t bsize;
493 off_t foffset;
494
495 error = 0;
496 flg = F_POSIX;
497 p = td->td_proc;
498 fdp = p->p_fd;
499
500 AUDIT_ARG_FD(cmd);
501 AUDIT_ARG_CMD(cmd);
502 switch (cmd) {
503 case F_DUPFD:
504 tmp = arg;
505 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
506 break;
507
508 case F_DUPFD_CLOEXEC:
509 tmp = arg;
510 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
511 break;
512
513 case F_DUP2FD:
514 tmp = arg;
515 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
516 break;
517
518 case F_DUP2FD_CLOEXEC:
519 tmp = arg;
520 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
521 break;
522
523 case F_GETFD:
524 error = EBADF;
525 FILEDESC_SLOCK(fdp);
526 fde = fdeget_noref(fdp, fd);
527 if (fde != NULL) {
528 td->td_retval[0] =
529 (fde->fde_flags & UF_EXCLOSE) ? FD_CLOEXEC : 0;
530 error = 0;
531 }
532 FILEDESC_SUNLOCK(fdp);
533 break;
534
535 case F_SETFD:
536 error = EBADF;
537 FILEDESC_XLOCK(fdp);
538 fde = fdeget_noref(fdp, fd);
539 if (fde != NULL) {
540 fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) |
541 (arg & FD_CLOEXEC ? UF_EXCLOSE : 0);
542 error = 0;
543 }
544 FILEDESC_XUNLOCK(fdp);
545 break;
546
547 case F_GETFL:
548 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
549 if (error != 0)
550 break;
551 td->td_retval[0] = OFLAGS(fp->f_flag);
552 fdrop(fp, td);
553 break;
554
555 case F_SETFL:
556 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
557 if (error != 0)
558 break;
559 if (fp->f_ops == &path_fileops) {
560 fdrop(fp, td);
561 error = EBADF;
562 break;
563 }
564 do {
565 tmp = flg = fp->f_flag;
566 tmp &= ~FCNTLFLAGS;
567 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
568 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
569 got_set = tmp & ~flg;
570 got_cleared = flg & ~tmp;
571 tmp = fp->f_flag & FNONBLOCK;
572 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
573 if (error != 0)
574 goto revert_f_setfl;
575 tmp = fp->f_flag & FASYNC;
576 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
577 if (error == 0) {
578 fdrop(fp, td);
579 break;
580 }
581 atomic_clear_int(&fp->f_flag, FNONBLOCK);
582 tmp = 0;
583 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
584 revert_f_setfl:
585 do {
586 tmp = flg = fp->f_flag;
587 tmp &= ~FCNTLFLAGS;
588 tmp |= got_cleared;
589 tmp &= ~got_set;
590 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
591 fdrop(fp, td);
592 break;
593
594 case F_GETOWN:
595 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
596 if (error != 0)
597 break;
598 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
599 if (error == 0)
600 td->td_retval[0] = tmp;
601 fdrop(fp, td);
602 break;
603
604 case F_SETOWN:
605 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
606 if (error != 0)
607 break;
608 tmp = arg;
609 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
610 fdrop(fp, td);
611 break;
612
613 case F_SETLK_REMOTE:
614 error = priv_check(td, PRIV_NFS_LOCKD);
615 if (error != 0)
616 return (error);
617 flg = F_REMOTE;
618 goto do_setlk;
619
620 case F_SETLKW:
621 flg |= F_WAIT;
622 /* FALLTHROUGH F_SETLK */
623
624 case F_SETLK:
625 do_setlk:
626 flp = (struct flock *)arg;
627 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
628 error = EINVAL;
629 break;
630 }
631
632 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
633 if (error != 0)
634 break;
635 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
636 error = EBADF;
637 fdrop(fp, td);
638 break;
639 }
640
641 if (flp->l_whence == SEEK_CUR) {
642 foffset = foffset_get(fp);
643 if (foffset < 0 ||
644 (flp->l_start > 0 &&
645 foffset > OFF_MAX - flp->l_start)) {
646 error = EOVERFLOW;
647 fdrop(fp, td);
648 break;
649 }
650 flp->l_start += foffset;
651 }
652
653 vp = fp->f_vnode;
654 switch (flp->l_type) {
655 case F_RDLCK:
656 if ((fp->f_flag & FREAD) == 0) {
657 error = EBADF;
658 break;
659 }
660 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
661 PROC_LOCK(p->p_leader);
662 p->p_leader->p_flag |= P_ADVLOCK;
663 PROC_UNLOCK(p->p_leader);
664 }
665 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
666 flp, flg);
667 break;
668 case F_WRLCK:
669 if ((fp->f_flag & FWRITE) == 0) {
670 error = EBADF;
671 break;
672 }
673 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
674 PROC_LOCK(p->p_leader);
675 p->p_leader->p_flag |= P_ADVLOCK;
676 PROC_UNLOCK(p->p_leader);
677 }
678 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
679 flp, flg);
680 break;
681 case F_UNLCK:
682 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
683 flp, flg);
684 break;
685 case F_UNLCKSYS:
686 if (flg != F_REMOTE) {
687 error = EINVAL;
688 break;
689 }
690 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
691 F_UNLCKSYS, flp, flg);
692 break;
693 default:
694 error = EINVAL;
695 break;
696 }
697 if (error != 0 || flp->l_type == F_UNLCK ||
698 flp->l_type == F_UNLCKSYS) {
699 fdrop(fp, td);
700 break;
701 }
702
703 /*
704 * Check for a race with close.
705 *
706 * The vnode is now advisory locked (or unlocked, but this case
707 * is not really important) as the caller requested.
708 * We had to drop the filedesc lock, so we need to recheck if
709 * the descriptor is still valid, because if it was closed
710 * in the meantime we need to remove advisory lock from the
711 * vnode - close on any descriptor leading to an advisory
712 * locked vnode, removes that lock.
713 * We will return 0 on purpose in that case, as the result of
714 * successful advisory lock might have been externally visible
715 * already. This is fine - effectively we pretend to the caller
716 * that the closing thread was a bit slower and that the
717 * advisory lock succeeded before the close.
718 */
719 error = fget_unlocked(td, fd, &cap_no_rights, &fp2);
720 if (error != 0) {
721 fdrop(fp, td);
722 break;
723 }
724 if (fp != fp2) {
725 flp->l_whence = SEEK_SET;
726 flp->l_start = 0;
727 flp->l_len = 0;
728 flp->l_type = F_UNLCK;
729 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
730 F_UNLCK, flp, F_POSIX);
731 }
732 fdrop(fp, td);
733 fdrop(fp2, td);
734 break;
735
736 case F_GETLK:
737 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
738 if (error != 0)
739 break;
740 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
741 error = EBADF;
742 fdrop(fp, td);
743 break;
744 }
745 flp = (struct flock *)arg;
746 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
747 flp->l_type != F_UNLCK) {
748 error = EINVAL;
749 fdrop(fp, td);
750 break;
751 }
752 if (flp->l_whence == SEEK_CUR) {
753 foffset = foffset_get(fp);
754 if ((flp->l_start > 0 &&
755 foffset > OFF_MAX - flp->l_start) ||
756 (flp->l_start < 0 &&
757 foffset < OFF_MIN - flp->l_start)) {
758 error = EOVERFLOW;
759 fdrop(fp, td);
760 break;
761 }
762 flp->l_start += foffset;
763 }
764 vp = fp->f_vnode;
765 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
766 F_POSIX);
767 fdrop(fp, td);
768 break;
769
770 case F_ADD_SEALS:
771 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
772 if (error != 0)
773 break;
774 error = fo_add_seals(fp, arg);
775 fdrop(fp, td);
776 break;
777
778 case F_GET_SEALS:
779 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
780 if (error != 0)
781 break;
782 if (fo_get_seals(fp, &seals) == 0)
783 td->td_retval[0] = seals;
784 else
785 error = EINVAL;
786 fdrop(fp, td);
787 break;
788
789 case F_RDAHEAD:
790 arg = arg ? 128 * 1024: 0;
791 /* FALLTHROUGH */
792 case F_READAHEAD:
793 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
794 if (error != 0)
795 break;
796 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
797 fdrop(fp, td);
798 error = EBADF;
799 break;
800 }
801 vp = fp->f_vnode;
802 if (vp->v_type != VREG) {
803 fdrop(fp, td);
804 error = ENOTTY;
805 break;
806 }
807
808 /*
809 * Exclusive lock synchronizes against f_seqcount reads and
810 * writes in sequential_heuristic().
811 */
812 error = vn_lock(vp, LK_EXCLUSIVE);
813 if (error != 0) {
814 fdrop(fp, td);
815 break;
816 }
817 if (arg >= 0) {
818 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
819 arg = MIN(arg, INT_MAX - bsize + 1);
820 fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
821 (arg + bsize - 1) / bsize);
822 atomic_set_int(&fp->f_flag, FRDAHEAD);
823 } else {
824 atomic_clear_int(&fp->f_flag, FRDAHEAD);
825 }
826 VOP_UNLOCK(vp);
827 fdrop(fp, td);
828 break;
829
830 case F_ISUNIONSTACK:
831 /*
832 * Check if the vnode is part of a union stack (either the
833 * "union" flag from mount(2) or unionfs).
834 *
835 * Prior to introduction of this op libc's readdir would call
836 * fstatfs(2), in effect unnecessarily copying kilobytes of
837 * data just to check fs name and a mount flag.
838 *
839 * Fixing the code to handle everything in the kernel instead
840 * is a non-trivial endeavor and has low priority, thus this
841 * horrible kludge facilitates the current behavior in a much
842 * cheaper manner until someone(tm) sorts this out.
843 */
844 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
845 if (error != 0)
846 break;
847 if (fp->f_type != DTYPE_VNODE) {
848 fdrop(fp, td);
849 error = EBADF;
850 break;
851 }
852 vp = fp->f_vnode;
853 /*
854 * Since we don't prevent dooming the vnode even non-null mp
855 * found can become immediately stale. This is tolerable since
856 * mount points are type-stable (providing safe memory access)
857 * and any vfs op on this vnode going forward will return an
858 * error (meaning return value in this case is meaningless).
859 */
860 mp = atomic_load_ptr(&vp->v_mount);
861 if (__predict_false(mp == NULL)) {
862 fdrop(fp, td);
863 error = EBADF;
864 break;
865 }
866 td->td_retval[0] = 0;
867 if (mp->mnt_kern_flag & MNTK_UNIONFS ||
868 mp->mnt_flag & MNT_UNION)
869 td->td_retval[0] = 1;
870 fdrop(fp, td);
871 break;
872
873 case F_KINFO:
874 #ifdef CAPABILITY_MODE
875 if (CAP_TRACING(td))
876 ktrcapfail(CAPFAIL_SYSCALL, &cmd);
877 if (IN_CAPABILITY_MODE(td)) {
878 error = ECAPMODE;
879 break;
880 }
881 #endif
882 error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
883 if (error != 0)
884 break;
885 if (kif_sz != sizeof(*kif)) {
886 error = EINVAL;
887 break;
888 }
889 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
890 FILEDESC_SLOCK(fdp);
891 error = fget_cap_noref(fdp, fd, &cap_fcntl_rights, &fp, NULL);
892 if (error == 0 && fhold(fp)) {
893 export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
894 FILEDESC_SUNLOCK(fdp);
895 fdrop(fp, td);
896 if ((kif->kf_status & KF_ATTR_VALID) != 0) {
897 kif->kf_structsize = sizeof(*kif);
898 error = copyout(kif, (void *)arg, sizeof(*kif));
899 } else {
900 error = EBADF;
901 }
902 } else {
903 FILEDESC_SUNLOCK(fdp);
904 if (error == 0)
905 error = EBADF;
906 }
907 free(kif, M_TEMP);
908 break;
909
910 default:
911 error = EINVAL;
912 break;
913 }
914 return (error);
915 }
916
917 static int
getmaxfd(struct thread * td)918 getmaxfd(struct thread *td)
919 {
920
921 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
922 }
923
924 /*
925 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
926 */
927 int
kern_dup(struct thread * td,u_int mode,int flags,int old,int new)928 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
929 {
930 struct filedesc *fdp;
931 struct filedescent *oldfde, *newfde;
932 struct proc *p;
933 struct file *delfp, *oldfp;
934 u_long *oioctls, *nioctls;
935 int error, maxfd;
936
937 p = td->td_proc;
938 fdp = p->p_fd;
939 oioctls = NULL;
940
941 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC)) == 0);
942 MPASS(mode < FDDUP_LASTMODE);
943
944 AUDIT_ARG_FD(old);
945 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
946
947 /*
948 * Verify we have a valid descriptor to dup from and possibly to
949 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
950 * return EINVAL when the new descriptor is out of bounds.
951 */
952 if (old < 0)
953 return (EBADF);
954 if (new < 0)
955 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
956 maxfd = getmaxfd(td);
957 if (new >= maxfd)
958 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
959
960 error = EBADF;
961 FILEDESC_XLOCK(fdp);
962 if (fget_noref(fdp, old) == NULL)
963 goto unlock;
964 if (mode == FDDUP_FIXED && old == new) {
965 td->td_retval[0] = new;
966 if (flags & FDDUP_FLAG_CLOEXEC)
967 fdp->fd_ofiles[new].fde_flags |= UF_EXCLOSE;
968 error = 0;
969 goto unlock;
970 }
971
972 oldfde = &fdp->fd_ofiles[old];
973 oldfp = oldfde->fde_file;
974 if (!fhold(oldfp))
975 goto unlock;
976
977 /*
978 * If the caller specified a file descriptor, make sure the file
979 * table is large enough to hold it, and grab it. Otherwise, just
980 * allocate a new descriptor the usual way.
981 */
982 switch (mode) {
983 case FDDUP_NORMAL:
984 case FDDUP_FCNTL:
985 if ((error = fdalloc(td, new, &new)) != 0) {
986 fdrop(oldfp, td);
987 goto unlock;
988 }
989 break;
990 case FDDUP_FIXED:
991 if (new >= fdp->fd_nfiles) {
992 /*
993 * The resource limits are here instead of e.g.
994 * fdalloc(), because the file descriptor table may be
995 * shared between processes, so we can't really use
996 * racct_add()/racct_sub(). Instead of counting the
997 * number of actually allocated descriptors, just put
998 * the limit on the size of the file descriptor table.
999 */
1000 #ifdef RACCT
1001 if (RACCT_ENABLED()) {
1002 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
1003 if (error != 0) {
1004 error = EMFILE;
1005 fdrop(oldfp, td);
1006 goto unlock;
1007 }
1008 }
1009 #endif
1010 fdgrowtable_exp(fdp, new + 1);
1011 }
1012 if (!fdisused(fdp, new))
1013 fdused(fdp, new);
1014 break;
1015 default:
1016 KASSERT(0, ("%s unsupported mode %d", __func__, mode));
1017 }
1018
1019 KASSERT(old != new, ("new fd is same as old"));
1020
1021 /* Refetch oldfde because the table may have grown and old one freed. */
1022 oldfde = &fdp->fd_ofiles[old];
1023 KASSERT(oldfp == oldfde->fde_file,
1024 ("fdt_ofiles shift from growth observed at fd %d",
1025 old));
1026
1027 newfde = &fdp->fd_ofiles[new];
1028 delfp = newfde->fde_file;
1029
1030 nioctls = filecaps_copy_prep(&oldfde->fde_caps);
1031
1032 /*
1033 * Duplicate the source descriptor.
1034 */
1035 #ifdef CAPABILITIES
1036 seqc_write_begin(&newfde->fde_seqc);
1037 #endif
1038 oioctls = filecaps_free_prep(&newfde->fde_caps);
1039 fde_copy(oldfde, newfde);
1040 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
1041 nioctls);
1042 if ((flags & FDDUP_FLAG_CLOEXEC) != 0)
1043 newfde->fde_flags = oldfde->fde_flags | UF_EXCLOSE;
1044 else
1045 newfde->fde_flags = oldfde->fde_flags & ~UF_EXCLOSE;
1046 #ifdef CAPABILITIES
1047 seqc_write_end(&newfde->fde_seqc);
1048 #endif
1049 td->td_retval[0] = new;
1050
1051 error = 0;
1052
1053 if (delfp != NULL) {
1054 (void) closefp(fdp, new, delfp, td, true, false);
1055 FILEDESC_UNLOCK_ASSERT(fdp);
1056 } else {
1057 unlock:
1058 FILEDESC_XUNLOCK(fdp);
1059 }
1060
1061 filecaps_free_finish(oioctls);
1062 return (error);
1063 }
1064
1065 static void
sigiofree(struct sigio * sigio)1066 sigiofree(struct sigio *sigio)
1067 {
1068 crfree(sigio->sio_ucred);
1069 free(sigio, M_SIGIO);
1070 }
1071
1072 static struct sigio *
funsetown_locked(struct sigio * sigio)1073 funsetown_locked(struct sigio *sigio)
1074 {
1075 struct proc *p;
1076 struct pgrp *pg;
1077
1078 SIGIO_ASSERT_LOCKED();
1079
1080 if (sigio == NULL)
1081 return (NULL);
1082 *sigio->sio_myref = NULL;
1083 if (sigio->sio_pgid < 0) {
1084 pg = sigio->sio_pgrp;
1085 PGRP_LOCK(pg);
1086 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
1087 PGRP_UNLOCK(pg);
1088 } else {
1089 p = sigio->sio_proc;
1090 PROC_LOCK(p);
1091 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1092 PROC_UNLOCK(p);
1093 }
1094 return (sigio);
1095 }
1096
1097 /*
1098 * If sigio is on the list associated with a process or process group,
1099 * disable signalling from the device, remove sigio from the list and
1100 * free sigio.
1101 */
1102 void
funsetown(struct sigio ** sigiop)1103 funsetown(struct sigio **sigiop)
1104 {
1105 struct sigio *sigio;
1106
1107 /* Racy check, consumers must provide synchronization. */
1108 if (*sigiop == NULL)
1109 return;
1110
1111 SIGIO_LOCK();
1112 sigio = funsetown_locked(*sigiop);
1113 SIGIO_UNLOCK();
1114 if (sigio != NULL)
1115 sigiofree(sigio);
1116 }
1117
1118 /*
1119 * Free a list of sigio structures. The caller must ensure that new sigio
1120 * structures cannot be added after this point. For process groups this is
1121 * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
1122 * as an interlock.
1123 */
1124 void
funsetownlst(struct sigiolst * sigiolst)1125 funsetownlst(struct sigiolst *sigiolst)
1126 {
1127 struct proc *p;
1128 struct pgrp *pg;
1129 struct sigio *sigio, *tmp;
1130
1131 /* Racy check. */
1132 sigio = SLIST_FIRST(sigiolst);
1133 if (sigio == NULL)
1134 return;
1135
1136 p = NULL;
1137 pg = NULL;
1138
1139 SIGIO_LOCK();
1140 sigio = SLIST_FIRST(sigiolst);
1141 if (sigio == NULL) {
1142 SIGIO_UNLOCK();
1143 return;
1144 }
1145
1146 /*
1147 * Every entry of the list should belong to a single proc or pgrp.
1148 */
1149 if (sigio->sio_pgid < 0) {
1150 pg = sigio->sio_pgrp;
1151 sx_assert(&proctree_lock, SX_XLOCKED);
1152 PGRP_LOCK(pg);
1153 } else /* if (sigio->sio_pgid > 0) */ {
1154 p = sigio->sio_proc;
1155 PROC_LOCK(p);
1156 KASSERT((p->p_flag & P_WEXIT) != 0,
1157 ("%s: process %p is not exiting", __func__, p));
1158 }
1159
1160 SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
1161 *sigio->sio_myref = NULL;
1162 if (pg != NULL) {
1163 KASSERT(sigio->sio_pgid < 0,
1164 ("Proc sigio in pgrp sigio list"));
1165 KASSERT(sigio->sio_pgrp == pg,
1166 ("Bogus pgrp in sigio list"));
1167 } else /* if (p != NULL) */ {
1168 KASSERT(sigio->sio_pgid > 0,
1169 ("Pgrp sigio in proc sigio list"));
1170 KASSERT(sigio->sio_proc == p,
1171 ("Bogus proc in sigio list"));
1172 }
1173 }
1174
1175 if (pg != NULL)
1176 PGRP_UNLOCK(pg);
1177 else
1178 PROC_UNLOCK(p);
1179 SIGIO_UNLOCK();
1180
1181 SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
1182 sigiofree(sigio);
1183 }
1184
1185 /*
1186 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1187 *
1188 * After permission checking, add a sigio structure to the sigio list for
1189 * the process or process group.
1190 */
1191 int
fsetown(pid_t pgid,struct sigio ** sigiop)1192 fsetown(pid_t pgid, struct sigio **sigiop)
1193 {
1194 struct proc *proc;
1195 struct pgrp *pgrp;
1196 struct sigio *osigio, *sigio;
1197 int ret;
1198
1199 if (pgid == 0) {
1200 funsetown(sigiop);
1201 return (0);
1202 }
1203
1204 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
1205 sigio->sio_pgid = pgid;
1206 sigio->sio_ucred = crhold(curthread->td_ucred);
1207 sigio->sio_myref = sigiop;
1208
1209 ret = 0;
1210 if (pgid > 0) {
1211 ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
1212 SIGIO_LOCK();
1213 osigio = funsetown_locked(*sigiop);
1214 if (ret == 0) {
1215 PROC_LOCK(proc);
1216 _PRELE(proc);
1217 if ((proc->p_flag & P_WEXIT) != 0) {
1218 ret = ESRCH;
1219 } else if (proc->p_session !=
1220 curthread->td_proc->p_session) {
1221 /*
1222 * Policy - Don't allow a process to FSETOWN a
1223 * process in another session.
1224 *
1225 * Remove this test to allow maximum flexibility
1226 * or restrict FSETOWN to the current process or
1227 * process group for maximum safety.
1228 */
1229 ret = EPERM;
1230 } else {
1231 sigio->sio_proc = proc;
1232 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
1233 sio_pgsigio);
1234 }
1235 PROC_UNLOCK(proc);
1236 }
1237 } else /* if (pgid < 0) */ {
1238 sx_slock(&proctree_lock);
1239 SIGIO_LOCK();
1240 osigio = funsetown_locked(*sigiop);
1241 pgrp = pgfind(-pgid);
1242 if (pgrp == NULL) {
1243 ret = ESRCH;
1244 } else {
1245 if (pgrp->pg_session != curthread->td_proc->p_session) {
1246 /*
1247 * Policy - Don't allow a process to FSETOWN a
1248 * process in another session.
1249 *
1250 * Remove this test to allow maximum flexibility
1251 * or restrict FSETOWN to the current process or
1252 * process group for maximum safety.
1253 */
1254 ret = EPERM;
1255 } else {
1256 sigio->sio_pgrp = pgrp;
1257 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
1258 sio_pgsigio);
1259 }
1260 PGRP_UNLOCK(pgrp);
1261 }
1262 sx_sunlock(&proctree_lock);
1263 }
1264 if (ret == 0)
1265 *sigiop = sigio;
1266 SIGIO_UNLOCK();
1267 if (osigio != NULL)
1268 sigiofree(osigio);
1269 return (ret);
1270 }
1271
1272 /*
1273 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1274 */
1275 pid_t
fgetown(struct sigio ** sigiop)1276 fgetown(struct sigio **sigiop)
1277 {
1278 pid_t pgid;
1279
1280 SIGIO_LOCK();
1281 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
1282 SIGIO_UNLOCK();
1283 return (pgid);
1284 }
1285
1286 static int
closefp_impl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool audit)1287 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1288 bool audit)
1289 {
1290 int error;
1291
1292 FILEDESC_XLOCK_ASSERT(fdp);
1293
1294 /*
1295 * We now hold the fp reference that used to be owned by the
1296 * descriptor array. We have to unlock the FILEDESC *AFTER*
1297 * knote_fdclose to prevent a race of the fd getting opened, a knote
1298 * added, and deleteing a knote for the new fd.
1299 */
1300 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
1301 knote_fdclose(td, fd);
1302
1303 /*
1304 * We need to notify mqueue if the object is of type mqueue.
1305 */
1306 if (__predict_false(fp->f_type == DTYPE_MQUEUE))
1307 mq_fdclose(td, fd, fp);
1308 FILEDESC_XUNLOCK(fdp);
1309
1310 #ifdef AUDIT
1311 if (AUDITING_TD(td) && audit)
1312 audit_sysclose(td, fd, fp);
1313 #endif
1314 error = closef(fp, td);
1315
1316 /*
1317 * All paths leading up to closefp() will have already removed or
1318 * replaced the fd in the filedesc table, so a restart would not
1319 * operate on the same file.
1320 */
1321 if (error == ERESTART)
1322 error = EINTR;
1323
1324 return (error);
1325 }
1326
1327 static int
closefp_hl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1328 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1329 bool holdleaders, bool audit)
1330 {
1331 int error;
1332
1333 FILEDESC_XLOCK_ASSERT(fdp);
1334
1335 if (holdleaders) {
1336 if (td->td_proc->p_fdtol != NULL) {
1337 /*
1338 * Ask fdfree() to sleep to ensure that all relevant
1339 * process leaders can be traversed in closef().
1340 */
1341 fdp->fd_holdleaderscount++;
1342 } else {
1343 holdleaders = false;
1344 }
1345 }
1346
1347 error = closefp_impl(fdp, fd, fp, td, audit);
1348 if (holdleaders) {
1349 FILEDESC_XLOCK(fdp);
1350 fdp->fd_holdleaderscount--;
1351 if (fdp->fd_holdleaderscount == 0 &&
1352 fdp->fd_holdleaderswakeup != 0) {
1353 fdp->fd_holdleaderswakeup = 0;
1354 wakeup(&fdp->fd_holdleaderscount);
1355 }
1356 FILEDESC_XUNLOCK(fdp);
1357 }
1358 return (error);
1359 }
1360
1361 static int
closefp(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1362 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1363 bool holdleaders, bool audit)
1364 {
1365
1366 FILEDESC_XLOCK_ASSERT(fdp);
1367
1368 if (__predict_false(td->td_proc->p_fdtol != NULL)) {
1369 return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
1370 } else {
1371 return (closefp_impl(fdp, fd, fp, td, audit));
1372 }
1373 }
1374
1375 /*
1376 * Close a file descriptor.
1377 */
1378 #ifndef _SYS_SYSPROTO_H_
1379 struct close_args {
1380 int fd;
1381 };
1382 #endif
1383 /* ARGSUSED */
1384 int
sys_close(struct thread * td,struct close_args * uap)1385 sys_close(struct thread *td, struct close_args *uap)
1386 {
1387
1388 return (kern_close(td, uap->fd));
1389 }
1390
1391 int
kern_close(struct thread * td,int fd)1392 kern_close(struct thread *td, int fd)
1393 {
1394 struct filedesc *fdp;
1395 struct file *fp;
1396
1397 fdp = td->td_proc->p_fd;
1398
1399 FILEDESC_XLOCK(fdp);
1400 if ((fp = fget_noref(fdp, fd)) == NULL) {
1401 FILEDESC_XUNLOCK(fdp);
1402 return (EBADF);
1403 }
1404 fdfree(fdp, fd);
1405
1406 /* closefp() drops the FILEDESC lock for us. */
1407 return (closefp(fdp, fd, fp, td, true, true));
1408 }
1409
1410 static int
close_range_cloexec(struct thread * td,u_int lowfd,u_int highfd)1411 close_range_cloexec(struct thread *td, u_int lowfd, u_int highfd)
1412 {
1413 struct filedesc *fdp;
1414 struct fdescenttbl *fdt;
1415 struct filedescent *fde;
1416 int fd;
1417
1418 fdp = td->td_proc->p_fd;
1419 FILEDESC_XLOCK(fdp);
1420 fdt = atomic_load_ptr(&fdp->fd_files);
1421 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1422 fd = lowfd;
1423 if (__predict_false(fd > highfd)) {
1424 goto out_locked;
1425 }
1426 for (; fd <= highfd; fd++) {
1427 fde = &fdt->fdt_ofiles[fd];
1428 if (fde->fde_file != NULL)
1429 fde->fde_flags |= UF_EXCLOSE;
1430 }
1431 out_locked:
1432 FILEDESC_XUNLOCK(fdp);
1433 return (0);
1434 }
1435
1436 static int
close_range_impl(struct thread * td,u_int lowfd,u_int highfd)1437 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
1438 {
1439 struct filedesc *fdp;
1440 const struct fdescenttbl *fdt;
1441 struct file *fp;
1442 int fd;
1443
1444 fdp = td->td_proc->p_fd;
1445 FILEDESC_XLOCK(fdp);
1446 fdt = atomic_load_ptr(&fdp->fd_files);
1447 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1448 fd = lowfd;
1449 if (__predict_false(fd > highfd)) {
1450 goto out_locked;
1451 }
1452 for (;;) {
1453 fp = fdt->fdt_ofiles[fd].fde_file;
1454 if (fp == NULL) {
1455 if (fd == highfd)
1456 goto out_locked;
1457 } else {
1458 fdfree(fdp, fd);
1459 (void) closefp(fdp, fd, fp, td, true, true);
1460 if (fd == highfd)
1461 goto out_unlocked;
1462 FILEDESC_XLOCK(fdp);
1463 fdt = atomic_load_ptr(&fdp->fd_files);
1464 }
1465 fd++;
1466 }
1467 out_locked:
1468 FILEDESC_XUNLOCK(fdp);
1469 out_unlocked:
1470 return (0);
1471 }
1472
1473 int
kern_close_range(struct thread * td,int flags,u_int lowfd,u_int highfd)1474 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
1475 {
1476
1477 /*
1478 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
1479 * open should not be a usage error. From a close_range() perspective,
1480 * close_range(3, ~0U, 0) in the same scenario should also likely not
1481 * be a usage error as all fd above 3 are in-fact already closed.
1482 */
1483 if (highfd < lowfd) {
1484 return (EINVAL);
1485 }
1486
1487 if ((flags & CLOSE_RANGE_CLOEXEC) != 0)
1488 return (close_range_cloexec(td, lowfd, highfd));
1489
1490 return (close_range_impl(td, lowfd, highfd));
1491 }
1492
1493 #ifndef _SYS_SYSPROTO_H_
1494 struct close_range_args {
1495 u_int lowfd;
1496 u_int highfd;
1497 int flags;
1498 };
1499 #endif
1500 int
sys_close_range(struct thread * td,struct close_range_args * uap)1501 sys_close_range(struct thread *td, struct close_range_args *uap)
1502 {
1503
1504 AUDIT_ARG_FD(uap->lowfd);
1505 AUDIT_ARG_CMD(uap->highfd);
1506 AUDIT_ARG_FFLAGS(uap->flags);
1507
1508 if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC)) != 0)
1509 return (EINVAL);
1510 return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
1511 }
1512
1513 #ifdef COMPAT_FREEBSD12
1514 /*
1515 * Close open file descriptors.
1516 */
1517 #ifndef _SYS_SYSPROTO_H_
1518 struct freebsd12_closefrom_args {
1519 int lowfd;
1520 };
1521 #endif
1522 /* ARGSUSED */
1523 int
freebsd12_closefrom(struct thread * td,struct freebsd12_closefrom_args * uap)1524 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
1525 {
1526 u_int lowfd;
1527
1528 AUDIT_ARG_FD(uap->lowfd);
1529
1530 /*
1531 * Treat negative starting file descriptor values identical to
1532 * closefrom(0) which closes all files.
1533 */
1534 lowfd = MAX(0, uap->lowfd);
1535 return (kern_close_range(td, 0, lowfd, ~0U));
1536 }
1537 #endif /* COMPAT_FREEBSD12 */
1538
1539 #if defined(COMPAT_43)
1540 /*
1541 * Return status information about a file descriptor.
1542 */
1543 #ifndef _SYS_SYSPROTO_H_
1544 struct ofstat_args {
1545 int fd;
1546 struct ostat *sb;
1547 };
1548 #endif
1549 /* ARGSUSED */
1550 int
ofstat(struct thread * td,struct ofstat_args * uap)1551 ofstat(struct thread *td, struct ofstat_args *uap)
1552 {
1553 struct ostat oub;
1554 struct stat ub;
1555 int error;
1556
1557 error = kern_fstat(td, uap->fd, &ub);
1558 if (error == 0) {
1559 cvtstat(&ub, &oub);
1560 error = copyout(&oub, uap->sb, sizeof(oub));
1561 }
1562 return (error);
1563 }
1564 #endif /* COMPAT_43 */
1565
1566 #if defined(COMPAT_FREEBSD11)
1567 int
freebsd11_fstat(struct thread * td,struct freebsd11_fstat_args * uap)1568 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
1569 {
1570 struct stat sb;
1571 struct freebsd11_stat osb;
1572 int error;
1573
1574 error = kern_fstat(td, uap->fd, &sb);
1575 if (error != 0)
1576 return (error);
1577 error = freebsd11_cvtstat(&sb, &osb);
1578 if (error == 0)
1579 error = copyout(&osb, uap->sb, sizeof(osb));
1580 return (error);
1581 }
1582 #endif /* COMPAT_FREEBSD11 */
1583
1584 /*
1585 * Return status information about a file descriptor.
1586 */
1587 #ifndef _SYS_SYSPROTO_H_
1588 struct fstat_args {
1589 int fd;
1590 struct stat *sb;
1591 };
1592 #endif
1593 /* ARGSUSED */
1594 int
sys_fstat(struct thread * td,struct fstat_args * uap)1595 sys_fstat(struct thread *td, struct fstat_args *uap)
1596 {
1597 struct stat ub;
1598 int error;
1599
1600 error = kern_fstat(td, uap->fd, &ub);
1601 if (error == 0)
1602 error = copyout(&ub, uap->sb, sizeof(ub));
1603 return (error);
1604 }
1605
1606 int
kern_fstat(struct thread * td,int fd,struct stat * sbp)1607 kern_fstat(struct thread *td, int fd, struct stat *sbp)
1608 {
1609 struct file *fp;
1610 int error;
1611
1612 AUDIT_ARG_FD(fd);
1613
1614 error = fget(td, fd, &cap_fstat_rights, &fp);
1615 if (__predict_false(error != 0))
1616 return (error);
1617
1618 AUDIT_ARG_FILE(td->td_proc, fp);
1619
1620 sbp->st_filerev = 0;
1621 error = fo_stat(fp, sbp, td->td_ucred);
1622 fdrop(fp, td);
1623 #ifdef __STAT_TIME_T_EXT
1624 sbp->st_atim_ext = 0;
1625 sbp->st_mtim_ext = 0;
1626 sbp->st_ctim_ext = 0;
1627 sbp->st_btim_ext = 0;
1628 #endif
1629 #ifdef KTRACE
1630 if (KTRPOINT(td, KTR_STRUCT))
1631 ktrstat_error(sbp, error);
1632 #endif
1633 return (error);
1634 }
1635
1636 #if defined(COMPAT_FREEBSD11)
1637 /*
1638 * Return status information about a file descriptor.
1639 */
1640 #ifndef _SYS_SYSPROTO_H_
1641 struct freebsd11_nfstat_args {
1642 int fd;
1643 struct nstat *sb;
1644 };
1645 #endif
1646 /* ARGSUSED */
1647 int
freebsd11_nfstat(struct thread * td,struct freebsd11_nfstat_args * uap)1648 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
1649 {
1650 struct nstat nub;
1651 struct stat ub;
1652 int error;
1653
1654 error = kern_fstat(td, uap->fd, &ub);
1655 if (error != 0)
1656 return (error);
1657 error = freebsd11_cvtnstat(&ub, &nub);
1658 if (error != 0)
1659 error = copyout(&nub, uap->sb, sizeof(nub));
1660 return (error);
1661 }
1662 #endif /* COMPAT_FREEBSD11 */
1663
1664 /*
1665 * Return pathconf information about a file descriptor.
1666 */
1667 #ifndef _SYS_SYSPROTO_H_
1668 struct fpathconf_args {
1669 int fd;
1670 int name;
1671 };
1672 #endif
1673 /* ARGSUSED */
1674 int
sys_fpathconf(struct thread * td,struct fpathconf_args * uap)1675 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
1676 {
1677 long value;
1678 int error;
1679
1680 error = kern_fpathconf(td, uap->fd, uap->name, &value);
1681 if (error == 0)
1682 td->td_retval[0] = value;
1683 return (error);
1684 }
1685
1686 int
kern_fpathconf(struct thread * td,int fd,int name,long * valuep)1687 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
1688 {
1689 struct file *fp;
1690 struct vnode *vp;
1691 int error;
1692
1693 error = fget(td, fd, &cap_fpathconf_rights, &fp);
1694 if (error != 0)
1695 return (error);
1696
1697 if (name == _PC_ASYNC_IO) {
1698 *valuep = _POSIX_ASYNCHRONOUS_IO;
1699 goto out;
1700 }
1701 vp = fp->f_vnode;
1702 if (vp != NULL) {
1703 vn_lock(vp, LK_SHARED | LK_RETRY);
1704 error = VOP_PATHCONF(vp, name, valuep);
1705 VOP_UNLOCK(vp);
1706 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
1707 if (name != _PC_PIPE_BUF) {
1708 error = EINVAL;
1709 } else {
1710 *valuep = PIPE_BUF;
1711 error = 0;
1712 }
1713 } else {
1714 error = EOPNOTSUPP;
1715 }
1716 out:
1717 fdrop(fp, td);
1718 return (error);
1719 }
1720
1721 /*
1722 * Copy filecaps structure allocating memory for ioctls array if needed.
1723 *
1724 * The last parameter indicates whether the fdtable is locked. If it is not and
1725 * ioctls are encountered, copying fails and the caller must lock the table.
1726 *
1727 * Note that if the table was not locked, the caller has to check the relevant
1728 * sequence counter to determine whether the operation was successful.
1729 */
1730 bool
filecaps_copy(const struct filecaps * src,struct filecaps * dst,bool locked)1731 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
1732 {
1733 size_t size;
1734
1735 if (src->fc_ioctls != NULL && !locked)
1736 return (false);
1737 memcpy(dst, src, sizeof(*src));
1738 if (src->fc_ioctls == NULL)
1739 return (true);
1740
1741 KASSERT(src->fc_nioctls > 0,
1742 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1743
1744 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1745 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1746 memcpy(dst->fc_ioctls, src->fc_ioctls, size);
1747 return (true);
1748 }
1749
1750 static u_long *
filecaps_copy_prep(const struct filecaps * src)1751 filecaps_copy_prep(const struct filecaps *src)
1752 {
1753 u_long *ioctls;
1754 size_t size;
1755
1756 if (__predict_true(src->fc_ioctls == NULL))
1757 return (NULL);
1758
1759 KASSERT(src->fc_nioctls > 0,
1760 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1761
1762 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1763 ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1764 return (ioctls);
1765 }
1766
1767 static void
filecaps_copy_finish(const struct filecaps * src,struct filecaps * dst,u_long * ioctls)1768 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
1769 u_long *ioctls)
1770 {
1771 size_t size;
1772
1773 *dst = *src;
1774 if (__predict_true(src->fc_ioctls == NULL)) {
1775 MPASS(ioctls == NULL);
1776 return;
1777 }
1778
1779 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1780 dst->fc_ioctls = ioctls;
1781 bcopy(src->fc_ioctls, dst->fc_ioctls, size);
1782 }
1783
1784 /*
1785 * Move filecaps structure to the new place and clear the old place.
1786 */
1787 void
filecaps_move(struct filecaps * src,struct filecaps * dst)1788 filecaps_move(struct filecaps *src, struct filecaps *dst)
1789 {
1790
1791 *dst = *src;
1792 bzero(src, sizeof(*src));
1793 }
1794
1795 /*
1796 * Fill the given filecaps structure with full rights.
1797 */
1798 static void
filecaps_fill(struct filecaps * fcaps)1799 filecaps_fill(struct filecaps *fcaps)
1800 {
1801
1802 CAP_ALL(&fcaps->fc_rights);
1803 fcaps->fc_ioctls = NULL;
1804 fcaps->fc_nioctls = -1;
1805 fcaps->fc_fcntls = CAP_FCNTL_ALL;
1806 }
1807
1808 /*
1809 * Free memory allocated within filecaps structure.
1810 */
1811 static void
filecaps_free_ioctl(struct filecaps * fcaps)1812 filecaps_free_ioctl(struct filecaps *fcaps)
1813 {
1814
1815 free(fcaps->fc_ioctls, M_FILECAPS);
1816 fcaps->fc_ioctls = NULL;
1817 }
1818
1819 void
filecaps_free(struct filecaps * fcaps)1820 filecaps_free(struct filecaps *fcaps)
1821 {
1822
1823 filecaps_free_ioctl(fcaps);
1824 bzero(fcaps, sizeof(*fcaps));
1825 }
1826
1827 static u_long *
filecaps_free_prep(struct filecaps * fcaps)1828 filecaps_free_prep(struct filecaps *fcaps)
1829 {
1830 u_long *ioctls;
1831
1832 ioctls = fcaps->fc_ioctls;
1833 bzero(fcaps, sizeof(*fcaps));
1834 return (ioctls);
1835 }
1836
1837 static void
filecaps_free_finish(u_long * ioctls)1838 filecaps_free_finish(u_long *ioctls)
1839 {
1840
1841 free(ioctls, M_FILECAPS);
1842 }
1843
1844 /*
1845 * Validate the given filecaps structure.
1846 */
1847 static void
filecaps_validate(const struct filecaps * fcaps,const char * func)1848 filecaps_validate(const struct filecaps *fcaps, const char *func)
1849 {
1850
1851 KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
1852 ("%s: invalid rights", func));
1853 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
1854 ("%s: invalid fcntls", func));
1855 KASSERT(fcaps->fc_fcntls == 0 ||
1856 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
1857 ("%s: fcntls without CAP_FCNTL", func));
1858 /*
1859 * open calls without WANTIOCTLCAPS free caps but leave the counter
1860 */
1861 #if 0
1862 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
1863 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
1864 ("%s: invalid ioctls", func));
1865 #endif
1866 KASSERT(fcaps->fc_nioctls == 0 ||
1867 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
1868 ("%s: ioctls without CAP_IOCTL", func));
1869 }
1870
1871 static void
fdgrowtable_exp(struct filedesc * fdp,int nfd)1872 fdgrowtable_exp(struct filedesc *fdp, int nfd)
1873 {
1874 int nfd1;
1875
1876 FILEDESC_XLOCK_ASSERT(fdp);
1877
1878 nfd1 = fdp->fd_nfiles * 2;
1879 if (nfd1 < nfd)
1880 nfd1 = nfd;
1881 fdgrowtable(fdp, nfd1);
1882 }
1883
1884 /*
1885 * Grow the file table to accommodate (at least) nfd descriptors.
1886 */
1887 static void
fdgrowtable(struct filedesc * fdp,int nfd)1888 fdgrowtable(struct filedesc *fdp, int nfd)
1889 {
1890 struct filedesc0 *fdp0;
1891 struct freetable *ft;
1892 struct fdescenttbl *ntable;
1893 struct fdescenttbl *otable;
1894 int nnfiles, onfiles;
1895 NDSLOTTYPE *nmap, *omap;
1896
1897 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
1898
1899 /* save old values */
1900 onfiles = fdp->fd_nfiles;
1901 otable = fdp->fd_files;
1902 omap = fdp->fd_map;
1903
1904 /* compute the size of the new table */
1905 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
1906 if (nnfiles <= onfiles)
1907 /* the table is already large enough */
1908 return;
1909
1910 /*
1911 * Allocate a new table. We need enough space for the number of
1912 * entries, file entries themselves and the struct freetable we will use
1913 * when we decommission the table and place it on the freelist.
1914 * We place the struct freetable in the middle so we don't have
1915 * to worry about padding.
1916 */
1917 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
1918 nnfiles * sizeof(ntable->fdt_ofiles[0]) +
1919 sizeof(struct freetable),
1920 M_FILEDESC, M_ZERO | M_WAITOK);
1921 /* copy the old data */
1922 ntable->fdt_nfiles = nnfiles;
1923 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
1924 onfiles * sizeof(ntable->fdt_ofiles[0]));
1925
1926 /*
1927 * Allocate a new map only if the old is not large enough. It will
1928 * grow at a slower rate than the table as it can map more
1929 * entries than the table can hold.
1930 */
1931 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
1932 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
1933 M_ZERO | M_WAITOK);
1934 /* copy over the old data and update the pointer */
1935 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
1936 fdp->fd_map = nmap;
1937 }
1938
1939 /*
1940 * Make sure that ntable is correctly initialized before we replace
1941 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
1942 * data.
1943 */
1944 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
1945
1946 /*
1947 * Free the old file table when not shared by other threads or processes.
1948 * The old file table is considered to be shared when either are true:
1949 * - The process has more than one thread.
1950 * - The file descriptor table has been shared via fdshare().
1951 *
1952 * When shared, the old file table will be placed on a freelist
1953 * which will be processed when the struct filedesc is released.
1954 *
1955 * Note that if onfiles == NDFILE, we're dealing with the original
1956 * static allocation contained within (struct filedesc0 *)fdp,
1957 * which must not be freed.
1958 */
1959 if (onfiles > NDFILE) {
1960 /*
1961 * Note we may be called here from fdinit while allocating a
1962 * table for a new process in which case ->p_fd points
1963 * elsewhere.
1964 */
1965 if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
1966 free(otable, M_FILEDESC);
1967 } else {
1968 ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
1969 fdp0 = (struct filedesc0 *)fdp;
1970 ft->ft_table = otable;
1971 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
1972 }
1973 }
1974 /*
1975 * The map does not have the same possibility of threads still
1976 * holding references to it. So always free it as long as it
1977 * does not reference the original static allocation.
1978 */
1979 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
1980 free(omap, M_FILEDESC);
1981 }
1982
1983 /*
1984 * Allocate a file descriptor for the process.
1985 */
1986 int
fdalloc(struct thread * td,int minfd,int * result)1987 fdalloc(struct thread *td, int minfd, int *result)
1988 {
1989 struct proc *p = td->td_proc;
1990 struct filedesc *fdp = p->p_fd;
1991 int fd, maxfd, allocfd;
1992 #ifdef RACCT
1993 int error;
1994 #endif
1995
1996 FILEDESC_XLOCK_ASSERT(fdp);
1997
1998 if (fdp->fd_freefile > minfd)
1999 minfd = fdp->fd_freefile;
2000
2001 maxfd = getmaxfd(td);
2002
2003 /*
2004 * Search the bitmap for a free descriptor starting at minfd.
2005 * If none is found, grow the file table.
2006 */
2007 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
2008 if (__predict_false(fd >= maxfd))
2009 return (EMFILE);
2010 if (__predict_false(fd >= fdp->fd_nfiles)) {
2011 allocfd = min(fd * 2, maxfd);
2012 #ifdef RACCT
2013 if (RACCT_ENABLED()) {
2014 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
2015 if (error != 0)
2016 return (EMFILE);
2017 }
2018 #endif
2019 /*
2020 * fd is already equal to first free descriptor >= minfd, so
2021 * we only need to grow the table and we are done.
2022 */
2023 fdgrowtable_exp(fdp, allocfd);
2024 }
2025
2026 /*
2027 * Perform some sanity checks, then mark the file descriptor as
2028 * used and return it to the caller.
2029 */
2030 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
2031 ("invalid descriptor %d", fd));
2032 KASSERT(!fdisused(fdp, fd),
2033 ("fd_first_free() returned non-free descriptor"));
2034 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
2035 ("file descriptor isn't free"));
2036 fdused(fdp, fd);
2037 *result = fd;
2038 return (0);
2039 }
2040
2041 /*
2042 * Allocate n file descriptors for the process.
2043 */
2044 int
fdallocn(struct thread * td,int minfd,int * fds,int n)2045 fdallocn(struct thread *td, int minfd, int *fds, int n)
2046 {
2047 struct proc *p = td->td_proc;
2048 struct filedesc *fdp = p->p_fd;
2049 int i;
2050
2051 FILEDESC_XLOCK_ASSERT(fdp);
2052
2053 for (i = 0; i < n; i++)
2054 if (fdalloc(td, 0, &fds[i]) != 0)
2055 break;
2056
2057 if (i < n) {
2058 for (i--; i >= 0; i--)
2059 fdunused(fdp, fds[i]);
2060 return (EMFILE);
2061 }
2062
2063 return (0);
2064 }
2065
2066 /*
2067 * Create a new open file structure and allocate a file descriptor for the
2068 * process that refers to it. We add one reference to the file for the
2069 * descriptor table and one reference for resultfp. This is to prevent us
2070 * being preempted and the entry in the descriptor table closed after we
2071 * release the FILEDESC lock.
2072 */
2073 int
falloc_caps(struct thread * td,struct file ** resultfp,int * resultfd,int flags,struct filecaps * fcaps)2074 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
2075 struct filecaps *fcaps)
2076 {
2077 struct file *fp;
2078 int error, fd;
2079
2080 MPASS(resultfp != NULL);
2081 MPASS(resultfd != NULL);
2082
2083 error = _falloc_noinstall(td, &fp, 2);
2084 if (__predict_false(error != 0)) {
2085 return (error);
2086 }
2087
2088 error = finstall_refed(td, fp, &fd, flags, fcaps);
2089 if (__predict_false(error != 0)) {
2090 falloc_abort(td, fp);
2091 return (error);
2092 }
2093
2094 *resultfp = fp;
2095 *resultfd = fd;
2096
2097 return (0);
2098 }
2099
2100 /*
2101 * Create a new open file structure without allocating a file descriptor.
2102 */
2103 int
_falloc_noinstall(struct thread * td,struct file ** resultfp,u_int n)2104 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
2105 {
2106 struct file *fp;
2107 int maxuserfiles = maxfiles - (maxfiles / 20);
2108 int openfiles_new;
2109 static struct timeval lastfail;
2110 static int curfail;
2111
2112 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
2113 MPASS(n > 0);
2114
2115 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
2116 if ((openfiles_new >= maxuserfiles &&
2117 priv_check(td, PRIV_MAXFILES) != 0) ||
2118 openfiles_new >= maxfiles) {
2119 atomic_subtract_int(&openfiles, 1);
2120 if (ppsratecheck(&lastfail, &curfail, 1)) {
2121 printf("kern.maxfiles limit exceeded by uid %i, (%s) "
2122 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
2123 }
2124 return (ENFILE);
2125 }
2126 fp = uma_zalloc(file_zone, M_WAITOK);
2127 bzero(fp, sizeof(*fp));
2128 refcount_init(&fp->f_count, n);
2129 fp->f_cred = crhold(td->td_ucred);
2130 fp->f_ops = &badfileops;
2131 *resultfp = fp;
2132 return (0);
2133 }
2134
2135 void
falloc_abort(struct thread * td,struct file * fp)2136 falloc_abort(struct thread *td, struct file *fp)
2137 {
2138
2139 /*
2140 * For assertion purposes.
2141 */
2142 refcount_init(&fp->f_count, 0);
2143 _fdrop(fp, td);
2144 }
2145
2146 /*
2147 * Install a file in a file descriptor table.
2148 */
2149 void
_finstall(struct filedesc * fdp,struct file * fp,int fd,int flags,struct filecaps * fcaps)2150 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
2151 struct filecaps *fcaps)
2152 {
2153 struct filedescent *fde;
2154
2155 MPASS(fp != NULL);
2156 if (fcaps != NULL)
2157 filecaps_validate(fcaps, __func__);
2158 FILEDESC_XLOCK_ASSERT(fdp);
2159
2160 fde = &fdp->fd_ofiles[fd];
2161 #ifdef CAPABILITIES
2162 seqc_write_begin(&fde->fde_seqc);
2163 #endif
2164 fde->fde_file = fp;
2165 fde->fde_flags = (flags & O_CLOEXEC) != 0 ? UF_EXCLOSE : 0;
2166 if (fcaps != NULL)
2167 filecaps_move(fcaps, &fde->fde_caps);
2168 else
2169 filecaps_fill(&fde->fde_caps);
2170 #ifdef CAPABILITIES
2171 seqc_write_end(&fde->fde_seqc);
2172 #endif
2173 }
2174
2175 int
finstall_refed(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2176 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
2177 struct filecaps *fcaps)
2178 {
2179 struct filedesc *fdp = td->td_proc->p_fd;
2180 int error;
2181
2182 MPASS(fd != NULL);
2183
2184 FILEDESC_XLOCK(fdp);
2185 error = fdalloc(td, 0, fd);
2186 if (__predict_true(error == 0)) {
2187 _finstall(fdp, fp, *fd, flags, fcaps);
2188 }
2189 FILEDESC_XUNLOCK(fdp);
2190 return (error);
2191 }
2192
2193 int
finstall(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2194 finstall(struct thread *td, struct file *fp, int *fd, int flags,
2195 struct filecaps *fcaps)
2196 {
2197 int error;
2198
2199 MPASS(fd != NULL);
2200
2201 if (!fhold(fp))
2202 return (EBADF);
2203 error = finstall_refed(td, fp, fd, flags, fcaps);
2204 if (__predict_false(error != 0)) {
2205 fdrop(fp, td);
2206 }
2207 return (error);
2208 }
2209
2210 /*
2211 * Build a new filedesc structure from another.
2212 *
2213 * If fdp is not NULL, return with it shared locked.
2214 */
2215 struct filedesc *
fdinit(void)2216 fdinit(void)
2217 {
2218 struct filedesc0 *newfdp0;
2219 struct filedesc *newfdp;
2220
2221 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
2222 newfdp = &newfdp0->fd_fd;
2223
2224 /* Create the file descriptor table. */
2225 FILEDESC_LOCK_INIT(newfdp);
2226 refcount_init(&newfdp->fd_refcnt, 1);
2227 refcount_init(&newfdp->fd_holdcnt, 1);
2228 newfdp->fd_map = newfdp0->fd_dmap;
2229 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
2230 newfdp->fd_files->fdt_nfiles = NDFILE;
2231
2232 return (newfdp);
2233 }
2234
2235 /*
2236 * Build a pwddesc structure from another.
2237 * Copy the current, root, and jail root vnode references.
2238 *
2239 * If pdp is not NULL and keeplock is true, return with it (exclusively) locked.
2240 */
2241 struct pwddesc *
pdinit(struct pwddesc * pdp,bool keeplock)2242 pdinit(struct pwddesc *pdp, bool keeplock)
2243 {
2244 struct pwddesc *newpdp;
2245 struct pwd *newpwd;
2246
2247 newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
2248
2249 PWDDESC_LOCK_INIT(newpdp);
2250 refcount_init(&newpdp->pd_refcount, 1);
2251 newpdp->pd_cmask = CMASK;
2252
2253 if (pdp == NULL) {
2254 newpwd = pwd_alloc();
2255 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2256 return (newpdp);
2257 }
2258
2259 PWDDESC_XLOCK(pdp);
2260 newpwd = pwd_hold_pwddesc(pdp);
2261 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2262 if (!keeplock)
2263 PWDDESC_XUNLOCK(pdp);
2264 return (newpdp);
2265 }
2266
2267 /*
2268 * Hold either filedesc or pwddesc of the passed process.
2269 *
2270 * The process lock is used to synchronize against the target exiting and
2271 * freeing the data.
2272 *
2273 * Clearing can be ilustrated in 3 steps:
2274 * 1. set the pointer to NULL. Either routine can race against it, hence
2275 * atomic_load_ptr.
2276 * 2. observe the process lock as not taken. Until then fdhold/pdhold can
2277 * race to either still see the pointer or find NULL. It is still safe to
2278 * grab a reference as clearing is stalled.
2279 * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
2280 * guaranteed to see NULL, making it safe to finish clearing
2281 */
2282 static struct filedesc *
fdhold(struct proc * p)2283 fdhold(struct proc *p)
2284 {
2285 struct filedesc *fdp;
2286
2287 PROC_LOCK_ASSERT(p, MA_OWNED);
2288 fdp = atomic_load_ptr(&p->p_fd);
2289 if (fdp != NULL)
2290 refcount_acquire(&fdp->fd_holdcnt);
2291 return (fdp);
2292 }
2293
2294 static struct pwddesc *
pdhold(struct proc * p)2295 pdhold(struct proc *p)
2296 {
2297 struct pwddesc *pdp;
2298
2299 PROC_LOCK_ASSERT(p, MA_OWNED);
2300 pdp = atomic_load_ptr(&p->p_pd);
2301 if (pdp != NULL)
2302 refcount_acquire(&pdp->pd_refcount);
2303 return (pdp);
2304 }
2305
2306 static void
fddrop(struct filedesc * fdp)2307 fddrop(struct filedesc *fdp)
2308 {
2309
2310 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2311 if (refcount_release(&fdp->fd_holdcnt) == 0)
2312 return;
2313 }
2314
2315 FILEDESC_LOCK_DESTROY(fdp);
2316 uma_zfree(filedesc0_zone, fdp);
2317 }
2318
2319 static void
pddrop(struct pwddesc * pdp)2320 pddrop(struct pwddesc *pdp)
2321 {
2322 struct pwd *pwd;
2323
2324 if (refcount_release_if_not_last(&pdp->pd_refcount))
2325 return;
2326
2327 PWDDESC_XLOCK(pdp);
2328 if (refcount_release(&pdp->pd_refcount) == 0) {
2329 PWDDESC_XUNLOCK(pdp);
2330 return;
2331 }
2332 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
2333 pwd_set(pdp, NULL);
2334 PWDDESC_XUNLOCK(pdp);
2335 pwd_drop(pwd);
2336
2337 PWDDESC_LOCK_DESTROY(pdp);
2338 free(pdp, M_PWDDESC);
2339 }
2340
2341 /*
2342 * Share a filedesc structure.
2343 */
2344 struct filedesc *
fdshare(struct filedesc * fdp)2345 fdshare(struct filedesc *fdp)
2346 {
2347
2348 refcount_acquire(&fdp->fd_refcnt);
2349 return (fdp);
2350 }
2351
2352 /*
2353 * Share a pwddesc structure.
2354 */
2355 struct pwddesc *
pdshare(struct pwddesc * pdp)2356 pdshare(struct pwddesc *pdp)
2357 {
2358 refcount_acquire(&pdp->pd_refcount);
2359 return (pdp);
2360 }
2361
2362 /*
2363 * Unshare a filedesc structure, if necessary by making a copy
2364 */
2365 void
fdunshare(struct thread * td)2366 fdunshare(struct thread *td)
2367 {
2368 struct filedesc *tmp;
2369 struct proc *p = td->td_proc;
2370
2371 if (refcount_load(&p->p_fd->fd_refcnt) == 1)
2372 return;
2373
2374 tmp = fdcopy(p->p_fd);
2375 fdescfree(td);
2376 p->p_fd = tmp;
2377 }
2378
2379 /*
2380 * Unshare a pwddesc structure.
2381 */
2382 void
pdunshare(struct thread * td)2383 pdunshare(struct thread *td)
2384 {
2385 struct pwddesc *pdp;
2386 struct proc *p;
2387
2388 p = td->td_proc;
2389 /* Not shared. */
2390 if (refcount_load(&p->p_pd->pd_refcount) == 1)
2391 return;
2392
2393 pdp = pdcopy(p->p_pd);
2394 pdescfree(td);
2395 p->p_pd = pdp;
2396 }
2397
2398 /*
2399 * Copy a filedesc structure. A NULL pointer in returns a NULL reference,
2400 * this is to ease callers, not catch errors.
2401 */
2402 struct filedesc *
fdcopy(struct filedesc * fdp)2403 fdcopy(struct filedesc *fdp)
2404 {
2405 struct filedesc *newfdp;
2406 struct filedescent *nfde, *ofde;
2407 int i, lastfile;
2408
2409 MPASS(fdp != NULL);
2410
2411 newfdp = fdinit();
2412 FILEDESC_SLOCK(fdp);
2413 for (;;) {
2414 lastfile = fdlastfile(fdp);
2415 if (lastfile < newfdp->fd_nfiles)
2416 break;
2417 FILEDESC_SUNLOCK(fdp);
2418 fdgrowtable(newfdp, lastfile + 1);
2419 FILEDESC_SLOCK(fdp);
2420 }
2421 /* copy all passable descriptors (i.e. not kqueue) */
2422 newfdp->fd_freefile = fdp->fd_freefile;
2423 FILEDESC_FOREACH_FDE(fdp, i, ofde) {
2424 if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
2425 !fhold(ofde->fde_file)) {
2426 if (newfdp->fd_freefile == fdp->fd_freefile)
2427 newfdp->fd_freefile = i;
2428 continue;
2429 }
2430 nfde = &newfdp->fd_ofiles[i];
2431 *nfde = *ofde;
2432 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
2433 fdused_init(newfdp, i);
2434 }
2435 MPASS(newfdp->fd_freefile != -1);
2436 FILEDESC_SUNLOCK(fdp);
2437 return (newfdp);
2438 }
2439
2440 /*
2441 * Copy a pwddesc structure.
2442 */
2443 struct pwddesc *
pdcopy(struct pwddesc * pdp)2444 pdcopy(struct pwddesc *pdp)
2445 {
2446 struct pwddesc *newpdp;
2447
2448 MPASS(pdp != NULL);
2449
2450 newpdp = pdinit(pdp, true);
2451 newpdp->pd_cmask = pdp->pd_cmask;
2452 PWDDESC_XUNLOCK(pdp);
2453 return (newpdp);
2454 }
2455
2456 /*
2457 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
2458 * one of processes using it exits) and the table used to be shared.
2459 */
2460 static void
fdclearlocks(struct thread * td)2461 fdclearlocks(struct thread *td)
2462 {
2463 struct filedesc *fdp;
2464 struct filedesc_to_leader *fdtol;
2465 struct flock lf;
2466 struct file *fp;
2467 struct proc *p;
2468 struct vnode *vp;
2469 int i;
2470
2471 p = td->td_proc;
2472 fdp = p->p_fd;
2473 fdtol = p->p_fdtol;
2474 MPASS(fdtol != NULL);
2475
2476 FILEDESC_XLOCK(fdp);
2477 KASSERT(fdtol->fdl_refcount > 0,
2478 ("filedesc_to_refcount botch: fdl_refcount=%d",
2479 fdtol->fdl_refcount));
2480 if (fdtol->fdl_refcount == 1 &&
2481 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2482 FILEDESC_FOREACH_FP(fdp, i, fp) {
2483 if (fp->f_type != DTYPE_VNODE ||
2484 !fhold(fp))
2485 continue;
2486 FILEDESC_XUNLOCK(fdp);
2487 lf.l_whence = SEEK_SET;
2488 lf.l_start = 0;
2489 lf.l_len = 0;
2490 lf.l_type = F_UNLCK;
2491 vp = fp->f_vnode;
2492 (void) VOP_ADVLOCK(vp,
2493 (caddr_t)p->p_leader, F_UNLCK,
2494 &lf, F_POSIX);
2495 FILEDESC_XLOCK(fdp);
2496 fdrop(fp, td);
2497 }
2498 }
2499 retry:
2500 if (fdtol->fdl_refcount == 1) {
2501 if (fdp->fd_holdleaderscount > 0 &&
2502 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2503 /*
2504 * close() or kern_dup() has cleared a reference
2505 * in a shared file descriptor table.
2506 */
2507 fdp->fd_holdleaderswakeup = 1;
2508 sx_sleep(&fdp->fd_holdleaderscount,
2509 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
2510 goto retry;
2511 }
2512 if (fdtol->fdl_holdcount > 0) {
2513 /*
2514 * Ensure that fdtol->fdl_leader remains
2515 * valid in closef().
2516 */
2517 fdtol->fdl_wakeup = 1;
2518 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
2519 "fdlhold", 0);
2520 goto retry;
2521 }
2522 }
2523 fdtol->fdl_refcount--;
2524 if (fdtol->fdl_refcount == 0 &&
2525 fdtol->fdl_holdcount == 0) {
2526 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2527 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2528 } else
2529 fdtol = NULL;
2530 p->p_fdtol = NULL;
2531 FILEDESC_XUNLOCK(fdp);
2532 if (fdtol != NULL)
2533 free(fdtol, M_FILEDESC_TO_LEADER);
2534 }
2535
2536 /*
2537 * Release a filedesc structure.
2538 */
2539 static void
fdescfree_fds(struct thread * td,struct filedesc * fdp)2540 fdescfree_fds(struct thread *td, struct filedesc *fdp)
2541 {
2542 struct filedesc0 *fdp0;
2543 struct freetable *ft, *tft;
2544 struct filedescent *fde;
2545 struct file *fp;
2546 int i;
2547
2548 KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
2549 ("%s: fd table %p carries references", __func__, fdp));
2550
2551 /*
2552 * Serialize with threads iterating over the table, if any.
2553 */
2554 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2555 FILEDESC_XLOCK(fdp);
2556 FILEDESC_XUNLOCK(fdp);
2557 }
2558
2559 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2560 fp = fde->fde_file;
2561 fdefree_last(fde);
2562 (void) closef(fp, td);
2563 }
2564
2565 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
2566 free(fdp->fd_map, M_FILEDESC);
2567 if (fdp->fd_nfiles > NDFILE)
2568 free(fdp->fd_files, M_FILEDESC);
2569
2570 fdp0 = (struct filedesc0 *)fdp;
2571 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
2572 free(ft->ft_table, M_FILEDESC);
2573
2574 fddrop(fdp);
2575 }
2576
2577 void
fdescfree(struct thread * td)2578 fdescfree(struct thread *td)
2579 {
2580 struct proc *p;
2581 struct filedesc *fdp;
2582
2583 p = td->td_proc;
2584 fdp = p->p_fd;
2585 MPASS(fdp != NULL);
2586
2587 #ifdef RACCT
2588 if (RACCT_ENABLED())
2589 racct_set_unlocked(p, RACCT_NOFILE, 0);
2590 #endif
2591
2592 if (p->p_fdtol != NULL)
2593 fdclearlocks(td);
2594
2595 /*
2596 * Check fdhold for an explanation.
2597 */
2598 atomic_store_ptr(&p->p_fd, NULL);
2599 atomic_thread_fence_seq_cst();
2600 PROC_WAIT_UNLOCKED(p);
2601
2602 if (refcount_release(&fdp->fd_refcnt) == 0)
2603 return;
2604
2605 fdescfree_fds(td, fdp);
2606 }
2607
2608 void
pdescfree(struct thread * td)2609 pdescfree(struct thread *td)
2610 {
2611 struct proc *p;
2612 struct pwddesc *pdp;
2613
2614 p = td->td_proc;
2615 pdp = p->p_pd;
2616 MPASS(pdp != NULL);
2617
2618 /*
2619 * Check pdhold for an explanation.
2620 */
2621 atomic_store_ptr(&p->p_pd, NULL);
2622 atomic_thread_fence_seq_cst();
2623 PROC_WAIT_UNLOCKED(p);
2624
2625 pddrop(pdp);
2626 }
2627
2628 /*
2629 * For setugid programs, we don't want to people to use that setugidness
2630 * to generate error messages which write to a file which otherwise would
2631 * otherwise be off-limits to the process. We check for filesystems where
2632 * the vnode can change out from under us after execve (like [lin]procfs).
2633 *
2634 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
2635 * sufficient. We also don't check for setugidness since we know we are.
2636 */
2637 static bool
is_unsafe(struct file * fp)2638 is_unsafe(struct file *fp)
2639 {
2640 struct vnode *vp;
2641
2642 if (fp->f_type != DTYPE_VNODE)
2643 return (false);
2644
2645 vp = fp->f_vnode;
2646 return ((vp->v_vflag & VV_PROCDEP) != 0);
2647 }
2648
2649 /*
2650 * Make this setguid thing safe, if at all possible.
2651 */
2652 void
fdsetugidsafety(struct thread * td)2653 fdsetugidsafety(struct thread *td)
2654 {
2655 struct filedesc *fdp;
2656 struct file *fp;
2657 int i;
2658
2659 fdp = td->td_proc->p_fd;
2660 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2661 ("the fdtable should not be shared"));
2662 MPASS(fdp->fd_nfiles >= 3);
2663 for (i = 0; i <= 2; i++) {
2664 fp = fdp->fd_ofiles[i].fde_file;
2665 if (fp != NULL && is_unsafe(fp)) {
2666 FILEDESC_XLOCK(fdp);
2667 knote_fdclose(td, i);
2668 /*
2669 * NULL-out descriptor prior to close to avoid
2670 * a race while close blocks.
2671 */
2672 fdfree(fdp, i);
2673 FILEDESC_XUNLOCK(fdp);
2674 (void) closef(fp, td);
2675 }
2676 }
2677 }
2678
2679 /*
2680 * If a specific file object occupies a specific file descriptor, close the
2681 * file descriptor entry and drop a reference on the file object. This is a
2682 * convenience function to handle a subsequent error in a function that calls
2683 * falloc() that handles the race that another thread might have closed the
2684 * file descriptor out from under the thread creating the file object.
2685 */
2686 void
fdclose(struct thread * td,struct file * fp,int idx)2687 fdclose(struct thread *td, struct file *fp, int idx)
2688 {
2689 struct filedesc *fdp = td->td_proc->p_fd;
2690
2691 FILEDESC_XLOCK(fdp);
2692 if (fdp->fd_ofiles[idx].fde_file == fp) {
2693 fdfree(fdp, idx);
2694 FILEDESC_XUNLOCK(fdp);
2695 fdrop(fp, td);
2696 } else
2697 FILEDESC_XUNLOCK(fdp);
2698 }
2699
2700 /*
2701 * Close any files on exec?
2702 */
2703 void
fdcloseexec(struct thread * td)2704 fdcloseexec(struct thread *td)
2705 {
2706 struct filedesc *fdp;
2707 struct filedescent *fde;
2708 struct file *fp;
2709 int i;
2710
2711 fdp = td->td_proc->p_fd;
2712 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2713 ("the fdtable should not be shared"));
2714 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2715 fp = fde->fde_file;
2716 if (fp->f_type == DTYPE_MQUEUE ||
2717 (fde->fde_flags & UF_EXCLOSE)) {
2718 FILEDESC_XLOCK(fdp);
2719 fdfree(fdp, i);
2720 (void) closefp(fdp, i, fp, td, false, false);
2721 FILEDESC_UNLOCK_ASSERT(fdp);
2722 }
2723 }
2724 }
2725
2726 /*
2727 * It is unsafe for set[ug]id processes to be started with file
2728 * descriptors 0..2 closed, as these descriptors are given implicit
2729 * significance in the Standard C library. fdcheckstd() will create a
2730 * descriptor referencing /dev/null for each of stdin, stdout, and
2731 * stderr that is not already open.
2732 */
2733 int
fdcheckstd(struct thread * td)2734 fdcheckstd(struct thread *td)
2735 {
2736 struct filedesc *fdp;
2737 register_t save;
2738 int i, error, devnull;
2739
2740 fdp = td->td_proc->p_fd;
2741 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2742 ("the fdtable should not be shared"));
2743 MPASS(fdp->fd_nfiles >= 3);
2744 devnull = -1;
2745 for (i = 0; i <= 2; i++) {
2746 if (fdp->fd_ofiles[i].fde_file != NULL)
2747 continue;
2748
2749 save = td->td_retval[0];
2750 if (devnull != -1) {
2751 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
2752 } else {
2753 error = kern_openat(td, AT_FDCWD, "/dev/null",
2754 UIO_SYSSPACE, O_RDWR, 0);
2755 if (error == 0) {
2756 devnull = td->td_retval[0];
2757 KASSERT(devnull == i, ("we didn't get our fd"));
2758 }
2759 }
2760 td->td_retval[0] = save;
2761 if (error != 0)
2762 return (error);
2763 }
2764 return (0);
2765 }
2766
2767 /*
2768 * Internal form of close. Decrement reference count on file structure.
2769 * Note: td may be NULL when closing a file that was being passed in a
2770 * message.
2771 */
2772 int
closef(struct file * fp,struct thread * td)2773 closef(struct file *fp, struct thread *td)
2774 {
2775 struct vnode *vp;
2776 struct flock lf;
2777 struct filedesc_to_leader *fdtol;
2778 struct filedesc *fdp;
2779
2780 MPASS(td != NULL);
2781
2782 /*
2783 * POSIX record locking dictates that any close releases ALL
2784 * locks owned by this process. This is handled by setting
2785 * a flag in the unlock to free ONLY locks obeying POSIX
2786 * semantics, and not to free BSD-style file locks.
2787 * If the descriptor was in a message, POSIX-style locks
2788 * aren't passed with the descriptor, and the thread pointer
2789 * will be NULL. Callers should be careful only to pass a
2790 * NULL thread pointer when there really is no owning
2791 * context that might have locks, or the locks will be
2792 * leaked.
2793 */
2794 if (fp->f_type == DTYPE_VNODE) {
2795 vp = fp->f_vnode;
2796 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
2797 lf.l_whence = SEEK_SET;
2798 lf.l_start = 0;
2799 lf.l_len = 0;
2800 lf.l_type = F_UNLCK;
2801 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
2802 F_UNLCK, &lf, F_POSIX);
2803 }
2804 fdtol = td->td_proc->p_fdtol;
2805 if (fdtol != NULL) {
2806 /*
2807 * Handle special case where file descriptor table is
2808 * shared between multiple process leaders.
2809 */
2810 fdp = td->td_proc->p_fd;
2811 FILEDESC_XLOCK(fdp);
2812 for (fdtol = fdtol->fdl_next;
2813 fdtol != td->td_proc->p_fdtol;
2814 fdtol = fdtol->fdl_next) {
2815 if ((fdtol->fdl_leader->p_flag &
2816 P_ADVLOCK) == 0)
2817 continue;
2818 fdtol->fdl_holdcount++;
2819 FILEDESC_XUNLOCK(fdp);
2820 lf.l_whence = SEEK_SET;
2821 lf.l_start = 0;
2822 lf.l_len = 0;
2823 lf.l_type = F_UNLCK;
2824 vp = fp->f_vnode;
2825 (void) VOP_ADVLOCK(vp,
2826 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
2827 F_POSIX);
2828 FILEDESC_XLOCK(fdp);
2829 fdtol->fdl_holdcount--;
2830 if (fdtol->fdl_holdcount == 0 &&
2831 fdtol->fdl_wakeup != 0) {
2832 fdtol->fdl_wakeup = 0;
2833 wakeup(fdtol);
2834 }
2835 }
2836 FILEDESC_XUNLOCK(fdp);
2837 }
2838 }
2839 return (fdrop_close(fp, td));
2840 }
2841
2842 /*
2843 * Hack for file descriptor passing code.
2844 */
2845 void
closef_nothread(struct file * fp)2846 closef_nothread(struct file *fp)
2847 {
2848
2849 fdrop(fp, NULL);
2850 }
2851
2852 /*
2853 * Initialize the file pointer with the specified properties.
2854 *
2855 * The ops are set with release semantics to be certain that the flags, type,
2856 * and data are visible when ops is. This is to prevent ops methods from being
2857 * called with bad data.
2858 */
2859 void
finit(struct file * fp,u_int flag,short type,void * data,const struct fileops * ops)2860 finit(struct file *fp, u_int flag, short type, void *data,
2861 const struct fileops *ops)
2862 {
2863 fp->f_data = data;
2864 fp->f_flag = flag;
2865 fp->f_type = type;
2866 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
2867 }
2868
2869 void
finit_vnode(struct file * fp,u_int flag,void * data,const struct fileops * ops)2870 finit_vnode(struct file *fp, u_int flag, void *data, const struct fileops *ops)
2871 {
2872 fp->f_seqcount[UIO_READ] = 1;
2873 fp->f_seqcount[UIO_WRITE] = 1;
2874 finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
2875 data, ops);
2876 }
2877
2878 int
fget_cap_noref(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2879 fget_cap_noref(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
2880 struct file **fpp, struct filecaps *havecapsp)
2881 {
2882 struct filedescent *fde;
2883 int error;
2884
2885 FILEDESC_LOCK_ASSERT(fdp);
2886
2887 *fpp = NULL;
2888 fde = fdeget_noref(fdp, fd);
2889 if (fde == NULL) {
2890 error = EBADF;
2891 goto out;
2892 }
2893
2894 #ifdef CAPABILITIES
2895 error = cap_check(cap_rights_fde_inline(fde), needrightsp);
2896 if (error != 0)
2897 goto out;
2898 #endif
2899
2900 if (havecapsp != NULL)
2901 filecaps_copy(&fde->fde_caps, havecapsp, true);
2902
2903 *fpp = fde->fde_file;
2904
2905 error = 0;
2906 out:
2907 return (error);
2908 }
2909
2910 #ifdef CAPABILITIES
2911 int
fget_cap(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2912 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
2913 struct file **fpp, struct filecaps *havecapsp)
2914 {
2915 struct filedesc *fdp = td->td_proc->p_fd;
2916 int error;
2917 struct file *fp;
2918 seqc_t seq;
2919
2920 *fpp = NULL;
2921 for (;;) {
2922 error = fget_unlocked_seq(td, fd, needrightsp, &fp, &seq);
2923 if (error != 0)
2924 return (error);
2925
2926 if (havecapsp != NULL) {
2927 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
2928 havecapsp, false)) {
2929 fdrop(fp, td);
2930 goto get_locked;
2931 }
2932 }
2933
2934 if (!fd_modified(fdp, fd, seq))
2935 break;
2936 fdrop(fp, td);
2937 }
2938
2939 *fpp = fp;
2940 return (0);
2941
2942 get_locked:
2943 FILEDESC_SLOCK(fdp);
2944 error = fget_cap_noref(fdp, fd, needrightsp, fpp, havecapsp);
2945 if (error == 0 && !fhold(*fpp))
2946 error = EBADF;
2947 FILEDESC_SUNLOCK(fdp);
2948 return (error);
2949 }
2950 #else
2951 int
fget_cap(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2952 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
2953 struct file **fpp, struct filecaps *havecapsp)
2954 {
2955 int error;
2956 error = fget_unlocked(td, fd, needrightsp, fpp);
2957 if (havecapsp != NULL && error == 0)
2958 filecaps_fill(havecapsp);
2959
2960 return (error);
2961 }
2962 #endif
2963
2964 int
fget_remote(struct thread * td,struct proc * p,int fd,struct file ** fpp)2965 fget_remote(struct thread *td, struct proc *p, int fd, struct file **fpp)
2966 {
2967 struct filedesc *fdp;
2968 struct file *fp;
2969 int error;
2970
2971 if (p == td->td_proc) /* curproc */
2972 return (fget_unlocked(td, fd, &cap_no_rights, fpp));
2973
2974 PROC_LOCK(p);
2975 fdp = fdhold(p);
2976 PROC_UNLOCK(p);
2977 if (fdp == NULL)
2978 return (ENOENT);
2979 FILEDESC_SLOCK(fdp);
2980 if (refcount_load(&fdp->fd_refcnt) != 0) {
2981 fp = fget_noref(fdp, fd);
2982 if (fp != NULL && fhold(fp)) {
2983 *fpp = fp;
2984 error = 0;
2985 } else {
2986 error = EBADF;
2987 }
2988 } else {
2989 error = ENOENT;
2990 }
2991 FILEDESC_SUNLOCK(fdp);
2992 fddrop(fdp);
2993 return (error);
2994 }
2995
2996 int
fget_remote_foreach(struct thread * td,struct proc * p,int (* fn)(struct proc *,int,struct file *,void *),void * arg)2997 fget_remote_foreach(struct thread *td, struct proc *p,
2998 int (*fn)(struct proc *, int, struct file *, void *), void *arg)
2999 {
3000 struct filedesc *fdp;
3001 struct fdescenttbl *fdt;
3002 struct file *fp;
3003 int error, error1, fd, highfd;
3004
3005 error = 0;
3006 PROC_LOCK(p);
3007 fdp = fdhold(p);
3008 PROC_UNLOCK(p);
3009 if (fdp == NULL)
3010 return (ENOENT);
3011
3012 FILEDESC_SLOCK(fdp);
3013 if (refcount_load(&fdp->fd_refcnt) != 0) {
3014 fdt = atomic_load_ptr(&fdp->fd_files);
3015 highfd = fdt->fdt_nfiles - 1;
3016 FILEDESC_SUNLOCK(fdp);
3017 } else {
3018 error = ENOENT;
3019 FILEDESC_SUNLOCK(fdp);
3020 goto out;
3021 }
3022
3023 for (fd = 0; fd <= highfd; fd++) {
3024 error1 = fget_remote(td, p, fd, &fp);
3025 if (error1 != 0)
3026 continue;
3027 error = fn(p, fd, fp, arg);
3028 fdrop(fp, td);
3029 if (error != 0)
3030 break;
3031 }
3032 out:
3033 fddrop(fdp);
3034 return (error);
3035 }
3036
3037 #ifdef CAPABILITIES
3038 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,bool * fsearch)3039 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
3040 {
3041 const struct filedescent *fde;
3042 const struct fdescenttbl *fdt;
3043 struct filedesc *fdp;
3044 struct file *fp;
3045 struct vnode *vp;
3046 const cap_rights_t *haverights;
3047 cap_rights_t rights;
3048 seqc_t seq;
3049 int fd;
3050
3051 VFS_SMR_ASSERT_ENTERED();
3052
3053 fd = ndp->ni_dirfd;
3054 rights = *ndp->ni_rightsneeded;
3055 cap_rights_set_one(&rights, CAP_LOOKUP);
3056
3057 fdp = curproc->p_fd;
3058 fdt = fdp->fd_files;
3059 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3060 return (EBADF);
3061 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3062 fde = &fdt->fdt_ofiles[fd];
3063 haverights = cap_rights_fde_inline(fde);
3064 fp = fde->fde_file;
3065 if (__predict_false(fp == NULL))
3066 return (EAGAIN);
3067 if (__predict_false(cap_check_inline_transient(haverights, &rights)))
3068 return (EAGAIN);
3069 *fsearch = ((fp->f_flag & FSEARCH) != 0);
3070 vp = fp->f_vnode;
3071 if (__predict_false(vp == NULL)) {
3072 return (EAGAIN);
3073 }
3074 if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
3075 return (EAGAIN);
3076 }
3077 /*
3078 * Use an acquire barrier to force re-reading of fdt so it is
3079 * refreshed for verification.
3080 */
3081 atomic_thread_fence_acq();
3082 fdt = fdp->fd_files;
3083 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3084 return (EAGAIN);
3085 /*
3086 * If file descriptor doesn't have all rights,
3087 * all lookups relative to it must also be
3088 * strictly relative.
3089 *
3090 * Not yet supported by fast path.
3091 */
3092 CAP_ALL(&rights);
3093 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3094 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3095 ndp->ni_filecaps.fc_nioctls != -1) {
3096 #ifdef notyet
3097 ndp->ni_lcf |= NI_LCF_STRICTREL;
3098 #else
3099 return (EAGAIN);
3100 #endif
3101 }
3102 *vpp = vp;
3103 return (0);
3104 }
3105 #else
3106 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,bool * fsearch)3107 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
3108 {
3109 const struct fdescenttbl *fdt;
3110 struct filedesc *fdp;
3111 struct file *fp;
3112 struct vnode *vp;
3113 int fd;
3114
3115 VFS_SMR_ASSERT_ENTERED();
3116
3117 fd = ndp->ni_dirfd;
3118 fdp = curproc->p_fd;
3119 fdt = fdp->fd_files;
3120 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3121 return (EBADF);
3122 fp = fdt->fdt_ofiles[fd].fde_file;
3123 if (__predict_false(fp == NULL))
3124 return (EAGAIN);
3125 *fsearch = ((fp->f_flag & FSEARCH) != 0);
3126 vp = fp->f_vnode;
3127 if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
3128 return (EAGAIN);
3129 }
3130 /*
3131 * Use an acquire barrier to force re-reading of fdt so it is
3132 * refreshed for verification.
3133 */
3134 atomic_thread_fence_acq();
3135 fdt = fdp->fd_files;
3136 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3137 return (EAGAIN);
3138 filecaps_fill(&ndp->ni_filecaps);
3139 *vpp = vp;
3140 return (0);
3141 }
3142 #endif
3143
3144 int
fgetvp_lookup(struct nameidata * ndp,struct vnode ** vpp)3145 fgetvp_lookup(struct nameidata *ndp, struct vnode **vpp)
3146 {
3147 struct thread *td;
3148 struct file *fp;
3149 struct vnode *vp;
3150 struct componentname *cnp;
3151 cap_rights_t rights;
3152 int error;
3153
3154 td = curthread;
3155 rights = *ndp->ni_rightsneeded;
3156 cap_rights_set_one(&rights, CAP_LOOKUP);
3157 cnp = &ndp->ni_cnd;
3158
3159 error = fget_cap(td, ndp->ni_dirfd, &rights, &fp, &ndp->ni_filecaps);
3160 if (__predict_false(error != 0))
3161 return (error);
3162 if (__predict_false(fp->f_ops == &badfileops)) {
3163 error = EBADF;
3164 goto out_free;
3165 }
3166 vp = fp->f_vnode;
3167 if (__predict_false(vp == NULL)) {
3168 error = ENOTDIR;
3169 goto out_free;
3170 }
3171 vrefact(vp);
3172 /*
3173 * XXX does not check for VDIR, handled by namei_setup
3174 */
3175 if ((fp->f_flag & FSEARCH) != 0)
3176 cnp->cn_flags |= NOEXECCHECK;
3177 fdrop(fp, td);
3178
3179 #ifdef CAPABILITIES
3180 /*
3181 * If file descriptor doesn't have all rights,
3182 * all lookups relative to it must also be
3183 * strictly relative.
3184 */
3185 CAP_ALL(&rights);
3186 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3187 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3188 ndp->ni_filecaps.fc_nioctls != -1) {
3189 ndp->ni_lcf |= NI_LCF_STRICTREL;
3190 ndp->ni_resflags |= NIRES_STRICTREL;
3191 }
3192 #endif
3193
3194 /*
3195 * TODO: avoid copying ioctl caps if it can be helped to begin with
3196 */
3197 if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
3198 filecaps_free_ioctl(&ndp->ni_filecaps);
3199
3200 *vpp = vp;
3201 return (0);
3202
3203 out_free:
3204 filecaps_free(&ndp->ni_filecaps);
3205 fdrop(fp, td);
3206 return (error);
3207 }
3208
3209 /*
3210 * Fetch the descriptor locklessly.
3211 *
3212 * We avoid fdrop() races by never raising a refcount above 0. To accomplish
3213 * this we have to use a cmpset loop rather than an atomic_add. The descriptor
3214 * must be re-verified once we acquire a reference to be certain that the
3215 * identity is still correct and we did not lose a race due to preemption.
3216 *
3217 * Force a reload of fdt when looping. Another thread could reallocate
3218 * the table before this fd was closed, so it is possible that there is
3219 * a stale fp pointer in cached version.
3220 */
3221 #ifdef CAPABILITIES
3222 static int
fget_unlocked_seq(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,seqc_t * seqp)3223 fget_unlocked_seq(struct thread *td, int fd, cap_rights_t *needrightsp,
3224 struct file **fpp, seqc_t *seqp)
3225 {
3226 struct filedesc *fdp;
3227 const struct filedescent *fde;
3228 const struct fdescenttbl *fdt;
3229 struct file *fp;
3230 seqc_t seq;
3231 cap_rights_t haverights;
3232 int error;
3233
3234 fdp = td->td_proc->p_fd;
3235 fdt = fdp->fd_files;
3236 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3237 return (EBADF);
3238
3239 for (;;) {
3240 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3241 fde = &fdt->fdt_ofiles[fd];
3242 haverights = *cap_rights_fde_inline(fde);
3243 fp = fde->fde_file;
3244 if (__predict_false(fp == NULL)) {
3245 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3246 return (EBADF);
3247 fdt = atomic_load_ptr(&fdp->fd_files);
3248 continue;
3249 }
3250 error = cap_check_inline(&haverights, needrightsp);
3251 if (__predict_false(error != 0)) {
3252 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3253 return (error);
3254 fdt = atomic_load_ptr(&fdp->fd_files);
3255 continue;
3256 }
3257 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3258 fdt = atomic_load_ptr(&fdp->fd_files);
3259 continue;
3260 }
3261 /*
3262 * Use an acquire barrier to force re-reading of fdt so it is
3263 * refreshed for verification.
3264 */
3265 atomic_thread_fence_acq();
3266 fdt = fdp->fd_files;
3267 if (seqc_consistent_no_fence(fd_seqc(fdt, fd), seq))
3268 break;
3269 fdrop(fp, td);
3270 }
3271 *fpp = fp;
3272 if (seqp != NULL) {
3273 *seqp = seq;
3274 }
3275 return (0);
3276 }
3277 #else
3278 static int
fget_unlocked_seq(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,seqc_t * seqp __unused)3279 fget_unlocked_seq(struct thread *td, int fd, cap_rights_t *needrightsp,
3280 struct file **fpp, seqc_t *seqp __unused)
3281 {
3282 struct filedesc *fdp;
3283 const struct fdescenttbl *fdt;
3284 struct file *fp;
3285
3286 fdp = td->td_proc->p_fd;
3287 fdt = fdp->fd_files;
3288 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3289 return (EBADF);
3290
3291 for (;;) {
3292 fp = fdt->fdt_ofiles[fd].fde_file;
3293 if (__predict_false(fp == NULL))
3294 return (EBADF);
3295 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3296 fdt = atomic_load_ptr(&fdp->fd_files);
3297 continue;
3298 }
3299 /*
3300 * Use an acquire barrier to force re-reading of fdt so it is
3301 * refreshed for verification.
3302 */
3303 atomic_thread_fence_acq();
3304 fdt = fdp->fd_files;
3305 if (__predict_true(fp == fdt->fdt_ofiles[fd].fde_file))
3306 break;
3307 fdrop(fp, td);
3308 }
3309 *fpp = fp;
3310 return (0);
3311 }
3312 #endif
3313
3314 /*
3315 * See the comments in fget_unlocked_seq for an explanation of how this works.
3316 *
3317 * This is a simplified variant which bails out to the aforementioned routine
3318 * if anything goes wrong. In practice this only happens when userspace is
3319 * racing with itself.
3320 */
3321 int
fget_unlocked(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp)3322 fget_unlocked(struct thread *td, int fd, cap_rights_t *needrightsp,
3323 struct file **fpp)
3324 {
3325 struct filedesc *fdp;
3326 #ifdef CAPABILITIES
3327 const struct filedescent *fde;
3328 #endif
3329 const struct fdescenttbl *fdt;
3330 struct file *fp;
3331 #ifdef CAPABILITIES
3332 seqc_t seq;
3333 const cap_rights_t *haverights;
3334 #endif
3335
3336 fdp = td->td_proc->p_fd;
3337 fdt = fdp->fd_files;
3338 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
3339 *fpp = NULL;
3340 return (EBADF);
3341 }
3342 #ifdef CAPABILITIES
3343 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3344 fde = &fdt->fdt_ofiles[fd];
3345 haverights = cap_rights_fde_inline(fde);
3346 fp = fde->fde_file;
3347 #else
3348 fp = fdt->fdt_ofiles[fd].fde_file;
3349 #endif
3350 if (__predict_false(fp == NULL))
3351 goto out_fallback;
3352 #ifdef CAPABILITIES
3353 if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
3354 goto out_fallback;
3355 #endif
3356 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
3357 goto out_fallback;
3358
3359 /*
3360 * Use an acquire barrier to force re-reading of fdt so it is
3361 * refreshed for verification.
3362 */
3363 atomic_thread_fence_acq();
3364 fdt = fdp->fd_files;
3365 #ifdef CAPABILITIES
3366 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3367 #else
3368 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3369 #endif
3370 goto out_fdrop;
3371 *fpp = fp;
3372 return (0);
3373 out_fdrop:
3374 fdrop(fp, td);
3375 out_fallback:
3376 *fpp = NULL;
3377 return (fget_unlocked_seq(td, fd, needrightsp, fpp, NULL));
3378 }
3379
3380 /*
3381 * Translate fd -> file when the caller guarantees the file descriptor table
3382 * can't be changed by others.
3383 *
3384 * Note this does not mean the file object itself is only visible to the caller,
3385 * merely that it wont disappear without having to be referenced.
3386 *
3387 * Must be paired with fput_only_user.
3388 */
3389 #ifdef CAPABILITIES
3390 int
fget_only_user(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp)3391 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
3392 struct file **fpp)
3393 {
3394 const struct filedescent *fde;
3395 const struct fdescenttbl *fdt;
3396 const cap_rights_t *haverights;
3397 struct file *fp;
3398 int error;
3399
3400 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3401
3402 *fpp = NULL;
3403 if (__predict_false(fd >= fdp->fd_nfiles))
3404 return (EBADF);
3405
3406 fdt = fdp->fd_files;
3407 fde = &fdt->fdt_ofiles[fd];
3408 fp = fde->fde_file;
3409 if (__predict_false(fp == NULL))
3410 return (EBADF);
3411 MPASS(refcount_load(&fp->f_count) > 0);
3412 haverights = cap_rights_fde_inline(fde);
3413 error = cap_check_inline(haverights, needrightsp);
3414 if (__predict_false(error != 0))
3415 return (error);
3416 *fpp = fp;
3417 return (0);
3418 }
3419 #else
3420 int
fget_only_user(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp)3421 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
3422 struct file **fpp)
3423 {
3424 struct file *fp;
3425
3426 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3427
3428 *fpp = NULL;
3429 if (__predict_false(fd >= fdp->fd_nfiles))
3430 return (EBADF);
3431
3432 fp = fdp->fd_ofiles[fd].fde_file;
3433 if (__predict_false(fp == NULL))
3434 return (EBADF);
3435
3436 MPASS(refcount_load(&fp->f_count) > 0);
3437 *fpp = fp;
3438 return (0);
3439 }
3440 #endif
3441
3442 /*
3443 * Extract the file pointer associated with the specified descriptor for the
3444 * current user process.
3445 *
3446 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
3447 * returned.
3448 *
3449 * File's rights will be checked against the capability rights mask.
3450 *
3451 * If an error occurred the non-zero error is returned and *fpp is set to
3452 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is
3453 * responsible for fdrop().
3454 */
3455 static __inline int
_fget(struct thread * td,int fd,struct file ** fpp,int flags,cap_rights_t * needrightsp)3456 _fget(struct thread *td, int fd, struct file **fpp, int flags,
3457 cap_rights_t *needrightsp)
3458 {
3459 struct file *fp;
3460 int error;
3461
3462 *fpp = NULL;
3463 error = fget_unlocked(td, fd, needrightsp, &fp);
3464 if (__predict_false(error != 0))
3465 return (error);
3466 if (__predict_false(fp->f_ops == &badfileops)) {
3467 fdrop(fp, td);
3468 return (EBADF);
3469 }
3470
3471 /*
3472 * FREAD and FWRITE failure return EBADF as per POSIX.
3473 */
3474 error = 0;
3475 switch (flags) {
3476 case FREAD:
3477 case FWRITE:
3478 if ((fp->f_flag & flags) == 0)
3479 error = EBADF;
3480 break;
3481 case FEXEC:
3482 if (fp->f_ops != &path_fileops &&
3483 ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
3484 (fp->f_flag & FWRITE) != 0))
3485 error = EBADF;
3486 break;
3487 case 0:
3488 break;
3489 default:
3490 KASSERT(0, ("wrong flags"));
3491 }
3492
3493 if (error != 0) {
3494 fdrop(fp, td);
3495 return (error);
3496 }
3497
3498 *fpp = fp;
3499 return (0);
3500 }
3501
3502 int
fget(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3503 fget(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3504 {
3505
3506 return (_fget(td, fd, fpp, 0, rightsp));
3507 }
3508
3509 int
fget_mmap(struct thread * td,int fd,cap_rights_t * rightsp,vm_prot_t * maxprotp,struct file ** fpp)3510 fget_mmap(struct thread *td, int fd, cap_rights_t *rightsp, vm_prot_t *maxprotp,
3511 struct file **fpp)
3512 {
3513 int error;
3514 #ifndef CAPABILITIES
3515 error = _fget(td, fd, fpp, 0, rightsp);
3516 if (maxprotp != NULL)
3517 *maxprotp = VM_PROT_ALL;
3518 return (error);
3519 #else
3520 cap_rights_t fdrights;
3521 struct filedesc *fdp;
3522 struct file *fp;
3523 seqc_t seq;
3524
3525 *fpp = NULL;
3526 fdp = td->td_proc->p_fd;
3527 MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
3528 for (;;) {
3529 error = fget_unlocked_seq(td, fd, rightsp, &fp, &seq);
3530 if (__predict_false(error != 0))
3531 return (error);
3532 if (__predict_false(fp->f_ops == &badfileops)) {
3533 fdrop(fp, td);
3534 return (EBADF);
3535 }
3536 if (maxprotp != NULL)
3537 fdrights = *cap_rights(fdp, fd);
3538 if (!fd_modified(fdp, fd, seq))
3539 break;
3540 fdrop(fp, td);
3541 }
3542
3543 /*
3544 * If requested, convert capability rights to access flags.
3545 */
3546 if (maxprotp != NULL)
3547 *maxprotp = cap_rights_to_vmprot(&fdrights);
3548 *fpp = fp;
3549 return (0);
3550 #endif
3551 }
3552
3553 int
fget_read(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3554 fget_read(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3555 {
3556
3557 return (_fget(td, fd, fpp, FREAD, rightsp));
3558 }
3559
3560 int
fget_write(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3561 fget_write(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3562 {
3563
3564 return (_fget(td, fd, fpp, FWRITE, rightsp));
3565 }
3566
3567 int
fget_fcntl(struct thread * td,int fd,cap_rights_t * rightsp,int needfcntl,struct file ** fpp)3568 fget_fcntl(struct thread *td, int fd, cap_rights_t *rightsp, int needfcntl,
3569 struct file **fpp)
3570 {
3571 #ifndef CAPABILITIES
3572 return (fget_unlocked(td, fd, rightsp, fpp));
3573 #else
3574 struct filedesc *fdp = td->td_proc->p_fd;
3575 struct file *fp;
3576 int error;
3577 seqc_t seq;
3578
3579 *fpp = NULL;
3580 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
3581 for (;;) {
3582 error = fget_unlocked_seq(td, fd, rightsp, &fp, &seq);
3583 if (error != 0)
3584 return (error);
3585 error = cap_fcntl_check(fdp, fd, needfcntl);
3586 if (!fd_modified(fdp, fd, seq))
3587 break;
3588 fdrop(fp, td);
3589 }
3590 if (error != 0) {
3591 fdrop(fp, td);
3592 return (error);
3593 }
3594 *fpp = fp;
3595 return (0);
3596 #endif
3597 }
3598
3599 /*
3600 * Like fget() but loads the underlying vnode, or returns an error if the
3601 * descriptor does not represent a vnode. Note that pipes use vnodes but
3602 * never have VM objects. The returned vnode will be vref()'d.
3603 *
3604 * XXX: what about the unused flags ?
3605 */
3606 static __inline int
_fgetvp(struct thread * td,int fd,int flags,cap_rights_t * needrightsp,struct vnode ** vpp)3607 _fgetvp(struct thread *td, int fd, int flags, cap_rights_t *needrightsp,
3608 struct vnode **vpp)
3609 {
3610 struct file *fp;
3611 int error;
3612
3613 *vpp = NULL;
3614 error = _fget(td, fd, &fp, flags, needrightsp);
3615 if (error != 0)
3616 return (error);
3617 if (fp->f_vnode == NULL) {
3618 error = EINVAL;
3619 } else {
3620 *vpp = fp->f_vnode;
3621 vrefact(*vpp);
3622 }
3623 fdrop(fp, td);
3624
3625 return (error);
3626 }
3627
3628 int
fgetvp(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3629 fgetvp(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3630 {
3631
3632 return (_fgetvp(td, fd, 0, rightsp, vpp));
3633 }
3634
3635 int
fgetvp_rights(struct thread * td,int fd,cap_rights_t * needrightsp,struct filecaps * havecaps,struct vnode ** vpp)3636 fgetvp_rights(struct thread *td, int fd, cap_rights_t *needrightsp,
3637 struct filecaps *havecaps, struct vnode **vpp)
3638 {
3639 struct filecaps caps;
3640 struct file *fp;
3641 int error;
3642
3643 error = fget_cap(td, fd, needrightsp, &fp, &caps);
3644 if (error != 0)
3645 return (error);
3646 if (fp->f_ops == &badfileops) {
3647 error = EBADF;
3648 goto out;
3649 }
3650 if (fp->f_vnode == NULL) {
3651 error = EINVAL;
3652 goto out;
3653 }
3654
3655 *havecaps = caps;
3656 *vpp = fp->f_vnode;
3657 vrefact(*vpp);
3658 fdrop(fp, td);
3659
3660 return (0);
3661 out:
3662 filecaps_free(&caps);
3663 fdrop(fp, td);
3664 return (error);
3665 }
3666
3667 int
fgetvp_read(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3668 fgetvp_read(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3669 {
3670
3671 return (_fgetvp(td, fd, FREAD, rightsp, vpp));
3672 }
3673
3674 int
fgetvp_exec(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3675 fgetvp_exec(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3676 {
3677
3678 return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
3679 }
3680
3681 #ifdef notyet
3682 int
fgetvp_write(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3683 fgetvp_write(struct thread *td, int fd, cap_rights_t *rightsp,
3684 struct vnode **vpp)
3685 {
3686
3687 return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
3688 }
3689 #endif
3690
3691 /*
3692 * Handle the last reference to a file being closed.
3693 *
3694 * Without the noinline attribute clang keeps inlining the func thorough this
3695 * file when fdrop is used.
3696 */
3697 int __noinline
_fdrop(struct file * fp,struct thread * td)3698 _fdrop(struct file *fp, struct thread *td)
3699 {
3700 int error;
3701 #ifdef INVARIANTS
3702 int count;
3703
3704 count = refcount_load(&fp->f_count);
3705 if (count != 0)
3706 panic("fdrop: fp %p count %d", fp, count);
3707 #endif
3708 error = fo_close(fp, td);
3709 atomic_subtract_int(&openfiles, 1);
3710 crfree(fp->f_cred);
3711 free(fp->f_advice, M_FADVISE);
3712 uma_zfree(file_zone, fp);
3713
3714 return (error);
3715 }
3716
3717 /*
3718 * Apply an advisory lock on a file descriptor.
3719 *
3720 * Just attempt to get a record lock of the requested type on the entire file
3721 * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3722 */
3723 #ifndef _SYS_SYSPROTO_H_
3724 struct flock_args {
3725 int fd;
3726 int how;
3727 };
3728 #endif
3729 /* ARGSUSED */
3730 int
sys_flock(struct thread * td,struct flock_args * uap)3731 sys_flock(struct thread *td, struct flock_args *uap)
3732 {
3733 struct file *fp;
3734 struct vnode *vp;
3735 struct flock lf;
3736 int error;
3737
3738 error = fget(td, uap->fd, &cap_flock_rights, &fp);
3739 if (error != 0)
3740 return (error);
3741 error = EOPNOTSUPP;
3742 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
3743 goto done;
3744 }
3745 if (fp->f_ops == &path_fileops) {
3746 goto done;
3747 }
3748
3749 error = 0;
3750 vp = fp->f_vnode;
3751 lf.l_whence = SEEK_SET;
3752 lf.l_start = 0;
3753 lf.l_len = 0;
3754 if (uap->how & LOCK_UN) {
3755 lf.l_type = F_UNLCK;
3756 atomic_clear_int(&fp->f_flag, FHASLOCK);
3757 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
3758 goto done;
3759 }
3760 if (uap->how & LOCK_EX)
3761 lf.l_type = F_WRLCK;
3762 else if (uap->how & LOCK_SH)
3763 lf.l_type = F_RDLCK;
3764 else {
3765 error = EBADF;
3766 goto done;
3767 }
3768 atomic_set_int(&fp->f_flag, FHASLOCK);
3769 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
3770 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
3771 done:
3772 fdrop(fp, td);
3773 return (error);
3774 }
3775 /*
3776 * Duplicate the specified descriptor to a free descriptor.
3777 */
3778 int
dupfdopen(struct thread * td,struct filedesc * fdp,int dfd,int mode,int openerror,int * indxp)3779 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
3780 int openerror, int *indxp)
3781 {
3782 struct filedescent *newfde, *oldfde;
3783 struct file *fp;
3784 u_long *ioctls;
3785 int error, indx;
3786
3787 KASSERT(openerror == ENODEV || openerror == ENXIO,
3788 ("unexpected error %d in %s", openerror, __func__));
3789
3790 /*
3791 * If the to-be-dup'd fd number is greater than the allowed number
3792 * of file descriptors, or the fd to be dup'd has already been
3793 * closed, then reject.
3794 */
3795 FILEDESC_XLOCK(fdp);
3796 if ((fp = fget_noref(fdp, dfd)) == NULL) {
3797 FILEDESC_XUNLOCK(fdp);
3798 return (EBADF);
3799 }
3800
3801 error = fdalloc(td, 0, &indx);
3802 if (error != 0) {
3803 FILEDESC_XUNLOCK(fdp);
3804 return (error);
3805 }
3806
3807 /*
3808 * There are two cases of interest here.
3809 *
3810 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
3811 *
3812 * For ENXIO steal away the file structure from (dfd) and store it in
3813 * (indx). (dfd) is effectively closed by this operation.
3814 */
3815 switch (openerror) {
3816 case ENODEV:
3817 /*
3818 * Check that the mode the file is being opened for is a
3819 * subset of the mode of the existing descriptor.
3820 */
3821 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
3822 fdunused(fdp, indx);
3823 FILEDESC_XUNLOCK(fdp);
3824 return (EACCES);
3825 }
3826 if (!fhold(fp)) {
3827 fdunused(fdp, indx);
3828 FILEDESC_XUNLOCK(fdp);
3829 return (EBADF);
3830 }
3831 newfde = &fdp->fd_ofiles[indx];
3832 oldfde = &fdp->fd_ofiles[dfd];
3833 ioctls = filecaps_copy_prep(&oldfde->fde_caps);
3834 #ifdef CAPABILITIES
3835 seqc_write_begin(&newfde->fde_seqc);
3836 #endif
3837 fde_copy(oldfde, newfde);
3838 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
3839 ioctls);
3840 #ifdef CAPABILITIES
3841 seqc_write_end(&newfde->fde_seqc);
3842 #endif
3843 break;
3844 case ENXIO:
3845 /*
3846 * Steal away the file pointer from dfd and stuff it into indx.
3847 */
3848 newfde = &fdp->fd_ofiles[indx];
3849 oldfde = &fdp->fd_ofiles[dfd];
3850 #ifdef CAPABILITIES
3851 seqc_write_begin(&oldfde->fde_seqc);
3852 seqc_write_begin(&newfde->fde_seqc);
3853 #endif
3854 fde_copy(oldfde, newfde);
3855 oldfde->fde_file = NULL;
3856 fdunused(fdp, dfd);
3857 #ifdef CAPABILITIES
3858 seqc_write_end(&newfde->fde_seqc);
3859 seqc_write_end(&oldfde->fde_seqc);
3860 #endif
3861 break;
3862 }
3863 FILEDESC_XUNLOCK(fdp);
3864 *indxp = indx;
3865 return (0);
3866 }
3867
3868 /*
3869 * This sysctl determines if we will allow a process to chroot(2) if it
3870 * has a directory open:
3871 * 0: disallowed for all processes.
3872 * 1: allowed for processes that were not already chroot(2)'ed.
3873 * 2: allowed for all processes.
3874 */
3875
3876 static int chroot_allow_open_directories = 1;
3877
3878 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
3879 &chroot_allow_open_directories, 0,
3880 "Allow a process to chroot(2) if it has a directory open");
3881
3882 /*
3883 * Helper function for raised chroot(2) security function: Refuse if
3884 * any filedescriptors are open directories.
3885 */
3886 static int
chroot_refuse_vdir_fds(struct filedesc * fdp)3887 chroot_refuse_vdir_fds(struct filedesc *fdp)
3888 {
3889 struct vnode *vp;
3890 struct file *fp;
3891 int i;
3892
3893 FILEDESC_LOCK_ASSERT(fdp);
3894
3895 FILEDESC_FOREACH_FP(fdp, i, fp) {
3896 if (fp->f_type == DTYPE_VNODE) {
3897 vp = fp->f_vnode;
3898 if (vp->v_type == VDIR)
3899 return (EPERM);
3900 }
3901 }
3902 return (0);
3903 }
3904
3905 static void
pwd_fill(struct pwd * oldpwd,struct pwd * newpwd)3906 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
3907 {
3908
3909 if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
3910 vrefact(oldpwd->pwd_cdir);
3911 newpwd->pwd_cdir = oldpwd->pwd_cdir;
3912 }
3913
3914 if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
3915 vrefact(oldpwd->pwd_rdir);
3916 newpwd->pwd_rdir = oldpwd->pwd_rdir;
3917 }
3918
3919 if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
3920 vrefact(oldpwd->pwd_jdir);
3921 newpwd->pwd_jdir = oldpwd->pwd_jdir;
3922 }
3923
3924 if (newpwd->pwd_adir == NULL && oldpwd->pwd_adir != NULL) {
3925 vrefact(oldpwd->pwd_adir);
3926 newpwd->pwd_adir = oldpwd->pwd_adir;
3927 }
3928 }
3929
3930 struct pwd *
pwd_hold_pwddesc(struct pwddesc * pdp)3931 pwd_hold_pwddesc(struct pwddesc *pdp)
3932 {
3933 struct pwd *pwd;
3934
3935 PWDDESC_ASSERT_XLOCKED(pdp);
3936 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
3937 if (pwd != NULL)
3938 refcount_acquire(&pwd->pwd_refcount);
3939 return (pwd);
3940 }
3941
3942 bool
pwd_hold_smr(struct pwd * pwd)3943 pwd_hold_smr(struct pwd *pwd)
3944 {
3945
3946 MPASS(pwd != NULL);
3947 if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
3948 return (true);
3949 }
3950 return (false);
3951 }
3952
3953 struct pwd *
pwd_hold(struct thread * td)3954 pwd_hold(struct thread *td)
3955 {
3956 struct pwddesc *pdp;
3957 struct pwd *pwd;
3958
3959 pdp = td->td_proc->p_pd;
3960
3961 vfs_smr_enter();
3962 pwd = vfs_smr_entered_load(&pdp->pd_pwd);
3963 if (pwd_hold_smr(pwd)) {
3964 vfs_smr_exit();
3965 return (pwd);
3966 }
3967 vfs_smr_exit();
3968 PWDDESC_XLOCK(pdp);
3969 pwd = pwd_hold_pwddesc(pdp);
3970 MPASS(pwd != NULL);
3971 PWDDESC_XUNLOCK(pdp);
3972 return (pwd);
3973 }
3974
3975 struct pwd *
pwd_hold_proc(struct proc * p)3976 pwd_hold_proc(struct proc *p)
3977 {
3978 struct pwddesc *pdp;
3979 struct pwd *pwd;
3980
3981 PROC_ASSERT_HELD(p);
3982 PROC_LOCK(p);
3983 pdp = pdhold(p);
3984 MPASS(pdp != NULL);
3985 PROC_UNLOCK(p);
3986
3987 PWDDESC_XLOCK(pdp);
3988 pwd = pwd_hold_pwddesc(pdp);
3989 MPASS(pwd != NULL);
3990 PWDDESC_XUNLOCK(pdp);
3991 pddrop(pdp);
3992 return (pwd);
3993 }
3994
3995 static struct pwd *
pwd_alloc(void)3996 pwd_alloc(void)
3997 {
3998 struct pwd *pwd;
3999
4000 pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
4001 bzero(pwd, sizeof(*pwd));
4002 refcount_init(&pwd->pwd_refcount, 1);
4003 return (pwd);
4004 }
4005
4006 void
pwd_drop(struct pwd * pwd)4007 pwd_drop(struct pwd *pwd)
4008 {
4009
4010 if (!refcount_release(&pwd->pwd_refcount))
4011 return;
4012
4013 if (pwd->pwd_cdir != NULL)
4014 vrele(pwd->pwd_cdir);
4015 if (pwd->pwd_rdir != NULL)
4016 vrele(pwd->pwd_rdir);
4017 if (pwd->pwd_jdir != NULL)
4018 vrele(pwd->pwd_jdir);
4019 if (pwd->pwd_adir != NULL)
4020 vrele(pwd->pwd_adir);
4021 uma_zfree_smr(pwd_zone, pwd);
4022 }
4023
4024 /*
4025 * The caller is responsible for invoking priv_check() and
4026 * mac_vnode_check_chroot() to authorize this operation.
4027 */
4028 int
pwd_chroot(struct thread * td,struct vnode * vp)4029 pwd_chroot(struct thread *td, struct vnode *vp)
4030 {
4031 struct pwddesc *pdp;
4032 struct filedesc *fdp;
4033 struct pwd *newpwd, *oldpwd;
4034 int error;
4035
4036 fdp = td->td_proc->p_fd;
4037 pdp = td->td_proc->p_pd;
4038 newpwd = pwd_alloc();
4039 FILEDESC_SLOCK(fdp);
4040 PWDDESC_XLOCK(pdp);
4041 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4042 if (chroot_allow_open_directories == 0 ||
4043 (chroot_allow_open_directories == 1 &&
4044 oldpwd->pwd_rdir != rootvnode)) {
4045 error = chroot_refuse_vdir_fds(fdp);
4046 FILEDESC_SUNLOCK(fdp);
4047 if (error != 0) {
4048 PWDDESC_XUNLOCK(pdp);
4049 pwd_drop(newpwd);
4050 return (error);
4051 }
4052 } else {
4053 FILEDESC_SUNLOCK(fdp);
4054 }
4055
4056 vrefact(vp);
4057 newpwd->pwd_rdir = vp;
4058 vrefact(vp);
4059 newpwd->pwd_adir = vp;
4060 if (oldpwd->pwd_jdir == NULL) {
4061 vrefact(vp);
4062 newpwd->pwd_jdir = vp;
4063 }
4064 pwd_fill(oldpwd, newpwd);
4065 pwd_set(pdp, newpwd);
4066 PWDDESC_XUNLOCK(pdp);
4067 pwd_drop(oldpwd);
4068 return (0);
4069 }
4070
4071 void
pwd_chdir(struct thread * td,struct vnode * vp)4072 pwd_chdir(struct thread *td, struct vnode *vp)
4073 {
4074 struct pwddesc *pdp;
4075 struct pwd *newpwd, *oldpwd;
4076
4077 VNPASS(vp->v_usecount > 0, vp);
4078
4079 newpwd = pwd_alloc();
4080 pdp = td->td_proc->p_pd;
4081 PWDDESC_XLOCK(pdp);
4082 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4083 newpwd->pwd_cdir = vp;
4084 pwd_fill(oldpwd, newpwd);
4085 pwd_set(pdp, newpwd);
4086 PWDDESC_XUNLOCK(pdp);
4087 pwd_drop(oldpwd);
4088 }
4089
4090 /*
4091 * Process is transitioning to/from a non-native ABI.
4092 */
4093 void
pwd_altroot(struct thread * td,struct vnode * altroot_vp)4094 pwd_altroot(struct thread *td, struct vnode *altroot_vp)
4095 {
4096 struct pwddesc *pdp;
4097 struct pwd *newpwd, *oldpwd;
4098
4099 newpwd = pwd_alloc();
4100 pdp = td->td_proc->p_pd;
4101 PWDDESC_XLOCK(pdp);
4102 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4103 if (altroot_vp != NULL) {
4104 /*
4105 * Native process to a non-native ABI.
4106 */
4107
4108 vrefact(altroot_vp);
4109 newpwd->pwd_adir = altroot_vp;
4110 } else {
4111 /*
4112 * Non-native process to the native ABI.
4113 */
4114
4115 vrefact(oldpwd->pwd_rdir);
4116 newpwd->pwd_adir = oldpwd->pwd_rdir;
4117 }
4118 pwd_fill(oldpwd, newpwd);
4119 pwd_set(pdp, newpwd);
4120 PWDDESC_XUNLOCK(pdp);
4121 pwd_drop(oldpwd);
4122 }
4123
4124 /*
4125 * jail_attach(2) changes both root and working directories.
4126 */
4127 int
pwd_chroot_chdir(struct thread * td,struct vnode * vp)4128 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
4129 {
4130 struct pwddesc *pdp;
4131 struct filedesc *fdp;
4132 struct pwd *newpwd, *oldpwd;
4133 int error;
4134
4135 fdp = td->td_proc->p_fd;
4136 pdp = td->td_proc->p_pd;
4137 newpwd = pwd_alloc();
4138 FILEDESC_SLOCK(fdp);
4139 PWDDESC_XLOCK(pdp);
4140 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4141 error = chroot_refuse_vdir_fds(fdp);
4142 FILEDESC_SUNLOCK(fdp);
4143 if (error != 0) {
4144 PWDDESC_XUNLOCK(pdp);
4145 pwd_drop(newpwd);
4146 return (error);
4147 }
4148
4149 vrefact(vp);
4150 newpwd->pwd_rdir = vp;
4151 vrefact(vp);
4152 newpwd->pwd_cdir = vp;
4153 if (oldpwd->pwd_jdir == NULL) {
4154 vrefact(vp);
4155 newpwd->pwd_jdir = vp;
4156 }
4157 vrefact(vp);
4158 newpwd->pwd_adir = vp;
4159 pwd_fill(oldpwd, newpwd);
4160 pwd_set(pdp, newpwd);
4161 PWDDESC_XUNLOCK(pdp);
4162 pwd_drop(oldpwd);
4163 return (0);
4164 }
4165
4166 void
pwd_ensure_dirs(void)4167 pwd_ensure_dirs(void)
4168 {
4169 struct pwddesc *pdp;
4170 struct pwd *oldpwd, *newpwd;
4171
4172 pdp = curproc->p_pd;
4173 PWDDESC_XLOCK(pdp);
4174 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4175 if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL &&
4176 oldpwd->pwd_adir != NULL) {
4177 PWDDESC_XUNLOCK(pdp);
4178 return;
4179 }
4180 PWDDESC_XUNLOCK(pdp);
4181
4182 newpwd = pwd_alloc();
4183 PWDDESC_XLOCK(pdp);
4184 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4185 pwd_fill(oldpwd, newpwd);
4186 if (newpwd->pwd_cdir == NULL) {
4187 vrefact(rootvnode);
4188 newpwd->pwd_cdir = rootvnode;
4189 }
4190 if (newpwd->pwd_rdir == NULL) {
4191 vrefact(rootvnode);
4192 newpwd->pwd_rdir = rootvnode;
4193 }
4194 if (newpwd->pwd_adir == NULL) {
4195 vrefact(rootvnode);
4196 newpwd->pwd_adir = rootvnode;
4197 }
4198 pwd_set(pdp, newpwd);
4199 PWDDESC_XUNLOCK(pdp);
4200 pwd_drop(oldpwd);
4201 }
4202
4203 void
pwd_set_rootvnode(void)4204 pwd_set_rootvnode(void)
4205 {
4206 struct pwddesc *pdp;
4207 struct pwd *oldpwd, *newpwd;
4208
4209 pdp = curproc->p_pd;
4210
4211 newpwd = pwd_alloc();
4212 PWDDESC_XLOCK(pdp);
4213 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4214 vrefact(rootvnode);
4215 newpwd->pwd_cdir = rootvnode;
4216 vrefact(rootvnode);
4217 newpwd->pwd_rdir = rootvnode;
4218 vrefact(rootvnode);
4219 newpwd->pwd_adir = rootvnode;
4220 pwd_fill(oldpwd, newpwd);
4221 pwd_set(pdp, newpwd);
4222 PWDDESC_XUNLOCK(pdp);
4223 pwd_drop(oldpwd);
4224 }
4225
4226 /*
4227 * Scan all active processes and prisons to see if any of them have a current
4228 * or root directory of `olddp'. If so, replace them with the new mount point.
4229 */
4230 void
mountcheckdirs(struct vnode * olddp,struct vnode * newdp)4231 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
4232 {
4233 struct pwddesc *pdp;
4234 struct pwd *newpwd, *oldpwd;
4235 struct prison *pr;
4236 struct proc *p;
4237 int nrele;
4238
4239 if (vrefcnt(olddp) == 1)
4240 return;
4241 nrele = 0;
4242 newpwd = pwd_alloc();
4243 sx_slock(&allproc_lock);
4244 FOREACH_PROC_IN_SYSTEM(p) {
4245 PROC_LOCK(p);
4246 pdp = pdhold(p);
4247 PROC_UNLOCK(p);
4248 if (pdp == NULL)
4249 continue;
4250 PWDDESC_XLOCK(pdp);
4251 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4252 if (oldpwd == NULL ||
4253 (oldpwd->pwd_cdir != olddp &&
4254 oldpwd->pwd_rdir != olddp &&
4255 oldpwd->pwd_jdir != olddp &&
4256 oldpwd->pwd_adir != olddp)) {
4257 PWDDESC_XUNLOCK(pdp);
4258 pddrop(pdp);
4259 continue;
4260 }
4261 if (oldpwd->pwd_cdir == olddp) {
4262 vrefact(newdp);
4263 newpwd->pwd_cdir = newdp;
4264 }
4265 if (oldpwd->pwd_rdir == olddp) {
4266 vrefact(newdp);
4267 newpwd->pwd_rdir = newdp;
4268 }
4269 if (oldpwd->pwd_jdir == olddp) {
4270 vrefact(newdp);
4271 newpwd->pwd_jdir = newdp;
4272 }
4273 if (oldpwd->pwd_adir == olddp) {
4274 vrefact(newdp);
4275 newpwd->pwd_adir = newdp;
4276 }
4277 pwd_fill(oldpwd, newpwd);
4278 pwd_set(pdp, newpwd);
4279 PWDDESC_XUNLOCK(pdp);
4280 pwd_drop(oldpwd);
4281 pddrop(pdp);
4282 newpwd = pwd_alloc();
4283 }
4284 sx_sunlock(&allproc_lock);
4285 pwd_drop(newpwd);
4286 if (rootvnode == olddp) {
4287 vrefact(newdp);
4288 rootvnode = newdp;
4289 nrele++;
4290 }
4291 mtx_lock(&prison0.pr_mtx);
4292 if (prison0.pr_root == olddp) {
4293 vrefact(newdp);
4294 prison0.pr_root = newdp;
4295 nrele++;
4296 }
4297 mtx_unlock(&prison0.pr_mtx);
4298 sx_slock(&allprison_lock);
4299 TAILQ_FOREACH(pr, &allprison, pr_list) {
4300 mtx_lock(&pr->pr_mtx);
4301 if (pr->pr_root == olddp) {
4302 vrefact(newdp);
4303 pr->pr_root = newdp;
4304 nrele++;
4305 }
4306 mtx_unlock(&pr->pr_mtx);
4307 }
4308 sx_sunlock(&allprison_lock);
4309 while (nrele--)
4310 vrele(olddp);
4311 }
4312
4313 int
descrip_check_write_mp(struct filedesc * fdp,struct mount * mp)4314 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
4315 {
4316 struct file *fp;
4317 struct vnode *vp;
4318 int error, i;
4319
4320 error = 0;
4321 FILEDESC_SLOCK(fdp);
4322 FILEDESC_FOREACH_FP(fdp, i, fp) {
4323 if (fp->f_type != DTYPE_VNODE ||
4324 (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
4325 continue;
4326 vp = fp->f_vnode;
4327 if (vp->v_mount == mp) {
4328 error = EDEADLK;
4329 break;
4330 }
4331 }
4332 FILEDESC_SUNLOCK(fdp);
4333 return (error);
4334 }
4335
4336 struct filedesc_to_leader *
filedesc_to_leader_alloc(struct filedesc_to_leader * old,struct filedesc * fdp,struct proc * leader)4337 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
4338 struct proc *leader)
4339 {
4340 struct filedesc_to_leader *fdtol;
4341
4342 fdtol = malloc(sizeof(struct filedesc_to_leader),
4343 M_FILEDESC_TO_LEADER, M_WAITOK);
4344 fdtol->fdl_refcount = 1;
4345 fdtol->fdl_holdcount = 0;
4346 fdtol->fdl_wakeup = 0;
4347 fdtol->fdl_leader = leader;
4348 if (old != NULL) {
4349 FILEDESC_XLOCK(fdp);
4350 fdtol->fdl_next = old->fdl_next;
4351 fdtol->fdl_prev = old;
4352 old->fdl_next = fdtol;
4353 fdtol->fdl_next->fdl_prev = fdtol;
4354 FILEDESC_XUNLOCK(fdp);
4355 } else {
4356 fdtol->fdl_next = fdtol;
4357 fdtol->fdl_prev = fdtol;
4358 }
4359 return (fdtol);
4360 }
4361
4362 struct filedesc_to_leader *
filedesc_to_leader_share(struct filedesc_to_leader * fdtol,struct filedesc * fdp)4363 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
4364 {
4365 FILEDESC_XLOCK(fdp);
4366 fdtol->fdl_refcount++;
4367 FILEDESC_XUNLOCK(fdp);
4368 return (fdtol);
4369 }
4370
4371 static int
filedesc_nfiles(struct filedesc * fdp)4372 filedesc_nfiles(struct filedesc *fdp)
4373 {
4374 NDSLOTTYPE *map;
4375 int count, off, minoff;
4376
4377 if (fdp == NULL)
4378 return (0);
4379 count = 0;
4380 FILEDESC_SLOCK(fdp);
4381 map = fdp->fd_map;
4382 off = NDSLOT(fdp->fd_nfiles - 1);
4383 for (minoff = NDSLOT(0); off >= minoff; --off)
4384 count += bitcountl(map[off]);
4385 FILEDESC_SUNLOCK(fdp);
4386 return (count);
4387 }
4388
4389 int
proc_nfiles(struct proc * p)4390 proc_nfiles(struct proc *p)
4391 {
4392 struct filedesc *fdp;
4393 int res;
4394
4395 PROC_LOCK(p);
4396 fdp = fdhold(p);
4397 PROC_UNLOCK(p);
4398 res = filedesc_nfiles(fdp);
4399 fddrop(fdp);
4400 return (res);
4401 }
4402
4403 static int
sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)4404 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
4405 {
4406 u_int namelen;
4407 int count;
4408
4409 namelen = arg2;
4410 if (namelen != 1)
4411 return (EINVAL);
4412
4413 if (*(int *)arg1 != 0)
4414 return (EINVAL);
4415
4416 count = filedesc_nfiles(curproc->p_fd);
4417 return (SYSCTL_OUT(req, &count, sizeof(count)));
4418 }
4419
4420 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
4421 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
4422 "Number of open file descriptors");
4423
4424 /*
4425 * Get file structures globally.
4426 */
4427 static int
sysctl_kern_file(SYSCTL_HANDLER_ARGS)4428 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
4429 {
4430 struct xfile xf;
4431 struct filedesc *fdp;
4432 struct file *fp;
4433 struct proc *p;
4434 int error, n;
4435
4436 error = sysctl_wire_old_buffer(req, 0);
4437 if (error != 0)
4438 return (error);
4439 if (req->oldptr == NULL) {
4440 n = 0;
4441 sx_slock(&allproc_lock);
4442 FOREACH_PROC_IN_SYSTEM(p) {
4443 PROC_LOCK(p);
4444 if (p->p_state == PRS_NEW) {
4445 PROC_UNLOCK(p);
4446 continue;
4447 }
4448 fdp = fdhold(p);
4449 PROC_UNLOCK(p);
4450 if (fdp == NULL)
4451 continue;
4452 /* overestimates sparse tables. */
4453 n += fdp->fd_nfiles;
4454 fddrop(fdp);
4455 }
4456 sx_sunlock(&allproc_lock);
4457 return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
4458 }
4459 error = 0;
4460 bzero(&xf, sizeof(xf));
4461 xf.xf_size = sizeof(xf);
4462 sx_slock(&allproc_lock);
4463 FOREACH_PROC_IN_SYSTEM(p) {
4464 PROC_LOCK(p);
4465 if (p->p_state == PRS_NEW) {
4466 PROC_UNLOCK(p);
4467 continue;
4468 }
4469 if (p_cansee(req->td, p) != 0) {
4470 PROC_UNLOCK(p);
4471 continue;
4472 }
4473 xf.xf_pid = p->p_pid;
4474 xf.xf_uid = p->p_ucred->cr_uid;
4475 fdp = fdhold(p);
4476 PROC_UNLOCK(p);
4477 if (fdp == NULL)
4478 continue;
4479 FILEDESC_SLOCK(fdp);
4480 if (refcount_load(&fdp->fd_refcnt) == 0)
4481 goto nextproc;
4482 FILEDESC_FOREACH_FP(fdp, n, fp) {
4483 xf.xf_fd = n;
4484 xf.xf_file = (uintptr_t)fp;
4485 xf.xf_data = (uintptr_t)fp->f_data;
4486 xf.xf_vnode = (uintptr_t)fp->f_vnode;
4487 xf.xf_type = (uintptr_t)fp->f_type;
4488 xf.xf_count = refcount_load(&fp->f_count);
4489 xf.xf_msgcount = 0;
4490 xf.xf_offset = foffset_get(fp);
4491 xf.xf_flag = fp->f_flag;
4492 error = SYSCTL_OUT(req, &xf, sizeof(xf));
4493
4494 /*
4495 * There is no need to re-check the fdtable refcount
4496 * here since the filedesc lock is not dropped in the
4497 * loop body.
4498 */
4499 if (error != 0)
4500 break;
4501 }
4502 nextproc:
4503 FILEDESC_SUNLOCK(fdp);
4504 fddrop(fdp);
4505 if (error)
4506 break;
4507 }
4508 sx_sunlock(&allproc_lock);
4509 return (error);
4510 }
4511
4512 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
4513 0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
4514
4515 #ifdef KINFO_FILE_SIZE
4516 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
4517 #endif
4518
4519 static int
xlate_fflags(int fflags)4520 xlate_fflags(int fflags)
4521 {
4522 static const struct {
4523 int fflag;
4524 int kf_fflag;
4525 } fflags_table[] = {
4526 { FAPPEND, KF_FLAG_APPEND },
4527 { FASYNC, KF_FLAG_ASYNC },
4528 { FFSYNC, KF_FLAG_FSYNC },
4529 { FHASLOCK, KF_FLAG_HASLOCK },
4530 { FNONBLOCK, KF_FLAG_NONBLOCK },
4531 { FREAD, KF_FLAG_READ },
4532 { FWRITE, KF_FLAG_WRITE },
4533 { O_CREAT, KF_FLAG_CREAT },
4534 { O_DIRECT, KF_FLAG_DIRECT },
4535 { O_EXCL, KF_FLAG_EXCL },
4536 { O_EXEC, KF_FLAG_EXEC },
4537 { O_EXLOCK, KF_FLAG_EXLOCK },
4538 { O_NOFOLLOW, KF_FLAG_NOFOLLOW },
4539 { O_SHLOCK, KF_FLAG_SHLOCK },
4540 { O_TRUNC, KF_FLAG_TRUNC }
4541 };
4542 unsigned int i;
4543 int kflags;
4544
4545 kflags = 0;
4546 for (i = 0; i < nitems(fflags_table); i++)
4547 if (fflags & fflags_table[i].fflag)
4548 kflags |= fflags_table[i].kf_fflag;
4549 return (kflags);
4550 }
4551
4552 /* Trim unused data from kf_path by truncating the structure size. */
4553 void
pack_kinfo(struct kinfo_file * kif)4554 pack_kinfo(struct kinfo_file *kif)
4555 {
4556
4557 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
4558 strlen(kif->kf_path) + 1;
4559 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
4560 }
4561
4562 static void
export_file_to_kinfo(struct file * fp,int fd,cap_rights_t * rightsp,struct kinfo_file * kif,struct filedesc * fdp,int flags)4563 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
4564 struct kinfo_file *kif, struct filedesc *fdp, int flags)
4565 {
4566 int error;
4567
4568 bzero(kif, sizeof(*kif));
4569
4570 /* Set a default type to allow for empty fill_kinfo() methods. */
4571 kif->kf_type = KF_TYPE_UNKNOWN;
4572 kif->kf_flags = xlate_fflags(fp->f_flag);
4573 if (rightsp != NULL)
4574 kif->kf_cap_rights = *rightsp;
4575 else
4576 cap_rights_init_zero(&kif->kf_cap_rights);
4577 kif->kf_fd = fd;
4578 kif->kf_ref_count = refcount_load(&fp->f_count);
4579 kif->kf_offset = foffset_get(fp);
4580
4581 /*
4582 * This may drop the filedesc lock, so the 'fp' cannot be
4583 * accessed after this call.
4584 */
4585 error = fo_fill_kinfo(fp, kif, fdp);
4586 if (error == 0)
4587 kif->kf_status |= KF_ATTR_VALID;
4588 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4589 pack_kinfo(kif);
4590 else
4591 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4592 }
4593
4594 static void
export_vnode_to_kinfo(struct vnode * vp,int fd,int fflags,struct kinfo_file * kif,int flags)4595 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
4596 struct kinfo_file *kif, int flags)
4597 {
4598 int error;
4599
4600 bzero(kif, sizeof(*kif));
4601
4602 kif->kf_type = KF_TYPE_VNODE;
4603 error = vn_fill_kinfo_vnode(vp, kif);
4604 if (error == 0)
4605 kif->kf_status |= KF_ATTR_VALID;
4606 kif->kf_flags = xlate_fflags(fflags);
4607 cap_rights_init_zero(&kif->kf_cap_rights);
4608 kif->kf_fd = fd;
4609 kif->kf_ref_count = -1;
4610 kif->kf_offset = -1;
4611 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4612 pack_kinfo(kif);
4613 else
4614 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4615 vrele(vp);
4616 }
4617
4618 struct export_fd_buf {
4619 struct filedesc *fdp;
4620 struct pwddesc *pdp;
4621 struct sbuf *sb;
4622 ssize_t remainder;
4623 struct kinfo_file kif;
4624 int flags;
4625 };
4626
4627 static int
export_kinfo_to_sb(struct export_fd_buf * efbuf)4628 export_kinfo_to_sb(struct export_fd_buf *efbuf)
4629 {
4630 struct kinfo_file *kif;
4631
4632 kif = &efbuf->kif;
4633 if (efbuf->remainder != -1) {
4634 if (efbuf->remainder < kif->kf_structsize)
4635 return (ENOMEM);
4636 efbuf->remainder -= kif->kf_structsize;
4637 }
4638 if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
4639 return (sbuf_error(efbuf->sb));
4640 return (0);
4641 }
4642
4643 static int
export_file_to_sb(struct file * fp,int fd,cap_rights_t * rightsp,struct export_fd_buf * efbuf)4644 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
4645 struct export_fd_buf *efbuf)
4646 {
4647 int error;
4648
4649 if (efbuf->remainder == 0)
4650 return (ENOMEM);
4651 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
4652 efbuf->flags);
4653 FILEDESC_SUNLOCK(efbuf->fdp);
4654 error = export_kinfo_to_sb(efbuf);
4655 FILEDESC_SLOCK(efbuf->fdp);
4656 return (error);
4657 }
4658
4659 static int
export_vnode_to_sb(struct vnode * vp,int fd,int fflags,struct export_fd_buf * efbuf)4660 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
4661 struct export_fd_buf *efbuf)
4662 {
4663 int error;
4664
4665 if (efbuf->remainder == 0)
4666 return (ENOMEM);
4667 if (efbuf->pdp != NULL)
4668 PWDDESC_XUNLOCK(efbuf->pdp);
4669 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
4670 error = export_kinfo_to_sb(efbuf);
4671 if (efbuf->pdp != NULL)
4672 PWDDESC_XLOCK(efbuf->pdp);
4673 return (error);
4674 }
4675
4676 /*
4677 * Store a process file descriptor information to sbuf.
4678 *
4679 * Takes a locked proc as argument, and returns with the proc unlocked.
4680 */
4681 int
kern_proc_filedesc_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)4682 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen,
4683 int flags)
4684 {
4685 struct file *fp;
4686 struct filedesc *fdp;
4687 struct pwddesc *pdp;
4688 struct export_fd_buf *efbuf;
4689 struct vnode *cttyvp, *textvp, *tracevp;
4690 struct pwd *pwd;
4691 int error, i;
4692 cap_rights_t rights;
4693
4694 PROC_LOCK_ASSERT(p, MA_OWNED);
4695
4696 /* ktrace vnode */
4697 tracevp = ktr_get_tracevp(p, true);
4698 /* text vnode */
4699 textvp = p->p_textvp;
4700 if (textvp != NULL)
4701 vrefact(textvp);
4702 /* Controlling tty. */
4703 cttyvp = NULL;
4704 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
4705 cttyvp = p->p_pgrp->pg_session->s_ttyvp;
4706 if (cttyvp != NULL)
4707 vrefact(cttyvp);
4708 }
4709 fdp = fdhold(p);
4710 pdp = pdhold(p);
4711 PROC_UNLOCK(p);
4712
4713 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4714 efbuf->fdp = NULL;
4715 efbuf->pdp = NULL;
4716 efbuf->sb = sb;
4717 efbuf->remainder = maxlen;
4718 efbuf->flags = flags;
4719
4720 error = 0;
4721 if (tracevp != NULL)
4722 error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
4723 FREAD | FWRITE, efbuf);
4724 if (error == 0 && textvp != NULL)
4725 error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
4726 efbuf);
4727 if (error == 0 && cttyvp != NULL)
4728 error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
4729 FREAD | FWRITE, efbuf);
4730 if (error != 0 || pdp == NULL || fdp == NULL)
4731 goto fail;
4732 efbuf->fdp = fdp;
4733 efbuf->pdp = pdp;
4734 PWDDESC_XLOCK(pdp);
4735 pwd = pwd_hold_pwddesc(pdp);
4736 if (pwd != NULL) {
4737 /* working directory */
4738 if (pwd->pwd_cdir != NULL) {
4739 vrefact(pwd->pwd_cdir);
4740 error = export_vnode_to_sb(pwd->pwd_cdir,
4741 KF_FD_TYPE_CWD, FREAD, efbuf);
4742 }
4743 /* root directory */
4744 if (error == 0 && pwd->pwd_rdir != NULL) {
4745 vrefact(pwd->pwd_rdir);
4746 error = export_vnode_to_sb(pwd->pwd_rdir,
4747 KF_FD_TYPE_ROOT, FREAD, efbuf);
4748 }
4749 /* jail directory */
4750 if (error == 0 && pwd->pwd_jdir != NULL) {
4751 vrefact(pwd->pwd_jdir);
4752 error = export_vnode_to_sb(pwd->pwd_jdir,
4753 KF_FD_TYPE_JAIL, FREAD, efbuf);
4754 }
4755 }
4756 PWDDESC_XUNLOCK(pdp);
4757 if (error != 0)
4758 goto fail;
4759 if (pwd != NULL)
4760 pwd_drop(pwd);
4761 FILEDESC_SLOCK(fdp);
4762 if (refcount_load(&fdp->fd_refcnt) == 0)
4763 goto skip;
4764 FILEDESC_FOREACH_FP(fdp, i, fp) {
4765 #ifdef CAPABILITIES
4766 rights = *cap_rights(fdp, i);
4767 #else /* !CAPABILITIES */
4768 rights = cap_no_rights;
4769 #endif
4770 /*
4771 * Create sysctl entry. It is OK to drop the filedesc
4772 * lock inside of export_file_to_sb() as we will
4773 * re-validate and re-evaluate its properties when the
4774 * loop continues.
4775 */
4776 error = export_file_to_sb(fp, i, &rights, efbuf);
4777 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4778 break;
4779 }
4780 skip:
4781 FILEDESC_SUNLOCK(fdp);
4782 fail:
4783 if (fdp != NULL)
4784 fddrop(fdp);
4785 if (pdp != NULL)
4786 pddrop(pdp);
4787 free(efbuf, M_TEMP);
4788 return (error);
4789 }
4790
4791 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5)
4792
4793 /*
4794 * Get per-process file descriptors for use by procstat(1), et al.
4795 */
4796 static int
sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)4797 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
4798 {
4799 struct sbuf sb;
4800 struct proc *p;
4801 ssize_t maxlen;
4802 u_int namelen;
4803 int error, error2, *name;
4804
4805 namelen = arg2;
4806 if (namelen != 1)
4807 return (EINVAL);
4808
4809 name = (int *)arg1;
4810
4811 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
4812 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
4813 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4814 if (error != 0) {
4815 sbuf_delete(&sb);
4816 return (error);
4817 }
4818 maxlen = req->oldptr != NULL ? req->oldlen : -1;
4819 error = kern_proc_filedesc_out(p, &sb, maxlen,
4820 KERN_FILEDESC_PACK_KINFO);
4821 error2 = sbuf_finish(&sb);
4822 sbuf_delete(&sb);
4823 return (error != 0 ? error : error2);
4824 }
4825
4826 #ifdef COMPAT_FREEBSD7
4827 #ifdef KINFO_OFILE_SIZE
4828 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
4829 #endif
4830
4831 static void
kinfo_to_okinfo(struct kinfo_file * kif,struct kinfo_ofile * okif)4832 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
4833 {
4834
4835 okif->kf_structsize = sizeof(*okif);
4836 okif->kf_type = kif->kf_type;
4837 okif->kf_fd = kif->kf_fd;
4838 okif->kf_ref_count = kif->kf_ref_count;
4839 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
4840 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
4841 KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
4842 okif->kf_offset = kif->kf_offset;
4843 if (kif->kf_type == KF_TYPE_VNODE)
4844 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
4845 else
4846 okif->kf_vnode_type = KF_VTYPE_VNON;
4847 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
4848 if (kif->kf_type == KF_TYPE_SOCKET) {
4849 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
4850 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
4851 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
4852 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
4853 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
4854 } else {
4855 okif->kf_sa_local.ss_family = AF_UNSPEC;
4856 okif->kf_sa_peer.ss_family = AF_UNSPEC;
4857 }
4858 }
4859
4860 static int
export_vnode_for_osysctl(struct vnode * vp,int type,struct kinfo_file * kif,struct kinfo_ofile * okif,struct pwddesc * pdp,struct sysctl_req * req)4861 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
4862 struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
4863 {
4864 int error;
4865
4866 vrefact(vp);
4867 PWDDESC_XUNLOCK(pdp);
4868 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
4869 kinfo_to_okinfo(kif, okif);
4870 error = SYSCTL_OUT(req, okif, sizeof(*okif));
4871 PWDDESC_XLOCK(pdp);
4872 return (error);
4873 }
4874
4875 /*
4876 * Get per-process file descriptors for use by procstat(1), et al.
4877 */
4878 static int
sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)4879 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
4880 {
4881 struct kinfo_ofile *okif;
4882 struct kinfo_file *kif;
4883 struct filedesc *fdp;
4884 struct pwddesc *pdp;
4885 struct pwd *pwd;
4886 u_int namelen;
4887 int error, i, *name;
4888 struct file *fp;
4889 struct proc *p;
4890
4891 namelen = arg2;
4892 if (namelen != 1)
4893 return (EINVAL);
4894
4895 name = (int *)arg1;
4896 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4897 if (error != 0)
4898 return (error);
4899 fdp = fdhold(p);
4900 if (fdp != NULL)
4901 pdp = pdhold(p);
4902 PROC_UNLOCK(p);
4903 if (fdp == NULL || pdp == NULL) {
4904 if (fdp != NULL)
4905 fddrop(fdp);
4906 return (ENOENT);
4907 }
4908 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
4909 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
4910 PWDDESC_XLOCK(pdp);
4911 pwd = pwd_hold_pwddesc(pdp);
4912 if (pwd != NULL) {
4913 if (pwd->pwd_cdir != NULL)
4914 export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
4915 okif, pdp, req);
4916 if (pwd->pwd_rdir != NULL)
4917 export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
4918 okif, pdp, req);
4919 if (pwd->pwd_jdir != NULL)
4920 export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
4921 okif, pdp, req);
4922 }
4923 PWDDESC_XUNLOCK(pdp);
4924 if (pwd != NULL)
4925 pwd_drop(pwd);
4926 FILEDESC_SLOCK(fdp);
4927 if (refcount_load(&fdp->fd_refcnt) == 0)
4928 goto skip;
4929 FILEDESC_FOREACH_FP(fdp, i, fp) {
4930 export_file_to_kinfo(fp, i, NULL, kif, fdp,
4931 KERN_FILEDESC_PACK_KINFO);
4932 FILEDESC_SUNLOCK(fdp);
4933 kinfo_to_okinfo(kif, okif);
4934 error = SYSCTL_OUT(req, okif, sizeof(*okif));
4935 FILEDESC_SLOCK(fdp);
4936 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4937 break;
4938 }
4939 skip:
4940 FILEDESC_SUNLOCK(fdp);
4941 fddrop(fdp);
4942 pddrop(pdp);
4943 free(kif, M_TEMP);
4944 free(okif, M_TEMP);
4945 return (0);
4946 }
4947
4948 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
4949 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
4950 "Process ofiledesc entries");
4951 #endif /* COMPAT_FREEBSD7 */
4952
4953 int
vntype_to_kinfo(int vtype)4954 vntype_to_kinfo(int vtype)
4955 {
4956 struct {
4957 int vtype;
4958 int kf_vtype;
4959 } vtypes_table[] = {
4960 { VBAD, KF_VTYPE_VBAD },
4961 { VBLK, KF_VTYPE_VBLK },
4962 { VCHR, KF_VTYPE_VCHR },
4963 { VDIR, KF_VTYPE_VDIR },
4964 { VFIFO, KF_VTYPE_VFIFO },
4965 { VLNK, KF_VTYPE_VLNK },
4966 { VNON, KF_VTYPE_VNON },
4967 { VREG, KF_VTYPE_VREG },
4968 { VSOCK, KF_VTYPE_VSOCK }
4969 };
4970 unsigned int i;
4971
4972 /*
4973 * Perform vtype translation.
4974 */
4975 for (i = 0; i < nitems(vtypes_table); i++)
4976 if (vtypes_table[i].vtype == vtype)
4977 return (vtypes_table[i].kf_vtype);
4978
4979 return (KF_VTYPE_UNKNOWN);
4980 }
4981
4982 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
4983 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
4984 "Process filedesc entries");
4985
4986 /*
4987 * Store a process current working directory information to sbuf.
4988 *
4989 * Takes a locked proc as argument, and returns with the proc unlocked.
4990 */
4991 int
kern_proc_cwd_out(struct proc * p,struct sbuf * sb,ssize_t maxlen)4992 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen)
4993 {
4994 struct pwddesc *pdp;
4995 struct pwd *pwd;
4996 struct export_fd_buf *efbuf;
4997 struct vnode *cdir;
4998 int error;
4999
5000 PROC_LOCK_ASSERT(p, MA_OWNED);
5001
5002 pdp = pdhold(p);
5003 PROC_UNLOCK(p);
5004 if (pdp == NULL)
5005 return (EINVAL);
5006
5007 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
5008 efbuf->fdp = NULL;
5009 efbuf->pdp = pdp;
5010 efbuf->sb = sb;
5011 efbuf->remainder = maxlen;
5012 efbuf->flags = 0;
5013
5014 PWDDESC_XLOCK(pdp);
5015 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
5016 cdir = pwd->pwd_cdir;
5017 if (cdir == NULL) {
5018 error = EINVAL;
5019 } else {
5020 vrefact(cdir);
5021 error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
5022 }
5023 PWDDESC_XUNLOCK(pdp);
5024 pddrop(pdp);
5025 free(efbuf, M_TEMP);
5026 return (error);
5027 }
5028
5029 /*
5030 * Get per-process current working directory.
5031 */
5032 static int
sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)5033 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
5034 {
5035 struct sbuf sb;
5036 struct proc *p;
5037 ssize_t maxlen;
5038 u_int namelen;
5039 int error, error2, *name;
5040
5041 namelen = arg2;
5042 if (namelen != 1)
5043 return (EINVAL);
5044
5045 name = (int *)arg1;
5046
5047 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
5048 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5049 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5050 if (error != 0) {
5051 sbuf_delete(&sb);
5052 return (error);
5053 }
5054 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5055 error = kern_proc_cwd_out(p, &sb, maxlen);
5056 error2 = sbuf_finish(&sb);
5057 sbuf_delete(&sb);
5058 return (error != 0 ? error : error2);
5059 }
5060
5061 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
5062 sysctl_kern_proc_cwd, "Process current working directory");
5063
5064 #ifdef DDB
5065 /*
5066 * For the purposes of debugging, generate a human-readable string for the
5067 * file type.
5068 */
5069 static const char *
file_type_to_name(short type)5070 file_type_to_name(short type)
5071 {
5072
5073 switch (type) {
5074 case 0:
5075 return ("zero");
5076 case DTYPE_VNODE:
5077 return ("vnode");
5078 case DTYPE_SOCKET:
5079 return ("socket");
5080 case DTYPE_PIPE:
5081 return ("pipe");
5082 case DTYPE_FIFO:
5083 return ("fifo");
5084 case DTYPE_KQUEUE:
5085 return ("kqueue");
5086 case DTYPE_CRYPTO:
5087 return ("crypto");
5088 case DTYPE_MQUEUE:
5089 return ("mqueue");
5090 case DTYPE_SHM:
5091 return ("shm");
5092 case DTYPE_SEM:
5093 return ("ksem");
5094 case DTYPE_PTS:
5095 return ("pts");
5096 case DTYPE_DEV:
5097 return ("dev");
5098 case DTYPE_PROCDESC:
5099 return ("proc");
5100 case DTYPE_EVENTFD:
5101 return ("eventfd");
5102 case DTYPE_TIMERFD:
5103 return ("timerfd");
5104 default:
5105 return ("unkn");
5106 }
5107 }
5108
5109 /*
5110 * For the purposes of debugging, identify a process (if any, perhaps one of
5111 * many) that references the passed file in its file descriptor array. Return
5112 * NULL if none.
5113 */
5114 static struct proc *
file_to_first_proc(struct file * fp)5115 file_to_first_proc(struct file *fp)
5116 {
5117 struct filedesc *fdp;
5118 struct proc *p;
5119 int n;
5120
5121 FOREACH_PROC_IN_SYSTEM(p) {
5122 if (p->p_state == PRS_NEW)
5123 continue;
5124 fdp = p->p_fd;
5125 if (fdp == NULL)
5126 continue;
5127 for (n = 0; n < fdp->fd_nfiles; n++) {
5128 if (fp == fdp->fd_ofiles[n].fde_file)
5129 return (p);
5130 }
5131 }
5132 return (NULL);
5133 }
5134
5135 static void
db_print_file(struct file * fp,int header)5136 db_print_file(struct file *fp, int header)
5137 {
5138 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
5139 struct proc *p;
5140
5141 if (header)
5142 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
5143 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
5144 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
5145 "FCmd");
5146 p = file_to_first_proc(fp);
5147 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
5148 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
5149 fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
5150 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
5151
5152 #undef XPTRWIDTH
5153 }
5154
DB_SHOW_COMMAND(file,db_show_file)5155 DB_SHOW_COMMAND(file, db_show_file)
5156 {
5157 struct file *fp;
5158
5159 if (!have_addr) {
5160 db_printf("usage: show file <addr>\n");
5161 return;
5162 }
5163 fp = (struct file *)addr;
5164 db_print_file(fp, 1);
5165 }
5166
DB_SHOW_COMMAND_FLAGS(files,db_show_files,DB_CMD_MEMSAFE)5167 DB_SHOW_COMMAND_FLAGS(files, db_show_files, DB_CMD_MEMSAFE)
5168 {
5169 struct filedesc *fdp;
5170 struct file *fp;
5171 struct proc *p;
5172 int header;
5173 int n;
5174
5175 header = 1;
5176 FOREACH_PROC_IN_SYSTEM(p) {
5177 if (p->p_state == PRS_NEW)
5178 continue;
5179 if ((fdp = p->p_fd) == NULL)
5180 continue;
5181 for (n = 0; n < fdp->fd_nfiles; ++n) {
5182 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
5183 continue;
5184 db_print_file(fp, header);
5185 header = 0;
5186 }
5187 }
5188 }
5189 #endif
5190
5191 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc,
5192 CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5193 &maxfilesperproc, 0, "Maximum files allowed open per process");
5194
5195 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5196 &maxfiles, 0, "Maximum number of files");
5197
5198 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
5199 &openfiles, 0, "System-wide number of open files");
5200
5201 /* ARGSUSED*/
5202 static void
filelistinit(void * dummy)5203 filelistinit(void *dummy)
5204 {
5205
5206 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
5207 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
5208 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
5209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
5210 pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
5211 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
5212 /*
5213 * XXXMJG this is a temporary hack due to boot ordering issues against
5214 * the vnode zone.
5215 */
5216 vfs_smr = uma_zone_get_smr(pwd_zone);
5217 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
5218 }
5219 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
5220
5221 /*-------------------------------------------------------------------*/
5222
5223 static int
badfo_readwrite(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5224 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
5225 int flags, struct thread *td)
5226 {
5227
5228 return (EBADF);
5229 }
5230
5231 static int
badfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5232 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5233 struct thread *td)
5234 {
5235
5236 return (EINVAL);
5237 }
5238
5239 static int
badfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5240 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
5241 struct thread *td)
5242 {
5243
5244 return (EBADF);
5245 }
5246
5247 static int
badfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5248 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
5249 struct thread *td)
5250 {
5251
5252 return (0);
5253 }
5254
5255 static int
badfo_kqfilter(struct file * fp,struct knote * kn)5256 badfo_kqfilter(struct file *fp, struct knote *kn)
5257 {
5258
5259 return (EBADF);
5260 }
5261
5262 static int
badfo_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)5263 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
5264 {
5265
5266 return (EBADF);
5267 }
5268
5269 static int
badfo_close(struct file * fp,struct thread * td)5270 badfo_close(struct file *fp, struct thread *td)
5271 {
5272
5273 return (0);
5274 }
5275
5276 static int
badfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5277 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5278 struct thread *td)
5279 {
5280
5281 return (EBADF);
5282 }
5283
5284 static int
badfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5285 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5286 struct thread *td)
5287 {
5288
5289 return (EBADF);
5290 }
5291
5292 static int
badfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5293 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5294 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5295 struct thread *td)
5296 {
5297
5298 return (EBADF);
5299 }
5300
5301 static int
badfo_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)5302 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
5303 {
5304
5305 return (0);
5306 }
5307
5308 const struct fileops badfileops = {
5309 .fo_read = badfo_readwrite,
5310 .fo_write = badfo_readwrite,
5311 .fo_truncate = badfo_truncate,
5312 .fo_ioctl = badfo_ioctl,
5313 .fo_poll = badfo_poll,
5314 .fo_kqfilter = badfo_kqfilter,
5315 .fo_stat = badfo_stat,
5316 .fo_close = badfo_close,
5317 .fo_chmod = badfo_chmod,
5318 .fo_chown = badfo_chown,
5319 .fo_sendfile = badfo_sendfile,
5320 .fo_fill_kinfo = badfo_fill_kinfo,
5321 };
5322
5323 static int
path_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5324 path_poll(struct file *fp, int events, struct ucred *active_cred,
5325 struct thread *td)
5326 {
5327 return (POLLNVAL);
5328 }
5329
5330 static int
path_close(struct file * fp,struct thread * td)5331 path_close(struct file *fp, struct thread *td)
5332 {
5333 MPASS(fp->f_type == DTYPE_VNODE);
5334 fp->f_ops = &badfileops;
5335 vrele(fp->f_vnode);
5336 return (0);
5337 }
5338
5339 const struct fileops path_fileops = {
5340 .fo_read = badfo_readwrite,
5341 .fo_write = badfo_readwrite,
5342 .fo_truncate = badfo_truncate,
5343 .fo_ioctl = badfo_ioctl,
5344 .fo_poll = path_poll,
5345 .fo_kqfilter = vn_kqfilter_opath,
5346 .fo_stat = vn_statfile,
5347 .fo_close = path_close,
5348 .fo_chmod = badfo_chmod,
5349 .fo_chown = badfo_chown,
5350 .fo_sendfile = badfo_sendfile,
5351 .fo_fill_kinfo = vn_fill_kinfo,
5352 .fo_cmp = vn_cmp,
5353 .fo_flags = DFLAG_PASSABLE,
5354 };
5355
5356 int
invfo_rdwr(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5357 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
5358 int flags, struct thread *td)
5359 {
5360
5361 return (EOPNOTSUPP);
5362 }
5363
5364 int
invfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5365 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5366 struct thread *td)
5367 {
5368
5369 return (EINVAL);
5370 }
5371
5372 int
invfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5373 invfo_ioctl(struct file *fp, u_long com, void *data,
5374 struct ucred *active_cred, struct thread *td)
5375 {
5376
5377 return (ENOTTY);
5378 }
5379
5380 int
invfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5381 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
5382 struct thread *td)
5383 {
5384
5385 return (poll_no_poll(events));
5386 }
5387
5388 int
invfo_kqfilter(struct file * fp,struct knote * kn)5389 invfo_kqfilter(struct file *fp, struct knote *kn)
5390 {
5391
5392 return (EINVAL);
5393 }
5394
5395 int
invfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5396 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5397 struct thread *td)
5398 {
5399
5400 return (EINVAL);
5401 }
5402
5403 int
invfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5404 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5405 struct thread *td)
5406 {
5407
5408 return (EINVAL);
5409 }
5410
5411 int
invfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5412 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5413 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5414 struct thread *td)
5415 {
5416
5417 return (EINVAL);
5418 }
5419
5420 /*-------------------------------------------------------------------*/
5421
5422 /*
5423 * File Descriptor pseudo-device driver (/dev/fd/).
5424 *
5425 * Opening minor device N dup()s the file (if any) connected to file
5426 * descriptor N belonging to the calling process. Note that this driver
5427 * consists of only the ``open()'' routine, because all subsequent
5428 * references to this file will be direct to the other driver.
5429 *
5430 * XXX: we could give this one a cloning event handler if necessary.
5431 */
5432
5433 /* ARGSUSED */
5434 static int
fdopen(struct cdev * dev,int mode,int type,struct thread * td)5435 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
5436 {
5437
5438 /*
5439 * XXX Kludge: set curthread->td_dupfd to contain the value of the
5440 * the file descriptor being sought for duplication. The error
5441 * return ensures that the vnode for this device will be released
5442 * by vn_open. Open will detect this special error and take the
5443 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
5444 * will simply report the error.
5445 */
5446 td->td_dupfd = dev2unit(dev);
5447 return (ENODEV);
5448 }
5449
5450 static struct cdevsw fildesc_cdevsw = {
5451 .d_version = D_VERSION,
5452 .d_open = fdopen,
5453 .d_name = "FD",
5454 };
5455
5456 static void
fildesc_drvinit(void * unused)5457 fildesc_drvinit(void *unused)
5458 {
5459 struct cdev *dev;
5460
5461 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
5462 UID_ROOT, GID_WHEEL, 0666, "fd/0");
5463 make_dev_alias(dev, "stdin");
5464 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
5465 UID_ROOT, GID_WHEEL, 0666, "fd/1");
5466 make_dev_alias(dev, "stdout");
5467 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
5468 UID_ROOT, GID_WHEEL, 0666, "fd/2");
5469 make_dev_alias(dev, "stderr");
5470 }
5471
5472 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
5473