xref: /freebsd/crypto/libecc/src/hash/sha256.c (revision f0865ec9906d5a18fa2a3b61381f22ce16e606ad)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/lib_ecc_config.h>
17 #ifdef WITH_HASH_SHA256
18 
19 #include <libecc/hash/sha256.h>
20 
21 /* SHA-2 core processing */
sha256_process(sha256_context * ctx,const u8 data[SHA256_BLOCK_SIZE])22 ATTRIBUTE_WARN_UNUSED_RET static int sha256_process(sha256_context *ctx,
23 			   const u8 data[SHA256_BLOCK_SIZE])
24 {
25 	u32 a, b, c, d, e, f, g, h;
26 	u32 W[64];
27 	unsigned int i;
28 	int ret;
29 
30 	MUST_HAVE((data != NULL), ret, err);
31 	SHA256_HASH_CHECK_INITIALIZED(ctx, ret, err);
32 
33 	/* Init our inner variables */
34 	a = ctx->sha256_state[0];
35 	b = ctx->sha256_state[1];
36 	c = ctx->sha256_state[2];
37 	d = ctx->sha256_state[3];
38 	e = ctx->sha256_state[4];
39 	f = ctx->sha256_state[5];
40 	g = ctx->sha256_state[6];
41 	h = ctx->sha256_state[7];
42 
43 	for (i = 0; i < 16; i++) {
44 		GET_UINT32_BE(W[i], data, 4 * i);
45 		SHA2CORE_SHA256(a, b, c, d, e, f, g, h, W[i], K_SHA256[i]);
46 	}
47 
48 	for (i = 16; i < 64; i++) {
49 		SHA2CORE_SHA256(a, b, c, d, e, f, g, h, UPDATEW_SHA256(W, i),
50 				K_SHA256[i]);
51 	}
52 
53 	/* Update state */
54 	ctx->sha256_state[0] += a;
55 	ctx->sha256_state[1] += b;
56 	ctx->sha256_state[2] += c;
57 	ctx->sha256_state[3] += d;
58 	ctx->sha256_state[4] += e;
59 	ctx->sha256_state[5] += f;
60 	ctx->sha256_state[6] += g;
61 	ctx->sha256_state[7] += h;
62 
63 	ret = 0;
64 
65 err:
66 	return ret;
67 }
68 
69 /* Init hash function */
sha256_init(sha256_context * ctx)70 int sha256_init(sha256_context *ctx)
71 {
72 	int ret;
73 
74 	MUST_HAVE((ctx != NULL), ret, err);
75 
76 	ctx->sha256_total = 0;
77 	ctx->sha256_state[0] = 0x6A09E667;
78 	ctx->sha256_state[1] = 0xBB67AE85;
79 	ctx->sha256_state[2] = 0x3C6EF372;
80 	ctx->sha256_state[3] = 0xA54FF53A;
81 	ctx->sha256_state[4] = 0x510E527F;
82 	ctx->sha256_state[5] = 0x9B05688C;
83 	ctx->sha256_state[6] = 0x1F83D9AB;
84 	ctx->sha256_state[7] = 0x5BE0CD19;
85 
86 	/* Tell that we are initialized */
87 	ctx->magic = SHA256_HASH_MAGIC;
88 
89 	ret = 0;
90 
91 err:
92 	return ret;
93 }
94 
95 /* Update hash function */
sha256_update(sha256_context * ctx,const u8 * input,u32 ilen)96 int sha256_update(sha256_context *ctx, const u8 *input, u32 ilen)
97 {
98 	const u8 *data_ptr = input;
99 	u32 remain_ilen = ilen;
100 	u16 fill;
101 	u8 left;
102 	int ret;
103 
104 	MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
105 	SHA256_HASH_CHECK_INITIALIZED(ctx, ret, err);
106 
107 	/* Nothing to process, return */
108 	if (ilen == 0) {
109 		ret = 0;
110 		goto err;
111 	}
112 
113 	/* Get what's left in our local buffer */
114 	left = (ctx->sha256_total & 0x3F);
115 	fill = (u16)(SHA256_BLOCK_SIZE - left);
116 
117 	ctx->sha256_total += ilen;
118 
119 	if ((left > 0) && (remain_ilen >= fill)) {
120 		/* Copy data at the end of the buffer */
121 		ret = local_memcpy(ctx->sha256_buffer + left, data_ptr, fill); EG(ret, err);
122 		ret = sha256_process(ctx, ctx->sha256_buffer); EG(ret, err);
123 		data_ptr += fill;
124 		remain_ilen -= fill;
125 		left = 0;
126 	}
127 
128 	while (remain_ilen >= SHA256_BLOCK_SIZE) {
129 		ret = sha256_process(ctx, data_ptr); EG(ret, err);
130 		data_ptr += SHA256_BLOCK_SIZE;
131 		remain_ilen -= SHA256_BLOCK_SIZE;
132 	}
133 
134 	if (remain_ilen > 0) {
135 		ret = local_memcpy(ctx->sha256_buffer + left, data_ptr, remain_ilen); EG(ret, err);
136 	}
137 
138 	ret = 0;
139 
140 err:
141 	return ret;
142 }
143 
144 /* Finalize */
sha256_final(sha256_context * ctx,u8 output[SHA256_DIGEST_SIZE])145 int sha256_final(sha256_context *ctx, u8 output[SHA256_DIGEST_SIZE])
146 {
147 	unsigned int block_present = 0;
148 	u8 last_padded_block[2 * SHA256_BLOCK_SIZE];
149 	int ret;
150 
151 	MUST_HAVE((output != NULL), ret, err);
152 	SHA256_HASH_CHECK_INITIALIZED(ctx, ret, err);
153 
154 	/* Fill in our last block with zeroes */
155 	ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err);
156 
157 	/* This is our final step, so we proceed with the padding */
158 	block_present = (ctx->sha256_total % SHA256_BLOCK_SIZE);
159 	if (block_present != 0) {
160 		/* Copy what's left in our temporary context buffer */
161 		ret = local_memcpy(last_padded_block, ctx->sha256_buffer,
162 			     block_present); EG(ret, err);
163 	}
164 
165 	/* Put the 0x80 byte, beginning of padding  */
166 	last_padded_block[block_present] = 0x80;
167 
168 	/* Handle possible additional block */
169 	if (block_present > (SHA256_BLOCK_SIZE - 1 - sizeof(u64))) {
170 		/* We need an additional block */
171 		PUT_UINT64_BE(8 * ctx->sha256_total, last_padded_block,
172 			      (2 * SHA256_BLOCK_SIZE) - sizeof(u64));
173 		ret = sha256_process(ctx, last_padded_block); EG(ret, err);
174 		ret = sha256_process(ctx, last_padded_block + SHA256_BLOCK_SIZE); EG(ret, err);
175 	} else {
176 		/* We do not need an additional block */
177 		PUT_UINT64_BE(8 * ctx->sha256_total, last_padded_block,
178 			      SHA256_BLOCK_SIZE - sizeof(u64));
179 		ret = sha256_process(ctx, last_padded_block); EG(ret, err);
180 	}
181 
182 	/* Output the hash result */
183 	PUT_UINT32_BE(ctx->sha256_state[0], output, 0);
184 	PUT_UINT32_BE(ctx->sha256_state[1], output, 4);
185 	PUT_UINT32_BE(ctx->sha256_state[2], output, 8);
186 	PUT_UINT32_BE(ctx->sha256_state[3], output, 12);
187 	PUT_UINT32_BE(ctx->sha256_state[4], output, 16);
188 	PUT_UINT32_BE(ctx->sha256_state[5], output, 20);
189 	PUT_UINT32_BE(ctx->sha256_state[6], output, 24);
190 	PUT_UINT32_BE(ctx->sha256_state[7], output, 28);
191 
192 	/* Tell that we are uninitialized */
193 	ctx->magic = WORD(0);
194 
195 	ret = 0;
196 
197 err:
198 	return ret;
199 }
200 
sha256_scattered(const u8 ** inputs,const u32 * ilens,u8 output[SHA256_DIGEST_SIZE])201 int sha256_scattered(const u8 **inputs, const u32 *ilens,
202 		      u8 output[SHA256_DIGEST_SIZE])
203 {
204 	sha256_context ctx;
205 	int ret, pos = 0;
206 
207 	MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
208 
209 	ret = sha256_init(&ctx); EG(ret, err);
210 
211 	while (inputs[pos] != NULL) {
212 		ret = sha256_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
213 		pos += 1;
214 	}
215 
216 	ret = sha256_final(&ctx, output);
217 
218 err:
219 	return ret;
220 }
221 
sha256(const u8 * input,u32 ilen,u8 output[SHA256_DIGEST_SIZE])222 int sha256(const u8 *input, u32 ilen, u8 output[SHA256_DIGEST_SIZE])
223 {
224 	sha256_context ctx;
225 	int ret;
226 
227 	ret = sha256_init(&ctx); EG(ret, err);
228 	ret = sha256_update(&ctx, input, ilen); EG(ret, err);
229 	ret = sha256_final(&ctx, output);
230 
231 err:
232 	return ret;
233 }
234 
235 #else /* WITH_HASH_SHA256 */
236 
237 /*
238  * Dummy definition to avoid the empty translation unit ISO C warning
239  */
240 typedef int dummy;
241 #endif /* WITH_HASH_SHA256 */
242