1 /*
2 * Copyright (C) 2017 - This file is part of libecc project
3 *
4 * Authors:
5 * Ryad BENADJILA <ryadbenadjila@gmail.com>
6 * Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7 * Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8 *
9 * Contributors:
10 * Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11 * Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12 *
13 * This software is licensed under a dual BSD and GPL v2 license.
14 * See LICENSE file at the root folder of the project.
15 */
16 #include <libecc/lib_ecc_config.h>
17 #ifdef WITH_HASH_SHA384
18
19 #include <libecc/hash/sha384.h>
20
21 /* SHA-2 core processing. Returns 0 on success, -1 on error. */
sha384_process(sha384_context * ctx,const u8 data[SHA384_BLOCK_SIZE])22 ATTRIBUTE_WARN_UNUSED_RET static int sha384_process(sha384_context *ctx,
23 const u8 data[SHA384_BLOCK_SIZE])
24 {
25 u64 a, b, c, d, e, f, g, h;
26 u64 W[80];
27 unsigned int i;
28 int ret;
29
30 MUST_HAVE((data != NULL), ret, err);
31 SHA384_HASH_CHECK_INITIALIZED(ctx, ret, err);
32
33 /* Init our inner variables */
34 a = ctx->sha384_state[0];
35 b = ctx->sha384_state[1];
36 c = ctx->sha384_state[2];
37 d = ctx->sha384_state[3];
38 e = ctx->sha384_state[4];
39 f = ctx->sha384_state[5];
40 g = ctx->sha384_state[6];
41 h = ctx->sha384_state[7];
42
43 for (i = 0; i < 16; i++) {
44 GET_UINT64_BE(W[i], data, 8 * i);
45 SHA2CORE_SHA512(a, b, c, d, e, f, g, h, W[i], K_SHA512[i]);
46 }
47
48 for (i = 16; i < 80; i++) {
49 SHA2CORE_SHA512(a, b, c, d, e, f, g, h, UPDATEW_SHA512(W, i),
50 K_SHA512[i]);
51 }
52
53 /* Update state */
54 ctx->sha384_state[0] += a;
55 ctx->sha384_state[1] += b;
56 ctx->sha384_state[2] += c;
57 ctx->sha384_state[3] += d;
58 ctx->sha384_state[4] += e;
59 ctx->sha384_state[5] += f;
60 ctx->sha384_state[6] += g;
61 ctx->sha384_state[7] += h;
62
63 ret = 0;
64
65 err:
66 return ret;
67 }
68
69 /* Init hash function. Returns 0 on success, -1 on error. */
sha384_init(sha384_context * ctx)70 int sha384_init(sha384_context *ctx)
71 {
72 int ret;
73
74 MUST_HAVE((ctx != NULL), ret, err);
75
76 ctx->sha384_total[0] = ctx->sha384_total[1] = 0;
77 ctx->sha384_state[0] = (u64)(0xCBBB9D5DC1059ED8);
78 ctx->sha384_state[1] = (u64)(0x629A292A367CD507);
79 ctx->sha384_state[2] = (u64)(0x9159015A3070DD17);
80 ctx->sha384_state[3] = (u64)(0x152FECD8F70E5939);
81 ctx->sha384_state[4] = (u64)(0x67332667FFC00B31);
82 ctx->sha384_state[5] = (u64)(0x8EB44A8768581511);
83 ctx->sha384_state[6] = (u64)(0xDB0C2E0D64F98FA7);
84 ctx->sha384_state[7] = (u64)(0x47B5481DBEFA4FA4);
85
86 /* Tell that we are initialized */
87 ctx->magic = SHA384_HASH_MAGIC;
88 ret = 0;
89
90 err:
91 return ret;
92 }
93
94 /* Update hash function. Returns 0 on success, -1 on error. */
sha384_update(sha384_context * ctx,const u8 * input,u32 ilen)95 int sha384_update(sha384_context *ctx, const u8 *input, u32 ilen)
96 {
97 u32 left;
98 u32 fill;
99 const u8 *data_ptr = input;
100 u32 remain_ilen = ilen;
101 int ret;
102
103 MUST_HAVE((input != NULL), ret, err);
104 SHA384_HASH_CHECK_INITIALIZED(ctx, ret, err);
105
106 /* Nothing to process, return */
107 if (ilen == 0) {
108 ret = 0;
109 goto err;
110 }
111
112 /* Get what's left in our local buffer */
113 left = (ctx->sha384_total[0] & 0x7F);
114 fill = (SHA384_BLOCK_SIZE - left);
115
116 ADD_UINT128_UINT64(ctx->sha384_total[0], ctx->sha384_total[1], ilen);
117
118 if ((left > 0) && (remain_ilen >= fill)) {
119 /* Copy data at the end of the buffer */
120 ret = local_memcpy(ctx->sha384_buffer + left, data_ptr, fill); EG(ret, err);
121 ret = sha384_process(ctx, ctx->sha384_buffer); EG(ret, err);
122 data_ptr += fill;
123 remain_ilen -= fill;
124 left = 0;
125 }
126
127 while (remain_ilen >= SHA384_BLOCK_SIZE) {
128 ret = sha384_process(ctx, data_ptr); EG(ret, err);
129 data_ptr += SHA384_BLOCK_SIZE;
130 remain_ilen -= SHA384_BLOCK_SIZE;
131 }
132
133 if (remain_ilen > 0) {
134 ret = local_memcpy(ctx->sha384_buffer + left, data_ptr, remain_ilen); EG(ret, err);
135 }
136
137 ret = 0;
138
139 err:
140 return ret;
141 }
142
143 /*
144 * Finalize hash function. Returns 0 on success, -1 on error. In all
145 * cases (success or error), hash context is no more usable after the
146 * call.
147 */
sha384_final(sha384_context * ctx,u8 output[SHA384_DIGEST_SIZE])148 int sha384_final(sha384_context *ctx, u8 output[SHA384_DIGEST_SIZE])
149 {
150 unsigned int block_present = 0;
151 u8 last_padded_block[2 * SHA384_BLOCK_SIZE];
152 int ret;
153
154 MUST_HAVE((output != NULL), ret, err);
155 SHA384_HASH_CHECK_INITIALIZED(ctx, ret, err);
156
157 /* Fill in our last block with zeroes */
158 ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err);
159
160 /* This is our final step, so we proceed with the padding */
161 block_present = (ctx->sha384_total[0] % SHA384_BLOCK_SIZE);
162 if (block_present != 0) {
163 /* Copy what's left in our temporary context buffer */
164 ret = local_memcpy(last_padded_block, ctx->sha384_buffer,
165 block_present); EG(ret, err);
166 }
167
168 /* Put the 0x80 byte, beginning of padding */
169 last_padded_block[block_present] = 0x80;
170
171 /* Handle possible additional block */
172 if (block_present > (SHA384_BLOCK_SIZE - 1 - (2 * sizeof(u64)))) {
173 /* We need an additional block */
174 PUT_MUL8_UINT128_BE(ctx->sha384_total[0], ctx->sha384_total[1],
175 last_padded_block,
176 2 * (SHA384_BLOCK_SIZE - sizeof(u64)));
177 ret = sha384_process(ctx, last_padded_block); EG(ret, err);
178 ret = sha384_process(ctx, last_padded_block + SHA384_BLOCK_SIZE); EG(ret, err);
179 } else {
180 /* We do not need an additional block */
181 PUT_MUL8_UINT128_BE(ctx->sha384_total[0], ctx->sha384_total[1],
182 last_padded_block,
183 SHA384_BLOCK_SIZE - (2 * sizeof(u64)));
184 ret = sha384_process(ctx, last_padded_block); EG(ret, err);
185 }
186
187 /* Output the hash result */
188 PUT_UINT64_BE(ctx->sha384_state[0], output, 0);
189 PUT_UINT64_BE(ctx->sha384_state[1], output, 8);
190 PUT_UINT64_BE(ctx->sha384_state[2], output, 16);
191 PUT_UINT64_BE(ctx->sha384_state[3], output, 24);
192 PUT_UINT64_BE(ctx->sha384_state[4], output, 32);
193 PUT_UINT64_BE(ctx->sha384_state[5], output, 40);
194
195 /* Tell that we are uninitialized */
196 ctx->magic = WORD(0);
197
198 ret = 0;
199
200 err:
201 return ret;
202 }
203
204 /*
205 * Scattered version performing init/update/finalize on a vector of buffers
206 * 'inputs' with the length of each buffer passed via 'ilens'. The function
207 * loops on pointers in 'inputs' until it finds a NULL pointer. The function
208 * returns 0 on success, -1 on error.
209 */
sha384_scattered(const u8 ** inputs,const u32 * ilens,u8 output[SHA384_DIGEST_SIZE])210 int sha384_scattered(const u8 **inputs, const u32 *ilens,
211 u8 output[SHA384_DIGEST_SIZE])
212 {
213 sha384_context ctx;
214 int pos = 0;
215 int ret;
216
217 MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
218
219 ret = sha384_init(&ctx); EG(ret, err);
220
221 while (inputs[pos] != NULL) {
222 const u8 *buf = inputs[pos];
223 u32 buflen = ilens[pos];
224
225 ret = sha384_update(&ctx, buf, buflen); EG(ret, err);
226 pos += 1;
227 }
228
229 ret = sha384_final(&ctx, output);
230
231 err:
232 return ret;
233 }
234
235 /* init/update/finalize on a single buffer 'input' of length 'ilen'. */
sha384(const u8 * input,u32 ilen,u8 output[SHA384_DIGEST_SIZE])236 int sha384(const u8 *input, u32 ilen, u8 output[SHA384_DIGEST_SIZE])
237 {
238 sha384_context ctx;
239 int ret;
240
241 ret = sha384_init(&ctx); EG(ret, err);
242 ret = sha384_update(&ctx, input, ilen); EG(ret, err);
243 ret = sha384_final(&ctx, output);
244
245 err:
246 return ret;
247 }
248
249 #else /* WITH_HASH_SHA384 */
250
251 /*
252 * Dummy definition to avoid the empty translation unit ISO C warning
253 */
254 typedef int dummy;
255 #endif /* WITH_HASH_SHA384 */
256