1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27
28 /*
29 * Serengeti Environmental Information driver (sgenv)
30 *
31 * This driver requests the environmental properties from the SC. These
32 * request-response transactions are transferred through the SBBC mailbox,
33 * between the Domain and the SC.
34 *
35 * All sensors have the same sort of properties: Low and high limits, warning
36 * thresholds, last measured value, time of measurement, units (e.g., degrees
37 * Celsius, volts, etc.), and so on.
38 *
39 * Each sensor is named by a unique Tag. The Tag identifies the geographical
40 * location of the sensor in the Serengeti, and what it is the sensor measures.
41 *
42 * Requestable sensor properties are broken into two types: Those which are
43 * quasi-constant (infrequently change) - e.g., tolerance-defining low and high
44 * limits; and those which are volatile (typically change) - e.g., the current
45 * measurement.
46 *
47 * Unfortunately, property sets are too large to comprise a single mailbox
48 * message, so the sets are further subdivided into notionally arbitrary
49 * collections. NOTE: The SC-mailbox framework now supports fragmented messages
50 * which could allow us to request the data in larger chunks in the future.
51 *
52 * Each collection is fetched by a separate transaction.
53 *
54 * Firstly there is a transaction to obtain a list of all collections. Each non-
55 * zero key in this list is associated whith one of the collections of sensors.
56 * (This sparse list of keys is then used as an index to obtain all the sensor
57 * data for each collection).
58 *
59 * For each collection, there is one request-reply transaction to obtain a list
60 * of all sensors in that collection and the limits that apply to each; and a
61 * separate request-reply transaction to obtain the measurements from the
62 * sensors in the collection.
63 *
64 * The sgenv driver assembles each property set from the constituent
65 * collections, and caches the assembled property sets into the appropriate
66 * cache (env_cache, board_cache). The caches are created at startup and are
67 * updated on receipt of events from the SC. These events (which include DR
68 * events and ENV events) notify sgenv of configuration changes and
69 * environmental state changes (such as a sensor state change, Fan speed
70 * change).
71 *
72 * The SC-APP maintains a pseudo-sensor in each collection "measuring" changes
73 * to the quasi-constants in that collection. By monitoring these pseudo-sensor
74 * measurements, the kstat driver avoids redundant or speculative re-fetches of
75 * the quasi-constant properties.
76 */
77
78 #include <sys/time.h>
79 #include <sys/errno.h>
80 #include <sys/kmem.h>
81 #include <sys/stat.h>
82 #include <sys/cmn_err.h>
83 #include <sys/disp.h>
84
85 #include <sys/conf.h>
86 #include <sys/modctl.h>
87 #include <sys/devops.h>
88 #include <sys/ddi.h>
89 #include <sys/sunddi.h>
90
91 #include <sys/sgevents.h>
92 #include <sys/sysevent.h>
93 #include <sys/sysevent/eventdefs.h>
94 #include <sys/sysevent/domain.h>
95 #include <sys/sysevent/env.h>
96
97 #include <sys/serengeti.h>
98 #include <sys/sgfrutypes.h>
99
100 #include <sys/sgsbbc.h>
101 #include <sys/sgsbbc_iosram.h>
102 #include <sys/sgsbbc_mailbox.h>
103
104 #include <sys/sbd_ioctl.h> /* sbd header files needed for board support */
105 #include <sys/sbdp_priv.h>
106 #include <sys/sbd.h>
107
108 #include <sys/sgenv_impl.h>
109
110
111 /*
112 * Global Variables - can be patched from Solaris
113 * ==============================================
114 */
115
116 /*
117 * the maximum amount of time this driver is prepared to wait for the mailbox
118 * to reply before it decides to timeout. The value is initially set in the
119 * _init() routine to the global Serengeti variable <sbbc_mbox_default_timeout>
120 * but could be tuned specifically for SGENV after booting up the system.
121 */
122 int sgenv_max_mbox_wait_time = 0;
123
124 #ifdef DEBUG
125 /*
126 * This variable controls the level of debug output
127 */
128 uint_t sgenv_debug = SGENV_DEBUG_NONE;
129 #endif
130
131
132 /*
133 * Module Variables
134 * ================
135 */
136
137 /*
138 * Driver entry points
139 */
140 static struct cb_ops sgenv_cb_ops = {
141 nodev, /* open() */
142 nodev, /* close() */
143 nodev, /* strategy() */
144 nodev, /* print() */
145 nodev, /* dump() */
146 nodev, /* read() */
147 nodev, /* write() */
148 nodev, /* ioctl() */
149 nodev, /* devmap() */
150 nodev, /* mmap() */
151 ddi_segmap, /* segmap() */
152 nochpoll, /* poll() */
153 ddi_prop_op, /* prop_op() */
154 NULL, /* cb_str */
155 D_NEW | D_MP /* cb_flag */
156 };
157
158
159 static struct dev_ops sgenv_ops = {
160 DEVO_REV,
161 0, /* ref count */
162 ddi_getinfo_1to1, /* getinfo() */
163 nulldev, /* identify() */
164 nulldev, /* probe() */
165 sgenv_attach, /* attach() */
166 sgenv_detach, /* detach */
167 nodev, /* reset */
168 &sgenv_cb_ops, /* pointer to cb_ops structure */
169 (struct bus_ops *)NULL,
170 nulldev, /* power() */
171 ddi_quiesce_not_needed, /* quiesce() */
172 };
173
174 /*
175 * Loadable module support.
176 */
177 extern struct mod_ops mod_driverops;
178
179 static struct modldrv modldrv = {
180 &mod_driverops, /* Type of module. This is a driver */
181 "Environmental Driver", /* Name of the module */
182 &sgenv_ops /* pointer to the dev_ops structure */
183 };
184
185 static struct modlinkage modlinkage = {
186 MODREV_1,
187 &modldrv,
188 NULL
189 };
190
191 /* Opaque state structure pointer */
192 static void *sgenv_statep;
193
194 /*
195 * <env_cache> is a cache of all the sensor readings which is persistent
196 * between kstat reads. It is created at init and gets updated upon receipt
197 * of events from the SC.
198 *
199 * The kstat_update function takes a copy of the non-zero entries in this
200 * cache and creates a temp buffer called env_cache_snapshot. The
201 * kstat_snapshot function then bcopies the env_cache_snapshot into the
202 * kstat buffer. This is done because there is no way to ensure that the
203 * env_cache won't change between the kstat_update and the kstat_snapshot
204 * which will cause problems as the update sets the ks_data_size.
205 */
206 static env_sensor_t *env_cache[SGENV_MAX_HPU_KEYS] = {NULL};
207 static void *env_cache_snapshot = NULL;
208 static size_t env_cache_snapshot_size = 0;
209
210 /*
211 * This is set to TRUE the first time env data is stored in the cache
212 * so that at least from then on, old data can be returned if a call to
213 * the mailbox fails.
214 */
215 static int env_cache_updated = FALSE;
216
217 /*
218 * This lock is needed by the variable-sized kstat which returns
219 * environmental info. It prevents data-size races with kstat clients.
220 */
221 static kmutex_t env_kstat_lock;
222
223 /*
224 * The <env_cache> can be accessed asynchronously by the polling function
225 * and the kstat_read framework. This mutex ensures that access to the data
226 * is controlled correctly.
227 */
228 static kmutex_t env_cache_lock;
229
230 /*
231 * We need to store the last time we asked the SC for environmental information
232 * so that we do not send too many requests in a short period of time.
233 */
234 static hrtime_t last_env_read_time = 0;
235
236 /*
237 * Variables to coordinate between the handlers which are triggered when
238 * the env cache needs to be updated and the thread which does the work.
239 */
240 static volatile int env_thread_run = 0;
241 static kthread_t *env_thread = NULL;
242 static kt_did_t env_thread_tid;
243
244 static kcondvar_t env_flag_cond;
245 static kmutex_t env_flag_lock;
246 static boolean_t env_cache_updating = B_FALSE;
247 static boolean_t env_cache_update_needed = B_TRUE;
248
249 /*
250 * <board_cache> is a cache of all the board status info and it is persistent
251 * between kstat reads.
252 *
253 * The kstat_update function takes a copy of the non-zero entries in this
254 * cache and copies them into the board_cache_snapshot buffer. The
255 * kstat_snapshot function then bcopies the board_cache_snapshot into the
256 * kstat buffer. This is done because there is no way to ensure that the
257 * board_cache won't change between the kstat_update and the kstat_snapshot
258 * which will cause problems as the update sets the ks_data_size.
259 */
260 static sg_board_info_t board_cache[SG_MAX_BDS] = {NULL};
261 static sg_board_info_t board_cache_snapshot[SG_MAX_BDS] = {NULL};
262 static int board_cache_updated = FALSE;
263
264 /*
265 * This mutex ensures the <board_cache> is not destroyed while the board data
266 * is being collected.
267 */
268 static kmutex_t board_cache_lock;
269
270 /*
271 * This lock is needed by the variable-sized kstat which returns
272 * board status info. It prevents data-size races with kstat clients.
273 */
274 static kmutex_t board_kstat_lock;
275
276 /*
277 * This is a count of the number of board readings were stored by
278 * the kstat_update routine - this is needed by the kstat_snapshot routine.
279 */
280 static int board_count = 0;
281 static int board_count_snapshot = 0;
282
283 /*
284 * We need to store the last time we asked the SC for board information
285 * so that we do not send too many requests in a short period of time.
286 */
287 static hrtime_t last_board_read_time = 0;
288
289 /*
290 * Variables to coordinate between the handlers which are triggered when
291 * the board cache needs to be updated and the thread which does the work.
292 */
293 static volatile int board_thread_run = 0;
294 static kthread_t *board_thread = NULL;
295 static kt_did_t board_thread_tid;
296 static kcondvar_t board_flag_cond;
297
298 static kmutex_t board_flag_lock;
299 static boolean_t board_cache_updating = B_FALSE;
300 static boolean_t board_cache_update_needed = B_TRUE;
301
302 /*
303 * Used to keep track of the number of sensors associated with each key.
304 * The sum of all the values in this array is used to set ks_data_size.
305 */
306 static int vol_sensor_count[SGENV_MAX_HPU_KEYS] = {0};
307
308 /*
309 * This variable keeps a count of the number of errors that have occurred
310 * when we make calls to the mailbox for Env or Board data.
311 */
312 static int sgenv_mbox_error_count = 0;
313
314 /*
315 * mutex which protects the keyswitch interrupt handler.
316 */
317 static kmutex_t keysw_hdlr_lock;
318
319 /*
320 * mutex which protects the env interrupt handler.
321 */
322 static kmutex_t env_hdlr_lock;
323
324 /*
325 * mutex which protects the DR handler interrupt handler.
326 */
327 static kmutex_t dr_hdlr_lock;
328
329 /*
330 * Payloads of the event handlers.
331 */
332 static sg_event_key_position_t keysw_payload;
333 static sbbc_msg_t keysw_payload_msg;
334
335 static sg_event_env_changed_t env_payload;
336 static sbbc_msg_t env_payload_msg;
337
338 static sg_event_fan_status_t fan_payload;
339 static sbbc_msg_t fan_payload_msg;
340
341 static sg_system_fru_descriptor_t dr_payload;
342 static sbbc_msg_t dr_payload_msg;
343
344 /*
345 * The following 3 arrays list all possible HPUs, Parts and Device types
346 */
347
348 /*
349 * ensure that all possible HPUs exported, as described in the main comment
350 * in <sys/sensor_tag.h>, are accounted for here.
351 */
352 static const hpu_value_t hpus[] = {
353 HPU_ENTRY(SG_HPU_TYPE_UNKNOWN),
354 HPU_ENTRY(SG_HPU_TYPE_CPU_BOARD),
355 HPU_ENTRY(SG_HPU_TYPE_PCI_IO_BOARD),
356 HPU_ENTRY(SG_HPU_TYPE_CPCI_IO_BOARD),
357 HPU_ENTRY(SG_HPU_TYPE_SP_CPCI_IO_BOARD),
358 HPU_ENTRY(SG_HPU_TYPE_REPEATER_BOARD),
359 HPU_ENTRY(SG_HPU_TYPE_L2_REPEATER_BOARD),
360 HPU_ENTRY(SG_HPU_TYPE_SYSTEM_CONTROLLER_BOARD),
361 HPU_ENTRY(SG_HPU_TYPE_SP_SYSTEM_CONTROLLER_BOARD),
362 HPU_ENTRY(SG_HPU_TYPE_A123_POWER_SUPPLY),
363 HPU_ENTRY(SG_HPU_TYPE_A138_POWER_SUPPLY),
364 HPU_ENTRY(SG_HPU_TYPE_A145_POWER_SUPPLY),
365 HPU_ENTRY(SG_HPU_TYPE_A152_POWER_SUPPLY),
366 HPU_ENTRY(SG_HPU_TYPE_A153_POWER_SUPPLY),
367 HPU_ENTRY(SG_HPU_TYPE_RACK_FAN_TRAY),
368 HPU_ENTRY(SG_HPU_TYPE_SP_FAN_TRAY),
369 HPU_ENTRY(SG_HPU_TYPE_MD_TOP_IO_FAN_TRAY),
370 HPU_ENTRY(SG_HPU_TYPE_MD_BOTTOM_IO_FAN_TRAY),
371 HPU_ENTRY(SG_HPU_TYPE_R12_THREE_FAN_TRAY),
372 HPU_ENTRY(SG_HPU_TYPE_K12_IO_ONE_FAN_TRAY),
373 HPU_ENTRY(SG_HPU_TYPE_K12_CPU_THREE_FAN_TRAY),
374 HPU_ENTRY(SG_HPU_TYPE_R24_IO_FOUR_FAN_TRAY),
375 HPU_ENTRY(SG_HPU_TYPE_R24_CPU_SIX_FAN_TRAY),
376 0, (char *)NULL
377 };
378
379 static const struct part_value parts[] = {
380 PART_VALUE(SG_SENSOR_PART_SBBC),
381 PART_VALUE(SG_SENSOR_PART_SDC),
382 PART_VALUE(SG_SENSOR_PART_AR),
383 PART_VALUE(SG_SENSOR_PART_CBH),
384 PART_VALUE(SG_SENSOR_PART_DX),
385 PART_VALUE(SG_SENSOR_PART_CHEETAH),
386 PART_VALUE(SG_SENSOR_PART_1_5_VDC),
387 PART_VALUE(SG_SENSOR_PART_3_3_VDC),
388 PART_VALUE(SG_SENSOR_PART_5_VDC),
389 PART_VALUE(SG_SENSOR_PART_12_VDC),
390 PART_VALUE(SG_SENSOR_PART_48_VDC),
391 PART_VALUE(SG_SENSOR_PART_CURRENT),
392 PART_VALUE(SG_SENSOR_PART_BOARD),
393 PART_VALUE(SG_SENSOR_PART_SCAPP),
394 PART_VALUE(SG_SENSOR_PART_SCHIZO),
395 PART_VALUE(SG_SENSOR_PART_FAN),
396 0, (char *)NULL
397 };
398
399 static const struct type_value types[] = {
400 TYPE_VALUE(SG_SENSOR_TYPE_CURRENT, SG_CURRENT_SCALE),
401 TYPE_VALUE(SG_SENSOR_TYPE_TEMPERATURE, SG_TEMPERATURE_SCALE),
402 TYPE_VALUE(SG_SENSOR_TYPE_1_5_VDC, SG_1_5_VDC_SCALE),
403 TYPE_VALUE(SG_SENSOR_TYPE_1_8_VDC, SG_1_8_VDC_SCALE),
404 TYPE_VALUE(SG_SENSOR_TYPE_3_3_VDC, SG_3_3_VDC_SCALE),
405 TYPE_VALUE(SG_SENSOR_TYPE_5_VDC, SG_5_VDC_SCALE),
406 TYPE_VALUE(SG_SENSOR_TYPE_12_VDC, SG_12_VDC_SCALE),
407 TYPE_VALUE(SG_SENSOR_TYPE_48_VDC, SG_48_VDC_SCALE),
408 TYPE_VALUE(SG_SENSOR_TYPE_ENVDB, 1),
409 TYPE_VALUE(SG_SENSOR_TYPE_COOLING, 1),
410 0, (char *)NULL
411 };
412
413 int
_init(void)414 _init(void)
415 {
416 int error = 0;
417
418 error = ddi_soft_state_init(&sgenv_statep,
419 sizeof (sgenv_soft_state_t), 1);
420
421 if (error)
422 return (error);
423
424 error = mod_install(&modlinkage);
425 if (error) {
426 ddi_soft_state_fini(&sgenv_statep);
427 return (error);
428 }
429
430 mutex_init(&env_kstat_lock, NULL, MUTEX_DEFAULT, NULL);
431 mutex_init(&env_cache_lock, NULL, MUTEX_DEFAULT, NULL);
432 mutex_init(&env_flag_lock, NULL, MUTEX_DEFAULT, NULL);
433 cv_init(&env_flag_cond, NULL, CV_DEFAULT, NULL);
434
435 mutex_init(&board_cache_lock, NULL, MUTEX_DEFAULT, NULL);
436 mutex_init(&board_kstat_lock, NULL, MUTEX_DEFAULT, NULL);
437 mutex_init(&board_flag_lock, NULL, MUTEX_DEFAULT, NULL);
438 cv_init(&board_flag_cond, NULL, CV_DEFAULT, NULL);
439
440 mutex_init(&keysw_hdlr_lock, NULL, MUTEX_DEFAULT, NULL);
441 mutex_init(&env_hdlr_lock, NULL, MUTEX_DEFAULT, NULL);
442 mutex_init(&dr_hdlr_lock, NULL, MUTEX_DEFAULT, NULL);
443
444 /* set the default timeout value */
445 sgenv_max_mbox_wait_time = sbbc_mbox_default_timeout;
446
447 return (error);
448 }
449
450
451 int
_info(struct modinfo * modinfop)452 _info(struct modinfo *modinfop)
453 {
454 return (mod_info(&modlinkage, modinfop));
455 }
456
457
458 int
_fini(void)459 _fini(void)
460 {
461 int error = 0;
462
463 error = mod_remove(&modlinkage);
464 if (error)
465 return (error);
466
467 mutex_destroy(&env_kstat_lock);
468 mutex_destroy(&env_cache_lock);
469
470 mutex_destroy(&board_cache_lock);
471 mutex_destroy(&board_kstat_lock);
472
473 mutex_destroy(&keysw_hdlr_lock);
474 mutex_destroy(&env_hdlr_lock);
475 mutex_destroy(&dr_hdlr_lock);
476
477 ddi_soft_state_fini(&sgenv_statep);
478
479 return (error);
480 }
481
482
483 static int
sgenv_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)484 sgenv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
485 {
486 sgenv_soft_state_t *softsp;
487
488 int instance;
489 int err;
490
491 switch (cmd) {
492 case DDI_ATTACH:
493
494 instance = ddi_get_instance(dip);
495
496 /* allocate a global sgenv_soft_state structure */
497 err = ddi_soft_state_zalloc(sgenv_statep, instance);
498 if (err != DDI_SUCCESS) {
499 cmn_err(CE_WARN, "attach: could not allocate state "
500 "structure for inst %d.", instance);
501 return (DDI_FAILURE);
502 }
503
504 softsp = ddi_get_soft_state(sgenv_statep, instance);
505 if (softsp == NULL) {
506 ddi_soft_state_free(sgenv_statep, instance);
507 cmn_err(CE_WARN, "attach: could not get state "
508 "structure for inst %d.", instance);
509 return (DDI_FAILURE);
510 }
511
512 softsp->dip = dip;
513 softsp->instance = instance;
514
515 err = sgenv_add_kstats(softsp);
516 if (err != 0) {
517 /*
518 * Some of the kstats may have been created before the
519 * error occurred in sgenv_add_kstats(), so we call
520 * sgenv_remove_kstats() which removes any kstats
521 * already created.
522 */
523 sgenv_remove_kstats(softsp);
524 ddi_soft_state_free(sgenv_statep, instance);
525 return (DDI_FAILURE);
526 }
527
528 /*
529 * Before we setup the framework to read the data from the SC
530 * we need to ensure the caches are initialized correctly.
531 */
532 sgenv_init_board_cache();
533 sgenv_init_env_cache();
534
535 /*
536 * Add the threads which will update the env and board caches
537 * and post events to Sysevent Framework in the background
538 * when the interrupt handlers watching for ENV/DR events
539 * indicate to the threads that they need to do so.
540 */
541 err = sgenv_create_cache_update_threads();
542 if (err != DDI_SUCCESS) {
543 sgenv_remove_kstats(softsp);
544 ddi_soft_state_free(sgenv_statep, instance);
545 return (DDI_FAILURE);
546 }
547
548 err = ddi_create_minor_node(dip, SGENV_DRV_NAME, S_IFCHR,
549 instance, DDI_PSEUDO, NULL);
550 if (err != DDI_SUCCESS) {
551 sgenv_remove_kstats(softsp);
552 (void) sgenv_remove_cache_update_threads();
553 ddi_soft_state_free(sgenv_statep, instance);
554 return (DDI_FAILURE);
555 }
556
557 /*
558 * Add the handlers which watch for unsolicited messages
559 * and post event to Sysevent Framework.
560 */
561 err = sgenv_add_intr_handlers();
562 if (err != DDI_SUCCESS) {
563 cmn_err(CE_WARN, "Failed to add event handlers");
564 (void) sgenv_remove_intr_handlers();
565 sgenv_remove_kstats(softsp);
566 (void) sgenv_remove_cache_update_threads();
567 ddi_soft_state_free(sgenv_statep, instance);
568 return (DDI_FAILURE);
569 }
570
571 ddi_report_dev(dip);
572
573 return (DDI_SUCCESS);
574
575 case DDI_RESUME:
576 return (DDI_SUCCESS);
577
578 default:
579 return (DDI_FAILURE);
580 }
581 }
582
583
584 static int
sgenv_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)585 sgenv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
586 {
587 sgenv_soft_state_t *softsp;
588
589 int instance;
590 int err;
591
592 switch (cmd) {
593 case DDI_DETACH:
594
595 instance = ddi_get_instance(dip);
596
597 softsp = ddi_get_soft_state(sgenv_statep, instance);
598 if (softsp == NULL) {
599 cmn_err(CE_WARN, "detach: could not get state "
600 "structure for inst %d.", instance);
601 return (DDI_FAILURE);
602 }
603
604 err = sgenv_remove_cache_update_threads();
605 if (err != DDI_SUCCESS) {
606 cmn_err(CE_WARN, "Failed to remove update threads");
607 }
608
609 /*
610 * Remove the handlers which watch for unsolicited messages
611 * and post event to Sysevent Framework.
612 */
613 err = sgenv_remove_intr_handlers();
614 if (err != DDI_SUCCESS) {
615 cmn_err(CE_WARN, "Failed to remove event handlers");
616 }
617
618 sgenv_remove_kstats(softsp);
619
620 ddi_soft_state_free(sgenv_statep, instance);
621
622 ddi_remove_minor_node(dip, NULL);
623
624 return (DDI_SUCCESS);
625
626 case DDI_SUSPEND:
627 return (DDI_SUCCESS);
628
629 default:
630 return (DDI_FAILURE);
631 }
632 }
633
634
635 static int
sgenv_add_kstats(sgenv_soft_state_t * softsp)636 sgenv_add_kstats(sgenv_soft_state_t *softsp)
637 {
638 kstat_t *ksp;
639 kstat_named_t *keyswitch_named_data;
640
641 int inst = softsp->instance;
642
643 /*
644 * Create the 'keyswitch position' named kstat.
645 */
646 ksp = kstat_create(SGENV_DRV_NAME, inst, SG_KEYSWITCH_KSTAT_NAME,
647 "misc", KSTAT_TYPE_NAMED, 1, NULL);
648
649 if (ksp != NULL) {
650 /* initialize the named kstat */
651 keyswitch_named_data = (struct kstat_named *)(ksp->ks_data);
652
653 kstat_named_init(&keyswitch_named_data[0],
654 POSITION_KSTAT_NAME,
655 KSTAT_DATA_INT32);
656
657 ksp->ks_update = sgenv_keyswitch_kstat_update;
658 kstat_install(ksp);
659
660 /* update the soft state */
661 softsp->keyswitch_ksp = ksp;
662
663 } else {
664 cmn_err(CE_WARN, "Keyswitch: kstat_create failed");
665 return (-1);
666 }
667
668
669 /*
670 * Environmental Information.
671 */
672 ksp = kstat_create(SGENV_DRV_NAME, inst, SG_ENV_INFO_KSTAT_NAME,
673 "misc", KSTAT_TYPE_RAW, 0,
674 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE);
675
676 if (ksp != NULL) {
677 ksp->ks_data = NULL;
678 ksp->ks_data_size = 0;
679 ksp->ks_snaptime = 0;
680 ksp->ks_update = sgenv_env_info_kstat_update;
681 ksp->ks_snapshot = sgenv_env_info_kstat_snapshot;
682 ksp->ks_lock = &env_kstat_lock;
683 kstat_install(ksp);
684
685 /* update the soft state */
686 softsp->env_info_ksp = ksp;
687
688 } else {
689 cmn_err(CE_WARN, "Environmental Info: kstat_create failed");
690 return (-1);
691 }
692
693
694 /*
695 * Board Status Information.
696 */
697 ksp = kstat_create(SGENV_DRV_NAME, inst, SG_BOARD_STATUS_KSTAT_NAME,
698 "misc", KSTAT_TYPE_RAW, 0,
699 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE);
700
701 if (ksp != NULL) {
702 ksp->ks_data = NULL;
703 ksp->ks_data_size = 0;
704 ksp->ks_snaptime = 0;
705 ksp->ks_update = sgenv_board_info_kstat_update;
706 ksp->ks_snapshot = sgenv_board_info_kstat_snapshot;
707 ksp->ks_lock = &board_kstat_lock;
708 kstat_install(ksp);
709
710 /* update the soft state */
711 softsp->board_info_ksp = ksp;
712
713 } else {
714 cmn_err(CE_WARN, "Board Status Info: kstat_create failed");
715 return (-1);
716 }
717
718 return (0);
719 }
720
721
722 static void
sgenv_remove_kstats(sgenv_soft_state_t * softsp)723 sgenv_remove_kstats(sgenv_soft_state_t *softsp)
724 {
725 kstat_t *ksp;
726
727 ksp = softsp->keyswitch_ksp;
728 if (ksp != NULL) {
729 softsp->keyswitch_ksp = NULL;
730 kstat_delete(ksp);
731 }
732
733 ksp = softsp->env_info_ksp;
734 if (ksp != NULL) {
735 sgenv_destroy_env_cache();
736 softsp->env_info_ksp = NULL;
737 ksp->ks_lock = NULL;
738 kstat_delete(ksp);
739 }
740
741 ksp = softsp->board_info_ksp;
742 if (ksp != NULL) {
743 softsp->board_info_ksp = NULL;
744 ksp->ks_lock = NULL;
745 kstat_delete(ksp);
746 }
747 }
748
749
750 /*
751 * This function registers mailbox interrupt handlers to watch for certain
752 * unsolicited mailbox messages, which indicate that some event has occurred.
753 *
754 * Currently only the following events are handled:
755 * MBOX_EVENT_KEY_SWITCH
756 * MBOX_EVENT_ENV
757 * - Thresholds/Limits Exceeded
758 * - Fan Status changed
759 *
760 * ERRORS:
761 * We return DDI_FAILURE if we fail to register any one of the
762 * interrupt handlers.
763 */
764 static int
sgenv_add_intr_handlers(void)765 sgenv_add_intr_handlers(void)
766 {
767 int err;
768
769 /*
770 * Register an interrupt handler with the sgsbbc driver for the
771 * MBOX_EVENT_KEY_SWITCH events.
772 * - The virtual keyswitch has changed, we generate a sysevent.
773 */
774 keysw_payload_msg.msg_buf = (caddr_t)&keysw_payload;
775 keysw_payload_msg.msg_len = sizeof (keysw_payload);
776
777 err = sbbc_mbox_reg_intr(MBOX_EVENT_KEY_SWITCH, sgenv_keyswitch_handler,
778 &keysw_payload_msg, NULL, &keysw_hdlr_lock);
779 if (err != 0) {
780 cmn_err(CE_WARN, "Failed to register MBOX_EVENT_KEY_SWITCH "
781 "handler. Err=%d", err);
782 return (DDI_FAILURE);
783 }
784
785 /*
786 * Register an interrupt handler with the sgsbbc driver for the
787 * MBOX_EVENT_ENV events.
788 * - Thresholds/Limits Exceeded, we generate a sysevent
789 * and we update our caches.
790 */
791 env_payload_msg.msg_buf = (caddr_t)&env_payload;
792 env_payload_msg.msg_len = sizeof (env_payload);
793
794 err = sbbc_mbox_reg_intr(MBOX_EVENT_ENV, sgenv_env_data_handler,
795 &env_payload_msg, NULL, &env_hdlr_lock);
796 if (err != 0) {
797 cmn_err(CE_WARN, "Failed to register MBOX_EVENT_ENV "
798 "(env) handler. Err=%d", err);
799 return (DDI_FAILURE);
800 }
801
802 /*
803 * Register an interrupt handler with the sgsbbc driver for the
804 * MBOX_EVENT_ENV events.
805 * - Fan Status changed, we generate a sysevent, and
806 * we update the env cache only.
807 */
808 fan_payload_msg.msg_buf = (caddr_t)&fan_payload;
809 fan_payload_msg.msg_len = sizeof (fan_payload);
810
811 err = sbbc_mbox_reg_intr(MBOX_EVENT_ENV, sgenv_fan_status_handler,
812 &fan_payload_msg, NULL, &env_hdlr_lock);
813 if (err != 0) {
814 cmn_err(CE_WARN, "Failed to register MBOX_EVENT_ENV (fan)"
815 "handler. Err=%d", err);
816 return (DDI_FAILURE);
817 }
818
819 /*
820 * Register an interrupt handler with the sgsbbc driver for the
821 * MBOX_EVENT_GENERIC events.
822 * - DR state change, we update our caches.
823 */
824 dr_payload_msg.msg_buf = (caddr_t)&dr_payload;
825 dr_payload_msg.msg_len = sizeof (dr_payload);
826
827 err = sbbc_mbox_reg_intr(MBOX_EVENT_GENERIC, sgenv_dr_event_handler,
828 &dr_payload_msg, NULL, &dr_hdlr_lock);
829 if (err != 0) {
830 cmn_err(CE_WARN, "Failed to register MBOX_EVENT_GENERIC (DR)"
831 "handler. Err=%d", err);
832 return (DDI_FAILURE);
833 }
834
835 return (DDI_SUCCESS);
836 }
837
838 /*
839 * This function unregisters the mailbox interrupt handlers.
840 *
841 * ERRORS:
842 * We return DDI_FAILURE if we fail to register any one of the
843 * interrupt handlers.
844 */
845 static int
sgenv_remove_intr_handlers(void)846 sgenv_remove_intr_handlers(void)
847 {
848 int rv = DDI_SUCCESS;
849 int err;
850
851 err = sbbc_mbox_unreg_intr(MBOX_EVENT_KEY_SWITCH,
852 sgenv_keyswitch_handler);
853 if (err != 0) {
854 cmn_err(CE_WARN, "Failed to unregister MBOX_EVENT_KEY_SWITCH "
855 "handler. Err=%d", err);
856 rv = DDI_FAILURE;
857 }
858
859 err = sbbc_mbox_unreg_intr(MBOX_EVENT_ENV, sgenv_env_data_handler);
860 if (err != 0) {
861 cmn_err(CE_WARN, "Failed to unregister MBOX_EVENT_ENV (env)"
862 "handler. Err=%d", err);
863 rv = DDI_FAILURE;
864 }
865
866 err = sbbc_mbox_unreg_intr(MBOX_EVENT_ENV, sgenv_fan_status_handler);
867 if (err != 0) {
868 cmn_err(CE_WARN, "Failed to unregister MBOX_EVENT_ENV (fan)"
869 "handler. Err=%d", err);
870 rv = DDI_FAILURE;
871 }
872
873 err = sbbc_mbox_unreg_intr(MBOX_EVENT_GENERIC, sgenv_dr_event_handler);
874 if (err != 0) {
875 cmn_err(CE_WARN, "Failed to unregister MBOX_EVENT_GENERIC (DR) "
876 "handler. Err=%d", err);
877 rv = DDI_FAILURE;
878 }
879
880 return (rv);
881 }
882
883
884 static int
sgenv_create_cache_update_threads(void)885 sgenv_create_cache_update_threads(void)
886 {
887 DCMN_ERR_S(f, "sgenv_create_cache_update_threads()");
888
889 DCMN_ERR_THREAD(CE_NOTE, "Entering %s", f);
890
891 /* Create thread to ensure env_cache is updated */
892 env_thread_run = 1;
893
894 env_thread = thread_create(NULL, 0, sgenv_update_env_cache,
895 NULL, 0, &p0, TS_RUN, minclsyspri);
896 env_thread_tid = env_thread->t_did;
897
898 /* Create thread to ensure board_cache is updated */
899 board_thread_run = 1;
900
901 board_thread = thread_create(NULL, 0, sgenv_update_board_cache,
902 NULL, 0, &p0, TS_RUN, minclsyspri);
903 board_thread_tid = board_thread->t_did;
904
905 DCMN_ERR_THREAD(CE_NOTE, "Exiting %s", f);
906
907 return (DDI_SUCCESS);
908 }
909
910
911 static int
sgenv_remove_cache_update_threads(void)912 sgenv_remove_cache_update_threads(void)
913 {
914 DCMN_ERR_S(f, "sgenv_remove_cache_update_threads()");
915
916 DCMN_ERR_THREAD(CE_NOTE, "%s: Waiting for cache update threads", f);
917
918 /* Cause the env_cache thread to terminate. */
919 mutex_enter(&env_flag_lock);
920 env_thread_run = 0;
921 cv_signal(&env_flag_cond);
922 mutex_exit(&env_flag_lock);
923
924 thread_join(env_thread_tid);
925
926 /* Cause the board_cache thread to terminate. */
927 mutex_enter(&board_flag_lock);
928 board_thread_run = 0;
929 cv_signal(&board_flag_cond);
930 mutex_exit(&board_flag_lock);
931
932 thread_join(board_thread_tid);
933
934 DCMN_ERR_THREAD(CE_NOTE, "%s: cache update threads finished", f);
935
936 return (DDI_SUCCESS);
937 }
938
939
940 static int
sgenv_keyswitch_kstat_update(kstat_t * ksp,int rw)941 sgenv_keyswitch_kstat_update(kstat_t *ksp, int rw)
942 {
943 sg_keyswitch_kstat_t *keysw_data;
944
945 int8_t posn; /* keysw posn read from IO-SRAM */
946 int size; /* size of IO-SRAM chunk */
947 int rv = 0; /* return value of iosram_read() */
948
949 keysw_data = (sg_keyswitch_kstat_t *)ksp->ks_data;
950
951 switch (rw) {
952 case KSTAT_WRITE:
953 /*
954 * Write not permitted
955 */
956 return (EACCES);
957
958 case KSTAT_READ:
959 /*
960 * Get the size of the keyswitch IO-SRAM chunk.
961 * This should be one byte.
962 *
963 * If the size is not 1 byte we set the position to UNKNOWN
964 *
965 * Otherwise we read the keyswitch position from IO-SRAM.
966 * Then check that this is a valid keyswitch position.
967 * If it is not valid then something is corrupt and set
968 * the position to UNKNOWN.
969 */
970 size = iosram_size(SBBC_KEYSWITCH_KEY);
971 if (size != 1) {
972 posn = SG_KEYSWITCH_POSN_UNKNOWN;
973 rv = -1;
974
975 } else if ((rv = iosram_read(SBBC_KEYSWITCH_KEY, 0,
976 (char *)&posn, size)) != 0) {
977 posn = SG_KEYSWITCH_POSN_UNKNOWN;
978
979 } else {
980 /* Check posn is not corrupt */
981 switch (posn) {
982 case SG_KEYSWITCH_POSN_ON:
983 case SG_KEYSWITCH_POSN_DIAG:
984 case SG_KEYSWITCH_POSN_SECURE:
985 /* value read from kstat is OK */
986 break;
987
988 default:
989 /* value read from kstat is corrupt */
990 posn = SG_KEYSWITCH_POSN_UNKNOWN;
991 break;
992 }
993 }
994
995 /* Write position to kstat. */
996 keysw_data->keyswitch_position.value.i32 = posn;
997
998 return (rv);
999
1000 default:
1001 return (EINVAL);
1002 }
1003 }
1004
1005 static void
sgenv_init_env_cache(void)1006 sgenv_init_env_cache(void)
1007 {
1008 ASSERT(env_thread_run == 0);
1009 ASSERT(env_thread == NULL);
1010 }
1011
1012
1013 /*
1014 * This thread runs in the background and waits for an interrupt handler
1015 * registered to wait for ENV/DR events from the SC to signal/flag that we
1016 * need to update our Env Cache.
1017 */
1018 static void
sgenv_update_env_cache(void)1019 sgenv_update_env_cache(void)
1020 {
1021 DCMN_ERR_S(f, "sgenv_update_env_cache()");
1022
1023 mutex_enter(&env_flag_lock);
1024
1025 while (env_thread_run == 1) {
1026
1027 /*
1028 * We check to see if the update needed flag is set.
1029 * If it is then this means that:
1030 * 1) This is the first time through the while loop
1031 * and we need to initialize the cache.
1032 * 2) An interrupt handler was triggered while we
1033 * we were updating the env cache during the previous
1034 * iteration of the while loop and we need to refresh
1035 * the env data to ensure we are completely up to date.
1036 *
1037 * Otherwise we wait until we get a signal from one of the
1038 * interrupt handlers.
1039 */
1040 if (env_cache_update_needed) {
1041 DCMN_ERR_THREAD(CE_NOTE, "%s: update needed", f);
1042
1043 env_cache_update_needed = B_FALSE;
1044
1045 } else {
1046 DCMN_ERR_THREAD(CE_NOTE, "%s: Waiting for signal", f);
1047
1048 cv_wait(&env_flag_cond, &env_flag_lock);
1049
1050 /* Check if we are being asked to terminate */
1051 if (env_thread_run == 0) {
1052 break;
1053 }
1054
1055 env_cache_updating = B_TRUE;
1056 }
1057
1058 mutex_exit(&env_flag_lock);
1059 (void) sgenv_get_env_info_data();
1060
1061 (void) sgenv_check_sensor_thresholds();
1062 mutex_enter(&env_flag_lock);
1063
1064 if (env_cache_update_needed == B_FALSE)
1065 env_cache_updating = B_FALSE;
1066 }
1067
1068 mutex_exit(&env_flag_lock);
1069
1070 DCMN_ERR_THREAD(CE_NOTE, "Exiting %s", f);
1071
1072 env_thread_run = -1;
1073 thread_exit();
1074 }
1075
1076
1077 /*
1078 * We always return what is in the env_cache. It is up to the SC to ensure
1079 * that the env_cache is current by sending events to us when something
1080 * changes. The cache will then be updated by going to the SC to get the
1081 * new data. That way the kstat_update code can always be sure that it gets
1082 * current data without having to wait while the SC responds (slowly) to our
1083 * request for data.
1084 *
1085 * The way the update and snapshot code works, we cannot be guaranteed that
1086 * someone won't grab the env_cache_lock between the update and snapshot
1087 * calls so we use a temporary snapshot of the env_cache. We cannot hold
1088 * any locks across the calls from the update to the snapshot as we are
1089 * not guaranteed that the snapshot function will be called. So we create
1090 * the snapshot of the env_cache in the update routine and dump this to the
1091 * kstat user buffer in the snapshot routine. (There are error conditions in
1092 * which the snapshot will not be called by the kstat framework so we need
1093 * to handle these appropriately.)
1094 */
1095 static int
sgenv_env_info_kstat_update(kstat_t * ksp,int rw)1096 sgenv_env_info_kstat_update(kstat_t *ksp, int rw)
1097 {
1098 DCMN_ERR_S(f, "sgenv_env_info_kstat_update()");
1099
1100 int err = 0;
1101 int key_posn;
1102 env_sensor_t *ptr;
1103
1104 switch (rw) {
1105 case KSTAT_WRITE:
1106 /*
1107 * Write not permitted
1108 */
1109 return (EACCES);
1110
1111 case KSTAT_READ:
1112
1113 mutex_enter(&env_cache_lock);
1114 /*
1115 * We now need to ensure that there is enough room allocated
1116 * by the kstat framework to return the data via ks_data.
1117 * It is possible there may be no data in the cache but
1118 * we still return zero sized kstats to ensure no client breaks
1119 */
1120 sgenv_update_env_kstat_size(ksp);
1121
1122 /*
1123 * If the snapshot still has data (this could be because the
1124 * kstat framework discovered an error and did not call the
1125 * snapshot code which should have freed this buffer) we free
1126 * it here.
1127 */
1128 if ((env_cache_snapshot != NULL) &&
1129 (env_cache_snapshot_size > 0)) {
1130 DCMN_ERR_CACHE(CE_NOTE, "%s freeing "
1131 "env_cache_snapshot buf", f);
1132 kmem_free(env_cache_snapshot, env_cache_snapshot_size);
1133 }
1134
1135 /*
1136 * Create a new snapshot buffer based on ks_data_size
1137 */
1138 env_cache_snapshot_size = ksp->ks_data_size;
1139 env_cache_snapshot = kmem_zalloc(
1140 env_cache_snapshot_size, KM_SLEEP);
1141
1142 /*
1143 * We need to take a fresh snapshot of the env_cache here.
1144 * For each sensor collection, we check to see if there is
1145 * data in the cache (ie. != NULL). If there is, we copy it
1146 * into the snapshot.
1147 */
1148 ptr = env_cache_snapshot;
1149 for (key_posn = 0; key_posn < SGENV_MAX_HPU_KEYS; key_posn++) {
1150 if (vol_sensor_count[key_posn] <= 0)
1151 continue;
1152
1153 ASSERT(vol_sensor_count[key_posn] <=
1154 SGENV_MAX_SENSORS_PER_KEY);
1155
1156 /*
1157 * <env_cache> entry should have been allocated
1158 * in the kstat_update function already.
1159 *
1160 * If this <env_cache> entry is NULL, then
1161 * it has already been destroyed or cleared
1162 * and the sensor readings have disappeared.
1163 */
1164 if (env_cache[key_posn] == NULL) {
1165 DCMN_ERR(CE_NOTE, "!Cache entry %d has "
1166 "disappeared", key_posn);
1167 vol_sensor_count[key_posn] = 0;
1168 continue;
1169 }
1170
1171 bcopy(&env_cache[key_posn][0], ptr,
1172 sizeof (env_sensor_t) *
1173 vol_sensor_count[key_posn]);
1174 ptr += vol_sensor_count[key_posn];
1175 }
1176 mutex_exit(&env_cache_lock);
1177
1178 return (err);
1179
1180 default:
1181 return (EINVAL);
1182 }
1183 }
1184
1185 static int
sgenv_env_info_kstat_snapshot(kstat_t * ksp,void * buf,int rw)1186 sgenv_env_info_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
1187 {
1188 DCMN_ERR_S(f, "sgenv_env_info_kstat_snapshot()");
1189
1190 switch (rw) {
1191 case KSTAT_WRITE:
1192 /*
1193 * Write not permitted
1194 */
1195 return (EACCES);
1196
1197 case KSTAT_READ:
1198
1199 /*
1200 * We have taken a snapshot of the env_cache in the
1201 * update routine so we simply bcopy this into the
1202 * kstat buf. No locks needed here.
1203 */
1204 if (env_cache_snapshot_size > 0)
1205 bcopy(env_cache_snapshot, buf, env_cache_snapshot_size);
1206
1207 ksp->ks_snaptime = last_env_read_time;
1208
1209 /*
1210 * Free the memory used by the snapshot. If for some reason
1211 * the kstat framework does not call this snapshot routine,
1212 * we also have a check in the update routine so the next
1213 * time it is called it checks for this condition and frees
1214 * the snapshot buffer there.
1215 */
1216 DCMN_ERR_CACHE(CE_NOTE, "%s freeing env_cache_snapshot buf", f);
1217 kmem_free(env_cache_snapshot, env_cache_snapshot_size);
1218 env_cache_snapshot = NULL;
1219 env_cache_snapshot_size = 0;
1220
1221 return (0);
1222
1223 default:
1224 return (EINVAL);
1225 }
1226 }
1227
1228 static void
sgenv_init_board_cache(void)1229 sgenv_init_board_cache(void)
1230 {
1231 int i;
1232
1233 ASSERT(board_thread_run == 0);
1234 ASSERT(board_thread == NULL);
1235
1236 /*
1237 * Init all node-ids to be -1.
1238 */
1239 mutex_enter(&board_cache_lock);
1240 for (i = 0; i < SG_MAX_BDS; i++)
1241 board_cache[i].node_id = (-1);
1242 mutex_exit(&board_cache_lock);
1243 }
1244
1245
1246 /*
1247 * This thread runs in the background and waits for an interrupt handler
1248 * registered to wait for DR events from the SC to signal/flag that we
1249 * need to update our Board Cache.
1250 */
1251 static void
sgenv_update_board_cache(void)1252 sgenv_update_board_cache(void)
1253 {
1254 DCMN_ERR_S(f, "sgenv_update_board_cache()");
1255
1256 mutex_enter(&board_flag_lock);
1257
1258 while (board_thread_run == 1) {
1259
1260 /*
1261 * We check to see if the update needed flag is set.
1262 * If it is then this means that:
1263 * 1) This is the first time through the while loop
1264 * and we need to initialize the cache.
1265 * 2) An interrupt handler was triggered while we
1266 * we were updating the cache during the previous
1267 * iteration of the while loop and we need to refresh
1268 * the env data to ensure we are completely up to date.
1269 *
1270 * Otherwise we wait until we get a signal from one of the
1271 * interrupt handlers.
1272 */
1273 if (board_cache_update_needed) {
1274 DCMN_ERR_THREAD(CE_NOTE, "%s: update needed", f);
1275 board_cache_update_needed = B_FALSE;
1276
1277 } else {
1278 DCMN_ERR_THREAD(CE_NOTE, "%s: Waiting for signal", f);
1279
1280 cv_wait(&board_flag_cond, &board_flag_lock);
1281
1282 /* Check if we are being asked to terminate */
1283 if (board_thread_run == 0) {
1284 break;
1285 }
1286
1287 board_cache_updating = B_TRUE;
1288 }
1289
1290 mutex_exit(&board_flag_lock);
1291 (void) sgenv_get_board_info_data();
1292 mutex_enter(&board_flag_lock);
1293
1294 if (board_cache_update_needed == B_FALSE)
1295 board_cache_updating = B_FALSE;
1296 }
1297
1298 mutex_exit(&board_flag_lock);
1299
1300 DCMN_ERR_THREAD(CE_NOTE, "Exiting %s", f);
1301
1302 board_thread_run = -1;
1303 thread_exit();
1304 }
1305
1306
1307 /*
1308 * We always return what is in the board_cache. It is up to the SC to ensure
1309 * that the board_cache is current by sending events to us when something
1310 * changes. The cache will then be updated by going to the SC to get the
1311 * new data. That way the kstat_update code can always be sure that it gets
1312 * current data without having to wait while the SC responds (slowly) to our
1313 * request for data.
1314 *
1315 * The way the update and snapshot code works, we cannot be guaranteed that
1316 * someone won't grab the board_cache_lock between the update and snapshot
1317 * calls so we use a snapshot buffer of the board_cache. We cannot hold
1318 * any locks across the calls from the update to the snapshot as we are
1319 * not guaranteed that the snapshot function will be called. So we create
1320 * the snapshot of the board_cache in the update routine and dump this to the
1321 * kstat user buffer in the snapshot routine. (There are error conditions in
1322 * which the snapshot will not be called by the kstat framework so we need
1323 * to handle these appropriately.)
1324 */
1325 static int
sgenv_board_info_kstat_update(kstat_t * ksp,int rw)1326 sgenv_board_info_kstat_update(kstat_t *ksp, int rw)
1327 {
1328 int i;
1329
1330 switch (rw) {
1331 case KSTAT_WRITE:
1332 /*
1333 * Write not permitted
1334 */
1335 return (EACCES);
1336
1337 case KSTAT_READ:
1338 /*
1339 * The board_cache is created during startup, and so should be
1340 * available before a user can log in and trigger a kstat read,
1341 * but we check just in case.
1342 */
1343 if (board_cache_updated == FALSE)
1344 return (ENXIO);
1345
1346 mutex_enter(&board_cache_lock);
1347
1348 /*
1349 * Set <ks_data_size> to the new number of board readings so
1350 * that the snapshot routine can allocate the correctly sized
1351 * kstat.
1352 */
1353 ksp->ks_data_size = board_count * sizeof (sg_board_info_t);
1354
1355 board_count_snapshot = board_count;
1356
1357 /*
1358 * We are now guaranteed that that board_cache is not in flux
1359 * (as we have the lock) so we take a copy of the board_cache
1360 * into the board_cache_snapshot so that the snapshot routine
1361 * can copy it from the board_cache_snapshot into the user kstat
1362 * buffer.
1363 */
1364 for (i = 0; i < SG_MAX_BDS; i++) {
1365 board_cache_snapshot[i] = board_cache[i];
1366 }
1367
1368 mutex_exit(&board_cache_lock);
1369
1370 return (0);
1371
1372 default:
1373 return (EINVAL);
1374 }
1375 }
1376
1377 static int
sgenv_board_info_kstat_snapshot(kstat_t * ksp,void * buf,int rw)1378 sgenv_board_info_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
1379 {
1380 DCMN_ERR_S(f, "sgenv_board_info_kstat_snapshot()");
1381
1382 sg_board_info_t *bdp;
1383 int i, num_bds = 0;
1384
1385 switch (rw) {
1386 case KSTAT_WRITE:
1387 /*
1388 * Write not permitted
1389 */
1390 return (EACCES);
1391
1392 case KSTAT_READ:
1393
1394 if (board_cache_updated == FALSE) {
1395 ksp->ks_data_size = 0;
1396 ksp->ks_data = NULL;
1397 return (ENOMEM);
1398 }
1399
1400 /*
1401 * Update the snap_time with the last time we got fresh data
1402 * from the SC.
1403 */
1404 ksp->ks_snaptime = last_board_read_time;
1405
1406 ASSERT(board_count_snapshot <= SG_MAX_BDS);
1407 /*
1408 * For each entry in the board_cache_snapshot we check to see
1409 * if the node_id is != NULL before we copy it into
1410 * the kstat buf.
1411 */
1412 for (i = 0; i < SG_MAX_BDS; i++) {
1413 bdp = &board_cache_snapshot[i];
1414 DCMN_ERR_CACHE(CE_NOTE, "%s: looking at "
1415 "cache_snapshot entry[%d], node=%d",
1416 f, i, bdp->node_id);
1417 if (bdp->node_id >= 0) {
1418 /*
1419 * Need a check to ensure that the buf
1420 * is still within the allocated size.
1421 * We check how many boards are already
1422 * in the user buf before adding one.
1423 */
1424 num_bds++;
1425 if (num_bds > board_count_snapshot) {
1426 ksp->ks_data_size = 0;
1427 ksp->ks_data = NULL;
1428 DCMN_ERR(CE_WARN, "%s: buf overflow."
1429 " %d >= %d.",
1430 f, num_bds, board_count_snapshot);
1431 return (EIO);
1432 }
1433
1434 DCMN_ERR_CACHE(CE_NOTE, "%s: about to bcopy"
1435 " cache_snapshot entry[%d], node=%d,"
1436 " board=%d", f, i, bdp->node_id,
1437 bdp->board_num);
1438 bcopy(bdp, buf, sizeof (sg_board_info_t));
1439 buf = ((sg_board_info_t *)buf) + 1;
1440 }
1441 }
1442 return (0);
1443
1444 default:
1445 return (EINVAL);
1446 }
1447 }
1448
1449
1450 /*
1451 * This function coordinates reading the env data from the SC.
1452 *
1453 * ERROR:
1454 * If an error occurs while making a call to the mailbox and we have data
1455 * in the cache from a previous call to the SC, we return an error of 0.
1456 * That way the kstat framework will return the old data instead of
1457 * returning an error and an empty kstat.
1458 */
1459 static int
sgenv_get_env_info_data(void)1460 sgenv_get_env_info_data(void)
1461 {
1462 DCMN_ERR_S(f, "sgenv_get_env_info_data()");
1463
1464 envresp_key_t new_keys[SGENV_MAX_HPU_KEYS] = {0};
1465 envresp_key_t old_key;
1466 envresp_key_t key;
1467
1468 int i;
1469
1470 int err = 0; /* return value of func's which get env data */
1471 int status = 0; /* reason why env data func returned an error */
1472
1473 DCMN_ERR_EVENT(CE_NOTE, "%s: entered.", f);
1474
1475 err = sgenv_get_hpu_keys(new_keys, &status);
1476
1477 if (err != 0) {
1478 /*
1479 * If we get an error getting the key values, then we return
1480 * as we cannot proceed any farther. If there is old env data
1481 * in the cache, then we return zero so that the kstat
1482 * framework will export the old data.
1483 */
1484 if (env_cache_updated == FALSE) {
1485 sgenv_mbox_error_msg("HPU Keys", err, status);
1486 return (err);
1487 } else {
1488 sgenv_mbox_error_msg("HPU Keys", err, status);
1489 return (0);
1490 }
1491 }
1492
1493
1494 for (i = 0; i < SGENV_MAX_HPU_KEYS; i++) {
1495
1496 if (vol_sensor_count[i] == 0) {
1497 /* empty collection */
1498 old_key = 0;
1499 } else {
1500 /*
1501 * populated collection:
1502 * (assert size is OK, and 1st sensor is pseudo-sensor)
1503 */
1504 ASSERT(env_cache[i] != NULL);
1505 ASSERT(env_cache[i][0].sd_id.id.sensor_part ==
1506 SG_SENSOR_PART_SCAPP);
1507 ASSERT(env_cache[i][0].sd_id.id.sensor_type ==
1508 SG_SENSOR_TYPE_ENVDB);
1509 ASSERT(SG_INFO_VALUESTATUS(env_cache[i][0].sd_infostamp)
1510 == SG_INFO_VALUE_OK);
1511
1512 old_key = env_cache[i][0].sd_value;
1513 }
1514
1515 key = new_keys[i];
1516
1517 /*
1518 * No data is associated with this key position and there was
1519 * no data on the previous read either so we simply continue
1520 * to the next key position.
1521 */
1522 if ((key == 0) && (old_key == 0)) {
1523 ASSERT(env_cache[i] == NULL);
1524 continue;
1525 }
1526
1527
1528 /*
1529 * We need to grab this lock every time we are going to
1530 * update a HPU. However, a kstat_read can grab
1531 * the env_cache_lock when it wants to get a snapshot of
1532 * the env_cache. This has the affect of stopping the
1533 * active env_cache writer after they have updated the
1534 * active HPU, allowing the kstat_read to get a dump of
1535 * the env_cache, then the env_cache writer can resume
1536 * updating the cache. For performance it is more important
1537 * that the kstat_read completes quickly so we allow the
1538 * kstat_read to interrupt the updating of the env_cache.
1539 * The updating can take anything from a few seconds to
1540 * several minutes to complete.
1541 */
1542 mutex_enter(&env_cache_lock);
1543
1544 /*
1545 * If the key just read is zero, then the
1546 * group of sensors have been removed by
1547 * some means and we need to zero out
1548 * the env_cache. (this ensures that data
1549 * belonging to a removed board is not
1550 * returned)
1551 */
1552 if (key == 0) {
1553 ASSERT(old_key != 0);
1554 (void) sgenv_clear_env_cache_entry(i);
1555 mutex_exit(&env_cache_lock);
1556 continue;
1557 }
1558
1559 /*
1560 * Check to see if this key has changed since
1561 * the last read.
1562 *
1563 * If it has changed, we need to update everything.
1564 *
1565 * If it hasn't we simply read the volatiles
1566 * and check to see if the constants have changed.
1567 */
1568 if (key != old_key) {
1569 /*
1570 * If the key is non-zero, then a new HPU has
1571 * been added to the system or it has changed
1572 * somehow and we need to re-read everything.
1573 * (we also need to zero out the env_cache as
1574 * there may be less sensors returned now and
1575 * the old ones may not be overwritten)
1576 */
1577
1578 /*
1579 * If the <env_cache> has not already been
1580 * allocated for this key position then we
1581 * go ahead and allocate it.
1582 */
1583 if (env_cache[i] == NULL) {
1584 err = sgenv_create_env_cache_entry(i);
1585 if (err == DDI_FAILURE) {
1586 mutex_exit(&env_cache_lock);
1587 continue;
1588 }
1589 }
1590
1591 err = sgenv_get_env_data(new_keys[i], i,
1592 SG_GET_ENV_CONSTANTS, &status);
1593 if (err) {
1594 err = sgenv_handle_env_data_error(err, status,
1595 i, old_key, "Constant Data");
1596 mutex_exit(&env_cache_lock);
1597 if (err != DDI_FAILURE) {
1598 continue;
1599 } else if (env_cache_updated == TRUE) {
1600 return (0);
1601 } else {
1602 return (DDI_FAILURE);
1603 }
1604 }
1605
1606 err = sgenv_get_env_data(new_keys[i], i,
1607 SG_GET_ENV_THRESHOLDS, &status);
1608 if (err) {
1609 err = sgenv_handle_env_data_error(err, status,
1610 i, old_key, "Threshold Data");
1611 mutex_exit(&env_cache_lock);
1612 if (err != DDI_FAILURE) {
1613 continue;
1614 } else if (env_cache_updated == TRUE) {
1615 return (0);
1616 } else {
1617 return (DDI_FAILURE);
1618 }
1619 }
1620
1621 err = sgenv_get_env_data(new_keys[i], i,
1622 SG_GET_ENV_VOLATILES, &status);
1623 if (err) {
1624 err = sgenv_handle_env_data_error(err, status,
1625 i, old_key, "Volatile Data (fresh)");
1626 mutex_exit(&env_cache_lock);
1627 if (err != DDI_FAILURE) {
1628 continue;
1629 } else if (env_cache_updated == TRUE) {
1630 return (0);
1631 } else {
1632 return (DDI_FAILURE);
1633 }
1634 }
1635
1636 /*
1637 * As we have successfully got env data for a HPU,
1638 * we ensure <env_cache_updated> is set to TRUE so that
1639 * in the future, if an error occurs during the mailbox
1640 * transfer, we know that there is old data for at
1641 * least one HPU in the <env_cache> which could be
1642 * returned instead of returning an error to the kstat
1643 * framework indicating that we have no data to return.
1644 */
1645 env_cache_updated = TRUE;
1646 last_env_read_time = gethrtime();
1647
1648 } else {
1649 /*
1650 * key == old_key
1651 *
1652 * Handle the case when the value of the old key and
1653 * the new key are identical.
1654 */
1655 ASSERT(env_cache[i] != NULL);
1656
1657 /*
1658 * If the keys are identical, then the quasi-constants
1659 * should not have changed (and so don't need updating).
1660 * Similarly for the threshold readings.
1661 */
1662
1663 /* Update the volatile data */
1664 err = sgenv_get_env_data(new_keys[i], i,
1665 SG_GET_ENV_VOLATILES, &status);
1666 if (err) {
1667 err = sgenv_handle_env_data_error(err, status,
1668 i, old_key, "Volatile Data (update)");
1669 mutex_exit(&env_cache_lock);
1670 if (err == DDI_FAILURE) {
1671 return (0);
1672 } else {
1673 continue;
1674 }
1675 }
1676
1677 }
1678 mutex_exit(&env_cache_lock);
1679 }
1680
1681 return (0);
1682 }
1683
1684
1685 static int
sgenv_get_board_info_data(void)1686 sgenv_get_board_info_data(void)
1687 {
1688 /*
1689 * This array keeps track of the valid nodes in a system. A call is
1690 * made to OBP to get the "nodeid" property from all the ssm nodes,
1691 * and for each nodeid found, that position in the array is set to
1692 * TRUE. For a Serengeti only one position in the array will be TRUE.
1693 */
1694 static uint_t node_present[SSM_MAX_INSTANCES] = {SGENV_NO_NODE_EXISTS};
1695
1696 static fn_t f = "sgenv_get_board_info_data()";
1697 static int first_time = TRUE;
1698
1699 sbbc_msg_t req;
1700 sbbc_msg_t resp;
1701 int node; /* loop index */
1702 int board; /* loop index */
1703 show_board_t show_bd, *shbp = &show_bd;
1704 info_t inform;
1705 int status; /* msg_status returned by response */
1706 int rv = 0; /* return value of call to mailbox */
1707 sg_board_info_t *ptr;
1708
1709 DCMN_ERR_EVENT(CE_NOTE, "%s: entered.", f);
1710
1711 if (first_time) {
1712 sgenv_set_valid_node_positions(node_present);
1713 first_time = FALSE;
1714 }
1715
1716 for (node = 0; node < SSM_MAX_INSTANCES; node++) {
1717
1718 if (node_present[node] == SGENV_NO_NODE_EXISTS)
1719 continue;
1720
1721 for (board = 0; board < SG_MAX_BDS; board++) {
1722
1723 /*
1724 * If we have discovered in a previous call to the SC
1725 * that there is no board in this slot on this type of
1726 * chassis then we don't waste resources asking the SC
1727 * for nonexistent data.
1728 */
1729 if ((node_present[node] & (1 << board)) == 0)
1730 continue;
1731
1732 inform.board = board;
1733 inform.node = node;
1734 inform.revision = 0xdead;
1735
1736 req.msg_type.type = DR_MBOX;
1737 req.msg_type.sub_type = DR_MBOX_SHOW_BOARD;
1738 req.msg_status = SG_MBOX_STATUS_SUCCESS;
1739 req.msg_len = sizeof (info_t);
1740 req.msg_bytes = sizeof (info_t);
1741 req.msg_buf = (caddr_t)&inform;
1742
1743 bzero(shbp, sizeof (show_board_t));
1744 shbp->s_cond = -1;
1745 shbp->s_power = -1;
1746 shbp->s_assigned = -1;
1747 shbp->s_claimed = -1;
1748 shbp->s_present = -1;
1749
1750 resp.msg_type.type = DR_MBOX;
1751 resp.msg_type.sub_type = DR_MBOX_SHOW_BOARD;
1752 resp.msg_bytes = sizeof (show_board_t);
1753 resp.msg_status = SG_MBOX_STATUS_SUCCESS;
1754 resp.msg_len = sizeof (show_board_t);
1755 resp.msg_buf = (caddr_t)shbp;
1756
1757
1758 /*
1759 * We want to avoid the case where an invalid time
1760 * is specified by a user (by patching the
1761 * global variable <sgenv_max_mbox_wait_time>).
1762 *
1763 * Any incorrect values are reset to the default time.
1764 */
1765 if (sgenv_max_mbox_wait_time <=
1766 max(sbbc_mbox_min_timeout, 0))
1767 sgenv_max_mbox_wait_time =
1768 sbbc_mbox_default_timeout;
1769
1770 rv = sbbc_mbox_request_response(&req, &resp,
1771 sgenv_max_mbox_wait_time);
1772 status = resp.msg_status;
1773
1774 if ((rv) || (status != SG_MBOX_STATUS_SUCCESS)) {
1775 /*
1776 * errors from Solaris sgsbbc driver
1777 */
1778 if (status > SG_MBOX_STATUS_SUCCESS) {
1779 sgenv_mbox_error_msg("Board Info", rv,
1780 resp.msg_status);
1781 return (rv);
1782 }
1783
1784 /*
1785 * errors from SCAPP
1786 */
1787 if (status == SG_MBOX_STATUS_ILLEGAL_NODE) {
1788 sgenv_mbox_error_msg("Board Info", rv,
1789 resp.msg_status);
1790 node_present[node] =
1791 SGENV_NO_NODE_EXISTS;
1792
1793 /*
1794 * No point looping through the rest of
1795 * the boards associated with this node.
1796 */
1797 break;
1798
1799 } else if (status ==
1800 SG_MBOX_STATUS_ILLEGAL_SLOT) {
1801
1802 /*
1803 * We clear the bit representing <board>
1804 * in <node> to indicate that this slot
1805 * cannot exist on this chassis.
1806 */
1807 node_present[node] &= (~(1 << board) &
1808 SGENV_NODE_TYPE_DS);
1809 continue;
1810
1811 } else if (status ==
1812 SG_MBOX_STATUS_BOARD_ACCESS_DENIED) {
1813 /*
1814 * We cannot access data for this slot,
1815 * however we may be able to do so in
1816 * the future. We do nothing.
1817 */
1818 rv = rv;
1819 } else {
1820 char err_msg[40];
1821
1822 (void) sprintf(err_msg,
1823 "Board data for "
1824 "Node%d/Slot%d", node, board);
1825 sgenv_mbox_error_msg(err_msg, rv,
1826 resp.msg_status);
1827
1828 if (rv == 0)
1829 rv = status;
1830
1831 continue;
1832 }
1833 }
1834
1835 mutex_enter(&board_cache_lock);
1836 ptr = &board_cache[board];
1837
1838 /*
1839 * Check if the SC returns data for this board.
1840 */
1841 if (shbp->s_assigned == -1) {
1842 /*
1843 * If this cache entry used to have data and
1844 * now doesn't we decrement the board_count
1845 * clear the env_cache. The board must have
1846 * been removed.
1847 */
1848 if (ptr->node_id != -1) {
1849 board_count--;
1850
1851 /*
1852 * clear board_cache entry by
1853 * setting node_id to -1;
1854 */
1855 ptr->node_id = -1;
1856 DCMN_ERR_CACHE(CE_NOTE, "%s: "
1857 "Clearing cache line %d [%p]",
1858 f, board, (void *)ptr);
1859 }
1860 } else {
1861 /*
1862 * If this cache entry was previously empty
1863 * and we now have data for it we increment
1864 * the board_count. A new board must have
1865 * been added.
1866 */
1867 if (ptr->node_id == -1)
1868 board_count++;
1869 /*
1870 * update the board_cache entry
1871 */
1872 DCMN_ERR_CACHE(CE_NOTE, "%s: "
1873 "Writing data for bd=%d into "
1874 " the board_cache at [%p]",
1875 f, board, (void *)ptr);
1876 ptr->node_id = node;
1877 ptr->board_num = board;
1878 ptr->condition = shbp->s_cond;
1879 ptr->assigned = shbp->s_assigned;
1880 ptr->claimed = shbp->s_claimed;
1881 ptr->present = shbp->s_present;
1882 ptr->led.led_status =
1883 shbp->s_ledstatus;
1884 last_board_read_time = gethrtime();
1885 }
1886 mutex_exit(&board_cache_lock);
1887 } /* board */
1888 } /* node */
1889
1890 /*
1891 * Indicate that have managed to store valid data in the <board_cache>
1892 * at least once.
1893 */
1894 if (board_count > 0)
1895 board_cache_updated = TRUE;
1896
1897
1898 return (rv);
1899 }
1900
1901
1902 static int
sgenv_get_hpu_keys(envresp_key_t * new,int * status)1903 sgenv_get_hpu_keys(envresp_key_t *new, int *status)
1904 {
1905 sbbc_msg_t req; /* request */
1906 sbbc_msg_t resp; /* response */
1907
1908 int rv; /* return value from call to mbox */
1909
1910 req.msg_type.type = SG_ENV;
1911 req.msg_type.sub_type = SG_GET_ENV_HPU_KEYS;
1912 req.msg_status = SG_MBOX_STATUS_SUCCESS;
1913 req.msg_len = 0;
1914 req.msg_bytes = 0;
1915
1916 resp.msg_type.type = SG_ENV;
1917 resp.msg_type.sub_type = SG_GET_ENV_HPU_KEYS;
1918 resp.msg_status = SG_MBOX_STATUS_SUCCESS;
1919 resp.msg_len = sizeof (envresp_key_t) * SGENV_MAX_HPU_KEYS;
1920 resp.msg_bytes = 0;
1921 resp.msg_buf = (caddr_t)new;
1922
1923 /*
1924 * We want to avoid the case where an invalid time
1925 * is specified by a user (by patching the
1926 * global variable <sgenv_max_mbox_wait_time>).
1927 *
1928 * Any incorrect values are reset to the default time.
1929 */
1930 if (sgenv_max_mbox_wait_time <= max(sbbc_mbox_min_timeout, 0))
1931 sgenv_max_mbox_wait_time = sbbc_mbox_default_timeout;
1932
1933 rv = sbbc_mbox_request_response(&req, &resp, sgenv_max_mbox_wait_time);
1934
1935 *status = resp.msg_status;
1936
1937 return (rv);
1938 }
1939
1940
1941 static int
sgenv_get_env_data(envresp_key_t key,int key_posn,uint16_t flag,int * status)1942 sgenv_get_env_data(envresp_key_t key, int key_posn, uint16_t flag, int *status)
1943 {
1944 /*
1945 * Only one of these buffers is ever going to be used in a call
1946 * so to save kernel stack space we use a union.
1947 */
1948 union {
1949 envresp_constants_t con[SGENV_MAX_SENSORS_PER_KEY];
1950 envresp_volatiles_t vol[SGENV_MAX_SENSORS_PER_KEY];
1951 envresp_thresholds_t thr[SGENV_MAX_SENSORS_PER_KEY];
1952 } buf;
1953
1954 sbbc_msg_t req; /* request */
1955 sbbc_msg_t resp; /* response */
1956
1957 int i; /* loop variable for mbox msg_buf */
1958 int rv; /* return value from call to mbox */
1959
1960 ASSERT(MUTEX_HELD(&env_cache_lock));
1961 ASSERT(env_cache[key_posn] != NULL);
1962
1963 if (flag == SG_GET_ENV_CONSTANTS) {
1964 resp.msg_len = sizeof (buf.con);
1965 resp.msg_buf = (caddr_t)buf.con;
1966
1967 } else if (flag == SG_GET_ENV_VOLATILES) {
1968 resp.msg_len = sizeof (buf.vol);
1969 resp.msg_buf = (caddr_t)buf.vol;
1970
1971 } else if (flag == SG_GET_ENV_THRESHOLDS) {
1972 resp.msg_len = sizeof (buf.thr);
1973 resp.msg_buf = (caddr_t)buf.thr;
1974
1975 } else {
1976 *status = EINVAL;
1977 return (-1);
1978 }
1979
1980 req.msg_type.type = SG_ENV;
1981 req.msg_type.sub_type = flag;
1982 req.msg_status = SG_MBOX_STATUS_SUCCESS;
1983 req.msg_len = 0;
1984 req.msg_bytes = 0;
1985 req.msg_data[0] = key;
1986
1987 resp.msg_type.type = SG_ENV;
1988 resp.msg_type.sub_type = flag;
1989 resp.msg_status = SG_MBOX_STATUS_SUCCESS;
1990 resp.msg_bytes = 0;
1991
1992 /*
1993 * We want to avoid the case where an invalid time
1994 * is specified by a user (by patching the
1995 * global variable <sgenv_max_mbox_wait_time>).
1996 *
1997 * Any incorrect values are reset to the default time.
1998 */
1999 if (sgenv_max_mbox_wait_time <= max(sbbc_mbox_min_timeout, 0))
2000 sgenv_max_mbox_wait_time = sbbc_mbox_default_timeout;
2001
2002
2003 rv = sbbc_mbox_request_response(&req, &resp, sgenv_max_mbox_wait_time);
2004
2005 *status = resp.msg_status;
2006
2007 /*
2008 * We now check that the data returned is valid.
2009 */
2010 if (rv != 0) {
2011 /*
2012 * The SBBC driver encountered an error.
2013 */
2014 return (rv);
2015
2016 } else {
2017 /*
2018 * The SC encountered an error.
2019 */
2020 switch (*status) {
2021 case SG_MBOX_STATUS_SUCCESS:
2022 /*
2023 * No problems encountered - continue and return the
2024 * new data.
2025 */
2026 break;
2027
2028 case ETIMEDOUT:
2029 /*
2030 * For some reason the mailbox failed to return data
2031 * and instead timed out so we return ETIMEDOUT
2032 */
2033 return (ETIMEDOUT);
2034
2035 case ENXIO:
2036 /*
2037 * no sensors associated with this key, this may have
2038 * changed since we read the keys.
2039 */
2040 return (ENXIO);
2041
2042 default:
2043 /*
2044 * The contents of the mbox message contain corrupt
2045 * data. Flag this as an error to be returned.
2046 */
2047 SGENV_PRINT_MBOX_MSG((&resp), "Env info problem");
2048 return (EINVAL);
2049 }
2050 }
2051
2052 /*
2053 * Depending on the type of data returned, save the constant/volatile
2054 * data returned in the mailbox message into the <env_cache>.
2055 */
2056 for (i = 0; i < resp.msg_data[0]; i++) {
2057
2058 if (flag == SG_GET_ENV_CONSTANTS) {
2059 env_cache[key_posn][i].sd_id.tag_id =
2060 buf.con[i].id.tag_id;
2061 env_cache[key_posn][i].sd_lo =
2062 buf.con[i].lo;
2063 env_cache[key_posn][i].sd_hi =
2064 buf.con[i].hi;
2065
2066 } else if (flag == SG_GET_ENV_VOLATILES) {
2067 env_cache[key_posn][i].sd_value =
2068 buf.vol[i].value;
2069 env_cache[key_posn][i].sd_infostamp =
2070 buf.vol[i].info;
2071
2072 sgenv_set_sensor_status(&env_cache[key_posn][i]);
2073
2074 } else if (flag == SG_GET_ENV_THRESHOLDS) {
2075 env_cache[key_posn][i].sd_lo_warn =
2076 buf.thr[i].lo_warn;
2077 env_cache[key_posn][i].sd_hi_warn =
2078 buf.thr[i].hi_warn;
2079 }
2080 }
2081
2082 if (flag == SG_GET_ENV_VOLATILES)
2083 vol_sensor_count[key_posn] = resp.msg_data[0];
2084
2085 return (rv);
2086 }
2087
2088
2089 /*
2090 * This function handles any errors received from the mailbox framework while
2091 * getting environmental data.
2092 *
2093 * INPUT PARAMETERS
2094 * err - return value from call to mailbox framework.
2095 * status - message status returned by mailbox framework.
2096 * key - key from previous (if any) reading of env data.
2097 * Needed to see if we have old data in the <env_cache>.
2098 * str - String indicating what type of env request failed.
2099 *
2100 * RETURN VALUES
2101 * rv == DDI_FAILURE - there is no point in continuing processing
2102 * the data, we should exit from the kstat
2103 * framework.
2104 * rv != DDI_FAILURE - error has been handled correctly, continue
2105 * processing the data returned from the SC.
2106 */
2107 static int
sgenv_handle_env_data_error(int err,int status,int key_posn,envresp_key_t key,char * str)2108 sgenv_handle_env_data_error(int err, int status, int key_posn,
2109 envresp_key_t key, char *str)
2110 {
2111 int rv = DDI_SUCCESS;
2112
2113 ASSERT(str != (char *)NULL);
2114
2115 switch (err) {
2116 case ENXIO:
2117 /*
2118 * The SC has changed the env data associated with this key
2119 * since we started getting the data. We cannot tell if the
2120 * data has disappeared due to the removal of the board from
2121 * our Domain or just that the data has been updated. We
2122 * simply return the last known data (if possible) and the
2123 * next time we request the env data, the SC will have
2124 * finished processing this board so we will receive the
2125 * correct key values and we can get the correct data.
2126 */
2127 DCMN_ERR_CACHE(CE_NOTE, "key @ posn %d has changed from %d"
2128 " while %s", key_posn, key, str);
2129 rv = ENXIO;
2130 break;
2131
2132 default:
2133 sgenv_mbox_error_msg(str, err, status);
2134 rv = DDI_FAILURE;
2135 break;
2136 }
2137
2138 /*
2139 * If there was no data in the <env_cache>, we need to clear the data
2140 * just added as the <env_cache> will only be partially filled.
2141 */
2142 if (key == 0)
2143 sgenv_clear_env_cache_entry(key_posn);
2144
2145 return (rv);
2146 }
2147
2148
2149 /*
2150 * If the sensor readings for a particular collection of HPUs become invalid,
2151 * then we clear the cache by freeing up the memory.
2152 */
2153 static void
sgenv_clear_env_cache_entry(int key_posn)2154 sgenv_clear_env_cache_entry(int key_posn)
2155 {
2156 ASSERT(MUTEX_HELD(&env_cache_lock));
2157
2158 if (env_cache[key_posn] != NULL) {
2159 kmem_free(env_cache[key_posn], sizeof (env_sensor_t) *
2160 SGENV_MAX_SENSORS_PER_KEY);
2161 env_cache[key_posn] = NULL;
2162 vol_sensor_count[key_posn] = 0;
2163 }
2164 }
2165
2166
2167 static void
sgenv_mbox_error_msg(char * str,int err,int status)2168 sgenv_mbox_error_msg(char *str, int err, int status)
2169 {
2170 /*
2171 * We update the count of errors we have encountered during calls to
2172 * the mailbox framework (unless we will cause a wraparound)
2173 */
2174 if (sgenv_mbox_error_count < INT_MAX)
2175 sgenv_mbox_error_count++;
2176
2177 #ifdef DEBUG
2178 if ((sgenv_debug & SGENV_DEBUG_MSG) == 0)
2179 return;
2180
2181 ASSERT(str != NULL);
2182
2183 switch (err) {
2184 case ENOTSUP:
2185 DCMN_ERR(CE_WARN, "!This system configuration does not "
2186 "support SGENV");
2187 break;
2188 case ETIMEDOUT:
2189 DCMN_ERR(CE_WARN, "!Mailbox timed out while servicing "
2190 "SGENV request for %s", str);
2191 break;
2192 default:
2193 DCMN_ERR(CE_WARN, "!Error occurred reading %s, Errno=%d,"
2194 " Status=%d", str, err, status);
2195 break;
2196 }
2197 #endif
2198 }
2199
2200
2201 /*
2202 * INPUT PARAMETERS
2203 * key_posn - The position in the env_cache for which we want to
2204 * allocate space for a HPU's env data.
2205 *
2206 * ERROR VALUES
2207 * DDI_FAILURE - We failed to allocate memory for this cache entry.
2208 * There is no point asking the SC for env data for this
2209 * HPU as we will have nowhere to store it.
2210 */
2211 static int
sgenv_create_env_cache_entry(int key_posn)2212 sgenv_create_env_cache_entry(int key_posn)
2213 {
2214 int i; /* used to loop thru each sensor to set the status */
2215
2216 ASSERT(key_posn < SGENV_MAX_HPU_KEYS);
2217 ASSERT(key_posn >= 0);
2218
2219 env_cache[key_posn] = (env_sensor_t *)kmem_zalloc(
2220 sizeof (env_sensor_t) * SGENV_MAX_SENSORS_PER_KEY, KM_NOSLEEP);
2221 if (env_cache[key_posn] == NULL) {
2222 cmn_err(CE_WARN, "Failed to allocate memory for env_cache[%d]",
2223 key_posn);
2224 return (DDI_FAILURE);
2225 }
2226
2227 for (i = 0; i < SGENV_MAX_SENSORS_PER_KEY; i++)
2228 env_cache[key_posn][i].sd_status = SG_SENSOR_STATUS_OK;
2229
2230 return (DDI_SUCCESS);
2231 }
2232
2233
2234 static void
sgenv_destroy_env_cache(void)2235 sgenv_destroy_env_cache(void)
2236 {
2237 int i;
2238
2239 ASSERT(MUTEX_HELD(&env_cache_lock) == FALSE);
2240 mutex_enter(&env_cache_lock);
2241 for (i = 0; i < SGENV_MAX_HPU_KEYS; i++) {
2242 if (env_cache[i] != NULL) {
2243 kmem_free(env_cache[i], sizeof (env_sensor_t) *
2244 SGENV_MAX_SENSORS_PER_KEY);
2245 env_cache[i] = NULL;
2246 vol_sensor_count[i] = 0;
2247 }
2248 }
2249 env_cache_updated = FALSE;
2250
2251 mutex_exit(&env_cache_lock);
2252 }
2253
2254 static void
sgenv_update_env_kstat_size(kstat_t * ksp)2255 sgenv_update_env_kstat_size(kstat_t *ksp)
2256 {
2257 int i;
2258
2259 ASSERT(MUTEX_HELD(&env_cache_lock));
2260
2261 /* reinitialize this and recount number of sensors */
2262 ksp->ks_data_size = 0;
2263
2264 for (i = 0; i < SGENV_MAX_HPU_KEYS; i++) {
2265 if (vol_sensor_count[i] <= 0)
2266 continue;
2267
2268 ASSERT(vol_sensor_count[i] <= SGENV_MAX_SENSORS_PER_KEY);
2269
2270 /*
2271 * increment ksp->ks_data_size by the number of
2272 * sensors in the collection <i>.
2273 */
2274 ksp->ks_data_size += vol_sensor_count[i] *
2275 sizeof (env_sensor_t);
2276 }
2277 ASSERT(ksp->ks_data_size >= 0);
2278 }
2279
2280
2281 /*
2282 * This function is triggered by the thread that updates the env_cache.
2283 * It checks for any sensors which have exceeded their limits/thresholds
2284 * and generates sysevents for the sensor values that have changed.
2285 */
2286 /*ARGSUSED*/
2287 static uint_t
sgenv_check_sensor_thresholds(void)2288 sgenv_check_sensor_thresholds(void)
2289 {
2290 DCMN_ERR_S(f, "sgenv_poll_env()");
2291
2292 int key; /* loop through keys */
2293 int i; /* loops through each sensor for each <key> */
2294
2295 env_sensor_t sensor;
2296 env_sensor_status_t status;
2297
2298 DCMN_ERR_EVENT(CE_NOTE, "%s: just been triggered.", f);
2299
2300 mutex_enter(&env_cache_lock);
2301
2302 for (key = 0; key < SGENV_MAX_HPU_KEYS; key++) {
2303
2304 if (vol_sensor_count[key] == 0)
2305 continue;
2306
2307 for (i = 0; i < vol_sensor_count[key]; i++) {
2308 sensor = env_cache[key][i];
2309 status = sensor.sd_status;
2310
2311 if (SG_GET_SENSOR_STATUS(status) ==
2312 SG_GET_PREV_SENSOR_STATUS(status)) {
2313 continue;
2314 }
2315
2316 /*
2317 * This sensor has changed in status since the last
2318 * time we polled - we need to inform the sysevent
2319 * framework.
2320 */
2321 switch (sensor.sd_id.id.sensor_type) {
2322 /*
2323 * we don't care about the pseudo sensors and
2324 * the Fan Status is notified by a separate
2325 * unsolicited event so we simply get the next
2326 * reading
2327 */
2328 case SG_SENSOR_TYPE_ENVDB:
2329 case SG_SENSOR_TYPE_COOLING:
2330 continue;
2331
2332 /*
2333 * We have handled all the special cases by now.
2334 */
2335 default:
2336 (void) sgenv_process_threshold_event(sensor);
2337 break;
2338 }
2339
2340 SGENV_PRINT_POLL_INFO(sensor);
2341 }
2342 }
2343 mutex_exit(&env_cache_lock);
2344
2345 return (DDI_SUCCESS);
2346 }
2347
2348
2349 /*
2350 * This function is passed in an array of length SSM_MAX_INSTANCES and
2351 * it searches OBP to for ssm nodes, and for each one if finds, it sets the
2352 * corresponding position in the array to TRUE.
2353 */
2354 static void
sgenv_set_valid_node_positions(uint_t * node_present)2355 sgenv_set_valid_node_positions(uint_t *node_present)
2356 {
2357 dev_info_t *rdip; /* root dev info ptr */
2358 dev_info_t *dip;
2359
2360 ASSERT(node_present != NULL);
2361
2362 rdip = ddi_root_node();
2363
2364 for (dip = ddi_get_child(rdip); dip != NULL;
2365 dip = ddi_get_next_sibling(dip)) {
2366 if (strncmp("ssm", ddi_node_name(dip), 3) == 0) {
2367 int value;
2368
2369 value = ddi_getprop(DDI_DEV_T_ANY, dip,
2370 DDI_PROP_DONTPASS, "nodeid", 0);
2371
2372 /*
2373 * If we get a valid nodeID which has not already
2374 * been found in a previous call to this function,
2375 * then we set all 10 LSB bits to indicate there may
2376 * be a board present in each slot.
2377 *
2378 * It is the job of sgenv_get_board_info_data() to weed
2379 * out the invalid cases when we don't have a
2380 * DS chassis.
2381 *
2382 * NOTE: We make the assumption that a chassis cannot
2383 * be DR'ed out, which is true for a Serengeti.
2384 * By the time WildCat need this functionality Solaris
2385 * will be able to know what kind of a chassis is
2386 * present and there will be no need to try and work
2387 * this out from the msg_status from the mailbox.
2388 */
2389 if ((value >= 0) &&
2390 (value < SSM_MAX_INSTANCES) &&
2391 (node_present[value] == SGENV_NO_NODE_EXISTS)) {
2392 node_present[value] = SGENV_NODE_TYPE_DS;
2393 }
2394
2395 }
2396 }
2397 }
2398
2399
2400 static void
sgenv_set_sensor_status(env_sensor_t * sensor)2401 sgenv_set_sensor_status(env_sensor_t *sensor)
2402 {
2403 env_sensor_status_t *status;
2404
2405 ASSERT(sensor != NULL);
2406 status = &sensor->sd_status;
2407
2408 /*
2409 * Save the previous status so we can compare them later
2410 */
2411 SG_SET_PREV_SENSOR_STATUS(*status, *status);
2412
2413 switch (sensor->sd_id.id.sensor_type) {
2414 case SG_SENSOR_TYPE_ENVDB:
2415 /*
2416 * We want the status of this sensor to always be OK
2417 * The concept of limits/thresholds do not exist for it.
2418 */
2419 SG_SET_SENSOR_STATUS(*status, SG_SENSOR_STATUS_OK);
2420 break;
2421
2422 case SG_SENSOR_TYPE_COOLING:
2423 /*
2424 * Fans have no concept of limits/thresholds, they have a state
2425 * which we store in the <sd_status> field so that we can see
2426 * when this state is changed.
2427 */
2428 if (sensor->sd_value == SGENV_FAN_SPEED_HIGH) {
2429 SG_SET_SENSOR_STATUS(*status,
2430 SG_SENSOR_STATUS_FAN_HIGH);
2431
2432 } else if (sensor->sd_value == SGENV_FAN_SPEED_LOW) {
2433 SG_SET_SENSOR_STATUS(*status, SG_SENSOR_STATUS_FAN_LOW);
2434
2435 } else if (sensor->sd_value == SGENV_FAN_SPEED_OFF) {
2436 SG_SET_SENSOR_STATUS(*status, SG_SENSOR_STATUS_FAN_OFF);
2437
2438 } else {
2439 SG_SET_SENSOR_STATUS(*status,
2440 SG_SENSOR_STATUS_FAN_FAIL);
2441 }
2442
2443 /*
2444 * If this is the first time this fan status has been read,
2445 * then we need to initialize the previous reading to be the
2446 * same as the current reading so that an event is not
2447 * triggered.
2448 *
2449 * [ When the env_cache is being created, the status of the
2450 * sensors is set to SG_SENSOR_STATUS_OK, which is not a
2451 * valid Fan status ].
2452 */
2453 if (SG_GET_PREV_SENSOR_STATUS(*status) == SG_SENSOR_STATUS_OK) {
2454 SG_SET_PREV_SENSOR_STATUS(*status, *status);
2455 }
2456
2457 break;
2458
2459 default:
2460 if (sensor->sd_value > sensor->sd_hi) {
2461 SG_SET_SENSOR_STATUS(*status,
2462 SG_SENSOR_STATUS_HI_DANGER);
2463
2464 } else if (sensor->sd_value > sensor->sd_hi_warn) {
2465 SG_SET_SENSOR_STATUS(*status, SG_SENSOR_STATUS_HI_WARN);
2466
2467 } else if (sensor->sd_value < sensor->sd_lo) {
2468 SG_SET_SENSOR_STATUS(*status,
2469 SG_SENSOR_STATUS_LO_DANGER);
2470
2471 } else if (sensor->sd_value < sensor->sd_lo_warn) {
2472 SG_SET_SENSOR_STATUS(*status, SG_SENSOR_STATUS_LO_WARN);
2473
2474 } else {
2475 SG_SET_SENSOR_STATUS(*status, SG_SENSOR_STATUS_OK);
2476 }
2477 break;
2478 }
2479 }
2480
2481
2482
2483
2484 /*
2485 * This function, when given an integer arg describing a HPU type,
2486 * returns the descriptive string associated with this HPU type.
2487 */
2488 static const char *
sgenv_get_hpu_id_str(uint_t hpu_type)2489 sgenv_get_hpu_id_str(uint_t hpu_type)
2490 {
2491 const hpu_value_t *hpu_list = hpus;
2492
2493 while (hpu_list->name != (char *)NULL) {
2494 if (hpu_list->value == hpu_type)
2495 return (hpu_list->IDstr);
2496 else
2497 hpu_list++;
2498 }
2499 return ((char *)NULL);
2500 }
2501
2502
2503 /*
2504 * This function, when given an integer arg describing a sensor part,
2505 * returns the descriptive string associated with this sensor part.
2506 */
2507 static const char *
sgenv_get_part_str(uint_t sensor_part)2508 sgenv_get_part_str(uint_t sensor_part)
2509 {
2510 const part_value_t *part_list = parts;
2511
2512 while (part_list->name != (char *)NULL) {
2513 if (part_list->value == sensor_part)
2514 return (part_list->name);
2515 else
2516 part_list++;
2517 }
2518 return ((char *)NULL);
2519 }
2520
2521
2522 /*
2523 * This function, when given an integer arg describing a sensor type,
2524 * returns the descriptive string associated with this sensor type.
2525 */
2526 static const char *
sgenv_get_type_str(uint_t sensor_type)2527 sgenv_get_type_str(uint_t sensor_type)
2528 {
2529 const type_value_t *type_list = types;
2530
2531 while (type_list->name != (char *)NULL) {
2532 if (type_list->value == sensor_type)
2533 return (type_list->name);
2534 else
2535 type_list++;
2536 }
2537 return ((char *)NULL);
2538 }
2539
2540
2541 /*
2542 * This function takes a sensor TagID and generates a string describing
2543 * where in the system the sensor is.
2544 */
2545 static void
sgenv_tagid_to_string(sensor_id_t id,char * str)2546 sgenv_tagid_to_string(sensor_id_t id, char *str)
2547 {
2548 const char *hpu_str;
2549 const char *part_str;
2550 const char *type_str;
2551
2552 ASSERT(str != NULL);
2553
2554 hpu_str = sgenv_get_hpu_id_str(id.id.hpu_type);
2555 part_str = sgenv_get_part_str(id.id.sensor_part);
2556 type_str = sgenv_get_type_str(id.id.sensor_type);
2557
2558 (void) sprintf(str,
2559 "Sensor: Node=%d, Board=%s%d, Device=%s%d, Type=%s%d: reading has ",
2560 id.id.node_id,
2561 ((hpu_str != NULL) ? hpu_str : ""),
2562 id.id.hpu_slot,
2563 ((part_str != NULL) ? part_str : ""),
2564 id.id.sensor_partnum,
2565 ((type_str != NULL) ? type_str : ""),
2566 id.id.sensor_typenum);
2567
2568 }
2569
2570
2571 /*
2572 * This interrupt handler watches for unsolicited mailbox messages from the SC
2573 * telling it that the Keyswitch Position had changed. It then informs the
2574 * Sysevent Framework of this change.
2575 */
2576 static uint_t
sgenv_keyswitch_handler(char * arg)2577 sgenv_keyswitch_handler(char *arg)
2578 {
2579 DCMN_ERR_S(f, "sgenv_keyswitch_handler()");
2580
2581 sysevent_t *ev = NULL;
2582 sysevent_id_t eid;
2583 sysevent_value_t se_val;
2584 sysevent_attr_list_t *ev_attr_list = NULL;
2585 sg_event_key_position_t *payload = NULL;
2586 sbbc_msg_t *msg = NULL;
2587 int err;
2588
2589 DCMN_ERR_EVENT(CE_NOTE, "%s called", f);
2590
2591 if (arg == NULL) {
2592 DCMN_ERR_EVENT(CE_NOTE, "%s: arg == NULL", f);
2593 return (DDI_INTR_CLAIMED);
2594 }
2595
2596 msg = (sbbc_msg_t *)arg;
2597 if (msg->msg_buf == NULL) {
2598 DCMN_ERR_EVENT(CE_NOTE, "%s: msg_buf == NULL", f);
2599 return (DDI_INTR_CLAIMED);
2600 }
2601
2602 payload = (sg_event_key_position_t *)msg->msg_buf;
2603 if (payload == NULL) {
2604 DCMN_ERR_EVENT(CE_NOTE, "%s: payload == NULL", f);
2605 return (DDI_INTR_CLAIMED);
2606 }
2607
2608 DCMN_ERR_EVENT(CE_NOTE, "Key posn = %d", (int)*payload);
2609
2610
2611 /*
2612 * Allocate memory for sysevent buffer.
2613 */
2614 ev = sysevent_alloc(EC_DOMAIN, ESC_DOMAIN_STATE_CHANGE,
2615 EP_SGENV, SE_NOSLEEP);
2616 if (ev == NULL) {
2617 cmn_err(CE_WARN, "%s: Failed to alloc mem for %s/%s event",
2618 f, EC_DOMAIN, ESC_DOMAIN_STATE_CHANGE);
2619 return (DDI_INTR_CLAIMED);
2620 }
2621
2622
2623 /*
2624 * Set the DOMAIN_WHAT_CHANGED attribute.
2625 */
2626 se_val.value_type = SE_DATA_TYPE_STRING;
2627 se_val.value.sv_string = DOMAIN_KEYSWITCH;
2628 err = sysevent_add_attr(&ev_attr_list, DOMAIN_WHAT_CHANGED,
2629 &se_val, SE_NOSLEEP);
2630 if (err != 0) {
2631 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2632 DOMAIN_WHAT_CHANGED, EC_DOMAIN,
2633 ESC_DOMAIN_STATE_CHANGE);
2634 sysevent_free(ev);
2635 return (DDI_INTR_CLAIMED);
2636 }
2637
2638
2639 /*
2640 * Log this event with sysevent framework.
2641 */
2642 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
2643 cmn_err(CE_WARN, "Failed to attach attr list for %s/%s event",
2644 EC_DOMAIN, ESC_DOMAIN_STATE_CHANGE);
2645 sysevent_free_attr(ev_attr_list);
2646 sysevent_free(ev);
2647 return (DDI_INTR_CLAIMED);
2648 }
2649 err = log_sysevent(ev, SE_NOSLEEP, &eid);
2650 if (err != 0) {
2651 cmn_err(CE_WARN, "Failed to log %s/%s event",
2652 EC_DOMAIN, ESC_DOMAIN_STATE_CHANGE);
2653 sysevent_free(ev);
2654 return (DDI_INTR_CLAIMED);
2655 }
2656
2657 /* clean up */
2658 sysevent_free(ev);
2659
2660 return (DDI_INTR_CLAIMED);
2661 }
2662
2663
2664 /*
2665 * This interrupt handler watches for unsolicited mailbox messages from the SC
2666 * telling it that an environmental sensor has exceeded a threshold/limit level
2667 * or has returned to normal having previously exceeded a threshold/limit level.
2668 * It then informs the Sysevent Framework of this change and updates the
2669 * env_cache.
2670 */
2671 static uint_t
sgenv_env_data_handler(char * arg)2672 sgenv_env_data_handler(char *arg)
2673 {
2674 DCMN_ERR_S(f, "sgenv_env_data_handler()");
2675
2676 sg_event_env_changed_t *payload = NULL;
2677 sbbc_msg_t *msg = NULL;
2678
2679 DCMN_ERR_EVENT(CE_NOTE, "%s: just been triggered.", f);
2680
2681 if (arg == NULL) {
2682 DCMN_ERR_EVENT(CE_NOTE, "%s: arg == NULL", f);
2683 return (DDI_INTR_CLAIMED);
2684 }
2685
2686 msg = (sbbc_msg_t *)arg;
2687
2688 if (msg->msg_buf == NULL) {
2689 DCMN_ERR_EVENT(CE_NOTE, "%s: msg_buf == NULL", f);
2690 return (DDI_INTR_CLAIMED);
2691 }
2692
2693 payload = (sg_event_env_changed_t *)msg->msg_buf;
2694
2695 /*
2696 * We check the first field of the msg_buf to see if the event_type
2697 * is SC_EVENT_ENV, if it is then we handle the event.
2698 */
2699 if (payload->event_type != SC_EVENT_ENV) {
2700 return (DDI_INTR_CLAIMED);
2701 }
2702
2703 /*
2704 * We now need to signal to the env background thread to ask the SC
2705 * for env readings and discover which sensor caused the SC to send
2706 * the ENV event before sending a sysevent to userland.
2707 */
2708 sgenv_indicate_cache_update_needed(ENV_CACHE);
2709
2710 return (DDI_INTR_CLAIMED);
2711 }
2712
2713
2714 /*
2715 * This interrupt handler watches for unsolicited mailbox messages from the SC
2716 * telling it that the status of a fan has changed. We register a sysevent
2717 * and trigger a softint to update the env cache.
2718 */
2719 static uint_t
sgenv_fan_status_handler(char * arg)2720 sgenv_fan_status_handler(char *arg)
2721 {
2722 DCMN_ERR_S(f, "sgenv_fan_status_handler()");
2723
2724 sysevent_t *ev = NULL;
2725 sysevent_id_t eid;
2726 sysevent_value_t se_val;
2727 sysevent_attr_list_t *ev_attr_list = NULL;
2728 sg_event_fan_status_t *payload = NULL;
2729 sbbc_msg_t *msg = NULL;
2730 char fan_str[MAXNAMELEN];
2731 int err;
2732
2733 DCMN_ERR_EVENT(CE_NOTE, "%s: just been triggered.", f);
2734
2735 if (arg == NULL) {
2736 DCMN_ERR_EVENT(CE_NOTE, "%s: arg == NULL", f);
2737 return (DDI_INTR_CLAIMED);
2738 }
2739
2740 msg = (sbbc_msg_t *)arg;
2741
2742 /*
2743 * We check the first field of the msg_buf to see if the event_type
2744 * is SC_EVENT_FAN
2745 */
2746 if (msg->msg_buf == NULL) {
2747 DCMN_ERR_EVENT(CE_NOTE, "%s: msg_buf == NULL", f);
2748 return (DDI_INTR_CLAIMED);
2749 }
2750
2751 payload = (sg_event_fan_status_t *)msg->msg_buf;
2752
2753 /*
2754 * If another type of ENV Event triggered this handler then we simply
2755 * return now.
2756 */
2757 if (payload->event_type != SC_EVENT_FAN) {
2758 return (DDI_INTR_CLAIMED);
2759 }
2760
2761 /*
2762 * Allocate memory for sysevent buffer.
2763 */
2764 ev = sysevent_alloc(EC_ENV, ESC_ENV_FAN, EP_SGENV, SE_NOSLEEP);
2765 if (ev == NULL) {
2766 cmn_err(CE_WARN, "%s: Failed to alloc mem for %s/%s event",
2767 f, EC_ENV, ESC_ENV_FAN);
2768 return (DDI_INTR_CLAIMED);
2769 }
2770
2771
2772 /*
2773 * Set the following attributes for this event:
2774 *
2775 * ENV_FRU_ID
2776 * ENV_FRU_RESOURCE_ID
2777 * ENV_FRU_DEVICE
2778 * ENV_FRU_STATE
2779 * ENV_MSG
2780 *
2781 */
2782 se_val.value_type = SE_DATA_TYPE_STRING;
2783 se_val.value.sv_string = ENV_RESERVED_ATTR;
2784 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_ID, &se_val, SE_NOSLEEP);
2785 if (err != 0) {
2786 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2787 ENV_FRU_ID, EC_ENV, ESC_ENV_FAN);
2788 sysevent_free(ev);
2789 return (DDI_INTR_CLAIMED);
2790 }
2791
2792 se_val.value_type = SE_DATA_TYPE_STRING;
2793 se_val.value.sv_string = ENV_RESERVED_ATTR;
2794 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_RESOURCE_ID,
2795 &se_val, SE_NOSLEEP);
2796 if (err != 0) {
2797 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2798 ENV_FRU_RESOURCE_ID, EC_ENV, ESC_ENV_FAN);
2799 sysevent_free_attr(ev_attr_list);
2800 sysevent_free(ev);
2801 return (DDI_INTR_CLAIMED);
2802 }
2803
2804 se_val.value_type = SE_DATA_TYPE_STRING;
2805 se_val.value.sv_string = ENV_RESERVED_ATTR;
2806 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_DEVICE,
2807 &se_val, SE_NOSLEEP);
2808 if (err != 0) {
2809 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2810 ENV_FRU_DEVICE, EC_ENV, ESC_ENV_FAN);
2811 sysevent_free_attr(ev_attr_list);
2812 sysevent_free(ev);
2813 return (DDI_INTR_CLAIMED);
2814 }
2815
2816 /*
2817 * Checks the fan to see if it has failed.
2818 */
2819 se_val.value_type = SE_DATA_TYPE_INT32;
2820 switch (payload->fan_speed) {
2821 case SGENV_FAN_SPEED_OFF:
2822 case SGENV_FAN_SPEED_LOW:
2823 case SGENV_FAN_SPEED_HIGH:
2824 se_val.value.sv_int32 = ENV_OK;
2825 break;
2826
2827 case SGENV_FAN_SPEED_UNKNOWN:
2828 default:
2829 se_val.value.sv_int32 = ENV_FAILED;
2830 break;
2831 }
2832
2833 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_STATE,
2834 &se_val, SE_NOSLEEP);
2835 if (err != 0) {
2836 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2837 ENV_FRU_STATE, EC_ENV, ESC_ENV_FAN);
2838 sysevent_free_attr(ev_attr_list);
2839 sysevent_free(ev);
2840 return (DDI_INTR_CLAIMED);
2841 }
2842
2843
2844 /*
2845 * Create the message to be sent to sysevent.
2846 */
2847 (void) sprintf(fan_str,
2848 "The status of the fan in Node%d/Slot%d is now ",
2849 payload->node_id, payload->slot_number);
2850 switch (payload->fan_speed) {
2851 case SGENV_FAN_SPEED_OFF:
2852 (void) strcat(fan_str, SGENV_FAN_SPEED_OFF_STR);
2853 break;
2854
2855 case SGENV_FAN_SPEED_LOW:
2856 (void) strcat(fan_str, SGENV_FAN_SPEED_LOW_STR);
2857 break;
2858
2859 case SGENV_FAN_SPEED_HIGH:
2860 (void) strcat(fan_str, SGENV_FAN_SPEED_HIGH_STR);
2861 break;
2862
2863 case SGENV_FAN_SPEED_UNKNOWN:
2864 default:
2865 (void) strcat(fan_str, SGENV_FAN_SPEED_UNKNOWN_STR);
2866 break;
2867 }
2868
2869 DCMN_ERR_EVENT(CE_NOTE, "Fan: %s", fan_str);
2870
2871 se_val.value_type = SE_DATA_TYPE_STRING;
2872 se_val.value.sv_string = fan_str;
2873 err = sysevent_add_attr(&ev_attr_list, ENV_MSG, &se_val, SE_NOSLEEP);
2874 if (err != 0) {
2875 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2876 ENV_MSG, EC_ENV, ESC_ENV_FAN);
2877 sysevent_free_attr(ev_attr_list);
2878 sysevent_free(ev);
2879 return (DDI_INTR_CLAIMED);
2880 }
2881
2882
2883 /*
2884 * Log this event with sysevent framework.
2885 */
2886 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
2887 cmn_err(CE_WARN, "Failed to attach attr list for %s/%s event",
2888 EC_ENV, ESC_ENV_FAN);
2889 sysevent_free_attr(ev_attr_list);
2890 sysevent_free(ev);
2891 return (DDI_INTR_CLAIMED);
2892 }
2893 err = log_sysevent(ev, SE_NOSLEEP, &eid);
2894 if (err != 0) {
2895 cmn_err(CE_WARN, "Failed to log %s/%s event",
2896 EC_ENV, ESC_ENV_FAN);
2897 sysevent_free(ev);
2898 return (DDI_INTR_CLAIMED);
2899 }
2900 sysevent_free(ev);
2901
2902 /*
2903 * We now need to signal to the env background thread to ask the SC
2904 * for env readings and discover which sensor caused the SC to send
2905 * the ENV event before sending a sysevent to userland.
2906 */
2907 sgenv_indicate_cache_update_needed(ENV_CACHE);
2908
2909 return (DDI_INTR_CLAIMED);
2910 }
2911
2912
2913 /*
2914 * This function informs the Sysevent Framework that a temperature, voltage
2915 * or current reading for a sensor has exceeded its threshold/limit value or
2916 * that the reading has returned to a safe value having exceeded its
2917 * threshold/limit value previously.
2918 */
2919 static int
sgenv_process_threshold_event(env_sensor_t sensor)2920 sgenv_process_threshold_event(env_sensor_t sensor)
2921 {
2922 DCMN_ERR_S(f, "sgenv_process_threshold_event()");
2923
2924 sysevent_t *ev = NULL;
2925 sysevent_id_t eid;
2926 sysevent_value_t se_val;
2927 sysevent_attr_list_t *ev_attr_list = NULL;
2928 int err;
2929
2930 char sensor_str[MAX_TAG_ID_STR_LEN]; /* holds the sensor TagID */
2931
2932 /*
2933 * This function handles the case when a temperature reading passes
2934 * a threshold/limit level and also the case when there are power
2935 * fluctuations (voltage/current readings pass a threshold/limit level)
2936 * so we need to work out which case it is.
2937 *
2938 * if <temp_event_type> is TRUE, then need to handle an event
2939 * of type ESC_ENV_TEMP.
2940 */
2941 int temp_event_type;
2942
2943 switch (sensor.sd_id.id.sensor_type) {
2944 case SG_SENSOR_TYPE_TEMPERATURE:
2945 temp_event_type = TRUE;
2946 ev = sysevent_alloc(EC_ENV, ESC_ENV_TEMP, EP_SGENV, SE_NOSLEEP);
2947 if (ev == NULL) {
2948 cmn_err(CE_WARN, "Failed to allocate sysevent buffer "
2949 "for %s/%s event", EC_ENV, ESC_ENV_TEMP);
2950 return (DDI_FAILURE);
2951 }
2952 break;
2953
2954 default:
2955 temp_event_type = FALSE;
2956 ev = sysevent_alloc(EC_ENV, ESC_ENV_POWER,
2957 EP_SGENV, SE_NOSLEEP);
2958 if (ev == NULL) {
2959 cmn_err(CE_WARN, "Failed to allocate sysevent buffer "
2960 "for %s/%s event", EC_ENV, ESC_ENV_POWER);
2961 return (DDI_FAILURE);
2962 }
2963 break;
2964 }
2965
2966
2967 /*
2968 * Set the following attributes for this event:
2969 *
2970 * ENV_FRU_ID
2971 * ENV_FRU_RESOURCE_ID
2972 * ENV_FRU_DEVICE
2973 * ENV_FRU_STATE
2974 * ENV_MSG
2975 *
2976 */
2977 se_val.value_type = SE_DATA_TYPE_STRING;
2978 se_val.value.sv_string = ENV_RESERVED_ATTR;
2979 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_ID, &se_val, SE_NOSLEEP);
2980 if (err != 0) {
2981 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2982 ENV_FRU_ID, EC_ENV,
2983 (temp_event_type ? ESC_ENV_TEMP : ESC_ENV_POWER));
2984 sysevent_free(ev);
2985 return (DDI_FAILURE);
2986 }
2987
2988 se_val.value_type = SE_DATA_TYPE_STRING;
2989 se_val.value.sv_string = ENV_RESERVED_ATTR;
2990 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_RESOURCE_ID,
2991 &se_val, SE_NOSLEEP);
2992 if (err != 0) {
2993 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
2994 ENV_FRU_RESOURCE_ID, EC_ENV,
2995 (temp_event_type ? ESC_ENV_TEMP : ESC_ENV_POWER));
2996 sysevent_free_attr(ev_attr_list);
2997 sysevent_free(ev);
2998 return (DDI_FAILURE);
2999 }
3000
3001 se_val.value_type = SE_DATA_TYPE_STRING;
3002 se_val.value.sv_string = ENV_RESERVED_ATTR;
3003 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_DEVICE,
3004 &se_val, SE_NOSLEEP);
3005 if (err != 0) {
3006 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
3007 ENV_FRU_DEVICE, EC_ENV,
3008 (temp_event_type ? ESC_ENV_TEMP : ESC_ENV_POWER));
3009 sysevent_free_attr(ev_attr_list);
3010 sysevent_free(ev);
3011 return (DDI_FAILURE);
3012 }
3013
3014
3015 /*
3016 * We need to find out the status of the reading.
3017 */
3018 se_val.value_type = SE_DATA_TYPE_INT32;
3019 switch (SG_GET_SENSOR_STATUS(sensor.sd_status)) {
3020 case SG_SENSOR_STATUS_OK:
3021 se_val.value.sv_int32 = ENV_OK;
3022 break;
3023
3024 case SG_SENSOR_STATUS_LO_WARN:
3025 case SG_SENSOR_STATUS_HI_WARN:
3026 se_val.value.sv_int32 = ENV_WARNING;
3027 break;
3028
3029 case SG_SENSOR_STATUS_LO_DANGER:
3030 case SG_SENSOR_STATUS_HI_DANGER:
3031 default:
3032 se_val.value.sv_int32 = ENV_FAILED;
3033 break;
3034 }
3035
3036 /*
3037 * Add ENV_FRU_STATE attribute.
3038 */
3039 err = sysevent_add_attr(&ev_attr_list, ENV_FRU_STATE,
3040 &se_val, SE_NOSLEEP);
3041 if (err != 0) {
3042 cmn_err(CE_WARN, "Failed to add attr[%s] for %s/%s event "
3043 "(Err=%d)", ENV_FRU_STATE, EC_ENV,
3044 (temp_event_type ? ESC_ENV_TEMP: ESC_ENV_POWER),
3045 err);
3046 sysevent_free_attr(ev_attr_list);
3047 sysevent_free(ev);
3048 return (DDI_FAILURE);
3049 }
3050
3051
3052 /*
3053 * Save the sensor TagID as a string so that a meaningful message
3054 * can be passed to as part of the ENV_MSG attribute.
3055 */
3056 sgenv_tagid_to_string(sensor.sd_id, sensor_str);
3057
3058 /*
3059 * We need to add a string stating what type of event occurred.
3060 */
3061 switch (SG_GET_SENSOR_STATUS(sensor.sd_status)) {
3062 case SG_SENSOR_STATUS_OK:
3063 (void) strcat(sensor_str, SGENV_EVENT_MSG_OK);
3064 break;
3065
3066 case SG_SENSOR_STATUS_LO_WARN:
3067 (void) strcat(sensor_str, SGENV_EVENT_MSG_LO_WARN);
3068 break;
3069
3070 case SG_SENSOR_STATUS_HI_WARN:
3071 (void) strcat(sensor_str, SGENV_EVENT_MSG_HI_WARN);
3072 break;
3073
3074 case SG_SENSOR_STATUS_LO_DANGER:
3075 (void) strcat(sensor_str, SGENV_EVENT_MSG_LO_DANGER);
3076 break;
3077
3078 case SG_SENSOR_STATUS_HI_DANGER:
3079 (void) strcat(sensor_str, SGENV_EVENT_MSG_HI_DANGER);
3080 break;
3081
3082 default:
3083 DCMN_ERR_EVENT(CE_NOTE, "%s: Unknown sensor status", f);
3084 (void) strcat(sensor_str, SGENV_EVENT_MSG_UNKNOWN);
3085 break;
3086 }
3087
3088 DCMN_ERR_EVENT(CE_NOTE, "Temp/Power: %s", sensor_str);
3089
3090 /*
3091 * Add ENV_MSG attribute.
3092 */
3093 se_val.value_type = SE_DATA_TYPE_STRING;
3094 se_val.value.sv_string = sensor_str;
3095 err = sysevent_add_attr(&ev_attr_list, ENV_MSG, &se_val, SE_NOSLEEP);
3096 if (err != 0) {
3097 cmn_err(CE_WARN, "Failed to add attr [%s] for %s/%s event",
3098 ENV_MSG, EC_ENV,
3099 (temp_event_type ? ESC_ENV_TEMP : ESC_ENV_POWER));
3100 sysevent_free_attr(ev_attr_list);
3101 sysevent_free(ev);
3102 return (DDI_FAILURE);
3103 }
3104
3105
3106 /*
3107 * Log this event with sysevent framework.
3108 */
3109 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
3110 cmn_err(CE_WARN, "Failed to attach attr list for %s/%s event",
3111 EC_ENV,
3112 (temp_event_type ? ESC_ENV_TEMP : ESC_ENV_POWER));
3113 sysevent_free_attr(ev_attr_list);
3114 sysevent_free(ev);
3115 return (DDI_FAILURE);
3116 }
3117 err = log_sysevent(ev, SE_NOSLEEP, &eid);
3118 if (err != 0) {
3119 cmn_err(CE_WARN, "Failed to log %s/%s event", EC_ENV,
3120 (temp_event_type ? ESC_ENV_TEMP : ESC_ENV_POWER));
3121 sysevent_free(ev);
3122 return (DDI_FAILURE);
3123 }
3124 sysevent_free(ev);
3125
3126 return (DDI_SUCCESS);
3127 }
3128
3129
3130 /*
3131 * This function gets called when sgenv is notified of a DR event.
3132 * We need to update the board and env caches to ensure that they
3133 * now contain the latest system information..
3134 */
3135 static uint_t
sgenv_dr_event_handler(char * arg)3136 sgenv_dr_event_handler(char *arg)
3137 {
3138 DCMN_ERR_S(f, "sgenv_dr_event_handler()");
3139
3140 sg_system_fru_descriptor_t *payload = NULL;
3141 sbbc_msg_t *msg = NULL;
3142
3143 DCMN_ERR_EVENT(CE_NOTE, "%s: just been triggered.", f);
3144 DCMN_ERR_EVENT(CE_NOTE, "%s: Start: %lld", f, gethrtime());
3145
3146
3147 if (arg == NULL) {
3148 DCMN_ERR_EVENT(CE_NOTE, "%s: arg == NULL", f);
3149 return (DDI_INTR_CLAIMED);
3150 }
3151
3152 msg = (sbbc_msg_t *)arg;
3153
3154 if (msg->msg_buf == NULL) {
3155 DCMN_ERR_EVENT(CE_NOTE, "%s: msg_buf == NULL", f);
3156 return (DDI_INTR_CLAIMED);
3157 }
3158
3159 payload = (sg_system_fru_descriptor_t *)msg->msg_buf;
3160
3161 /*
3162 * We check the event_details field of the msg_buf to see if
3163 * we need to invalidate the caches
3164 */
3165 switch (payload->event_details) {
3166 case SG_EVT_BOARD_ABSENT:
3167 case SG_EVT_BOARD_PRESENT:
3168 case SG_EVT_UNASSIGN:
3169 case SG_EVT_ASSIGN:
3170 case SG_EVT_UNAVAILABLE:
3171 case SG_EVT_AVAILABLE:
3172 case SG_EVT_POWER_OFF:
3173 case SG_EVT_POWER_ON:
3174 case SG_EVT_PASSED_TEST:
3175 case SG_EVT_FAILED_TEST:
3176 /*
3177 * We now need to signal to the background threads to poll the
3178 * SC for env readings and board info which may have changed
3179 * as a result of the DR changes. This will cause the
3180 * env_cache and the board_cache to be updated.
3181 */
3182 DCMN_ERR_EVENT(CE_NOTE, "%s: about to signal to background "
3183 "threads due to event %d.", f, payload->event_details);
3184
3185 sgenv_indicate_cache_update_needed(ENV_CACHE);
3186 sgenv_indicate_cache_update_needed(BOARD_CACHE);
3187
3188 break;
3189
3190 default:
3191 DCMN_ERR_EVENT(CE_NOTE, "%s: Unknown DR event type.", f);
3192 break;
3193 }
3194
3195 DCMN_ERR_EVENT(CE_NOTE, "%s: Finish: %lld", f, gethrtime());
3196
3197 return (DDI_INTR_CLAIMED);
3198 }
3199
3200
3201 /*
3202 * This function is called by the interrupt handlers watching for ENV/DR events
3203 * from the SC. It indicates to the thread responsible for the cache specified
3204 * that it needs to update its data.
3205 */
3206 static void
sgenv_indicate_cache_update_needed(int cache_type)3207 sgenv_indicate_cache_update_needed(int cache_type)
3208 {
3209 DCMN_ERR_S(f, "sgenv_indicate_cache_update_needed()");
3210
3211 /*
3212 * If the cache is already being updated, we set a flag to
3213 * inform the thread that it needs to reread the data when
3214 * it is finished as we cannot be sure if the data was read
3215 * before or after the time this handler was triggered.
3216 *
3217 * Otherwise the thread is waiting for us and we signal
3218 * to it to start reading the data.
3219 */
3220 switch (cache_type) {
3221 case ENV_CACHE:
3222 mutex_enter(&env_flag_lock);
3223 if (env_cache_updating) {
3224 DCMN_ERR_THREAD(CE_NOTE, "%s: Thread already "
3225 "updating env cache", f);
3226 env_cache_update_needed = B_TRUE;
3227
3228 } else {
3229 DCMN_ERR_THREAD(CE_NOTE, "%s: Sending signal "
3230 "to env thread", f);
3231 cv_signal(&env_flag_cond);
3232 }
3233 mutex_exit(&env_flag_lock);
3234 break;
3235
3236 case BOARD_CACHE:
3237 mutex_enter(&board_flag_lock);
3238 if (board_cache_updating) {
3239 DCMN_ERR_THREAD(CE_NOTE, "%s: Thread already "
3240 "updating board cache", f);
3241 board_cache_update_needed = B_TRUE;
3242
3243 } else {
3244 DCMN_ERR_THREAD(CE_NOTE, "%s: Sending signal "
3245 "to board thread", f);
3246 cv_signal(&board_flag_cond);
3247 }
3248 mutex_exit(&board_flag_lock);
3249 break;
3250
3251 default:
3252 DCMN_ERR(CE_NOTE, "%s: Unknown cache type:0x%x", f, cache_type);
3253 break;
3254 }
3255 }
3256