1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78 #include <linux/sched/isolation.h>
79
80 #include <asm/cpu.h>
81 #include <asm/cpufeature.h>
82 #include <asm/cpu_ops.h>
83 #include <asm/fpsimd.h>
84 #include <asm/hwcap.h>
85 #include <asm/insn.h>
86 #include <asm/kvm_host.h>
87 #include <asm/mmu_context.h>
88 #include <asm/mte.h>
89 #include <asm/hypervisor.h>
90 #include <asm/processor.h>
91 #include <asm/smp.h>
92 #include <asm/sysreg.h>
93 #include <asm/traps.h>
94 #include <asm/vectors.h>
95 #include <asm/virt.h>
96
97 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
98 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
99
100 #ifdef CONFIG_COMPAT
101 #define COMPAT_ELF_HWCAP_DEFAULT \
102 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
103 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
104 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
105 COMPAT_HWCAP_LPAE)
106 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
107 unsigned int compat_elf_hwcap2 __read_mostly;
108 unsigned int compat_elf_hwcap3 __read_mostly;
109 #endif
110
111 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
112 EXPORT_SYMBOL(system_cpucaps);
113 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
114
115 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
116
117 /*
118 * arm64_use_ng_mappings must be placed in the .data section, otherwise it
119 * ends up in the .bss section where it is initialized in early_map_kernel()
120 * after the MMU (with the idmap) was enabled. create_init_idmap() - which
121 * runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
122 * may end up generating an incorrect idmap page table attributes.
123 */
124 bool arm64_use_ng_mappings __read_mostly = false;
125 EXPORT_SYMBOL(arm64_use_ng_mappings);
126
127 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
128
129 /*
130 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
131 * support it?
132 */
133 static bool __read_mostly allow_mismatched_32bit_el0;
134
135 /*
136 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
137 * seen at least one CPU capable of 32-bit EL0.
138 */
139 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
140
141 /*
142 * Mask of CPUs supporting 32-bit EL0.
143 * Only valid if arm64_mismatched_32bit_el0 is enabled.
144 */
145 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
146
dump_cpu_features(void)147 void dump_cpu_features(void)
148 {
149 /* file-wide pr_fmt adds "CPU features: " prefix */
150 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
151 }
152
153 #define __ARM64_MAX_POSITIVE(reg, field) \
154 ((reg##_##field##_SIGNED ? \
155 BIT(reg##_##field##_WIDTH - 1) : \
156 BIT(reg##_##field##_WIDTH)) - 1)
157
158 #define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
159
160 #define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
161 .sys_reg = SYS_##reg, \
162 .field_pos = reg##_##field##_SHIFT, \
163 .field_width = reg##_##field##_WIDTH, \
164 .sign = reg##_##field##_SIGNED, \
165 .min_field_value = min_value, \
166 .max_field_value = max_value,
167
168 /*
169 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
170 * an implicit maximum that depends on the sign-ess of the field.
171 *
172 * An unsigned field will be capped at all ones, while a signed field
173 * will be limited to the positive half only.
174 */
175 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
176 __ARM64_CPUID_FIELDS(reg, field, \
177 SYS_FIELD_VALUE(reg, field, min_value), \
178 __ARM64_MAX_POSITIVE(reg, field))
179
180 /*
181 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
182 * implicit minimal value to max_value. This should be used when
183 * matching a non-implemented property.
184 */
185 #define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
186 __ARM64_CPUID_FIELDS(reg, field, \
187 __ARM64_MIN_NEGATIVE(reg, field), \
188 SYS_FIELD_VALUE(reg, field, max_value))
189
190 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
191 { \
192 .sign = SIGNED, \
193 .visible = VISIBLE, \
194 .strict = STRICT, \
195 .type = TYPE, \
196 .shift = SHIFT, \
197 .width = WIDTH, \
198 .safe_val = SAFE_VAL, \
199 }
200
201 /* Define a feature with unsigned values */
202 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
203 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
204
205 /* Define a feature with a signed value */
206 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
207 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
208
209 #define ARM64_FTR_END \
210 { \
211 .width = 0, \
212 }
213
214 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
215
216 static bool __system_matches_cap(unsigned int n);
217
218 /*
219 * NOTE: Any changes to the visibility of features should be kept in
220 * sync with the documentation of the CPU feature register ABI.
221 */
222 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
229 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
237 ARM64_FTR_END,
238 };
239
240 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
249 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
251 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
252 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
253 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
254 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
255 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
256 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
257 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
258 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
260 ARM64_FTR_END,
261 };
262
263 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
264 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
265 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
266 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
268 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
269 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
271 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
272 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
273 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
274 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
275 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
276 ARM64_FTR_END,
277 };
278
279 static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
280 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
281 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
282 ARM64_FTR_END,
283 };
284
285 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
288 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
290 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
292 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
293 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
296 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
297 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
299 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
302 ARM64_FTR_END,
303 };
304
305 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
306 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
307 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
308 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
309 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
313 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
314 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
315 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
316 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
317 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
318 ARM64_FTR_END,
319 };
320
321 static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
322 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
323 ARM64_FTR_END,
324 };
325
326 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
327 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
328 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
329 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
330 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
331 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
332 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
333 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
334 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
335 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
336 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
337 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
338 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
339 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
340 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
341 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
342 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
343 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
344 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
345 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
346 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
347 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
348 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
349 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
350 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
351 ARM64_FTR_END,
352 };
353
354 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
355 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
356 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
357 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
358 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
359 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
360 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
361 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
362 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
363 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
364 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
365 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
366 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
368 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
369 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
370 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
371 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
372 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
373 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
374 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
375 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
376 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
377 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
378 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
379 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
380 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
381 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
382 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
383 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
384 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
385 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
386 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
387 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
388 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
389 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
390 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
391 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
392 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
393 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
394 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
395 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
396 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
397 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
398 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
399 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
400 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
401 ARM64_FTR_END,
402 };
403
404 static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
405 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
406 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
407 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
408 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
409 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
413 ARM64_FTR_END,
414 };
415
416 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
417 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
418 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
419 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
420 /*
421 * Page size not being supported at Stage-2 is not fatal. You
422 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
423 * your favourite nesting hypervisor.
424 *
425 * There is a small corner case where the hypervisor explicitly
426 * advertises a given granule size at Stage-2 (value 2) on some
427 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
428 * vCPUs. Although this is not forbidden by the architecture, it
429 * indicates that the hypervisor is being silly (or buggy).
430 *
431 * We make no effort to cope with this and pretend that if these
432 * fields are inconsistent across vCPUs, then it isn't worth
433 * trying to bring KVM up.
434 */
435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
438 /*
439 * We already refuse to boot CPUs that don't support our configured
440 * page size, so we can only detect mismatches for a page size other
441 * than the one we're currently using. Unfortunately, SoCs like this
442 * exist in the wild so, even though we don't like it, we'll have to go
443 * along with it and treat them as non-strict.
444 */
445 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
446 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
448
449 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
450 /* Linux shouldn't care about secure memory */
451 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
453 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
454 /*
455 * Differing PARange is fine as long as all peripherals and memory are mapped
456 * within the minimum PARange of all CPUs
457 */
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
459 ARM64_FTR_END,
460 };
461
462 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
465 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
466 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
467 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
477 ARM64_FTR_END,
478 };
479
480 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
483 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
484 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
486 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
487 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
489 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
492 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
495 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
496 ARM64_FTR_END,
497 };
498
499 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
500 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
501 FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
504 ARM64_FTR_END,
505 };
506
507 static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
508 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
510 ARM64_FTR_END,
511 };
512
513 static const struct arm64_ftr_bits ftr_ctr[] = {
514 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
515 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
516 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
517 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
518 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
519 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
520 /*
521 * Linux can handle differing I-cache policies. Userspace JITs will
522 * make use of *minLine.
523 * If we have differing I-cache policies, report it as the weakest - VIPT.
524 */
525 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
526 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
527 ARM64_FTR_END,
528 };
529
530 static struct arm64_ftr_override __ro_after_init no_override = { };
531
532 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
533 .name = "SYS_CTR_EL0",
534 .ftr_bits = ftr_ctr,
535 .override = &no_override,
536 };
537
538 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
539 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
540 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
541 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
542 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
543 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
544 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
547 ARM64_FTR_END,
548 };
549
550 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
551 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
552 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
553 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
554 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
555 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
556 /*
557 * We can instantiate multiple PMU instances with different levels
558 * of support.
559 */
560 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
561 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
562 ARM64_FTR_END,
563 };
564
565 static const struct arm64_ftr_bits ftr_mvfr0[] = {
566 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
567 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
568 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
569 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
570 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
571 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
572 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
574 ARM64_FTR_END,
575 };
576
577 static const struct arm64_ftr_bits ftr_mvfr1[] = {
578 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
579 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
580 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
581 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
582 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
583 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
584 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
585 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
586 ARM64_FTR_END,
587 };
588
589 static const struct arm64_ftr_bits ftr_mvfr2[] = {
590 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
591 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
592 ARM64_FTR_END,
593 };
594
595 static const struct arm64_ftr_bits ftr_dczid[] = {
596 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
597 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
598 ARM64_FTR_END,
599 };
600
601 static const struct arm64_ftr_bits ftr_gmid[] = {
602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
603 ARM64_FTR_END,
604 };
605
606 static const struct arm64_ftr_bits ftr_id_isar0[] = {
607 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
608 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
609 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
610 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
611 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
612 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
613 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
614 ARM64_FTR_END,
615 };
616
617 static const struct arm64_ftr_bits ftr_id_isar5[] = {
618 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
619 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
620 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
621 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
622 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
623 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
624 ARM64_FTR_END,
625 };
626
627 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
628 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
629 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
630 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
631 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
632 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
633 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
634 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
635
636 /*
637 * SpecSEI = 1 indicates that the PE might generate an SError on an
638 * external abort on speculative read. It is safe to assume that an
639 * SError might be generated than it will not be. Hence it has been
640 * classified as FTR_HIGHER_SAFE.
641 */
642 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
643 ARM64_FTR_END,
644 };
645
646 static const struct arm64_ftr_bits ftr_id_isar4[] = {
647 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
648 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
649 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
650 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
651 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
652 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
653 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
654 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
655 ARM64_FTR_END,
656 };
657
658 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
659 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
660 ARM64_FTR_END,
661 };
662
663 static const struct arm64_ftr_bits ftr_id_isar6[] = {
664 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
665 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
666 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
667 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
668 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
669 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
670 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
671 ARM64_FTR_END,
672 };
673
674 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
675 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
676 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
677 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
678 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
679 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
680 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
681 ARM64_FTR_END,
682 };
683
684 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
685 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
686 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
687 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
688 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
689 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
690 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
691 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
692 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
693 ARM64_FTR_END,
694 };
695
696 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
697 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
698 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
699 ARM64_FTR_END,
700 };
701
702 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
703 /* [31:28] TraceFilt */
704 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
705 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
706 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
707 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
708 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
709 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
710 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
711 ARM64_FTR_END,
712 };
713
714 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
715 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
716 ARM64_FTR_END,
717 };
718
719 static const struct arm64_ftr_bits ftr_mpamidr[] = {
720 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
721 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
722 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
723 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
724 ARM64_FTR_END,
725 };
726
727 /*
728 * Common ftr bits for a 32bit register with all hidden, strict
729 * attributes, with 4bit feature fields and a default safe value of
730 * 0. Covers the following 32bit registers:
731 * id_isar[1-3], id_mmfr[1-3]
732 */
733 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
734 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
735 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
736 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
737 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
738 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
739 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
740 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
741 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
742 ARM64_FTR_END,
743 };
744
745 /* Table for a single 32bit feature value */
746 static const struct arm64_ftr_bits ftr_single32[] = {
747 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
748 ARM64_FTR_END,
749 };
750
751 static const struct arm64_ftr_bits ftr_raz[] = {
752 ARM64_FTR_END,
753 };
754
755 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
756 .sys_id = id, \
757 .reg = &(struct arm64_ftr_reg){ \
758 .name = id_str, \
759 .override = (ovr), \
760 .ftr_bits = &((table)[0]), \
761 }}
762
763 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
764 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
765
766 #define ARM64_FTR_REG(id, table) \
767 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
768
769 struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
770 struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
771 struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
772 struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
773 struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
774 struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
775 struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
776 struct arm64_ftr_override __read_mostly id_aa64isar1_override;
777 struct arm64_ftr_override __read_mostly id_aa64isar2_override;
778
779 struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
780
781 static const struct __ftr_reg_entry {
782 u32 sys_id;
783 struct arm64_ftr_reg *reg;
784 } arm64_ftr_regs[] = {
785
786 /* Op1 = 0, CRn = 0, CRm = 1 */
787 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
788 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
789 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
790 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
791 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
792 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
793 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
794
795 /* Op1 = 0, CRn = 0, CRm = 2 */
796 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
797 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
798 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
799 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
800 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
801 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
802 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
803 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
804
805 /* Op1 = 0, CRn = 0, CRm = 3 */
806 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
807 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
808 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
809 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
810 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
811 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
812
813 /* Op1 = 0, CRn = 0, CRm = 4 */
814 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
815 &id_aa64pfr0_override),
816 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
817 &id_aa64pfr1_override),
818 ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
819 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
820 &id_aa64zfr0_override),
821 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
822 &id_aa64smfr0_override),
823 ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
824
825 /* Op1 = 0, CRn = 0, CRm = 5 */
826 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
827 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
828
829 /* Op1 = 0, CRn = 0, CRm = 6 */
830 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
831 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
832 &id_aa64isar1_override),
833 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
834 &id_aa64isar2_override),
835 ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
836
837 /* Op1 = 0, CRn = 0, CRm = 7 */
838 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
839 &id_aa64mmfr0_override),
840 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
841 &id_aa64mmfr1_override),
842 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
843 &id_aa64mmfr2_override),
844 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
845 ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
846
847 /* Op1 = 0, CRn = 10, CRm = 4 */
848 ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
849
850 /* Op1 = 1, CRn = 0, CRm = 0 */
851 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
852
853 /* Op1 = 3, CRn = 0, CRm = 0 */
854 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
855 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
856
857 /* Op1 = 3, CRn = 14, CRm = 0 */
858 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
859 };
860
search_cmp_ftr_reg(const void * id,const void * regp)861 static int search_cmp_ftr_reg(const void *id, const void *regp)
862 {
863 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
864 }
865
866 /*
867 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
868 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
869 * ascending order of sys_id, we use binary search to find a matching
870 * entry.
871 *
872 * returns - Upon success, matching ftr_reg entry for id.
873 * - NULL on failure. It is upto the caller to decide
874 * the impact of a failure.
875 */
get_arm64_ftr_reg_nowarn(u32 sys_id)876 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
877 {
878 const struct __ftr_reg_entry *ret;
879
880 ret = bsearch((const void *)(unsigned long)sys_id,
881 arm64_ftr_regs,
882 ARRAY_SIZE(arm64_ftr_regs),
883 sizeof(arm64_ftr_regs[0]),
884 search_cmp_ftr_reg);
885 if (ret)
886 return ret->reg;
887 return NULL;
888 }
889
890 /*
891 * get_arm64_ftr_reg - Looks up a feature register entry using
892 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
893 *
894 * returns - Upon success, matching ftr_reg entry for id.
895 * - NULL on failure but with an WARN_ON().
896 */
get_arm64_ftr_reg(u32 sys_id)897 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
898 {
899 struct arm64_ftr_reg *reg;
900
901 reg = get_arm64_ftr_reg_nowarn(sys_id);
902
903 /*
904 * Requesting a non-existent register search is an error. Warn
905 * and let the caller handle it.
906 */
907 WARN_ON(!reg);
908 return reg;
909 }
910
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)911 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
912 s64 ftr_val)
913 {
914 u64 mask = arm64_ftr_mask(ftrp);
915
916 reg &= ~mask;
917 reg |= (ftr_val << ftrp->shift) & mask;
918 return reg;
919 }
920
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)921 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
922 s64 cur)
923 {
924 s64 ret = 0;
925
926 switch (ftrp->type) {
927 case FTR_EXACT:
928 ret = ftrp->safe_val;
929 break;
930 case FTR_LOWER_SAFE:
931 ret = min(new, cur);
932 break;
933 case FTR_HIGHER_OR_ZERO_SAFE:
934 if (!cur || !new)
935 break;
936 fallthrough;
937 case FTR_HIGHER_SAFE:
938 ret = max(new, cur);
939 break;
940 default:
941 BUG();
942 }
943
944 return ret;
945 }
946
sort_ftr_regs(void)947 static void __init sort_ftr_regs(void)
948 {
949 unsigned int i;
950
951 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
952 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
953 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
954 unsigned int j = 0;
955
956 /*
957 * Features here must be sorted in descending order with respect
958 * to their shift values and should not overlap with each other.
959 */
960 for (; ftr_bits->width != 0; ftr_bits++, j++) {
961 unsigned int width = ftr_reg->ftr_bits[j].width;
962 unsigned int shift = ftr_reg->ftr_bits[j].shift;
963 unsigned int prev_shift;
964
965 WARN((shift + width) > 64,
966 "%s has invalid feature at shift %d\n",
967 ftr_reg->name, shift);
968
969 /*
970 * Skip the first feature. There is nothing to
971 * compare against for now.
972 */
973 if (j == 0)
974 continue;
975
976 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
977 WARN((shift + width) > prev_shift,
978 "%s has feature overlap at shift %d\n",
979 ftr_reg->name, shift);
980 }
981
982 /*
983 * Skip the first register. There is nothing to
984 * compare against for now.
985 */
986 if (i == 0)
987 continue;
988 /*
989 * Registers here must be sorted in ascending order with respect
990 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
991 * to work correctly.
992 */
993 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
994 }
995 }
996
997 /*
998 * Initialise the CPU feature register from Boot CPU values.
999 * Also initiliases the strict_mask for the register.
1000 * Any bits that are not covered by an arm64_ftr_bits entry are considered
1001 * RES0 for the system-wide value, and must strictly match.
1002 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)1003 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1004 {
1005 u64 val = 0;
1006 u64 strict_mask = ~0x0ULL;
1007 u64 user_mask = 0;
1008 u64 valid_mask = 0;
1009
1010 const struct arm64_ftr_bits *ftrp;
1011 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1012
1013 if (!reg)
1014 return;
1015
1016 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1017 u64 ftr_mask = arm64_ftr_mask(ftrp);
1018 s64 ftr_new = arm64_ftr_value(ftrp, new);
1019 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1020
1021 if ((ftr_mask & reg->override->mask) == ftr_mask) {
1022 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1023 char *str = NULL;
1024
1025 if (ftr_ovr != tmp) {
1026 /* Unsafe, remove the override */
1027 reg->override->mask &= ~ftr_mask;
1028 reg->override->val &= ~ftr_mask;
1029 tmp = ftr_ovr;
1030 str = "ignoring override";
1031 } else if (ftr_new != tmp) {
1032 /* Override was valid */
1033 ftr_new = tmp;
1034 str = "forced";
1035 } else {
1036 /* Override was the safe value */
1037 str = "already set";
1038 }
1039
1040 pr_warn("%s[%d:%d]: %s to %llx\n",
1041 reg->name,
1042 ftrp->shift + ftrp->width - 1,
1043 ftrp->shift, str,
1044 tmp & (BIT(ftrp->width) - 1));
1045 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
1046 reg->override->val &= ~ftr_mask;
1047 pr_warn("%s[%d:%d]: impossible override, ignored\n",
1048 reg->name,
1049 ftrp->shift + ftrp->width - 1,
1050 ftrp->shift);
1051 }
1052
1053 val = arm64_ftr_set_value(ftrp, val, ftr_new);
1054
1055 valid_mask |= ftr_mask;
1056 if (!ftrp->strict)
1057 strict_mask &= ~ftr_mask;
1058 if (ftrp->visible)
1059 user_mask |= ftr_mask;
1060 else
1061 reg->user_val = arm64_ftr_set_value(ftrp,
1062 reg->user_val,
1063 ftrp->safe_val);
1064 }
1065
1066 val &= valid_mask;
1067
1068 reg->sys_val = val;
1069 reg->strict_mask = strict_mask;
1070 reg->user_mask = user_mask;
1071 }
1072
1073 extern const struct arm64_cpu_capabilities arm64_errata[];
1074 static const struct arm64_cpu_capabilities arm64_features[];
1075
1076 static void __init
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)1077 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1078 {
1079 for (; caps->matches; caps++) {
1080 if (WARN(caps->capability >= ARM64_NCAPS,
1081 "Invalid capability %d\n", caps->capability))
1082 continue;
1083 if (WARN(cpucap_ptrs[caps->capability],
1084 "Duplicate entry for capability %d\n",
1085 caps->capability))
1086 continue;
1087 cpucap_ptrs[caps->capability] = caps;
1088 }
1089 }
1090
init_cpucap_indirect_list(void)1091 static void __init init_cpucap_indirect_list(void)
1092 {
1093 init_cpucap_indirect_list_from_array(arm64_features);
1094 init_cpucap_indirect_list_from_array(arm64_errata);
1095 }
1096
1097 static void __init setup_boot_cpu_capabilities(void);
1098
init_32bit_cpu_features(struct cpuinfo_32bit * info)1099 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1100 {
1101 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1102 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1103 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1104 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1105 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1106 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1107 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1108 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1109 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1110 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1111 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1112 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1113 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1114 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1115 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1116 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1117 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1118 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1119 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1120 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1121 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1122 }
1123
1124 #ifdef CONFIG_ARM64_PSEUDO_NMI
1125 static bool enable_pseudo_nmi;
1126
early_enable_pseudo_nmi(char * p)1127 static int __init early_enable_pseudo_nmi(char *p)
1128 {
1129 return kstrtobool(p, &enable_pseudo_nmi);
1130 }
1131 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1132
detect_system_supports_pseudo_nmi(void)1133 static __init void detect_system_supports_pseudo_nmi(void)
1134 {
1135 struct device_node *np;
1136
1137 if (!enable_pseudo_nmi)
1138 return;
1139
1140 /*
1141 * Detect broken MediaTek firmware that doesn't properly save and
1142 * restore GIC priorities.
1143 */
1144 np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1145 if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1146 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1147 enable_pseudo_nmi = false;
1148 }
1149 of_node_put(np);
1150 }
1151 #else /* CONFIG_ARM64_PSEUDO_NMI */
detect_system_supports_pseudo_nmi(void)1152 static inline void detect_system_supports_pseudo_nmi(void) { }
1153 #endif
1154
init_cpu_features(struct cpuinfo_arm64 * info)1155 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1156 {
1157 /* Before we start using the tables, make sure it is sorted */
1158 sort_ftr_regs();
1159
1160 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1161 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1162 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1163 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1164 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1165 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1166 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1167 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1168 init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1169 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1170 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1171 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1172 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1173 init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1174 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1175 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1176 init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1177 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1178 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1179 init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1180
1181 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1182 init_32bit_cpu_features(&info->aarch32);
1183
1184 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1185 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1186 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1187
1188 vec_init_vq_map(ARM64_VEC_SVE);
1189
1190 cpacr_restore(cpacr);
1191 }
1192
1193 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1194 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1195 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1196
1197 vec_init_vq_map(ARM64_VEC_SME);
1198
1199 cpacr_restore(cpacr);
1200 }
1201
1202 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1203 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1204 init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1205 }
1206
1207 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1208 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1209 }
1210
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1211 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1212 {
1213 const struct arm64_ftr_bits *ftrp;
1214
1215 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1216 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1217 s64 ftr_new = arm64_ftr_value(ftrp, new);
1218
1219 if (ftr_cur == ftr_new)
1220 continue;
1221 /* Find a safe value */
1222 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1223 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1224 }
1225
1226 }
1227
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1228 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1229 {
1230 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1231
1232 if (!regp)
1233 return 0;
1234
1235 update_cpu_ftr_reg(regp, val);
1236 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1237 return 0;
1238 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1239 regp->name, boot, cpu, val);
1240 return 1;
1241 }
1242
relax_cpu_ftr_reg(u32 sys_id,int field)1243 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1244 {
1245 const struct arm64_ftr_bits *ftrp;
1246 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1247
1248 if (!regp)
1249 return;
1250
1251 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1252 if (ftrp->shift == field) {
1253 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1254 break;
1255 }
1256 }
1257
1258 /* Bogus field? */
1259 WARN_ON(!ftrp->width);
1260 }
1261
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1262 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1263 struct cpuinfo_arm64 *boot)
1264 {
1265 static bool boot_cpu_32bit_regs_overridden = false;
1266
1267 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1268 return;
1269
1270 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1271 return;
1272
1273 boot->aarch32 = info->aarch32;
1274 init_32bit_cpu_features(&boot->aarch32);
1275 boot_cpu_32bit_regs_overridden = true;
1276 }
1277
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1278 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1279 struct cpuinfo_32bit *boot)
1280 {
1281 int taint = 0;
1282 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1283
1284 /*
1285 * If we don't have AArch32 at EL1, then relax the strictness of
1286 * EL1-dependent register fields to avoid spurious sanity check fails.
1287 */
1288 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1289 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1290 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1291 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1292 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1293 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1294 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1295 }
1296
1297 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1298 info->reg_id_dfr0, boot->reg_id_dfr0);
1299 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1300 info->reg_id_dfr1, boot->reg_id_dfr1);
1301 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1302 info->reg_id_isar0, boot->reg_id_isar0);
1303 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1304 info->reg_id_isar1, boot->reg_id_isar1);
1305 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1306 info->reg_id_isar2, boot->reg_id_isar2);
1307 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1308 info->reg_id_isar3, boot->reg_id_isar3);
1309 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1310 info->reg_id_isar4, boot->reg_id_isar4);
1311 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1312 info->reg_id_isar5, boot->reg_id_isar5);
1313 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1314 info->reg_id_isar6, boot->reg_id_isar6);
1315
1316 /*
1317 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1318 * ACTLR formats could differ across CPUs and therefore would have to
1319 * be trapped for virtualization anyway.
1320 */
1321 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1322 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1323 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1324 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1325 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1326 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1327 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1328 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1329 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1330 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1331 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1332 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1333 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1334 info->reg_id_pfr0, boot->reg_id_pfr0);
1335 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1336 info->reg_id_pfr1, boot->reg_id_pfr1);
1337 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1338 info->reg_id_pfr2, boot->reg_id_pfr2);
1339 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1340 info->reg_mvfr0, boot->reg_mvfr0);
1341 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1342 info->reg_mvfr1, boot->reg_mvfr1);
1343 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1344 info->reg_mvfr2, boot->reg_mvfr2);
1345
1346 return taint;
1347 }
1348
1349 /*
1350 * Update system wide CPU feature registers with the values from a
1351 * non-boot CPU. Also performs SANITY checks to make sure that there
1352 * aren't any insane variations from that of the boot CPU.
1353 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1354 void update_cpu_features(int cpu,
1355 struct cpuinfo_arm64 *info,
1356 struct cpuinfo_arm64 *boot)
1357 {
1358 int taint = 0;
1359
1360 /*
1361 * The kernel can handle differing I-cache policies, but otherwise
1362 * caches should look identical. Userspace JITs will make use of
1363 * *minLine.
1364 */
1365 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1366 info->reg_ctr, boot->reg_ctr);
1367
1368 /*
1369 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1370 * could result in too much or too little memory being zeroed if a
1371 * process is preempted and migrated between CPUs.
1372 */
1373 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1374 info->reg_dczid, boot->reg_dczid);
1375
1376 /* If different, timekeeping will be broken (especially with KVM) */
1377 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1378 info->reg_cntfrq, boot->reg_cntfrq);
1379
1380 /*
1381 * The kernel uses self-hosted debug features and expects CPUs to
1382 * support identical debug features. We presently need CTX_CMPs, WRPs,
1383 * and BRPs to be identical.
1384 * ID_AA64DFR1 is currently RES0.
1385 */
1386 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1387 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1388 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1389 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1390 /*
1391 * Even in big.LITTLE, processors should be identical instruction-set
1392 * wise.
1393 */
1394 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1395 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1396 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1397 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1398 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1399 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1400 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1401 info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1402
1403 /*
1404 * Differing PARange support is fine as long as all peripherals and
1405 * memory are mapped within the minimum PARange of all CPUs.
1406 * Linux should not care about secure memory.
1407 */
1408 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1409 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1410 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1411 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1412 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1413 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1414 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1415 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1416 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1417 info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1418
1419 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1420 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1421 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1422 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1423 taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1424 info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1425
1426 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1427 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1428
1429 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1430 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1431
1432 taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1433 info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1434
1435 /* Probe vector lengths */
1436 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1437 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1438 if (!system_capabilities_finalized()) {
1439 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1440
1441 vec_update_vq_map(ARM64_VEC_SVE);
1442
1443 cpacr_restore(cpacr);
1444 }
1445 }
1446
1447 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1448 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1449 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1450
1451 /* Probe vector lengths */
1452 if (!system_capabilities_finalized())
1453 vec_update_vq_map(ARM64_VEC_SME);
1454
1455 cpacr_restore(cpacr);
1456 }
1457
1458 if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1459 info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1460 taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1461 info->reg_mpamidr, boot->reg_mpamidr);
1462 }
1463
1464 /*
1465 * The kernel uses the LDGM/STGM instructions and the number of tags
1466 * they read/write depends on the GMID_EL1.BS field. Check that the
1467 * value is the same on all CPUs.
1468 */
1469 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1470 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1471 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1472 info->reg_gmid, boot->reg_gmid);
1473 }
1474
1475 /*
1476 * If we don't have AArch32 at all then skip the checks entirely
1477 * as the register values may be UNKNOWN and we're not going to be
1478 * using them for anything.
1479 *
1480 * This relies on a sanitised view of the AArch64 ID registers
1481 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1482 */
1483 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1484 lazy_init_32bit_cpu_features(info, boot);
1485 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1486 &boot->aarch32);
1487 }
1488
1489 /*
1490 * Mismatched CPU features are a recipe for disaster. Don't even
1491 * pretend to support them.
1492 */
1493 if (taint) {
1494 pr_warn_once("Unsupported CPU feature variation detected.\n");
1495 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1496 }
1497 }
1498
read_sanitised_ftr_reg(u32 id)1499 u64 read_sanitised_ftr_reg(u32 id)
1500 {
1501 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1502
1503 if (!regp)
1504 return 0;
1505 return regp->sys_val;
1506 }
1507 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1508
1509 #define read_sysreg_case(r) \
1510 case r: val = read_sysreg_s(r); break;
1511
1512 /*
1513 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1514 * Read the system register on the current CPU
1515 */
__read_sysreg_by_encoding(u32 sys_id)1516 u64 __read_sysreg_by_encoding(u32 sys_id)
1517 {
1518 struct arm64_ftr_reg *regp;
1519 u64 val;
1520
1521 switch (sys_id) {
1522 read_sysreg_case(SYS_ID_PFR0_EL1);
1523 read_sysreg_case(SYS_ID_PFR1_EL1);
1524 read_sysreg_case(SYS_ID_PFR2_EL1);
1525 read_sysreg_case(SYS_ID_DFR0_EL1);
1526 read_sysreg_case(SYS_ID_DFR1_EL1);
1527 read_sysreg_case(SYS_ID_MMFR0_EL1);
1528 read_sysreg_case(SYS_ID_MMFR1_EL1);
1529 read_sysreg_case(SYS_ID_MMFR2_EL1);
1530 read_sysreg_case(SYS_ID_MMFR3_EL1);
1531 read_sysreg_case(SYS_ID_MMFR4_EL1);
1532 read_sysreg_case(SYS_ID_MMFR5_EL1);
1533 read_sysreg_case(SYS_ID_ISAR0_EL1);
1534 read_sysreg_case(SYS_ID_ISAR1_EL1);
1535 read_sysreg_case(SYS_ID_ISAR2_EL1);
1536 read_sysreg_case(SYS_ID_ISAR3_EL1);
1537 read_sysreg_case(SYS_ID_ISAR4_EL1);
1538 read_sysreg_case(SYS_ID_ISAR5_EL1);
1539 read_sysreg_case(SYS_ID_ISAR6_EL1);
1540 read_sysreg_case(SYS_MVFR0_EL1);
1541 read_sysreg_case(SYS_MVFR1_EL1);
1542 read_sysreg_case(SYS_MVFR2_EL1);
1543
1544 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1545 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1546 read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1547 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1548 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1549 read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1550 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1551 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1552 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1553 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1554 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1555 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1556 read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1557 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1558 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1559 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1560 read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1561
1562 read_sysreg_case(SYS_CNTFRQ_EL0);
1563 read_sysreg_case(SYS_CTR_EL0);
1564 read_sysreg_case(SYS_DCZID_EL0);
1565
1566 default:
1567 BUG();
1568 return 0;
1569 }
1570
1571 regp = get_arm64_ftr_reg(sys_id);
1572 if (regp) {
1573 val &= ~regp->override->mask;
1574 val |= (regp->override->val & regp->override->mask);
1575 }
1576
1577 return val;
1578 }
1579
1580 #include <linux/irqchip/arm-gic-v3.h>
1581
1582 static bool
has_always(const struct arm64_cpu_capabilities * entry,int scope)1583 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1584 {
1585 return true;
1586 }
1587
1588 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1589 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1590 {
1591 int val, min, max;
1592 u64 tmp;
1593
1594 val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1595 entry->field_width,
1596 entry->sign);
1597
1598 tmp = entry->min_field_value;
1599 tmp <<= entry->field_pos;
1600
1601 min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1602 entry->field_width,
1603 entry->sign);
1604
1605 tmp = entry->max_field_value;
1606 tmp <<= entry->field_pos;
1607
1608 max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1609 entry->field_width,
1610 entry->sign);
1611
1612 return val >= min && val <= max;
1613 }
1614
1615 static u64
read_scoped_sysreg(const struct arm64_cpu_capabilities * entry,int scope)1616 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1617 {
1618 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1619 if (scope == SCOPE_SYSTEM)
1620 return read_sanitised_ftr_reg(entry->sys_reg);
1621 else
1622 return __read_sysreg_by_encoding(entry->sys_reg);
1623 }
1624
1625 static bool
has_user_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1626 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1627 {
1628 int mask;
1629 struct arm64_ftr_reg *regp;
1630 u64 val = read_scoped_sysreg(entry, scope);
1631
1632 regp = get_arm64_ftr_reg(entry->sys_reg);
1633 if (!regp)
1634 return false;
1635
1636 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1637 entry->field_pos,
1638 entry->field_width);
1639 if (!mask)
1640 return false;
1641
1642 return feature_matches(val, entry);
1643 }
1644
1645 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1646 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1647 {
1648 u64 val = read_scoped_sysreg(entry, scope);
1649 return feature_matches(val, entry);
1650 }
1651
system_32bit_el0_cpumask(void)1652 const struct cpumask *system_32bit_el0_cpumask(void)
1653 {
1654 if (!system_supports_32bit_el0())
1655 return cpu_none_mask;
1656
1657 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1658 return cpu_32bit_el0_mask;
1659
1660 return cpu_possible_mask;
1661 }
1662
task_cpu_fallback_mask(struct task_struct * p)1663 const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1664 {
1665 return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1666 }
1667
parse_32bit_el0_param(char * str)1668 static int __init parse_32bit_el0_param(char *str)
1669 {
1670 allow_mismatched_32bit_el0 = true;
1671 return 0;
1672 }
1673 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1674
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1675 static ssize_t aarch32_el0_show(struct device *dev,
1676 struct device_attribute *attr, char *buf)
1677 {
1678 const struct cpumask *mask = system_32bit_el0_cpumask();
1679
1680 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1681 }
1682 static const DEVICE_ATTR_RO(aarch32_el0);
1683
aarch32_el0_sysfs_init(void)1684 static int __init aarch32_el0_sysfs_init(void)
1685 {
1686 struct device *dev_root;
1687 int ret = 0;
1688
1689 if (!allow_mismatched_32bit_el0)
1690 return 0;
1691
1692 dev_root = bus_get_dev_root(&cpu_subsys);
1693 if (dev_root) {
1694 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1695 put_device(dev_root);
1696 }
1697 return ret;
1698 }
1699 device_initcall(aarch32_el0_sysfs_init);
1700
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1701 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1702 {
1703 if (!has_cpuid_feature(entry, scope))
1704 return allow_mismatched_32bit_el0;
1705
1706 if (scope == SCOPE_SYSTEM)
1707 pr_info("detected: 32-bit EL0 Support\n");
1708
1709 return true;
1710 }
1711
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1712 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1713 {
1714 bool has_sre;
1715
1716 if (!has_cpuid_feature(entry, scope))
1717 return false;
1718
1719 has_sre = gic_enable_sre();
1720 if (!has_sre)
1721 pr_warn_once("%s present but disabled by higher exception level\n",
1722 entry->desc);
1723
1724 return has_sre;
1725 }
1726
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1727 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1728 int scope)
1729 {
1730 u64 ctr;
1731
1732 if (scope == SCOPE_SYSTEM)
1733 ctr = arm64_ftr_reg_ctrel0.sys_val;
1734 else
1735 ctr = read_cpuid_effective_cachetype();
1736
1737 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1738 }
1739
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1740 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1741 {
1742 /*
1743 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1744 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1745 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1746 * value.
1747 */
1748 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1749 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1750 }
1751
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1752 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1753 int scope)
1754 {
1755 u64 ctr;
1756
1757 if (scope == SCOPE_SYSTEM)
1758 ctr = arm64_ftr_reg_ctrel0.sys_val;
1759 else
1760 ctr = read_cpuid_cachetype();
1761
1762 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1763 }
1764
1765 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1766 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1767 {
1768 /*
1769 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1770 * may share TLB entries with a CPU stuck in the crashed
1771 * kernel.
1772 */
1773 if (is_kdump_kernel())
1774 return false;
1775
1776 if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1777 return false;
1778
1779 return has_cpuid_feature(entry, scope);
1780 }
1781
1782 static bool __meltdown_safe = true;
1783 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1784
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1785 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1786 int scope)
1787 {
1788 /* List of CPUs that are not vulnerable and don't need KPTI */
1789 static const struct midr_range kpti_safe_list[] = {
1790 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1791 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1792 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1793 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1794 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1795 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1796 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1797 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1798 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1799 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1800 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1801 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1802 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1803 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1804 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1805 { /* sentinel */ }
1806 };
1807 char const *str = "kpti command line option";
1808 bool meltdown_safe;
1809
1810 meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1811
1812 /* Defer to CPU feature registers */
1813 if (has_cpuid_feature(entry, scope))
1814 meltdown_safe = true;
1815
1816 if (!meltdown_safe)
1817 __meltdown_safe = false;
1818
1819 /*
1820 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1821 * ThunderX leads to apparent I-cache corruption of kernel text, which
1822 * ends as well as you might imagine. Don't even try. We cannot rely
1823 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1824 * because cpucap detection order may change. However, since we know
1825 * affected CPUs are always in a homogeneous configuration, it is
1826 * safe to rely on this_cpu_has_cap() here.
1827 */
1828 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1829 str = "ARM64_WORKAROUND_CAVIUM_27456";
1830 __kpti_forced = -1;
1831 }
1832
1833 /* Useful for KASLR robustness */
1834 if (kaslr_enabled() && kaslr_requires_kpti()) {
1835 if (!__kpti_forced) {
1836 str = "KASLR";
1837 __kpti_forced = 1;
1838 }
1839 }
1840
1841 if (cpu_mitigations_off() && !__kpti_forced) {
1842 str = "mitigations=off";
1843 __kpti_forced = -1;
1844 }
1845
1846 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1847 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1848 return false;
1849 }
1850
1851 /* Forced? */
1852 if (__kpti_forced) {
1853 pr_info_once("kernel page table isolation forced %s by %s\n",
1854 __kpti_forced > 0 ? "ON" : "OFF", str);
1855 return __kpti_forced > 0;
1856 }
1857
1858 return !meltdown_safe;
1859 }
1860
has_nv1(const struct arm64_cpu_capabilities * entry,int scope)1861 static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1862 {
1863 /*
1864 * Although the Apple M2 family appears to support NV1, the
1865 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1866 * that it doesn't support NV1 at all.
1867 */
1868 static const struct midr_range nv1_ni_list[] = {
1869 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1870 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1871 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1872 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1873 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1874 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1875 {}
1876 };
1877
1878 return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1879 !(has_cpuid_feature(entry, scope) ||
1880 is_midr_in_range_list(nv1_ni_list)));
1881 }
1882
1883 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
has_lpa2_at_stage1(u64 mmfr0)1884 static bool has_lpa2_at_stage1(u64 mmfr0)
1885 {
1886 unsigned int tgran;
1887
1888 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1889 ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1890 return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1891 }
1892
has_lpa2_at_stage2(u64 mmfr0)1893 static bool has_lpa2_at_stage2(u64 mmfr0)
1894 {
1895 unsigned int tgran;
1896
1897 tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1898 ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1899 return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1900 }
1901
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1902 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1903 {
1904 u64 mmfr0;
1905
1906 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1907 return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1908 }
1909 #else
has_lpa2(const struct arm64_cpu_capabilities * entry,int scope)1910 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1911 {
1912 return false;
1913 }
1914 #endif
1915
1916 #ifdef CONFIG_HW_PERF_EVENTS
has_pmuv3(const struct arm64_cpu_capabilities * entry,int scope)1917 static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1918 {
1919 u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1920 unsigned int pmuver;
1921
1922 /*
1923 * PMUVer follows the standard ID scheme for an unsigned field with the
1924 * exception of 0xF (IMP_DEF) which is treated specially and implies
1925 * FEAT_PMUv3 is not implemented.
1926 *
1927 * See DDI0487L.a D24.1.3.2 for more details.
1928 */
1929 pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1930 ID_AA64DFR0_EL1_PMUVer_SHIFT);
1931 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1932 return false;
1933
1934 return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1935 }
1936 #endif
1937
1938 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1939 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1940
1941 extern
1942 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1943 phys_addr_t size, pgprot_t prot,
1944 phys_addr_t (*pgtable_alloc)(int), int flags);
1945
1946 static phys_addr_t __initdata kpti_ng_temp_alloc;
1947
kpti_ng_pgd_alloc(int shift)1948 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1949 {
1950 kpti_ng_temp_alloc -= PAGE_SIZE;
1951 return kpti_ng_temp_alloc;
1952 }
1953
__kpti_install_ng_mappings(void * __unused)1954 static int __init __kpti_install_ng_mappings(void *__unused)
1955 {
1956 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1957 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1958 kpti_remap_fn *remap_fn;
1959
1960 int cpu = smp_processor_id();
1961 int levels = CONFIG_PGTABLE_LEVELS;
1962 int order = order_base_2(levels);
1963 u64 kpti_ng_temp_pgd_pa = 0;
1964 pgd_t *kpti_ng_temp_pgd;
1965 u64 alloc = 0;
1966
1967 if (levels == 5 && !pgtable_l5_enabled())
1968 levels = 4;
1969 else if (levels == 4 && !pgtable_l4_enabled())
1970 levels = 3;
1971
1972 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1973
1974 if (!cpu) {
1975 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1976 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1977 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1978
1979 //
1980 // Create a minimal page table hierarchy that permits us to map
1981 // the swapper page tables temporarily as we traverse them.
1982 //
1983 // The physical pages are laid out as follows:
1984 //
1985 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1986 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1987 // +--------+-\-------+-\------ +-\------ +-///--------+
1988 // ^
1989 // The first page is mapped into this hierarchy at a PMD_SHIFT
1990 // aligned virtual address, so that we can manipulate the PTE
1991 // level entries while the mapping is active. The first entry
1992 // covers the PTE[] page itself, the remaining entries are free
1993 // to be used as a ad-hoc fixmap.
1994 //
1995 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1996 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1997 kpti_ng_pgd_alloc, 0);
1998 }
1999
2000 cpu_install_idmap();
2001 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
2002 cpu_uninstall_idmap();
2003
2004 if (!cpu) {
2005 free_pages(alloc, order);
2006 arm64_use_ng_mappings = true;
2007 }
2008
2009 return 0;
2010 }
2011
kpti_install_ng_mappings(void)2012 static void __init kpti_install_ng_mappings(void)
2013 {
2014 /* Check whether KPTI is going to be used */
2015 if (!arm64_kernel_unmapped_at_el0())
2016 return;
2017
2018 /*
2019 * We don't need to rewrite the page-tables if either we've done
2020 * it already or we have KASLR enabled and therefore have not
2021 * created any global mappings at all.
2022 */
2023 if (arm64_use_ng_mappings)
2024 return;
2025
2026 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
2027 }
2028
2029 #else
kpti_install_ng_mappings(void)2030 static inline void kpti_install_ng_mappings(void)
2031 {
2032 }
2033 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
2034
cpu_enable_kpti(struct arm64_cpu_capabilities const * cap)2035 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
2036 {
2037 if (__this_cpu_read(this_cpu_vector) == vectors) {
2038 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
2039
2040 __this_cpu_write(this_cpu_vector, v);
2041 }
2042
2043 }
2044
parse_kpti(char * str)2045 static int __init parse_kpti(char *str)
2046 {
2047 bool enabled;
2048 int ret = kstrtobool(str, &enabled);
2049
2050 if (ret)
2051 return ret;
2052
2053 __kpti_forced = enabled ? 1 : -1;
2054 return 0;
2055 }
2056 early_param("kpti", parse_kpti);
2057
2058 #ifdef CONFIG_ARM64_HW_AFDBM
2059 static struct cpumask dbm_cpus __read_mostly;
2060
__cpu_enable_hw_dbm(void)2061 static inline void __cpu_enable_hw_dbm(void)
2062 {
2063 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2064
2065 write_sysreg(tcr, tcr_el1);
2066 isb();
2067 local_flush_tlb_all();
2068 }
2069
cpu_has_broken_dbm(void)2070 static bool cpu_has_broken_dbm(void)
2071 {
2072 /* List of CPUs which have broken DBM support. */
2073 static const struct midr_range cpus[] = {
2074 #ifdef CONFIG_ARM64_ERRATUM_1024718
2075 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2076 /* Kryo4xx Silver (rdpe => r1p0) */
2077 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2078 #endif
2079 #ifdef CONFIG_ARM64_ERRATUM_2051678
2080 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2081 #endif
2082 {},
2083 };
2084
2085 return is_midr_in_range_list(cpus);
2086 }
2087
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)2088 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2089 {
2090 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2091 !cpu_has_broken_dbm();
2092 }
2093
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)2094 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2095 {
2096 if (cpu_can_use_dbm(cap)) {
2097 __cpu_enable_hw_dbm();
2098 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2099 }
2100 }
2101
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)2102 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2103 int __unused)
2104 {
2105 /*
2106 * DBM is a non-conflicting feature. i.e, the kernel can safely
2107 * run a mix of CPUs with and without the feature. So, we
2108 * unconditionally enable the capability to allow any late CPU
2109 * to use the feature. We only enable the control bits on the
2110 * CPU, if it is supported.
2111 */
2112
2113 return true;
2114 }
2115
2116 #endif
2117
2118 #ifdef CONFIG_ARM64_AMU_EXTN
2119
2120 /*
2121 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2122 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2123 * information regarding all the events that it supports. When a CPU bit is
2124 * set in the cpumask, the user of this feature can only rely on the presence
2125 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2126 * counters are enabled or access to these counters is enabled by code
2127 * executed at higher exception levels (firmware).
2128 */
2129 static struct cpumask amu_cpus __read_mostly;
2130
cpu_has_amu_feat(int cpu)2131 bool cpu_has_amu_feat(int cpu)
2132 {
2133 return cpumask_test_cpu(cpu, &amu_cpus);
2134 }
2135
get_cpu_with_amu_feat(void)2136 int get_cpu_with_amu_feat(void)
2137 {
2138 return cpumask_any(&amu_cpus);
2139 }
2140
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)2141 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2142 {
2143 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2144 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2145
2146 /* 0 reference values signal broken/disabled counters */
2147 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2148 update_freq_counters_refs();
2149 }
2150 }
2151
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)2152 static bool has_amu(const struct arm64_cpu_capabilities *cap,
2153 int __unused)
2154 {
2155 /*
2156 * The AMU extension is a non-conflicting feature: the kernel can
2157 * safely run a mix of CPUs with and without support for the
2158 * activity monitors extension. Therefore, unconditionally enable
2159 * the capability to allow any late CPU to use the feature.
2160 *
2161 * With this feature unconditionally enabled, the cpu_enable
2162 * function will be called for all CPUs that match the criteria,
2163 * including secondary and hotplugged, marking this feature as
2164 * present on that respective CPU. The enable function will also
2165 * print a detection message.
2166 */
2167
2168 return true;
2169 }
2170 #else
get_cpu_with_amu_feat(void)2171 int get_cpu_with_amu_feat(void)
2172 {
2173 return nr_cpu_ids;
2174 }
2175 #endif
2176
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)2177 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2178 {
2179 return is_kernel_in_hyp_mode();
2180 }
2181
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)2182 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2183 {
2184 /*
2185 * Copy register values that aren't redirected by hardware.
2186 *
2187 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2188 * this value to tpidr_el2 before we patch the code. Once we've done
2189 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2190 * do anything here.
2191 */
2192 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2193 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2194 }
2195
has_nested_virt_support(const struct arm64_cpu_capabilities * cap,int scope)2196 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2197 int scope)
2198 {
2199 if (kvm_get_mode() != KVM_MODE_NV)
2200 return false;
2201
2202 if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2203 pr_warn("unavailable: %s\n", cap->desc);
2204 return false;
2205 }
2206
2207 return true;
2208 }
2209
hvhe_possible(const struct arm64_cpu_capabilities * entry,int __unused)2210 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2211 int __unused)
2212 {
2213 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2214 }
2215
2216 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)2217 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2218 {
2219 /*
2220 * We modify PSTATE. This won't work from irq context as the PSTATE
2221 * is discarded once we return from the exception.
2222 */
2223 WARN_ON_ONCE(in_interrupt());
2224
2225 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2226 set_pstate_pan(1);
2227 }
2228 #endif /* CONFIG_ARM64_PAN */
2229
2230 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)2231 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2232 {
2233 /* Firmware may have left a deferred SError in this register. */
2234 write_sysreg_s(0, SYS_DISR_EL1);
2235 }
2236 #endif /* CONFIG_ARM64_RAS_EXTN */
2237
2238 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)2239 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2240 {
2241 int boot_val, sec_val;
2242
2243 /* We don't expect to be called with SCOPE_SYSTEM */
2244 WARN_ON(scope == SCOPE_SYSTEM);
2245 /*
2246 * The ptr-auth feature levels are not intercompatible with lower
2247 * levels. Hence we must match ptr-auth feature level of the secondary
2248 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2249 * from the sanitised register whereas direct register read is done for
2250 * the secondary CPUs.
2251 * The sanitised feature state is guaranteed to match that of the
2252 * boot CPU as a mismatched secondary CPU is parked before it gets
2253 * a chance to update the state, with the capability.
2254 */
2255 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2256 entry->field_pos, entry->sign);
2257 if (scope & SCOPE_BOOT_CPU)
2258 return boot_val >= entry->min_field_value;
2259 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2260 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2261 entry->field_pos, entry->sign);
2262 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2263 }
2264
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)2265 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2266 int scope)
2267 {
2268 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2269 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2270 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2271
2272 return apa || apa3 || api;
2273 }
2274
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)2275 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2276 int __unused)
2277 {
2278 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2279 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2280 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2281
2282 return gpa || gpa3 || gpi;
2283 }
2284 #endif /* CONFIG_ARM64_PTR_AUTH */
2285
2286 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)2287 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2288 {
2289 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2290 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2291 }
2292 #endif /* CONFIG_ARM64_E0PD */
2293
2294 #ifdef CONFIG_ARM64_PSEUDO_NMI
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)2295 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2296 int scope)
2297 {
2298 /*
2299 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2300 * feature, so will be detected earlier.
2301 */
2302 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2303 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2304 return false;
2305
2306 return enable_pseudo_nmi;
2307 }
2308
has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities * entry,int scope)2309 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2310 int scope)
2311 {
2312 /*
2313 * If we're not using priority masking then we won't be poking PMR_EL1,
2314 * and there's no need to relax synchronization of writes to it, and
2315 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2316 * that.
2317 *
2318 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2319 * feature, so will be detected earlier.
2320 */
2321 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2322 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2323 return false;
2324
2325 /*
2326 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2327 * hint for interrupt distribution, a DSB is not necessary when
2328 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2329 *
2330 * Linux itself doesn't use 1:N distribution, so has no need to
2331 * set PMHE. The only reason to have it set is if EL3 requires it
2332 * (and we can't change it).
2333 */
2334 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2335 }
2336 #endif
2337
2338 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)2339 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2340 {
2341 /*
2342 * Use of X16/X17 for tail-calls and trampolines that jump to
2343 * function entry points using BR is a requirement for
2344 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2345 * So, be strict and forbid other BRs using other registers to
2346 * jump onto a PACIxSP instruction:
2347 */
2348 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2349 isb();
2350 }
2351 #endif /* CONFIG_ARM64_BTI */
2352
2353 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)2354 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2355 {
2356 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2357
2358 mte_cpu_setup();
2359
2360 /*
2361 * Clear the tags in the zero page. This needs to be done via the
2362 * linear map which has the Tagged attribute.
2363 */
2364 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2365 mte_clear_page_tags(lm_alias(empty_zero_page));
2366 set_page_mte_tagged(ZERO_PAGE(0));
2367 }
2368
2369 kasan_init_hw_tags_cpu();
2370 }
2371 #endif /* CONFIG_ARM64_MTE */
2372
user_feature_fixup(void)2373 static void user_feature_fixup(void)
2374 {
2375 if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2376 struct arm64_ftr_reg *regp;
2377
2378 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2379 if (regp)
2380 regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2381 }
2382
2383 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2384 struct arm64_ftr_reg *regp;
2385
2386 regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2387 if (regp)
2388 regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2389 }
2390 }
2391
elf_hwcap_fixup(void)2392 static void elf_hwcap_fixup(void)
2393 {
2394 #ifdef CONFIG_COMPAT
2395 if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2396 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2397 #endif /* CONFIG_COMPAT */
2398 }
2399
2400 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)2401 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2402 {
2403 return kvm_get_mode() == KVM_MODE_PROTECTED;
2404 }
2405 #endif /* CONFIG_KVM */
2406
cpu_trap_el0_impdef(const struct arm64_cpu_capabilities * __unused)2407 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2408 {
2409 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2410 }
2411
cpu_enable_dit(const struct arm64_cpu_capabilities * __unused)2412 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2413 {
2414 set_pstate_dit(1);
2415 }
2416
cpu_enable_mops(const struct arm64_cpu_capabilities * __unused)2417 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2418 {
2419 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2420 }
2421
2422 #ifdef CONFIG_ARM64_POE
cpu_enable_poe(const struct arm64_cpu_capabilities * __unused)2423 static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2424 {
2425 sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2426 sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2427 }
2428 #endif
2429
2430 #ifdef CONFIG_ARM64_GCS
cpu_enable_gcs(const struct arm64_cpu_capabilities * __unused)2431 static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2432 {
2433 /* GCSPR_EL0 is always readable */
2434 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2435 }
2436 #endif
2437
2438 /* Internal helper functions to match cpu capability type */
2439 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)2440 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2441 {
2442 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2443 }
2444
2445 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2446 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2447 {
2448 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2449 }
2450
2451 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2452 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2453 {
2454 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2455 }
2456
2457 static bool
test_has_mpam(const struct arm64_cpu_capabilities * entry,int scope)2458 test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2459 {
2460 if (!has_cpuid_feature(entry, scope))
2461 return false;
2462
2463 /* Check firmware actually enabled MPAM on this cpu. */
2464 return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2465 }
2466
2467 static void
cpu_enable_mpam(const struct arm64_cpu_capabilities * entry)2468 cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2469 {
2470 /*
2471 * Access by the kernel (at EL1) should use the reserved PARTID
2472 * which is configured unrestricted. This avoids priority-inversion
2473 * where latency sensitive tasks have to wait for a task that has
2474 * been throttled to release the lock.
2475 */
2476 write_sysreg_s(0, SYS_MPAM1_EL1);
2477 }
2478
2479 static bool
test_has_mpam_hcr(const struct arm64_cpu_capabilities * entry,int scope)2480 test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2481 {
2482 u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2483
2484 return idr & MPAMIDR_EL1_HAS_HCR;
2485 }
2486
2487 static const struct arm64_cpu_capabilities arm64_features[] = {
2488 {
2489 .capability = ARM64_ALWAYS_BOOT,
2490 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2491 .matches = has_always,
2492 },
2493 {
2494 .capability = ARM64_ALWAYS_SYSTEM,
2495 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2496 .matches = has_always,
2497 },
2498 {
2499 .desc = "GIC system register CPU interface",
2500 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2501 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2502 .matches = has_useable_gicv3_cpuif,
2503 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2504 },
2505 {
2506 .desc = "Enhanced Counter Virtualization",
2507 .capability = ARM64_HAS_ECV,
2508 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2509 .matches = has_cpuid_feature,
2510 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2511 },
2512 {
2513 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2514 .capability = ARM64_HAS_ECV_CNTPOFF,
2515 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2516 .matches = has_cpuid_feature,
2517 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2518 },
2519 #ifdef CONFIG_ARM64_PAN
2520 {
2521 .desc = "Privileged Access Never",
2522 .capability = ARM64_HAS_PAN,
2523 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2524 .matches = has_cpuid_feature,
2525 .cpu_enable = cpu_enable_pan,
2526 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2527 },
2528 #endif /* CONFIG_ARM64_PAN */
2529 #ifdef CONFIG_ARM64_EPAN
2530 {
2531 .desc = "Enhanced Privileged Access Never",
2532 .capability = ARM64_HAS_EPAN,
2533 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2534 .matches = has_cpuid_feature,
2535 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2536 },
2537 #endif /* CONFIG_ARM64_EPAN */
2538 #ifdef CONFIG_ARM64_LSE_ATOMICS
2539 {
2540 .desc = "LSE atomic instructions",
2541 .capability = ARM64_HAS_LSE_ATOMICS,
2542 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2543 .matches = has_cpuid_feature,
2544 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2545 },
2546 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2547 {
2548 .desc = "Virtualization Host Extensions",
2549 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2550 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2551 .matches = runs_at_el2,
2552 .cpu_enable = cpu_copy_el2regs,
2553 },
2554 {
2555 .desc = "Nested Virtualization Support",
2556 .capability = ARM64_HAS_NESTED_VIRT,
2557 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2558 .matches = has_nested_virt_support,
2559 .match_list = (const struct arm64_cpu_capabilities []){
2560 {
2561 .matches = has_cpuid_feature,
2562 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2563 },
2564 {
2565 .matches = has_cpuid_feature,
2566 ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2567 },
2568 { /* Sentinel */ }
2569 },
2570 },
2571 {
2572 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2573 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2574 .matches = has_32bit_el0,
2575 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2576 },
2577 #ifdef CONFIG_KVM
2578 {
2579 .desc = "32-bit EL1 Support",
2580 .capability = ARM64_HAS_32BIT_EL1,
2581 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2582 .matches = has_cpuid_feature,
2583 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2584 },
2585 {
2586 .desc = "Protected KVM",
2587 .capability = ARM64_KVM_PROTECTED_MODE,
2588 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2589 .matches = is_kvm_protected_mode,
2590 },
2591 {
2592 .desc = "HCRX_EL2 register",
2593 .capability = ARM64_HAS_HCX,
2594 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2595 .matches = has_cpuid_feature,
2596 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2597 },
2598 #endif
2599 {
2600 .desc = "Kernel page table isolation (KPTI)",
2601 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2602 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2603 .cpu_enable = cpu_enable_kpti,
2604 .matches = unmap_kernel_at_el0,
2605 /*
2606 * The ID feature fields below are used to indicate that
2607 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2608 * more details.
2609 */
2610 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2611 },
2612 {
2613 .capability = ARM64_HAS_FPSIMD,
2614 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2615 .matches = has_cpuid_feature,
2616 .cpu_enable = cpu_enable_fpsimd,
2617 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2618 },
2619 #ifdef CONFIG_ARM64_PMEM
2620 {
2621 .desc = "Data cache clean to Point of Persistence",
2622 .capability = ARM64_HAS_DCPOP,
2623 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2624 .matches = has_cpuid_feature,
2625 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2626 },
2627 {
2628 .desc = "Data cache clean to Point of Deep Persistence",
2629 .capability = ARM64_HAS_DCPODP,
2630 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2631 .matches = has_cpuid_feature,
2632 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2633 },
2634 #endif
2635 #ifdef CONFIG_ARM64_SVE
2636 {
2637 .desc = "Scalable Vector Extension",
2638 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2639 .capability = ARM64_SVE,
2640 .cpu_enable = cpu_enable_sve,
2641 .matches = has_cpuid_feature,
2642 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2643 },
2644 #endif /* CONFIG_ARM64_SVE */
2645 #ifdef CONFIG_ARM64_RAS_EXTN
2646 {
2647 .desc = "RAS Extension Support",
2648 .capability = ARM64_HAS_RAS_EXTN,
2649 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2650 .matches = has_cpuid_feature,
2651 .cpu_enable = cpu_clear_disr,
2652 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2653 },
2654 #endif /* CONFIG_ARM64_RAS_EXTN */
2655 #ifdef CONFIG_ARM64_AMU_EXTN
2656 {
2657 .desc = "Activity Monitors Unit (AMU)",
2658 .capability = ARM64_HAS_AMU_EXTN,
2659 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2660 .matches = has_amu,
2661 .cpu_enable = cpu_amu_enable,
2662 .cpus = &amu_cpus,
2663 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2664 },
2665 #endif /* CONFIG_ARM64_AMU_EXTN */
2666 {
2667 .desc = "Data cache clean to the PoU not required for I/D coherence",
2668 .capability = ARM64_HAS_CACHE_IDC,
2669 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2670 .matches = has_cache_idc,
2671 .cpu_enable = cpu_emulate_effective_ctr,
2672 },
2673 {
2674 .desc = "Instruction cache invalidation not required for I/D coherence",
2675 .capability = ARM64_HAS_CACHE_DIC,
2676 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2677 .matches = has_cache_dic,
2678 },
2679 {
2680 .desc = "Stage-2 Force Write-Back",
2681 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2682 .capability = ARM64_HAS_STAGE2_FWB,
2683 .matches = has_cpuid_feature,
2684 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2685 },
2686 {
2687 .desc = "ARMv8.4 Translation Table Level",
2688 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2689 .capability = ARM64_HAS_ARMv8_4_TTL,
2690 .matches = has_cpuid_feature,
2691 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2692 },
2693 {
2694 .desc = "TLB range maintenance instructions",
2695 .capability = ARM64_HAS_TLB_RANGE,
2696 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2697 .matches = has_cpuid_feature,
2698 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2699 },
2700 #ifdef CONFIG_ARM64_HW_AFDBM
2701 {
2702 .desc = "Hardware dirty bit management",
2703 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2704 .capability = ARM64_HW_DBM,
2705 .matches = has_hw_dbm,
2706 .cpu_enable = cpu_enable_hw_dbm,
2707 .cpus = &dbm_cpus,
2708 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2709 },
2710 #endif
2711 #ifdef CONFIG_ARM64_HAFT
2712 {
2713 .desc = "Hardware managed Access Flag for Table Descriptors",
2714 /*
2715 * Contrary to the page/block access flag, the table access flag
2716 * cannot be emulated in software (no access fault will occur).
2717 * Therefore this should be used only if it's supported system
2718 * wide.
2719 */
2720 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2721 .capability = ARM64_HAFT,
2722 .matches = has_cpuid_feature,
2723 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2724 },
2725 #endif
2726 {
2727 .desc = "CRC32 instructions",
2728 .capability = ARM64_HAS_CRC32,
2729 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2730 .matches = has_cpuid_feature,
2731 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2732 },
2733 {
2734 .desc = "Speculative Store Bypassing Safe (SSBS)",
2735 .capability = ARM64_SSBS,
2736 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2737 .matches = has_cpuid_feature,
2738 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2739 },
2740 #ifdef CONFIG_ARM64_CNP
2741 {
2742 .desc = "Common not Private translations",
2743 .capability = ARM64_HAS_CNP,
2744 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2745 .matches = has_useable_cnp,
2746 .cpu_enable = cpu_enable_cnp,
2747 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2748 },
2749 #endif
2750 {
2751 .desc = "Speculation barrier (SB)",
2752 .capability = ARM64_HAS_SB,
2753 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2754 .matches = has_cpuid_feature,
2755 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2756 },
2757 #ifdef CONFIG_ARM64_PTR_AUTH
2758 {
2759 .desc = "Address authentication (architected QARMA5 algorithm)",
2760 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2761 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2762 .matches = has_address_auth_cpucap,
2763 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2764 },
2765 {
2766 .desc = "Address authentication (architected QARMA3 algorithm)",
2767 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2768 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2769 .matches = has_address_auth_cpucap,
2770 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2771 },
2772 {
2773 .desc = "Address authentication (IMP DEF algorithm)",
2774 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2775 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2776 .matches = has_address_auth_cpucap,
2777 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2778 },
2779 {
2780 .capability = ARM64_HAS_ADDRESS_AUTH,
2781 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2782 .matches = has_address_auth_metacap,
2783 },
2784 {
2785 .desc = "Generic authentication (architected QARMA5 algorithm)",
2786 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2787 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2788 .matches = has_cpuid_feature,
2789 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2790 },
2791 {
2792 .desc = "Generic authentication (architected QARMA3 algorithm)",
2793 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2794 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2795 .matches = has_cpuid_feature,
2796 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2797 },
2798 {
2799 .desc = "Generic authentication (IMP DEF algorithm)",
2800 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2801 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2802 .matches = has_cpuid_feature,
2803 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2804 },
2805 {
2806 .capability = ARM64_HAS_GENERIC_AUTH,
2807 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2808 .matches = has_generic_auth,
2809 },
2810 #endif /* CONFIG_ARM64_PTR_AUTH */
2811 #ifdef CONFIG_ARM64_PSEUDO_NMI
2812 {
2813 /*
2814 * Depends on having GICv3
2815 */
2816 .desc = "IRQ priority masking",
2817 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2818 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2819 .matches = can_use_gic_priorities,
2820 },
2821 {
2822 /*
2823 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2824 */
2825 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2826 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2827 .matches = has_gic_prio_relaxed_sync,
2828 },
2829 #endif
2830 #ifdef CONFIG_ARM64_E0PD
2831 {
2832 .desc = "E0PD",
2833 .capability = ARM64_HAS_E0PD,
2834 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2835 .cpu_enable = cpu_enable_e0pd,
2836 .matches = has_cpuid_feature,
2837 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2838 },
2839 #endif
2840 {
2841 .desc = "Random Number Generator",
2842 .capability = ARM64_HAS_RNG,
2843 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2844 .matches = has_cpuid_feature,
2845 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2846 },
2847 #ifdef CONFIG_ARM64_BTI
2848 {
2849 .desc = "Branch Target Identification",
2850 .capability = ARM64_BTI,
2851 #ifdef CONFIG_ARM64_BTI_KERNEL
2852 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2853 #else
2854 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2855 #endif
2856 .matches = has_cpuid_feature,
2857 .cpu_enable = bti_enable,
2858 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2859 },
2860 #endif
2861 #ifdef CONFIG_ARM64_MTE
2862 {
2863 .desc = "Memory Tagging Extension",
2864 .capability = ARM64_MTE,
2865 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2866 .matches = has_cpuid_feature,
2867 .cpu_enable = cpu_enable_mte,
2868 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2869 },
2870 {
2871 .desc = "Asymmetric MTE Tag Check Fault",
2872 .capability = ARM64_MTE_ASYMM,
2873 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2874 .matches = has_cpuid_feature,
2875 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2876 },
2877 #endif /* CONFIG_ARM64_MTE */
2878 {
2879 .desc = "RCpc load-acquire (LDAPR)",
2880 .capability = ARM64_HAS_LDAPR,
2881 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2882 .matches = has_cpuid_feature,
2883 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2884 },
2885 {
2886 .desc = "Fine Grained Traps",
2887 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2888 .capability = ARM64_HAS_FGT,
2889 .matches = has_cpuid_feature,
2890 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2891 },
2892 {
2893 .desc = "Fine Grained Traps 2",
2894 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2895 .capability = ARM64_HAS_FGT2,
2896 .matches = has_cpuid_feature,
2897 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2898 },
2899 #ifdef CONFIG_ARM64_SME
2900 {
2901 .desc = "Scalable Matrix Extension",
2902 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2903 .capability = ARM64_SME,
2904 .matches = has_cpuid_feature,
2905 .cpu_enable = cpu_enable_sme,
2906 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2907 },
2908 /* FA64 should be sorted after the base SME capability */
2909 {
2910 .desc = "FA64",
2911 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2912 .capability = ARM64_SME_FA64,
2913 .matches = has_cpuid_feature,
2914 .cpu_enable = cpu_enable_fa64,
2915 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2916 },
2917 {
2918 .desc = "SME2",
2919 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2920 .capability = ARM64_SME2,
2921 .matches = has_cpuid_feature,
2922 .cpu_enable = cpu_enable_sme2,
2923 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2924 },
2925 #endif /* CONFIG_ARM64_SME */
2926 {
2927 .desc = "WFx with timeout",
2928 .capability = ARM64_HAS_WFXT,
2929 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2930 .matches = has_cpuid_feature,
2931 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2932 },
2933 {
2934 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2935 .capability = ARM64_HAS_TIDCP1,
2936 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2937 .matches = has_cpuid_feature,
2938 .cpu_enable = cpu_trap_el0_impdef,
2939 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2940 },
2941 {
2942 .desc = "Data independent timing control (DIT)",
2943 .capability = ARM64_HAS_DIT,
2944 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2945 .matches = has_cpuid_feature,
2946 .cpu_enable = cpu_enable_dit,
2947 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2948 },
2949 {
2950 .desc = "Memory Copy and Memory Set instructions",
2951 .capability = ARM64_HAS_MOPS,
2952 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2953 .matches = has_cpuid_feature,
2954 .cpu_enable = cpu_enable_mops,
2955 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2956 },
2957 {
2958 .capability = ARM64_HAS_TCR2,
2959 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2960 .matches = has_cpuid_feature,
2961 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2962 },
2963 {
2964 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2965 .capability = ARM64_HAS_S1PIE,
2966 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2967 .matches = has_cpuid_feature,
2968 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2969 },
2970 {
2971 .desc = "VHE for hypervisor only",
2972 .capability = ARM64_KVM_HVHE,
2973 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2974 .matches = hvhe_possible,
2975 },
2976 {
2977 .desc = "Enhanced Virtualization Traps",
2978 .capability = ARM64_HAS_EVT,
2979 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2980 .matches = has_cpuid_feature,
2981 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2982 },
2983 {
2984 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
2985 .capability = ARM64_HAS_LPA2,
2986 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2987 .matches = has_lpa2,
2988 },
2989 {
2990 .desc = "FPMR",
2991 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2992 .capability = ARM64_HAS_FPMR,
2993 .matches = has_cpuid_feature,
2994 .cpu_enable = cpu_enable_fpmr,
2995 ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2996 },
2997 #ifdef CONFIG_ARM64_VA_BITS_52
2998 {
2999 .capability = ARM64_HAS_VA52,
3000 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3001 .matches = has_cpuid_feature,
3002 #ifdef CONFIG_ARM64_64K_PAGES
3003 .desc = "52-bit Virtual Addressing (LVA)",
3004 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3005 #else
3006 .desc = "52-bit Virtual Addressing (LPA2)",
3007 #ifdef CONFIG_ARM64_4K_PAGES
3008 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3009 #else
3010 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3011 #endif
3012 #endif
3013 },
3014 #endif
3015 {
3016 .desc = "Memory Partitioning And Monitoring",
3017 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3018 .capability = ARM64_MPAM,
3019 .matches = test_has_mpam,
3020 .cpu_enable = cpu_enable_mpam,
3021 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3022 },
3023 {
3024 .desc = "Memory Partitioning And Monitoring Virtualisation",
3025 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3026 .capability = ARM64_MPAM_HCR,
3027 .matches = test_has_mpam_hcr,
3028 },
3029 {
3030 .desc = "NV1",
3031 .capability = ARM64_HAS_HCR_NV1,
3032 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3033 .matches = has_nv1,
3034 ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3035 },
3036 #ifdef CONFIG_ARM64_POE
3037 {
3038 .desc = "Stage-1 Permission Overlay Extension (S1POE)",
3039 .capability = ARM64_HAS_S1POE,
3040 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3041 .matches = has_cpuid_feature,
3042 .cpu_enable = cpu_enable_poe,
3043 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3044 },
3045 #endif
3046 #ifdef CONFIG_ARM64_GCS
3047 {
3048 .desc = "Guarded Control Stack (GCS)",
3049 .capability = ARM64_HAS_GCS,
3050 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3051 .cpu_enable = cpu_enable_gcs,
3052 .matches = has_cpuid_feature,
3053 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3054 },
3055 #endif
3056 #ifdef CONFIG_HW_PERF_EVENTS
3057 {
3058 .desc = "PMUv3",
3059 .capability = ARM64_HAS_PMUV3,
3060 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
3061 .matches = has_pmuv3,
3062 },
3063 #endif
3064 {},
3065 };
3066
3067 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
3068 .matches = has_user_cpuid_feature, \
3069 ARM64_CPUID_FIELDS(reg, field, min_value)
3070
3071 #define __HWCAP_CAP(name, cap_type, cap) \
3072 .desc = name, \
3073 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3074 .hwcap_type = cap_type, \
3075 .hwcap = cap, \
3076
3077 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3078 { \
3079 __HWCAP_CAP(#cap, cap_type, cap) \
3080 HWCAP_CPUID_MATCH(reg, field, min_value) \
3081 }
3082
3083 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
3084 { \
3085 __HWCAP_CAP(#cap, cap_type, cap) \
3086 .matches = cpucap_multi_entry_cap_matches, \
3087 .match_list = list, \
3088 }
3089
3090 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
3091 { \
3092 __HWCAP_CAP(#cap, cap_type, cap) \
3093 .matches = match, \
3094 }
3095
3096 #define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap) \
3097 { \
3098 __HWCAP_CAP(#cap, cap_type, cap) \
3099 HWCAP_CPUID_MATCH(reg, field, min_value) \
3100 .matches = match, \
3101 }
3102
3103 #ifdef CONFIG_ARM64_PTR_AUTH
3104 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3105 {
3106 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3107 },
3108 {
3109 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3110 },
3111 {
3112 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3113 },
3114 {},
3115 };
3116
3117 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3118 {
3119 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3120 },
3121 {
3122 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3123 },
3124 {
3125 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3126 },
3127 {},
3128 };
3129 #endif
3130
3131 #ifdef CONFIG_ARM64_SVE
has_sve_feature(const struct arm64_cpu_capabilities * cap,int scope)3132 static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3133 {
3134 return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3135 }
3136 #endif
3137
3138 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3139 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3140 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3141 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3142 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3143 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3144 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3145 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3146 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3147 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3148 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3149 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3150 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3151 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3152 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3153 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3154 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3155 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3156 HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3157 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3158 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3159 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3160 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3161 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3162 HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3163 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3164 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3165 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3166 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3167 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3168 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3169 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3170 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3171 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3172 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3173 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3174 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3175 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3176 HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3177 HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3178 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3179 #ifdef CONFIG_ARM64_SVE
3180 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3181 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3182 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3183 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3184 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3185 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3186 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3187 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3188 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3189 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3190 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3191 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3192 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3193 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3194 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3195 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3196 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3197 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3198 HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3199 #endif
3200 #ifdef CONFIG_ARM64_GCS
3201 HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3202 #endif
3203 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3204 #ifdef CONFIG_ARM64_BTI
3205 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3206 #endif
3207 #ifdef CONFIG_ARM64_PTR_AUTH
3208 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3209 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3210 #endif
3211 #ifdef CONFIG_ARM64_MTE
3212 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3213 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3214 #endif /* CONFIG_ARM64_MTE */
3215 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3216 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3217 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3218 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3219 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3220 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3221 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3222 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3223 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3224 #ifdef CONFIG_ARM64_SME
3225 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3226 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3227 HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3228 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3229 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3230 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3231 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3232 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3233 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3234 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3235 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3236 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3237 HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3238 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3239 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3240 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3241 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3242 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3243 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3244 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3245 HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3246 HWCAP_CAP(ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3247 HWCAP_CAP(ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3248 HWCAP_CAP(ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3249 HWCAP_CAP(ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3250 HWCAP_CAP(ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3251 #endif /* CONFIG_ARM64_SME */
3252 HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3253 HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3254 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3255 HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3256 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3257 HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3258 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3259 HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3260 #ifdef CONFIG_ARM64_POE
3261 HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3262 #endif
3263 {},
3264 };
3265
3266 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)3267 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3268 {
3269 /*
3270 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3271 * in line with that of arm32 as in vfp_init(). We make sure that the
3272 * check is future proof, by making sure value is non-zero.
3273 */
3274 u32 mvfr1;
3275
3276 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3277 if (scope == SCOPE_SYSTEM)
3278 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3279 else
3280 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3281
3282 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3283 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3284 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3285 }
3286 #endif
3287
3288 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3289 #ifdef CONFIG_COMPAT
3290 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3291 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3292 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3293 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3294 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3295 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3296 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3297 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3298 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3299 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3300 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3301 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3302 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3303 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3304 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3305 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3306 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3307 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3308 #endif
3309 {},
3310 };
3311
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)3312 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3313 {
3314 switch (cap->hwcap_type) {
3315 case CAP_HWCAP:
3316 cpu_set_feature(cap->hwcap);
3317 break;
3318 #ifdef CONFIG_COMPAT
3319 case CAP_COMPAT_HWCAP:
3320 compat_elf_hwcap |= (u32)cap->hwcap;
3321 break;
3322 case CAP_COMPAT_HWCAP2:
3323 compat_elf_hwcap2 |= (u32)cap->hwcap;
3324 break;
3325 #endif
3326 default:
3327 WARN_ON(1);
3328 break;
3329 }
3330 }
3331
3332 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)3333 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3334 {
3335 bool rc;
3336
3337 switch (cap->hwcap_type) {
3338 case CAP_HWCAP:
3339 rc = cpu_have_feature(cap->hwcap);
3340 break;
3341 #ifdef CONFIG_COMPAT
3342 case CAP_COMPAT_HWCAP:
3343 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3344 break;
3345 case CAP_COMPAT_HWCAP2:
3346 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3347 break;
3348 #endif
3349 default:
3350 WARN_ON(1);
3351 rc = false;
3352 }
3353
3354 return rc;
3355 }
3356
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)3357 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3358 {
3359 /* We support emulation of accesses to CPU ID feature registers */
3360 cpu_set_named_feature(CPUID);
3361 for (; hwcaps->matches; hwcaps++)
3362 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3363 cap_set_elf_hwcap(hwcaps);
3364 }
3365
update_cpu_capabilities(u16 scope_mask)3366 static void update_cpu_capabilities(u16 scope_mask)
3367 {
3368 int i;
3369 const struct arm64_cpu_capabilities *caps;
3370
3371 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3372 for (i = 0; i < ARM64_NCAPS; i++) {
3373 caps = cpucap_ptrs[i];
3374 if (!caps || !(caps->type & scope_mask) ||
3375 cpus_have_cap(caps->capability) ||
3376 !caps->matches(caps, cpucap_default_scope(caps)))
3377 continue;
3378
3379 if (caps->desc && !caps->cpus)
3380 pr_info("detected: %s\n", caps->desc);
3381
3382 __set_bit(caps->capability, system_cpucaps);
3383
3384 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3385 set_bit(caps->capability, boot_cpucaps);
3386 }
3387 }
3388
3389 /*
3390 * Enable all the available capabilities on this CPU. The capabilities
3391 * with BOOT_CPU scope are handled separately and hence skipped here.
3392 */
cpu_enable_non_boot_scope_capabilities(void * __unused)3393 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3394 {
3395 int i;
3396 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3397
3398 for_each_available_cap(i) {
3399 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3400
3401 if (WARN_ON(!cap))
3402 continue;
3403
3404 if (!(cap->type & non_boot_scope))
3405 continue;
3406
3407 if (cap->cpu_enable)
3408 cap->cpu_enable(cap);
3409 }
3410 return 0;
3411 }
3412
3413 /*
3414 * Run through the enabled capabilities and enable() it on all active
3415 * CPUs
3416 */
enable_cpu_capabilities(u16 scope_mask)3417 static void __init enable_cpu_capabilities(u16 scope_mask)
3418 {
3419 int i;
3420 const struct arm64_cpu_capabilities *caps;
3421 bool boot_scope;
3422
3423 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3424 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3425
3426 for (i = 0; i < ARM64_NCAPS; i++) {
3427 caps = cpucap_ptrs[i];
3428 if (!caps || !(caps->type & scope_mask) ||
3429 !cpus_have_cap(caps->capability))
3430 continue;
3431
3432 if (boot_scope && caps->cpu_enable)
3433 /*
3434 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3435 * before any secondary CPU boots. Thus, each secondary
3436 * will enable the capability as appropriate via
3437 * check_local_cpu_capabilities(). The only exception is
3438 * the boot CPU, for which the capability must be
3439 * enabled here. This approach avoids costly
3440 * stop_machine() calls for this case.
3441 */
3442 caps->cpu_enable(caps);
3443 }
3444
3445 /*
3446 * For all non-boot scope capabilities, use stop_machine()
3447 * as it schedules the work allowing us to modify PSTATE,
3448 * instead of on_each_cpu() which uses an IPI, giving us a
3449 * PSTATE that disappears when we return.
3450 */
3451 if (!boot_scope)
3452 stop_machine(cpu_enable_non_boot_scope_capabilities,
3453 NULL, cpu_online_mask);
3454 }
3455
3456 /*
3457 * Run through the list of capabilities to check for conflicts.
3458 * If the system has already detected a capability, take necessary
3459 * action on this CPU.
3460 */
verify_local_cpu_caps(u16 scope_mask)3461 static void verify_local_cpu_caps(u16 scope_mask)
3462 {
3463 int i;
3464 bool cpu_has_cap, system_has_cap;
3465 const struct arm64_cpu_capabilities *caps;
3466
3467 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3468
3469 for (i = 0; i < ARM64_NCAPS; i++) {
3470 caps = cpucap_ptrs[i];
3471 if (!caps || !(caps->type & scope_mask))
3472 continue;
3473
3474 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3475 system_has_cap = cpus_have_cap(caps->capability);
3476
3477 if (system_has_cap) {
3478 /*
3479 * Check if the new CPU misses an advertised feature,
3480 * which is not safe to miss.
3481 */
3482 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3483 break;
3484 /*
3485 * We have to issue cpu_enable() irrespective of
3486 * whether the CPU has it or not, as it is enabeld
3487 * system wide. It is upto the call back to take
3488 * appropriate action on this CPU.
3489 */
3490 if (caps->cpu_enable)
3491 caps->cpu_enable(caps);
3492 } else {
3493 /*
3494 * Check if the CPU has this capability if it isn't
3495 * safe to have when the system doesn't.
3496 */
3497 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3498 break;
3499 }
3500 }
3501
3502 if (i < ARM64_NCAPS) {
3503 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3504 smp_processor_id(), caps->capability,
3505 caps->desc, system_has_cap, cpu_has_cap);
3506
3507 if (cpucap_panic_on_conflict(caps))
3508 cpu_panic_kernel();
3509 else
3510 cpu_die_early();
3511 }
3512 }
3513
3514 /*
3515 * Check for CPU features that are used in early boot
3516 * based on the Boot CPU value.
3517 */
check_early_cpu_features(void)3518 static void check_early_cpu_features(void)
3519 {
3520 verify_cpu_asid_bits();
3521
3522 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3523 }
3524
3525 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)3526 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3527 {
3528
3529 for (; caps->matches; caps++)
3530 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3531 pr_crit("CPU%d: missing HWCAP: %s\n",
3532 smp_processor_id(), caps->desc);
3533 cpu_die_early();
3534 }
3535 }
3536
verify_local_elf_hwcaps(void)3537 static void verify_local_elf_hwcaps(void)
3538 {
3539 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3540
3541 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3542 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3543 }
3544
verify_sve_features(void)3545 static void verify_sve_features(void)
3546 {
3547 unsigned long cpacr = cpacr_save_enable_kernel_sve();
3548
3549 if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3550 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3551 smp_processor_id());
3552 cpu_die_early();
3553 }
3554
3555 cpacr_restore(cpacr);
3556 }
3557
verify_sme_features(void)3558 static void verify_sme_features(void)
3559 {
3560 unsigned long cpacr = cpacr_save_enable_kernel_sme();
3561
3562 if (vec_verify_vq_map(ARM64_VEC_SME)) {
3563 pr_crit("CPU%d: SME: vector length support mismatch\n",
3564 smp_processor_id());
3565 cpu_die_early();
3566 }
3567
3568 cpacr_restore(cpacr);
3569 }
3570
verify_hyp_capabilities(void)3571 static void verify_hyp_capabilities(void)
3572 {
3573 u64 safe_mmfr1, mmfr0, mmfr1;
3574 int parange, ipa_max;
3575 unsigned int safe_vmid_bits, vmid_bits;
3576
3577 if (!IS_ENABLED(CONFIG_KVM))
3578 return;
3579
3580 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3581 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3582 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3583
3584 /* Verify VMID bits */
3585 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3586 vmid_bits = get_vmid_bits(mmfr1);
3587 if (vmid_bits < safe_vmid_bits) {
3588 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3589 cpu_die_early();
3590 }
3591
3592 /* Verify IPA range */
3593 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3594 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3595 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3596 if (ipa_max < get_kvm_ipa_limit()) {
3597 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3598 cpu_die_early();
3599 }
3600 }
3601
verify_mpam_capabilities(void)3602 static void verify_mpam_capabilities(void)
3603 {
3604 u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3605 u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3606 u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3607
3608 if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3609 FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3610 pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3611 cpu_die_early();
3612 }
3613
3614 cpu_idr = read_cpuid(MPAMIDR_EL1);
3615 sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3616 if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3617 FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3618 pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3619 cpu_die_early();
3620 }
3621
3622 cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3623 cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3624 sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3625 sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3626 if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3627 pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3628 cpu_die_early();
3629 }
3630 }
3631
3632 /*
3633 * Run through the enabled system capabilities and enable() it on this CPU.
3634 * The capabilities were decided based on the available CPUs at the boot time.
3635 * Any new CPU should match the system wide status of the capability. If the
3636 * new CPU doesn't have a capability which the system now has enabled, we
3637 * cannot do anything to fix it up and could cause unexpected failures. So
3638 * we park the CPU.
3639 */
verify_local_cpu_capabilities(void)3640 static void verify_local_cpu_capabilities(void)
3641 {
3642 /*
3643 * The capabilities with SCOPE_BOOT_CPU are checked from
3644 * check_early_cpu_features(), as they need to be verified
3645 * on all secondary CPUs.
3646 */
3647 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3648 verify_local_elf_hwcaps();
3649
3650 if (system_supports_sve())
3651 verify_sve_features();
3652
3653 if (system_supports_sme())
3654 verify_sme_features();
3655
3656 if (is_hyp_mode_available())
3657 verify_hyp_capabilities();
3658
3659 if (system_supports_mpam())
3660 verify_mpam_capabilities();
3661 }
3662
check_local_cpu_capabilities(void)3663 void check_local_cpu_capabilities(void)
3664 {
3665 /*
3666 * All secondary CPUs should conform to the early CPU features
3667 * in use by the kernel based on boot CPU.
3668 */
3669 check_early_cpu_features();
3670
3671 /*
3672 * If we haven't finalised the system capabilities, this CPU gets
3673 * a chance to update the errata work arounds and local features.
3674 * Otherwise, this CPU should verify that it has all the system
3675 * advertised capabilities.
3676 */
3677 if (!system_capabilities_finalized())
3678 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3679 else
3680 verify_local_cpu_capabilities();
3681 }
3682
this_cpu_has_cap(unsigned int n)3683 bool this_cpu_has_cap(unsigned int n)
3684 {
3685 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3686 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3687
3688 if (cap)
3689 return cap->matches(cap, SCOPE_LOCAL_CPU);
3690 }
3691
3692 return false;
3693 }
3694 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3695
3696 /*
3697 * This helper function is used in a narrow window when,
3698 * - The system wide safe registers are set with all the SMP CPUs and,
3699 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3700 */
__system_matches_cap(unsigned int n)3701 static bool __maybe_unused __system_matches_cap(unsigned int n)
3702 {
3703 if (n < ARM64_NCAPS) {
3704 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3705
3706 if (cap)
3707 return cap->matches(cap, SCOPE_SYSTEM);
3708 }
3709 return false;
3710 }
3711
cpu_set_feature(unsigned int num)3712 void cpu_set_feature(unsigned int num)
3713 {
3714 set_bit(num, elf_hwcap);
3715 }
3716
cpu_have_feature(unsigned int num)3717 bool cpu_have_feature(unsigned int num)
3718 {
3719 return test_bit(num, elf_hwcap);
3720 }
3721 EXPORT_SYMBOL_GPL(cpu_have_feature);
3722
cpu_get_elf_hwcap(void)3723 unsigned long cpu_get_elf_hwcap(void)
3724 {
3725 /*
3726 * We currently only populate the first 32 bits of AT_HWCAP. Please
3727 * note that for userspace compatibility we guarantee that bits 62
3728 * and 63 will always be returned as 0.
3729 */
3730 return elf_hwcap[0];
3731 }
3732
cpu_get_elf_hwcap2(void)3733 unsigned long cpu_get_elf_hwcap2(void)
3734 {
3735 return elf_hwcap[1];
3736 }
3737
cpu_get_elf_hwcap3(void)3738 unsigned long cpu_get_elf_hwcap3(void)
3739 {
3740 return elf_hwcap[2];
3741 }
3742
setup_boot_cpu_capabilities(void)3743 static void __init setup_boot_cpu_capabilities(void)
3744 {
3745 kvm_arm_target_impl_cpu_init();
3746 /*
3747 * The boot CPU's feature register values have been recorded. Detect
3748 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3749 * patch alternatives for the available boot cpucaps.
3750 */
3751 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3752 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3753 apply_boot_alternatives();
3754 }
3755
setup_boot_cpu_features(void)3756 void __init setup_boot_cpu_features(void)
3757 {
3758 /*
3759 * Initialize the indirect array of CPU capabilities pointers before we
3760 * handle the boot CPU.
3761 */
3762 init_cpucap_indirect_list();
3763
3764 /*
3765 * Detect broken pseudo-NMI. Must be called _before_ the call to
3766 * setup_boot_cpu_capabilities() since it interacts with
3767 * can_use_gic_priorities().
3768 */
3769 detect_system_supports_pseudo_nmi();
3770
3771 setup_boot_cpu_capabilities();
3772 }
3773
setup_system_capabilities(void)3774 static void __init setup_system_capabilities(void)
3775 {
3776 /*
3777 * The system-wide safe feature register values have been finalized.
3778 * Detect, enable, and patch alternatives for the available system
3779 * cpucaps.
3780 */
3781 update_cpu_capabilities(SCOPE_SYSTEM);
3782 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3783 apply_alternatives_all();
3784
3785 /*
3786 * Log any cpucaps with a cpumask as these aren't logged by
3787 * update_cpu_capabilities().
3788 */
3789 for (int i = 0; i < ARM64_NCAPS; i++) {
3790 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3791
3792 if (caps && caps->cpus && caps->desc &&
3793 cpumask_any(caps->cpus) < nr_cpu_ids)
3794 pr_info("detected: %s on CPU%*pbl\n",
3795 caps->desc, cpumask_pr_args(caps->cpus));
3796 }
3797
3798 /*
3799 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3800 */
3801 if (system_uses_ttbr0_pan())
3802 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3803 }
3804
setup_system_features(void)3805 void __init setup_system_features(void)
3806 {
3807 setup_system_capabilities();
3808
3809 kpti_install_ng_mappings();
3810
3811 sve_setup();
3812 sme_setup();
3813
3814 /*
3815 * Check for sane CTR_EL0.CWG value.
3816 */
3817 if (!cache_type_cwg())
3818 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3819 ARCH_DMA_MINALIGN);
3820 }
3821
setup_user_features(void)3822 void __init setup_user_features(void)
3823 {
3824 user_feature_fixup();
3825
3826 setup_elf_hwcaps(arm64_elf_hwcaps);
3827
3828 if (system_supports_32bit_el0()) {
3829 setup_elf_hwcaps(compat_elf_hwcaps);
3830 elf_hwcap_fixup();
3831 }
3832
3833 minsigstksz_setup();
3834 }
3835
enable_mismatched_32bit_el0(unsigned int cpu)3836 static int enable_mismatched_32bit_el0(unsigned int cpu)
3837 {
3838 /*
3839 * The first 32-bit-capable CPU we detected and so can no longer
3840 * be offlined by userspace. -1 indicates we haven't yet onlined
3841 * a 32-bit-capable CPU.
3842 */
3843 static int lucky_winner = -1;
3844
3845 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3846 bool cpu_32bit = false;
3847
3848 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
3849 if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
3850 pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
3851 else
3852 cpu_32bit = true;
3853 }
3854
3855 if (cpu_32bit) {
3856 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3857 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3858 }
3859
3860 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3861 return 0;
3862
3863 if (lucky_winner >= 0)
3864 return 0;
3865
3866 /*
3867 * We've detected a mismatch. We need to keep one of our CPUs with
3868 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3869 * every CPU in the system for a 32-bit task.
3870 */
3871 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3872 cpu_active_mask);
3873 get_cpu_device(lucky_winner)->offline_disabled = true;
3874 setup_elf_hwcaps(compat_elf_hwcaps);
3875 elf_hwcap_fixup();
3876 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3877 cpu, lucky_winner);
3878 return 0;
3879 }
3880
init_32bit_el0_mask(void)3881 static int __init init_32bit_el0_mask(void)
3882 {
3883 if (!allow_mismatched_32bit_el0)
3884 return 0;
3885
3886 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3887 return -ENOMEM;
3888
3889 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3890 "arm64/mismatched_32bit_el0:online",
3891 enable_mismatched_32bit_el0, NULL);
3892 }
3893 subsys_initcall_sync(init_32bit_el0_mask);
3894
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)3895 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3896 {
3897 cpu_enable_swapper_cnp();
3898 }
3899
3900 /*
3901 * We emulate only the following system register space.
3902 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3903 * See Table C5-6 System instruction encodings for System register accesses,
3904 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3905 */
is_emulated(u32 id)3906 static inline bool __attribute_const__ is_emulated(u32 id)
3907 {
3908 return (sys_reg_Op0(id) == 0x3 &&
3909 sys_reg_CRn(id) == 0x0 &&
3910 sys_reg_Op1(id) == 0x0 &&
3911 (sys_reg_CRm(id) == 0 ||
3912 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3913 }
3914
3915 /*
3916 * With CRm == 0, reg should be one of :
3917 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3918 */
emulate_id_reg(u32 id,u64 * valp)3919 static inline int emulate_id_reg(u32 id, u64 *valp)
3920 {
3921 switch (id) {
3922 case SYS_MIDR_EL1:
3923 *valp = read_cpuid_id();
3924 break;
3925 case SYS_MPIDR_EL1:
3926 *valp = SYS_MPIDR_SAFE_VAL;
3927 break;
3928 case SYS_REVIDR_EL1:
3929 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3930 *valp = 0;
3931 break;
3932 default:
3933 return -EINVAL;
3934 }
3935
3936 return 0;
3937 }
3938
emulate_sys_reg(u32 id,u64 * valp)3939 static int emulate_sys_reg(u32 id, u64 *valp)
3940 {
3941 struct arm64_ftr_reg *regp;
3942
3943 if (!is_emulated(id))
3944 return -EINVAL;
3945
3946 if (sys_reg_CRm(id) == 0)
3947 return emulate_id_reg(id, valp);
3948
3949 regp = get_arm64_ftr_reg_nowarn(id);
3950 if (regp)
3951 *valp = arm64_ftr_reg_user_value(regp);
3952 else
3953 /*
3954 * The untracked registers are either IMPLEMENTATION DEFINED
3955 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3956 */
3957 *valp = 0;
3958 return 0;
3959 }
3960
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)3961 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3962 {
3963 int rc;
3964 u64 val;
3965
3966 rc = emulate_sys_reg(sys_reg, &val);
3967 if (!rc) {
3968 pt_regs_write_reg(regs, rt, val);
3969 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3970 }
3971 return rc;
3972 }
3973
try_emulate_mrs(struct pt_regs * regs,u32 insn)3974 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3975 {
3976 u32 sys_reg, rt;
3977
3978 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3979 return false;
3980
3981 /*
3982 * sys_reg values are defined as used in mrs/msr instruction.
3983 * shift the imm value to get the encoding.
3984 */
3985 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3986 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3987 return do_emulate_mrs(regs, sys_reg, rt) == 0;
3988 }
3989
arm64_get_meltdown_state(void)3990 enum mitigation_state arm64_get_meltdown_state(void)
3991 {
3992 if (__meltdown_safe)
3993 return SPECTRE_UNAFFECTED;
3994
3995 if (arm64_kernel_unmapped_at_el0())
3996 return SPECTRE_MITIGATED;
3997
3998 return SPECTRE_VULNERABLE;
3999 }
4000
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)4001 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4002 char *buf)
4003 {
4004 switch (arm64_get_meltdown_state()) {
4005 case SPECTRE_UNAFFECTED:
4006 return sprintf(buf, "Not affected\n");
4007
4008 case SPECTRE_MITIGATED:
4009 return sprintf(buf, "Mitigation: PTI\n");
4010
4011 default:
4012 return sprintf(buf, "Vulnerable\n");
4013 }
4014 }
4015