xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_removal.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
26  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/arc.h>
45 #include <sys/zfeature.h>
46 #include <sys/vdev_indirect_births.h>
47 #include <sys/vdev_indirect_mapping.h>
48 #include <sys/abd.h>
49 #include <sys/vdev_initialize.h>
50 #include <sys/vdev_trim.h>
51 #include <sys/trace_zfs.h>
52 
53 /*
54  * This file contains the necessary logic to remove vdevs from a
55  * storage pool.  Currently, the only devices that can be removed
56  * are log, cache, and spare devices; and top level vdevs from a pool
57  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
58  * by the detach operation.)
59  *
60  * Log vdevs are removed by evacuating them and then turning the vdev
61  * into a hole vdev while holding spa config locks.
62  *
63  * Top level vdevs are removed and converted into an indirect vdev via
64  * a multi-step process:
65  *
66  *  - Disable allocations from this device (spa_vdev_remove_top).
67  *
68  *  - From a new thread (spa_vdev_remove_thread), copy data from
69  *    the removing vdev to a different vdev.  The copy happens in open
70  *    context (spa_vdev_copy_impl) and issues a sync task
71  *    (vdev_mapping_sync) so the sync thread can update the partial
72  *    indirect mappings in core and on disk.
73  *
74  *  - If a free happens during a removal, it is freed from the
75  *    removing vdev, and if it has already been copied, from the new
76  *    location as well (free_from_removing_vdev).
77  *
78  *  - After the removal is completed, the copy thread converts the vdev
79  *    into an indirect vdev (vdev_remove_complete) before instructing
80  *    the sync thread to destroy the space maps and finish the removal
81  *    (spa_finish_removal).
82  */
83 
84 typedef struct vdev_copy_arg {
85 	metaslab_t	*vca_msp;
86 	uint64_t	vca_outstanding_bytes;
87 	uint64_t	vca_read_error_bytes;
88 	uint64_t	vca_write_error_bytes;
89 	kcondvar_t	vca_cv;
90 	kmutex_t	vca_lock;
91 } vdev_copy_arg_t;
92 
93 /*
94  * The maximum amount of memory we can use for outstanding i/o while
95  * doing a device removal.  This determines how much i/o we can have
96  * in flight concurrently.
97  */
98 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
99 
100 /*
101  * The largest contiguous segment that we will attempt to allocate when
102  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
103  * there is a performance problem with attempting to allocate large blocks,
104  * consider decreasing this.
105  *
106  * See also the accessor function spa_remove_max_segment().
107  */
108 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
109 
110 /*
111  * Ignore hard IO errors during device removal.  When set if a device
112  * encounters hard IO error during the removal process the removal will
113  * not be cancelled.  This can result in a normally recoverable block
114  * becoming permanently damaged and is not recommended.
115  */
116 static int zfs_removal_ignore_errors = 0;
117 
118 /*
119  * Allow a remap segment to span free chunks of at most this size. The main
120  * impact of a larger span is that we will read and write larger, more
121  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
122  * for iops.  The value here was chosen to align with
123  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
124  * reads (but there's no reason it has to be the same).
125  *
126  * Additionally, a higher span will have the following relatively minor
127  * effects:
128  *  - the mapping will be smaller, since one entry can cover more allocated
129  *    segments
130  *  - more of the fragmentation in the removing device will be preserved
131  *  - we'll do larger allocations, which may fail and fall back on smaller
132  *    allocations
133  */
134 uint_t vdev_removal_max_span = 32 * 1024;
135 
136 /*
137  * This is used by the test suite so that it can ensure that certain
138  * actions happen while in the middle of a removal.
139  */
140 int zfs_removal_suspend_progress = 0;
141 
142 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
143 
144 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
145 static int spa_vdev_remove_cancel_impl(spa_t *spa);
146 
147 static void
spa_sync_removing_state(spa_t * spa,dmu_tx_t * tx)148 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
149 {
150 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
151 	    DMU_POOL_DIRECTORY_OBJECT,
152 	    DMU_POOL_REMOVING, sizeof (uint64_t),
153 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
154 	    &spa->spa_removing_phys, tx));
155 }
156 
157 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)158 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
159 {
160 	for (int i = 0; i < count; i++) {
161 		uint64_t guid =
162 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
163 
164 		if (guid == target_guid)
165 			return (nvpp[i]);
166 	}
167 
168 	return (NULL);
169 }
170 
171 static void
vdev_activate(vdev_t * vd)172 vdev_activate(vdev_t *vd)
173 {
174 	metaslab_group_t *mg = vd->vdev_mg;
175 	spa_t *spa = vd->vdev_spa;
176 	uint64_t vdev_space = spa_deflate(spa) ?
177 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
178 
179 	ASSERT(!vd->vdev_islog);
180 	ASSERT(vd->vdev_noalloc);
181 
182 	metaslab_group_activate(mg);
183 	metaslab_group_activate(vd->vdev_log_mg);
184 
185 	ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
186 
187 	spa->spa_nonallocating_dspace -= vdev_space;
188 
189 	vd->vdev_noalloc = B_FALSE;
190 }
191 
192 static int
vdev_passivate(vdev_t * vd,uint64_t * txg)193 vdev_passivate(vdev_t *vd, uint64_t *txg)
194 {
195 	spa_t *spa = vd->vdev_spa;
196 	int error;
197 
198 	ASSERT(!vd->vdev_noalloc);
199 
200 	vdev_t *rvd = spa->spa_root_vdev;
201 	metaslab_group_t *mg = vd->vdev_mg;
202 	metaslab_class_t *normal = spa_normal_class(spa);
203 	if (mg->mg_class == normal) {
204 		/*
205 		 * We must check that this is not the only allocating device in
206 		 * the pool before passivating, otherwise we will not be able
207 		 * to make progress because we can't allocate from any vdevs.
208 		 */
209 		boolean_t last = B_TRUE;
210 		for (uint64_t id = 0; id < rvd->vdev_children; id++) {
211 			vdev_t *cvd = rvd->vdev_child[id];
212 
213 			if (cvd == vd || !vdev_is_concrete(cvd) ||
214 			    vdev_is_dead(cvd))
215 				continue;
216 
217 			metaslab_class_t *mc = cvd->vdev_mg->mg_class;
218 			if (mc != normal)
219 				continue;
220 
221 			if (!cvd->vdev_noalloc) {
222 				last = B_FALSE;
223 				break;
224 			}
225 		}
226 		if (last)
227 			return (SET_ERROR(EINVAL));
228 	}
229 
230 	metaslab_group_passivate(mg);
231 	ASSERT(!vd->vdev_islog);
232 	metaslab_group_passivate(vd->vdev_log_mg);
233 
234 	/*
235 	 * Wait for the youngest allocations and frees to sync,
236 	 * and then wait for the deferral of those frees to finish.
237 	 */
238 	spa_vdev_config_exit(spa, NULL,
239 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
240 
241 	/*
242 	 * We must ensure that no "stubby" log blocks are allocated
243 	 * on the device to be removed.  These blocks could be
244 	 * written at any time, including while we are in the middle
245 	 * of copying them.
246 	 */
247 	error = spa_reset_logs(spa);
248 
249 	*txg = spa_vdev_config_enter(spa);
250 
251 	if (error != 0) {
252 		metaslab_group_activate(mg);
253 		ASSERT(!vd->vdev_islog);
254 		if (vd->vdev_log_mg != NULL)
255 			metaslab_group_activate(vd->vdev_log_mg);
256 		return (error);
257 	}
258 
259 	spa->spa_nonallocating_dspace += spa_deflate(spa) ?
260 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
261 	vd->vdev_noalloc = B_TRUE;
262 
263 	return (0);
264 }
265 
266 /*
267  * Turn off allocations for a top-level device from the pool.
268  *
269  * Turning off allocations for a top-level device can take a significant
270  * amount of time. As a result we use the spa_vdev_config_[enter/exit]
271  * functions which allow us to grab and release the spa_config_lock while
272  * still holding the namespace lock. During each step the configuration
273  * is synced out.
274  */
275 int
spa_vdev_noalloc(spa_t * spa,uint64_t guid)276 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
277 {
278 	vdev_t *vd;
279 	uint64_t txg;
280 	int error = 0;
281 
282 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
283 	ASSERT(spa_writeable(spa));
284 
285 	txg = spa_vdev_enter(spa);
286 
287 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
288 
289 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
290 
291 	if (vd == NULL)
292 		error = SET_ERROR(ENOENT);
293 	else if (vd->vdev_mg == NULL)
294 		error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
295 	else if (!vd->vdev_noalloc)
296 		error = vdev_passivate(vd, &txg);
297 
298 	if (error == 0) {
299 		vdev_dirty_leaves(vd, VDD_DTL, txg);
300 		vdev_config_dirty(vd);
301 	}
302 
303 	error = spa_vdev_exit(spa, NULL, txg, error);
304 
305 	return (error);
306 }
307 
308 int
spa_vdev_alloc(spa_t * spa,uint64_t guid)309 spa_vdev_alloc(spa_t *spa, uint64_t guid)
310 {
311 	vdev_t *vd;
312 	uint64_t txg;
313 	int error = 0;
314 
315 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
316 	ASSERT(spa_writeable(spa));
317 
318 	txg = spa_vdev_enter(spa);
319 
320 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
321 
322 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
323 
324 	if (vd == NULL)
325 		error = SET_ERROR(ENOENT);
326 	else if (vd->vdev_mg == NULL)
327 		error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
328 	else if (!vd->vdev_removing)
329 		vdev_activate(vd);
330 
331 	if (error == 0) {
332 		vdev_dirty_leaves(vd, VDD_DTL, txg);
333 		vdev_config_dirty(vd);
334 	}
335 
336 	(void) spa_vdev_exit(spa, NULL, txg, error);
337 
338 	return (error);
339 }
340 
341 static void
spa_vdev_remove_aux(nvlist_t * config,const char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)342 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
343     int count, nvlist_t *dev_to_remove)
344 {
345 	nvlist_t **newdev = NULL;
346 
347 	if (count > 1)
348 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
349 
350 	for (int i = 0, j = 0; i < count; i++) {
351 		if (dev[i] == dev_to_remove)
352 			continue;
353 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
354 	}
355 
356 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
357 	fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
358 	    count - 1);
359 
360 	for (int i = 0; i < count - 1; i++)
361 		nvlist_free(newdev[i]);
362 
363 	if (count > 1)
364 		kmem_free(newdev, (count - 1) * sizeof (void *));
365 }
366 
367 static spa_vdev_removal_t *
spa_vdev_removal_create(vdev_t * vd)368 spa_vdev_removal_create(vdev_t *vd)
369 {
370 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
371 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
372 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
373 	svr->svr_allocd_segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
374 	    NULL, 0, 0);
375 	svr->svr_vdev_id = vd->vdev_id;
376 
377 	for (int i = 0; i < TXG_SIZE; i++) {
378 		svr->svr_frees[i] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
379 		    NULL, 0, 0);
380 		list_create(&svr->svr_new_segments[i],
381 		    sizeof (vdev_indirect_mapping_entry_t),
382 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
383 	}
384 
385 	return (svr);
386 }
387 
388 void
spa_vdev_removal_destroy(spa_vdev_removal_t * svr)389 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
390 {
391 	for (int i = 0; i < TXG_SIZE; i++) {
392 		ASSERT0(svr->svr_bytes_done[i]);
393 		ASSERT0(svr->svr_max_offset_to_sync[i]);
394 		zfs_range_tree_destroy(svr->svr_frees[i]);
395 		list_destroy(&svr->svr_new_segments[i]);
396 	}
397 
398 	zfs_range_tree_destroy(svr->svr_allocd_segs);
399 	mutex_destroy(&svr->svr_lock);
400 	cv_destroy(&svr->svr_cv);
401 	kmem_free(svr, sizeof (*svr));
402 }
403 
404 /*
405  * This is called as a synctask in the txg in which we will mark this vdev
406  * as removing (in the config stored in the MOS).
407  *
408  * It begins the evacuation of a toplevel vdev by:
409  * - initializing the spa_removing_phys which tracks this removal
410  * - computing the amount of space to remove for accounting purposes
411  * - dirtying all dbufs in the spa_config_object
412  * - creating the spa_vdev_removal
413  * - starting the spa_vdev_remove_thread
414  */
415 static void
vdev_remove_initiate_sync(void * arg,dmu_tx_t * tx)416 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
417 {
418 	int vdev_id = (uintptr_t)arg;
419 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
420 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
421 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
422 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
423 	spa_vdev_removal_t *svr = NULL;
424 	uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
425 
426 	ASSERT0(vdev_get_nparity(vd));
427 	svr = spa_vdev_removal_create(vd);
428 
429 	ASSERT(vd->vdev_removing);
430 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
431 
432 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
433 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
434 		/*
435 		 * By activating the OBSOLETE_COUNTS feature, we prevent
436 		 * the pool from being downgraded and ensure that the
437 		 * refcounts are precise.
438 		 */
439 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
440 		uint64_t one = 1;
441 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
442 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
443 		    &one, tx));
444 		boolean_t are_precise __maybe_unused;
445 		ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
446 		ASSERT3B(are_precise, ==, B_TRUE);
447 	}
448 
449 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
450 	vd->vdev_indirect_mapping =
451 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
452 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
453 	vd->vdev_indirect_births =
454 	    vdev_indirect_births_open(mos, vic->vic_births_object);
455 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
456 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
457 	spa->spa_removing_phys.sr_end_time = 0;
458 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
459 	spa->spa_removing_phys.sr_to_copy = 0;
460 	spa->spa_removing_phys.sr_copied = 0;
461 
462 	/*
463 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
464 	 * there may be space in the defer tree, which is free, but still
465 	 * counted in vs_alloc.
466 	 */
467 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
468 		metaslab_t *ms = vd->vdev_ms[i];
469 		if (ms->ms_sm == NULL)
470 			continue;
471 
472 		spa->spa_removing_phys.sr_to_copy +=
473 		    metaslab_allocated_space(ms);
474 
475 		/*
476 		 * Space which we are freeing this txg does not need to
477 		 * be copied.
478 		 */
479 		spa->spa_removing_phys.sr_to_copy -=
480 		    zfs_range_tree_space(ms->ms_freeing);
481 
482 		ASSERT0(zfs_range_tree_space(ms->ms_freed));
483 		for (int t = 0; t < TXG_SIZE; t++)
484 			ASSERT0(zfs_range_tree_space(ms->ms_allocating[t]));
485 	}
486 
487 	/*
488 	 * Sync tasks are called before metaslab_sync(), so there should
489 	 * be no already-synced metaslabs in the TXG_CLEAN list.
490 	 */
491 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
492 
493 	spa_sync_removing_state(spa, tx);
494 
495 	/*
496 	 * All blocks that we need to read the most recent mapping must be
497 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
498 	 * is read before spa_remove_init().  Specifically, the
499 	 * spa_config_object.  (Note that although we already modified the
500 	 * spa_config_object in spa_sync_removing_state, that may not have
501 	 * modified all blocks of the object.)
502 	 */
503 	dmu_object_info_t doi;
504 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
505 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
506 		dmu_buf_t *dbuf;
507 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
508 		    offset, FTAG, &dbuf, 0));
509 		dmu_buf_will_dirty(dbuf, tx);
510 		offset += dbuf->db_size;
511 		dmu_buf_rele(dbuf, FTAG);
512 	}
513 
514 	/*
515 	 * Now that we've allocated the im_object, dirty the vdev to ensure
516 	 * that the object gets written to the config on disk.
517 	 */
518 	vdev_config_dirty(vd);
519 
520 	zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
521 	    "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
522 	    (u_longlong_t)dmu_tx_get_txg(tx),
523 	    (u_longlong_t)vic->vic_mapping_object);
524 
525 	spa_history_log_internal(spa, "vdev remove started", tx,
526 	    "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
527 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
528 	/*
529 	 * Setting spa_vdev_removal causes subsequent frees to call
530 	 * free_from_removing_vdev().  Note that we don't need any locking
531 	 * because we are the sync thread, and metaslab_free_impl() is only
532 	 * called from syncing context (potentially from a zio taskq thread,
533 	 * but in any case only when there are outstanding free i/os, which
534 	 * there are not).
535 	 */
536 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
537 	spa->spa_vdev_removal = svr;
538 	svr->svr_thread = thread_create(NULL, 0,
539 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
540 }
541 
542 /*
543  * When we are opening a pool, we must read the mapping for each
544  * indirect vdev in order from most recently removed to least
545  * recently removed.  We do this because the blocks for the mapping
546  * of older indirect vdevs may be stored on more recently removed vdevs.
547  * In order to read each indirect mapping object, we must have
548  * initialized all more recently removed vdevs.
549  */
550 int
spa_remove_init(spa_t * spa)551 spa_remove_init(spa_t *spa)
552 {
553 	int error;
554 
555 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
556 	    DMU_POOL_DIRECTORY_OBJECT,
557 	    DMU_POOL_REMOVING, sizeof (uint64_t),
558 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
559 	    &spa->spa_removing_phys);
560 
561 	if (error == ENOENT) {
562 		spa->spa_removing_phys.sr_state = DSS_NONE;
563 		spa->spa_removing_phys.sr_removing_vdev = -1;
564 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
565 		spa->spa_indirect_vdevs_loaded = B_TRUE;
566 		return (0);
567 	} else if (error != 0) {
568 		return (error);
569 	}
570 
571 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
572 		/*
573 		 * We are currently removing a vdev.  Create and
574 		 * initialize a spa_vdev_removal_t from the bonus
575 		 * buffer of the removing vdevs vdev_im_object, and
576 		 * initialize its partial mapping.
577 		 */
578 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
579 		vdev_t *vd = vdev_lookup_top(spa,
580 		    spa->spa_removing_phys.sr_removing_vdev);
581 
582 		if (vd == NULL) {
583 			spa_config_exit(spa, SCL_STATE, FTAG);
584 			return (EINVAL);
585 		}
586 
587 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
588 
589 		ASSERT(vdev_is_concrete(vd));
590 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
591 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
592 		ASSERT(vd->vdev_removing);
593 
594 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
595 		    spa->spa_meta_objset, vic->vic_mapping_object);
596 		vd->vdev_indirect_births = vdev_indirect_births_open(
597 		    spa->spa_meta_objset, vic->vic_births_object);
598 		spa_config_exit(spa, SCL_STATE, FTAG);
599 
600 		spa->spa_vdev_removal = svr;
601 	}
602 
603 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
604 	uint64_t indirect_vdev_id =
605 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
606 	while (indirect_vdev_id != UINT64_MAX) {
607 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
608 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
609 
610 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
611 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
612 		    spa->spa_meta_objset, vic->vic_mapping_object);
613 		vd->vdev_indirect_births = vdev_indirect_births_open(
614 		    spa->spa_meta_objset, vic->vic_births_object);
615 
616 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
617 	}
618 	spa_config_exit(spa, SCL_STATE, FTAG);
619 
620 	/*
621 	 * Now that we've loaded all the indirect mappings, we can allow
622 	 * reads from other blocks (e.g. via predictive prefetch).
623 	 */
624 	spa->spa_indirect_vdevs_loaded = B_TRUE;
625 	return (0);
626 }
627 
628 void
spa_restart_removal(spa_t * spa)629 spa_restart_removal(spa_t *spa)
630 {
631 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
632 
633 	if (svr == NULL)
634 		return;
635 
636 	/*
637 	 * In general when this function is called there is no
638 	 * removal thread running. The only scenario where this
639 	 * is not true is during spa_import() where this function
640 	 * is called twice [once from spa_import_impl() and
641 	 * spa_async_resume()]. Thus, in the scenario where we
642 	 * import a pool that has an ongoing removal we don't
643 	 * want to spawn a second thread.
644 	 */
645 	if (svr->svr_thread != NULL)
646 		return;
647 
648 	if (!spa_writeable(spa))
649 		return;
650 
651 	zfs_dbgmsg("restarting removal of %llu",
652 	    (u_longlong_t)svr->svr_vdev_id);
653 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
654 	    0, &p0, TS_RUN, minclsyspri);
655 }
656 
657 /*
658  * Process freeing from a device which is in the middle of being removed.
659  * We must handle this carefully so that we attempt to copy freed data,
660  * and we correctly free already-copied data.
661  */
662 void
free_from_removing_vdev(vdev_t * vd,uint64_t offset,uint64_t size)663 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
664 {
665 	spa_t *spa = vd->vdev_spa;
666 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
667 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
668 	uint64_t txg = spa_syncing_txg(spa);
669 	uint64_t max_offset_yet = 0;
670 
671 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
672 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
673 	    vdev_indirect_mapping_object(vim));
674 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
675 
676 	mutex_enter(&svr->svr_lock);
677 
678 	/*
679 	 * Remove the segment from the removing vdev's spacemap.  This
680 	 * ensures that we will not attempt to copy this space (if the
681 	 * removal thread has not yet visited it), and also ensures
682 	 * that we know what is actually allocated on the new vdevs
683 	 * (needed if we cancel the removal).
684 	 *
685 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
686 	 * held, so that the remove_thread can not load this metaslab and then
687 	 * visit this offset between the time that we metaslab_free_concrete()
688 	 * and when we check to see if it has been visited.
689 	 *
690 	 * Note: The checkpoint flag is set to false as having/taking
691 	 * a checkpoint and removing a device can't happen at the same
692 	 * time.
693 	 */
694 	ASSERT(!spa_has_checkpoint(spa));
695 	metaslab_free_concrete(vd, offset, size, B_FALSE);
696 
697 	uint64_t synced_size = 0;
698 	uint64_t synced_offset = 0;
699 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
700 	if (offset < max_offset_synced) {
701 		/*
702 		 * The mapping for this offset is already on disk.
703 		 * Free from the new location.
704 		 *
705 		 * Note that we use svr_max_synced_offset because it is
706 		 * updated atomically with respect to the in-core mapping.
707 		 * By contrast, vim_max_offset is not.
708 		 *
709 		 * This block may be split between a synced entry and an
710 		 * in-flight or unvisited entry.  Only process the synced
711 		 * portion of it here.
712 		 */
713 		synced_size = MIN(size, max_offset_synced - offset);
714 		synced_offset = offset;
715 
716 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
717 		max_offset_yet = max_offset_synced;
718 
719 		DTRACE_PROBE3(remove__free__synced,
720 		    spa_t *, spa,
721 		    uint64_t, offset,
722 		    uint64_t, synced_size);
723 
724 		size -= synced_size;
725 		offset += synced_size;
726 	}
727 
728 	/*
729 	 * Look at all in-flight txgs starting from the currently syncing one
730 	 * and see if a section of this free is being copied. By starting from
731 	 * this txg and iterating forward, we might find that this region
732 	 * was copied in two different txgs and handle it appropriately.
733 	 */
734 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
735 		int txgoff = (txg + i) & TXG_MASK;
736 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
737 			/*
738 			 * The mapping for this offset is in flight, and
739 			 * will be synced in txg+i.
740 			 */
741 			uint64_t inflight_size = MIN(size,
742 			    svr->svr_max_offset_to_sync[txgoff] - offset);
743 
744 			DTRACE_PROBE4(remove__free__inflight,
745 			    spa_t *, spa,
746 			    uint64_t, offset,
747 			    uint64_t, inflight_size,
748 			    uint64_t, txg + i);
749 
750 			/*
751 			 * We copy data in order of increasing offset.
752 			 * Therefore the max_offset_to_sync[] must increase
753 			 * (or be zero, indicating that nothing is being
754 			 * copied in that txg).
755 			 */
756 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
757 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
758 				    >=, max_offset_yet);
759 				max_offset_yet =
760 				    svr->svr_max_offset_to_sync[txgoff];
761 			}
762 
763 			/*
764 			 * We've already committed to copying this segment:
765 			 * we have allocated space elsewhere in the pool for
766 			 * it and have an IO outstanding to copy the data. We
767 			 * cannot free the space before the copy has
768 			 * completed, or else the copy IO might overwrite any
769 			 * new data. To free that space, we record the
770 			 * segment in the appropriate svr_frees tree and free
771 			 * the mapped space later, in the txg where we have
772 			 * completed the copy and synced the mapping (see
773 			 * vdev_mapping_sync).
774 			 */
775 			zfs_range_tree_add(svr->svr_frees[txgoff],
776 			    offset, inflight_size);
777 			size -= inflight_size;
778 			offset += inflight_size;
779 
780 			/*
781 			 * This space is already accounted for as being
782 			 * done, because it is being copied in txg+i.
783 			 * However, if i!=0, then it is being copied in
784 			 * a future txg.  If we crash after this txg
785 			 * syncs but before txg+i syncs, then the space
786 			 * will be free.  Therefore we must account
787 			 * for the space being done in *this* txg
788 			 * (when it is freed) rather than the future txg
789 			 * (when it will be copied).
790 			 */
791 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
792 			    inflight_size);
793 			svr->svr_bytes_done[txgoff] -= inflight_size;
794 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
795 		}
796 	}
797 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
798 
799 	if (size > 0) {
800 		/*
801 		 * The copy thread has not yet visited this offset.  Ensure
802 		 * that it doesn't.
803 		 */
804 
805 		DTRACE_PROBE3(remove__free__unvisited,
806 		    spa_t *, spa,
807 		    uint64_t, offset,
808 		    uint64_t, size);
809 
810 		if (svr->svr_allocd_segs != NULL)
811 			zfs_range_tree_clear(svr->svr_allocd_segs, offset,
812 			    size);
813 
814 		/*
815 		 * Since we now do not need to copy this data, for
816 		 * accounting purposes we have done our job and can count
817 		 * it as completed.
818 		 */
819 		svr->svr_bytes_done[txg & TXG_MASK] += size;
820 	}
821 	mutex_exit(&svr->svr_lock);
822 
823 	/*
824 	 * Now that we have dropped svr_lock, process the synced portion
825 	 * of this free.
826 	 */
827 	if (synced_size > 0) {
828 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
829 
830 		/*
831 		 * Note: this can only be called from syncing context,
832 		 * and the vdev_indirect_mapping is only changed from the
833 		 * sync thread, so we don't need svr_lock while doing
834 		 * metaslab_free_impl_cb.
835 		 */
836 		boolean_t checkpoint = B_FALSE;
837 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
838 		    metaslab_free_impl_cb, &checkpoint);
839 	}
840 }
841 
842 /*
843  * Stop an active removal and update the spa_removing phys.
844  */
845 static void
spa_finish_removal(spa_t * spa,dsl_scan_state_t state,dmu_tx_t * tx)846 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
847 {
848 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
849 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
850 
851 	/* Ensure the removal thread has completed before we free the svr. */
852 	spa_vdev_remove_suspend(spa);
853 
854 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
855 
856 	if (state == DSS_FINISHED) {
857 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
858 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
859 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
860 
861 		if (srp->sr_prev_indirect_vdev != -1) {
862 			vdev_t *pvd;
863 			pvd = vdev_lookup_top(spa,
864 			    srp->sr_prev_indirect_vdev);
865 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
866 		}
867 
868 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
869 		srp->sr_prev_indirect_vdev = vd->vdev_id;
870 	}
871 	spa->spa_removing_phys.sr_state = state;
872 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
873 
874 	spa->spa_vdev_removal = NULL;
875 	spa_vdev_removal_destroy(svr);
876 
877 	spa_sync_removing_state(spa, tx);
878 	spa_notify_waiters(spa);
879 
880 	vdev_config_dirty(spa->spa_root_vdev);
881 }
882 
883 static void
free_mapped_segment_cb(void * arg,uint64_t offset,uint64_t size)884 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
885 {
886 	vdev_t *vd = arg;
887 	vdev_indirect_mark_obsolete(vd, offset, size);
888 	boolean_t checkpoint = B_FALSE;
889 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
890 	    metaslab_free_impl_cb, &checkpoint);
891 }
892 
893 /*
894  * On behalf of the removal thread, syncs an incremental bit more of
895  * the indirect mapping to disk and updates the in-memory mapping.
896  * Called as a sync task in every txg that the removal thread makes progress.
897  */
898 static void
vdev_mapping_sync(void * arg,dmu_tx_t * tx)899 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
900 {
901 	spa_vdev_removal_t *svr = arg;
902 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
903 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
904 	vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
905 	uint64_t txg = dmu_tx_get_txg(tx);
906 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
907 
908 	ASSERT(vic->vic_mapping_object != 0);
909 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
910 
911 	vdev_indirect_mapping_add_entries(vim,
912 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
913 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
914 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
915 
916 	/*
917 	 * Free the copied data for anything that was freed while the
918 	 * mapping entries were in flight.
919 	 */
920 	mutex_enter(&svr->svr_lock);
921 	zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
922 	    free_mapped_segment_cb, vd);
923 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
924 	    vdev_indirect_mapping_max_offset(vim));
925 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
926 	mutex_exit(&svr->svr_lock);
927 
928 	spa_sync_removing_state(spa, tx);
929 }
930 
931 typedef struct vdev_copy_segment_arg {
932 	spa_t *vcsa_spa;
933 	dva_t *vcsa_dest_dva;
934 	uint64_t vcsa_txg;
935 	zfs_range_tree_t *vcsa_obsolete_segs;
936 } vdev_copy_segment_arg_t;
937 
938 static void
unalloc_seg(void * arg,uint64_t start,uint64_t size)939 unalloc_seg(void *arg, uint64_t start, uint64_t size)
940 {
941 	vdev_copy_segment_arg_t *vcsa = arg;
942 	spa_t *spa = vcsa->vcsa_spa;
943 	blkptr_t bp = { { { {0} } } };
944 
945 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
946 	BP_SET_LSIZE(&bp, size);
947 	BP_SET_PSIZE(&bp, size);
948 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
949 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
950 	BP_SET_TYPE(&bp, DMU_OT_NONE);
951 	BP_SET_LEVEL(&bp, 0);
952 	BP_SET_DEDUP(&bp, 0);
953 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
954 
955 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
956 	DVA_SET_OFFSET(&bp.blk_dva[0],
957 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
958 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
959 
960 	zio_free(spa, vcsa->vcsa_txg, &bp);
961 }
962 
963 /*
964  * All reads and writes associated with a call to spa_vdev_copy_segment()
965  * are done.
966  */
967 static void
spa_vdev_copy_segment_done(zio_t * zio)968 spa_vdev_copy_segment_done(zio_t *zio)
969 {
970 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
971 
972 	zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs,
973 	    unalloc_seg, vcsa);
974 	zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs);
975 	kmem_free(vcsa, sizeof (*vcsa));
976 
977 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
978 }
979 
980 /*
981  * The write of the new location is done.
982  */
983 static void
spa_vdev_copy_segment_write_done(zio_t * zio)984 spa_vdev_copy_segment_write_done(zio_t *zio)
985 {
986 	vdev_copy_arg_t *vca = zio->io_private;
987 
988 	abd_free(zio->io_abd);
989 
990 	mutex_enter(&vca->vca_lock);
991 	vca->vca_outstanding_bytes -= zio->io_size;
992 
993 	if (zio->io_error != 0)
994 		vca->vca_write_error_bytes += zio->io_size;
995 
996 	cv_signal(&vca->vca_cv);
997 	mutex_exit(&vca->vca_lock);
998 }
999 
1000 /*
1001  * The read of the old location is done.  The parent zio is the write to
1002  * the new location.  Allow it to start.
1003  */
1004 static void
spa_vdev_copy_segment_read_done(zio_t * zio)1005 spa_vdev_copy_segment_read_done(zio_t *zio)
1006 {
1007 	vdev_copy_arg_t *vca = zio->io_private;
1008 
1009 	if (zio->io_error != 0) {
1010 		mutex_enter(&vca->vca_lock);
1011 		vca->vca_read_error_bytes += zio->io_size;
1012 		mutex_exit(&vca->vca_lock);
1013 	}
1014 
1015 	zio_nowait(zio_unique_parent(zio));
1016 }
1017 
1018 /*
1019  * If the old and new vdevs are mirrors, we will read both sides of the old
1020  * mirror, and write each copy to the corresponding side of the new mirror.
1021  * If the old and new vdevs have a different number of children, we will do
1022  * this as best as possible.  Since we aren't verifying checksums, this
1023  * ensures that as long as there's a good copy of the data, we'll have a
1024  * good copy after the removal, even if there's silent damage to one side
1025  * of the mirror. If we're removing a mirror that has some silent damage,
1026  * we'll have exactly the same damage in the new location (assuming that
1027  * the new location is also a mirror).
1028  *
1029  * We accomplish this by creating a tree of zio_t's, with as many writes as
1030  * there are "children" of the new vdev (a non-redundant vdev counts as one
1031  * child, a 2-way mirror has 2 children, etc). Each write has an associated
1032  * read from a child of the old vdev. Typically there will be the same
1033  * number of children of the old and new vdevs.  However, if there are more
1034  * children of the new vdev, some child(ren) of the old vdev will be issued
1035  * multiple reads.  If there are more children of the old vdev, some copies
1036  * will be dropped.
1037  *
1038  * For example, the tree of zio_t's for a 2-way mirror is:
1039  *
1040  *                            null
1041  *                           /    \
1042  *    write(new vdev, child 0)      write(new vdev, child 1)
1043  *      |                             |
1044  *    read(old vdev, child 0)       read(old vdev, child 1)
1045  *
1046  * Child zio's complete before their parents complete.  However, zio's
1047  * created with zio_vdev_child_io() may be issued before their children
1048  * complete.  In this case we need to make sure that the children (reads)
1049  * complete before the parents (writes) are *issued*.  We do this by not
1050  * calling zio_nowait() on each write until its corresponding read has
1051  * completed.
1052  *
1053  * The spa_config_lock must be held while zio's created by
1054  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1055  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1056  * zio is needed to release the spa_config_lock after all the reads and
1057  * writes complete. (Note that we can't grab the config lock for each read,
1058  * because it is not reentrant - we could deadlock with a thread waiting
1059  * for a write lock.)
1060  */
1061 static void
spa_vdev_copy_one_child(vdev_copy_arg_t * vca,zio_t * nzio,vdev_t * source_vd,uint64_t source_offset,vdev_t * dest_child_vd,uint64_t dest_offset,int dest_id,uint64_t size)1062 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1063     vdev_t *source_vd, uint64_t source_offset,
1064     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1065 {
1066 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1067 
1068 	/*
1069 	 * If the destination child in unwritable then there is no point
1070 	 * in issuing the source reads which cannot be written.
1071 	 */
1072 	if (!vdev_writeable(dest_child_vd))
1073 		return;
1074 
1075 	mutex_enter(&vca->vca_lock);
1076 	vca->vca_outstanding_bytes += size;
1077 	mutex_exit(&vca->vca_lock);
1078 
1079 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1080 
1081 	vdev_t *source_child_vd = NULL;
1082 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1083 		/*
1084 		 * Source and dest are both mirrors.  Copy from the same
1085 		 * child id as we are copying to (wrapping around if there
1086 		 * are more dest children than source children).  If the
1087 		 * preferred source child is unreadable select another.
1088 		 */
1089 		for (int i = 0; i < source_vd->vdev_children; i++) {
1090 			source_child_vd = source_vd->vdev_child[
1091 			    (dest_id + i) % source_vd->vdev_children];
1092 			if (vdev_readable(source_child_vd))
1093 				break;
1094 		}
1095 	} else {
1096 		source_child_vd = source_vd;
1097 	}
1098 
1099 	/*
1100 	 * There should always be at least one readable source child or
1101 	 * the pool would be in a suspended state.  Somehow selecting an
1102 	 * unreadable child would result in IO errors, the removal process
1103 	 * being cancelled, and the pool reverting to its pre-removal state.
1104 	 */
1105 	ASSERT3P(source_child_vd, !=, NULL);
1106 
1107 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1108 	    dest_child_vd, dest_offset, abd, size,
1109 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1110 	    ZIO_FLAG_CANFAIL,
1111 	    spa_vdev_copy_segment_write_done, vca);
1112 
1113 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
1114 	    source_child_vd, source_offset, abd, size,
1115 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1116 	    ZIO_FLAG_CANFAIL,
1117 	    spa_vdev_copy_segment_read_done, vca));
1118 }
1119 
1120 /*
1121  * Allocate a new location for this segment, and create the zio_t's to
1122  * read from the old location and write to the new location.
1123  */
1124 static int
spa_vdev_copy_segment(vdev_t * vd,zfs_range_tree_t * segs,uint64_t maxalloc,uint64_t txg,vdev_copy_arg_t * vca,zio_alloc_list_t * zal)1125 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs,
1126     uint64_t maxalloc, uint64_t txg,
1127     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1128 {
1129 	metaslab_group_t *mg = vd->vdev_mg;
1130 	spa_t *spa = vd->vdev_spa;
1131 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1132 	vdev_indirect_mapping_entry_t *entry;
1133 	dva_t dst = {{ 0 }};
1134 	uint64_t start = zfs_range_tree_min(segs);
1135 	ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1136 
1137 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1138 	ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1139 
1140 	uint64_t size = zfs_range_tree_span(segs);
1141 	if (zfs_range_tree_span(segs) > maxalloc) {
1142 		/*
1143 		 * We can't allocate all the segments.  Prefer to end
1144 		 * the allocation at the end of a segment, thus avoiding
1145 		 * additional split blocks.
1146 		 */
1147 		zfs_range_seg_max_t search;
1148 		zfs_btree_index_t where;
1149 		zfs_rs_set_start(&search, segs, start + maxalloc);
1150 		zfs_rs_set_end(&search, segs, start + maxalloc);
1151 		(void) zfs_btree_find(&segs->rt_root, &search, &where);
1152 		zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1153 		    &where);
1154 		if (rs != NULL) {
1155 			size = zfs_rs_get_end(rs, segs) - start;
1156 		} else {
1157 			/*
1158 			 * There are no segments that end before maxalloc.
1159 			 * I.e. the first segment is larger than maxalloc,
1160 			 * so we must split it.
1161 			 */
1162 			size = maxalloc;
1163 		}
1164 	}
1165 	ASSERT3U(size, <=, maxalloc);
1166 	ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1167 
1168 	/*
1169 	 * An allocation class might not have any remaining vdevs or space
1170 	 */
1171 	metaslab_class_t *mc = mg->mg_class;
1172 	if (mc->mc_groups == 0)
1173 		mc = spa_normal_class(spa);
1174 	int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg,
1175 	    0, zal, 0);
1176 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
1177 		error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1178 		    &dst, 0, NULL, txg, 0, zal, 0);
1179 	}
1180 	if (error != 0)
1181 		return (error);
1182 
1183 	/*
1184 	 * Determine the ranges that are not actually needed.  Offsets are
1185 	 * relative to the start of the range to be copied (i.e. relative to the
1186 	 * local variable "start").
1187 	 */
1188 	zfs_range_tree_t *obsolete_segs = zfs_range_tree_create(NULL,
1189 	    ZFS_RANGE_SEG64, NULL, 0, 0);
1190 
1191 	zfs_btree_index_t where;
1192 	zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1193 	ASSERT3U(zfs_rs_get_start(rs, segs), ==, start);
1194 	uint64_t prev_seg_end = zfs_rs_get_end(rs, segs);
1195 	while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1196 		if (zfs_rs_get_start(rs, segs) >= start + size) {
1197 			break;
1198 		} else {
1199 			zfs_range_tree_add(obsolete_segs,
1200 			    prev_seg_end - start,
1201 			    zfs_rs_get_start(rs, segs) - prev_seg_end);
1202 		}
1203 		prev_seg_end = zfs_rs_get_end(rs, segs);
1204 	}
1205 	/* We don't end in the middle of an obsolete range */
1206 	ASSERT3U(start + size, <=, prev_seg_end);
1207 
1208 	zfs_range_tree_clear(segs, start, size);
1209 
1210 	/*
1211 	 * We can't have any padding of the allocated size, otherwise we will
1212 	 * misunderstand what's allocated, and the size of the mapping. We
1213 	 * prevent padding by ensuring that all devices in the pool have the
1214 	 * same ashift, and the allocation size is a multiple of the ashift.
1215 	 */
1216 	VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1217 
1218 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1219 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1220 	entry->vime_mapping.vimep_dst = dst;
1221 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1222 		entry->vime_obsolete_count =
1223 		    zfs_range_tree_space(obsolete_segs);
1224 	}
1225 
1226 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1227 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1228 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1229 	vcsa->vcsa_spa = spa;
1230 	vcsa->vcsa_txg = txg;
1231 
1232 	/*
1233 	 * See comment before spa_vdev_copy_one_child().
1234 	 */
1235 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1236 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1237 	    spa_vdev_copy_segment_done, vcsa, 0);
1238 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1239 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1240 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1241 			vdev_t *child = dest_vd->vdev_child[i];
1242 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1243 			    child, DVA_GET_OFFSET(&dst), i, size);
1244 		}
1245 	} else {
1246 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1247 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1248 	}
1249 	zio_nowait(nzio);
1250 
1251 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1252 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1253 	vdev_dirty(vd, 0, NULL, txg);
1254 
1255 	return (0);
1256 }
1257 
1258 /*
1259  * Complete the removal of a toplevel vdev. This is called as a
1260  * synctask in the same txg that we will sync out the new config (to the
1261  * MOS object) which indicates that this vdev is indirect.
1262  */
1263 static void
vdev_remove_complete_sync(void * arg,dmu_tx_t * tx)1264 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1265 {
1266 	spa_vdev_removal_t *svr = arg;
1267 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1268 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1269 
1270 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1271 
1272 	for (int i = 0; i < TXG_SIZE; i++) {
1273 		ASSERT0(svr->svr_bytes_done[i]);
1274 	}
1275 
1276 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1277 	    spa->spa_removing_phys.sr_to_copy);
1278 
1279 	vdev_destroy_spacemaps(vd, tx);
1280 
1281 	/* destroy leaf zaps, if any */
1282 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1283 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1284 	    pair != NULL;
1285 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1286 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1287 	}
1288 	fnvlist_free(svr->svr_zaplist);
1289 
1290 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1291 	/* vd->vdev_path is not available here */
1292 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1293 	    "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1294 }
1295 
1296 static void
vdev_remove_enlist_zaps(vdev_t * vd,nvlist_t * zlist)1297 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1298 {
1299 	ASSERT3P(zlist, !=, NULL);
1300 	ASSERT0(vdev_get_nparity(vd));
1301 
1302 	if (vd->vdev_leaf_zap != 0) {
1303 		char zkey[32];
1304 		(void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1305 		    VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1306 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1307 	}
1308 
1309 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1310 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1311 	}
1312 }
1313 
1314 static void
vdev_remove_replace_with_indirect(vdev_t * vd,uint64_t txg)1315 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1316 {
1317 	vdev_t *ivd;
1318 	dmu_tx_t *tx;
1319 	spa_t *spa = vd->vdev_spa;
1320 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1321 
1322 	/*
1323 	 * First, build a list of leaf zaps to be destroyed.
1324 	 * This is passed to the sync context thread,
1325 	 * which does the actual unlinking.
1326 	 */
1327 	svr->svr_zaplist = fnvlist_alloc();
1328 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1329 
1330 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1331 	ivd->vdev_removing = 0;
1332 
1333 	vd->vdev_leaf_zap = 0;
1334 
1335 	vdev_remove_child(ivd, vd);
1336 	vdev_compact_children(ivd);
1337 
1338 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1339 
1340 	mutex_enter(&svr->svr_lock);
1341 	svr->svr_thread = NULL;
1342 	cv_broadcast(&svr->svr_cv);
1343 	mutex_exit(&svr->svr_lock);
1344 
1345 	/* After this, we can not use svr. */
1346 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1347 	dsl_sync_task_nowait(spa->spa_dsl_pool,
1348 	    vdev_remove_complete_sync, svr, tx);
1349 	dmu_tx_commit(tx);
1350 }
1351 
1352 /*
1353  * Complete the removal of a toplevel vdev. This is called in open
1354  * context by the removal thread after we have copied all vdev's data.
1355  */
1356 static void
vdev_remove_complete(spa_t * spa)1357 vdev_remove_complete(spa_t *spa)
1358 {
1359 	uint64_t txg;
1360 
1361 	/*
1362 	 * Wait for any deferred frees to be synced before we call
1363 	 * vdev_metaslab_fini()
1364 	 */
1365 	txg_wait_synced(spa->spa_dsl_pool, 0);
1366 	txg = spa_vdev_enter(spa);
1367 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1368 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1369 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1370 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1371 	vdev_rebuild_stop_wait(vd);
1372 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1373 	uint64_t vdev_space = spa_deflate(spa) ?
1374 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1375 
1376 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1377 	    ESC_ZFS_VDEV_REMOVE_DEV);
1378 
1379 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1380 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1381 
1382 	ASSERT3U(0, !=, vdev_space);
1383 	ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
1384 
1385 	/* the vdev is no longer part of the dspace */
1386 	spa->spa_nonallocating_dspace -= vdev_space;
1387 
1388 	/*
1389 	 * Discard allocation state.
1390 	 */
1391 	if (vd->vdev_mg != NULL) {
1392 		vdev_metaslab_fini(vd);
1393 		metaslab_group_destroy(vd->vdev_mg);
1394 		vd->vdev_mg = NULL;
1395 	}
1396 	if (vd->vdev_log_mg != NULL) {
1397 		ASSERT0(vd->vdev_ms_count);
1398 		metaslab_group_destroy(vd->vdev_log_mg);
1399 		vd->vdev_log_mg = NULL;
1400 	}
1401 	ASSERT0(vd->vdev_stat.vs_space);
1402 	ASSERT0(vd->vdev_stat.vs_dspace);
1403 
1404 	vdev_remove_replace_with_indirect(vd, txg);
1405 
1406 	/*
1407 	 * We now release the locks, allowing spa_sync to run and finish the
1408 	 * removal via vdev_remove_complete_sync in syncing context.
1409 	 *
1410 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1411 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1412 	 * manipulated, even while we don't have the config lock.
1413 	 */
1414 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1415 
1416 	/*
1417 	 * Top ZAP should have been transferred to the indirect vdev in
1418 	 * vdev_remove_replace_with_indirect.
1419 	 */
1420 	ASSERT0(vd->vdev_top_zap);
1421 
1422 	/*
1423 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1424 	 */
1425 	ASSERT0(vd->vdev_leaf_zap);
1426 
1427 	txg = spa_vdev_enter(spa);
1428 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1429 	/*
1430 	 * Request to update the config and the config cachefile.
1431 	 */
1432 	vdev_config_dirty(spa->spa_root_vdev);
1433 	(void) spa_vdev_exit(spa, vd, txg, 0);
1434 
1435 	if (ev != NULL)
1436 		spa_event_post(ev);
1437 }
1438 
1439 /*
1440  * Evacuates a segment of size at most max_alloc from the vdev
1441  * via repeated calls to spa_vdev_copy_segment. If an allocation
1442  * fails, the pool is probably too fragmented to handle such a
1443  * large size, so decrease max_alloc so that the caller will not try
1444  * this size again this txg.
1445  */
1446 static void
spa_vdev_copy_impl(vdev_t * vd,spa_vdev_removal_t * svr,vdev_copy_arg_t * vca,uint64_t * max_alloc,dmu_tx_t * tx)1447 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1448     uint64_t *max_alloc, dmu_tx_t *tx)
1449 {
1450 	uint64_t txg = dmu_tx_get_txg(tx);
1451 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1452 
1453 	mutex_enter(&svr->svr_lock);
1454 
1455 	/*
1456 	 * Determine how big of a chunk to copy.  We can allocate up
1457 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1458 	 * bytes of unallocated space at a time.  "segs" will track the
1459 	 * allocated segments that we are copying.  We may also be copying
1460 	 * free segments (of up to vdev_removal_max_span bytes).
1461 	 */
1462 	zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1463 	    NULL, 0, 0);
1464 	for (;;) {
1465 		zfs_range_tree_t *rt = svr->svr_allocd_segs;
1466 		zfs_range_seg_t *rs = zfs_range_tree_first(rt);
1467 
1468 		if (rs == NULL)
1469 			break;
1470 
1471 		uint64_t seg_length;
1472 
1473 		if (zfs_range_tree_is_empty(segs)) {
1474 			/* need to truncate the first seg based on max_alloc */
1475 			seg_length = MIN(zfs_rs_get_end(rs, rt) -
1476 			    zfs_rs_get_start(rs, rt), *max_alloc);
1477 		} else {
1478 			if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs)
1479 			    > vdev_removal_max_span) {
1480 				/*
1481 				 * Including this segment would cause us to
1482 				 * copy a larger unneeded chunk than is allowed.
1483 				 */
1484 				break;
1485 			} else if (zfs_rs_get_end(rs, rt) -
1486 			    zfs_range_tree_min(segs) > *max_alloc) {
1487 				/*
1488 				 * This additional segment would extend past
1489 				 * max_alloc. Rather than splitting this
1490 				 * segment, leave it for the next mapping.
1491 				 */
1492 				break;
1493 			} else {
1494 				seg_length = zfs_rs_get_end(rs, rt) -
1495 				    zfs_rs_get_start(rs, rt);
1496 			}
1497 		}
1498 
1499 		zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length);
1500 		zfs_range_tree_remove(svr->svr_allocd_segs,
1501 		    zfs_rs_get_start(rs, rt), seg_length);
1502 	}
1503 
1504 	if (zfs_range_tree_is_empty(segs)) {
1505 		mutex_exit(&svr->svr_lock);
1506 		zfs_range_tree_destroy(segs);
1507 		return;
1508 	}
1509 
1510 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1511 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1512 		    svr, tx);
1513 	}
1514 
1515 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs);
1516 
1517 	/*
1518 	 * Note: this is the amount of *allocated* space
1519 	 * that we are taking care of each txg.
1520 	 */
1521 	svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs);
1522 
1523 	mutex_exit(&svr->svr_lock);
1524 
1525 	zio_alloc_list_t zal;
1526 	metaslab_trace_init(&zal);
1527 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1528 	while (!zfs_range_tree_is_empty(segs)) {
1529 		int error = spa_vdev_copy_segment(vd,
1530 		    segs, thismax, txg, vca, &zal);
1531 
1532 		if (error == ENOSPC) {
1533 			/*
1534 			 * Cut our segment in half, and don't try this
1535 			 * segment size again this txg.  Note that the
1536 			 * allocation size must be aligned to the highest
1537 			 * ashift in the pool, so that the allocation will
1538 			 * not be padded out to a multiple of the ashift,
1539 			 * which could cause us to think that this mapping
1540 			 * is larger than we intended.
1541 			 */
1542 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1543 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1544 			uint64_t attempted =
1545 			    MIN(zfs_range_tree_span(segs), thismax);
1546 			thismax = P2ROUNDUP(attempted / 2,
1547 			    1 << spa->spa_max_ashift);
1548 			/*
1549 			 * The minimum-size allocation can not fail.
1550 			 */
1551 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1552 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1553 		} else {
1554 			ASSERT0(error);
1555 
1556 			/*
1557 			 * We've performed an allocation, so reset the
1558 			 * alloc trace list.
1559 			 */
1560 			metaslab_trace_fini(&zal);
1561 			metaslab_trace_init(&zal);
1562 		}
1563 	}
1564 	metaslab_trace_fini(&zal);
1565 	zfs_range_tree_destroy(segs);
1566 }
1567 
1568 /*
1569  * The size of each removal mapping is limited by the tunable
1570  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1571  * pool's ashift, so that we don't try to split individual sectors regardless
1572  * of the tunable value.  (Note that device removal requires that all devices
1573  * have the same ashift, so there's no difference between spa_min_ashift and
1574  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1575  */
1576 uint64_t
spa_remove_max_segment(spa_t * spa)1577 spa_remove_max_segment(spa_t *spa)
1578 {
1579 	return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1580 }
1581 
1582 /*
1583  * The removal thread operates in open context.  It iterates over all
1584  * allocated space in the vdev, by loading each metaslab's spacemap.
1585  * For each contiguous segment of allocated space (capping the segment
1586  * size at SPA_MAXBLOCKSIZE), we:
1587  *    - Allocate space for it on another vdev.
1588  *    - Create a new mapping from the old location to the new location
1589  *      (as a record in svr_new_segments).
1590  *    - Initiate a physical read zio to get the data off the removing disk.
1591  *    - In the read zio's done callback, initiate a physical write zio to
1592  *      write it to the new vdev.
1593  * Note that all of this will take effect when a particular TXG syncs.
1594  * The sync thread ensures that all the phys reads and writes for the syncing
1595  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1596  * (see vdev_mapping_sync()).
1597  */
1598 static __attribute__((noreturn)) void
spa_vdev_remove_thread(void * arg)1599 spa_vdev_remove_thread(void *arg)
1600 {
1601 	spa_t *spa = arg;
1602 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1603 	vdev_copy_arg_t vca;
1604 	uint64_t max_alloc = spa_remove_max_segment(spa);
1605 	uint64_t last_txg = 0;
1606 
1607 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1608 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1609 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1610 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1611 
1612 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1613 	ASSERT(vdev_is_concrete(vd));
1614 	ASSERT(vd->vdev_removing);
1615 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1616 	ASSERT(vim != NULL);
1617 
1618 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1619 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1620 	vca.vca_outstanding_bytes = 0;
1621 	vca.vca_read_error_bytes = 0;
1622 	vca.vca_write_error_bytes = 0;
1623 
1624 	zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
1625 	    NULL, 0, 0);
1626 
1627 	mutex_enter(&svr->svr_lock);
1628 
1629 	/*
1630 	 * Start from vim_max_offset so we pick up where we left off
1631 	 * if we are restarting the removal after opening the pool.
1632 	 */
1633 	uint64_t msi;
1634 	for (msi = start_offset >> vd->vdev_ms_shift;
1635 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1636 		metaslab_t *msp = vd->vdev_ms[msi];
1637 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1638 
1639 again:
1640 		ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1641 		mutex_exit(&svr->svr_lock);
1642 
1643 		mutex_enter(&msp->ms_sync_lock);
1644 		mutex_enter(&msp->ms_lock);
1645 
1646 		/*
1647 		 * Assert nothing in flight -- ms_*tree is empty.
1648 		 */
1649 		for (int i = 0; i < TXG_SIZE; i++) {
1650 			ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1651 		}
1652 
1653 		/*
1654 		 * If the metaslab has ever been synced (ms_sm != NULL),
1655 		 * read the allocated segments from the space map object
1656 		 * into svr_allocd_segs. Since we do this while holding
1657 		 * ms_lock and ms_sync_lock, concurrent frees (which
1658 		 * would have modified the space map) will wait for us
1659 		 * to finish loading the spacemap, and then take the
1660 		 * appropriate action (see free_from_removing_vdev()).
1661 		 */
1662 		if (msp->ms_sm != NULL)
1663 			VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC));
1664 
1665 		/*
1666 		 * We could not hold svr_lock while loading space map, or we
1667 		 * could hit deadlock in a ZIO pipeline, having to wait for
1668 		 * it.  But we can not block for it here under metaslab locks,
1669 		 * or it would be a lock ordering violation.
1670 		 */
1671 		if (!mutex_tryenter(&svr->svr_lock)) {
1672 			mutex_exit(&msp->ms_lock);
1673 			mutex_exit(&msp->ms_sync_lock);
1674 			zfs_range_tree_vacate(segs, NULL, NULL);
1675 			mutex_enter(&svr->svr_lock);
1676 			goto again;
1677 		}
1678 
1679 		zfs_range_tree_swap(&segs, &svr->svr_allocd_segs);
1680 		zfs_range_tree_walk(msp->ms_unflushed_allocs,
1681 		    zfs_range_tree_add, svr->svr_allocd_segs);
1682 		zfs_range_tree_walk(msp->ms_unflushed_frees,
1683 		    zfs_range_tree_remove, svr->svr_allocd_segs);
1684 		zfs_range_tree_walk(msp->ms_freeing,
1685 		    zfs_range_tree_remove, svr->svr_allocd_segs);
1686 
1687 		mutex_exit(&msp->ms_lock);
1688 		mutex_exit(&msp->ms_sync_lock);
1689 
1690 		/*
1691 		 * When we are resuming from a paused removal (i.e.
1692 		 * when importing a pool with a removal in progress),
1693 		 * discard any state that we have already processed.
1694 		 */
1695 		zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1696 
1697 		vca.vca_msp = msp;
1698 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1699 		    (u_longlong_t)zfs_btree_numnodes(
1700 		    &svr->svr_allocd_segs->rt_root),
1701 		    (u_longlong_t)msp->ms_id);
1702 
1703 		while (!svr->svr_thread_exit &&
1704 		    !zfs_range_tree_is_empty(svr->svr_allocd_segs)) {
1705 
1706 			mutex_exit(&svr->svr_lock);
1707 
1708 			/*
1709 			 * We need to periodically drop the config lock so that
1710 			 * writers can get in.  Additionally, we can't wait
1711 			 * for a txg to sync while holding a config lock
1712 			 * (since a waiting writer could cause a 3-way deadlock
1713 			 * with the sync thread, which also gets a config
1714 			 * lock for reader).  So we can't hold the config lock
1715 			 * while calling dmu_tx_assign().
1716 			 */
1717 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1718 
1719 			/*
1720 			 * This delay will pause the removal around the point
1721 			 * specified by zfs_removal_suspend_progress. We do this
1722 			 * solely from the test suite or during debugging.
1723 			 */
1724 			while (zfs_removal_suspend_progress &&
1725 			    !svr->svr_thread_exit)
1726 				delay(hz);
1727 
1728 			mutex_enter(&vca.vca_lock);
1729 			while (vca.vca_outstanding_bytes >
1730 			    zfs_remove_max_copy_bytes) {
1731 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1732 			}
1733 			mutex_exit(&vca.vca_lock);
1734 
1735 			dmu_tx_t *tx =
1736 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1737 
1738 			VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
1739 			uint64_t txg = dmu_tx_get_txg(tx);
1740 
1741 			/*
1742 			 * Reacquire the vdev_config lock.  The vdev_t
1743 			 * that we're removing may have changed, e.g. due
1744 			 * to a vdev_attach or vdev_detach.
1745 			 */
1746 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1747 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1748 
1749 			if (txg != last_txg)
1750 				max_alloc = spa_remove_max_segment(spa);
1751 			last_txg = txg;
1752 
1753 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1754 
1755 			dmu_tx_commit(tx);
1756 			mutex_enter(&svr->svr_lock);
1757 		}
1758 
1759 		mutex_enter(&vca.vca_lock);
1760 		if (zfs_removal_ignore_errors == 0 &&
1761 		    (vca.vca_read_error_bytes > 0 ||
1762 		    vca.vca_write_error_bytes > 0)) {
1763 			svr->svr_thread_exit = B_TRUE;
1764 		}
1765 		mutex_exit(&vca.vca_lock);
1766 	}
1767 
1768 	mutex_exit(&svr->svr_lock);
1769 
1770 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1771 
1772 	zfs_range_tree_destroy(segs);
1773 
1774 	/*
1775 	 * Wait for all copies to finish before cleaning up the vca.
1776 	 */
1777 	txg_wait_synced(spa->spa_dsl_pool, 0);
1778 	ASSERT0(vca.vca_outstanding_bytes);
1779 
1780 	mutex_destroy(&vca.vca_lock);
1781 	cv_destroy(&vca.vca_cv);
1782 
1783 	if (svr->svr_thread_exit) {
1784 		mutex_enter(&svr->svr_lock);
1785 		zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1786 		svr->svr_thread = NULL;
1787 		cv_broadcast(&svr->svr_cv);
1788 		mutex_exit(&svr->svr_lock);
1789 
1790 		/*
1791 		 * During the removal process an unrecoverable read or write
1792 		 * error was encountered.  The removal process must be
1793 		 * cancelled or this damage may become permanent.
1794 		 */
1795 		if (zfs_removal_ignore_errors == 0 &&
1796 		    (vca.vca_read_error_bytes > 0 ||
1797 		    vca.vca_write_error_bytes > 0)) {
1798 			zfs_dbgmsg("canceling removal due to IO errors: "
1799 			    "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1800 			    (u_longlong_t)vca.vca_read_error_bytes,
1801 			    (u_longlong_t)vca.vca_write_error_bytes);
1802 			spa_vdev_remove_cancel_impl(spa);
1803 		}
1804 	} else {
1805 		ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1806 		vdev_remove_complete(spa);
1807 	}
1808 
1809 	thread_exit();
1810 }
1811 
1812 void
spa_vdev_remove_suspend(spa_t * spa)1813 spa_vdev_remove_suspend(spa_t *spa)
1814 {
1815 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1816 
1817 	if (svr == NULL)
1818 		return;
1819 
1820 	mutex_enter(&svr->svr_lock);
1821 	svr->svr_thread_exit = B_TRUE;
1822 	while (svr->svr_thread != NULL)
1823 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1824 	svr->svr_thread_exit = B_FALSE;
1825 	mutex_exit(&svr->svr_lock);
1826 }
1827 
1828 /*
1829  * Return true if the "allocating" property has been set to "off"
1830  */
1831 static boolean_t
vdev_prop_allocating_off(vdev_t * vd)1832 vdev_prop_allocating_off(vdev_t *vd)
1833 {
1834 	uint64_t objid = vd->vdev_top_zap;
1835 	uint64_t allocating = 1;
1836 
1837 	/* no vdev property object => no props */
1838 	if (objid != 0) {
1839 		spa_t *spa = vd->vdev_spa;
1840 		objset_t *mos = spa->spa_meta_objset;
1841 
1842 		mutex_enter(&spa->spa_props_lock);
1843 		(void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1844 		    1, &allocating);
1845 		mutex_exit(&spa->spa_props_lock);
1846 	}
1847 	return (allocating == 0);
1848 }
1849 
1850 static int
spa_vdev_remove_cancel_check(void * arg,dmu_tx_t * tx)1851 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1852 {
1853 	(void) arg;
1854 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1855 
1856 	if (spa->spa_vdev_removal == NULL)
1857 		return (ENOTACTIVE);
1858 	return (0);
1859 }
1860 
1861 /*
1862  * Cancel a removal by freeing all entries from the partial mapping
1863  * and marking the vdev as no longer being removing.
1864  */
1865 static void
spa_vdev_remove_cancel_sync(void * arg,dmu_tx_t * tx)1866 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1867 {
1868 	(void) arg;
1869 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1870 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1871 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1872 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1873 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1874 	objset_t *mos = spa->spa_meta_objset;
1875 
1876 	ASSERT3P(svr->svr_thread, ==, NULL);
1877 
1878 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1879 
1880 	boolean_t are_precise;
1881 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1882 	if (are_precise) {
1883 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1884 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1885 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1886 	}
1887 
1888 	uint64_t obsolete_sm_object;
1889 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1890 	if (obsolete_sm_object != 0) {
1891 		ASSERT(vd->vdev_obsolete_sm != NULL);
1892 		ASSERT3U(obsolete_sm_object, ==,
1893 		    space_map_object(vd->vdev_obsolete_sm));
1894 
1895 		space_map_free(vd->vdev_obsolete_sm, tx);
1896 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1897 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1898 		space_map_close(vd->vdev_obsolete_sm);
1899 		vd->vdev_obsolete_sm = NULL;
1900 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1901 	}
1902 	for (int i = 0; i < TXG_SIZE; i++) {
1903 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1904 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1905 		    vdev_indirect_mapping_max_offset(vim));
1906 	}
1907 
1908 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1909 		metaslab_t *msp = vd->vdev_ms[msi];
1910 
1911 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1912 			break;
1913 
1914 		ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
1915 
1916 		mutex_enter(&msp->ms_lock);
1917 
1918 		/*
1919 		 * Assert nothing in flight -- ms_*tree is empty.
1920 		 */
1921 		for (int i = 0; i < TXG_SIZE; i++)
1922 			ASSERT0(zfs_range_tree_space(msp->ms_allocating[i]));
1923 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1924 			ASSERT0(zfs_range_tree_space(msp->ms_defer[i]));
1925 		ASSERT0(zfs_range_tree_space(msp->ms_freed));
1926 
1927 		if (msp->ms_sm != NULL) {
1928 			mutex_enter(&svr->svr_lock);
1929 			VERIFY0(space_map_load(msp->ms_sm,
1930 			    svr->svr_allocd_segs, SM_ALLOC));
1931 
1932 			zfs_range_tree_walk(msp->ms_unflushed_allocs,
1933 			    zfs_range_tree_add, svr->svr_allocd_segs);
1934 			zfs_range_tree_walk(msp->ms_unflushed_frees,
1935 			    zfs_range_tree_remove, svr->svr_allocd_segs);
1936 			zfs_range_tree_walk(msp->ms_freeing,
1937 			    zfs_range_tree_remove, svr->svr_allocd_segs);
1938 
1939 			/*
1940 			 * Clear everything past what has been synced,
1941 			 * because we have not allocated mappings for it yet.
1942 			 */
1943 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1944 			uint64_t sm_end = msp->ms_sm->sm_start +
1945 			    msp->ms_sm->sm_size;
1946 			if (sm_end > syncd)
1947 				zfs_range_tree_clear(svr->svr_allocd_segs,
1948 				    syncd, sm_end - syncd);
1949 
1950 			mutex_exit(&svr->svr_lock);
1951 		}
1952 		mutex_exit(&msp->ms_lock);
1953 
1954 		mutex_enter(&svr->svr_lock);
1955 		zfs_range_tree_vacate(svr->svr_allocd_segs,
1956 		    free_mapped_segment_cb, vd);
1957 		mutex_exit(&svr->svr_lock);
1958 	}
1959 
1960 	/*
1961 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1962 	 * because it adds to the obsolete_segments.
1963 	 */
1964 	zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1965 
1966 	ASSERT3U(vic->vic_mapping_object, ==,
1967 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1968 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1969 	vd->vdev_indirect_mapping = NULL;
1970 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1971 	vic->vic_mapping_object = 0;
1972 
1973 	ASSERT3U(vic->vic_births_object, ==,
1974 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1975 	vdev_indirect_births_close(vd->vdev_indirect_births);
1976 	vd->vdev_indirect_births = NULL;
1977 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1978 	vic->vic_births_object = 0;
1979 
1980 	/*
1981 	 * We may have processed some frees from the removing vdev in this
1982 	 * txg, thus increasing svr_bytes_done; discard that here to
1983 	 * satisfy the assertions in spa_vdev_removal_destroy().
1984 	 * Note that future txg's can not have any bytes_done, because
1985 	 * future TXG's are only modified from open context, and we have
1986 	 * already shut down the copying thread.
1987 	 */
1988 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1989 	spa_finish_removal(spa, DSS_CANCELED, tx);
1990 
1991 	vd->vdev_removing = B_FALSE;
1992 
1993 	if (!vdev_prop_allocating_off(vd)) {
1994 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1995 		vdev_activate(vd);
1996 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1997 	}
1998 
1999 	vdev_config_dirty(vd);
2000 
2001 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
2002 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
2003 	spa_history_log_internal(spa, "vdev remove canceled", tx,
2004 	    "%s vdev %llu %s", spa_name(spa),
2005 	    (u_longlong_t)vd->vdev_id,
2006 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
2007 }
2008 
2009 static int
spa_vdev_remove_cancel_impl(spa_t * spa)2010 spa_vdev_remove_cancel_impl(spa_t *spa)
2011 {
2012 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
2013 	    spa_vdev_remove_cancel_sync, NULL, 0,
2014 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2015 	return (error);
2016 }
2017 
2018 int
spa_vdev_remove_cancel(spa_t * spa)2019 spa_vdev_remove_cancel(spa_t *spa)
2020 {
2021 	spa_vdev_remove_suspend(spa);
2022 
2023 	if (spa->spa_vdev_removal == NULL)
2024 		return (ENOTACTIVE);
2025 
2026 	return (spa_vdev_remove_cancel_impl(spa));
2027 }
2028 
2029 void
svr_sync(spa_t * spa,dmu_tx_t * tx)2030 svr_sync(spa_t *spa, dmu_tx_t *tx)
2031 {
2032 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2033 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2034 
2035 	if (svr == NULL)
2036 		return;
2037 
2038 	/*
2039 	 * This check is necessary so that we do not dirty the
2040 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2041 	 * is nothing to do.  Dirtying it every time would prevent us
2042 	 * from syncing-to-convergence.
2043 	 */
2044 	if (svr->svr_bytes_done[txgoff] == 0)
2045 		return;
2046 
2047 	/*
2048 	 * Update progress accounting.
2049 	 */
2050 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2051 	svr->svr_bytes_done[txgoff] = 0;
2052 
2053 	spa_sync_removing_state(spa, tx);
2054 }
2055 
2056 static void
vdev_remove_make_hole_and_free(vdev_t * vd)2057 vdev_remove_make_hole_and_free(vdev_t *vd)
2058 {
2059 	uint64_t id = vd->vdev_id;
2060 	spa_t *spa = vd->vdev_spa;
2061 	vdev_t *rvd = spa->spa_root_vdev;
2062 
2063 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2064 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2065 
2066 	vdev_free(vd);
2067 
2068 	vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2069 	vdev_add_child(rvd, vd);
2070 	vdev_config_dirty(rvd);
2071 
2072 	/*
2073 	 * Reassess the health of our root vdev.
2074 	 */
2075 	vdev_reopen(rvd);
2076 }
2077 
2078 /*
2079  * Remove a log device.  The config lock is held for the specified TXG.
2080  */
2081 static int
spa_vdev_remove_log(vdev_t * vd,uint64_t * txg)2082 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2083 {
2084 	metaslab_group_t *mg = vd->vdev_mg;
2085 	spa_t *spa = vd->vdev_spa;
2086 	int error = 0;
2087 
2088 	ASSERT(vd->vdev_islog);
2089 	ASSERT(vd == vd->vdev_top);
2090 	ASSERT3P(vd->vdev_log_mg, ==, NULL);
2091 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2092 
2093 	/*
2094 	 * Stop allocating from this vdev.
2095 	 */
2096 	metaslab_group_passivate(mg);
2097 
2098 	/*
2099 	 * Wait for the youngest allocations and frees to sync,
2100 	 * and then wait for the deferral of those frees to finish.
2101 	 */
2102 	spa_vdev_config_exit(spa, NULL,
2103 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2104 
2105 	/*
2106 	 * Cancel any initialize or TRIM which was in progress.
2107 	 */
2108 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2109 	vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2110 	vdev_autotrim_stop_wait(vd);
2111 
2112 	/*
2113 	 * Evacuate the device.  We don't hold the config lock as
2114 	 * writer since we need to do I/O but we do keep the
2115 	 * spa_namespace_lock held.  Once this completes the device
2116 	 * should no longer have any blocks allocated on it.
2117 	 */
2118 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2119 	if (vd->vdev_stat.vs_alloc != 0)
2120 		error = spa_reset_logs(spa);
2121 
2122 	*txg = spa_vdev_config_enter(spa);
2123 
2124 	if (error != 0) {
2125 		metaslab_group_activate(mg);
2126 		ASSERT3P(vd->vdev_log_mg, ==, NULL);
2127 		return (error);
2128 	}
2129 	ASSERT0(vd->vdev_stat.vs_alloc);
2130 
2131 	/*
2132 	 * The evacuation succeeded.  Remove any remaining MOS metadata
2133 	 * associated with this vdev, and wait for these changes to sync.
2134 	 */
2135 	vd->vdev_removing = B_TRUE;
2136 
2137 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2138 	vdev_config_dirty(vd);
2139 
2140 	/*
2141 	 * When the log space map feature is enabled we look at
2142 	 * the vdev's top_zap to find the on-disk flush data of
2143 	 * the metaslab we just flushed. Thus, while removing a
2144 	 * log vdev we make sure to call vdev_metaslab_fini()
2145 	 * first, which removes all metaslabs of this vdev from
2146 	 * spa_metaslabs_by_flushed before vdev_remove_empty()
2147 	 * destroys the top_zap of this log vdev.
2148 	 *
2149 	 * This avoids the scenario where we flush a metaslab
2150 	 * from the log vdev being removed that doesn't have a
2151 	 * top_zap and end up failing to lookup its on-disk flush
2152 	 * data.
2153 	 *
2154 	 * We don't call metaslab_group_destroy() right away
2155 	 * though (it will be called in vdev_free() later) as
2156 	 * during metaslab_sync() of metaslabs from other vdevs
2157 	 * we may touch the metaslab group of this vdev through
2158 	 * metaslab_class_histogram_verify()
2159 	 */
2160 	vdev_metaslab_fini(vd);
2161 
2162 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2163 	*txg = spa_vdev_config_enter(spa);
2164 
2165 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
2166 	    ESC_ZFS_VDEV_REMOVE_DEV);
2167 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2168 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2169 
2170 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
2171 	ASSERT0(vd->vdev_top_zap);
2172 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2173 	ASSERT0(vd->vdev_leaf_zap);
2174 
2175 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2176 
2177 	if (list_link_active(&vd->vdev_state_dirty_node))
2178 		vdev_state_clean(vd);
2179 	if (list_link_active(&vd->vdev_config_dirty_node))
2180 		vdev_config_clean(vd);
2181 
2182 	ASSERT0(vd->vdev_stat.vs_alloc);
2183 
2184 	/*
2185 	 * Clean up the vdev namespace.
2186 	 */
2187 	vdev_remove_make_hole_and_free(vd);
2188 
2189 	if (ev != NULL)
2190 		spa_event_post(ev);
2191 
2192 	return (0);
2193 }
2194 
2195 static int
spa_vdev_remove_top_check(vdev_t * vd)2196 spa_vdev_remove_top_check(vdev_t *vd)
2197 {
2198 	spa_t *spa = vd->vdev_spa;
2199 
2200 	if (vd != vd->vdev_top)
2201 		return (SET_ERROR(ENOTSUP));
2202 
2203 	if (!vdev_is_concrete(vd))
2204 		return (SET_ERROR(ENOTSUP));
2205 
2206 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2207 		return (SET_ERROR(ENOTSUP));
2208 
2209 	/*
2210 	 * This device is already being removed
2211 	 */
2212 	if (vd->vdev_removing)
2213 		return (SET_ERROR(EALREADY));
2214 
2215 	metaslab_class_t *mc = vd->vdev_mg->mg_class;
2216 	metaslab_class_t *normal = spa_normal_class(spa);
2217 	if (mc != normal) {
2218 		/*
2219 		 * Space allocated from the special (or dedup) class is
2220 		 * included in the DMU's space usage, but it's not included
2221 		 * in spa_dspace (or dsl_pool_adjustedsize()).  Therefore
2222 		 * there is always at least as much free space in the normal
2223 		 * class, as is allocated from the special (and dedup) class.
2224 		 * As a backup check, we will return ENOSPC if this is
2225 		 * violated. See also spa_update_dspace().
2226 		 */
2227 		uint64_t available = metaslab_class_get_space(normal) -
2228 		    metaslab_class_get_alloc(normal);
2229 		ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2230 		if (available < vd->vdev_stat.vs_alloc)
2231 			return (SET_ERROR(ENOSPC));
2232 	} else if (!vd->vdev_noalloc) {
2233 		/* available space in the pool's normal class */
2234 		uint64_t available = dsl_dir_space_available(
2235 		    spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2236 		if (available < vd->vdev_stat.vs_dspace)
2237 			return (SET_ERROR(ENOSPC));
2238 	}
2239 
2240 	/*
2241 	 * There can not be a removal in progress.
2242 	 */
2243 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2244 		return (SET_ERROR(EBUSY));
2245 
2246 	/*
2247 	 * The device must have all its data.
2248 	 */
2249 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2250 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
2251 		return (SET_ERROR(EBUSY));
2252 
2253 	/*
2254 	 * The device must be healthy.
2255 	 */
2256 	if (!vdev_readable(vd))
2257 		return (SET_ERROR(EIO));
2258 
2259 	/*
2260 	 * All vdevs in normal class must have the same ashift.
2261 	 */
2262 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
2263 		return (SET_ERROR(EINVAL));
2264 	}
2265 
2266 	/*
2267 	 * A removed special/dedup vdev must have same ashift as normal class.
2268 	 */
2269 	ASSERT(!vd->vdev_islog);
2270 	if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2271 	    vd->vdev_ashift != spa->spa_max_ashift) {
2272 		return (SET_ERROR(EINVAL));
2273 	}
2274 
2275 	/*
2276 	 * All vdevs in normal class must have the same ashift
2277 	 * and not be raidz or draid.
2278 	 */
2279 	vdev_t *rvd = spa->spa_root_vdev;
2280 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2281 		vdev_t *cvd = rvd->vdev_child[id];
2282 
2283 		/*
2284 		 * A removed special/dedup vdev must have the same ashift
2285 		 * across all vdevs in its class.
2286 		 */
2287 		if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2288 		    cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2289 		    cvd->vdev_ashift != vd->vdev_ashift) {
2290 			return (SET_ERROR(EINVAL));
2291 		}
2292 		if (cvd->vdev_ashift != 0 &&
2293 		    cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2294 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2295 		if (!vdev_is_concrete(cvd))
2296 			continue;
2297 		if (vdev_get_nparity(cvd) != 0)
2298 			return (SET_ERROR(EINVAL));
2299 		/*
2300 		 * Need the mirror to be mirror of leaf vdevs only
2301 		 */
2302 		if (cvd->vdev_ops == &vdev_mirror_ops) {
2303 			for (uint64_t cid = 0;
2304 			    cid < cvd->vdev_children; cid++) {
2305 				if (!cvd->vdev_child[cid]->vdev_ops->
2306 				    vdev_op_leaf)
2307 					return (SET_ERROR(EINVAL));
2308 			}
2309 		}
2310 	}
2311 
2312 	return (0);
2313 }
2314 
2315 /*
2316  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2317  * The config lock is held for the specified TXG.  Once initiated,
2318  * evacuation of all allocated space (copying it to other vdevs) happens
2319  * in the background (see spa_vdev_remove_thread()), and can be canceled
2320  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2321  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2322  */
2323 static int
spa_vdev_remove_top(vdev_t * vd,uint64_t * txg)2324 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2325 {
2326 	spa_t *spa = vd->vdev_spa;
2327 	boolean_t set_noalloc = B_FALSE;
2328 	int error;
2329 
2330 	/*
2331 	 * Check for errors up-front, so that we don't waste time
2332 	 * passivating the metaslab group and clearing the ZIL if there
2333 	 * are errors.
2334 	 */
2335 	error = spa_vdev_remove_top_check(vd);
2336 
2337 	/*
2338 	 * Stop allocating from this vdev.  Note that we must check
2339 	 * that this is not the only device in the pool before
2340 	 * passivating, otherwise we will not be able to make
2341 	 * progress because we can't allocate from any vdevs.
2342 	 * The above check for sufficient free space serves this
2343 	 * purpose.
2344 	 */
2345 	if (error == 0 && !vd->vdev_noalloc) {
2346 		set_noalloc = B_TRUE;
2347 		error = vdev_passivate(vd, txg);
2348 	}
2349 
2350 	if (error != 0)
2351 		return (error);
2352 
2353 	/*
2354 	 * We stop any initializing and TRIM that is currently in progress
2355 	 * but leave the state as "active". This will allow the process to
2356 	 * resume if the removal is canceled sometime later.
2357 	 */
2358 
2359 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2360 
2361 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2362 	vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2363 	vdev_autotrim_stop_wait(vd);
2364 
2365 	*txg = spa_vdev_config_enter(spa);
2366 
2367 	/*
2368 	 * Things might have changed while the config lock was dropped
2369 	 * (e.g. space usage).  Check for errors again.
2370 	 */
2371 	error = spa_vdev_remove_top_check(vd);
2372 
2373 	if (error != 0) {
2374 		if (set_noalloc)
2375 			vdev_activate(vd);
2376 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2377 		spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2378 		spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2379 		return (error);
2380 	}
2381 
2382 	vd->vdev_removing = B_TRUE;
2383 
2384 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2385 	vdev_config_dirty(vd);
2386 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2387 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2388 	    vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2389 	dmu_tx_commit(tx);
2390 
2391 	return (0);
2392 }
2393 
2394 /*
2395  * Remove a device from the pool.
2396  *
2397  * Removing a device from the vdev namespace requires several steps
2398  * and can take a significant amount of time.  As a result we use
2399  * the spa_vdev_config_[enter/exit] functions which allow us to
2400  * grab and release the spa_config_lock while still holding the namespace
2401  * lock.  During each step the configuration is synced out.
2402  */
2403 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)2404 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2405 {
2406 	vdev_t *vd;
2407 	nvlist_t **spares, **l2cache, *nv;
2408 	uint64_t txg = 0;
2409 	uint_t nspares, nl2cache;
2410 	int error = 0, error_log;
2411 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2412 	sysevent_t *ev = NULL;
2413 	const char *vd_type = NULL;
2414 	char *vd_path = NULL;
2415 
2416 	ASSERT(spa_writeable(spa));
2417 
2418 	if (!locked)
2419 		txg = spa_vdev_enter(spa);
2420 
2421 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2422 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2423 		error = (spa_has_checkpoint(spa)) ?
2424 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2425 
2426 		if (!locked)
2427 			return (spa_vdev_exit(spa, NULL, txg, error));
2428 
2429 		return (error);
2430 	}
2431 
2432 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2433 
2434 	if (spa->spa_spares.sav_vdevs != NULL &&
2435 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2436 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2437 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2438 		/*
2439 		 * Only remove the hot spare if it's not currently in use
2440 		 * in this pool.
2441 		 */
2442 		if (vd == NULL || unspare) {
2443 			const char *type;
2444 			boolean_t draid_spare = B_FALSE;
2445 
2446 			if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2447 			    == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2448 				draid_spare = B_TRUE;
2449 
2450 			if (vd == NULL && draid_spare) {
2451 				error = SET_ERROR(ENOTSUP);
2452 			} else {
2453 				if (vd == NULL)
2454 					vd = spa_lookup_by_guid(spa,
2455 					    guid, B_TRUE);
2456 				ev = spa_event_create(spa, vd, NULL,
2457 				    ESC_ZFS_VDEV_REMOVE_AUX);
2458 
2459 				vd_type = VDEV_TYPE_SPARE;
2460 				vd_path = spa_strdup(fnvlist_lookup_string(
2461 				    nv, ZPOOL_CONFIG_PATH));
2462 				spa_vdev_remove_aux(spa->spa_spares.sav_config,
2463 				    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2464 				spa_load_spares(spa);
2465 				spa->spa_spares.sav_sync = B_TRUE;
2466 			}
2467 		} else {
2468 			error = SET_ERROR(EBUSY);
2469 		}
2470 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2471 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2472 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2473 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2474 		vd_type = VDEV_TYPE_L2CACHE;
2475 		vd_path = spa_strdup(fnvlist_lookup_string(
2476 		    nv, ZPOOL_CONFIG_PATH));
2477 		/*
2478 		 * Cache devices can always be removed.
2479 		 */
2480 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2481 
2482 		/*
2483 		 * Stop trimming the cache device. We need to release the
2484 		 * config lock to allow the syncing of TRIM transactions
2485 		 * without releasing the spa_namespace_lock. The same
2486 		 * strategy is employed in spa_vdev_remove_top().
2487 		 */
2488 		spa_vdev_config_exit(spa, NULL,
2489 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2490 		mutex_enter(&vd->vdev_trim_lock);
2491 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2492 		mutex_exit(&vd->vdev_trim_lock);
2493 		txg = spa_vdev_config_enter(spa);
2494 
2495 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2496 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2497 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2498 		spa_load_l2cache(spa);
2499 		spa->spa_l2cache.sav_sync = B_TRUE;
2500 	} else if (vd != NULL && vd->vdev_islog) {
2501 		ASSERT(!locked);
2502 		vd_type = VDEV_TYPE_LOG;
2503 		vd_path = spa_strdup((vd->vdev_path != NULL) ?
2504 		    vd->vdev_path : "-");
2505 		error = spa_vdev_remove_log(vd, &txg);
2506 	} else if (vd != NULL) {
2507 		ASSERT(!locked);
2508 		error = spa_vdev_remove_top(vd, &txg);
2509 	} else {
2510 		/*
2511 		 * There is no vdev of any kind with the specified guid.
2512 		 */
2513 		error = SET_ERROR(ENOENT);
2514 	}
2515 
2516 	error_log = error;
2517 
2518 	if (!locked)
2519 		error = spa_vdev_exit(spa, NULL, txg, error);
2520 
2521 	/*
2522 	 * Logging must be done outside the spa config lock. Otherwise,
2523 	 * this code path could end up holding the spa config lock while
2524 	 * waiting for a txg_sync so it can write to the internal log.
2525 	 * Doing that would prevent the txg sync from actually happening,
2526 	 * causing a deadlock.
2527 	 */
2528 	if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2529 		spa_history_log_internal(spa, "vdev remove", NULL,
2530 		    "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2531 	}
2532 	if (vd_path != NULL)
2533 		spa_strfree(vd_path);
2534 
2535 	if (ev != NULL)
2536 		spa_event_post(ev);
2537 
2538 	return (error);
2539 }
2540 
2541 int
spa_removal_get_stats(spa_t * spa,pool_removal_stat_t * prs)2542 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2543 {
2544 	prs->prs_state = spa->spa_removing_phys.sr_state;
2545 
2546 	if (prs->prs_state == DSS_NONE)
2547 		return (SET_ERROR(ENOENT));
2548 
2549 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2550 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2551 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2552 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2553 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2554 
2555 	prs->prs_mapping_memory = 0;
2556 	uint64_t indirect_vdev_id =
2557 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2558 	while (indirect_vdev_id != -1) {
2559 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2560 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2561 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2562 
2563 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2564 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2565 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2566 	}
2567 
2568 	return (0);
2569 }
2570 
2571 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2572 	"Ignore hard IO errors when removing device");
2573 
2574 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2575 	"Largest contiguous segment to allocate when removing device");
2576 
2577 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2578 	"Largest span of free chunks a remap segment can span");
2579 
2580 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2581 	"Pause device removal after this many bytes are copied "
2582 	"(debug use only - causes removal to hang)");
2583 
2584 EXPORT_SYMBOL(free_from_removing_vdev);
2585 EXPORT_SYMBOL(spa_removal_get_stats);
2586 EXPORT_SYMBOL(spa_remove_init);
2587 EXPORT_SYMBOL(spa_restart_removal);
2588 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2589 EXPORT_SYMBOL(spa_vdev_remove);
2590 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2591 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2592 EXPORT_SYMBOL(svr_sync);
2593