xref: /freebsd/sys/i386/i386/machdep.c (revision b72ae900d4348118829fe04abdc11b620930c30f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2018 The FreeBSD Foundation
5  * Copyright (c) 1992 Terrence R. Lambert.
6  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * William Jolitz.
11  *
12  * Portions of this software were developed by A. Joseph Koshy under
13  * sponsorship from the FreeBSD Foundation and Google, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  */
43 
44 #include <sys/cdefs.h>
45 #include "opt_apic.h"
46 #include "opt_atpic.h"
47 #include "opt_cpu.h"
48 #include "opt_ddb.h"
49 #include "opt_inet.h"
50 #include "opt_isa.h"
51 #include "opt_kstack_pages.h"
52 #include "opt_maxmem.h"
53 #include "opt_perfmon.h"
54 #include "opt_platform.h"
55 
56 #include <sys/param.h>
57 #include <sys/proc.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/bus.h>
62 #include <sys/callout.h>
63 #include <sys/cons.h>
64 #include <sys/cpu.h>
65 #include <sys/eventhandler.h>
66 #include <sys/exec.h>
67 #include <sys/imgact.h>
68 #include <sys/kdb.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/linker.h>
72 #include <sys/lock.h>
73 #include <sys/malloc.h>
74 #include <sys/memrange.h>
75 #include <sys/msgbuf.h>
76 #include <sys/mutex.h>
77 #include <sys/pcpu.h>
78 #include <sys/ptrace.h>
79 #include <sys/reboot.h>
80 #include <sys/reg.h>
81 #include <sys/rwlock.h>
82 #include <sys/sched.h>
83 #include <sys/signalvar.h>
84 #include <sys/smp.h>
85 #include <sys/syscallsubr.h>
86 #include <sys/sysctl.h>
87 #include <sys/sysent.h>
88 #include <sys/sysproto.h>
89 #include <sys/ucontext.h>
90 #include <sys/vmmeter.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_phys.h>
101 #include <vm/vm_dumpset.h>
102 
103 #ifdef DDB
104 #ifndef KDB
105 #error KDB must be enabled in order for DDB to work!
106 #endif
107 #include <ddb/ddb.h>
108 #include <ddb/db_sym.h>
109 #endif
110 
111 #include <isa/rtc.h>
112 
113 #include <net/netisr.h>
114 
115 #include <dev/smbios/smbios.h>
116 
117 #include <machine/bootinfo.h>
118 #include <machine/clock.h>
119 #include <machine/cpu.h>
120 #include <machine/cputypes.h>
121 #include <machine/intr_machdep.h>
122 #include <x86/mca.h>
123 #include <machine/md_var.h>
124 #include <machine/metadata.h>
125 #include <machine/pc/bios.h>
126 #include <machine/pcb.h>
127 #include <machine/pcb_ext.h>
128 #include <machine/proc.h>
129 #include <machine/sigframe.h>
130 #include <machine/specialreg.h>
131 #include <machine/sysarch.h>
132 #include <machine/trap.h>
133 #include <x86/ucode.h>
134 #include <machine/vm86.h>
135 #include <x86/init.h>
136 #ifdef PERFMON
137 #include <machine/perfmon.h>
138 #endif
139 #ifdef SMP
140 #include <machine/smp.h>
141 #endif
142 #ifdef FDT
143 #include <x86/fdt.h>
144 #endif
145 
146 #ifdef DEV_APIC
147 #include <x86/apicvar.h>
148 #endif
149 
150 #ifdef DEV_ISA
151 #include <x86/isa/icu.h>
152 #endif
153 
154 /* Sanity check for __curthread() */
155 CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
156 
157 register_t init386(int first);
158 void dblfault_handler(void);
159 void identify_cpu(void);
160 
161 static void cpu_startup(void *);
162 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
163 
164 /* Intel ICH registers */
165 #define ICH_PMBASE	0x400
166 #define ICH_SMI_EN	ICH_PMBASE + 0x30
167 
168 int	_udatasel, _ucodesel;
169 u_int	basemem;
170 static int above4g_allow = 1;
171 static int above24g_allow = 0;
172 
173 int cold = 1;
174 
175 long Maxmem = 0;
176 long realmem = 0;
177 int late_console = 1;
178 
179 #ifdef PAE
180 FEATURE(pae, "Physical Address Extensions");
181 #endif
182 
183 struct kva_md_info kmi;
184 
185 static struct trapframe proc0_tf;
186 struct pcpu __pcpu[MAXCPU];
187 
188 static void i386_clock_source_init(void);
189 
190 struct mtx icu_lock;
191 
192 struct mem_range_softc mem_range_softc;
193 
194 extern char start_exceptions[], end_exceptions[];
195 
196 extern struct sysentvec elf32_freebsd_sysvec;
197 
198 /* Default init_ops implementation. */
199 struct init_ops init_ops = {
200 	.early_clock_source_init =	i386_clock_source_init,
201 	.early_delay =			i8254_delay,
202 };
203 
204 static void
i386_clock_source_init(void)205 i386_clock_source_init(void)
206 {
207 	i8254_init();
208 }
209 
210 static void
cpu_startup(void * dummy)211 cpu_startup(void *dummy)
212 {
213 	uintmax_t memsize;
214 	char *sysenv;
215 
216 	/*
217 	 * On MacBooks, we need to disallow the legacy USB circuit to
218 	 * generate an SMI# because this can cause several problems,
219 	 * namely: incorrect CPU frequency detection and failure to
220 	 * start the APs.
221 	 * We do this by disabling a bit in the SMI_EN (SMI Control and
222 	 * Enable register) of the Intel ICH LPC Interface Bridge.
223 	 */
224 	sysenv = kern_getenv("smbios.system.product");
225 	if (sysenv != NULL) {
226 		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
227 		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
228 		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
229 		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
230 		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
231 		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
232 		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
233 		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
234 			if (bootverbose)
235 				printf("Disabling LEGACY_USB_EN bit on "
236 				    "Intel ICH.\n");
237 			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
238 		}
239 		freeenv(sysenv);
240 	}
241 
242 	/*
243 	 * Good {morning,afternoon,evening,night}.
244 	 */
245 	startrtclock();
246 	printcpuinfo();
247 	panicifcpuunsupported();
248 #ifdef PERFMON
249 	perfmon_init();
250 #endif
251 
252 	/*
253 	 * Display physical memory if SMBIOS reports reasonable amount.
254 	 */
255 	memsize = 0;
256 	sysenv = kern_getenv("smbios.memory.enabled");
257 	if (sysenv != NULL) {
258 		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
259 		freeenv(sysenv);
260 	}
261 	if (memsize < ptoa((uintmax_t)vm_free_count()))
262 		memsize = ptoa((uintmax_t)Maxmem);
263 	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
264 	realmem = atop(memsize);
265 
266 	/*
267 	 * Display any holes after the first chunk of extended memory.
268 	 */
269 	if (bootverbose) {
270 		int indx;
271 
272 		printf("Physical memory chunk(s):\n");
273 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
274 			vm_paddr_t size;
275 
276 			size = phys_avail[indx + 1] - phys_avail[indx];
277 			printf(
278 			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
279 			    (uintmax_t)phys_avail[indx],
280 			    (uintmax_t)phys_avail[indx + 1] - 1,
281 			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
282 		}
283 	}
284 
285 	vm_ksubmap_init(&kmi);
286 
287 	printf("avail memory = %ju (%ju MB)\n",
288 	    ptoa((uintmax_t)vm_free_count()),
289 	    ptoa((uintmax_t)vm_free_count()) / 1048576);
290 
291 	/*
292 	 * Set up buffers, so they can be used to read disk labels.
293 	 */
294 	bufinit();
295 	vm_pager_bufferinit();
296 	cpu_setregs();
297 }
298 
299 void
cpu_setregs(void)300 cpu_setregs(void)
301 {
302 	unsigned int cr0;
303 
304 	cr0 = rcr0();
305 
306 	/*
307 	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
308 	 *
309 	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
310 	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
311 	 * bit to control the trap, because setting the CR0_EM bit does
312 	 * not cause WAIT instructions to trap.  It's important to trap
313 	 * WAIT instructions - otherwise the "wait" variants of no-wait
314 	 * control instructions would degenerate to the "no-wait" variants
315 	 * after FP context switches but work correctly otherwise.  It's
316 	 * particularly important to trap WAITs when there is no NPX -
317 	 * otherwise the "wait" variants would always degenerate.
318 	 *
319 	 * Try setting CR0_NE to get correct error reporting on 486DX's.
320 	 * Setting it should fail or do nothing on lesser processors.
321 	 */
322 	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
323 	load_cr0(cr0);
324 	load_gs(_udatasel);
325 }
326 
327 u_long bootdev;		/* not a struct cdev *- encoding is different */
328 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
329 	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
330 
331 /*
332  * Initialize 386 and configure to run kernel
333  */
334 
335 /*
336  * Initialize segments & interrupt table
337  */
338 
339 int _default_ldt;
340 
341 struct mtx dt_lock;			/* lock for GDT and LDT */
342 
343 union descriptor gdt0[NGDT];	/* initial global descriptor table */
344 union descriptor *gdt = gdt0;	/* global descriptor table */
345 
346 union descriptor *ldt;		/* local descriptor table */
347 
348 static struct gate_descriptor idt0[NIDT];
349 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
350 
351 static struct i386tss *dblfault_tss;
352 static char *dblfault_stack;
353 
354 static struct i386tss common_tss0;
355 
356 vm_offset_t proc0kstack;
357 
358 /*
359  * software prototypes -- in more palatable form.
360  *
361  * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
362  * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
363  */
364 struct soft_segment_descriptor gdt_segs[] = {
365 /* GNULL_SEL	0 Null Descriptor */
366 {	.ssd_base = 0x0,
367 	.ssd_limit = 0x0,
368 	.ssd_type = 0,
369 	.ssd_dpl = SEL_KPL,
370 	.ssd_p = 0,
371 	.ssd_xx = 0, .ssd_xx1 = 0,
372 	.ssd_def32 = 0,
373 	.ssd_gran = 0		},
374 /* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
375 {	.ssd_base = 0x0,
376 	.ssd_limit = 0xfffff,
377 	.ssd_type = SDT_MEMRWA,
378 	.ssd_dpl = SEL_KPL,
379 	.ssd_p = 1,
380 	.ssd_xx = 0, .ssd_xx1 = 0,
381 	.ssd_def32 = 1,
382 	.ssd_gran = 1		},
383 /* GUFS_SEL	2 %fs Descriptor for user */
384 {	.ssd_base = 0x0,
385 	.ssd_limit = 0xfffff,
386 	.ssd_type = SDT_MEMRWA,
387 	.ssd_dpl = SEL_UPL,
388 	.ssd_p = 1,
389 	.ssd_xx = 0, .ssd_xx1 = 0,
390 	.ssd_def32 = 1,
391 	.ssd_gran = 1		},
392 /* GUGS_SEL	3 %gs Descriptor for user */
393 {	.ssd_base = 0x0,
394 	.ssd_limit = 0xfffff,
395 	.ssd_type = SDT_MEMRWA,
396 	.ssd_dpl = SEL_UPL,
397 	.ssd_p = 1,
398 	.ssd_xx = 0, .ssd_xx1 = 0,
399 	.ssd_def32 = 1,
400 	.ssd_gran = 1		},
401 /* GCODE_SEL	4 Code Descriptor for kernel */
402 {	.ssd_base = 0x0,
403 	.ssd_limit = 0xfffff,
404 	.ssd_type = SDT_MEMERA,
405 	.ssd_dpl = SEL_KPL,
406 	.ssd_p = 1,
407 	.ssd_xx = 0, .ssd_xx1 = 0,
408 	.ssd_def32 = 1,
409 	.ssd_gran = 1		},
410 /* GDATA_SEL	5 Data Descriptor for kernel */
411 {	.ssd_base = 0x0,
412 	.ssd_limit = 0xfffff,
413 	.ssd_type = SDT_MEMRWA,
414 	.ssd_dpl = SEL_KPL,
415 	.ssd_p = 1,
416 	.ssd_xx = 0, .ssd_xx1 = 0,
417 	.ssd_def32 = 1,
418 	.ssd_gran = 1		},
419 /* GUCODE_SEL	6 Code Descriptor for user */
420 {	.ssd_base = 0x0,
421 	.ssd_limit = 0xfffff,
422 	.ssd_type = SDT_MEMERA,
423 	.ssd_dpl = SEL_UPL,
424 	.ssd_p = 1,
425 	.ssd_xx = 0, .ssd_xx1 = 0,
426 	.ssd_def32 = 1,
427 	.ssd_gran = 1		},
428 /* GUDATA_SEL	7 Data Descriptor for user */
429 {	.ssd_base = 0x0,
430 	.ssd_limit = 0xfffff,
431 	.ssd_type = SDT_MEMRWA,
432 	.ssd_dpl = SEL_UPL,
433 	.ssd_p = 1,
434 	.ssd_xx = 0, .ssd_xx1 = 0,
435 	.ssd_def32 = 1,
436 	.ssd_gran = 1		},
437 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
438 {	.ssd_base = 0x400,
439 	.ssd_limit = 0xfffff,
440 	.ssd_type = SDT_MEMRWA,
441 	.ssd_dpl = SEL_KPL,
442 	.ssd_p = 1,
443 	.ssd_xx = 0, .ssd_xx1 = 0,
444 	.ssd_def32 = 1,
445 	.ssd_gran = 1		},
446 /* GPROC0_SEL	9 Proc 0 Tss Descriptor */
447 {
448 	.ssd_base = 0x0,
449 	.ssd_limit = sizeof(struct i386tss)-1,
450 	.ssd_type = SDT_SYS386TSS,
451 	.ssd_dpl = 0,
452 	.ssd_p = 1,
453 	.ssd_xx = 0, .ssd_xx1 = 0,
454 	.ssd_def32 = 0,
455 	.ssd_gran = 0		},
456 /* GLDT_SEL	10 LDT Descriptor */
457 {	.ssd_base = 0,
458 	.ssd_limit = sizeof(union descriptor) * NLDT - 1,
459 	.ssd_type = SDT_SYSLDT,
460 	.ssd_dpl = SEL_UPL,
461 	.ssd_p = 1,
462 	.ssd_xx = 0, .ssd_xx1 = 0,
463 	.ssd_def32 = 0,
464 	.ssd_gran = 0		},
465 /* GUSERLDT_SEL	11 User LDT Descriptor per process */
466 {	.ssd_base = 0,
467 	.ssd_limit = (512 * sizeof(union descriptor)-1),
468 	.ssd_type = SDT_SYSLDT,
469 	.ssd_dpl = 0,
470 	.ssd_p = 1,
471 	.ssd_xx = 0, .ssd_xx1 = 0,
472 	.ssd_def32 = 0,
473 	.ssd_gran = 0		},
474 /* GPANIC_SEL	12 Panic Tss Descriptor */
475 {	.ssd_base = 0,
476 	.ssd_limit = sizeof(struct i386tss)-1,
477 	.ssd_type = SDT_SYS386TSS,
478 	.ssd_dpl = 0,
479 	.ssd_p = 1,
480 	.ssd_xx = 0, .ssd_xx1 = 0,
481 	.ssd_def32 = 0,
482 	.ssd_gran = 0		},
483 /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
484 {	.ssd_base = 0,
485 	.ssd_limit = 0xfffff,
486 	.ssd_type = SDT_MEMERA,
487 	.ssd_dpl = 0,
488 	.ssd_p = 1,
489 	.ssd_xx = 0, .ssd_xx1 = 0,
490 	.ssd_def32 = 0,
491 	.ssd_gran = 1		},
492 /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
493 {	.ssd_base = 0,
494 	.ssd_limit = 0xfffff,
495 	.ssd_type = SDT_MEMERA,
496 	.ssd_dpl = 0,
497 	.ssd_p = 1,
498 	.ssd_xx = 0, .ssd_xx1 = 0,
499 	.ssd_def32 = 0,
500 	.ssd_gran = 1		},
501 /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
502 {	.ssd_base = 0,
503 	.ssd_limit = 0xfffff,
504 	.ssd_type = SDT_MEMRWA,
505 	.ssd_dpl = 0,
506 	.ssd_p = 1,
507 	.ssd_xx = 0, .ssd_xx1 = 0,
508 	.ssd_def32 = 1,
509 	.ssd_gran = 1		},
510 /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
511 {	.ssd_base = 0,
512 	.ssd_limit = 0xfffff,
513 	.ssd_type = SDT_MEMRWA,
514 	.ssd_dpl = 0,
515 	.ssd_p = 1,
516 	.ssd_xx = 0, .ssd_xx1 = 0,
517 	.ssd_def32 = 0,
518 	.ssd_gran = 1		},
519 /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
520 {	.ssd_base = 0,
521 	.ssd_limit = 0xfffff,
522 	.ssd_type = SDT_MEMRWA,
523 	.ssd_dpl = 0,
524 	.ssd_p = 1,
525 	.ssd_xx = 0, .ssd_xx1 = 0,
526 	.ssd_def32 = 0,
527 	.ssd_gran = 1		},
528 /* GNDIS_SEL	18 NDIS Descriptor */
529 {	.ssd_base = 0x0,
530 	.ssd_limit = 0x0,
531 	.ssd_type = 0,
532 	.ssd_dpl = 0,
533 	.ssd_p = 0,
534 	.ssd_xx = 0, .ssd_xx1 = 0,
535 	.ssd_def32 = 0,
536 	.ssd_gran = 0		},
537 };
538 
539 static struct soft_segment_descriptor ldt_segs[] = {
540 	/* Null Descriptor - overwritten by call gate */
541 {	.ssd_base = 0x0,
542 	.ssd_limit = 0x0,
543 	.ssd_type = 0,
544 	.ssd_dpl = 0,
545 	.ssd_p = 0,
546 	.ssd_xx = 0, .ssd_xx1 = 0,
547 	.ssd_def32 = 0,
548 	.ssd_gran = 0		},
549 	/* Null Descriptor - overwritten by call gate */
550 {	.ssd_base = 0x0,
551 	.ssd_limit = 0x0,
552 	.ssd_type = 0,
553 	.ssd_dpl = 0,
554 	.ssd_p = 0,
555 	.ssd_xx = 0, .ssd_xx1 = 0,
556 	.ssd_def32 = 0,
557 	.ssd_gran = 0		},
558 	/* Null Descriptor - overwritten by call gate */
559 {	.ssd_base = 0x0,
560 	.ssd_limit = 0x0,
561 	.ssd_type = 0,
562 	.ssd_dpl = 0,
563 	.ssd_p = 0,
564 	.ssd_xx = 0, .ssd_xx1 = 0,
565 	.ssd_def32 = 0,
566 	.ssd_gran = 0		},
567 	/* Code Descriptor for user */
568 {	.ssd_base = 0x0,
569 	.ssd_limit = 0xfffff,
570 	.ssd_type = SDT_MEMERA,
571 	.ssd_dpl = SEL_UPL,
572 	.ssd_p = 1,
573 	.ssd_xx = 0, .ssd_xx1 = 0,
574 	.ssd_def32 = 1,
575 	.ssd_gran = 1		},
576 	/* Null Descriptor - overwritten by call gate */
577 {	.ssd_base = 0x0,
578 	.ssd_limit = 0x0,
579 	.ssd_type = 0,
580 	.ssd_dpl = 0,
581 	.ssd_p = 0,
582 	.ssd_xx = 0, .ssd_xx1 = 0,
583 	.ssd_def32 = 0,
584 	.ssd_gran = 0		},
585 	/* Data Descriptor for user */
586 {	.ssd_base = 0x0,
587 	.ssd_limit = 0xfffff,
588 	.ssd_type = SDT_MEMRWA,
589 	.ssd_dpl = SEL_UPL,
590 	.ssd_p = 1,
591 	.ssd_xx = 0, .ssd_xx1 = 0,
592 	.ssd_def32 = 1,
593 	.ssd_gran = 1		},
594 };
595 
596 size_t setidt_disp;
597 
598 void
setidt(int idx,inthand_t * func,int typ,int dpl,int selec)599 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
600 {
601 	uintptr_t off;
602 
603 	off = func != NULL ? (uintptr_t)func + setidt_disp : 0;
604 	setidt_nodisp(idx, off, typ, dpl, selec);
605 }
606 
607 void
setidt_nodisp(int idx,uintptr_t off,int typ,int dpl,int selec)608 setidt_nodisp(int idx, uintptr_t off, int typ, int dpl, int selec)
609 {
610 	struct gate_descriptor *ip;
611 
612 	ip = idt + idx;
613 	ip->gd_looffset = off;
614 	ip->gd_selector = selec;
615 	ip->gd_stkcpy = 0;
616 	ip->gd_xx = 0;
617 	ip->gd_type = typ;
618 	ip->gd_dpl = dpl;
619 	ip->gd_p = 1;
620 	ip->gd_hioffset = ((u_int)off) >> 16 ;
621 }
622 
623 extern inthand_t
624 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
625 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
626 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
627 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
628 	IDTVEC(xmm),
629 #ifdef KDTRACE_HOOKS
630 	IDTVEC(dtrace_ret),
631 #endif
632 #ifdef XENHVM
633 	IDTVEC(xen_intr_upcall),
634 #endif
635 	IDTVEC(int0x80_syscall);
636 
637 #ifdef DDB
638 /*
639  * Display the index and function name of any IDT entries that don't use
640  * the default 'rsvd' entry point.
641  */
DB_SHOW_COMMAND_FLAGS(idt,db_show_idt,DB_CMD_MEMSAFE)642 DB_SHOW_COMMAND_FLAGS(idt, db_show_idt, DB_CMD_MEMSAFE)
643 {
644 	struct gate_descriptor *ip;
645 	int idx;
646 	uintptr_t func, func_trm;
647 	bool trm;
648 
649 	ip = idt;
650 	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
651 		if (ip->gd_type == SDT_SYSTASKGT) {
652 			db_printf("%3d\t<TASK>\n", idx);
653 		} else {
654 			func = (ip->gd_hioffset << 16 | ip->gd_looffset);
655 			if (func >= PMAP_TRM_MIN_ADDRESS) {
656 				func_trm = func;
657 				func -= setidt_disp;
658 				trm = true;
659 			} else
660 				trm = false;
661 			if (func != (uintptr_t)&IDTVEC(rsvd)) {
662 				db_printf("%3d\t", idx);
663 				db_printsym(func, DB_STGY_PROC);
664 				if (trm)
665 					db_printf(" (trampoline %#x)",
666 					    func_trm);
667 				db_printf("\n");
668 			}
669 		}
670 		ip++;
671 	}
672 }
673 
674 /* Show privileged registers. */
DB_SHOW_COMMAND_FLAGS(sysregs,db_show_sysregs,DB_CMD_MEMSAFE)675 DB_SHOW_COMMAND_FLAGS(sysregs, db_show_sysregs, DB_CMD_MEMSAFE)
676 {
677 	uint64_t idtr, gdtr;
678 
679 	idtr = ridt();
680 	db_printf("idtr\t0x%08x/%04x\n",
681 	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
682 	gdtr = rgdt();
683 	db_printf("gdtr\t0x%08x/%04x\n",
684 	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
685 	db_printf("ldtr\t0x%04x\n", rldt());
686 	db_printf("tr\t0x%04x\n", rtr());
687 	db_printf("cr0\t0x%08x\n", rcr0());
688 	db_printf("cr2\t0x%08x\n", rcr2());
689 	db_printf("cr3\t0x%08x\n", rcr3());
690 	db_printf("cr4\t0x%08x\n", rcr4());
691 	if (rcr4() & CR4_XSAVE)
692 		db_printf("xcr0\t0x%016llx\n", rxcr(0));
693 	if (amd_feature & (AMDID_NX | AMDID_LM))
694 		db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
695 	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
696 		db_printf("FEATURES_CTL\t0x%016llx\n",
697 		    rdmsr(MSR_IA32_FEATURE_CONTROL));
698 	if (((cpu_vendor_id == CPU_VENDOR_INTEL ||
699 	    cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6) ||
700 	    cpu_vendor_id == CPU_VENDOR_HYGON)
701 		db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
702 	if (cpu_feature & CPUID_PAT)
703 		db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
704 }
705 
DB_SHOW_COMMAND_FLAGS(dbregs,db_show_dbregs,DB_CMD_MEMSAFE)706 DB_SHOW_COMMAND_FLAGS(dbregs, db_show_dbregs, DB_CMD_MEMSAFE)
707 {
708 
709 	db_printf("dr0\t0x%08x\n", rdr0());
710 	db_printf("dr1\t0x%08x\n", rdr1());
711 	db_printf("dr2\t0x%08x\n", rdr2());
712 	db_printf("dr3\t0x%08x\n", rdr3());
713 	db_printf("dr6\t0x%08x\n", rdr6());
714 	db_printf("dr7\t0x%08x\n", rdr7());
715 }
716 
DB_SHOW_COMMAND(frame,db_show_frame)717 DB_SHOW_COMMAND(frame, db_show_frame)
718 {
719 	struct trapframe *frame;
720 
721 	frame = have_addr ? (struct trapframe *)addr : curthread->td_frame;
722 	printf("ss %#x esp %#x efl %#x cs %#x eip %#x\n",
723 	    frame->tf_ss, frame->tf_esp, frame->tf_eflags, frame->tf_cs,
724 	    frame->tf_eip);
725 	printf("err %#x trapno %d\n", frame->tf_err, frame->tf_trapno);
726 	printf("ds %#x es %#x fs %#x\n",
727 	    frame->tf_ds, frame->tf_es, frame->tf_fs);
728 	printf("eax %#x ecx %#x edx %#x ebx %#x\n",
729 	    frame->tf_eax, frame->tf_ecx, frame->tf_edx, frame->tf_ebx);
730 	printf("ebp %#x esi %#x edi %#x\n",
731 	    frame->tf_ebp, frame->tf_esi, frame->tf_edi);
732 
733 }
734 #endif
735 
736 void
sdtossd(struct segment_descriptor * sd,struct soft_segment_descriptor * ssd)737 sdtossd(struct segment_descriptor *sd, struct soft_segment_descriptor *ssd)
738 {
739 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
740 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
741 	ssd->ssd_type  = sd->sd_type;
742 	ssd->ssd_dpl   = sd->sd_dpl;
743 	ssd->ssd_p     = sd->sd_p;
744 	ssd->ssd_def32 = sd->sd_def32;
745 	ssd->ssd_gran  = sd->sd_gran;
746 }
747 
748 static int
add_physmap_entry(uint64_t base,uint64_t length,vm_paddr_t * physmap,int * physmap_idxp)749 add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
750     int *physmap_idxp)
751 {
752 	uint64_t lim, ign;
753 	int i, insert_idx, physmap_idx;
754 
755 	physmap_idx = *physmap_idxp;
756 
757 	if (length == 0)
758 		return (1);
759 
760 	lim = 0x100000000;					/*  4G */
761 	if (pae_mode && above4g_allow)
762 		lim = above24g_allow ? -1ULL : 0x600000000;	/* 24G */
763 	if (base >= lim) {
764 		printf("%uK of memory above %uGB ignored, pae %d "
765 		    "above4g_allow %d above24g_allow %d\n",
766 		    (u_int)(length / 1024), (u_int)(lim >> 30), pae_mode,
767 		    above4g_allow, above24g_allow);
768 		return (1);
769 	}
770 	if (base + length >= lim) {
771 		ign = base + length - lim;
772 		length -= ign;
773 		printf("%uK of memory above %uGB ignored, pae %d "
774 		    "above4g_allow %d above24g_allow %d\n",
775 		    (u_int)(ign / 1024), (u_int)(lim >> 30), pae_mode,
776 		    above4g_allow, above24g_allow);
777 	}
778 
779 	/*
780 	 * Find insertion point while checking for overlap.  Start off by
781 	 * assuming the new entry will be added to the end.
782 	 */
783 	insert_idx = physmap_idx + 2;
784 	for (i = 0; i <= physmap_idx; i += 2) {
785 		if (base < physmap[i + 1]) {
786 			if (base + length <= physmap[i]) {
787 				insert_idx = i;
788 				break;
789 			}
790 			if (boothowto & RB_VERBOSE)
791 				printf(
792 		    "Overlapping memory regions, ignoring second region\n");
793 			return (1);
794 		}
795 	}
796 
797 	/* See if we can prepend to the next entry. */
798 	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
799 		physmap[insert_idx] = base;
800 		return (1);
801 	}
802 
803 	/* See if we can append to the previous entry. */
804 	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
805 		physmap[insert_idx - 1] += length;
806 		return (1);
807 	}
808 
809 	physmap_idx += 2;
810 	*physmap_idxp = physmap_idx;
811 	if (physmap_idx == PHYS_AVAIL_ENTRIES) {
812 		printf(
813 		"Too many segments in the physical address map, giving up\n");
814 		return (0);
815 	}
816 
817 	/*
818 	 * Move the last 'N' entries down to make room for the new
819 	 * entry if needed.
820 	 */
821 	for (i = physmap_idx; i > insert_idx; i -= 2) {
822 		physmap[i] = physmap[i - 2];
823 		physmap[i + 1] = physmap[i - 1];
824 	}
825 
826 	/* Insert the new entry. */
827 	physmap[insert_idx] = base;
828 	physmap[insert_idx + 1] = base + length;
829 	return (1);
830 }
831 
832 static int
add_smap_entry(struct bios_smap * smap,vm_paddr_t * physmap,int * physmap_idxp)833 add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
834 {
835 	if (boothowto & RB_VERBOSE)
836 		printf("SMAP type=%02x base=%016llx len=%016llx\n",
837 		    smap->type, smap->base, smap->length);
838 
839 	if (smap->type != SMAP_TYPE_MEMORY)
840 		return (1);
841 
842 	return (add_physmap_entry(smap->base, smap->length, physmap,
843 	    physmap_idxp));
844 }
845 
846 static void
add_smap_entries(struct bios_smap * smapbase,vm_paddr_t * physmap,int * physmap_idxp)847 add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
848     int *physmap_idxp)
849 {
850 	struct bios_smap *smap, *smapend;
851 	u_int32_t smapsize;
852 	/*
853 	 * Memory map from INT 15:E820.
854 	 *
855 	 * subr_module.c says:
856 	 * "Consumer may safely assume that size value precedes data."
857 	 * ie: an int32_t immediately precedes SMAP.
858 	 */
859 	smapsize = *((u_int32_t *)smapbase - 1);
860 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
861 
862 	for (smap = smapbase; smap < smapend; smap++)
863 		if (!add_smap_entry(smap, physmap, physmap_idxp))
864 			break;
865 }
866 
867 static void
basemem_setup(void)868 basemem_setup(void)
869 {
870 
871 	if (basemem > 640) {
872 		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
873 			basemem);
874 		basemem = 640;
875 	}
876 
877 	pmap_basemem_setup(basemem);
878 }
879 
880 /*
881  * Populate the (physmap) array with base/bound pairs describing the
882  * available physical memory in the system, then test this memory and
883  * build the phys_avail array describing the actually-available memory.
884  *
885  * If we cannot accurately determine the physical memory map, then use
886  * value from the 0xE801 call, and failing that, the RTC.
887  *
888  * Total memory size may be set by the kernel environment variable
889  * hw.physmem or the compile-time define MAXMEM.
890  *
891  * XXX first should be vm_paddr_t.
892  */
893 static void
getmemsize(int first)894 getmemsize(int first)
895 {
896 	int has_smap, off, physmap_idx, pa_indx, da_indx;
897 	u_long memtest;
898 	vm_paddr_t physmap[PHYS_AVAIL_ENTRIES];
899 	quad_t dcons_addr, dcons_size, physmem_tunable;
900 	int hasbrokenint12, i, res __diagused;
901 	u_int extmem;
902 	struct vm86frame vmf;
903 	struct vm86context vmc;
904 	vm_paddr_t pa;
905 	struct bios_smap *smap, *smapbase;
906 
907 	has_smap = 0;
908 	bzero(&vmf, sizeof(vmf));
909 	bzero(physmap, sizeof(physmap));
910 	basemem = 0;
911 
912 	/*
913 	 * Tell the physical memory allocator about pages used to store
914 	 * the kernel and preloaded data.  See kmem_bootstrap_free().
915 	 */
916 	vm_phys_early_add_seg((vm_paddr_t)KERNLOAD, trunc_page(first));
917 
918 	TUNABLE_INT_FETCH("hw.above4g_allow", &above4g_allow);
919 	TUNABLE_INT_FETCH("hw.above24g_allow", &above24g_allow);
920 
921 	/*
922 	 * Check if the loader supplied an SMAP memory map.  If so,
923 	 * use that and do not make any VM86 calls.
924 	 */
925 	physmap_idx = 0;
926 	smapbase = (struct bios_smap *)preload_search_info(preload_kmdp,
927 	    MODINFO_METADATA | MODINFOMD_SMAP);
928 	if (smapbase != NULL) {
929 		add_smap_entries(smapbase, physmap, &physmap_idx);
930 		has_smap = 1;
931 		goto have_smap;
932 	}
933 
934 	/*
935 	 * Some newer BIOSes have a broken INT 12H implementation
936 	 * which causes a kernel panic immediately.  In this case, we
937 	 * need use the SMAP to determine the base memory size.
938 	 */
939 	hasbrokenint12 = 0;
940 	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
941 	if (hasbrokenint12 == 0) {
942 		/* Use INT12 to determine base memory size. */
943 		vm86_intcall(0x12, &vmf);
944 		basemem = vmf.vmf_ax;
945 		basemem_setup();
946 	}
947 
948 	/*
949 	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
950 	 * the kernel page table so we can use it as a buffer.  The
951 	 * kernel will unmap this page later.
952 	 */
953 	vmc.npages = 0;
954 	smap = (void *)vm86_addpage(&vmc, 1, PMAP_MAP_LOW + ptoa(1));
955 	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
956 	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
957 
958 	vmf.vmf_ebx = 0;
959 	do {
960 		vmf.vmf_eax = 0xE820;
961 		vmf.vmf_edx = SMAP_SIG;
962 		vmf.vmf_ecx = sizeof(struct bios_smap);
963 		i = vm86_datacall(0x15, &vmf, &vmc);
964 		if (i || vmf.vmf_eax != SMAP_SIG)
965 			break;
966 		has_smap = 1;
967 		if (!add_smap_entry(smap, physmap, &physmap_idx))
968 			break;
969 	} while (vmf.vmf_ebx != 0);
970 
971 have_smap:
972 	/*
973 	 * If we didn't fetch the "base memory" size from INT12,
974 	 * figure it out from the SMAP (or just guess).
975 	 */
976 	if (basemem == 0) {
977 		for (i = 0; i <= physmap_idx; i += 2) {
978 			if (physmap[i] == 0x00000000) {
979 				basemem = physmap[i + 1] / 1024;
980 				break;
981 			}
982 		}
983 
984 		/* XXX: If we couldn't find basemem from SMAP, just guess. */
985 		if (basemem == 0)
986 			basemem = 640;
987 		basemem_setup();
988 	}
989 
990 	if (physmap[1] != 0)
991 		goto physmap_done;
992 
993 	/*
994 	 * If we failed to find an SMAP, figure out the extended
995 	 * memory size.  We will then build a simple memory map with
996 	 * two segments, one for "base memory" and the second for
997 	 * "extended memory".  Note that "extended memory" starts at a
998 	 * physical address of 1MB and that both basemem and extmem
999 	 * are in units of 1KB.
1000 	 *
1001 	 * First, try to fetch the extended memory size via INT 15:E801.
1002 	 */
1003 	vmf.vmf_ax = 0xE801;
1004 	if (vm86_intcall(0x15, &vmf) == 0) {
1005 		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1006 	} else {
1007 		/*
1008 		 * If INT15:E801 fails, this is our last ditch effort
1009 		 * to determine the extended memory size.  Currently
1010 		 * we prefer the RTC value over INT15:88.
1011 		 */
1012 #if 0
1013 		vmf.vmf_ah = 0x88;
1014 		vm86_intcall(0x15, &vmf);
1015 		extmem = vmf.vmf_ax;
1016 #else
1017 		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1018 #endif
1019 	}
1020 
1021 	/*
1022 	 * Special hack for chipsets that still remap the 384k hole when
1023 	 * there's 16MB of memory - this really confuses people that
1024 	 * are trying to use bus mastering ISA controllers with the
1025 	 * "16MB limit"; they only have 16MB, but the remapping puts
1026 	 * them beyond the limit.
1027 	 *
1028 	 * If extended memory is between 15-16MB (16-17MB phys address range),
1029 	 *	chop it to 15MB.
1030 	 */
1031 	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1032 		extmem = 15 * 1024;
1033 
1034 	physmap[0] = 0;
1035 	physmap[1] = basemem * 1024;
1036 	physmap_idx = 2;
1037 	physmap[physmap_idx] = 0x100000;
1038 	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1039 
1040 physmap_done:
1041 	/*
1042 	 * Now, physmap contains a map of physical memory.
1043 	 */
1044 
1045 #ifdef SMP
1046 	/* make hole for AP bootstrap code */
1047 	alloc_ap_trampoline(physmap, &physmap_idx);
1048 #endif
1049 
1050 	/*
1051 	 * Maxmem isn't the "maximum memory", it's one larger than the
1052 	 * highest page of the physical address space.  It should be
1053 	 * called something like "Maxphyspage".  We may adjust this
1054 	 * based on ``hw.physmem'' and the results of the memory test.
1055 	 *
1056 	 * This is especially confusing when it is much larger than the
1057 	 * memory size and is displayed as "realmem".
1058 	 */
1059 	Maxmem = atop(physmap[physmap_idx + 1]);
1060 
1061 #ifdef MAXMEM
1062 	Maxmem = MAXMEM / 4;
1063 #endif
1064 
1065 	if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
1066 		Maxmem = atop(physmem_tunable);
1067 
1068 	/*
1069 	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
1070 	 * the amount of memory in the system.
1071 	 */
1072 	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
1073 		Maxmem = atop(physmap[physmap_idx + 1]);
1074 
1075 	/*
1076 	 * The boot memory test is disabled by default, as it takes a
1077 	 * significant amount of time on large-memory systems, and is
1078 	 * unfriendly to virtual machines as it unnecessarily touches all
1079 	 * pages.
1080 	 *
1081 	 * A general name is used as the code may be extended to support
1082 	 * additional tests beyond the current "page present" test.
1083 	 */
1084 	memtest = 0;
1085 	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1086 
1087 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1088 	    (boothowto & RB_VERBOSE))
1089 		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1090 
1091 	/*
1092 	 * If Maxmem has been increased beyond what the system has detected,
1093 	 * extend the last memory segment to the new limit.
1094 	 */
1095 	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1096 		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
1097 
1098 	/* call pmap initialization to make new kernel address space */
1099 	pmap_bootstrap(first);
1100 
1101 	/*
1102 	 * Size up each available chunk of physical memory.
1103 	 */
1104 	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1105 	pa_indx = 0;
1106 	da_indx = 1;
1107 	phys_avail[pa_indx++] = physmap[0];
1108 	phys_avail[pa_indx] = physmap[0];
1109 	dump_avail[da_indx] = physmap[0];
1110 
1111 	/*
1112 	 * Get dcons buffer address
1113 	 */
1114 	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1115 	    getenv_quad("dcons.size", &dcons_size) == 0)
1116 		dcons_addr = 0;
1117 
1118 	/*
1119 	 * physmap is in bytes, so when converting to page boundaries,
1120 	 * round up the start address and round down the end address.
1121 	 */
1122 	for (i = 0; i <= physmap_idx; i += 2) {
1123 		vm_paddr_t end;
1124 
1125 		end = ptoa((vm_paddr_t)Maxmem);
1126 		if (physmap[i + 1] < end)
1127 			end = trunc_page(physmap[i + 1]);
1128 		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1129 			int *ptr;
1130 			int tmp;
1131 			bool full, page_bad;
1132 
1133 			full = false;
1134 			/*
1135 			 * block out kernel memory as not available.
1136 			 */
1137 			if (pa >= KERNLOAD && pa < first)
1138 				goto do_dump_avail;
1139 
1140 			/*
1141 			 * block out dcons buffer
1142 			 */
1143 			if (dcons_addr > 0
1144 			    && pa >= trunc_page(dcons_addr)
1145 			    && pa < dcons_addr + dcons_size)
1146 				goto do_dump_avail;
1147 
1148 			page_bad = false;
1149 			if (memtest == 0)
1150 				goto skip_memtest;
1151 
1152 			/*
1153 			 * map page into kernel: valid, read/write,non-cacheable
1154 			 */
1155 			ptr = (int *)pmap_cmap3(pa, PG_V | PG_RW | PG_N);
1156 
1157 			tmp = *(int *)ptr;
1158 			/*
1159 			 * Test for alternating 1's and 0's
1160 			 */
1161 			*(volatile int *)ptr = 0xaaaaaaaa;
1162 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1163 				page_bad = true;
1164 			/*
1165 			 * Test for alternating 0's and 1's
1166 			 */
1167 			*(volatile int *)ptr = 0x55555555;
1168 			if (*(volatile int *)ptr != 0x55555555)
1169 				page_bad = true;
1170 			/*
1171 			 * Test for all 1's
1172 			 */
1173 			*(volatile int *)ptr = 0xffffffff;
1174 			if (*(volatile int *)ptr != 0xffffffff)
1175 				page_bad = true;
1176 			/*
1177 			 * Test for all 0's
1178 			 */
1179 			*(volatile int *)ptr = 0x0;
1180 			if (*(volatile int *)ptr != 0x0)
1181 				page_bad = true;
1182 			/*
1183 			 * Restore original value.
1184 			 */
1185 			*(int *)ptr = tmp;
1186 
1187 skip_memtest:
1188 			/*
1189 			 * Adjust array of valid/good pages.
1190 			 */
1191 			if (page_bad == true)
1192 				continue;
1193 			/*
1194 			 * If this good page is a continuation of the
1195 			 * previous set of good pages, then just increase
1196 			 * the end pointer. Otherwise start a new chunk.
1197 			 * Note that "end" points one higher than end,
1198 			 * making the range >= start and < end.
1199 			 * If we're also doing a speculative memory
1200 			 * test and we at or past the end, bump up Maxmem
1201 			 * so that we keep going. The first bad page
1202 			 * will terminate the loop.
1203 			 */
1204 			if (phys_avail[pa_indx] == pa) {
1205 				phys_avail[pa_indx] += PAGE_SIZE;
1206 			} else {
1207 				pa_indx++;
1208 				if (pa_indx == PHYS_AVAIL_ENTRIES) {
1209 					printf(
1210 		"Too many holes in the physical address space, giving up\n");
1211 					pa_indx--;
1212 					full = true;
1213 					goto do_dump_avail;
1214 				}
1215 				phys_avail[pa_indx++] = pa;	/* start */
1216 				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1217 			}
1218 			physmem++;
1219 do_dump_avail:
1220 			if (dump_avail[da_indx] == pa) {
1221 				dump_avail[da_indx] += PAGE_SIZE;
1222 			} else {
1223 				da_indx++;
1224 				if (da_indx == PHYS_AVAIL_ENTRIES) {
1225 					da_indx--;
1226 					goto do_next;
1227 				}
1228 				dump_avail[da_indx++] = pa;	/* start */
1229 				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1230 			}
1231 do_next:
1232 			if (full)
1233 				break;
1234 		}
1235 	}
1236 	pmap_cmap3(0, 0);
1237 
1238 	/*
1239 	 * XXX
1240 	 * The last chunk must contain at least one page plus the message
1241 	 * buffer to avoid complicating other code (message buffer address
1242 	 * calculation, etc.).
1243 	 */
1244 	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1245 	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
1246 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1247 		phys_avail[pa_indx--] = 0;
1248 		phys_avail[pa_indx--] = 0;
1249 	}
1250 
1251 	Maxmem = atop(phys_avail[pa_indx]);
1252 
1253 	/* Trim off space for the message buffer. */
1254 	phys_avail[pa_indx] -= round_page(msgbufsize);
1255 
1256 	/* Map the message buffer. */
1257 	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
1258 		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1259 		    off);
1260 }
1261 
1262 static void
i386_kdb_init(void)1263 i386_kdb_init(void)
1264 {
1265 #ifdef DDB
1266 	db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab, 0);
1267 #endif
1268 	kdb_init();
1269 #ifdef KDB
1270 	if (boothowto & RB_KDB)
1271 		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
1272 #endif
1273 }
1274 
1275 static void
fixup_idt(void)1276 fixup_idt(void)
1277 {
1278 	struct gate_descriptor *ip;
1279 	uintptr_t off;
1280 	int x;
1281 
1282 	for (x = 0; x < NIDT; x++) {
1283 		ip = &idt[x];
1284 		if (ip->gd_type != SDT_SYS386IGT &&
1285 		    ip->gd_type != SDT_SYS386TGT)
1286 			continue;
1287 		off = ip->gd_looffset + (((u_int)ip->gd_hioffset) << 16);
1288 		KASSERT(off >= (uintptr_t)start_exceptions &&
1289 		    off < (uintptr_t)end_exceptions,
1290 		    ("IDT[%d] type %d off %#x", x, ip->gd_type, off));
1291 		off += setidt_disp;
1292 		MPASS(off >= PMAP_TRM_MIN_ADDRESS &&
1293 		    off < PMAP_TRM_MAX_ADDRESS);
1294 		ip->gd_looffset = off;
1295 		ip->gd_hioffset = off >> 16;
1296 	}
1297 }
1298 
1299 static void
i386_setidt1(void)1300 i386_setidt1(void)
1301 {
1302 	int x;
1303 
1304 	/* exceptions */
1305 	for (x = 0; x < NIDT; x++)
1306 		setidt(x, &IDTVEC(rsvd), SDT_SYS386IGT, SEL_KPL,
1307 		    GSEL(GCODE_SEL, SEL_KPL));
1308 	setidt(IDT_DE, &IDTVEC(div), SDT_SYS386IGT, SEL_KPL,
1309 	    GSEL(GCODE_SEL, SEL_KPL));
1310 	setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL,
1311 	    GSEL(GCODE_SEL, SEL_KPL));
1312 	setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL,
1313 	    GSEL(GCODE_SEL, SEL_KPL));
1314 	setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL,
1315 	    GSEL(GCODE_SEL, SEL_KPL));
1316 	setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386IGT, SEL_UPL,
1317 	    GSEL(GCODE_SEL, SEL_KPL));
1318 	setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386IGT, SEL_KPL,
1319 	    GSEL(GCODE_SEL, SEL_KPL));
1320 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
1321 	    GSEL(GCODE_SEL, SEL_KPL));
1322 	setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386IGT, SEL_KPL,
1323 	    GSEL(GCODE_SEL, SEL_KPL));
1324 	setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL,
1325 	    SEL_KPL));
1326 	setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386IGT,
1327 	    SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1328 	setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386IGT, SEL_KPL,
1329 	    GSEL(GCODE_SEL, SEL_KPL));
1330 	setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386IGT, SEL_KPL,
1331 	    GSEL(GCODE_SEL, SEL_KPL));
1332 	setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386IGT, SEL_KPL,
1333 	    GSEL(GCODE_SEL, SEL_KPL));
1334 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
1335 	    GSEL(GCODE_SEL, SEL_KPL));
1336 	setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL,
1337 	    GSEL(GCODE_SEL, SEL_KPL));
1338 	setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386IGT, SEL_KPL,
1339 	    GSEL(GCODE_SEL, SEL_KPL));
1340 	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386IGT, SEL_KPL,
1341 	    GSEL(GCODE_SEL, SEL_KPL));
1342 	setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386IGT, SEL_KPL,
1343 	    GSEL(GCODE_SEL, SEL_KPL));
1344 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386IGT, SEL_KPL,
1345 	    GSEL(GCODE_SEL, SEL_KPL));
1346 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall),
1347 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1348 #ifdef KDTRACE_HOOKS
1349 	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret),
1350 	    SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1351 #endif
1352 #ifdef XENHVM
1353 	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall),
1354 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1355 #endif
1356 }
1357 
1358 static void
i386_setidt2(void)1359 i386_setidt2(void)
1360 {
1361 
1362 	setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL,
1363 	    GSEL(GCODE_SEL, SEL_KPL));
1364 	setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL,
1365 	    GSEL(GCODE_SEL, SEL_KPL));
1366 }
1367 
1368 #if defined(DEV_ISA) && !defined(DEV_ATPIC)
1369 static void
i386_setidt3(void)1370 i386_setidt3(void)
1371 {
1372 
1373 	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint),
1374 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1375 	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint),
1376 	    SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1377 }
1378 #endif
1379 
1380 register_t
init386(int first)1381 init386(int first)
1382 {
1383 	struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1384 	int gsel_tss, metadata_missing, x, pa;
1385 	struct pcpu *pc;
1386 	struct xstate_hdr *xhdr;
1387 	vm_offset_t addend;
1388 	size_t ucode_len;
1389 
1390 	thread0.td_kstack = proc0kstack;
1391 	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
1392 
1393 	/*
1394  	 * This may be done better later if it gets more high level
1395  	 * components in it. If so just link td->td_proc here.
1396 	 */
1397 	proc_linkup0(&proc0, &thread0);
1398 
1399 	if (bootinfo.bi_modulep) {
1400 		metadata_missing = 0;
1401 		addend = (vm_paddr_t)bootinfo.bi_modulep < KERNBASE ?
1402 		    PMAP_MAP_LOW : 0;
1403 		preload_metadata = (caddr_t)bootinfo.bi_modulep + addend;
1404 		preload_bootstrap_relocate(addend);
1405 	} else {
1406 		metadata_missing = 1;
1407 	}
1408 
1409 	if (bootinfo.bi_envp != 0) {
1410 		addend = (vm_paddr_t)bootinfo.bi_envp < KERNBASE ?
1411 		    PMAP_MAP_LOW : 0;
1412 		init_static_kenv((char *)bootinfo.bi_envp + addend, 0);
1413 	} else {
1414 		init_static_kenv(NULL, 0);
1415 	}
1416 
1417 	/*
1418 	 * Re-evaluate CPU features if we loaded a microcode update.
1419 	 */
1420 	ucode_len = ucode_load_bsp(first);
1421 	if (ucode_len != 0) {
1422 		identify_cpu();
1423 		first = roundup2(first + ucode_len, PAGE_SIZE);
1424 	}
1425 
1426 	identify_hypervisor();
1427 	identify_hypervisor_smbios();
1428 
1429 	/* Init basic tunables, hz etc */
1430 	init_param1();
1431 
1432 	/* Set bootmethod to BIOS: it's the only supported on i386. */
1433 	strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
1434 
1435 	/*
1436 	 * Make gdt memory segments.  All segments cover the full 4GB
1437 	 * of address space and permissions are enforced at page level.
1438 	 */
1439 	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1440 	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1441 	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
1442 	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
1443 	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
1444 	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
1445 
1446 	pc = &__pcpu[0];
1447 	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
1448 	gdt_segs[GPRIV_SEL].ssd_base = (int)pc;
1449 	gdt_segs[GPROC0_SEL].ssd_base = (int)&common_tss0;
1450 
1451 	for (x = 0; x < NGDT; x++)
1452 		ssdtosd(&gdt_segs[x], &gdt0[x].sd);
1453 
1454 	r_gdt.rd_limit = NGDT * sizeof(gdt0[0]) - 1;
1455 	r_gdt.rd_base =  (int)gdt0;
1456 	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
1457 	lgdt(&r_gdt);
1458 
1459 	pcpu_init(pc, 0, sizeof(struct pcpu));
1460 	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
1461 		pmap_kenter(pa, pa);
1462 	dpcpu_init((void *)first, 0);
1463 	first += DPCPU_SIZE;
1464 	PCPU_SET(prvspace, pc);
1465 	PCPU_SET(curthread, &thread0);
1466 	/* Non-late cninit() and printf() can be moved up to here. */
1467 
1468 	/*
1469 	 * Initialize mutexes.
1470 	 *
1471 	 * icu_lock: in order to allow an interrupt to occur in a critical
1472 	 * 	     section, to set pcpu->ipending (etc...) properly, we
1473 	 *	     must be able to get the icu lock, so it can't be
1474 	 *	     under witness.
1475 	 */
1476 	mutex_init();
1477 	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
1478 
1479 	i386_setidt1();
1480 
1481 	r_idt.rd_limit = sizeof(idt0) - 1;
1482 	r_idt.rd_base = (int) idt;
1483 	lidt(&r_idt);
1484 
1485 	finishidentcpu();	/* Final stage of CPU initialization */
1486 
1487 	/*
1488 	 * Initialize the clock before the console so that console
1489 	 * initialization can use DELAY().
1490 	 */
1491 	clock_init();
1492 
1493 	i386_setidt2();
1494 	pmap_set_nx();
1495 	initializecpu();	/* Initialize CPU registers */
1496 	initializecpucache();
1497 
1498 	/* pointer to selector slot for %fs/%gs */
1499 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
1500 
1501 	/* Initialize the tss (except for the final esp0) early for vm86. */
1502 	common_tss0.tss_esp0 = thread0.td_kstack + thread0.td_kstack_pages *
1503 	    PAGE_SIZE - VM86_STACK_SPACE;
1504 	common_tss0.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
1505 	common_tss0.tss_ioopt = sizeof(struct i386tss) << 16;
1506 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1507 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1508 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1509 	ltr(gsel_tss);
1510 
1511 	/* Initialize the PIC early for vm86 calls. */
1512 #ifdef DEV_ISA
1513 #ifdef DEV_ATPIC
1514 	elcr_probe();
1515 	atpic_startup();
1516 #else
1517 	/* Reset and mask the atpics and leave them shut down. */
1518 	atpic_reset();
1519 
1520 	/*
1521 	 * Point the ICU spurious interrupt vectors at the APIC spurious
1522 	 * interrupt handler.
1523 	 */
1524 	i386_setidt3();
1525 #endif
1526 #endif
1527 
1528 	/*
1529 	 * The console and kdb should be initialized even earlier than here,
1530 	 * but some console drivers don't work until after getmemsize().
1531 	 * Default to late console initialization to support these drivers.
1532 	 * This loses mainly printf()s in getmemsize() and early debugging.
1533 	 */
1534 	TUNABLE_INT_FETCH("debug.late_console", &late_console);
1535 	if (!late_console) {
1536 		cninit();
1537 		i386_kdb_init();
1538 	}
1539 
1540 	if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
1541 		use_xsave = 1;
1542 		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
1543 	}
1544 
1545 	/* Initialize preload_kmdp */
1546 	preload_initkmdp(!metadata_missing);
1547 	link_elf_ireloc();
1548 
1549 	vm86_initialize();
1550 	getmemsize(first);
1551 	init_param2(physmem);
1552 
1553 	/* now running on new page tables, configured,and u/iom is accessible */
1554 
1555 	if (late_console)
1556 		cninit();
1557 
1558 	if (metadata_missing)
1559 		printf("WARNING: loader(8) metadata is missing!\n");
1560 
1561 	if (late_console)
1562 		i386_kdb_init();
1563 
1564 	msgbufinit(msgbufp, msgbufsize);
1565 	npxinit(true);
1566 
1567 	/*
1568 	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
1569 	 * area size.  Zero out the extended state header in fpu save
1570 	 * area.
1571 	 */
1572 	thread0.td_pcb = get_pcb_td(&thread0);
1573 	thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
1574 	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
1575 	if (use_xsave) {
1576 		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1577 		    1);
1578 		xhdr->xstate_bv = xsave_mask;
1579 	}
1580 	PCPU_SET(curpcb, thread0.td_pcb);
1581 	/* Move esp0 in the tss to its final place. */
1582 	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
1583 	common_tss0.tss_esp0 = (vm_offset_t)thread0.td_pcb - VM86_STACK_SPACE;
1584 	PCPU_SET(kesp0, common_tss0.tss_esp0);
1585 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;	/* clear busy bit */
1586 	ltr(gsel_tss);
1587 
1588 	/* transfer to user mode */
1589 
1590 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1591 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1592 
1593 	/* setup proc 0's pcb */
1594 	thread0.td_pcb->pcb_flags = 0;
1595 	thread0.td_pcb->pcb_cr3 = pmap_get_kcr3();
1596 	thread0.td_pcb->pcb_ext = 0;
1597 	thread0.td_frame = &proc0_tf;
1598 
1599 #ifdef FDT
1600 	x86_init_fdt();
1601 #endif
1602 
1603 	/* Location of kernel stack for locore */
1604 	return ((register_t)thread0.td_pcb);
1605 }
1606 
1607 static void
machdep_init_trampoline(void)1608 machdep_init_trampoline(void)
1609 {
1610 	struct region_descriptor r_gdt, r_idt;
1611 	struct i386tss *tss;
1612 	char *copyout_buf, *trampoline, *tramp_stack_base;
1613 	int x;
1614 
1615 	gdt = pmap_trm_alloc(sizeof(union descriptor) * NGDT * mp_ncpus,
1616 	    M_NOWAIT | M_ZERO);
1617 	bcopy(gdt0, gdt, sizeof(union descriptor) * NGDT);
1618 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1619 	r_gdt.rd_base = (int)gdt;
1620 	lgdt(&r_gdt);
1621 
1622 	tss = pmap_trm_alloc(sizeof(struct i386tss) * mp_ncpus,
1623 	    M_NOWAIT | M_ZERO);
1624 	bcopy(&common_tss0, tss, sizeof(struct i386tss));
1625 	gdt[GPROC0_SEL].sd.sd_lobase = (int)tss;
1626 	gdt[GPROC0_SEL].sd.sd_hibase = (u_int)tss >> 24;
1627 	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
1628 
1629 	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
1630 	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
1631 	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
1632 	PCPU_SET(common_tssp, tss);
1633 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1634 
1635 	trampoline = pmap_trm_alloc(end_exceptions - start_exceptions,
1636 	    M_NOWAIT);
1637 	bcopy(start_exceptions, trampoline, end_exceptions - start_exceptions);
1638 	tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT);
1639 	PCPU_SET(trampstk, (uintptr_t)tramp_stack_base + TRAMP_STACK_SZ -
1640 	    VM86_STACK_SPACE);
1641 	tss[0].tss_esp0 = PCPU_GET(trampstk);
1642 
1643 	idt = pmap_trm_alloc(sizeof(idt0), M_NOWAIT | M_ZERO);
1644 	bcopy(idt0, idt, sizeof(idt0));
1645 
1646 	/* Re-initialize new IDT since the handlers were relocated */
1647 	setidt_disp = trampoline - start_exceptions;
1648 	if (bootverbose)
1649 		printf("Trampoline disposition %#zx\n", setidt_disp);
1650 	fixup_idt();
1651 
1652 	r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1;
1653 	r_idt.rd_base = (int)idt;
1654 	lidt(&r_idt);
1655 
1656 	/* dblfault TSS */
1657 	dblfault_tss = pmap_trm_alloc(sizeof(struct i386tss), M_NOWAIT | M_ZERO);
1658 	dblfault_stack = pmap_trm_alloc(PAGE_SIZE, M_NOWAIT);
1659 	dblfault_tss->tss_esp = dblfault_tss->tss_esp0 =
1660 	    dblfault_tss->tss_esp1 = dblfault_tss->tss_esp2 =
1661 	    (int)dblfault_stack + PAGE_SIZE;
1662 	dblfault_tss->tss_ss = dblfault_tss->tss_ss0 = dblfault_tss->tss_ss1 =
1663 	    dblfault_tss->tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1664 	dblfault_tss->tss_cr3 = pmap_get_kcr3();
1665 	dblfault_tss->tss_eip = (int)dblfault_handler;
1666 	dblfault_tss->tss_eflags = PSL_KERNEL;
1667 	dblfault_tss->tss_ds = dblfault_tss->tss_es =
1668 	    dblfault_tss->tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1669 	dblfault_tss->tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1670 	dblfault_tss->tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1671 	dblfault_tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1672 	gdt[GPANIC_SEL].sd.sd_lobase = (int)dblfault_tss;
1673 	gdt[GPANIC_SEL].sd.sd_hibase = (u_int)dblfault_tss >> 24;
1674 
1675 	/* make ldt memory segments */
1676 	ldt = pmap_trm_alloc(sizeof(union descriptor) * NLDT,
1677 	    M_NOWAIT | M_ZERO);
1678 	gdt[GLDT_SEL].sd.sd_lobase = (int)ldt;
1679 	gdt[GLDT_SEL].sd.sd_hibase = (u_int)ldt >> 24;
1680 	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
1681 	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
1682 	for (x = 0; x < nitems(ldt_segs); x++)
1683 		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1684 
1685 	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1686 	lldt(_default_ldt);
1687 	PCPU_SET(currentldt, _default_ldt);
1688 
1689 	copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT);
1690 	PCPU_SET(copyout_buf, copyout_buf);
1691 	copyout_init_tramp();
1692 }
1693 SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_SECOND, machdep_init_trampoline, NULL);
1694 
1695 #ifdef COMPAT_43
1696 static void
i386_setup_lcall_gate(void)1697 i386_setup_lcall_gate(void)
1698 {
1699 	struct sysentvec *sv;
1700 	struct user_segment_descriptor desc;
1701 	u_int lcall_addr;
1702 
1703 	sv = &elf32_freebsd_sysvec;
1704 	lcall_addr = (uintptr_t)sv->sv_psstrings - sz_lcall_tramp;
1705 
1706 	bzero(&desc, sizeof(desc));
1707 	desc.sd_type = SDT_MEMERA;
1708 	desc.sd_dpl = SEL_UPL;
1709 	desc.sd_p = 1;
1710 	desc.sd_def32 = 1;
1711 	desc.sd_gran = 1;
1712 	desc.sd_lolimit = 0xffff;
1713 	desc.sd_hilimit = 0xf;
1714 	desc.sd_lobase = lcall_addr;
1715 	desc.sd_hibase = lcall_addr >> 24;
1716 	bcopy(&desc, &ldt[LSYS5CALLS_SEL], sizeof(desc));
1717 }
1718 SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_ANY, i386_setup_lcall_gate, NULL);
1719 #endif
1720 
1721 void
cpu_pcpu_init(struct pcpu * pcpu,int cpuid,size_t size)1722 cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1723 {
1724 
1725 	pcpu->pc_acpi_id = 0xffffffff;
1726 }
1727 
1728 static int
smap_sysctl_handler(SYSCTL_HANDLER_ARGS)1729 smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
1730 {
1731 	struct bios_smap *smapbase;
1732 	struct bios_smap_xattr smap;
1733 	uint32_t *smapattr;
1734 	int count, error, i;
1735 
1736 	/* Retrieve the system memory map from the loader. */
1737 	smapbase = (struct bios_smap *)preload_search_info(preload_kmdp,
1738 	    MODINFO_METADATA | MODINFOMD_SMAP);
1739 	if (smapbase == NULL)
1740 		return (0);
1741 	smapattr = (uint32_t *)preload_search_info(preload_kmdp,
1742 	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
1743 	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
1744 	error = 0;
1745 	for (i = 0; i < count; i++) {
1746 		smap.base = smapbase[i].base;
1747 		smap.length = smapbase[i].length;
1748 		smap.type = smapbase[i].type;
1749 		if (smapattr != NULL)
1750 			smap.xattr = smapattr[i];
1751 		else
1752 			smap.xattr = 0;
1753 		error = SYSCTL_OUT(req, &smap, sizeof(smap));
1754 	}
1755 	return (error);
1756 }
1757 SYSCTL_PROC(_machdep, OID_AUTO, smap,
1758     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
1759     smap_sysctl_handler, "S,bios_smap_xattr",
1760     "Raw BIOS SMAP data");
1761 
1762 void
spinlock_enter(void)1763 spinlock_enter(void)
1764 {
1765 	struct thread *td;
1766 	register_t flags;
1767 
1768 	td = curthread;
1769 	if (td->td_md.md_spinlock_count == 0) {
1770 		flags = intr_disable();
1771 		td->td_md.md_spinlock_count = 1;
1772 		td->td_md.md_saved_flags = flags;
1773 		critical_enter();
1774 	} else
1775 		td->td_md.md_spinlock_count++;
1776 }
1777 
1778 void
spinlock_exit(void)1779 spinlock_exit(void)
1780 {
1781 	struct thread *td;
1782 	register_t flags;
1783 
1784 	td = curthread;
1785 	flags = td->td_md.md_saved_flags;
1786 	td->td_md.md_spinlock_count--;
1787 	if (td->td_md.md_spinlock_count == 0) {
1788 		critical_exit();
1789 		intr_restore(flags);
1790 	}
1791 }
1792 
1793 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1794 static void f00f_hack(void *unused);
1795 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
1796 
1797 static void
f00f_hack(void * unused)1798 f00f_hack(void *unused)
1799 {
1800 	struct region_descriptor r_idt;
1801 	struct gate_descriptor *new_idt;
1802 	vm_offset_t tmp;
1803 
1804 	if (!has_f00f_bug)
1805 		return;
1806 
1807 	printf("Intel Pentium detected, installing workaround for F00F bug\n");
1808 
1809 	tmp = (vm_offset_t)pmap_trm_alloc(PAGE_SIZE * 3, M_NOWAIT | M_ZERO);
1810 	if (tmp == 0)
1811 		panic("kmem_malloc returned 0");
1812 	tmp = round_page(tmp);
1813 
1814 	/* Put the problematic entry (#6) at the end of the lower page. */
1815 	new_idt = (struct gate_descriptor *)
1816 	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
1817 	bcopy(idt, new_idt, sizeof(idt0));
1818 	r_idt.rd_base = (u_int)new_idt;
1819 	r_idt.rd_limit = sizeof(idt0) - 1;
1820 	lidt(&r_idt);
1821 	/* SMP machines do not need the F00F hack. */
1822 	idt = new_idt;
1823 	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
1824 }
1825 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1826 
1827 /*
1828  * Construct a PCB from a trapframe. This is called from kdb_trap() where
1829  * we want to start a backtrace from the function that caused us to enter
1830  * the debugger. We have the context in the trapframe, but base the trace
1831  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1832  * enough for a backtrace.
1833  */
1834 void
makectx(struct trapframe * tf,struct pcb * pcb)1835 makectx(struct trapframe *tf, struct pcb *pcb)
1836 {
1837 
1838 	pcb->pcb_edi = tf->tf_edi;
1839 	pcb->pcb_esi = tf->tf_esi;
1840 	pcb->pcb_ebp = tf->tf_ebp;
1841 	pcb->pcb_ebx = tf->tf_ebx;
1842 	pcb->pcb_eip = tf->tf_eip;
1843 	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
1844 	pcb->pcb_gs = rgs();
1845 }
1846 
1847 #ifdef KDB
1848 
1849 /*
1850  * Provide inb() and outb() as functions.  They are normally only available as
1851  * inline functions, thus cannot be called from the debugger.
1852  */
1853 
1854 /* silence compiler warnings */
1855 u_char inb_(u_short);
1856 void outb_(u_short, u_char);
1857 
1858 u_char
inb_(u_short port)1859 inb_(u_short port)
1860 {
1861 	return inb(port);
1862 }
1863 
1864 void
outb_(u_short port,u_char data)1865 outb_(u_short port, u_char data)
1866 {
1867 	outb(port, data);
1868 }
1869 
1870 #endif /* KDB */
1871