1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ppc64 code to implement the kexec_file_load syscall
4 *
5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
6 * Copyright (C) 2004 IBM Corp.
7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
10 * Copyright (C) 2020 IBM Corporation
11 *
12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13 * Heavily modified for the kernel by
14 * Hari Bathini, IBM Corporation.
15 */
16
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <asm/setup.h>
26 #include <asm/drmem.h>
27 #include <asm/firmware.h>
28 #include <asm/kexec_ranges.h>
29 #include <asm/crashdump-ppc64.h>
30 #include <asm/mmzone.h>
31 #include <asm/iommu.h>
32 #include <asm/prom.h>
33 #include <asm/plpks.h>
34 #include <asm/cputhreads.h>
35
36 struct umem_info {
37 __be64 *buf; /* data buffer for usable-memory property */
38 u32 size; /* size allocated for the data buffer */
39 u32 max_entries; /* maximum no. of entries */
40 u32 idx; /* index of current entry */
41
42 /* usable memory ranges to look up */
43 unsigned int nr_ranges;
44 const struct range *ranges;
45 };
46
47 const struct kexec_file_ops * const kexec_file_loaders[] = {
48 &kexec_elf64_ops,
49 NULL
50 };
51
52 /**
53 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
54 * in the memory regions between buf_min & buf_max
55 * for the buffer. If found, sets kbuf->mem.
56 * @kbuf: Buffer contents and memory parameters.
57 * @buf_min: Minimum address for the buffer.
58 * @buf_max: Maximum address for the buffer.
59 *
60 * Returns 0 on success, negative errno on error.
61 */
__locate_mem_hole_top_down(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)62 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
63 u64 buf_min, u64 buf_max)
64 {
65 int ret = -EADDRNOTAVAIL;
66 phys_addr_t start, end;
67 u64 i;
68
69 for_each_mem_range_rev(i, &start, &end) {
70 /*
71 * memblock uses [start, end) convention while it is
72 * [start, end] here. Fix the off-by-one to have the
73 * same convention.
74 */
75 end -= 1;
76
77 if (start > buf_max)
78 continue;
79
80 /* Memory hole not found */
81 if (end < buf_min)
82 break;
83
84 /* Adjust memory region based on the given range */
85 if (start < buf_min)
86 start = buf_min;
87 if (end > buf_max)
88 end = buf_max;
89
90 start = ALIGN(start, kbuf->buf_align);
91 if (start < end && (end - start + 1) >= kbuf->memsz) {
92 /* Suitable memory range found. Set kbuf->mem */
93 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
94 kbuf->buf_align);
95 ret = 0;
96 break;
97 }
98 }
99
100 return ret;
101 }
102
103 /**
104 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
105 * suitable buffer with top down approach.
106 * @kbuf: Buffer contents and memory parameters.
107 * @buf_min: Minimum address for the buffer.
108 * @buf_max: Maximum address for the buffer.
109 * @emem: Exclude memory ranges.
110 *
111 * Returns 0 on success, negative errno on error.
112 */
locate_mem_hole_top_down_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)113 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
114 u64 buf_min, u64 buf_max,
115 const struct crash_mem *emem)
116 {
117 int i, ret = 0, err = -EADDRNOTAVAIL;
118 u64 start, end, tmin, tmax;
119
120 tmax = buf_max;
121 for (i = (emem->nr_ranges - 1); i >= 0; i--) {
122 start = emem->ranges[i].start;
123 end = emem->ranges[i].end;
124
125 if (start > tmax)
126 continue;
127
128 if (end < tmax) {
129 tmin = (end < buf_min ? buf_min : end + 1);
130 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
131 if (!ret)
132 return 0;
133 }
134
135 tmax = start - 1;
136
137 if (tmax < buf_min) {
138 ret = err;
139 break;
140 }
141 ret = 0;
142 }
143
144 if (!ret) {
145 tmin = buf_min;
146 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
147 }
148 return ret;
149 }
150
151 /**
152 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
153 * in the memory regions between buf_min & buf_max
154 * for the buffer. If found, sets kbuf->mem.
155 * @kbuf: Buffer contents and memory parameters.
156 * @buf_min: Minimum address for the buffer.
157 * @buf_max: Maximum address for the buffer.
158 *
159 * Returns 0 on success, negative errno on error.
160 */
__locate_mem_hole_bottom_up(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)161 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
162 u64 buf_min, u64 buf_max)
163 {
164 int ret = -EADDRNOTAVAIL;
165 phys_addr_t start, end;
166 u64 i;
167
168 for_each_mem_range(i, &start, &end) {
169 /*
170 * memblock uses [start, end) convention while it is
171 * [start, end] here. Fix the off-by-one to have the
172 * same convention.
173 */
174 end -= 1;
175
176 if (end < buf_min)
177 continue;
178
179 /* Memory hole not found */
180 if (start > buf_max)
181 break;
182
183 /* Adjust memory region based on the given range */
184 if (start < buf_min)
185 start = buf_min;
186 if (end > buf_max)
187 end = buf_max;
188
189 start = ALIGN(start, kbuf->buf_align);
190 if (start < end && (end - start + 1) >= kbuf->memsz) {
191 /* Suitable memory range found. Set kbuf->mem */
192 kbuf->mem = start;
193 ret = 0;
194 break;
195 }
196 }
197
198 return ret;
199 }
200
201 /**
202 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
203 * suitable buffer with bottom up approach.
204 * @kbuf: Buffer contents and memory parameters.
205 * @buf_min: Minimum address for the buffer.
206 * @buf_max: Maximum address for the buffer.
207 * @emem: Exclude memory ranges.
208 *
209 * Returns 0 on success, negative errno on error.
210 */
locate_mem_hole_bottom_up_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)211 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
212 u64 buf_min, u64 buf_max,
213 const struct crash_mem *emem)
214 {
215 int i, ret = 0, err = -EADDRNOTAVAIL;
216 u64 start, end, tmin, tmax;
217
218 tmin = buf_min;
219 for (i = 0; i < emem->nr_ranges; i++) {
220 start = emem->ranges[i].start;
221 end = emem->ranges[i].end;
222
223 if (end < tmin)
224 continue;
225
226 if (start > tmin) {
227 tmax = (start > buf_max ? buf_max : start - 1);
228 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
229 if (!ret)
230 return 0;
231 }
232
233 tmin = end + 1;
234
235 if (tmin > buf_max) {
236 ret = err;
237 break;
238 }
239 ret = 0;
240 }
241
242 if (!ret) {
243 tmax = buf_max;
244 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
245 }
246 return ret;
247 }
248
249 #ifdef CONFIG_CRASH_DUMP
250 /**
251 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
252 * @um_info: Usable memory buffer and ranges info.
253 * @cnt: No. of entries to accommodate.
254 *
255 * Frees up the old buffer if memory reallocation fails.
256 *
257 * Returns buffer on success, NULL on error.
258 */
check_realloc_usable_mem(struct umem_info * um_info,int cnt)259 static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
260 {
261 u32 new_size;
262 __be64 *tbuf;
263
264 if ((um_info->idx + cnt) <= um_info->max_entries)
265 return um_info->buf;
266
267 new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
268 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
269 if (tbuf) {
270 um_info->buf = tbuf;
271 um_info->size = new_size;
272 um_info->max_entries = (um_info->size / sizeof(u64));
273 }
274
275 return tbuf;
276 }
277
278 /**
279 * add_usable_mem - Add the usable memory ranges within the given memory range
280 * to the buffer
281 * @um_info: Usable memory buffer and ranges info.
282 * @base: Base address of memory range to look for.
283 * @end: End address of memory range to look for.
284 *
285 * Returns 0 on success, negative errno on error.
286 */
add_usable_mem(struct umem_info * um_info,u64 base,u64 end)287 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
288 {
289 u64 loc_base, loc_end;
290 bool add;
291 int i;
292
293 for (i = 0; i < um_info->nr_ranges; i++) {
294 add = false;
295 loc_base = um_info->ranges[i].start;
296 loc_end = um_info->ranges[i].end;
297 if (loc_base >= base && loc_end <= end)
298 add = true;
299 else if (base < loc_end && end > loc_base) {
300 if (loc_base < base)
301 loc_base = base;
302 if (loc_end > end)
303 loc_end = end;
304 add = true;
305 }
306
307 if (add) {
308 if (!check_realloc_usable_mem(um_info, 2))
309 return -ENOMEM;
310
311 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
312 um_info->buf[um_info->idx++] =
313 cpu_to_be64(loc_end - loc_base + 1);
314 }
315 }
316
317 return 0;
318 }
319
320 /**
321 * kdump_setup_usable_lmb - This is a callback function that gets called by
322 * walk_drmem_lmbs for every LMB to set its
323 * usable memory ranges.
324 * @lmb: LMB info.
325 * @usm: linux,drconf-usable-memory property value.
326 * @data: Pointer to usable memory buffer and ranges info.
327 *
328 * Returns 0 on success, negative errno on error.
329 */
kdump_setup_usable_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)330 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
331 void *data)
332 {
333 struct umem_info *um_info;
334 int tmp_idx, ret;
335 u64 base, end;
336
337 /*
338 * kdump load isn't supported on kernels already booted with
339 * linux,drconf-usable-memory property.
340 */
341 if (*usm) {
342 pr_err("linux,drconf-usable-memory property already exists!");
343 return -EINVAL;
344 }
345
346 um_info = data;
347 tmp_idx = um_info->idx;
348 if (!check_realloc_usable_mem(um_info, 1))
349 return -ENOMEM;
350
351 um_info->idx++;
352 base = lmb->base_addr;
353 end = base + drmem_lmb_size() - 1;
354 ret = add_usable_mem(um_info, base, end);
355 if (!ret) {
356 /*
357 * Update the no. of ranges added. Two entries (base & size)
358 * for every range added.
359 */
360 um_info->buf[tmp_idx] =
361 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
362 }
363
364 return ret;
365 }
366
367 #define NODE_PATH_LEN 256
368 /**
369 * add_usable_mem_property - Add usable memory property for the given
370 * memory node.
371 * @fdt: Flattened device tree for the kdump kernel.
372 * @dn: Memory node.
373 * @um_info: Usable memory buffer and ranges info.
374 *
375 * Returns 0 on success, negative errno on error.
376 */
add_usable_mem_property(void * fdt,struct device_node * dn,struct umem_info * um_info)377 static int add_usable_mem_property(void *fdt, struct device_node *dn,
378 struct umem_info *um_info)
379 {
380 int node;
381 char path[NODE_PATH_LEN];
382 int i, ret;
383 u64 base, size;
384
385 of_node_get(dn);
386
387 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
388 pr_err("Buffer (%d) too small for memory node: %pOF\n",
389 NODE_PATH_LEN, dn);
390 return -EOVERFLOW;
391 }
392 kexec_dprintk("Memory node path: %s\n", path);
393
394 /* Now that we know the path, find its offset in kdump kernel's fdt */
395 node = fdt_path_offset(fdt, path);
396 if (node < 0) {
397 pr_err("Malformed device tree: error reading %s\n", path);
398 ret = -EINVAL;
399 goto out;
400 }
401
402 um_info->idx = 0;
403 if (!check_realloc_usable_mem(um_info, 2)) {
404 ret = -ENOMEM;
405 goto out;
406 }
407
408 /*
409 * "reg" property represents sequence of (addr,size) tuples
410 * each representing a memory range.
411 */
412 for (i = 0; ; i++) {
413 ret = of_property_read_reg(dn, i, &base, &size);
414 if (ret)
415 break;
416
417 ret = add_usable_mem(um_info, base, base + size - 1);
418 if (ret)
419 goto out;
420 }
421
422 // No reg or empty reg? Skip this node.
423 if (i == 0)
424 goto out;
425
426 /*
427 * No kdump kernel usable memory found in this memory node.
428 * Write (0,0) tuple in linux,usable-memory property for
429 * this region to be ignored.
430 */
431 if (um_info->idx == 0) {
432 um_info->buf[0] = 0;
433 um_info->buf[1] = 0;
434 um_info->idx = 2;
435 }
436
437 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
438 (um_info->idx * sizeof(u64)));
439
440 out:
441 of_node_put(dn);
442 return ret;
443 }
444
445
446 /**
447 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
448 * and linux,drconf-usable-memory DT properties as
449 * appropriate to restrict its memory usage.
450 * @fdt: Flattened device tree for the kdump kernel.
451 * @usable_mem: Usable memory ranges for kdump kernel.
452 *
453 * Returns 0 on success, negative errno on error.
454 */
update_usable_mem_fdt(void * fdt,struct crash_mem * usable_mem)455 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
456 {
457 struct umem_info um_info;
458 struct device_node *dn;
459 int node, ret = 0;
460
461 if (!usable_mem) {
462 pr_err("Usable memory ranges for kdump kernel not found\n");
463 return -ENOENT;
464 }
465
466 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
467 if (node == -FDT_ERR_NOTFOUND)
468 kexec_dprintk("No dynamic reconfiguration memory found\n");
469 else if (node < 0) {
470 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
471 return -EINVAL;
472 }
473
474 um_info.buf = NULL;
475 um_info.size = 0;
476 um_info.max_entries = 0;
477 um_info.idx = 0;
478 /* Memory ranges to look up */
479 um_info.ranges = &(usable_mem->ranges[0]);
480 um_info.nr_ranges = usable_mem->nr_ranges;
481
482 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
483 if (dn) {
484 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
485 of_node_put(dn);
486
487 if (ret) {
488 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
489 goto out;
490 }
491
492 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
493 um_info.buf, (um_info.idx * sizeof(u64)));
494 if (ret) {
495 pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
496 fdt_strerror(ret));
497 goto out;
498 }
499 }
500
501 /*
502 * Walk through each memory node and set linux,usable-memory property
503 * for the corresponding node in kdump kernel's fdt.
504 */
505 for_each_node_by_type(dn, "memory") {
506 ret = add_usable_mem_property(fdt, dn, &um_info);
507 if (ret) {
508 pr_err("Failed to set linux,usable-memory property for %s node",
509 dn->full_name);
510 of_node_put(dn);
511 goto out;
512 }
513 }
514
515 out:
516 kfree(um_info.buf);
517 return ret;
518 }
519
520 /**
521 * load_backup_segment - Locate a memory hole to place the backup region.
522 * @image: Kexec image.
523 * @kbuf: Buffer contents and memory parameters.
524 *
525 * Returns 0 on success, negative errno on error.
526 */
load_backup_segment(struct kimage * image,struct kexec_buf * kbuf)527 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
528 {
529 void *buf;
530 int ret;
531
532 /*
533 * Setup a source buffer for backup segment.
534 *
535 * A source buffer has no meaning for backup region as data will
536 * be copied from backup source, after crash, in the purgatory.
537 * But as load segment code doesn't recognize such segments,
538 * setup a dummy source buffer to keep it happy for now.
539 */
540 buf = vzalloc(BACKUP_SRC_SIZE);
541 if (!buf)
542 return -ENOMEM;
543
544 kbuf->buffer = buf;
545 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
546 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
547 kbuf->top_down = false;
548
549 ret = kexec_add_buffer(kbuf);
550 if (ret) {
551 vfree(buf);
552 return ret;
553 }
554
555 image->arch.backup_buf = buf;
556 image->arch.backup_start = kbuf->mem;
557 return 0;
558 }
559
560 /**
561 * update_backup_region_phdr - Update backup region's offset for the core to
562 * export the region appropriately.
563 * @image: Kexec image.
564 * @ehdr: ELF core header.
565 *
566 * Assumes an exclusive program header is setup for the backup region
567 * in the ELF headers
568 *
569 * Returns nothing.
570 */
update_backup_region_phdr(struct kimage * image,Elf64_Ehdr * ehdr)571 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
572 {
573 Elf64_Phdr *phdr;
574 unsigned int i;
575
576 phdr = (Elf64_Phdr *)(ehdr + 1);
577 for (i = 0; i < ehdr->e_phnum; i++) {
578 if (phdr->p_paddr == BACKUP_SRC_START) {
579 phdr->p_offset = image->arch.backup_start;
580 kexec_dprintk("Backup region offset updated to 0x%lx\n",
581 image->arch.backup_start);
582 return;
583 }
584 }
585 }
586
kdump_extra_elfcorehdr_size(struct crash_mem * cmem)587 static unsigned int kdump_extra_elfcorehdr_size(struct crash_mem *cmem)
588 {
589 #if defined(CONFIG_CRASH_HOTPLUG) && defined(CONFIG_MEMORY_HOTPLUG)
590 unsigned int extra_sz = 0;
591
592 if (CONFIG_CRASH_MAX_MEMORY_RANGES > (unsigned int)PN_XNUM)
593 pr_warn("Number of Phdrs %u exceeds max\n", CONFIG_CRASH_MAX_MEMORY_RANGES);
594 else if (cmem->nr_ranges >= CONFIG_CRASH_MAX_MEMORY_RANGES)
595 pr_warn("Configured crash mem ranges may not be enough\n");
596 else
597 extra_sz = (CONFIG_CRASH_MAX_MEMORY_RANGES - cmem->nr_ranges) * sizeof(Elf64_Phdr);
598
599 return extra_sz;
600 #endif
601 return 0;
602 }
603
604 /**
605 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
606 * segment needed to load kdump kernel.
607 * @image: Kexec image.
608 * @kbuf: Buffer contents and memory parameters.
609 *
610 * Returns 0 on success, negative errno on error.
611 */
load_elfcorehdr_segment(struct kimage * image,struct kexec_buf * kbuf)612 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
613 {
614 struct crash_mem *cmem = NULL;
615 unsigned long headers_sz;
616 void *headers = NULL;
617 int ret;
618
619 ret = get_crash_memory_ranges(&cmem);
620 if (ret)
621 goto out;
622
623 /* Setup elfcorehdr segment */
624 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
625 if (ret) {
626 pr_err("Failed to prepare elf headers for the core\n");
627 goto out;
628 }
629
630 /* Fix the offset for backup region in the ELF header */
631 update_backup_region_phdr(image, headers);
632
633 kbuf->buffer = headers;
634 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
635 kbuf->bufsz = headers_sz;
636 kbuf->memsz = headers_sz + kdump_extra_elfcorehdr_size(cmem);
637 kbuf->top_down = false;
638
639 ret = kexec_add_buffer(kbuf);
640 if (ret) {
641 vfree(headers);
642 goto out;
643 }
644
645 image->elf_load_addr = kbuf->mem;
646 image->elf_headers_sz = headers_sz;
647 image->elf_headers = headers;
648 out:
649 kfree(cmem);
650 return ret;
651 }
652
653 /**
654 * load_crashdump_segments_ppc64 - Initialize the additional segements needed
655 * to load kdump kernel.
656 * @image: Kexec image.
657 * @kbuf: Buffer contents and memory parameters.
658 *
659 * Returns 0 on success, negative errno on error.
660 */
load_crashdump_segments_ppc64(struct kimage * image,struct kexec_buf * kbuf)661 int load_crashdump_segments_ppc64(struct kimage *image,
662 struct kexec_buf *kbuf)
663 {
664 int ret;
665
666 /* Load backup segment - first 64K bytes of the crashing kernel */
667 ret = load_backup_segment(image, kbuf);
668 if (ret) {
669 pr_err("Failed to load backup segment\n");
670 return ret;
671 }
672 kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
673
674 /* Load elfcorehdr segment - to export crashing kernel's vmcore */
675 ret = load_elfcorehdr_segment(image, kbuf);
676 if (ret) {
677 pr_err("Failed to load elfcorehdr segment\n");
678 return ret;
679 }
680 kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
681 image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
682
683 return 0;
684 }
685 #endif
686
687 /**
688 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
689 * variables and call setup_purgatory() to initialize
690 * common global variable.
691 * @image: kexec image.
692 * @slave_code: Slave code for the purgatory.
693 * @fdt: Flattened device tree for the next kernel.
694 * @kernel_load_addr: Address where the kernel is loaded.
695 * @fdt_load_addr: Address where the flattened device tree is loaded.
696 *
697 * Returns 0 on success, negative errno on error.
698 */
setup_purgatory_ppc64(struct kimage * image,const void * slave_code,const void * fdt,unsigned long kernel_load_addr,unsigned long fdt_load_addr)699 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
700 const void *fdt, unsigned long kernel_load_addr,
701 unsigned long fdt_load_addr)
702 {
703 struct device_node *dn = NULL;
704 int ret;
705
706 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
707 fdt_load_addr);
708 if (ret)
709 goto out;
710
711 if (image->type == KEXEC_TYPE_CRASH) {
712 u32 my_run_at_load = 1;
713
714 /*
715 * Tell relocatable kernel to run at load address
716 * via the word meant for that at 0x5c.
717 */
718 ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
719 &my_run_at_load,
720 sizeof(my_run_at_load),
721 false);
722 if (ret)
723 goto out;
724 }
725
726 /* Tell purgatory where to look for backup region */
727 ret = kexec_purgatory_get_set_symbol(image, "backup_start",
728 &image->arch.backup_start,
729 sizeof(image->arch.backup_start),
730 false);
731 if (ret)
732 goto out;
733
734 /* Setup OPAL base & entry values */
735 dn = of_find_node_by_path("/ibm,opal");
736 if (dn) {
737 u64 val;
738
739 of_property_read_u64(dn, "opal-base-address", &val);
740 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
741 sizeof(val), false);
742 if (ret)
743 goto out;
744
745 of_property_read_u64(dn, "opal-entry-address", &val);
746 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
747 sizeof(val), false);
748 }
749 out:
750 if (ret)
751 pr_err("Failed to setup purgatory symbols");
752 of_node_put(dn);
753 return ret;
754 }
755
756 /**
757 * cpu_node_size - Compute the size of a CPU node in the FDT.
758 * This should be done only once and the value is stored in
759 * a static variable.
760 * Returns the max size of a CPU node in the FDT.
761 */
cpu_node_size(void)762 static unsigned int cpu_node_size(void)
763 {
764 static unsigned int size;
765 struct device_node *dn;
766 struct property *pp;
767
768 /*
769 * Don't compute it twice, we are assuming that the per CPU node size
770 * doesn't change during the system's life.
771 */
772 if (size)
773 return size;
774
775 dn = of_find_node_by_type(NULL, "cpu");
776 if (WARN_ON_ONCE(!dn)) {
777 // Unlikely to happen
778 return 0;
779 }
780
781 /*
782 * We compute the sub node size for a CPU node, assuming it
783 * will be the same for all.
784 */
785 size += strlen(dn->name) + 5;
786 for_each_property_of_node(dn, pp) {
787 size += strlen(pp->name);
788 size += pp->length;
789 }
790
791 of_node_put(dn);
792 return size;
793 }
794
kdump_extra_fdt_size_ppc64(struct kimage * image,unsigned int cpu_nodes)795 static unsigned int kdump_extra_fdt_size_ppc64(struct kimage *image, unsigned int cpu_nodes)
796 {
797 unsigned int extra_size = 0;
798 u64 usm_entries;
799 #ifdef CONFIG_CRASH_HOTPLUG
800 unsigned int possible_cpu_nodes;
801 #endif
802
803 if (!IS_ENABLED(CONFIG_CRASH_DUMP) || image->type != KEXEC_TYPE_CRASH)
804 return 0;
805
806 /*
807 * For kdump kernel, account for linux,usable-memory and
808 * linux,drconf-usable-memory properties. Get an approximate on the
809 * number of usable memory entries and use for FDT size estimation.
810 */
811 if (drmem_lmb_size()) {
812 usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
813 (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
814 extra_size += (unsigned int)(usm_entries * sizeof(u64));
815 }
816
817 #ifdef CONFIG_CRASH_HOTPLUG
818 /*
819 * Make sure enough space is reserved to accommodate possible CPU nodes
820 * in the crash FDT. This allows packing possible CPU nodes which are
821 * not yet present in the system without regenerating the entire FDT.
822 */
823 if (image->type == KEXEC_TYPE_CRASH) {
824 possible_cpu_nodes = num_possible_cpus() / threads_per_core;
825 if (possible_cpu_nodes > cpu_nodes)
826 extra_size += (possible_cpu_nodes - cpu_nodes) * cpu_node_size();
827 }
828 #endif
829
830 return extra_size;
831 }
832
833 /**
834 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
835 * setup FDT for kexec/kdump kernel.
836 * @image: kexec image being loaded.
837 *
838 * Returns the estimated extra size needed for kexec/kdump kernel FDT.
839 */
kexec_extra_fdt_size_ppc64(struct kimage * image,struct crash_mem * rmem)840 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image, struct crash_mem *rmem)
841 {
842 struct device_node *dn;
843 unsigned int cpu_nodes = 0, extra_size = 0;
844
845 // Budget some space for the password blob. There's already extra space
846 // for the key name
847 if (plpks_is_available())
848 extra_size += (unsigned int)plpks_get_passwordlen();
849
850 /* Get the number of CPU nodes in the current device tree */
851 for_each_node_by_type(dn, "cpu") {
852 cpu_nodes++;
853 }
854
855 /* Consider extra space for CPU nodes added since the boot time */
856 if (cpu_nodes > boot_cpu_node_count)
857 extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
858
859 /* Consider extra space for reserved memory ranges if any */
860 if (rmem->nr_ranges > 0)
861 extra_size += sizeof(struct fdt_reserve_entry) * rmem->nr_ranges;
862
863 return extra_size + kdump_extra_fdt_size_ppc64(image, cpu_nodes);
864 }
865
copy_property(void * fdt,int node_offset,const struct device_node * dn,const char * propname)866 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
867 const char *propname)
868 {
869 const void *prop, *fdtprop;
870 int len = 0, fdtlen = 0;
871
872 prop = of_get_property(dn, propname, &len);
873 fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
874
875 if (fdtprop && !prop)
876 return fdt_delprop(fdt, node_offset, propname);
877 else if (prop)
878 return fdt_setprop(fdt, node_offset, propname, prop, len);
879 else
880 return -FDT_ERR_NOTFOUND;
881 }
882
update_pci_dma_nodes(void * fdt,const char * dmapropname)883 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
884 {
885 struct device_node *dn;
886 int pci_offset, root_offset, ret = 0;
887
888 if (!firmware_has_feature(FW_FEATURE_LPAR))
889 return 0;
890
891 root_offset = fdt_path_offset(fdt, "/");
892 for_each_node_with_property(dn, dmapropname) {
893 pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
894 if (pci_offset < 0)
895 continue;
896
897 ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
898 if (ret < 0) {
899 of_node_put(dn);
900 break;
901 }
902 ret = copy_property(fdt, pci_offset, dn, dmapropname);
903 if (ret < 0) {
904 of_node_put(dn);
905 break;
906 }
907 }
908
909 return ret;
910 }
911
912 /**
913 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
914 * being loaded.
915 * @image: kexec image being loaded.
916 * @fdt: Flattened device tree for the next kernel.
917 * @rmem: Reserved memory ranges.
918 *
919 * Returns 0 on success, negative errno on error.
920 */
setup_new_fdt_ppc64(const struct kimage * image,void * fdt,struct crash_mem * rmem)921 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, struct crash_mem *rmem)
922 {
923 struct crash_mem *umem = NULL;
924 int i, nr_ranges, ret;
925
926 #ifdef CONFIG_CRASH_DUMP
927 /*
928 * Restrict memory usage for kdump kernel by setting up
929 * usable memory ranges and memory reserve map.
930 */
931 if (image->type == KEXEC_TYPE_CRASH) {
932 ret = get_usable_memory_ranges(&umem);
933 if (ret)
934 goto out;
935
936 ret = update_usable_mem_fdt(fdt, umem);
937 if (ret) {
938 pr_err("Error setting up usable-memory property for kdump kernel\n");
939 goto out;
940 }
941
942 /*
943 * Ensure we don't touch crashed kernel's memory except the
944 * first 64K of RAM, which will be backed up.
945 */
946 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
947 crashk_res.start - BACKUP_SRC_SIZE);
948 if (ret) {
949 pr_err("Error reserving crash memory: %s\n",
950 fdt_strerror(ret));
951 goto out;
952 }
953
954 /* Ensure backup region is not used by kdump/capture kernel */
955 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
956 BACKUP_SRC_SIZE);
957 if (ret) {
958 pr_err("Error reserving memory for backup: %s\n",
959 fdt_strerror(ret));
960 goto out;
961 }
962 }
963 #endif
964
965 /* Update cpus nodes information to account hotplug CPUs. */
966 ret = update_cpus_node(fdt);
967 if (ret < 0)
968 goto out;
969
970 ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
971 if (ret < 0)
972 goto out;
973
974 ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
975 if (ret < 0)
976 goto out;
977
978 /* Update memory reserve map */
979 nr_ranges = rmem ? rmem->nr_ranges : 0;
980 for (i = 0; i < nr_ranges; i++) {
981 u64 base, size;
982
983 base = rmem->ranges[i].start;
984 size = rmem->ranges[i].end - base + 1;
985 ret = fdt_add_mem_rsv(fdt, base, size);
986 if (ret) {
987 pr_err("Error updating memory reserve map: %s\n",
988 fdt_strerror(ret));
989 goto out;
990 }
991 }
992
993 // If we have PLPKS active, we need to provide the password to the new kernel
994 if (plpks_is_available())
995 ret = plpks_populate_fdt(fdt);
996
997 out:
998 kfree(umem);
999 return ret;
1000 }
1001
1002 /**
1003 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1004 * tce-table, reserved-ranges & such (exclude
1005 * memory ranges) as they can't be used for kexec
1006 * segment buffer. Sets kbuf->mem when a suitable
1007 * memory hole is found.
1008 * @kbuf: Buffer contents and memory parameters.
1009 *
1010 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1011 *
1012 * Returns 0 on success, negative errno on error.
1013 */
arch_kexec_locate_mem_hole(struct kexec_buf * kbuf)1014 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1015 {
1016 struct crash_mem **emem;
1017 u64 buf_min, buf_max;
1018 int ret;
1019
1020 /* Look up the exclude ranges list while locating the memory hole */
1021 emem = &(kbuf->image->arch.exclude_ranges);
1022 if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1023 pr_warn("No exclude range list. Using the default locate mem hole method\n");
1024 return kexec_locate_mem_hole(kbuf);
1025 }
1026
1027 buf_min = kbuf->buf_min;
1028 buf_max = kbuf->buf_max;
1029 /* Segments for kdump kernel should be within crashkernel region */
1030 if (IS_ENABLED(CONFIG_CRASH_DUMP) && kbuf->image->type == KEXEC_TYPE_CRASH) {
1031 buf_min = (buf_min < crashk_res.start ?
1032 crashk_res.start : buf_min);
1033 buf_max = (buf_max > crashk_res.end ?
1034 crashk_res.end : buf_max);
1035 }
1036
1037 if (buf_min > buf_max) {
1038 pr_err("Invalid buffer min and/or max values\n");
1039 return -EINVAL;
1040 }
1041
1042 if (kbuf->top_down)
1043 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1044 *emem);
1045 else
1046 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1047 *emem);
1048
1049 /* Add the buffer allocated to the exclude list for the next lookup */
1050 if (!ret) {
1051 add_mem_range(emem, kbuf->mem, kbuf->memsz);
1052 sort_memory_ranges(*emem, true);
1053 } else {
1054 pr_err("Failed to locate memory buffer of size %lu\n",
1055 kbuf->memsz);
1056 }
1057 return ret;
1058 }
1059
1060 /**
1061 * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1062 * kexec segments.
1063 * @image: kexec image being loaded.
1064 * @buf: Buffer pointing to elf data.
1065 * @buf_len: Length of the buffer.
1066 *
1067 * Returns 0 on success, negative errno on error.
1068 */
arch_kexec_kernel_image_probe(struct kimage * image,void * buf,unsigned long buf_len)1069 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1070 unsigned long buf_len)
1071 {
1072 int ret;
1073
1074 /* Get exclude memory ranges needed for setting up kexec segments */
1075 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1076 if (ret) {
1077 pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1078 return ret;
1079 }
1080
1081 return kexec_image_probe_default(image, buf, buf_len);
1082 }
1083
1084 /**
1085 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1086 * while loading the image.
1087 * @image: kexec image being loaded.
1088 *
1089 * Returns 0 on success, negative errno on error.
1090 */
arch_kimage_file_post_load_cleanup(struct kimage * image)1091 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1092 {
1093 kfree(image->arch.exclude_ranges);
1094 image->arch.exclude_ranges = NULL;
1095
1096 vfree(image->arch.backup_buf);
1097 image->arch.backup_buf = NULL;
1098
1099 vfree(image->elf_headers);
1100 image->elf_headers = NULL;
1101 image->elf_headers_sz = 0;
1102
1103 kvfree(image->arch.fdt);
1104 image->arch.fdt = NULL;
1105
1106 return kexec_image_post_load_cleanup_default(image);
1107 }
1108