1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 #include <sys/modctl.h>
28 #include <sys/cmn_err.h>
29 #include <sys/crypto/common.h>
30 #include <sys/crypto/spi.h>
31 #include <sys/strsun.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #define _SHA2_IMPL
35 #include <sys/sha2.h>
36 #include <sha2/sha2_impl.h>
37
38 /*
39 * The sha2 module is created with two modlinkages:
40 * - a modlmisc that allows consumers to directly call the entry points
41 * SHA2Init, SHA2Update, and SHA2Final.
42 * - a modlcrypto that allows the module to register with the Kernel
43 * Cryptographic Framework (KCF) as a software provider for the SHA2
44 * mechanisms.
45 */
46
47 static struct modlmisc modlmisc = {
48 &mod_miscops,
49 "SHA2 Message-Digest Algorithm"
50 };
51
52 static struct modlcrypto modlcrypto = {
53 &mod_cryptoops,
54 "SHA2 Kernel SW Provider"
55 };
56
57 static struct modlinkage modlinkage = {
58 MODREV_1, &modlmisc, &modlcrypto, NULL
59 };
60
61 /*
62 * Macros to access the SHA2 or SHA2-HMAC contexts from a context passed
63 * by KCF to one of the entry points.
64 */
65
66 #define PROV_SHA2_CTX(ctx) ((sha2_ctx_t *)(ctx)->cc_provider_private)
67 #define PROV_SHA2_HMAC_CTX(ctx) ((sha2_hmac_ctx_t *)(ctx)->cc_provider_private)
68
69 /* to extract the digest length passed as mechanism parameter */
70 #define PROV_SHA2_GET_DIGEST_LEN(m, len) { \
71 if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t))) \
72 (len) = (uint32_t)*((ulong_t *)(void *)(m)->cm_param); \
73 else { \
74 ulong_t tmp_ulong; \
75 bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t)); \
76 (len) = (uint32_t)tmp_ulong; \
77 } \
78 }
79
80 #define PROV_SHA2_DIGEST_KEY(mech, ctx, key, len, digest) { \
81 SHA2Init(mech, ctx); \
82 SHA2Update(ctx, key, len); \
83 SHA2Final(digest, ctx); \
84 }
85
86 /*
87 * Mechanism info structure passed to KCF during registration.
88 */
89 static crypto_mech_info_t sha2_mech_info_tab[] = {
90 /* SHA256 */
91 {SUN_CKM_SHA256, SHA256_MECH_INFO_TYPE,
92 CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
93 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
94 /* SHA256-HMAC */
95 {SUN_CKM_SHA256_HMAC, SHA256_HMAC_MECH_INFO_TYPE,
96 CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
97 SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
98 CRYPTO_KEYSIZE_UNIT_IN_BYTES},
99 /* SHA256-HMAC GENERAL */
100 {SUN_CKM_SHA256_HMAC_GENERAL, SHA256_HMAC_GEN_MECH_INFO_TYPE,
101 CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
102 SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
103 CRYPTO_KEYSIZE_UNIT_IN_BYTES},
104 /* SHA384 */
105 {SUN_CKM_SHA384, SHA384_MECH_INFO_TYPE,
106 CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
107 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
108 /* SHA384-HMAC */
109 {SUN_CKM_SHA384_HMAC, SHA384_HMAC_MECH_INFO_TYPE,
110 CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
111 SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
112 CRYPTO_KEYSIZE_UNIT_IN_BYTES},
113 /* SHA384-HMAC GENERAL */
114 {SUN_CKM_SHA384_HMAC_GENERAL, SHA384_HMAC_GEN_MECH_INFO_TYPE,
115 CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
116 SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
117 CRYPTO_KEYSIZE_UNIT_IN_BYTES},
118 /* SHA512 */
119 {SUN_CKM_SHA512, SHA512_MECH_INFO_TYPE,
120 CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
121 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
122 /* SHA512-HMAC */
123 {SUN_CKM_SHA512_HMAC, SHA512_HMAC_MECH_INFO_TYPE,
124 CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
125 SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
126 CRYPTO_KEYSIZE_UNIT_IN_BYTES},
127 /* SHA512-HMAC GENERAL */
128 {SUN_CKM_SHA512_HMAC_GENERAL, SHA512_HMAC_GEN_MECH_INFO_TYPE,
129 CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
130 SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN,
131 CRYPTO_KEYSIZE_UNIT_IN_BYTES}
132 };
133
134 static void sha2_provider_status(crypto_provider_handle_t, uint_t *);
135
136 static crypto_control_ops_t sha2_control_ops = {
137 sha2_provider_status
138 };
139
140 static int sha2_digest_init(crypto_ctx_t *, crypto_mechanism_t *,
141 crypto_req_handle_t);
142 static int sha2_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
143 crypto_req_handle_t);
144 static int sha2_digest_update(crypto_ctx_t *, crypto_data_t *,
145 crypto_req_handle_t);
146 static int sha2_digest_final(crypto_ctx_t *, crypto_data_t *,
147 crypto_req_handle_t);
148 static int sha2_digest_atomic(crypto_provider_handle_t, crypto_session_id_t,
149 crypto_mechanism_t *, crypto_data_t *, crypto_data_t *,
150 crypto_req_handle_t);
151
152 static crypto_digest_ops_t sha2_digest_ops = {
153 sha2_digest_init,
154 sha2_digest,
155 sha2_digest_update,
156 NULL,
157 sha2_digest_final,
158 sha2_digest_atomic
159 };
160
161 static int sha2_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *,
162 crypto_spi_ctx_template_t, crypto_req_handle_t);
163 static int sha2_mac_update(crypto_ctx_t *, crypto_data_t *,
164 crypto_req_handle_t);
165 static int sha2_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t);
166 static int sha2_mac_atomic(crypto_provider_handle_t, crypto_session_id_t,
167 crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
168 crypto_spi_ctx_template_t, crypto_req_handle_t);
169 static int sha2_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t,
170 crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
171 crypto_spi_ctx_template_t, crypto_req_handle_t);
172
173 static crypto_mac_ops_t sha2_mac_ops = {
174 sha2_mac_init,
175 NULL,
176 sha2_mac_update,
177 sha2_mac_final,
178 sha2_mac_atomic,
179 sha2_mac_verify_atomic
180 };
181
182 static int sha2_create_ctx_template(crypto_provider_handle_t,
183 crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
184 size_t *, crypto_req_handle_t);
185 static int sha2_free_context(crypto_ctx_t *);
186
187 static crypto_ctx_ops_t sha2_ctx_ops = {
188 sha2_create_ctx_template,
189 sha2_free_context
190 };
191
192 static crypto_ops_t sha2_crypto_ops = {
193 &sha2_control_ops,
194 &sha2_digest_ops,
195 NULL,
196 &sha2_mac_ops,
197 NULL,
198 NULL,
199 NULL,
200 NULL,
201 NULL,
202 NULL,
203 NULL,
204 NULL,
205 NULL,
206 &sha2_ctx_ops,
207 NULL,
208 NULL,
209 NULL,
210 };
211
212 static crypto_provider_info_t sha2_prov_info = {
213 CRYPTO_SPI_VERSION_4,
214 "SHA2 Software Provider",
215 CRYPTO_SW_PROVIDER,
216 {&modlinkage},
217 NULL,
218 &sha2_crypto_ops,
219 sizeof (sha2_mech_info_tab)/sizeof (crypto_mech_info_t),
220 sha2_mech_info_tab
221 };
222
223 static crypto_kcf_provider_handle_t sha2_prov_handle = NULL;
224
225 int
_init()226 _init()
227 {
228 int ret;
229
230 if ((ret = mod_install(&modlinkage)) != 0)
231 return (ret);
232
233 /*
234 * Register with KCF. If the registration fails, do not uninstall the
235 * module, since the functionality provided by misc/sha2 should still
236 * be available.
237 */
238 (void) crypto_register_provider(&sha2_prov_info, &sha2_prov_handle);
239
240 return (0);
241 }
242
243 int
_info(struct modinfo * modinfop)244 _info(struct modinfo *modinfop)
245 {
246 return (mod_info(&modlinkage, modinfop));
247 }
248
249 /*
250 * KCF software provider control entry points.
251 */
252 /* ARGSUSED */
253 static void
sha2_provider_status(crypto_provider_handle_t provider,uint_t * status)254 sha2_provider_status(crypto_provider_handle_t provider, uint_t *status)
255 {
256 *status = CRYPTO_PROVIDER_READY;
257 }
258
259 /*
260 * KCF software provider digest entry points.
261 */
262
263 static int
sha2_digest_init(crypto_ctx_t * ctx,crypto_mechanism_t * mechanism,crypto_req_handle_t req)264 sha2_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
265 crypto_req_handle_t req)
266 {
267
268 /*
269 * Allocate and initialize SHA2 context.
270 */
271 ctx->cc_provider_private = kmem_alloc(sizeof (sha2_ctx_t),
272 crypto_kmflag(req));
273 if (ctx->cc_provider_private == NULL)
274 return (CRYPTO_HOST_MEMORY);
275
276 PROV_SHA2_CTX(ctx)->sc_mech_type = mechanism->cm_type;
277 SHA2Init(mechanism->cm_type, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx);
278
279 return (CRYPTO_SUCCESS);
280 }
281
282 /*
283 * Helper SHA2 digest update function for uio data.
284 */
285 static int
sha2_digest_update_uio(SHA2_CTX * sha2_ctx,crypto_data_t * data)286 sha2_digest_update_uio(SHA2_CTX *sha2_ctx, crypto_data_t *data)
287 {
288 off_t offset = data->cd_offset;
289 size_t length = data->cd_length;
290 uint_t vec_idx;
291 size_t cur_len;
292
293 /* we support only kernel buffer */
294 if (data->cd_uio->uio_segflg != UIO_SYSSPACE)
295 return (CRYPTO_ARGUMENTS_BAD);
296
297 /*
298 * Jump to the first iovec containing data to be
299 * digested.
300 */
301 for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt &&
302 offset >= data->cd_uio->uio_iov[vec_idx].iov_len;
303 offset -= data->cd_uio->uio_iov[vec_idx++].iov_len)
304 ;
305 if (vec_idx == data->cd_uio->uio_iovcnt) {
306 /*
307 * The caller specified an offset that is larger than the
308 * total size of the buffers it provided.
309 */
310 return (CRYPTO_DATA_LEN_RANGE);
311 }
312
313 /*
314 * Now do the digesting on the iovecs.
315 */
316 while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) {
317 cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len -
318 offset, length);
319
320 SHA2Update(sha2_ctx, (uint8_t *)data->cd_uio->
321 uio_iov[vec_idx].iov_base + offset, cur_len);
322 length -= cur_len;
323 vec_idx++;
324 offset = 0;
325 }
326
327 if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) {
328 /*
329 * The end of the specified iovec's was reached but
330 * the length requested could not be processed, i.e.
331 * The caller requested to digest more data than it provided.
332 */
333 return (CRYPTO_DATA_LEN_RANGE);
334 }
335
336 return (CRYPTO_SUCCESS);
337 }
338
339 /*
340 * Helper SHA2 digest final function for uio data.
341 * digest_len is the length of the desired digest. If digest_len
342 * is smaller than the default SHA2 digest length, the caller
343 * must pass a scratch buffer, digest_scratch, which must
344 * be at least the algorithm's digest length bytes.
345 */
346 static int
sha2_digest_final_uio(SHA2_CTX * sha2_ctx,crypto_data_t * digest,ulong_t digest_len,uchar_t * digest_scratch)347 sha2_digest_final_uio(SHA2_CTX *sha2_ctx, crypto_data_t *digest,
348 ulong_t digest_len, uchar_t *digest_scratch)
349 {
350 off_t offset = digest->cd_offset;
351 uint_t vec_idx;
352
353 /* we support only kernel buffer */
354 if (digest->cd_uio->uio_segflg != UIO_SYSSPACE)
355 return (CRYPTO_ARGUMENTS_BAD);
356
357 /*
358 * Jump to the first iovec containing ptr to the digest to
359 * be returned.
360 */
361 for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len &&
362 vec_idx < digest->cd_uio->uio_iovcnt;
363 offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len)
364 ;
365 if (vec_idx == digest->cd_uio->uio_iovcnt) {
366 /*
367 * The caller specified an offset that is
368 * larger than the total size of the buffers
369 * it provided.
370 */
371 return (CRYPTO_DATA_LEN_RANGE);
372 }
373
374 if (offset + digest_len <=
375 digest->cd_uio->uio_iov[vec_idx].iov_len) {
376 /*
377 * The computed SHA2 digest will fit in the current
378 * iovec.
379 */
380 if (((sha2_ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) &&
381 (digest_len != SHA256_DIGEST_LENGTH)) ||
382 ((sha2_ctx->algotype > SHA256_HMAC_GEN_MECH_INFO_TYPE) &&
383 (digest_len != SHA512_DIGEST_LENGTH))) {
384 /*
385 * The caller requested a short digest. Digest
386 * into a scratch buffer and return to
387 * the user only what was requested.
388 */
389 SHA2Final(digest_scratch, sha2_ctx);
390
391 bcopy(digest_scratch, (uchar_t *)digest->
392 cd_uio->uio_iov[vec_idx].iov_base + offset,
393 digest_len);
394 } else {
395 SHA2Final((uchar_t *)digest->
396 cd_uio->uio_iov[vec_idx].iov_base + offset,
397 sha2_ctx);
398
399 }
400 } else {
401 /*
402 * The computed digest will be crossing one or more iovec's.
403 * This is bad performance-wise but we need to support it.
404 * Allocate a small scratch buffer on the stack and
405 * copy it piece meal to the specified digest iovec's.
406 */
407 uchar_t digest_tmp[SHA512_DIGEST_LENGTH];
408 off_t scratch_offset = 0;
409 size_t length = digest_len;
410 size_t cur_len;
411
412 SHA2Final(digest_tmp, sha2_ctx);
413
414 while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) {
415 cur_len =
416 MIN(digest->cd_uio->uio_iov[vec_idx].iov_len -
417 offset, length);
418 bcopy(digest_tmp + scratch_offset,
419 digest->cd_uio->uio_iov[vec_idx].iov_base + offset,
420 cur_len);
421
422 length -= cur_len;
423 vec_idx++;
424 scratch_offset += cur_len;
425 offset = 0;
426 }
427
428 if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) {
429 /*
430 * The end of the specified iovec's was reached but
431 * the length requested could not be processed, i.e.
432 * The caller requested to digest more data than it
433 * provided.
434 */
435 return (CRYPTO_DATA_LEN_RANGE);
436 }
437 }
438
439 return (CRYPTO_SUCCESS);
440 }
441
442 /*
443 * Helper SHA2 digest update for mblk's.
444 */
445 static int
sha2_digest_update_mblk(SHA2_CTX * sha2_ctx,crypto_data_t * data)446 sha2_digest_update_mblk(SHA2_CTX *sha2_ctx, crypto_data_t *data)
447 {
448 off_t offset = data->cd_offset;
449 size_t length = data->cd_length;
450 mblk_t *mp;
451 size_t cur_len;
452
453 /*
454 * Jump to the first mblk_t containing data to be digested.
455 */
456 for (mp = data->cd_mp; mp != NULL && offset >= MBLKL(mp);
457 offset -= MBLKL(mp), mp = mp->b_cont)
458 ;
459 if (mp == NULL) {
460 /*
461 * The caller specified an offset that is larger than the
462 * total size of the buffers it provided.
463 */
464 return (CRYPTO_DATA_LEN_RANGE);
465 }
466
467 /*
468 * Now do the digesting on the mblk chain.
469 */
470 while (mp != NULL && length > 0) {
471 cur_len = MIN(MBLKL(mp) - offset, length);
472 SHA2Update(sha2_ctx, mp->b_rptr + offset, cur_len);
473 length -= cur_len;
474 offset = 0;
475 mp = mp->b_cont;
476 }
477
478 if (mp == NULL && length > 0) {
479 /*
480 * The end of the mblk was reached but the length requested
481 * could not be processed, i.e. The caller requested
482 * to digest more data than it provided.
483 */
484 return (CRYPTO_DATA_LEN_RANGE);
485 }
486
487 return (CRYPTO_SUCCESS);
488 }
489
490 /*
491 * Helper SHA2 digest final for mblk's.
492 * digest_len is the length of the desired digest. If digest_len
493 * is smaller than the default SHA2 digest length, the caller
494 * must pass a scratch buffer, digest_scratch, which must
495 * be at least the algorithm's digest length bytes.
496 */
497 static int
sha2_digest_final_mblk(SHA2_CTX * sha2_ctx,crypto_data_t * digest,ulong_t digest_len,uchar_t * digest_scratch)498 sha2_digest_final_mblk(SHA2_CTX *sha2_ctx, crypto_data_t *digest,
499 ulong_t digest_len, uchar_t *digest_scratch)
500 {
501 off_t offset = digest->cd_offset;
502 mblk_t *mp;
503
504 /*
505 * Jump to the first mblk_t that will be used to store the digest.
506 */
507 for (mp = digest->cd_mp; mp != NULL && offset >= MBLKL(mp);
508 offset -= MBLKL(mp), mp = mp->b_cont)
509 ;
510 if (mp == NULL) {
511 /*
512 * The caller specified an offset that is larger than the
513 * total size of the buffers it provided.
514 */
515 return (CRYPTO_DATA_LEN_RANGE);
516 }
517
518 if (offset + digest_len <= MBLKL(mp)) {
519 /*
520 * The computed SHA2 digest will fit in the current mblk.
521 * Do the SHA2Final() in-place.
522 */
523 if (((sha2_ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) &&
524 (digest_len != SHA256_DIGEST_LENGTH)) ||
525 ((sha2_ctx->algotype > SHA256_HMAC_GEN_MECH_INFO_TYPE) &&
526 (digest_len != SHA512_DIGEST_LENGTH))) {
527 /*
528 * The caller requested a short digest. Digest
529 * into a scratch buffer and return to
530 * the user only what was requested.
531 */
532 SHA2Final(digest_scratch, sha2_ctx);
533 bcopy(digest_scratch, mp->b_rptr + offset, digest_len);
534 } else {
535 SHA2Final(mp->b_rptr + offset, sha2_ctx);
536 }
537 } else {
538 /*
539 * The computed digest will be crossing one or more mblk's.
540 * This is bad performance-wise but we need to support it.
541 * Allocate a small scratch buffer on the stack and
542 * copy it piece meal to the specified digest iovec's.
543 */
544 uchar_t digest_tmp[SHA512_DIGEST_LENGTH];
545 off_t scratch_offset = 0;
546 size_t length = digest_len;
547 size_t cur_len;
548
549 SHA2Final(digest_tmp, sha2_ctx);
550
551 while (mp != NULL && length > 0) {
552 cur_len = MIN(MBLKL(mp) - offset, length);
553 bcopy(digest_tmp + scratch_offset,
554 mp->b_rptr + offset, cur_len);
555
556 length -= cur_len;
557 mp = mp->b_cont;
558 scratch_offset += cur_len;
559 offset = 0;
560 }
561
562 if (mp == NULL && length > 0) {
563 /*
564 * The end of the specified mblk was reached but
565 * the length requested could not be processed, i.e.
566 * The caller requested to digest more data than it
567 * provided.
568 */
569 return (CRYPTO_DATA_LEN_RANGE);
570 }
571 }
572
573 return (CRYPTO_SUCCESS);
574 }
575
576 /* ARGSUSED */
577 static int
sha2_digest(crypto_ctx_t * ctx,crypto_data_t * data,crypto_data_t * digest,crypto_req_handle_t req)578 sha2_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest,
579 crypto_req_handle_t req)
580 {
581 int ret = CRYPTO_SUCCESS;
582 uint_t sha_digest_len;
583
584 ASSERT(ctx->cc_provider_private != NULL);
585
586 switch (PROV_SHA2_CTX(ctx)->sc_mech_type) {
587 case SHA256_MECH_INFO_TYPE:
588 sha_digest_len = SHA256_DIGEST_LENGTH;
589 break;
590 case SHA384_MECH_INFO_TYPE:
591 sha_digest_len = SHA384_DIGEST_LENGTH;
592 break;
593 case SHA512_MECH_INFO_TYPE:
594 sha_digest_len = SHA512_DIGEST_LENGTH;
595 break;
596 default:
597 return (CRYPTO_MECHANISM_INVALID);
598 }
599
600 /*
601 * We need to just return the length needed to store the output.
602 * We should not destroy the context for the following cases.
603 */
604 if ((digest->cd_length == 0) ||
605 (digest->cd_length < sha_digest_len)) {
606 digest->cd_length = sha_digest_len;
607 return (CRYPTO_BUFFER_TOO_SMALL);
608 }
609
610 /*
611 * Do the SHA2 update on the specified input data.
612 */
613 switch (data->cd_format) {
614 case CRYPTO_DATA_RAW:
615 SHA2Update(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
616 (uint8_t *)data->cd_raw.iov_base + data->cd_offset,
617 data->cd_length);
618 break;
619 case CRYPTO_DATA_UIO:
620 ret = sha2_digest_update_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
621 data);
622 break;
623 case CRYPTO_DATA_MBLK:
624 ret = sha2_digest_update_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
625 data);
626 break;
627 default:
628 ret = CRYPTO_ARGUMENTS_BAD;
629 }
630
631 if (ret != CRYPTO_SUCCESS) {
632 /* the update failed, free context and bail */
633 kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t));
634 ctx->cc_provider_private = NULL;
635 digest->cd_length = 0;
636 return (ret);
637 }
638
639 /*
640 * Do a SHA2 final, must be done separately since the digest
641 * type can be different than the input data type.
642 */
643 switch (digest->cd_format) {
644 case CRYPTO_DATA_RAW:
645 SHA2Final((unsigned char *)digest->cd_raw.iov_base +
646 digest->cd_offset, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx);
647 break;
648 case CRYPTO_DATA_UIO:
649 ret = sha2_digest_final_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
650 digest, sha_digest_len, NULL);
651 break;
652 case CRYPTO_DATA_MBLK:
653 ret = sha2_digest_final_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
654 digest, sha_digest_len, NULL);
655 break;
656 default:
657 ret = CRYPTO_ARGUMENTS_BAD;
658 }
659
660 /* all done, free context and return */
661
662 if (ret == CRYPTO_SUCCESS)
663 digest->cd_length = sha_digest_len;
664 else
665 digest->cd_length = 0;
666
667 kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t));
668 ctx->cc_provider_private = NULL;
669 return (ret);
670 }
671
672 /* ARGSUSED */
673 static int
sha2_digest_update(crypto_ctx_t * ctx,crypto_data_t * data,crypto_req_handle_t req)674 sha2_digest_update(crypto_ctx_t *ctx, crypto_data_t *data,
675 crypto_req_handle_t req)
676 {
677 int ret = CRYPTO_SUCCESS;
678
679 ASSERT(ctx->cc_provider_private != NULL);
680
681 /*
682 * Do the SHA2 update on the specified input data.
683 */
684 switch (data->cd_format) {
685 case CRYPTO_DATA_RAW:
686 SHA2Update(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
687 (uint8_t *)data->cd_raw.iov_base + data->cd_offset,
688 data->cd_length);
689 break;
690 case CRYPTO_DATA_UIO:
691 ret = sha2_digest_update_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
692 data);
693 break;
694 case CRYPTO_DATA_MBLK:
695 ret = sha2_digest_update_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
696 data);
697 break;
698 default:
699 ret = CRYPTO_ARGUMENTS_BAD;
700 }
701
702 return (ret);
703 }
704
705 /* ARGSUSED */
706 static int
sha2_digest_final(crypto_ctx_t * ctx,crypto_data_t * digest,crypto_req_handle_t req)707 sha2_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest,
708 crypto_req_handle_t req)
709 {
710 int ret = CRYPTO_SUCCESS;
711 uint_t sha_digest_len;
712
713 ASSERT(ctx->cc_provider_private != NULL);
714
715 switch (PROV_SHA2_CTX(ctx)->sc_mech_type) {
716 case SHA256_MECH_INFO_TYPE:
717 sha_digest_len = SHA256_DIGEST_LENGTH;
718 break;
719 case SHA384_MECH_INFO_TYPE:
720 sha_digest_len = SHA384_DIGEST_LENGTH;
721 break;
722 case SHA512_MECH_INFO_TYPE:
723 sha_digest_len = SHA512_DIGEST_LENGTH;
724 break;
725 default:
726 return (CRYPTO_MECHANISM_INVALID);
727 }
728
729 /*
730 * We need to just return the length needed to store the output.
731 * We should not destroy the context for the following cases.
732 */
733 if ((digest->cd_length == 0) ||
734 (digest->cd_length < sha_digest_len)) {
735 digest->cd_length = sha_digest_len;
736 return (CRYPTO_BUFFER_TOO_SMALL);
737 }
738
739 /*
740 * Do a SHA2 final.
741 */
742 switch (digest->cd_format) {
743 case CRYPTO_DATA_RAW:
744 SHA2Final((unsigned char *)digest->cd_raw.iov_base +
745 digest->cd_offset, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx);
746 break;
747 case CRYPTO_DATA_UIO:
748 ret = sha2_digest_final_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
749 digest, sha_digest_len, NULL);
750 break;
751 case CRYPTO_DATA_MBLK:
752 ret = sha2_digest_final_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx,
753 digest, sha_digest_len, NULL);
754 break;
755 default:
756 ret = CRYPTO_ARGUMENTS_BAD;
757 }
758
759 /* all done, free context and return */
760
761 if (ret == CRYPTO_SUCCESS)
762 digest->cd_length = sha_digest_len;
763 else
764 digest->cd_length = 0;
765
766 kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t));
767 ctx->cc_provider_private = NULL;
768
769 return (ret);
770 }
771
772 /* ARGSUSED */
773 static int
sha2_digest_atomic(crypto_provider_handle_t provider,crypto_session_id_t session_id,crypto_mechanism_t * mechanism,crypto_data_t * data,crypto_data_t * digest,crypto_req_handle_t req)774 sha2_digest_atomic(crypto_provider_handle_t provider,
775 crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
776 crypto_data_t *data, crypto_data_t *digest,
777 crypto_req_handle_t req)
778 {
779 int ret = CRYPTO_SUCCESS;
780 SHA2_CTX sha2_ctx;
781 uint32_t sha_digest_len;
782
783 /*
784 * Do the SHA inits.
785 */
786
787 SHA2Init(mechanism->cm_type, &sha2_ctx);
788
789 switch (data->cd_format) {
790 case CRYPTO_DATA_RAW:
791 SHA2Update(&sha2_ctx, (uint8_t *)data->
792 cd_raw.iov_base + data->cd_offset, data->cd_length);
793 break;
794 case CRYPTO_DATA_UIO:
795 ret = sha2_digest_update_uio(&sha2_ctx, data);
796 break;
797 case CRYPTO_DATA_MBLK:
798 ret = sha2_digest_update_mblk(&sha2_ctx, data);
799 break;
800 default:
801 ret = CRYPTO_ARGUMENTS_BAD;
802 }
803
804 /*
805 * Do the SHA updates on the specified input data.
806 */
807
808 if (ret != CRYPTO_SUCCESS) {
809 /* the update failed, bail */
810 digest->cd_length = 0;
811 return (ret);
812 }
813
814 if (mechanism->cm_type <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
815 sha_digest_len = SHA256_DIGEST_LENGTH;
816 else
817 sha_digest_len = SHA512_DIGEST_LENGTH;
818
819 /*
820 * Do a SHA2 final, must be done separately since the digest
821 * type can be different than the input data type.
822 */
823 switch (digest->cd_format) {
824 case CRYPTO_DATA_RAW:
825 SHA2Final((unsigned char *)digest->cd_raw.iov_base +
826 digest->cd_offset, &sha2_ctx);
827 break;
828 case CRYPTO_DATA_UIO:
829 ret = sha2_digest_final_uio(&sha2_ctx, digest,
830 sha_digest_len, NULL);
831 break;
832 case CRYPTO_DATA_MBLK:
833 ret = sha2_digest_final_mblk(&sha2_ctx, digest,
834 sha_digest_len, NULL);
835 break;
836 default:
837 ret = CRYPTO_ARGUMENTS_BAD;
838 }
839
840 if (ret == CRYPTO_SUCCESS)
841 digest->cd_length = sha_digest_len;
842 else
843 digest->cd_length = 0;
844
845 return (ret);
846 }
847
848 /*
849 * KCF software provider mac entry points.
850 *
851 * SHA2 HMAC is: SHA2(key XOR opad, SHA2(key XOR ipad, text))
852 *
853 * Init:
854 * The initialization routine initializes what we denote
855 * as the inner and outer contexts by doing
856 * - for inner context: SHA2(key XOR ipad)
857 * - for outer context: SHA2(key XOR opad)
858 *
859 * Update:
860 * Each subsequent SHA2 HMAC update will result in an
861 * update of the inner context with the specified data.
862 *
863 * Final:
864 * The SHA2 HMAC final will do a SHA2 final operation on the
865 * inner context, and the resulting digest will be used
866 * as the data for an update on the outer context. Last
867 * but not least, a SHA2 final on the outer context will
868 * be performed to obtain the SHA2 HMAC digest to return
869 * to the user.
870 */
871
872 /*
873 * Initialize a SHA2-HMAC context.
874 */
875 static void
sha2_mac_init_ctx(sha2_hmac_ctx_t * ctx,void * keyval,uint_t length_in_bytes)876 sha2_mac_init_ctx(sha2_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes)
877 {
878 uint64_t ipad[SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t)];
879 uint64_t opad[SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t)];
880 int i, block_size, blocks_per_int64;
881
882 /* Determine the block size */
883 if (ctx->hc_mech_type <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
884 block_size = SHA256_HMAC_BLOCK_SIZE;
885 blocks_per_int64 = SHA256_HMAC_BLOCK_SIZE / sizeof (uint64_t);
886 } else {
887 block_size = SHA512_HMAC_BLOCK_SIZE;
888 blocks_per_int64 = SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t);
889 }
890
891 (void) bzero(ipad, block_size);
892 (void) bzero(opad, block_size);
893 (void) bcopy(keyval, ipad, length_in_bytes);
894 (void) bcopy(keyval, opad, length_in_bytes);
895
896 /* XOR key with ipad (0x36) and opad (0x5c) */
897 for (i = 0; i < blocks_per_int64; i ++) {
898 ipad[i] ^= 0x3636363636363636;
899 opad[i] ^= 0x5c5c5c5c5c5c5c5c;
900 }
901
902 /* perform SHA2 on ipad */
903 SHA2Init(ctx->hc_mech_type, &ctx->hc_icontext);
904 SHA2Update(&ctx->hc_icontext, (uint8_t *)ipad, block_size);
905
906 /* perform SHA2 on opad */
907 SHA2Init(ctx->hc_mech_type, &ctx->hc_ocontext);
908 SHA2Update(&ctx->hc_ocontext, (uint8_t *)opad, block_size);
909
910 }
911
912 /*
913 */
914 static int
sha2_mac_init(crypto_ctx_t * ctx,crypto_mechanism_t * mechanism,crypto_key_t * key,crypto_spi_ctx_template_t ctx_template,crypto_req_handle_t req)915 sha2_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
916 crypto_key_t *key, crypto_spi_ctx_template_t ctx_template,
917 crypto_req_handle_t req)
918 {
919 int ret = CRYPTO_SUCCESS;
920 uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
921 uint_t sha_digest_len, sha_hmac_block_size;
922
923 /*
924 * Set the digest length and block size to values appropriate to the
925 * mechanism
926 */
927 switch (mechanism->cm_type) {
928 case SHA256_HMAC_MECH_INFO_TYPE:
929 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
930 sha_digest_len = SHA256_DIGEST_LENGTH;
931 sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
932 break;
933 case SHA384_HMAC_MECH_INFO_TYPE:
934 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
935 case SHA512_HMAC_MECH_INFO_TYPE:
936 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
937 sha_digest_len = SHA512_DIGEST_LENGTH;
938 sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
939 break;
940 default:
941 return (CRYPTO_MECHANISM_INVALID);
942 }
943
944 if (key->ck_format != CRYPTO_KEY_RAW)
945 return (CRYPTO_ARGUMENTS_BAD);
946
947 ctx->cc_provider_private = kmem_alloc(sizeof (sha2_hmac_ctx_t),
948 crypto_kmflag(req));
949 if (ctx->cc_provider_private == NULL)
950 return (CRYPTO_HOST_MEMORY);
951
952 PROV_SHA2_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type;
953 if (ctx_template != NULL) {
954 /* reuse context template */
955 bcopy(ctx_template, PROV_SHA2_HMAC_CTX(ctx),
956 sizeof (sha2_hmac_ctx_t));
957 } else {
958 /* no context template, compute context */
959 if (keylen_in_bytes > sha_hmac_block_size) {
960 uchar_t digested_key[SHA512_DIGEST_LENGTH];
961 sha2_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private;
962
963 /*
964 * Hash the passed-in key to get a smaller key.
965 * The inner context is used since it hasn't been
966 * initialized yet.
967 */
968 PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
969 &hmac_ctx->hc_icontext,
970 key->ck_data, keylen_in_bytes, digested_key);
971 sha2_mac_init_ctx(PROV_SHA2_HMAC_CTX(ctx),
972 digested_key, sha_digest_len);
973 } else {
974 sha2_mac_init_ctx(PROV_SHA2_HMAC_CTX(ctx),
975 key->ck_data, keylen_in_bytes);
976 }
977 }
978
979 /*
980 * Get the mechanism parameters, if applicable.
981 */
982 if (mechanism->cm_type % 3 == 2) {
983 if (mechanism->cm_param == NULL ||
984 mechanism->cm_param_len != sizeof (ulong_t))
985 ret = CRYPTO_MECHANISM_PARAM_INVALID;
986 PROV_SHA2_GET_DIGEST_LEN(mechanism,
987 PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len);
988 if (PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len > sha_digest_len)
989 ret = CRYPTO_MECHANISM_PARAM_INVALID;
990 }
991
992 if (ret != CRYPTO_SUCCESS) {
993 bzero(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
994 kmem_free(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
995 ctx->cc_provider_private = NULL;
996 }
997
998 return (ret);
999 }
1000
1001 /* ARGSUSED */
1002 static int
sha2_mac_update(crypto_ctx_t * ctx,crypto_data_t * data,crypto_req_handle_t req)1003 sha2_mac_update(crypto_ctx_t *ctx, crypto_data_t *data,
1004 crypto_req_handle_t req)
1005 {
1006 int ret = CRYPTO_SUCCESS;
1007
1008 ASSERT(ctx->cc_provider_private != NULL);
1009
1010 /*
1011 * Do a SHA2 update of the inner context using the specified
1012 * data.
1013 */
1014 switch (data->cd_format) {
1015 case CRYPTO_DATA_RAW:
1016 SHA2Update(&PROV_SHA2_HMAC_CTX(ctx)->hc_icontext,
1017 (uint8_t *)data->cd_raw.iov_base + data->cd_offset,
1018 data->cd_length);
1019 break;
1020 case CRYPTO_DATA_UIO:
1021 ret = sha2_digest_update_uio(
1022 &PROV_SHA2_HMAC_CTX(ctx)->hc_icontext, data);
1023 break;
1024 case CRYPTO_DATA_MBLK:
1025 ret = sha2_digest_update_mblk(
1026 &PROV_SHA2_HMAC_CTX(ctx)->hc_icontext, data);
1027 break;
1028 default:
1029 ret = CRYPTO_ARGUMENTS_BAD;
1030 }
1031
1032 return (ret);
1033 }
1034
1035 /* ARGSUSED */
1036 static int
sha2_mac_final(crypto_ctx_t * ctx,crypto_data_t * mac,crypto_req_handle_t req)1037 sha2_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req)
1038 {
1039 int ret = CRYPTO_SUCCESS;
1040 uchar_t digest[SHA512_DIGEST_LENGTH];
1041 uint32_t digest_len, sha_digest_len;
1042
1043 ASSERT(ctx->cc_provider_private != NULL);
1044
1045 /* Set the digest lengths to values appropriate to the mechanism */
1046 switch (PROV_SHA2_HMAC_CTX(ctx)->hc_mech_type) {
1047 case SHA256_HMAC_MECH_INFO_TYPE:
1048 sha_digest_len = digest_len = SHA256_DIGEST_LENGTH;
1049 break;
1050 case SHA384_HMAC_MECH_INFO_TYPE:
1051 sha_digest_len = digest_len = SHA384_DIGEST_LENGTH;
1052 break;
1053 case SHA512_HMAC_MECH_INFO_TYPE:
1054 sha_digest_len = digest_len = SHA512_DIGEST_LENGTH;
1055 break;
1056 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
1057 sha_digest_len = SHA256_DIGEST_LENGTH;
1058 digest_len = PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len;
1059 break;
1060 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
1061 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
1062 sha_digest_len = SHA512_DIGEST_LENGTH;
1063 digest_len = PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len;
1064 break;
1065 }
1066
1067 /*
1068 * We need to just return the length needed to store the output.
1069 * We should not destroy the context for the following cases.
1070 */
1071 if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) {
1072 mac->cd_length = digest_len;
1073 return (CRYPTO_BUFFER_TOO_SMALL);
1074 }
1075
1076 /*
1077 * Do a SHA2 final on the inner context.
1078 */
1079 SHA2Final(digest, &PROV_SHA2_HMAC_CTX(ctx)->hc_icontext);
1080
1081 /*
1082 * Do a SHA2 update on the outer context, feeding the inner
1083 * digest as data.
1084 */
1085 SHA2Update(&PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, digest,
1086 sha_digest_len);
1087
1088 /*
1089 * Do a SHA2 final on the outer context, storing the computing
1090 * digest in the users buffer.
1091 */
1092 switch (mac->cd_format) {
1093 case CRYPTO_DATA_RAW:
1094 if (digest_len != sha_digest_len) {
1095 /*
1096 * The caller requested a short digest. Digest
1097 * into a scratch buffer and return to
1098 * the user only what was requested.
1099 */
1100 SHA2Final(digest,
1101 &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext);
1102 bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
1103 mac->cd_offset, digest_len);
1104 } else {
1105 SHA2Final((unsigned char *)mac->cd_raw.iov_base +
1106 mac->cd_offset,
1107 &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext);
1108 }
1109 break;
1110 case CRYPTO_DATA_UIO:
1111 ret = sha2_digest_final_uio(
1112 &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, mac,
1113 digest_len, digest);
1114 break;
1115 case CRYPTO_DATA_MBLK:
1116 ret = sha2_digest_final_mblk(
1117 &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, mac,
1118 digest_len, digest);
1119 break;
1120 default:
1121 ret = CRYPTO_ARGUMENTS_BAD;
1122 }
1123
1124 if (ret == CRYPTO_SUCCESS)
1125 mac->cd_length = digest_len;
1126 else
1127 mac->cd_length = 0;
1128
1129 bzero(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
1130 kmem_free(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t));
1131 ctx->cc_provider_private = NULL;
1132
1133 return (ret);
1134 }
1135
1136 #define SHA2_MAC_UPDATE(data, ctx, ret) { \
1137 switch (data->cd_format) { \
1138 case CRYPTO_DATA_RAW: \
1139 SHA2Update(&(ctx).hc_icontext, \
1140 (uint8_t *)data->cd_raw.iov_base + \
1141 data->cd_offset, data->cd_length); \
1142 break; \
1143 case CRYPTO_DATA_UIO: \
1144 ret = sha2_digest_update_uio(&(ctx).hc_icontext, data); \
1145 break; \
1146 case CRYPTO_DATA_MBLK: \
1147 ret = sha2_digest_update_mblk(&(ctx).hc_icontext, \
1148 data); \
1149 break; \
1150 default: \
1151 ret = CRYPTO_ARGUMENTS_BAD; \
1152 } \
1153 }
1154
1155 /* ARGSUSED */
1156 static int
sha2_mac_atomic(crypto_provider_handle_t provider,crypto_session_id_t session_id,crypto_mechanism_t * mechanism,crypto_key_t * key,crypto_data_t * data,crypto_data_t * mac,crypto_spi_ctx_template_t ctx_template,crypto_req_handle_t req)1157 sha2_mac_atomic(crypto_provider_handle_t provider,
1158 crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1159 crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1160 crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
1161 {
1162 int ret = CRYPTO_SUCCESS;
1163 uchar_t digest[SHA512_DIGEST_LENGTH];
1164 sha2_hmac_ctx_t sha2_hmac_ctx;
1165 uint32_t sha_digest_len, digest_len, sha_hmac_block_size;
1166 uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1167
1168 /*
1169 * Set the digest length and block size to values appropriate to the
1170 * mechanism
1171 */
1172 switch (mechanism->cm_type) {
1173 case SHA256_HMAC_MECH_INFO_TYPE:
1174 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
1175 sha_digest_len = digest_len = SHA256_DIGEST_LENGTH;
1176 sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
1177 break;
1178 case SHA384_HMAC_MECH_INFO_TYPE:
1179 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
1180 case SHA512_HMAC_MECH_INFO_TYPE:
1181 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
1182 sha_digest_len = digest_len = SHA512_DIGEST_LENGTH;
1183 sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
1184 break;
1185 default:
1186 return (CRYPTO_MECHANISM_INVALID);
1187 }
1188
1189 /* Add support for key by attributes (RFE 4706552) */
1190 if (key->ck_format != CRYPTO_KEY_RAW)
1191 return (CRYPTO_ARGUMENTS_BAD);
1192
1193 if (ctx_template != NULL) {
1194 /* reuse context template */
1195 bcopy(ctx_template, &sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
1196 } else {
1197 sha2_hmac_ctx.hc_mech_type = mechanism->cm_type;
1198 /* no context template, initialize context */
1199 if (keylen_in_bytes > sha_hmac_block_size) {
1200 /*
1201 * Hash the passed-in key to get a smaller key.
1202 * The inner context is used since it hasn't been
1203 * initialized yet.
1204 */
1205 PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
1206 &sha2_hmac_ctx.hc_icontext,
1207 key->ck_data, keylen_in_bytes, digest);
1208 sha2_mac_init_ctx(&sha2_hmac_ctx, digest,
1209 sha_digest_len);
1210 } else {
1211 sha2_mac_init_ctx(&sha2_hmac_ctx, key->ck_data,
1212 keylen_in_bytes);
1213 }
1214 }
1215
1216 /* get the mechanism parameters, if applicable */
1217 if ((mechanism->cm_type % 3) == 2) {
1218 if (mechanism->cm_param == NULL ||
1219 mechanism->cm_param_len != sizeof (ulong_t)) {
1220 ret = CRYPTO_MECHANISM_PARAM_INVALID;
1221 goto bail;
1222 }
1223 PROV_SHA2_GET_DIGEST_LEN(mechanism, digest_len);
1224 if (digest_len > sha_digest_len) {
1225 ret = CRYPTO_MECHANISM_PARAM_INVALID;
1226 goto bail;
1227 }
1228 }
1229
1230 /* do a SHA2 update of the inner context using the specified data */
1231 SHA2_MAC_UPDATE(data, sha2_hmac_ctx, ret);
1232 if (ret != CRYPTO_SUCCESS)
1233 /* the update failed, free context and bail */
1234 goto bail;
1235
1236 /*
1237 * Do a SHA2 final on the inner context.
1238 */
1239 SHA2Final(digest, &sha2_hmac_ctx.hc_icontext);
1240
1241 /*
1242 * Do an SHA2 update on the outer context, feeding the inner
1243 * digest as data.
1244 *
1245 * HMAC-SHA384 needs special handling as the outer hash needs only 48
1246 * bytes of the inner hash value.
1247 */
1248 if (mechanism->cm_type == SHA384_HMAC_MECH_INFO_TYPE ||
1249 mechanism->cm_type == SHA384_HMAC_GEN_MECH_INFO_TYPE)
1250 SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest,
1251 SHA384_DIGEST_LENGTH);
1252 else
1253 SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest, sha_digest_len);
1254
1255 /*
1256 * Do a SHA2 final on the outer context, storing the computed
1257 * digest in the users buffer.
1258 */
1259 switch (mac->cd_format) {
1260 case CRYPTO_DATA_RAW:
1261 if (digest_len != sha_digest_len) {
1262 /*
1263 * The caller requested a short digest. Digest
1264 * into a scratch buffer and return to
1265 * the user only what was requested.
1266 */
1267 SHA2Final(digest, &sha2_hmac_ctx.hc_ocontext);
1268 bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
1269 mac->cd_offset, digest_len);
1270 } else {
1271 SHA2Final((unsigned char *)mac->cd_raw.iov_base +
1272 mac->cd_offset, &sha2_hmac_ctx.hc_ocontext);
1273 }
1274 break;
1275 case CRYPTO_DATA_UIO:
1276 ret = sha2_digest_final_uio(&sha2_hmac_ctx.hc_ocontext, mac,
1277 digest_len, digest);
1278 break;
1279 case CRYPTO_DATA_MBLK:
1280 ret = sha2_digest_final_mblk(&sha2_hmac_ctx.hc_ocontext, mac,
1281 digest_len, digest);
1282 break;
1283 default:
1284 ret = CRYPTO_ARGUMENTS_BAD;
1285 }
1286
1287 if (ret == CRYPTO_SUCCESS) {
1288 mac->cd_length = digest_len;
1289 return (CRYPTO_SUCCESS);
1290 }
1291 bail:
1292 bzero(&sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
1293 mac->cd_length = 0;
1294 return (ret);
1295 }
1296
1297 /* ARGSUSED */
1298 static int
sha2_mac_verify_atomic(crypto_provider_handle_t provider,crypto_session_id_t session_id,crypto_mechanism_t * mechanism,crypto_key_t * key,crypto_data_t * data,crypto_data_t * mac,crypto_spi_ctx_template_t ctx_template,crypto_req_handle_t req)1299 sha2_mac_verify_atomic(crypto_provider_handle_t provider,
1300 crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1301 crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1302 crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
1303 {
1304 int ret = CRYPTO_SUCCESS;
1305 uchar_t digest[SHA512_DIGEST_LENGTH];
1306 sha2_hmac_ctx_t sha2_hmac_ctx;
1307 uint32_t sha_digest_len, digest_len, sha_hmac_block_size;
1308 uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1309
1310 /*
1311 * Set the digest length and block size to values appropriate to the
1312 * mechanism
1313 */
1314 switch (mechanism->cm_type) {
1315 case SHA256_HMAC_MECH_INFO_TYPE:
1316 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
1317 sha_digest_len = digest_len = SHA256_DIGEST_LENGTH;
1318 sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
1319 break;
1320 case SHA384_HMAC_MECH_INFO_TYPE:
1321 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
1322 case SHA512_HMAC_MECH_INFO_TYPE:
1323 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
1324 sha_digest_len = digest_len = SHA512_DIGEST_LENGTH;
1325 sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
1326 break;
1327 default:
1328 return (CRYPTO_MECHANISM_INVALID);
1329 }
1330
1331 /* Add support for key by attributes (RFE 4706552) */
1332 if (key->ck_format != CRYPTO_KEY_RAW)
1333 return (CRYPTO_ARGUMENTS_BAD);
1334
1335 if (ctx_template != NULL) {
1336 /* reuse context template */
1337 bcopy(ctx_template, &sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
1338 } else {
1339 sha2_hmac_ctx.hc_mech_type = mechanism->cm_type;
1340 /* no context template, initialize context */
1341 if (keylen_in_bytes > sha_hmac_block_size) {
1342 /*
1343 * Hash the passed-in key to get a smaller key.
1344 * The inner context is used since it hasn't been
1345 * initialized yet.
1346 */
1347 PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
1348 &sha2_hmac_ctx.hc_icontext,
1349 key->ck_data, keylen_in_bytes, digest);
1350 sha2_mac_init_ctx(&sha2_hmac_ctx, digest,
1351 sha_digest_len);
1352 } else {
1353 sha2_mac_init_ctx(&sha2_hmac_ctx, key->ck_data,
1354 keylen_in_bytes);
1355 }
1356 }
1357
1358 /* get the mechanism parameters, if applicable */
1359 if (mechanism->cm_type % 3 == 2) {
1360 if (mechanism->cm_param == NULL ||
1361 mechanism->cm_param_len != sizeof (ulong_t)) {
1362 ret = CRYPTO_MECHANISM_PARAM_INVALID;
1363 goto bail;
1364 }
1365 PROV_SHA2_GET_DIGEST_LEN(mechanism, digest_len);
1366 if (digest_len > sha_digest_len) {
1367 ret = CRYPTO_MECHANISM_PARAM_INVALID;
1368 goto bail;
1369 }
1370 }
1371
1372 if (mac->cd_length != digest_len) {
1373 ret = CRYPTO_INVALID_MAC;
1374 goto bail;
1375 }
1376
1377 /* do a SHA2 update of the inner context using the specified data */
1378 SHA2_MAC_UPDATE(data, sha2_hmac_ctx, ret);
1379 if (ret != CRYPTO_SUCCESS)
1380 /* the update failed, free context and bail */
1381 goto bail;
1382
1383 /* do a SHA2 final on the inner context */
1384 SHA2Final(digest, &sha2_hmac_ctx.hc_icontext);
1385
1386 /*
1387 * Do an SHA2 update on the outer context, feeding the inner
1388 * digest as data.
1389 *
1390 * HMAC-SHA384 needs special handling as the outer hash needs only 48
1391 * bytes of the inner hash value.
1392 */
1393 if (mechanism->cm_type == SHA384_HMAC_MECH_INFO_TYPE ||
1394 mechanism->cm_type == SHA384_HMAC_GEN_MECH_INFO_TYPE)
1395 SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest,
1396 SHA384_DIGEST_LENGTH);
1397 else
1398 SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest, sha_digest_len);
1399
1400 /*
1401 * Do a SHA2 final on the outer context, storing the computed
1402 * digest in the users buffer.
1403 */
1404 SHA2Final(digest, &sha2_hmac_ctx.hc_ocontext);
1405
1406 /*
1407 * Compare the computed digest against the expected digest passed
1408 * as argument.
1409 */
1410
1411 switch (mac->cd_format) {
1412
1413 case CRYPTO_DATA_RAW:
1414 if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base +
1415 mac->cd_offset, digest_len) != 0)
1416 ret = CRYPTO_INVALID_MAC;
1417 break;
1418
1419 case CRYPTO_DATA_UIO: {
1420 off_t offset = mac->cd_offset;
1421 uint_t vec_idx;
1422 off_t scratch_offset = 0;
1423 size_t length = digest_len;
1424 size_t cur_len;
1425
1426 /* we support only kernel buffer */
1427 if (mac->cd_uio->uio_segflg != UIO_SYSSPACE)
1428 return (CRYPTO_ARGUMENTS_BAD);
1429
1430 /* jump to the first iovec containing the expected digest */
1431 for (vec_idx = 0;
1432 offset >= mac->cd_uio->uio_iov[vec_idx].iov_len &&
1433 vec_idx < mac->cd_uio->uio_iovcnt;
1434 offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len)
1435 ;
1436 if (vec_idx == mac->cd_uio->uio_iovcnt) {
1437 /*
1438 * The caller specified an offset that is
1439 * larger than the total size of the buffers
1440 * it provided.
1441 */
1442 ret = CRYPTO_DATA_LEN_RANGE;
1443 break;
1444 }
1445
1446 /* do the comparison of computed digest vs specified one */
1447 while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) {
1448 cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len -
1449 offset, length);
1450
1451 if (bcmp(digest + scratch_offset,
1452 mac->cd_uio->uio_iov[vec_idx].iov_base + offset,
1453 cur_len) != 0) {
1454 ret = CRYPTO_INVALID_MAC;
1455 break;
1456 }
1457
1458 length -= cur_len;
1459 vec_idx++;
1460 scratch_offset += cur_len;
1461 offset = 0;
1462 }
1463 break;
1464 }
1465
1466 case CRYPTO_DATA_MBLK: {
1467 off_t offset = mac->cd_offset;
1468 mblk_t *mp;
1469 off_t scratch_offset = 0;
1470 size_t length = digest_len;
1471 size_t cur_len;
1472
1473 /* jump to the first mblk_t containing the expected digest */
1474 for (mp = mac->cd_mp; mp != NULL && offset >= MBLKL(mp);
1475 offset -= MBLKL(mp), mp = mp->b_cont)
1476 ;
1477 if (mp == NULL) {
1478 /*
1479 * The caller specified an offset that is larger than
1480 * the total size of the buffers it provided.
1481 */
1482 ret = CRYPTO_DATA_LEN_RANGE;
1483 break;
1484 }
1485
1486 while (mp != NULL && length > 0) {
1487 cur_len = MIN(MBLKL(mp) - offset, length);
1488 if (bcmp(digest + scratch_offset,
1489 mp->b_rptr + offset, cur_len) != 0) {
1490 ret = CRYPTO_INVALID_MAC;
1491 break;
1492 }
1493
1494 length -= cur_len;
1495 mp = mp->b_cont;
1496 scratch_offset += cur_len;
1497 offset = 0;
1498 }
1499 break;
1500 }
1501
1502 default:
1503 ret = CRYPTO_ARGUMENTS_BAD;
1504 }
1505
1506 return (ret);
1507 bail:
1508 bzero(&sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t));
1509 mac->cd_length = 0;
1510 return (ret);
1511 }
1512
1513 /*
1514 * KCF software provider context management entry points.
1515 */
1516
1517 /* ARGSUSED */
1518 static int
sha2_create_ctx_template(crypto_provider_handle_t provider,crypto_mechanism_t * mechanism,crypto_key_t * key,crypto_spi_ctx_template_t * ctx_template,size_t * ctx_template_size,crypto_req_handle_t req)1519 sha2_create_ctx_template(crypto_provider_handle_t provider,
1520 crypto_mechanism_t *mechanism, crypto_key_t *key,
1521 crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size,
1522 crypto_req_handle_t req)
1523 {
1524 sha2_hmac_ctx_t *sha2_hmac_ctx_tmpl;
1525 uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1526 uint32_t sha_digest_len, sha_hmac_block_size;
1527
1528 /*
1529 * Set the digest length and block size to values appropriate to the
1530 * mechanism
1531 */
1532 switch (mechanism->cm_type) {
1533 case SHA256_HMAC_MECH_INFO_TYPE:
1534 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
1535 sha_digest_len = SHA256_DIGEST_LENGTH;
1536 sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE;
1537 break;
1538 case SHA384_HMAC_MECH_INFO_TYPE:
1539 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
1540 case SHA512_HMAC_MECH_INFO_TYPE:
1541 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
1542 sha_digest_len = SHA512_DIGEST_LENGTH;
1543 sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE;
1544 break;
1545 default:
1546 return (CRYPTO_MECHANISM_INVALID);
1547 }
1548
1549 /* Add support for key by attributes (RFE 4706552) */
1550 if (key->ck_format != CRYPTO_KEY_RAW)
1551 return (CRYPTO_ARGUMENTS_BAD);
1552
1553 /*
1554 * Allocate and initialize SHA2 context.
1555 */
1556 sha2_hmac_ctx_tmpl = kmem_alloc(sizeof (sha2_hmac_ctx_t),
1557 crypto_kmflag(req));
1558 if (sha2_hmac_ctx_tmpl == NULL)
1559 return (CRYPTO_HOST_MEMORY);
1560
1561 sha2_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type;
1562
1563 if (keylen_in_bytes > sha_hmac_block_size) {
1564 uchar_t digested_key[SHA512_DIGEST_LENGTH];
1565
1566 /*
1567 * Hash the passed-in key to get a smaller key.
1568 * The inner context is used since it hasn't been
1569 * initialized yet.
1570 */
1571 PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3,
1572 &sha2_hmac_ctx_tmpl->hc_icontext,
1573 key->ck_data, keylen_in_bytes, digested_key);
1574 sha2_mac_init_ctx(sha2_hmac_ctx_tmpl, digested_key,
1575 sha_digest_len);
1576 } else {
1577 sha2_mac_init_ctx(sha2_hmac_ctx_tmpl, key->ck_data,
1578 keylen_in_bytes);
1579 }
1580
1581 *ctx_template = (crypto_spi_ctx_template_t)sha2_hmac_ctx_tmpl;
1582 *ctx_template_size = sizeof (sha2_hmac_ctx_t);
1583
1584 return (CRYPTO_SUCCESS);
1585 }
1586
1587 static int
sha2_free_context(crypto_ctx_t * ctx)1588 sha2_free_context(crypto_ctx_t *ctx)
1589 {
1590 uint_t ctx_len;
1591
1592 if (ctx->cc_provider_private == NULL)
1593 return (CRYPTO_SUCCESS);
1594
1595 /*
1596 * We have to free either SHA2 or SHA2-HMAC contexts, which
1597 * have different lengths.
1598 *
1599 * Note: Below is dependent on the mechanism ordering.
1600 */
1601
1602 if (PROV_SHA2_CTX(ctx)->sc_mech_type % 3 == 0)
1603 ctx_len = sizeof (sha2_ctx_t);
1604 else
1605 ctx_len = sizeof (sha2_hmac_ctx_t);
1606
1607 bzero(ctx->cc_provider_private, ctx_len);
1608 kmem_free(ctx->cc_provider_private, ctx_len);
1609 ctx->cc_provider_private = NULL;
1610
1611 return (CRYPTO_SUCCESS);
1612 }
1613