xref: /linux/security/selinux/ss/sidtab.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the SID table type.
4  *
5  * Original author: Stephen Smalley, <stephen.smalley.work@gmail.com>
6  * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7  *
8  * Copyright (C) 2018 Red Hat, Inc.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <asm/barrier.h>
19 #include "flask.h"
20 #include "security.h"
21 #include "sidtab.h"
22 #include "services.h"
23 
24 struct sidtab_str_cache {
25 	struct rcu_head rcu_member;
26 	struct list_head lru_member;
27 	struct sidtab_entry *parent;
28 	u32 len;
29 	char str[] __counted_by(len);
30 };
31 
32 #define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
33 #define sid_to_index(sid)   ((sid) - (SECINITSID_NUM + 1))
34 
sidtab_init(struct sidtab * s)35 int sidtab_init(struct sidtab *s)
36 {
37 	u32 i;
38 
39 	memset(s->roots, 0, sizeof(s->roots));
40 
41 	for (i = 0; i < SECINITSID_NUM; i++)
42 		s->isids[i].set = 0;
43 
44 	s->frozen = false;
45 	s->count = 0;
46 	s->convert = NULL;
47 	hash_init(s->context_to_sid);
48 
49 	spin_lock_init(&s->lock);
50 
51 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
52 	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
53 	INIT_LIST_HEAD(&s->cache_lru_list);
54 	spin_lock_init(&s->cache_lock);
55 #endif
56 
57 	return 0;
58 }
59 
context_to_sid(struct sidtab * s,struct context * context,u32 hash)60 static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
61 {
62 	struct sidtab_entry *entry;
63 	u32 sid = 0;
64 
65 	rcu_read_lock();
66 	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
67 		if (entry->hash != hash)
68 			continue;
69 		if (context_cmp(&entry->context, context)) {
70 			sid = entry->sid;
71 			break;
72 		}
73 	}
74 	rcu_read_unlock();
75 	return sid;
76 }
77 
sidtab_set_initial(struct sidtab * s,u32 sid,struct context * context)78 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
79 {
80 	struct sidtab_isid_entry *isid;
81 	u32 hash;
82 	int rc;
83 
84 	if (sid == 0 || sid > SECINITSID_NUM)
85 		return -EINVAL;
86 
87 	isid = &s->isids[sid - 1];
88 
89 	rc = context_cpy(&isid->entry.context, context);
90 	if (rc)
91 		return rc;
92 
93 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
94 	isid->entry.cache = NULL;
95 #endif
96 	isid->set = 1;
97 
98 	hash = context_compute_hash(context);
99 
100 	/*
101 	 * Multiple initial sids may map to the same context. Check that this
102 	 * context is not already represented in the context_to_sid hashtable
103 	 * to avoid duplicate entries and long linked lists upon hash
104 	 * collision.
105 	 */
106 	if (!context_to_sid(s, context, hash)) {
107 		isid->entry.sid = sid;
108 		isid->entry.hash = hash;
109 		hash_add(s->context_to_sid, &isid->entry.list, hash);
110 	}
111 
112 	return 0;
113 }
114 
sidtab_hash_stats(struct sidtab * sidtab,char * page)115 int sidtab_hash_stats(struct sidtab *sidtab, char *page)
116 {
117 	int i;
118 	int chain_len = 0;
119 	int slots_used = 0;
120 	int entries = 0;
121 	int max_chain_len = 0;
122 	int cur_bucket = 0;
123 	struct sidtab_entry *entry;
124 
125 	rcu_read_lock();
126 	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
127 		entries++;
128 		if (i == cur_bucket) {
129 			chain_len++;
130 			if (chain_len == 1)
131 				slots_used++;
132 		} else {
133 			cur_bucket = i;
134 			if (chain_len > max_chain_len)
135 				max_chain_len = chain_len;
136 			chain_len = 0;
137 		}
138 	}
139 	rcu_read_unlock();
140 
141 	if (chain_len > max_chain_len)
142 		max_chain_len = chain_len;
143 
144 	return scnprintf(page, PAGE_SIZE,
145 			 "entries: %d\nbuckets used: %d/%d\n"
146 			 "longest chain: %d\n",
147 			 entries, slots_used, SIDTAB_HASH_BUCKETS,
148 			 max_chain_len);
149 }
150 
sidtab_level_from_count(u32 count)151 static u32 sidtab_level_from_count(u32 count)
152 {
153 	u32 capacity = SIDTAB_LEAF_ENTRIES;
154 	u32 level = 0;
155 
156 	while (count > capacity) {
157 		capacity <<= SIDTAB_INNER_SHIFT;
158 		++level;
159 	}
160 	return level;
161 }
162 
sidtab_alloc_roots(struct sidtab * s,u32 level)163 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
164 {
165 	u32 l;
166 
167 	if (!s->roots[0].ptr_leaf) {
168 		s->roots[0].ptr_leaf =
169 			kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
170 		if (!s->roots[0].ptr_leaf)
171 			return -ENOMEM;
172 	}
173 	for (l = 1; l <= level; ++l)
174 		if (!s->roots[l].ptr_inner) {
175 			s->roots[l].ptr_inner =
176 				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
177 			if (!s->roots[l].ptr_inner)
178 				return -ENOMEM;
179 			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
180 		}
181 	return 0;
182 }
183 
sidtab_do_lookup(struct sidtab * s,u32 index,int alloc)184 static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
185 					     int alloc)
186 {
187 	union sidtab_entry_inner *entry;
188 	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
189 
190 	/* find the level of the subtree we need */
191 	level = sidtab_level_from_count(index + 1);
192 	capacity_shift = level * SIDTAB_INNER_SHIFT;
193 
194 	/* allocate roots if needed */
195 	if (alloc && sidtab_alloc_roots(s, level) != 0)
196 		return NULL;
197 
198 	/* lookup inside the subtree */
199 	entry = &s->roots[level];
200 	while (level != 0) {
201 		capacity_shift -= SIDTAB_INNER_SHIFT;
202 		--level;
203 
204 		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
205 		leaf_index &= ((u32)1 << capacity_shift) - 1;
206 
207 		if (!entry->ptr_inner) {
208 			if (alloc)
209 				entry->ptr_inner = kzalloc(
210 					SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
211 			if (!entry->ptr_inner)
212 				return NULL;
213 		}
214 	}
215 	if (!entry->ptr_leaf) {
216 		if (alloc)
217 			entry->ptr_leaf =
218 				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
219 		if (!entry->ptr_leaf)
220 			return NULL;
221 	}
222 	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
223 }
224 
sidtab_lookup(struct sidtab * s,u32 index)225 static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
226 {
227 	/* read entries only after reading count */
228 	u32 count = smp_load_acquire(&s->count);
229 
230 	if (index >= count)
231 		return NULL;
232 
233 	return sidtab_do_lookup(s, index, 0);
234 }
235 
sidtab_lookup_initial(struct sidtab * s,u32 sid)236 static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
237 {
238 	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
239 }
240 
sidtab_search_core(struct sidtab * s,u32 sid,int force)241 static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
242 					       int force)
243 {
244 	if (sid != 0) {
245 		struct sidtab_entry *entry;
246 
247 		if (sid > SECINITSID_NUM)
248 			entry = sidtab_lookup(s, sid_to_index(sid));
249 		else
250 			entry = sidtab_lookup_initial(s, sid);
251 		if (entry && (!entry->context.len || force))
252 			return entry;
253 	}
254 
255 	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
256 }
257 
sidtab_search_entry(struct sidtab * s,u32 sid)258 struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
259 {
260 	return sidtab_search_core(s, sid, 0);
261 }
262 
sidtab_search_entry_force(struct sidtab * s,u32 sid)263 struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
264 {
265 	return sidtab_search_core(s, sid, 1);
266 }
267 
sidtab_context_to_sid(struct sidtab * s,struct context * context,u32 * sid)268 int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
269 {
270 	unsigned long flags;
271 	u32 count, hash = context_compute_hash(context);
272 	struct sidtab_convert_params *convert;
273 	struct sidtab_entry *dst, *dst_convert;
274 	int rc;
275 
276 	*sid = context_to_sid(s, context, hash);
277 	if (*sid)
278 		return 0;
279 
280 	/* lock-free search failed: lock, re-search, and insert if not found */
281 	spin_lock_irqsave(&s->lock, flags);
282 
283 	rc = 0;
284 	*sid = context_to_sid(s, context, hash);
285 	if (*sid)
286 		goto out_unlock;
287 
288 	if (unlikely(s->frozen)) {
289 		/*
290 		 * This sidtab is now frozen - tell the caller to abort and
291 		 * get the new one.
292 		 */
293 		rc = -ESTALE;
294 		goto out_unlock;
295 	}
296 
297 	count = s->count;
298 
299 	/* bail out if we already reached max entries */
300 	rc = -EOVERFLOW;
301 	if (count >= SIDTAB_MAX)
302 		goto out_unlock;
303 
304 	/* insert context into new entry */
305 	rc = -ENOMEM;
306 	dst = sidtab_do_lookup(s, count, 1);
307 	if (!dst)
308 		goto out_unlock;
309 
310 	dst->sid = index_to_sid(count);
311 	dst->hash = hash;
312 
313 	rc = context_cpy(&dst->context, context);
314 	if (rc)
315 		goto out_unlock;
316 
317 	/*
318 	 * if we are building a new sidtab, we need to convert the context
319 	 * and insert it there as well
320 	 */
321 	convert = s->convert;
322 	if (convert) {
323 		struct sidtab *target = convert->target;
324 
325 		rc = -ENOMEM;
326 		dst_convert = sidtab_do_lookup(target, count, 1);
327 		if (!dst_convert) {
328 			context_destroy(&dst->context);
329 			goto out_unlock;
330 		}
331 
332 		rc = services_convert_context(convert->args, context,
333 					      &dst_convert->context,
334 					      GFP_ATOMIC);
335 		if (rc) {
336 			context_destroy(&dst->context);
337 			goto out_unlock;
338 		}
339 		dst_convert->sid = index_to_sid(count);
340 		dst_convert->hash = context_compute_hash(&dst_convert->context);
341 		target->count = count + 1;
342 
343 		hash_add_rcu(target->context_to_sid, &dst_convert->list,
344 			     dst_convert->hash);
345 	}
346 
347 	if (context->len)
348 		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
349 			context->str);
350 
351 	*sid = index_to_sid(count);
352 
353 	/* write entries before updating count */
354 	smp_store_release(&s->count, count + 1);
355 	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
356 
357 	rc = 0;
358 out_unlock:
359 	spin_unlock_irqrestore(&s->lock, flags);
360 	return rc;
361 }
362 
sidtab_convert_hashtable(struct sidtab * s,u32 count)363 static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
364 {
365 	struct sidtab_entry *entry;
366 	u32 i;
367 
368 	for (i = 0; i < count; i++) {
369 		entry = sidtab_do_lookup(s, i, 0);
370 		entry->sid = index_to_sid(i);
371 		entry->hash = context_compute_hash(&entry->context);
372 
373 		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
374 	}
375 }
376 
sidtab_convert_tree(union sidtab_entry_inner * edst,union sidtab_entry_inner * esrc,u32 * pos,u32 count,u32 level,struct sidtab_convert_params * convert)377 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
378 			       union sidtab_entry_inner *esrc, u32 *pos,
379 			       u32 count, u32 level,
380 			       struct sidtab_convert_params *convert)
381 {
382 	int rc;
383 	u32 i;
384 
385 	if (level != 0) {
386 		if (!edst->ptr_inner) {
387 			edst->ptr_inner =
388 				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
389 			if (!edst->ptr_inner)
390 				return -ENOMEM;
391 		}
392 		i = 0;
393 		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
394 			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
395 						 &esrc->ptr_inner->entries[i],
396 						 pos, count, level - 1,
397 						 convert);
398 			if (rc)
399 				return rc;
400 			i++;
401 		}
402 	} else {
403 		if (!edst->ptr_leaf) {
404 			edst->ptr_leaf =
405 				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
406 			if (!edst->ptr_leaf)
407 				return -ENOMEM;
408 		}
409 		i = 0;
410 		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
411 			rc = services_convert_context(
412 				convert->args,
413 				&esrc->ptr_leaf->entries[i].context,
414 				&edst->ptr_leaf->entries[i].context,
415 				GFP_KERNEL);
416 			if (rc)
417 				return rc;
418 			(*pos)++;
419 			i++;
420 		}
421 		cond_resched();
422 	}
423 	return 0;
424 }
425 
sidtab_convert(struct sidtab * s,struct sidtab_convert_params * params)426 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
427 {
428 	unsigned long flags;
429 	u32 count, level, pos;
430 	int rc;
431 
432 	spin_lock_irqsave(&s->lock, flags);
433 
434 	/* concurrent policy loads are not allowed */
435 	if (s->convert) {
436 		spin_unlock_irqrestore(&s->lock, flags);
437 		return -EBUSY;
438 	}
439 
440 	count = s->count;
441 	level = sidtab_level_from_count(count);
442 
443 	/* allocate last leaf in the new sidtab (to avoid race with
444 	 * live convert)
445 	 */
446 	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
447 	if (rc) {
448 		spin_unlock_irqrestore(&s->lock, flags);
449 		return rc;
450 	}
451 
452 	/* set count in case no new entries are added during conversion */
453 	params->target->count = count;
454 
455 	/* enable live convert of new entries */
456 	s->convert = params;
457 
458 	/* we can safely convert the tree outside the lock */
459 	spin_unlock_irqrestore(&s->lock, flags);
460 
461 	pr_info("SELinux:  Converting %u SID table entries...\n", count);
462 
463 	/* convert all entries not covered by live convert */
464 	pos = 0;
465 	rc = sidtab_convert_tree(&params->target->roots[level],
466 				 &s->roots[level], &pos, count, level, params);
467 	if (rc) {
468 		/* we need to keep the old table - disable live convert */
469 		spin_lock_irqsave(&s->lock, flags);
470 		s->convert = NULL;
471 		spin_unlock_irqrestore(&s->lock, flags);
472 		return rc;
473 	}
474 	/*
475 	 * The hashtable can also be modified in sidtab_context_to_sid()
476 	 * so we must re-acquire the lock here.
477 	 */
478 	spin_lock_irqsave(&s->lock, flags);
479 	sidtab_convert_hashtable(params->target, count);
480 	spin_unlock_irqrestore(&s->lock, flags);
481 
482 	return 0;
483 }
484 
sidtab_cancel_convert(struct sidtab * s)485 void sidtab_cancel_convert(struct sidtab *s)
486 {
487 	unsigned long flags;
488 
489 	/* cancelling policy load - disable live convert of sidtab */
490 	spin_lock_irqsave(&s->lock, flags);
491 	s->convert = NULL;
492 	spin_unlock_irqrestore(&s->lock, flags);
493 }
494 
sidtab_freeze_begin(struct sidtab * s,unsigned long * flags)495 void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags)
496 	__acquires(&s->lock)
497 {
498 	spin_lock_irqsave(&s->lock, *flags);
499 	s->frozen = true;
500 	s->convert = NULL;
501 }
sidtab_freeze_end(struct sidtab * s,unsigned long * flags)502 void sidtab_freeze_end(struct sidtab *s, unsigned long *flags)
503 	__releases(&s->lock)
504 {
505 	spin_unlock_irqrestore(&s->lock, *flags);
506 }
507 
sidtab_destroy_entry(struct sidtab_entry * entry)508 static void sidtab_destroy_entry(struct sidtab_entry *entry)
509 {
510 	context_destroy(&entry->context);
511 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
512 	kfree(rcu_dereference_raw(entry->cache));
513 #endif
514 }
515 
sidtab_destroy_tree(union sidtab_entry_inner entry,u32 level)516 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
517 {
518 	u32 i;
519 
520 	if (level != 0) {
521 		struct sidtab_node_inner *node = entry.ptr_inner;
522 
523 		if (!node)
524 			return;
525 
526 		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
527 			sidtab_destroy_tree(node->entries[i], level - 1);
528 		kfree(node);
529 	} else {
530 		struct sidtab_node_leaf *node = entry.ptr_leaf;
531 
532 		if (!node)
533 			return;
534 
535 		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
536 			sidtab_destroy_entry(&node->entries[i]);
537 		kfree(node);
538 	}
539 }
540 
sidtab_destroy(struct sidtab * s)541 void sidtab_destroy(struct sidtab *s)
542 {
543 	u32 i, level;
544 
545 	for (i = 0; i < SECINITSID_NUM; i++)
546 		if (s->isids[i].set)
547 			sidtab_destroy_entry(&s->isids[i].entry);
548 
549 	level = SIDTAB_MAX_LEVEL;
550 	while (level && !s->roots[level].ptr_inner)
551 		--level;
552 
553 	sidtab_destroy_tree(s->roots[level], level);
554 	/*
555 	 * The context_to_sid hashtable's objects are all shared
556 	 * with the isids array and context tree, and so don't need
557 	 * to be cleaned up here.
558 	 */
559 }
560 
561 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
562 
sidtab_sid2str_put(struct sidtab * s,struct sidtab_entry * entry,const char * str,u32 str_len)563 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
564 			const char *str, u32 str_len)
565 {
566 	struct sidtab_str_cache *cache, *victim = NULL;
567 	unsigned long flags;
568 
569 	/* do not cache invalid contexts */
570 	if (entry->context.len)
571 		return;
572 
573 	spin_lock_irqsave(&s->cache_lock, flags);
574 
575 	cache = rcu_dereference_protected(entry->cache,
576 					  lockdep_is_held(&s->cache_lock));
577 	if (cache) {
578 		/* entry in cache - just bump to the head of LRU list */
579 		list_move(&cache->lru_member, &s->cache_lru_list);
580 		goto out_unlock;
581 	}
582 
583 	cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
584 	if (!cache)
585 		goto out_unlock;
586 
587 	if (s->cache_free_slots == 0) {
588 		/* pop a cache entry from the tail and free it */
589 		victim = container_of(s->cache_lru_list.prev,
590 				      struct sidtab_str_cache, lru_member);
591 		list_del(&victim->lru_member);
592 		rcu_assign_pointer(victim->parent->cache, NULL);
593 	} else {
594 		s->cache_free_slots--;
595 	}
596 	cache->parent = entry;
597 	cache->len = str_len;
598 	memcpy(cache->str, str, str_len);
599 	list_add(&cache->lru_member, &s->cache_lru_list);
600 
601 	rcu_assign_pointer(entry->cache, cache);
602 
603 out_unlock:
604 	spin_unlock_irqrestore(&s->cache_lock, flags);
605 	kfree_rcu(victim, rcu_member);
606 }
607 
sidtab_sid2str_get(struct sidtab * s,struct sidtab_entry * entry,char ** out,u32 * out_len)608 int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out,
609 		       u32 *out_len)
610 {
611 	struct sidtab_str_cache *cache;
612 	int rc = 0;
613 
614 	if (entry->context.len)
615 		return -ENOENT; /* do not cache invalid contexts */
616 
617 	rcu_read_lock();
618 
619 	cache = rcu_dereference(entry->cache);
620 	if (!cache) {
621 		rc = -ENOENT;
622 	} else {
623 		*out_len = cache->len;
624 		if (out) {
625 			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
626 			if (!*out)
627 				rc = -ENOMEM;
628 		}
629 	}
630 
631 	rcu_read_unlock();
632 
633 	if (!rc && out)
634 		sidtab_sid2str_put(s, entry, *out, *out_len);
635 	return rc;
636 }
637 
638 #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
639