xref: /linux/arch/powerpc/kexec/file_load_64.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ppc64 code to implement the kexec_file_load syscall
4  *
5  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
6  * Copyright (C) 2004  IBM Corp.
7  * Copyright (C) 2004,2005  Milton D Miller II, IBM Corporation
8  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
9  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
10  * Copyright (C) 2020  IBM Corporation
11  *
12  * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13  * Heavily modified for the kernel by
14  * Hari Bathini, IBM Corporation.
15  */
16 
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <asm/setup.h>
26 #include <asm/drmem.h>
27 #include <asm/firmware.h>
28 #include <asm/kexec_ranges.h>
29 #include <asm/crashdump-ppc64.h>
30 #include <asm/mmzone.h>
31 #include <asm/iommu.h>
32 #include <asm/prom.h>
33 #include <asm/plpks.h>
34 #include <asm/cputhreads.h>
35 
36 struct umem_info {
37 	__be64 *buf;		/* data buffer for usable-memory property */
38 	u32 size;		/* size allocated for the data buffer */
39 	u32 max_entries;	/* maximum no. of entries */
40 	u32 idx;		/* index of current entry */
41 
42 	/* usable memory ranges to look up */
43 	unsigned int nr_ranges;
44 	const struct range *ranges;
45 };
46 
47 const struct kexec_file_ops * const kexec_file_loaders[] = {
48 	&kexec_elf64_ops,
49 	NULL
50 };
51 
52 /**
53  * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
54  *                              in the memory regions between buf_min & buf_max
55  *                              for the buffer. If found, sets kbuf->mem.
56  * @kbuf:                       Buffer contents and memory parameters.
57  * @buf_min:                    Minimum address for the buffer.
58  * @buf_max:                    Maximum address for the buffer.
59  *
60  * Returns 0 on success, negative errno on error.
61  */
__locate_mem_hole_top_down(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)62 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
63 				      u64 buf_min, u64 buf_max)
64 {
65 	int ret = -EADDRNOTAVAIL;
66 	phys_addr_t start, end;
67 	u64 i;
68 
69 	for_each_mem_range_rev(i, &start, &end) {
70 		/*
71 		 * memblock uses [start, end) convention while it is
72 		 * [start, end] here. Fix the off-by-one to have the
73 		 * same convention.
74 		 */
75 		end -= 1;
76 
77 		if (start > buf_max)
78 			continue;
79 
80 		/* Memory hole not found */
81 		if (end < buf_min)
82 			break;
83 
84 		/* Adjust memory region based on the given range */
85 		if (start < buf_min)
86 			start = buf_min;
87 		if (end > buf_max)
88 			end = buf_max;
89 
90 		start = ALIGN(start, kbuf->buf_align);
91 		if (start < end && (end - start + 1) >= kbuf->memsz) {
92 			/* Suitable memory range found. Set kbuf->mem */
93 			kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
94 					       kbuf->buf_align);
95 			ret = 0;
96 			break;
97 		}
98 	}
99 
100 	return ret;
101 }
102 
103 /**
104  * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
105  *                                  suitable buffer with top down approach.
106  * @kbuf:                           Buffer contents and memory parameters.
107  * @buf_min:                        Minimum address for the buffer.
108  * @buf_max:                        Maximum address for the buffer.
109  * @emem:                           Exclude memory ranges.
110  *
111  * Returns 0 on success, negative errno on error.
112  */
locate_mem_hole_top_down_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)113 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
114 					  u64 buf_min, u64 buf_max,
115 					  const struct crash_mem *emem)
116 {
117 	int i, ret = 0, err = -EADDRNOTAVAIL;
118 	u64 start, end, tmin, tmax;
119 
120 	tmax = buf_max;
121 	for (i = (emem->nr_ranges - 1); i >= 0; i--) {
122 		start = emem->ranges[i].start;
123 		end = emem->ranges[i].end;
124 
125 		if (start > tmax)
126 			continue;
127 
128 		if (end < tmax) {
129 			tmin = (end < buf_min ? buf_min : end + 1);
130 			ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
131 			if (!ret)
132 				return 0;
133 		}
134 
135 		tmax = start - 1;
136 
137 		if (tmax < buf_min) {
138 			ret = err;
139 			break;
140 		}
141 		ret = 0;
142 	}
143 
144 	if (!ret) {
145 		tmin = buf_min;
146 		ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
147 	}
148 	return ret;
149 }
150 
151 /**
152  * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
153  *                               in the memory regions between buf_min & buf_max
154  *                               for the buffer. If found, sets kbuf->mem.
155  * @kbuf:                        Buffer contents and memory parameters.
156  * @buf_min:                     Minimum address for the buffer.
157  * @buf_max:                     Maximum address for the buffer.
158  *
159  * Returns 0 on success, negative errno on error.
160  */
__locate_mem_hole_bottom_up(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)161 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
162 				       u64 buf_min, u64 buf_max)
163 {
164 	int ret = -EADDRNOTAVAIL;
165 	phys_addr_t start, end;
166 	u64 i;
167 
168 	for_each_mem_range(i, &start, &end) {
169 		/*
170 		 * memblock uses [start, end) convention while it is
171 		 * [start, end] here. Fix the off-by-one to have the
172 		 * same convention.
173 		 */
174 		end -= 1;
175 
176 		if (end < buf_min)
177 			continue;
178 
179 		/* Memory hole not found */
180 		if (start > buf_max)
181 			break;
182 
183 		/* Adjust memory region based on the given range */
184 		if (start < buf_min)
185 			start = buf_min;
186 		if (end > buf_max)
187 			end = buf_max;
188 
189 		start = ALIGN(start, kbuf->buf_align);
190 		if (start < end && (end - start + 1) >= kbuf->memsz) {
191 			/* Suitable memory range found. Set kbuf->mem */
192 			kbuf->mem = start;
193 			ret = 0;
194 			break;
195 		}
196 	}
197 
198 	return ret;
199 }
200 
201 /**
202  * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
203  *                                   suitable buffer with bottom up approach.
204  * @kbuf:                            Buffer contents and memory parameters.
205  * @buf_min:                         Minimum address for the buffer.
206  * @buf_max:                         Maximum address for the buffer.
207  * @emem:                            Exclude memory ranges.
208  *
209  * Returns 0 on success, negative errno on error.
210  */
locate_mem_hole_bottom_up_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)211 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
212 					   u64 buf_min, u64 buf_max,
213 					   const struct crash_mem *emem)
214 {
215 	int i, ret = 0, err = -EADDRNOTAVAIL;
216 	u64 start, end, tmin, tmax;
217 
218 	tmin = buf_min;
219 	for (i = 0; i < emem->nr_ranges; i++) {
220 		start = emem->ranges[i].start;
221 		end = emem->ranges[i].end;
222 
223 		if (end < tmin)
224 			continue;
225 
226 		if (start > tmin) {
227 			tmax = (start > buf_max ? buf_max : start - 1);
228 			ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
229 			if (!ret)
230 				return 0;
231 		}
232 
233 		tmin = end + 1;
234 
235 		if (tmin > buf_max) {
236 			ret = err;
237 			break;
238 		}
239 		ret = 0;
240 	}
241 
242 	if (!ret) {
243 		tmax = buf_max;
244 		ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
245 	}
246 	return ret;
247 }
248 
249 #ifdef CONFIG_CRASH_DUMP
250 /**
251  * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
252  * @um_info:                  Usable memory buffer and ranges info.
253  * @cnt:                      No. of entries to accommodate.
254  *
255  * Frees up the old buffer if memory reallocation fails.
256  *
257  * Returns buffer on success, NULL on error.
258  */
check_realloc_usable_mem(struct umem_info * um_info,int cnt)259 static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
260 {
261 	u32 new_size;
262 	__be64 *tbuf;
263 
264 	if ((um_info->idx + cnt) <= um_info->max_entries)
265 		return um_info->buf;
266 
267 	new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
268 	tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
269 	if (tbuf) {
270 		um_info->buf = tbuf;
271 		um_info->size = new_size;
272 		um_info->max_entries = (um_info->size / sizeof(u64));
273 	}
274 
275 	return tbuf;
276 }
277 
278 /**
279  * add_usable_mem - Add the usable memory ranges within the given memory range
280  *                  to the buffer
281  * @um_info:        Usable memory buffer and ranges info.
282  * @base:           Base address of memory range to look for.
283  * @end:            End address of memory range to look for.
284  *
285  * Returns 0 on success, negative errno on error.
286  */
add_usable_mem(struct umem_info * um_info,u64 base,u64 end)287 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
288 {
289 	u64 loc_base, loc_end;
290 	bool add;
291 	int i;
292 
293 	for (i = 0; i < um_info->nr_ranges; i++) {
294 		add = false;
295 		loc_base = um_info->ranges[i].start;
296 		loc_end = um_info->ranges[i].end;
297 		if (loc_base >= base && loc_end <= end)
298 			add = true;
299 		else if (base < loc_end && end > loc_base) {
300 			if (loc_base < base)
301 				loc_base = base;
302 			if (loc_end > end)
303 				loc_end = end;
304 			add = true;
305 		}
306 
307 		if (add) {
308 			if (!check_realloc_usable_mem(um_info, 2))
309 				return -ENOMEM;
310 
311 			um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
312 			um_info->buf[um_info->idx++] =
313 					cpu_to_be64(loc_end - loc_base + 1);
314 		}
315 	}
316 
317 	return 0;
318 }
319 
320 /**
321  * kdump_setup_usable_lmb - This is a callback function that gets called by
322  *                          walk_drmem_lmbs for every LMB to set its
323  *                          usable memory ranges.
324  * @lmb:                    LMB info.
325  * @usm:                    linux,drconf-usable-memory property value.
326  * @data:                   Pointer to usable memory buffer and ranges info.
327  *
328  * Returns 0 on success, negative errno on error.
329  */
kdump_setup_usable_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)330 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
331 				  void *data)
332 {
333 	struct umem_info *um_info;
334 	int tmp_idx, ret;
335 	u64 base, end;
336 
337 	/*
338 	 * kdump load isn't supported on kernels already booted with
339 	 * linux,drconf-usable-memory property.
340 	 */
341 	if (*usm) {
342 		pr_err("linux,drconf-usable-memory property already exists!");
343 		return -EINVAL;
344 	}
345 
346 	um_info = data;
347 	tmp_idx = um_info->idx;
348 	if (!check_realloc_usable_mem(um_info, 1))
349 		return -ENOMEM;
350 
351 	um_info->idx++;
352 	base = lmb->base_addr;
353 	end = base + drmem_lmb_size() - 1;
354 	ret = add_usable_mem(um_info, base, end);
355 	if (!ret) {
356 		/*
357 		 * Update the no. of ranges added. Two entries (base & size)
358 		 * for every range added.
359 		 */
360 		um_info->buf[tmp_idx] =
361 				cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
362 	}
363 
364 	return ret;
365 }
366 
367 #define NODE_PATH_LEN		256
368 /**
369  * add_usable_mem_property - Add usable memory property for the given
370  *                           memory node.
371  * @fdt:                     Flattened device tree for the kdump kernel.
372  * @dn:                      Memory node.
373  * @um_info:                 Usable memory buffer and ranges info.
374  *
375  * Returns 0 on success, negative errno on error.
376  */
add_usable_mem_property(void * fdt,struct device_node * dn,struct umem_info * um_info)377 static int add_usable_mem_property(void *fdt, struct device_node *dn,
378 				   struct umem_info *um_info)
379 {
380 	int node;
381 	char path[NODE_PATH_LEN];
382 	int i, ret;
383 	u64 base, size;
384 
385 	of_node_get(dn);
386 
387 	if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
388 		pr_err("Buffer (%d) too small for memory node: %pOF\n",
389 		       NODE_PATH_LEN, dn);
390 		return -EOVERFLOW;
391 	}
392 	kexec_dprintk("Memory node path: %s\n", path);
393 
394 	/* Now that we know the path, find its offset in kdump kernel's fdt */
395 	node = fdt_path_offset(fdt, path);
396 	if (node < 0) {
397 		pr_err("Malformed device tree: error reading %s\n", path);
398 		ret = -EINVAL;
399 		goto out;
400 	}
401 
402 	um_info->idx  = 0;
403 	if (!check_realloc_usable_mem(um_info, 2)) {
404 		ret = -ENOMEM;
405 		goto out;
406 	}
407 
408 	/*
409 	 * "reg" property represents sequence of (addr,size) tuples
410 	 * each representing a memory range.
411 	 */
412 	for (i = 0; ; i++) {
413 		ret = of_property_read_reg(dn, i, &base, &size);
414 		if (ret)
415 			break;
416 
417 		ret = add_usable_mem(um_info, base, base + size - 1);
418 		if (ret)
419 			goto out;
420 	}
421 
422 	// No reg or empty reg? Skip this node.
423 	if (i == 0)
424 		goto out;
425 
426 	/*
427 	 * No kdump kernel usable memory found in this memory node.
428 	 * Write (0,0) tuple in linux,usable-memory property for
429 	 * this region to be ignored.
430 	 */
431 	if (um_info->idx == 0) {
432 		um_info->buf[0] = 0;
433 		um_info->buf[1] = 0;
434 		um_info->idx = 2;
435 	}
436 
437 	ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
438 			  (um_info->idx * sizeof(u64)));
439 
440 out:
441 	of_node_put(dn);
442 	return ret;
443 }
444 
445 
446 /**
447  * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
448  *                         and linux,drconf-usable-memory DT properties as
449  *                         appropriate to restrict its memory usage.
450  * @fdt:                   Flattened device tree for the kdump kernel.
451  * @usable_mem:            Usable memory ranges for kdump kernel.
452  *
453  * Returns 0 on success, negative errno on error.
454  */
update_usable_mem_fdt(void * fdt,struct crash_mem * usable_mem)455 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
456 {
457 	struct umem_info um_info;
458 	struct device_node *dn;
459 	int node, ret = 0;
460 
461 	if (!usable_mem) {
462 		pr_err("Usable memory ranges for kdump kernel not found\n");
463 		return -ENOENT;
464 	}
465 
466 	node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
467 	if (node == -FDT_ERR_NOTFOUND)
468 		kexec_dprintk("No dynamic reconfiguration memory found\n");
469 	else if (node < 0) {
470 		pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
471 		return -EINVAL;
472 	}
473 
474 	um_info.buf  = NULL;
475 	um_info.size = 0;
476 	um_info.max_entries = 0;
477 	um_info.idx  = 0;
478 	/* Memory ranges to look up */
479 	um_info.ranges = &(usable_mem->ranges[0]);
480 	um_info.nr_ranges = usable_mem->nr_ranges;
481 
482 	dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
483 	if (dn) {
484 		ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
485 		of_node_put(dn);
486 
487 		if (ret) {
488 			pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
489 			goto out;
490 		}
491 
492 		ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
493 				  um_info.buf, (um_info.idx * sizeof(u64)));
494 		if (ret) {
495 			pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
496 			       fdt_strerror(ret));
497 			goto out;
498 		}
499 	}
500 
501 	/*
502 	 * Walk through each memory node and set linux,usable-memory property
503 	 * for the corresponding node in kdump kernel's fdt.
504 	 */
505 	for_each_node_by_type(dn, "memory") {
506 		ret = add_usable_mem_property(fdt, dn, &um_info);
507 		if (ret) {
508 			pr_err("Failed to set linux,usable-memory property for %s node",
509 			       dn->full_name);
510 			of_node_put(dn);
511 			goto out;
512 		}
513 	}
514 
515 out:
516 	kfree(um_info.buf);
517 	return ret;
518 }
519 
520 /**
521  * load_backup_segment - Locate a memory hole to place the backup region.
522  * @image:               Kexec image.
523  * @kbuf:                Buffer contents and memory parameters.
524  *
525  * Returns 0 on success, negative errno on error.
526  */
load_backup_segment(struct kimage * image,struct kexec_buf * kbuf)527 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
528 {
529 	void *buf;
530 	int ret;
531 
532 	/*
533 	 * Setup a source buffer for backup segment.
534 	 *
535 	 * A source buffer has no meaning for backup region as data will
536 	 * be copied from backup source, after crash, in the purgatory.
537 	 * But as load segment code doesn't recognize such segments,
538 	 * setup a dummy source buffer to keep it happy for now.
539 	 */
540 	buf = vzalloc(BACKUP_SRC_SIZE);
541 	if (!buf)
542 		return -ENOMEM;
543 
544 	kbuf->buffer = buf;
545 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
546 	kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
547 	kbuf->top_down = false;
548 
549 	ret = kexec_add_buffer(kbuf);
550 	if (ret) {
551 		vfree(buf);
552 		return ret;
553 	}
554 
555 	image->arch.backup_buf = buf;
556 	image->arch.backup_start = kbuf->mem;
557 	return 0;
558 }
559 
560 /**
561  * update_backup_region_phdr - Update backup region's offset for the core to
562  *                             export the region appropriately.
563  * @image:                     Kexec image.
564  * @ehdr:                      ELF core header.
565  *
566  * Assumes an exclusive program header is setup for the backup region
567  * in the ELF headers
568  *
569  * Returns nothing.
570  */
update_backup_region_phdr(struct kimage * image,Elf64_Ehdr * ehdr)571 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
572 {
573 	Elf64_Phdr *phdr;
574 	unsigned int i;
575 
576 	phdr = (Elf64_Phdr *)(ehdr + 1);
577 	for (i = 0; i < ehdr->e_phnum; i++) {
578 		if (phdr->p_paddr == BACKUP_SRC_START) {
579 			phdr->p_offset = image->arch.backup_start;
580 			kexec_dprintk("Backup region offset updated to 0x%lx\n",
581 				      image->arch.backup_start);
582 			return;
583 		}
584 	}
585 }
586 
kdump_extra_elfcorehdr_size(struct crash_mem * cmem)587 static unsigned int kdump_extra_elfcorehdr_size(struct crash_mem *cmem)
588 {
589 #if defined(CONFIG_CRASH_HOTPLUG) && defined(CONFIG_MEMORY_HOTPLUG)
590 	unsigned int extra_sz = 0;
591 
592 	if (CONFIG_CRASH_MAX_MEMORY_RANGES > (unsigned int)PN_XNUM)
593 		pr_warn("Number of Phdrs %u exceeds max\n", CONFIG_CRASH_MAX_MEMORY_RANGES);
594 	else if (cmem->nr_ranges >= CONFIG_CRASH_MAX_MEMORY_RANGES)
595 		pr_warn("Configured crash mem ranges may not be enough\n");
596 	else
597 		extra_sz = (CONFIG_CRASH_MAX_MEMORY_RANGES - cmem->nr_ranges) * sizeof(Elf64_Phdr);
598 
599 	return extra_sz;
600 #endif
601 	return 0;
602 }
603 
604 /**
605  * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
606  *                           segment needed to load kdump kernel.
607  * @image:                   Kexec image.
608  * @kbuf:                    Buffer contents and memory parameters.
609  *
610  * Returns 0 on success, negative errno on error.
611  */
load_elfcorehdr_segment(struct kimage * image,struct kexec_buf * kbuf)612 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
613 {
614 	struct crash_mem *cmem = NULL;
615 	unsigned long headers_sz;
616 	void *headers = NULL;
617 	int ret;
618 
619 	ret = get_crash_memory_ranges(&cmem);
620 	if (ret)
621 		goto out;
622 
623 	/* Setup elfcorehdr segment */
624 	ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
625 	if (ret) {
626 		pr_err("Failed to prepare elf headers for the core\n");
627 		goto out;
628 	}
629 
630 	/* Fix the offset for backup region in the ELF header */
631 	update_backup_region_phdr(image, headers);
632 
633 	kbuf->buffer = headers;
634 	kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
635 	kbuf->bufsz = headers_sz;
636 	kbuf->memsz = headers_sz + kdump_extra_elfcorehdr_size(cmem);
637 	kbuf->top_down = false;
638 
639 	ret = kexec_add_buffer(kbuf);
640 	if (ret) {
641 		vfree(headers);
642 		goto out;
643 	}
644 
645 	image->elf_load_addr = kbuf->mem;
646 	image->elf_headers_sz = headers_sz;
647 	image->elf_headers = headers;
648 out:
649 	kfree(cmem);
650 	return ret;
651 }
652 
653 /**
654  * load_crashdump_segments_ppc64 - Initialize the additional segements needed
655  *                                 to load kdump kernel.
656  * @image:                         Kexec image.
657  * @kbuf:                          Buffer contents and memory parameters.
658  *
659  * Returns 0 on success, negative errno on error.
660  */
load_crashdump_segments_ppc64(struct kimage * image,struct kexec_buf * kbuf)661 int load_crashdump_segments_ppc64(struct kimage *image,
662 				  struct kexec_buf *kbuf)
663 {
664 	int ret;
665 
666 	/* Load backup segment - first 64K bytes of the crashing kernel */
667 	ret = load_backup_segment(image, kbuf);
668 	if (ret) {
669 		pr_err("Failed to load backup segment\n");
670 		return ret;
671 	}
672 	kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
673 
674 	/* Load elfcorehdr segment - to export crashing kernel's vmcore */
675 	ret = load_elfcorehdr_segment(image, kbuf);
676 	if (ret) {
677 		pr_err("Failed to load elfcorehdr segment\n");
678 		return ret;
679 	}
680 	kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
681 		      image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
682 
683 	return 0;
684 }
685 #endif
686 
687 /**
688  * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
689  *                         variables and call setup_purgatory() to initialize
690  *                         common global variable.
691  * @image:                 kexec image.
692  * @slave_code:            Slave code for the purgatory.
693  * @fdt:                   Flattened device tree for the next kernel.
694  * @kernel_load_addr:      Address where the kernel is loaded.
695  * @fdt_load_addr:         Address where the flattened device tree is loaded.
696  *
697  * Returns 0 on success, negative errno on error.
698  */
setup_purgatory_ppc64(struct kimage * image,const void * slave_code,const void * fdt,unsigned long kernel_load_addr,unsigned long fdt_load_addr)699 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
700 			  const void *fdt, unsigned long kernel_load_addr,
701 			  unsigned long fdt_load_addr)
702 {
703 	struct device_node *dn = NULL;
704 	int ret;
705 
706 	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
707 			      fdt_load_addr);
708 	if (ret)
709 		goto out;
710 
711 	if (image->type == KEXEC_TYPE_CRASH) {
712 		u32 my_run_at_load = 1;
713 
714 		/*
715 		 * Tell relocatable kernel to run at load address
716 		 * via the word meant for that at 0x5c.
717 		 */
718 		ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
719 						     &my_run_at_load,
720 						     sizeof(my_run_at_load),
721 						     false);
722 		if (ret)
723 			goto out;
724 	}
725 
726 	/* Tell purgatory where to look for backup region */
727 	ret = kexec_purgatory_get_set_symbol(image, "backup_start",
728 					     &image->arch.backup_start,
729 					     sizeof(image->arch.backup_start),
730 					     false);
731 	if (ret)
732 		goto out;
733 
734 	/* Setup OPAL base & entry values */
735 	dn = of_find_node_by_path("/ibm,opal");
736 	if (dn) {
737 		u64 val;
738 
739 		of_property_read_u64(dn, "opal-base-address", &val);
740 		ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
741 						     sizeof(val), false);
742 		if (ret)
743 			goto out;
744 
745 		of_property_read_u64(dn, "opal-entry-address", &val);
746 		ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
747 						     sizeof(val), false);
748 	}
749 out:
750 	if (ret)
751 		pr_err("Failed to setup purgatory symbols");
752 	of_node_put(dn);
753 	return ret;
754 }
755 
756 /**
757  * cpu_node_size - Compute the size of a CPU node in the FDT.
758  *                 This should be done only once and the value is stored in
759  *                 a static variable.
760  * Returns the max size of a CPU node in the FDT.
761  */
cpu_node_size(void)762 static unsigned int cpu_node_size(void)
763 {
764 	static unsigned int size;
765 	struct device_node *dn;
766 	struct property *pp;
767 
768 	/*
769 	 * Don't compute it twice, we are assuming that the per CPU node size
770 	 * doesn't change during the system's life.
771 	 */
772 	if (size)
773 		return size;
774 
775 	dn = of_find_node_by_type(NULL, "cpu");
776 	if (WARN_ON_ONCE(!dn)) {
777 		// Unlikely to happen
778 		return 0;
779 	}
780 
781 	/*
782 	 * We compute the sub node size for a CPU node, assuming it
783 	 * will be the same for all.
784 	 */
785 	size += strlen(dn->name) + 5;
786 	for_each_property_of_node(dn, pp) {
787 		size += strlen(pp->name);
788 		size += pp->length;
789 	}
790 
791 	of_node_put(dn);
792 	return size;
793 }
794 
kdump_extra_fdt_size_ppc64(struct kimage * image,unsigned int cpu_nodes)795 static unsigned int kdump_extra_fdt_size_ppc64(struct kimage *image, unsigned int cpu_nodes)
796 {
797 	unsigned int extra_size = 0;
798 	u64 usm_entries;
799 #ifdef CONFIG_CRASH_HOTPLUG
800 	unsigned int possible_cpu_nodes;
801 #endif
802 
803 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || image->type != KEXEC_TYPE_CRASH)
804 		return 0;
805 
806 	/*
807 	 * For kdump kernel, account for linux,usable-memory and
808 	 * linux,drconf-usable-memory properties. Get an approximate on the
809 	 * number of usable memory entries and use for FDT size estimation.
810 	 */
811 	if (drmem_lmb_size()) {
812 		usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
813 			       (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
814 		extra_size += (unsigned int)(usm_entries * sizeof(u64));
815 	}
816 
817 #ifdef CONFIG_CRASH_HOTPLUG
818 	/*
819 	 * Make sure enough space is reserved to accommodate possible CPU nodes
820 	 * in the crash FDT. This allows packing possible CPU nodes which are
821 	 * not yet present in the system without regenerating the entire FDT.
822 	 */
823 	if (image->type == KEXEC_TYPE_CRASH) {
824 		possible_cpu_nodes = num_possible_cpus() / threads_per_core;
825 		if (possible_cpu_nodes > cpu_nodes)
826 			extra_size += (possible_cpu_nodes - cpu_nodes) * cpu_node_size();
827 	}
828 #endif
829 
830 	return extra_size;
831 }
832 
833 /**
834  * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
835  *                              setup FDT for kexec/kdump kernel.
836  * @image:                      kexec image being loaded.
837  *
838  * Returns the estimated extra size needed for kexec/kdump kernel FDT.
839  */
kexec_extra_fdt_size_ppc64(struct kimage * image,struct crash_mem * rmem)840 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image, struct crash_mem *rmem)
841 {
842 	struct device_node *dn;
843 	unsigned int cpu_nodes = 0, extra_size = 0;
844 
845 	// Budget some space for the password blob. There's already extra space
846 	// for the key name
847 	if (plpks_is_available())
848 		extra_size += (unsigned int)plpks_get_passwordlen();
849 
850 	/* Get the number of CPU nodes in the current device tree */
851 	for_each_node_by_type(dn, "cpu") {
852 		cpu_nodes++;
853 	}
854 
855 	/* Consider extra space for CPU nodes added since the boot time */
856 	if (cpu_nodes > boot_cpu_node_count)
857 		extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
858 
859 	/* Consider extra space for reserved memory ranges if any */
860 	if (rmem->nr_ranges > 0)
861 		extra_size += sizeof(struct fdt_reserve_entry) * rmem->nr_ranges;
862 
863 	return extra_size + kdump_extra_fdt_size_ppc64(image, cpu_nodes);
864 }
865 
copy_property(void * fdt,int node_offset,const struct device_node * dn,const char * propname)866 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
867 			 const char *propname)
868 {
869 	const void *prop, *fdtprop;
870 	int len = 0, fdtlen = 0;
871 
872 	prop = of_get_property(dn, propname, &len);
873 	fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
874 
875 	if (fdtprop && !prop)
876 		return fdt_delprop(fdt, node_offset, propname);
877 	else if (prop)
878 		return fdt_setprop(fdt, node_offset, propname, prop, len);
879 	else
880 		return -FDT_ERR_NOTFOUND;
881 }
882 
update_pci_dma_nodes(void * fdt,const char * dmapropname)883 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
884 {
885 	struct device_node *dn;
886 	int pci_offset, root_offset, ret = 0;
887 
888 	if (!firmware_has_feature(FW_FEATURE_LPAR))
889 		return 0;
890 
891 	root_offset = fdt_path_offset(fdt, "/");
892 	for_each_node_with_property(dn, dmapropname) {
893 		pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
894 		if (pci_offset < 0)
895 			continue;
896 
897 		ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
898 		if (ret < 0) {
899 			of_node_put(dn);
900 			break;
901 		}
902 		ret = copy_property(fdt, pci_offset, dn, dmapropname);
903 		if (ret < 0) {
904 			of_node_put(dn);
905 			break;
906 		}
907 	}
908 
909 	return ret;
910 }
911 
912 /**
913  * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
914  *                       being loaded.
915  * @image:               kexec image being loaded.
916  * @fdt:                 Flattened device tree for the next kernel.
917  * @rmem:                Reserved memory ranges.
918  *
919  * Returns 0 on success, negative errno on error.
920  */
setup_new_fdt_ppc64(const struct kimage * image,void * fdt,struct crash_mem * rmem)921 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, struct crash_mem *rmem)
922 {
923 	struct crash_mem *umem = NULL;
924 	int i, nr_ranges, ret;
925 
926 #ifdef CONFIG_CRASH_DUMP
927 	/*
928 	 * Restrict memory usage for kdump kernel by setting up
929 	 * usable memory ranges and memory reserve map.
930 	 */
931 	if (image->type == KEXEC_TYPE_CRASH) {
932 		ret = get_usable_memory_ranges(&umem);
933 		if (ret)
934 			goto out;
935 
936 		ret = update_usable_mem_fdt(fdt, umem);
937 		if (ret) {
938 			pr_err("Error setting up usable-memory property for kdump kernel\n");
939 			goto out;
940 		}
941 
942 		/*
943 		 * Ensure we don't touch crashed kernel's memory except the
944 		 * first 64K of RAM, which will be backed up.
945 		 */
946 		ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
947 				      crashk_res.start - BACKUP_SRC_SIZE);
948 		if (ret) {
949 			pr_err("Error reserving crash memory: %s\n",
950 			       fdt_strerror(ret));
951 			goto out;
952 		}
953 
954 		/* Ensure backup region is not used by kdump/capture kernel */
955 		ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
956 				      BACKUP_SRC_SIZE);
957 		if (ret) {
958 			pr_err("Error reserving memory for backup: %s\n",
959 			       fdt_strerror(ret));
960 			goto out;
961 		}
962 	}
963 #endif
964 
965 	/* Update cpus nodes information to account hotplug CPUs. */
966 	ret =  update_cpus_node(fdt);
967 	if (ret < 0)
968 		goto out;
969 
970 	ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
971 	if (ret < 0)
972 		goto out;
973 
974 	ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
975 	if (ret < 0)
976 		goto out;
977 
978 	/* Update memory reserve map */
979 	nr_ranges = rmem ? rmem->nr_ranges : 0;
980 	for (i = 0; i < nr_ranges; i++) {
981 		u64 base, size;
982 
983 		base = rmem->ranges[i].start;
984 		size = rmem->ranges[i].end - base + 1;
985 		ret = fdt_add_mem_rsv(fdt, base, size);
986 		if (ret) {
987 			pr_err("Error updating memory reserve map: %s\n",
988 			       fdt_strerror(ret));
989 			goto out;
990 		}
991 	}
992 
993 	// If we have PLPKS active, we need to provide the password to the new kernel
994 	if (plpks_is_available())
995 		ret = plpks_populate_fdt(fdt);
996 
997 out:
998 	kfree(umem);
999 	return ret;
1000 }
1001 
1002 /**
1003  * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1004  *                              tce-table, reserved-ranges & such (exclude
1005  *                              memory ranges) as they can't be used for kexec
1006  *                              segment buffer. Sets kbuf->mem when a suitable
1007  *                              memory hole is found.
1008  * @kbuf:                       Buffer contents and memory parameters.
1009  *
1010  * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1011  *
1012  * Returns 0 on success, negative errno on error.
1013  */
arch_kexec_locate_mem_hole(struct kexec_buf * kbuf)1014 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1015 {
1016 	struct crash_mem **emem;
1017 	u64 buf_min, buf_max;
1018 	int ret;
1019 
1020 	/* Look up the exclude ranges list while locating the memory hole */
1021 	emem = &(kbuf->image->arch.exclude_ranges);
1022 	if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1023 		pr_warn("No exclude range list. Using the default locate mem hole method\n");
1024 		return kexec_locate_mem_hole(kbuf);
1025 	}
1026 
1027 	buf_min = kbuf->buf_min;
1028 	buf_max = kbuf->buf_max;
1029 	/* Segments for kdump kernel should be within crashkernel region */
1030 	if (IS_ENABLED(CONFIG_CRASH_DUMP) && kbuf->image->type == KEXEC_TYPE_CRASH) {
1031 		buf_min = (buf_min < crashk_res.start ?
1032 			   crashk_res.start : buf_min);
1033 		buf_max = (buf_max > crashk_res.end ?
1034 			   crashk_res.end : buf_max);
1035 	}
1036 
1037 	if (buf_min > buf_max) {
1038 		pr_err("Invalid buffer min and/or max values\n");
1039 		return -EINVAL;
1040 	}
1041 
1042 	if (kbuf->top_down)
1043 		ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1044 						     *emem);
1045 	else
1046 		ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1047 						      *emem);
1048 
1049 	/* Add the buffer allocated to the exclude list for the next lookup */
1050 	if (!ret) {
1051 		add_mem_range(emem, kbuf->mem, kbuf->memsz);
1052 		sort_memory_ranges(*emem, true);
1053 	} else {
1054 		pr_err("Failed to locate memory buffer of size %lu\n",
1055 		       kbuf->memsz);
1056 	}
1057 	return ret;
1058 }
1059 
1060 /**
1061  * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1062  *                                 kexec segments.
1063  * @image:                         kexec image being loaded.
1064  * @buf:                           Buffer pointing to elf data.
1065  * @buf_len:                       Length of the buffer.
1066  *
1067  * Returns 0 on success, negative errno on error.
1068  */
arch_kexec_kernel_image_probe(struct kimage * image,void * buf,unsigned long buf_len)1069 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1070 				  unsigned long buf_len)
1071 {
1072 	int ret;
1073 
1074 	/* Get exclude memory ranges needed for setting up kexec segments */
1075 	ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1076 	if (ret) {
1077 		pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1078 		return ret;
1079 	}
1080 
1081 	return kexec_image_probe_default(image, buf, buf_len);
1082 }
1083 
1084 /**
1085  * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1086  *                                      while loading the image.
1087  * @image:                              kexec image being loaded.
1088  *
1089  * Returns 0 on success, negative errno on error.
1090  */
arch_kimage_file_post_load_cleanup(struct kimage * image)1091 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1092 {
1093 	kfree(image->arch.exclude_ranges);
1094 	image->arch.exclude_ranges = NULL;
1095 
1096 	vfree(image->arch.backup_buf);
1097 	image->arch.backup_buf = NULL;
1098 
1099 	vfree(image->elf_headers);
1100 	image->elf_headers = NULL;
1101 	image->elf_headers_sz = 0;
1102 
1103 	kvfree(image->arch.fdt);
1104 	image->arch.fdt = NULL;
1105 
1106 	return kexec_image_post_load_cleanup_default(image);
1107 }
1108