1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Place garbage collection safepoints at appropriate locations in the IR. This
10 // does not make relocation semantics or variable liveness explicit. That's
11 // done by RewriteStatepointsForGC.
12 //
13 // Terminology:
14 // - A call is said to be "parseable" if there is a stack map generated for the
15 // return PC of the call. A runtime can determine where values listed in the
16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17 // on the stack when the code is suspended inside such a call. Every parse
18 // point is represented by a call wrapped in an gc.statepoint intrinsic.
19 // - A "poll" is an explicit check in the generated code to determine if the
20 // runtime needs the generated code to cooperate by calling a helper routine
21 // and thus suspending its execution at a known state. The call to the helper
22 // routine will be parseable. The (gc & runtime specific) logic of a poll is
23 // assumed to be provided in a function of the name "gc.safepoint_poll".
24 //
25 // We aim to insert polls such that running code can quickly be brought to a
26 // well defined state for inspection by the collector. In the current
27 // implementation, this is done via the insertion of poll sites at method entry
28 // and the backedge of most loops. We try to avoid inserting more polls than
29 // are necessary to ensure a finite period between poll sites. This is not
30 // because the poll itself is expensive in the generated code; it's not. Polls
31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
32 // perturbing the optimization of the method as much as we can.
33 //
34 // We also need to make most call sites parseable. The callee might execute a
35 // poll (or otherwise be inspected by the GC). If so, the entire stack
36 // (including the suspended frame of the current method) must be parseable.
37 //
38 // This pass will insert:
39 // - Call parse points ("call safepoints") for any call which may need to
40 // reach a safepoint during the execution of the callee function.
41 // - Backedge safepoint polls and entry safepoint polls to ensure that
42 // executing code reaches a safepoint poll in a finite amount of time.
43 //
44 // We do not currently support return statepoints, but adding them would not
45 // be hard. They are not required for correctness - entry safepoints are an
46 // alternative - but some GCs may prefer them. Patches welcome.
47 //
48 //===----------------------------------------------------------------------===//
49
50 #include "llvm/Transforms/Scalar/PlaceSafepoints.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53
54 #include "llvm/ADT/SetVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/TargetLibraryInfo.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LegacyPassManager.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Statepoint.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/Local.h"
71
72 using namespace llvm;
73
74 #define DEBUG_TYPE "place-safepoints"
75
76 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
77 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
78
79 STATISTIC(CallInLoop,
80 "Number of loops without safepoints due to calls in loop");
81 STATISTIC(FiniteExecution,
82 "Number of loops without safepoints finite execution");
83
84 // Ignore opportunities to avoid placing safepoints on backedges, useful for
85 // validation
86 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
87 cl::init(false));
88
89 /// How narrow does the trip count of a loop have to be to have to be considered
90 /// "counted"? Counted loops do not get safepoints at backedges.
91 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
92 cl::Hidden, cl::init(32));
93
94 // If true, split the backedge of a loop when placing the safepoint, otherwise
95 // split the latch block itself. Both are useful to support for
96 // experimentation, but in practice, it looks like splitting the backedge
97 // optimizes better.
98 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
99 cl::init(false));
100
101 namespace {
102 /// An analysis pass whose purpose is to identify each of the backedges in
103 /// the function which require a safepoint poll to be inserted.
104 class PlaceBackedgeSafepointsLegacyPass : public FunctionPass {
105 public:
106 static char ID;
107
108 /// The output of the pass - gives a list of each backedge (described by
109 /// pointing at the branch) which need a poll inserted.
110 std::vector<Instruction *> PollLocations;
111
112 /// True unless we're running spp-no-calls in which case we need to disable
113 /// the call-dependent placement opts.
114 bool CallSafepointsEnabled;
115
PlaceBackedgeSafepointsLegacyPass(bool CallSafepoints=false)116 PlaceBackedgeSafepointsLegacyPass(bool CallSafepoints = false)
117 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
118 initializePlaceBackedgeSafepointsLegacyPassPass(
119 *PassRegistry::getPassRegistry());
120 }
121
122 bool runOnLoop(Loop *);
123
runOnLoopAndSubLoops(Loop * L)124 void runOnLoopAndSubLoops(Loop *L) {
125 // Visit all the subloops
126 for (Loop *I : *L)
127 runOnLoopAndSubLoops(I);
128 runOnLoop(L);
129 }
130
runOnFunction(Function & F)131 bool runOnFunction(Function &F) override {
132 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
133 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
134 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
135 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
136 for (Loop *I : *LI) {
137 runOnLoopAndSubLoops(I);
138 }
139 return false;
140 }
141
getAnalysisUsage(AnalysisUsage & AU) const142 void getAnalysisUsage(AnalysisUsage &AU) const override {
143 AU.addRequired<DominatorTreeWrapperPass>();
144 AU.addRequired<ScalarEvolutionWrapperPass>();
145 AU.addRequired<LoopInfoWrapperPass>();
146 AU.addRequired<TargetLibraryInfoWrapperPass>();
147 // We no longer modify the IR at all in this pass. Thus all
148 // analysis are preserved.
149 AU.setPreservesAll();
150 }
151
152 private:
153 ScalarEvolution *SE = nullptr;
154 DominatorTree *DT = nullptr;
155 LoopInfo *LI = nullptr;
156 TargetLibraryInfo *TLI = nullptr;
157 };
158 } // namespace
159
160 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
161 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
162 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
163
164 char PlaceBackedgeSafepointsLegacyPass::ID = 0;
165
166 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsLegacyPass,
167 "place-backedge-safepoints-impl",
168 "Place Backedge Safepoints", false, false)
169 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
172 INITIALIZE_PASS_END(PlaceBackedgeSafepointsLegacyPass,
173 "place-backedge-safepoints-impl",
174 "Place Backedge Safepoints", false, false)
175
176 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
177 BasicBlock *Pred,
178 DominatorTree &DT,
179 const TargetLibraryInfo &TLI);
180
181 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
182 BasicBlock *Pred);
183
184 static Instruction *findLocationForEntrySafepoint(Function &F,
185 DominatorTree &DT);
186
187 static bool isGCSafepointPoll(Function &F);
188 static bool shouldRewriteFunction(Function &F);
189 static bool enableEntrySafepoints(Function &F);
190 static bool enableBackedgeSafepoints(Function &F);
191 static bool enableCallSafepoints(Function &F);
192
193 static void
194 InsertSafepointPoll(BasicBlock::iterator InsertBefore,
195 std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
196 const TargetLibraryInfo &TLI);
197
runOnLoop(Loop * L)198 bool PlaceBackedgeSafepointsLegacyPass::runOnLoop(Loop *L) {
199 // Loop through all loop latches (branches controlling backedges). We need
200 // to place a safepoint on every backedge (potentially).
201 // Note: In common usage, there will be only one edge due to LoopSimplify
202 // having run sometime earlier in the pipeline, but this code must be correct
203 // w.r.t. loops with multiple backedges.
204 BasicBlock *Header = L->getHeader();
205 SmallVector<BasicBlock *, 16> LoopLatches;
206 L->getLoopLatches(LoopLatches);
207 for (BasicBlock *Pred : LoopLatches) {
208 assert(L->contains(Pred));
209
210 // Make a policy decision about whether this loop needs a safepoint or
211 // not. Note that this is about unburdening the optimizer in loops, not
212 // avoiding the runtime cost of the actual safepoint.
213 if (!AllBackedges) {
214 if (mustBeFiniteCountedLoop(L, SE, Pred)) {
215 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
216 FiniteExecution++;
217 continue;
218 }
219 if (CallSafepointsEnabled &&
220 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
221 // Note: This is only semantically legal since we won't do any further
222 // IPO or inlining before the actual call insertion.. If we hadn't, we
223 // might latter loose this call safepoint.
224 LLVM_DEBUG(
225 dbgs()
226 << "skipping safepoint placement due to unconditional call\n");
227 CallInLoop++;
228 continue;
229 }
230 }
231
232 // TODO: We can create an inner loop which runs a finite number of
233 // iterations with an outer loop which contains a safepoint. This would
234 // not help runtime performance that much, but it might help our ability to
235 // optimize the inner loop.
236
237 // Safepoint insertion would involve creating a new basic block (as the
238 // target of the current backedge) which does the safepoint (of all live
239 // variables) and branches to the true header
240 Instruction *Term = Pred->getTerminator();
241
242 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
243
244 PollLocations.push_back(Term);
245 }
246
247 return false;
248 }
249
runImpl(Function & F,const TargetLibraryInfo & TLI)250 bool PlaceSafepointsPass::runImpl(Function &F, const TargetLibraryInfo &TLI) {
251 if (F.isDeclaration() || F.empty()) {
252 // This is a declaration, nothing to do. Must exit early to avoid crash in
253 // dom tree calculation
254 return false;
255 }
256
257 if (isGCSafepointPoll(F)) {
258 // Given we're inlining this inside of safepoint poll insertion, this
259 // doesn't make any sense. Note that we do make any contained calls
260 // parseable after we inline a poll.
261 return false;
262 }
263
264 if (!shouldRewriteFunction(F))
265 return false;
266
267 bool Modified = false;
268
269 // In various bits below, we rely on the fact that uses are reachable from
270 // defs. When there are basic blocks unreachable from the entry, dominance
271 // and reachablity queries return non-sensical results. Thus, we preprocess
272 // the function to ensure these properties hold.
273 Modified |= removeUnreachableBlocks(F);
274
275 // STEP 1 - Insert the safepoint polling locations. We do not need to
276 // actually insert parse points yet. That will be done for all polls and
277 // calls in a single pass.
278
279 DominatorTree DT;
280 DT.recalculate(F);
281
282 SmallVector<Instruction *, 16> PollsNeeded;
283 std::vector<CallBase *> ParsePointNeeded;
284
285 if (enableBackedgeSafepoints(F)) {
286 // Construct a pass manager to run the LoopPass backedge logic. We
287 // need the pass manager to handle scheduling all the loop passes
288 // appropriately. Doing this by hand is painful and just not worth messing
289 // with for the moment.
290 legacy::FunctionPassManager FPM(F.getParent());
291 bool CanAssumeCallSafepoints = enableCallSafepoints(F);
292
293 FPM.add(new TargetLibraryInfoWrapperPass(TLI));
294 auto *PBS = new PlaceBackedgeSafepointsLegacyPass(CanAssumeCallSafepoints);
295 FPM.add(PBS);
296 FPM.run(F);
297
298 // We preserve dominance information when inserting the poll, otherwise
299 // we'd have to recalculate this on every insert
300 DT.recalculate(F);
301
302 auto &PollLocations = PBS->PollLocations;
303
304 auto OrderByBBName = [](Instruction *a, Instruction *b) {
305 return a->getParent()->getName() < b->getParent()->getName();
306 };
307 // We need the order of list to be stable so that naming ends up stable
308 // when we split edges. This makes test cases much easier to write.
309 llvm::sort(PollLocations, OrderByBBName);
310
311 // We can sometimes end up with duplicate poll locations. This happens if
312 // a single loop is visited more than once. The fact this happens seems
313 // wrong, but it does happen for the split-backedge.ll test case.
314 PollLocations.erase(llvm::unique(PollLocations), PollLocations.end());
315
316 // Insert a poll at each point the analysis pass identified
317 // The poll location must be the terminator of a loop latch block.
318 for (Instruction *Term : PollLocations) {
319 // We are inserting a poll, the function is modified
320 Modified = true;
321
322 if (SplitBackedge) {
323 // Split the backedge of the loop and insert the poll within that new
324 // basic block. This creates a loop with two latches per original
325 // latch (which is non-ideal), but this appears to be easier to
326 // optimize in practice than inserting the poll immediately before the
327 // latch test.
328
329 // Since this is a latch, at least one of the successors must dominate
330 // it. Its possible that we have a) duplicate edges to the same header
331 // and b) edges to distinct loop headers. We need to insert pools on
332 // each.
333 SetVector<BasicBlock *> Headers;
334 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
335 BasicBlock *Succ = Term->getSuccessor(i);
336 if (DT.dominates(Succ, Term->getParent())) {
337 Headers.insert(Succ);
338 }
339 }
340 assert(!Headers.empty() && "poll location is not a loop latch?");
341
342 // The split loop structure here is so that we only need to recalculate
343 // the dominator tree once. Alternatively, we could just keep it up to
344 // date and use a more natural merged loop.
345 SetVector<BasicBlock *> SplitBackedges;
346 for (BasicBlock *Header : Headers) {
347 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
348 PollsNeeded.push_back(NewBB->getTerminator());
349 NumBackedgeSafepoints++;
350 }
351 } else {
352 // Split the latch block itself, right before the terminator.
353 PollsNeeded.push_back(Term);
354 NumBackedgeSafepoints++;
355 }
356 }
357 }
358
359 if (enableEntrySafepoints(F)) {
360 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
361 PollsNeeded.push_back(Location);
362 Modified = true;
363 NumEntrySafepoints++;
364 }
365 // TODO: else we should assert that there was, in fact, a policy choice to
366 // not insert a entry safepoint poll.
367 }
368
369 // Now that we've identified all the needed safepoint poll locations, insert
370 // safepoint polls themselves.
371 for (Instruction *PollLocation : PollsNeeded) {
372 std::vector<CallBase *> RuntimeCalls;
373 InsertSafepointPoll(PollLocation->getIterator(), RuntimeCalls, TLI);
374 llvm::append_range(ParsePointNeeded, RuntimeCalls);
375 }
376
377 return Modified;
378 }
379
run(Function & F,FunctionAnalysisManager & AM)380 PreservedAnalyses PlaceSafepointsPass::run(Function &F,
381 FunctionAnalysisManager &AM) {
382 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
383
384 if (!runImpl(F, TLI))
385 return PreservedAnalyses::all();
386
387 // TODO: can we preserve more?
388 return PreservedAnalyses::none();
389 }
390
needsStatepoint(CallBase * Call,const TargetLibraryInfo & TLI)391 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
392 if (callsGCLeafFunction(Call, TLI))
393 return false;
394 if (auto *CI = dyn_cast<CallInst>(Call)) {
395 if (CI->isInlineAsm())
396 return false;
397 }
398
399 return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
400 isa<GCResultInst>(Call));
401 }
402
403 /// Returns true if this loop is known to contain a call safepoint which
404 /// must unconditionally execute on any iteration of the loop which returns
405 /// to the loop header via an edge from Pred. Returns a conservative correct
406 /// answer; i.e. false is always valid.
containsUnconditionalCallSafepoint(Loop * L,BasicBlock * Header,BasicBlock * Pred,DominatorTree & DT,const TargetLibraryInfo & TLI)407 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
408 BasicBlock *Pred,
409 DominatorTree &DT,
410 const TargetLibraryInfo &TLI) {
411 // In general, we're looking for any cut of the graph which ensures
412 // there's a call safepoint along every edge between Header and Pred.
413 // For the moment, we look only for the 'cuts' that consist of a single call
414 // instruction in a block which is dominated by the Header and dominates the
415 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
416 // of such dominating blocks gets substantially more occurrences than just
417 // checking the Pred and Header blocks themselves. This may be due to the
418 // density of loop exit conditions caused by range and null checks.
419 // TODO: structure this as an analysis pass, cache the result for subloops,
420 // avoid dom tree recalculations
421 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
422
423 BasicBlock *Current = Pred;
424 while (true) {
425 for (Instruction &I : *Current) {
426 if (auto *Call = dyn_cast<CallBase>(&I))
427 // Note: Technically, needing a safepoint isn't quite the right
428 // condition here. We should instead be checking if the target method
429 // has an
430 // unconditional poll. In practice, this is only a theoretical concern
431 // since we don't have any methods with conditional-only safepoint
432 // polls.
433 if (needsStatepoint(Call, TLI))
434 return true;
435 }
436
437 if (Current == Header)
438 break;
439 Current = DT.getNode(Current)->getIDom()->getBlock();
440 }
441
442 return false;
443 }
444
445 /// Returns true if this loop is known to terminate in a finite number of
446 /// iterations. Note that this function may return false for a loop which
447 /// does actual terminate in a finite constant number of iterations due to
448 /// conservatism in the analysis.
mustBeFiniteCountedLoop(Loop * L,ScalarEvolution * SE,BasicBlock * Pred)449 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
450 BasicBlock *Pred) {
451 // A conservative bound on the loop as a whole.
452 const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
453 if (!isa<SCEVCouldNotCompute>(MaxTrips) &&
454 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
455 CountedLoopTripWidth))
456 return true;
457
458 // If this is a conditional branch to the header with the alternate path
459 // being outside the loop, we can ask questions about the execution frequency
460 // of the exit block.
461 if (L->isLoopExiting(Pred)) {
462 // This returns an exact expression only. TODO: We really only need an
463 // upper bound here, but SE doesn't expose that.
464 const SCEV *MaxExec = SE->getExitCount(L, Pred);
465 if (!isa<SCEVCouldNotCompute>(MaxExec) &&
466 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
467 CountedLoopTripWidth))
468 return true;
469 }
470
471 return /* not finite */ false;
472 }
473
scanOneBB(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen,std::vector<BasicBlock * > & Worklist)474 static void scanOneBB(Instruction *Start, Instruction *End,
475 std::vector<CallInst *> &Calls,
476 DenseSet<BasicBlock *> &Seen,
477 std::vector<BasicBlock *> &Worklist) {
478 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
479 BBE1 = BasicBlock::iterator(End);
480 BBI != BBE0 && BBI != BBE1; BBI++) {
481 if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
482 Calls.push_back(CI);
483
484 // FIXME: This code does not handle invokes
485 assert(!isa<InvokeInst>(&*BBI) &&
486 "support for invokes in poll code needed");
487
488 // Only add the successor blocks if we reach the terminator instruction
489 // without encountering end first
490 if (BBI->isTerminator()) {
491 BasicBlock *BB = BBI->getParent();
492 for (BasicBlock *Succ : successors(BB)) {
493 if (Seen.insert(Succ).second) {
494 Worklist.push_back(Succ);
495 }
496 }
497 }
498 }
499 }
500
scanInlinedCode(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen)501 static void scanInlinedCode(Instruction *Start, Instruction *End,
502 std::vector<CallInst *> &Calls,
503 DenseSet<BasicBlock *> &Seen) {
504 Calls.clear();
505 std::vector<BasicBlock *> Worklist;
506 Seen.insert(Start->getParent());
507 scanOneBB(Start, End, Calls, Seen, Worklist);
508 while (!Worklist.empty()) {
509 BasicBlock *BB = Worklist.back();
510 Worklist.pop_back();
511 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
512 }
513 }
514
515 /// Returns true if an entry safepoint is not required before this callsite in
516 /// the caller function.
doesNotRequireEntrySafepointBefore(CallBase * Call)517 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
518 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
519 switch (II->getIntrinsicID()) {
520 case Intrinsic::experimental_gc_statepoint:
521 case Intrinsic::experimental_patchpoint_void:
522 case Intrinsic::experimental_patchpoint:
523 // The can wrap an actual call which may grow the stack by an unbounded
524 // amount or run forever.
525 return false;
526 default:
527 // Most LLVM intrinsics are things which do not expand to actual calls, or
528 // at least if they do, are leaf functions that cause only finite stack
529 // growth. In particular, the optimizer likes to form things like memsets
530 // out of stores in the original IR. Another important example is
531 // llvm.localescape which must occur in the entry block. Inserting a
532 // safepoint before it is not legal since it could push the localescape
533 // out of the entry block.
534 return true;
535 }
536 }
537 return false;
538 }
539
findLocationForEntrySafepoint(Function & F,DominatorTree & DT)540 static Instruction *findLocationForEntrySafepoint(Function &F,
541 DominatorTree &DT) {
542
543 // Conceptually, this poll needs to be on method entry, but in
544 // practice, we place it as late in the entry block as possible. We
545 // can place it as late as we want as long as it dominates all calls
546 // that can grow the stack. This, combined with backedge polls,
547 // give us all the progress guarantees we need.
548
549 // hasNextInstruction and nextInstruction are used to iterate
550 // through a "straight line" execution sequence.
551
552 auto HasNextInstruction = [](Instruction *I) {
553 if (!I->isTerminator())
554 return true;
555
556 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
557 return nextBB && (nextBB->getUniquePredecessor() != nullptr);
558 };
559
560 auto NextInstruction = [&](Instruction *I) {
561 assert(HasNextInstruction(I) &&
562 "first check if there is a next instruction!");
563
564 if (I->isTerminator())
565 return &I->getParent()->getUniqueSuccessor()->front();
566 return &*++I->getIterator();
567 };
568
569 Instruction *Cursor = nullptr;
570 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
571 Cursor = NextInstruction(Cursor)) {
572
573 // We need to ensure a safepoint poll occurs before any 'real' call. The
574 // easiest way to ensure finite execution between safepoints in the face of
575 // recursive and mutually recursive functions is to enforce that each take
576 // a safepoint. Additionally, we need to ensure a poll before any call
577 // which can grow the stack by an unbounded amount. This isn't required
578 // for GC semantics per se, but is a common requirement for languages
579 // which detect stack overflow via guard pages and then throw exceptions.
580 if (auto *Call = dyn_cast<CallBase>(Cursor)) {
581 if (doesNotRequireEntrySafepointBefore(Call))
582 continue;
583 break;
584 }
585 }
586
587 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
588 "either we stopped because of a call, or because of terminator");
589
590 return Cursor;
591 }
592
593 const char GCSafepointPollName[] = "gc.safepoint_poll";
594
isGCSafepointPoll(Function & F)595 static bool isGCSafepointPoll(Function &F) {
596 return F.getName() == GCSafepointPollName;
597 }
598
599 /// Returns true if this function should be rewritten to include safepoint
600 /// polls and parseable call sites. The main point of this function is to be
601 /// an extension point for custom logic.
shouldRewriteFunction(Function & F)602 static bool shouldRewriteFunction(Function &F) {
603 // TODO: This should check the GCStrategy
604 if (F.hasGC()) {
605 const auto &FunctionGCName = F.getGC();
606 const StringRef StatepointExampleName("statepoint-example");
607 const StringRef CoreCLRName("coreclr");
608 return (StatepointExampleName == FunctionGCName) ||
609 (CoreCLRName == FunctionGCName);
610 } else
611 return false;
612 }
613
614 // TODO: These should become properties of the GCStrategy, possibly with
615 // command line overrides.
enableEntrySafepoints(Function & F)616 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
enableBackedgeSafepoints(Function & F)617 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
enableCallSafepoints(Function & F)618 static bool enableCallSafepoints(Function &F) { return !NoCall; }
619
620 // Insert a safepoint poll immediately before the given instruction. Does
621 // not handle the parsability of state at the runtime call, that's the
622 // callers job.
623 static void
InsertSafepointPoll(BasicBlock::iterator InsertBefore,std::vector<CallBase * > & ParsePointsNeeded,const TargetLibraryInfo & TLI)624 InsertSafepointPoll(BasicBlock::iterator InsertBefore,
625 std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
626 const TargetLibraryInfo &TLI) {
627 BasicBlock *OrigBB = InsertBefore->getParent();
628 Module *M = InsertBefore->getModule();
629 assert(M && "must be part of a module");
630
631 // Inline the safepoint poll implementation - this will get all the branch,
632 // control flow, etc.. Most importantly, it will introduce the actual slow
633 // path call - where we need to insert a safepoint (parsepoint).
634
635 auto *F = M->getFunction(GCSafepointPollName);
636 assert(F && "gc.safepoint_poll function is missing");
637 assert(F->getValueType() ==
638 FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
639 "gc.safepoint_poll declared with wrong type");
640 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
641 CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
642
643 // Record some information about the call site we're replacing
644 BasicBlock::iterator Before(PollCall), After(PollCall);
645 bool IsBegin = false;
646 if (Before == OrigBB->begin())
647 IsBegin = true;
648 else
649 Before--;
650
651 After++;
652 assert(After != OrigBB->end() && "must have successor");
653
654 // Do the actual inlining
655 InlineFunctionInfo IFI;
656 bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess();
657 assert(InlineStatus && "inline must succeed");
658 (void)InlineStatus; // suppress warning in release-asserts
659
660 // Check post-conditions
661 assert(IFI.StaticAllocas.empty() && "can't have allocs");
662
663 std::vector<CallInst *> Calls; // new calls
664 DenseSet<BasicBlock *> BBs; // new BBs + insertee
665
666 // Include only the newly inserted instructions, Note: begin may not be valid
667 // if we inserted to the beginning of the basic block
668 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
669
670 // If your poll function includes an unreachable at the end, that's not
671 // valid. Bugpoint likes to create this, so check for it.
672 assert(isPotentiallyReachable(&*Start, &*After) &&
673 "malformed poll function");
674
675 scanInlinedCode(&*Start, &*After, Calls, BBs);
676 assert(!Calls.empty() && "slow path not found for safepoint poll");
677
678 // Record the fact we need a parsable state at the runtime call contained in
679 // the poll function. This is required so that the runtime knows how to
680 // parse the last frame when we actually take the safepoint (i.e. execute
681 // the slow path)
682 assert(ParsePointsNeeded.empty());
683 for (auto *CI : Calls) {
684 // No safepoint needed or wanted
685 if (!needsStatepoint(CI, TLI))
686 continue;
687
688 // These are likely runtime calls. Should we assert that via calling
689 // convention or something?
690 ParsePointsNeeded.push_back(CI);
691 }
692 assert(ParsePointsNeeded.size() <= Calls.size());
693 }
694