xref: /linux/arch/x86/kvm/svm/sev.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23 
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/msr.h>
30 #include <asm/sev.h>
31 
32 #include "mmu.h"
33 #include "x86.h"
34 #include "svm.h"
35 #include "svm_ops.h"
36 #include "cpuid.h"
37 #include "trace.h"
38 
39 #define GHCB_VERSION_MAX	2ULL
40 #define GHCB_VERSION_MIN	1ULL
41 
42 #define GHCB_HV_FT_SUPPORTED	(GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
43 
44 /* enable/disable SEV support */
45 static bool sev_enabled = true;
46 module_param_named(sev, sev_enabled, bool, 0444);
47 
48 /* enable/disable SEV-ES support */
49 static bool sev_es_enabled = true;
50 module_param_named(sev_es, sev_es_enabled, bool, 0444);
51 
52 /* enable/disable SEV-SNP support */
53 static bool sev_snp_enabled = true;
54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
55 
56 /* enable/disable SEV-ES DebugSwap support */
57 static bool sev_es_debug_swap_enabled = true;
58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
59 static u64 sev_supported_vmsa_features;
60 
61 static unsigned int nr_ciphertext_hiding_asids;
62 module_param_named(ciphertext_hiding_asids, nr_ciphertext_hiding_asids, uint, 0444);
63 
64 #define AP_RESET_HOLD_NONE		0
65 #define AP_RESET_HOLD_NAE_EVENT		1
66 #define AP_RESET_HOLD_MSR_PROTO		2
67 
68 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
69 #define SNP_POLICY_MASK_API_MINOR	GENMASK_ULL(7, 0)
70 #define SNP_POLICY_MASK_API_MAJOR	GENMASK_ULL(15, 8)
71 #define SNP_POLICY_MASK_SMT		BIT_ULL(16)
72 #define SNP_POLICY_MASK_RSVD_MBO	BIT_ULL(17)
73 #define SNP_POLICY_MASK_DEBUG		BIT_ULL(19)
74 #define SNP_POLICY_MASK_SINGLE_SOCKET	BIT_ULL(20)
75 
76 #define SNP_POLICY_MASK_VALID		(SNP_POLICY_MASK_API_MINOR	| \
77 					 SNP_POLICY_MASK_API_MAJOR	| \
78 					 SNP_POLICY_MASK_SMT		| \
79 					 SNP_POLICY_MASK_RSVD_MBO	| \
80 					 SNP_POLICY_MASK_DEBUG		| \
81 					 SNP_POLICY_MASK_SINGLE_SOCKET)
82 
83 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
84 
85 static u8 sev_enc_bit;
86 static DECLARE_RWSEM(sev_deactivate_lock);
87 static DEFINE_MUTEX(sev_bitmap_lock);
88 unsigned int max_sev_asid;
89 static unsigned int min_sev_asid;
90 static unsigned int max_sev_es_asid;
91 static unsigned int min_sev_es_asid;
92 static unsigned int max_snp_asid;
93 static unsigned int min_snp_asid;
94 static unsigned long sev_me_mask;
95 static unsigned int nr_asids;
96 static unsigned long *sev_asid_bitmap;
97 static unsigned long *sev_reclaim_asid_bitmap;
98 
99 static int snp_decommission_context(struct kvm *kvm);
100 
101 struct enc_region {
102 	struct list_head list;
103 	unsigned long npages;
104 	struct page **pages;
105 	unsigned long uaddr;
106 	unsigned long size;
107 };
108 
109 /* Called with the sev_bitmap_lock held, or on shutdown  */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)110 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
111 {
112 	int ret, error = 0;
113 	unsigned int asid;
114 
115 	/* Check if there are any ASIDs to reclaim before performing a flush */
116 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
117 	if (asid > max_asid)
118 		return -EBUSY;
119 
120 	/*
121 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
122 	 * so it must be guarded.
123 	 */
124 	down_write(&sev_deactivate_lock);
125 
126 	/* SNP firmware requires use of WBINVD for ASID recycling. */
127 	wbinvd_on_all_cpus();
128 
129 	if (sev_snp_enabled)
130 		ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
131 	else
132 		ret = sev_guest_df_flush(&error);
133 
134 	up_write(&sev_deactivate_lock);
135 
136 	if (ret)
137 		pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
138 		       sev_snp_enabled ? "-SNP" : "", ret, error);
139 
140 	return ret;
141 }
142 
is_mirroring_enc_context(struct kvm * kvm)143 static inline bool is_mirroring_enc_context(struct kvm *kvm)
144 {
145 	return !!to_kvm_sev_info(kvm)->enc_context_owner;
146 }
147 
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)148 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
149 {
150 	struct kvm_vcpu *vcpu = &svm->vcpu;
151 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
152 
153 	return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
154 }
155 
snp_is_secure_tsc_enabled(struct kvm * kvm)156 static bool snp_is_secure_tsc_enabled(struct kvm *kvm)
157 {
158 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
159 
160 	return (sev->vmsa_features & SVM_SEV_FEAT_SECURE_TSC) &&
161 	       !WARN_ON_ONCE(!sev_snp_guest(kvm));
162 }
163 
164 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)165 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
166 {
167 	if (sev_flush_asids(min_asid, max_asid))
168 		return false;
169 
170 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
171 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
172 		   nr_asids);
173 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
174 
175 	return true;
176 }
177 
sev_misc_cg_try_charge(struct kvm_sev_info * sev)178 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
179 {
180 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
181 	return misc_cg_try_charge(type, sev->misc_cg, 1);
182 }
183 
sev_misc_cg_uncharge(struct kvm_sev_info * sev)184 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
185 {
186 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
187 	misc_cg_uncharge(type, sev->misc_cg, 1);
188 }
189 
sev_asid_new(struct kvm_sev_info * sev,unsigned long vm_type)190 static int sev_asid_new(struct kvm_sev_info *sev, unsigned long vm_type)
191 {
192 	/*
193 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
194 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
195 	 */
196 	unsigned int min_asid, max_asid, asid;
197 	bool retry = true;
198 	int ret;
199 
200 	if (vm_type == KVM_X86_SNP_VM) {
201 		min_asid = min_snp_asid;
202 		max_asid = max_snp_asid;
203 	} else if (sev->es_active) {
204 		min_asid = min_sev_es_asid;
205 		max_asid = max_sev_es_asid;
206 	} else {
207 		min_asid = min_sev_asid;
208 		max_asid = max_sev_asid;
209 	}
210 
211 	/*
212 	 * The min ASID can end up larger than the max if basic SEV support is
213 	 * effectively disabled by disallowing use of ASIDs for SEV guests.
214 	 * Similarly for SEV-ES guests the min ASID can end up larger than the
215 	 * max when ciphertext hiding is enabled, effectively disabling SEV-ES
216 	 * support.
217 	 */
218 	if (min_asid > max_asid)
219 		return -ENOTTY;
220 
221 	WARN_ON(sev->misc_cg);
222 	sev->misc_cg = get_current_misc_cg();
223 	ret = sev_misc_cg_try_charge(sev);
224 	if (ret) {
225 		put_misc_cg(sev->misc_cg);
226 		sev->misc_cg = NULL;
227 		return ret;
228 	}
229 
230 	mutex_lock(&sev_bitmap_lock);
231 
232 again:
233 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
234 	if (asid > max_asid) {
235 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
236 			retry = false;
237 			goto again;
238 		}
239 		mutex_unlock(&sev_bitmap_lock);
240 		ret = -EBUSY;
241 		goto e_uncharge;
242 	}
243 
244 	__set_bit(asid, sev_asid_bitmap);
245 
246 	mutex_unlock(&sev_bitmap_lock);
247 
248 	sev->asid = asid;
249 	return 0;
250 e_uncharge:
251 	sev_misc_cg_uncharge(sev);
252 	put_misc_cg(sev->misc_cg);
253 	sev->misc_cg = NULL;
254 	return ret;
255 }
256 
sev_get_asid(struct kvm * kvm)257 static unsigned int sev_get_asid(struct kvm *kvm)
258 {
259 	return to_kvm_sev_info(kvm)->asid;
260 }
261 
sev_asid_free(struct kvm_sev_info * sev)262 static void sev_asid_free(struct kvm_sev_info *sev)
263 {
264 	struct svm_cpu_data *sd;
265 	int cpu;
266 
267 	mutex_lock(&sev_bitmap_lock);
268 
269 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
270 
271 	for_each_possible_cpu(cpu) {
272 		sd = per_cpu_ptr(&svm_data, cpu);
273 		sd->sev_vmcbs[sev->asid] = NULL;
274 	}
275 
276 	mutex_unlock(&sev_bitmap_lock);
277 
278 	sev_misc_cg_uncharge(sev);
279 	put_misc_cg(sev->misc_cg);
280 	sev->misc_cg = NULL;
281 }
282 
sev_decommission(unsigned int handle)283 static void sev_decommission(unsigned int handle)
284 {
285 	struct sev_data_decommission decommission;
286 
287 	if (!handle)
288 		return;
289 
290 	decommission.handle = handle;
291 	sev_guest_decommission(&decommission, NULL);
292 }
293 
294 /*
295  * Transition a page to hypervisor-owned/shared state in the RMP table. This
296  * should not fail under normal conditions, but leak the page should that
297  * happen since it will no longer be usable by the host due to RMP protections.
298  */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)299 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
300 {
301 	if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
302 		snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
303 		return -EIO;
304 	}
305 
306 	return 0;
307 }
308 
309 /*
310  * Certain page-states, such as Pre-Guest and Firmware pages (as documented
311  * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
312  * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
313  * unless they are reclaimed first.
314  *
315  * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
316  * might not be usable by the host due to being set as immutable or still
317  * being associated with a guest ASID.
318  *
319  * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
320  * converted back to shared, as the page is no longer usable due to RMP
321  * protections, and it's infeasible for the guest to continue on.
322  */
snp_page_reclaim(struct kvm * kvm,u64 pfn)323 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
324 {
325 	struct sev_data_snp_page_reclaim data = {0};
326 	int fw_err, rc;
327 
328 	data.paddr = __sme_set(pfn << PAGE_SHIFT);
329 	rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
330 	if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
331 		snp_leak_pages(pfn, 1);
332 		return -EIO;
333 	}
334 
335 	if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
336 		return -EIO;
337 
338 	return rc;
339 }
340 
sev_unbind_asid(struct kvm * kvm,unsigned int handle)341 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
342 {
343 	struct sev_data_deactivate deactivate;
344 
345 	if (!handle)
346 		return;
347 
348 	deactivate.handle = handle;
349 
350 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
351 	down_read(&sev_deactivate_lock);
352 	sev_guest_deactivate(&deactivate, NULL);
353 	up_read(&sev_deactivate_lock);
354 
355 	sev_decommission(handle);
356 }
357 
358 /*
359  * This sets up bounce buffers/firmware pages to handle SNP Guest Request
360  * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
361  * 2.0 specification for more details.
362  *
363  * Technically, when an SNP Guest Request is issued, the guest will provide its
364  * own request/response pages, which could in theory be passed along directly
365  * to firmware rather than using bounce pages. However, these pages would need
366  * special care:
367  *
368  *   - Both pages are from shared guest memory, so they need to be protected
369  *     from migration/etc. occurring while firmware reads/writes to them. At a
370  *     minimum, this requires elevating the ref counts and potentially needing
371  *     an explicit pinning of the memory. This places additional restrictions
372  *     on what type of memory backends userspace can use for shared guest
373  *     memory since there is some reliance on using refcounted pages.
374  *
375  *   - The response page needs to be switched to Firmware-owned[1] state
376  *     before the firmware can write to it, which can lead to potential
377  *     host RMP #PFs if the guest is misbehaved and hands the host a
378  *     guest page that KVM might write to for other reasons (e.g. virtio
379  *     buffers/etc.).
380  *
381  * Both of these issues can be avoided completely by using separately-allocated
382  * bounce pages for both the request/response pages and passing those to
383  * firmware instead. So that's what is being set up here.
384  *
385  * Guest requests rely on message sequence numbers to ensure requests are
386  * issued to firmware in the order the guest issues them, so concurrent guest
387  * requests generally shouldn't happen. But a misbehaved guest could issue
388  * concurrent guest requests in theory, so a mutex is used to serialize
389  * access to the bounce buffers.
390  *
391  * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
392  *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
393  *     in the APM for details on the related RMP restrictions.
394  */
snp_guest_req_init(struct kvm * kvm)395 static int snp_guest_req_init(struct kvm *kvm)
396 {
397 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
398 	struct page *req_page;
399 
400 	req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
401 	if (!req_page)
402 		return -ENOMEM;
403 
404 	sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
405 	if (!sev->guest_resp_buf) {
406 		__free_page(req_page);
407 		return -EIO;
408 	}
409 
410 	sev->guest_req_buf = page_address(req_page);
411 	mutex_init(&sev->guest_req_mutex);
412 
413 	return 0;
414 }
415 
snp_guest_req_cleanup(struct kvm * kvm)416 static void snp_guest_req_cleanup(struct kvm *kvm)
417 {
418 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
419 
420 	if (sev->guest_resp_buf)
421 		snp_free_firmware_page(sev->guest_resp_buf);
422 
423 	if (sev->guest_req_buf)
424 		__free_page(virt_to_page(sev->guest_req_buf));
425 
426 	sev->guest_req_buf = NULL;
427 	sev->guest_resp_buf = NULL;
428 }
429 
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)430 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
431 			    struct kvm_sev_init *data,
432 			    unsigned long vm_type)
433 {
434 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
435 	struct sev_platform_init_args init_args = {0};
436 	bool es_active = vm_type != KVM_X86_SEV_VM;
437 	bool snp_active = vm_type == KVM_X86_SNP_VM;
438 	u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
439 	int ret;
440 
441 	if (kvm->created_vcpus)
442 		return -EINVAL;
443 
444 	if (data->flags)
445 		return -EINVAL;
446 
447 	if (!snp_active)
448 		valid_vmsa_features &= ~SVM_SEV_FEAT_SECURE_TSC;
449 
450 	if (data->vmsa_features & ~valid_vmsa_features)
451 		return -EINVAL;
452 
453 	if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
454 		return -EINVAL;
455 
456 	/*
457 	 * KVM supports the full range of mandatory features defined by version
458 	 * 2 of the GHCB protocol, so default to that for SEV-ES guests created
459 	 * via KVM_SEV_INIT2 (KVM_SEV_INIT forces version 1).
460 	 */
461 	if (es_active && !data->ghcb_version)
462 		data->ghcb_version = 2;
463 
464 	if (snp_active && data->ghcb_version < 2)
465 		return -EINVAL;
466 
467 	if (unlikely(sev->active))
468 		return -EINVAL;
469 
470 	sev->active = true;
471 	sev->es_active = es_active;
472 	sev->vmsa_features = data->vmsa_features;
473 	sev->ghcb_version = data->ghcb_version;
474 
475 	if (snp_active)
476 		sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
477 
478 	ret = sev_asid_new(sev, vm_type);
479 	if (ret)
480 		goto e_no_asid;
481 
482 	init_args.probe = false;
483 	ret = sev_platform_init(&init_args);
484 	if (ret)
485 		goto e_free_asid;
486 
487 	if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
488 		ret = -ENOMEM;
489 		goto e_free_asid;
490 	}
491 
492 	/* This needs to happen after SEV/SNP firmware initialization. */
493 	if (snp_active) {
494 		ret = snp_guest_req_init(kvm);
495 		if (ret)
496 			goto e_free;
497 	}
498 
499 	INIT_LIST_HEAD(&sev->regions_list);
500 	INIT_LIST_HEAD(&sev->mirror_vms);
501 	sev->need_init = false;
502 
503 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
504 
505 	return 0;
506 
507 e_free:
508 	free_cpumask_var(sev->have_run_cpus);
509 e_free_asid:
510 	argp->error = init_args.error;
511 	sev_asid_free(sev);
512 	sev->asid = 0;
513 e_no_asid:
514 	sev->vmsa_features = 0;
515 	sev->es_active = false;
516 	sev->active = false;
517 	return ret;
518 }
519 
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)520 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
521 {
522 	struct kvm_sev_init data = {
523 		.vmsa_features = 0,
524 		.ghcb_version = 0,
525 	};
526 	unsigned long vm_type;
527 
528 	if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
529 		return -EINVAL;
530 
531 	vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
532 
533 	/*
534 	 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
535 	 * continue to only ever support the minimal GHCB protocol version.
536 	 */
537 	if (vm_type == KVM_X86_SEV_ES_VM)
538 		data.ghcb_version = GHCB_VERSION_MIN;
539 
540 	return __sev_guest_init(kvm, argp, &data, vm_type);
541 }
542 
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)543 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
544 {
545 	struct kvm_sev_init data;
546 
547 	if (!to_kvm_sev_info(kvm)->need_init)
548 		return -EINVAL;
549 
550 	if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
551 	    kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
552 	    kvm->arch.vm_type != KVM_X86_SNP_VM)
553 		return -EINVAL;
554 
555 	if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
556 		return -EFAULT;
557 
558 	return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
559 }
560 
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)561 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
562 {
563 	unsigned int asid = sev_get_asid(kvm);
564 	struct sev_data_activate activate;
565 	int ret;
566 
567 	/* activate ASID on the given handle */
568 	activate.handle = handle;
569 	activate.asid   = asid;
570 	ret = sev_guest_activate(&activate, error);
571 
572 	return ret;
573 }
574 
__sev_issue_cmd(int fd,int id,void * data,int * error)575 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
576 {
577 	CLASS(fd, f)(fd);
578 
579 	if (fd_empty(f))
580 		return -EBADF;
581 
582 	return sev_issue_cmd_external_user(fd_file(f), id, data, error);
583 }
584 
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)585 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
586 {
587 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
588 
589 	return __sev_issue_cmd(sev->fd, id, data, error);
590 }
591 
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)592 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
593 {
594 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
595 	struct sev_data_launch_start start;
596 	struct kvm_sev_launch_start params;
597 	void *dh_blob, *session_blob;
598 	int *error = &argp->error;
599 	int ret;
600 
601 	if (!sev_guest(kvm))
602 		return -ENOTTY;
603 
604 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
605 		return -EFAULT;
606 
607 	memset(&start, 0, sizeof(start));
608 
609 	dh_blob = NULL;
610 	if (params.dh_uaddr) {
611 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
612 		if (IS_ERR(dh_blob))
613 			return PTR_ERR(dh_blob);
614 
615 		start.dh_cert_address = __sme_set(__pa(dh_blob));
616 		start.dh_cert_len = params.dh_len;
617 	}
618 
619 	session_blob = NULL;
620 	if (params.session_uaddr) {
621 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
622 		if (IS_ERR(session_blob)) {
623 			ret = PTR_ERR(session_blob);
624 			goto e_free_dh;
625 		}
626 
627 		start.session_address = __sme_set(__pa(session_blob));
628 		start.session_len = params.session_len;
629 	}
630 
631 	start.handle = params.handle;
632 	start.policy = params.policy;
633 
634 	/* create memory encryption context */
635 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
636 	if (ret)
637 		goto e_free_session;
638 
639 	/* Bind ASID to this guest */
640 	ret = sev_bind_asid(kvm, start.handle, error);
641 	if (ret) {
642 		sev_decommission(start.handle);
643 		goto e_free_session;
644 	}
645 
646 	/* return handle to userspace */
647 	params.handle = start.handle;
648 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
649 		sev_unbind_asid(kvm, start.handle);
650 		ret = -EFAULT;
651 		goto e_free_session;
652 	}
653 
654 	sev->policy = params.policy;
655 	sev->handle = start.handle;
656 	sev->fd = argp->sev_fd;
657 
658 e_free_session:
659 	kfree(session_blob);
660 e_free_dh:
661 	kfree(dh_blob);
662 	return ret;
663 }
664 
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,unsigned int flags)665 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
666 				    unsigned long ulen, unsigned long *n,
667 				    unsigned int flags)
668 {
669 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
670 	unsigned long npages, size;
671 	int npinned;
672 	unsigned long locked, lock_limit;
673 	struct page **pages;
674 	unsigned long first, last;
675 	int ret;
676 
677 	lockdep_assert_held(&kvm->lock);
678 
679 	if (ulen == 0 || uaddr + ulen < uaddr)
680 		return ERR_PTR(-EINVAL);
681 
682 	/* Calculate number of pages. */
683 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
684 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
685 	npages = (last - first + 1);
686 
687 	locked = sev->pages_locked + npages;
688 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
689 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
690 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
691 		return ERR_PTR(-ENOMEM);
692 	}
693 
694 	if (WARN_ON_ONCE(npages > INT_MAX))
695 		return ERR_PTR(-EINVAL);
696 
697 	/* Avoid using vmalloc for smaller buffers. */
698 	size = npages * sizeof(struct page *);
699 	if (size > PAGE_SIZE)
700 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
701 	else
702 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
703 
704 	if (!pages)
705 		return ERR_PTR(-ENOMEM);
706 
707 	/* Pin the user virtual address. */
708 	npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
709 	if (npinned != npages) {
710 		pr_err("SEV: Failure locking %lu pages.\n", npages);
711 		ret = -ENOMEM;
712 		goto err;
713 	}
714 
715 	*n = npages;
716 	sev->pages_locked = locked;
717 
718 	return pages;
719 
720 err:
721 	if (npinned > 0)
722 		unpin_user_pages(pages, npinned);
723 
724 	kvfree(pages);
725 	return ERR_PTR(ret);
726 }
727 
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)728 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
729 			     unsigned long npages)
730 {
731 	unpin_user_pages(pages, npages);
732 	kvfree(pages);
733 	to_kvm_sev_info(kvm)->pages_locked -= npages;
734 }
735 
sev_clflush_pages(struct page * pages[],unsigned long npages)736 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
737 {
738 	uint8_t *page_virtual;
739 	unsigned long i;
740 
741 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
742 	    pages == NULL)
743 		return;
744 
745 	for (i = 0; i < npages; i++) {
746 		page_virtual = kmap_local_page(pages[i]);
747 		clflush_cache_range(page_virtual, PAGE_SIZE);
748 		kunmap_local(page_virtual);
749 		cond_resched();
750 	}
751 }
752 
sev_writeback_caches(struct kvm * kvm)753 static void sev_writeback_caches(struct kvm *kvm)
754 {
755 	/*
756 	 * Ensure that all dirty guest tagged cache entries are written back
757 	 * before releasing the pages back to the system for use.  CLFLUSH will
758 	 * not do this without SME_COHERENT, and flushing many cache lines
759 	 * individually is slower than blasting WBINVD for large VMs, so issue
760 	 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported)
761 	 * on CPUs that have done VMRUN, i.e. may have dirtied data using the
762 	 * VM's ASID.
763 	 *
764 	 * For simplicity, never remove CPUs from the bitmap.  Ideally, KVM
765 	 * would clear the mask when flushing caches, but doing so requires
766 	 * serializing multiple calls and having responding CPUs (to the IPI)
767 	 * mark themselves as still running if they are running (or about to
768 	 * run) a vCPU for the VM.
769 	 *
770 	 * Note, the caller is responsible for ensuring correctness if the mask
771 	 * can be modified, e.g. if a CPU could be doing VMRUN.
772 	 */
773 	wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
774 }
775 
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)776 static unsigned long get_num_contig_pages(unsigned long idx,
777 				struct page **inpages, unsigned long npages)
778 {
779 	unsigned long paddr, next_paddr;
780 	unsigned long i = idx + 1, pages = 1;
781 
782 	/* find the number of contiguous pages starting from idx */
783 	paddr = __sme_page_pa(inpages[idx]);
784 	while (i < npages) {
785 		next_paddr = __sme_page_pa(inpages[i++]);
786 		if ((paddr + PAGE_SIZE) == next_paddr) {
787 			pages++;
788 			paddr = next_paddr;
789 			continue;
790 		}
791 		break;
792 	}
793 
794 	return pages;
795 }
796 
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)797 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
798 {
799 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
800 	struct kvm_sev_launch_update_data params;
801 	struct sev_data_launch_update_data data;
802 	struct page **inpages;
803 	int ret;
804 
805 	if (!sev_guest(kvm))
806 		return -ENOTTY;
807 
808 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
809 		return -EFAULT;
810 
811 	vaddr = params.uaddr;
812 	size = params.len;
813 	vaddr_end = vaddr + size;
814 
815 	/* Lock the user memory. */
816 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
817 	if (IS_ERR(inpages))
818 		return PTR_ERR(inpages);
819 
820 	/*
821 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
822 	 * place; the cache may contain the data that was written unencrypted.
823 	 */
824 	sev_clflush_pages(inpages, npages);
825 
826 	data.reserved = 0;
827 	data.handle = to_kvm_sev_info(kvm)->handle;
828 
829 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
830 		int offset, len;
831 
832 		/*
833 		 * If the user buffer is not page-aligned, calculate the offset
834 		 * within the page.
835 		 */
836 		offset = vaddr & (PAGE_SIZE - 1);
837 
838 		/* Calculate the number of pages that can be encrypted in one go. */
839 		pages = get_num_contig_pages(i, inpages, npages);
840 
841 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
842 
843 		data.len = len;
844 		data.address = __sme_page_pa(inpages[i]) + offset;
845 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
846 		if (ret)
847 			goto e_unpin;
848 
849 		size -= len;
850 		next_vaddr = vaddr + len;
851 	}
852 
853 e_unpin:
854 	/* content of memory is updated, mark pages dirty */
855 	for (i = 0; i < npages; i++) {
856 		set_page_dirty_lock(inpages[i]);
857 		mark_page_accessed(inpages[i]);
858 	}
859 	/* unlock the user pages */
860 	sev_unpin_memory(kvm, inpages, npages);
861 	return ret;
862 }
863 
sev_es_sync_vmsa(struct vcpu_svm * svm)864 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
865 {
866 	struct kvm_vcpu *vcpu = &svm->vcpu;
867 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
868 	struct sev_es_save_area *save = svm->sev_es.vmsa;
869 	struct xregs_state *xsave;
870 	const u8 *s;
871 	u8 *d;
872 	int i;
873 
874 	/* Check some debug related fields before encrypting the VMSA */
875 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
876 		return -EINVAL;
877 
878 	/*
879 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
880 	 * the traditional VMSA that is part of the VMCB. Copy the
881 	 * traditional VMSA as it has been built so far (in prep
882 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
883 	 */
884 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
885 
886 	/* Sync registgers */
887 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
888 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
889 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
890 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
891 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
892 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
893 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
894 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
895 #ifdef CONFIG_X86_64
896 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
897 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
898 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
899 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
900 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
901 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
902 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
903 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
904 #endif
905 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
906 
907 	/* Sync some non-GPR registers before encrypting */
908 	save->xcr0 = svm->vcpu.arch.xcr0;
909 	save->pkru = svm->vcpu.arch.pkru;
910 	save->xss  = svm->vcpu.arch.ia32_xss;
911 	save->dr6  = svm->vcpu.arch.dr6;
912 
913 	save->sev_features = sev->vmsa_features;
914 
915 	/*
916 	 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
917 	 * breaking older measurements.
918 	 */
919 	if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
920 		xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
921 		save->x87_dp = xsave->i387.rdp;
922 		save->mxcsr = xsave->i387.mxcsr;
923 		save->x87_ftw = xsave->i387.twd;
924 		save->x87_fsw = xsave->i387.swd;
925 		save->x87_fcw = xsave->i387.cwd;
926 		save->x87_fop = xsave->i387.fop;
927 		save->x87_ds = 0;
928 		save->x87_cs = 0;
929 		save->x87_rip = xsave->i387.rip;
930 
931 		for (i = 0; i < 8; i++) {
932 			/*
933 			 * The format of the x87 save area is undocumented and
934 			 * definitely not what you would expect.  It consists of
935 			 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
936 			 * area with bytes 8-9 of each register.
937 			 */
938 			d = save->fpreg_x87 + i * 8;
939 			s = ((u8 *)xsave->i387.st_space) + i * 16;
940 			memcpy(d, s, 8);
941 			save->fpreg_x87[64 + i * 2] = s[8];
942 			save->fpreg_x87[64 + i * 2 + 1] = s[9];
943 		}
944 		memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
945 
946 		s = get_xsave_addr(xsave, XFEATURE_YMM);
947 		if (s)
948 			memcpy(save->fpreg_ymm, s, 256);
949 		else
950 			memset(save->fpreg_ymm, 0, 256);
951 	}
952 
953 	pr_debug("Virtual Machine Save Area (VMSA):\n");
954 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
955 
956 	return 0;
957 }
958 
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)959 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
960 				    int *error)
961 {
962 	struct sev_data_launch_update_vmsa vmsa;
963 	struct vcpu_svm *svm = to_svm(vcpu);
964 	int ret;
965 
966 	if (vcpu->guest_debug) {
967 		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
968 		return -EINVAL;
969 	}
970 
971 	/* Perform some pre-encryption checks against the VMSA */
972 	ret = sev_es_sync_vmsa(svm);
973 	if (ret)
974 		return ret;
975 
976 	/*
977 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
978 	 * the VMSA memory content (i.e it will write the same memory region
979 	 * with the guest's key), so invalidate it first.
980 	 */
981 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
982 
983 	vmsa.reserved = 0;
984 	vmsa.handle = to_kvm_sev_info(kvm)->handle;
985 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
986 	vmsa.len = PAGE_SIZE;
987 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
988 	if (ret)
989 	  return ret;
990 
991 	/*
992 	 * SEV-ES guests maintain an encrypted version of their FPU
993 	 * state which is restored and saved on VMRUN and VMEXIT.
994 	 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
995 	 * do xsave/xrstor on it.
996 	 */
997 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
998 	vcpu->arch.guest_state_protected = true;
999 
1000 	/*
1001 	 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
1002 	 * only after setting guest_state_protected because KVM_SET_MSRS allows
1003 	 * dynamic toggling of LBRV (for performance reason) on write access to
1004 	 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
1005 	 */
1006 	svm_enable_lbrv(vcpu);
1007 	return 0;
1008 }
1009 
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)1010 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
1011 {
1012 	struct kvm_vcpu *vcpu;
1013 	unsigned long i;
1014 	int ret;
1015 
1016 	if (!sev_es_guest(kvm))
1017 		return -ENOTTY;
1018 
1019 	kvm_for_each_vcpu(i, vcpu, kvm) {
1020 		ret = mutex_lock_killable(&vcpu->mutex);
1021 		if (ret)
1022 			return ret;
1023 
1024 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
1025 
1026 		mutex_unlock(&vcpu->mutex);
1027 		if (ret)
1028 			return ret;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)1034 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
1035 {
1036 	void __user *measure = u64_to_user_ptr(argp->data);
1037 	struct sev_data_launch_measure data;
1038 	struct kvm_sev_launch_measure params;
1039 	void __user *p = NULL;
1040 	void *blob = NULL;
1041 	int ret;
1042 
1043 	if (!sev_guest(kvm))
1044 		return -ENOTTY;
1045 
1046 	if (copy_from_user(&params, measure, sizeof(params)))
1047 		return -EFAULT;
1048 
1049 	memset(&data, 0, sizeof(data));
1050 
1051 	/* User wants to query the blob length */
1052 	if (!params.len)
1053 		goto cmd;
1054 
1055 	p = u64_to_user_ptr(params.uaddr);
1056 	if (p) {
1057 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1058 			return -EINVAL;
1059 
1060 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1061 		if (!blob)
1062 			return -ENOMEM;
1063 
1064 		data.address = __psp_pa(blob);
1065 		data.len = params.len;
1066 	}
1067 
1068 cmd:
1069 	data.handle = to_kvm_sev_info(kvm)->handle;
1070 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1071 
1072 	/*
1073 	 * If we query the session length, FW responded with expected data.
1074 	 */
1075 	if (!params.len)
1076 		goto done;
1077 
1078 	if (ret)
1079 		goto e_free_blob;
1080 
1081 	if (blob) {
1082 		if (copy_to_user(p, blob, params.len))
1083 			ret = -EFAULT;
1084 	}
1085 
1086 done:
1087 	params.len = data.len;
1088 	if (copy_to_user(measure, &params, sizeof(params)))
1089 		ret = -EFAULT;
1090 e_free_blob:
1091 	kfree(blob);
1092 	return ret;
1093 }
1094 
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1095 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1096 {
1097 	struct sev_data_launch_finish data;
1098 
1099 	if (!sev_guest(kvm))
1100 		return -ENOTTY;
1101 
1102 	data.handle = to_kvm_sev_info(kvm)->handle;
1103 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1104 }
1105 
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1106 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1107 {
1108 	struct kvm_sev_guest_status params;
1109 	struct sev_data_guest_status data;
1110 	int ret;
1111 
1112 	if (!sev_guest(kvm))
1113 		return -ENOTTY;
1114 
1115 	memset(&data, 0, sizeof(data));
1116 
1117 	data.handle = to_kvm_sev_info(kvm)->handle;
1118 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1119 	if (ret)
1120 		return ret;
1121 
1122 	params.policy = data.policy;
1123 	params.state = data.state;
1124 	params.handle = data.handle;
1125 
1126 	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
1127 		ret = -EFAULT;
1128 
1129 	return ret;
1130 }
1131 
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1132 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1133 			       unsigned long dst, int size,
1134 			       int *error, bool enc)
1135 {
1136 	struct sev_data_dbg data;
1137 
1138 	data.reserved = 0;
1139 	data.handle = to_kvm_sev_info(kvm)->handle;
1140 	data.dst_addr = dst;
1141 	data.src_addr = src;
1142 	data.len = size;
1143 
1144 	return sev_issue_cmd(kvm,
1145 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1146 			     &data, error);
1147 }
1148 
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1149 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1150 			     unsigned long dst_paddr, int sz, int *err)
1151 {
1152 	int offset;
1153 
1154 	/*
1155 	 * Its safe to read more than we are asked, caller should ensure that
1156 	 * destination has enough space.
1157 	 */
1158 	offset = src_paddr & 15;
1159 	src_paddr = round_down(src_paddr, 16);
1160 	sz = round_up(sz + offset, 16);
1161 
1162 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1163 }
1164 
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1165 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1166 				  void __user *dst_uaddr,
1167 				  unsigned long dst_paddr,
1168 				  int size, int *err)
1169 {
1170 	struct page *tpage = NULL;
1171 	int ret, offset;
1172 
1173 	/* if inputs are not 16-byte then use intermediate buffer */
1174 	if (!IS_ALIGNED(dst_paddr, 16) ||
1175 	    !IS_ALIGNED(paddr,     16) ||
1176 	    !IS_ALIGNED(size,      16)) {
1177 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1178 		if (!tpage)
1179 			return -ENOMEM;
1180 
1181 		dst_paddr = __sme_page_pa(tpage);
1182 	}
1183 
1184 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1185 	if (ret)
1186 		goto e_free;
1187 
1188 	if (tpage) {
1189 		offset = paddr & 15;
1190 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1191 			ret = -EFAULT;
1192 	}
1193 
1194 e_free:
1195 	if (tpage)
1196 		__free_page(tpage);
1197 
1198 	return ret;
1199 }
1200 
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1201 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1202 				  void __user *vaddr,
1203 				  unsigned long dst_paddr,
1204 				  void __user *dst_vaddr,
1205 				  int size, int *error)
1206 {
1207 	struct page *src_tpage = NULL;
1208 	struct page *dst_tpage = NULL;
1209 	int ret, len = size;
1210 
1211 	/* If source buffer is not aligned then use an intermediate buffer */
1212 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1213 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1214 		if (!src_tpage)
1215 			return -ENOMEM;
1216 
1217 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1218 			__free_page(src_tpage);
1219 			return -EFAULT;
1220 		}
1221 
1222 		paddr = __sme_page_pa(src_tpage);
1223 	}
1224 
1225 	/*
1226 	 *  If destination buffer or length is not aligned then do read-modify-write:
1227 	 *   - decrypt destination in an intermediate buffer
1228 	 *   - copy the source buffer in an intermediate buffer
1229 	 *   - use the intermediate buffer as source buffer
1230 	 */
1231 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1232 		int dst_offset;
1233 
1234 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1235 		if (!dst_tpage) {
1236 			ret = -ENOMEM;
1237 			goto e_free;
1238 		}
1239 
1240 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
1241 					__sme_page_pa(dst_tpage), size, error);
1242 		if (ret)
1243 			goto e_free;
1244 
1245 		/*
1246 		 *  If source is kernel buffer then use memcpy() otherwise
1247 		 *  copy_from_user().
1248 		 */
1249 		dst_offset = dst_paddr & 15;
1250 
1251 		if (src_tpage)
1252 			memcpy(page_address(dst_tpage) + dst_offset,
1253 			       page_address(src_tpage), size);
1254 		else {
1255 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
1256 					   vaddr, size)) {
1257 				ret = -EFAULT;
1258 				goto e_free;
1259 			}
1260 		}
1261 
1262 		paddr = __sme_page_pa(dst_tpage);
1263 		dst_paddr = round_down(dst_paddr, 16);
1264 		len = round_up(size, 16);
1265 	}
1266 
1267 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1268 
1269 e_free:
1270 	if (src_tpage)
1271 		__free_page(src_tpage);
1272 	if (dst_tpage)
1273 		__free_page(dst_tpage);
1274 	return ret;
1275 }
1276 
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1277 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1278 {
1279 	unsigned long vaddr, vaddr_end, next_vaddr;
1280 	unsigned long dst_vaddr;
1281 	struct page **src_p, **dst_p;
1282 	struct kvm_sev_dbg debug;
1283 	unsigned long n;
1284 	unsigned int size;
1285 	int ret;
1286 
1287 	if (!sev_guest(kvm))
1288 		return -ENOTTY;
1289 
1290 	if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1291 		return -EFAULT;
1292 
1293 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1294 		return -EINVAL;
1295 	if (!debug.dst_uaddr)
1296 		return -EINVAL;
1297 
1298 	vaddr = debug.src_uaddr;
1299 	size = debug.len;
1300 	vaddr_end = vaddr + size;
1301 	dst_vaddr = debug.dst_uaddr;
1302 
1303 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1304 		int len, s_off, d_off;
1305 
1306 		/* lock userspace source and destination page */
1307 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1308 		if (IS_ERR(src_p))
1309 			return PTR_ERR(src_p);
1310 
1311 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
1312 		if (IS_ERR(dst_p)) {
1313 			sev_unpin_memory(kvm, src_p, n);
1314 			return PTR_ERR(dst_p);
1315 		}
1316 
1317 		/*
1318 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1319 		 * the pages; flush the destination too so that future accesses do not
1320 		 * see stale data.
1321 		 */
1322 		sev_clflush_pages(src_p, 1);
1323 		sev_clflush_pages(dst_p, 1);
1324 
1325 		/*
1326 		 * Since user buffer may not be page aligned, calculate the
1327 		 * offset within the page.
1328 		 */
1329 		s_off = vaddr & ~PAGE_MASK;
1330 		d_off = dst_vaddr & ~PAGE_MASK;
1331 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
1332 
1333 		if (dec)
1334 			ret = __sev_dbg_decrypt_user(kvm,
1335 						     __sme_page_pa(src_p[0]) + s_off,
1336 						     (void __user *)dst_vaddr,
1337 						     __sme_page_pa(dst_p[0]) + d_off,
1338 						     len, &argp->error);
1339 		else
1340 			ret = __sev_dbg_encrypt_user(kvm,
1341 						     __sme_page_pa(src_p[0]) + s_off,
1342 						     (void __user *)vaddr,
1343 						     __sme_page_pa(dst_p[0]) + d_off,
1344 						     (void __user *)dst_vaddr,
1345 						     len, &argp->error);
1346 
1347 		sev_unpin_memory(kvm, src_p, n);
1348 		sev_unpin_memory(kvm, dst_p, n);
1349 
1350 		if (ret)
1351 			goto err;
1352 
1353 		next_vaddr = vaddr + len;
1354 		dst_vaddr = dst_vaddr + len;
1355 		size -= len;
1356 	}
1357 err:
1358 	return ret;
1359 }
1360 
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1361 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1362 {
1363 	struct sev_data_launch_secret data;
1364 	struct kvm_sev_launch_secret params;
1365 	struct page **pages;
1366 	void *blob, *hdr;
1367 	unsigned long n, i;
1368 	int ret, offset;
1369 
1370 	if (!sev_guest(kvm))
1371 		return -ENOTTY;
1372 
1373 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1374 		return -EFAULT;
1375 
1376 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
1377 	if (IS_ERR(pages))
1378 		return PTR_ERR(pages);
1379 
1380 	/*
1381 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1382 	 * place; the cache may contain the data that was written unencrypted.
1383 	 */
1384 	sev_clflush_pages(pages, n);
1385 
1386 	/*
1387 	 * The secret must be copied into contiguous memory region, lets verify
1388 	 * that userspace memory pages are contiguous before we issue command.
1389 	 */
1390 	if (get_num_contig_pages(0, pages, n) != n) {
1391 		ret = -EINVAL;
1392 		goto e_unpin_memory;
1393 	}
1394 
1395 	memset(&data, 0, sizeof(data));
1396 
1397 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1398 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1399 	data.guest_len = params.guest_len;
1400 
1401 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1402 	if (IS_ERR(blob)) {
1403 		ret = PTR_ERR(blob);
1404 		goto e_unpin_memory;
1405 	}
1406 
1407 	data.trans_address = __psp_pa(blob);
1408 	data.trans_len = params.trans_len;
1409 
1410 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1411 	if (IS_ERR(hdr)) {
1412 		ret = PTR_ERR(hdr);
1413 		goto e_free_blob;
1414 	}
1415 	data.hdr_address = __psp_pa(hdr);
1416 	data.hdr_len = params.hdr_len;
1417 
1418 	data.handle = to_kvm_sev_info(kvm)->handle;
1419 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1420 
1421 	kfree(hdr);
1422 
1423 e_free_blob:
1424 	kfree(blob);
1425 e_unpin_memory:
1426 	/* content of memory is updated, mark pages dirty */
1427 	for (i = 0; i < n; i++) {
1428 		set_page_dirty_lock(pages[i]);
1429 		mark_page_accessed(pages[i]);
1430 	}
1431 	sev_unpin_memory(kvm, pages, n);
1432 	return ret;
1433 }
1434 
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1435 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1436 {
1437 	void __user *report = u64_to_user_ptr(argp->data);
1438 	struct sev_data_attestation_report data;
1439 	struct kvm_sev_attestation_report params;
1440 	void __user *p;
1441 	void *blob = NULL;
1442 	int ret;
1443 
1444 	if (!sev_guest(kvm))
1445 		return -ENOTTY;
1446 
1447 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
1448 		return -EFAULT;
1449 
1450 	memset(&data, 0, sizeof(data));
1451 
1452 	/* User wants to query the blob length */
1453 	if (!params.len)
1454 		goto cmd;
1455 
1456 	p = u64_to_user_ptr(params.uaddr);
1457 	if (p) {
1458 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1459 			return -EINVAL;
1460 
1461 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1462 		if (!blob)
1463 			return -ENOMEM;
1464 
1465 		data.address = __psp_pa(blob);
1466 		data.len = params.len;
1467 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1468 	}
1469 cmd:
1470 	data.handle = to_kvm_sev_info(kvm)->handle;
1471 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1472 	/*
1473 	 * If we query the session length, FW responded with expected data.
1474 	 */
1475 	if (!params.len)
1476 		goto done;
1477 
1478 	if (ret)
1479 		goto e_free_blob;
1480 
1481 	if (blob) {
1482 		if (copy_to_user(p, blob, params.len))
1483 			ret = -EFAULT;
1484 	}
1485 
1486 done:
1487 	params.len = data.len;
1488 	if (copy_to_user(report, &params, sizeof(params)))
1489 		ret = -EFAULT;
1490 e_free_blob:
1491 	kfree(blob);
1492 	return ret;
1493 }
1494 
1495 /* Userspace wants to query session length. */
1496 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1497 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1498 				      struct kvm_sev_send_start *params)
1499 {
1500 	struct sev_data_send_start data;
1501 	int ret;
1502 
1503 	memset(&data, 0, sizeof(data));
1504 	data.handle = to_kvm_sev_info(kvm)->handle;
1505 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1506 
1507 	params->session_len = data.session_len;
1508 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1509 				sizeof(struct kvm_sev_send_start)))
1510 		ret = -EFAULT;
1511 
1512 	return ret;
1513 }
1514 
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1515 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1516 {
1517 	struct sev_data_send_start data;
1518 	struct kvm_sev_send_start params;
1519 	void *amd_certs, *session_data;
1520 	void *pdh_cert, *plat_certs;
1521 	int ret;
1522 
1523 	if (!sev_guest(kvm))
1524 		return -ENOTTY;
1525 
1526 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1527 				sizeof(struct kvm_sev_send_start)))
1528 		return -EFAULT;
1529 
1530 	/* if session_len is zero, userspace wants to query the session length */
1531 	if (!params.session_len)
1532 		return __sev_send_start_query_session_length(kvm, argp,
1533 				&params);
1534 
1535 	/* some sanity checks */
1536 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1537 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1538 		return -EINVAL;
1539 
1540 	/* allocate the memory to hold the session data blob */
1541 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1542 	if (!session_data)
1543 		return -ENOMEM;
1544 
1545 	/* copy the certificate blobs from userspace */
1546 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1547 				params.pdh_cert_len);
1548 	if (IS_ERR(pdh_cert)) {
1549 		ret = PTR_ERR(pdh_cert);
1550 		goto e_free_session;
1551 	}
1552 
1553 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1554 				params.plat_certs_len);
1555 	if (IS_ERR(plat_certs)) {
1556 		ret = PTR_ERR(plat_certs);
1557 		goto e_free_pdh;
1558 	}
1559 
1560 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1561 				params.amd_certs_len);
1562 	if (IS_ERR(amd_certs)) {
1563 		ret = PTR_ERR(amd_certs);
1564 		goto e_free_plat_cert;
1565 	}
1566 
1567 	/* populate the FW SEND_START field with system physical address */
1568 	memset(&data, 0, sizeof(data));
1569 	data.pdh_cert_address = __psp_pa(pdh_cert);
1570 	data.pdh_cert_len = params.pdh_cert_len;
1571 	data.plat_certs_address = __psp_pa(plat_certs);
1572 	data.plat_certs_len = params.plat_certs_len;
1573 	data.amd_certs_address = __psp_pa(amd_certs);
1574 	data.amd_certs_len = params.amd_certs_len;
1575 	data.session_address = __psp_pa(session_data);
1576 	data.session_len = params.session_len;
1577 	data.handle = to_kvm_sev_info(kvm)->handle;
1578 
1579 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1580 
1581 	if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1582 			session_data, params.session_len)) {
1583 		ret = -EFAULT;
1584 		goto e_free_amd_cert;
1585 	}
1586 
1587 	params.policy = data.policy;
1588 	params.session_len = data.session_len;
1589 	if (copy_to_user(u64_to_user_ptr(argp->data), &params,
1590 				sizeof(struct kvm_sev_send_start)))
1591 		ret = -EFAULT;
1592 
1593 e_free_amd_cert:
1594 	kfree(amd_certs);
1595 e_free_plat_cert:
1596 	kfree(plat_certs);
1597 e_free_pdh:
1598 	kfree(pdh_cert);
1599 e_free_session:
1600 	kfree(session_data);
1601 	return ret;
1602 }
1603 
1604 /* Userspace wants to query either header or trans length. */
1605 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1606 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1607 				     struct kvm_sev_send_update_data *params)
1608 {
1609 	struct sev_data_send_update_data data;
1610 	int ret;
1611 
1612 	memset(&data, 0, sizeof(data));
1613 	data.handle = to_kvm_sev_info(kvm)->handle;
1614 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1615 
1616 	params->hdr_len = data.hdr_len;
1617 	params->trans_len = data.trans_len;
1618 
1619 	if (copy_to_user(u64_to_user_ptr(argp->data), params,
1620 			 sizeof(struct kvm_sev_send_update_data)))
1621 		ret = -EFAULT;
1622 
1623 	return ret;
1624 }
1625 
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1626 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1627 {
1628 	struct sev_data_send_update_data data;
1629 	struct kvm_sev_send_update_data params;
1630 	void *hdr, *trans_data;
1631 	struct page **guest_page;
1632 	unsigned long n;
1633 	int ret, offset;
1634 
1635 	if (!sev_guest(kvm))
1636 		return -ENOTTY;
1637 
1638 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1639 			sizeof(struct kvm_sev_send_update_data)))
1640 		return -EFAULT;
1641 
1642 	/* userspace wants to query either header or trans length */
1643 	if (!params.trans_len || !params.hdr_len)
1644 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1645 
1646 	if (!params.trans_uaddr || !params.guest_uaddr ||
1647 	    !params.guest_len || !params.hdr_uaddr)
1648 		return -EINVAL;
1649 
1650 	/* Check if we are crossing the page boundary */
1651 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1652 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1653 		return -EINVAL;
1654 
1655 	/* Pin guest memory */
1656 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1657 				    PAGE_SIZE, &n, 0);
1658 	if (IS_ERR(guest_page))
1659 		return PTR_ERR(guest_page);
1660 
1661 	/* allocate memory for header and transport buffer */
1662 	ret = -ENOMEM;
1663 	hdr = kzalloc(params.hdr_len, GFP_KERNEL);
1664 	if (!hdr)
1665 		goto e_unpin;
1666 
1667 	trans_data = kzalloc(params.trans_len, GFP_KERNEL);
1668 	if (!trans_data)
1669 		goto e_free_hdr;
1670 
1671 	memset(&data, 0, sizeof(data));
1672 	data.hdr_address = __psp_pa(hdr);
1673 	data.hdr_len = params.hdr_len;
1674 	data.trans_address = __psp_pa(trans_data);
1675 	data.trans_len = params.trans_len;
1676 
1677 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1678 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1679 	data.guest_address |= sev_me_mask;
1680 	data.guest_len = params.guest_len;
1681 	data.handle = to_kvm_sev_info(kvm)->handle;
1682 
1683 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1684 
1685 	if (ret)
1686 		goto e_free_trans_data;
1687 
1688 	/* copy transport buffer to user space */
1689 	if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1690 			 trans_data, params.trans_len)) {
1691 		ret = -EFAULT;
1692 		goto e_free_trans_data;
1693 	}
1694 
1695 	/* Copy packet header to userspace. */
1696 	if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1697 			 params.hdr_len))
1698 		ret = -EFAULT;
1699 
1700 e_free_trans_data:
1701 	kfree(trans_data);
1702 e_free_hdr:
1703 	kfree(hdr);
1704 e_unpin:
1705 	sev_unpin_memory(kvm, guest_page, n);
1706 
1707 	return ret;
1708 }
1709 
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1710 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1711 {
1712 	struct sev_data_send_finish data;
1713 
1714 	if (!sev_guest(kvm))
1715 		return -ENOTTY;
1716 
1717 	data.handle = to_kvm_sev_info(kvm)->handle;
1718 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1719 }
1720 
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1721 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1722 {
1723 	struct sev_data_send_cancel data;
1724 
1725 	if (!sev_guest(kvm))
1726 		return -ENOTTY;
1727 
1728 	data.handle = to_kvm_sev_info(kvm)->handle;
1729 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1730 }
1731 
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1732 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1733 {
1734 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
1735 	struct sev_data_receive_start start;
1736 	struct kvm_sev_receive_start params;
1737 	int *error = &argp->error;
1738 	void *session_data;
1739 	void *pdh_data;
1740 	int ret;
1741 
1742 	if (!sev_guest(kvm))
1743 		return -ENOTTY;
1744 
1745 	/* Get parameter from the userspace */
1746 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1747 			sizeof(struct kvm_sev_receive_start)))
1748 		return -EFAULT;
1749 
1750 	/* some sanity checks */
1751 	if (!params.pdh_uaddr || !params.pdh_len ||
1752 	    !params.session_uaddr || !params.session_len)
1753 		return -EINVAL;
1754 
1755 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1756 	if (IS_ERR(pdh_data))
1757 		return PTR_ERR(pdh_data);
1758 
1759 	session_data = psp_copy_user_blob(params.session_uaddr,
1760 			params.session_len);
1761 	if (IS_ERR(session_data)) {
1762 		ret = PTR_ERR(session_data);
1763 		goto e_free_pdh;
1764 	}
1765 
1766 	memset(&start, 0, sizeof(start));
1767 	start.handle = params.handle;
1768 	start.policy = params.policy;
1769 	start.pdh_cert_address = __psp_pa(pdh_data);
1770 	start.pdh_cert_len = params.pdh_len;
1771 	start.session_address = __psp_pa(session_data);
1772 	start.session_len = params.session_len;
1773 
1774 	/* create memory encryption context */
1775 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1776 				error);
1777 	if (ret)
1778 		goto e_free_session;
1779 
1780 	/* Bind ASID to this guest */
1781 	ret = sev_bind_asid(kvm, start.handle, error);
1782 	if (ret) {
1783 		sev_decommission(start.handle);
1784 		goto e_free_session;
1785 	}
1786 
1787 	params.handle = start.handle;
1788 	if (copy_to_user(u64_to_user_ptr(argp->data),
1789 			 &params, sizeof(struct kvm_sev_receive_start))) {
1790 		ret = -EFAULT;
1791 		sev_unbind_asid(kvm, start.handle);
1792 		goto e_free_session;
1793 	}
1794 
1795     	sev->handle = start.handle;
1796 	sev->fd = argp->sev_fd;
1797 
1798 e_free_session:
1799 	kfree(session_data);
1800 e_free_pdh:
1801 	kfree(pdh_data);
1802 
1803 	return ret;
1804 }
1805 
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1806 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1807 {
1808 	struct kvm_sev_receive_update_data params;
1809 	struct sev_data_receive_update_data data;
1810 	void *hdr = NULL, *trans = NULL;
1811 	struct page **guest_page;
1812 	unsigned long n;
1813 	int ret, offset;
1814 
1815 	if (!sev_guest(kvm))
1816 		return -EINVAL;
1817 
1818 	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
1819 			sizeof(struct kvm_sev_receive_update_data)))
1820 		return -EFAULT;
1821 
1822 	if (!params.hdr_uaddr || !params.hdr_len ||
1823 	    !params.guest_uaddr || !params.guest_len ||
1824 	    !params.trans_uaddr || !params.trans_len)
1825 		return -EINVAL;
1826 
1827 	/* Check if we are crossing the page boundary */
1828 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1829 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1830 		return -EINVAL;
1831 
1832 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1833 	if (IS_ERR(hdr))
1834 		return PTR_ERR(hdr);
1835 
1836 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1837 	if (IS_ERR(trans)) {
1838 		ret = PTR_ERR(trans);
1839 		goto e_free_hdr;
1840 	}
1841 
1842 	memset(&data, 0, sizeof(data));
1843 	data.hdr_address = __psp_pa(hdr);
1844 	data.hdr_len = params.hdr_len;
1845 	data.trans_address = __psp_pa(trans);
1846 	data.trans_len = params.trans_len;
1847 
1848 	/* Pin guest memory */
1849 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1850 				    PAGE_SIZE, &n, FOLL_WRITE);
1851 	if (IS_ERR(guest_page)) {
1852 		ret = PTR_ERR(guest_page);
1853 		goto e_free_trans;
1854 	}
1855 
1856 	/*
1857 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1858 	 * encrypts the written data with the guest's key, and the cache may
1859 	 * contain dirty, unencrypted data.
1860 	 */
1861 	sev_clflush_pages(guest_page, n);
1862 
1863 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1864 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1865 	data.guest_address |= sev_me_mask;
1866 	data.guest_len = params.guest_len;
1867 	data.handle = to_kvm_sev_info(kvm)->handle;
1868 
1869 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1870 				&argp->error);
1871 
1872 	sev_unpin_memory(kvm, guest_page, n);
1873 
1874 e_free_trans:
1875 	kfree(trans);
1876 e_free_hdr:
1877 	kfree(hdr);
1878 
1879 	return ret;
1880 }
1881 
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1882 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1883 {
1884 	struct sev_data_receive_finish data;
1885 
1886 	if (!sev_guest(kvm))
1887 		return -ENOTTY;
1888 
1889 	data.handle = to_kvm_sev_info(kvm)->handle;
1890 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1891 }
1892 
is_cmd_allowed_from_mirror(u32 cmd_id)1893 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1894 {
1895 	/*
1896 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1897 	 * active mirror VMs. Also allow the debugging and status commands.
1898 	 */
1899 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1900 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1901 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1902 		return true;
1903 
1904 	return false;
1905 }
1906 
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1907 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1908 {
1909 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1910 	struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1911 	int r = -EBUSY;
1912 
1913 	if (dst_kvm == src_kvm)
1914 		return -EINVAL;
1915 
1916 	/*
1917 	 * Bail if these VMs are already involved in a migration to avoid
1918 	 * deadlock between two VMs trying to migrate to/from each other.
1919 	 */
1920 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1921 		return -EBUSY;
1922 
1923 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1924 		goto release_dst;
1925 
1926 	r = -EINTR;
1927 	if (mutex_lock_killable(&dst_kvm->lock))
1928 		goto release_src;
1929 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1930 		goto unlock_dst;
1931 	return 0;
1932 
1933 unlock_dst:
1934 	mutex_unlock(&dst_kvm->lock);
1935 release_src:
1936 	atomic_set_release(&src_sev->migration_in_progress, 0);
1937 release_dst:
1938 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1939 	return r;
1940 }
1941 
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1942 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1943 {
1944 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1945 	struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1946 
1947 	mutex_unlock(&dst_kvm->lock);
1948 	mutex_unlock(&src_kvm->lock);
1949 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1950 	atomic_set_release(&src_sev->migration_in_progress, 0);
1951 }
1952 
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1953 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1954 {
1955 	struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
1956 	struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
1957 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1958 	struct vcpu_svm *dst_svm, *src_svm;
1959 	struct kvm_sev_info *mirror;
1960 	unsigned long i;
1961 
1962 	dst->active = true;
1963 	dst->asid = src->asid;
1964 	dst->handle = src->handle;
1965 	dst->pages_locked = src->pages_locked;
1966 	dst->enc_context_owner = src->enc_context_owner;
1967 	dst->es_active = src->es_active;
1968 	dst->vmsa_features = src->vmsa_features;
1969 
1970 	src->asid = 0;
1971 	src->active = false;
1972 	src->handle = 0;
1973 	src->pages_locked = 0;
1974 	src->enc_context_owner = NULL;
1975 	src->es_active = false;
1976 
1977 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1978 
1979 	/*
1980 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1981 	 * source to the destination (this KVM).  The caller holds a reference
1982 	 * to the source, so there's no danger of use-after-free.
1983 	 */
1984 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1985 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1986 		kvm_get_kvm(dst_kvm);
1987 		kvm_put_kvm(src_kvm);
1988 		mirror->enc_context_owner = dst_kvm;
1989 	}
1990 
1991 	/*
1992 	 * If this VM is a mirror, remove the old mirror from the owners list
1993 	 * and add the new mirror to the list.
1994 	 */
1995 	if (is_mirroring_enc_context(dst_kvm)) {
1996 		struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
1997 
1998 		list_del(&src->mirror_entry);
1999 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
2000 	}
2001 
2002 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
2003 		dst_svm = to_svm(dst_vcpu);
2004 
2005 		sev_init_vmcb(dst_svm, false);
2006 
2007 		if (!dst->es_active)
2008 			continue;
2009 
2010 		/*
2011 		 * Note, the source is not required to have the same number of
2012 		 * vCPUs as the destination when migrating a vanilla SEV VM.
2013 		 */
2014 		src_vcpu = kvm_get_vcpu(src_kvm, i);
2015 		src_svm = to_svm(src_vcpu);
2016 
2017 		/*
2018 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
2019 		 * clear source fields as appropriate, the state now belongs to
2020 		 * the destination.
2021 		 */
2022 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2023 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2024 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2025 		dst_vcpu->arch.guest_state_protected = true;
2026 
2027 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2028 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2029 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2030 		src_vcpu->arch.guest_state_protected = false;
2031 	}
2032 }
2033 
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2034 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2035 {
2036 	struct kvm_vcpu *src_vcpu;
2037 	unsigned long i;
2038 
2039 	if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
2040 	    dst->created_vcpus != atomic_read(&dst->online_vcpus))
2041 		return -EBUSY;
2042 
2043 	if (!sev_es_guest(src))
2044 		return 0;
2045 
2046 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2047 		return -EINVAL;
2048 
2049 	kvm_for_each_vcpu(i, src_vcpu, src) {
2050 		if (!src_vcpu->arch.guest_state_protected)
2051 			return -EINVAL;
2052 	}
2053 
2054 	return 0;
2055 }
2056 
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2057 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2058 {
2059 	struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
2060 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2061 	CLASS(fd, f)(source_fd);
2062 	struct kvm *source_kvm;
2063 	bool charged = false;
2064 	int ret;
2065 
2066 	if (fd_empty(f))
2067 		return -EBADF;
2068 
2069 	if (!file_is_kvm(fd_file(f)))
2070 		return -EBADF;
2071 
2072 	source_kvm = fd_file(f)->private_data;
2073 	ret = sev_lock_two_vms(kvm, source_kvm);
2074 	if (ret)
2075 		return ret;
2076 
2077 	if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2078 	    sev_guest(kvm) || !sev_guest(source_kvm)) {
2079 		ret = -EINVAL;
2080 		goto out_unlock;
2081 	}
2082 
2083 	src_sev = to_kvm_sev_info(source_kvm);
2084 
2085 	dst_sev->misc_cg = get_current_misc_cg();
2086 	cg_cleanup_sev = dst_sev;
2087 	if (dst_sev->misc_cg != src_sev->misc_cg) {
2088 		ret = sev_misc_cg_try_charge(dst_sev);
2089 		if (ret)
2090 			goto out_dst_cgroup;
2091 		charged = true;
2092 	}
2093 
2094 	ret = kvm_lock_all_vcpus(kvm);
2095 	if (ret)
2096 		goto out_dst_cgroup;
2097 	ret = kvm_lock_all_vcpus(source_kvm);
2098 	if (ret)
2099 		goto out_dst_vcpu;
2100 
2101 	ret = sev_check_source_vcpus(kvm, source_kvm);
2102 	if (ret)
2103 		goto out_source_vcpu;
2104 
2105 	/*
2106 	 * Allocate a new have_run_cpus for the destination, i.e. don't copy
2107 	 * the set of CPUs from the source.  If a CPU was used to run a vCPU in
2108 	 * the source VM but is never used for the destination VM, then the CPU
2109 	 * can only have cached memory that was accessible to the source VM.
2110 	 */
2111 	if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2112 		ret = -ENOMEM;
2113 		goto out_source_vcpu;
2114 	}
2115 
2116 	sev_migrate_from(kvm, source_kvm);
2117 	kvm_vm_dead(source_kvm);
2118 	cg_cleanup_sev = src_sev;
2119 	ret = 0;
2120 
2121 out_source_vcpu:
2122 	kvm_unlock_all_vcpus(source_kvm);
2123 out_dst_vcpu:
2124 	kvm_unlock_all_vcpus(kvm);
2125 out_dst_cgroup:
2126 	/* Operates on the source on success, on the destination on failure.  */
2127 	if (charged)
2128 		sev_misc_cg_uncharge(cg_cleanup_sev);
2129 	put_misc_cg(cg_cleanup_sev->misc_cg);
2130 	cg_cleanup_sev->misc_cg = NULL;
2131 out_unlock:
2132 	sev_unlock_two_vms(kvm, source_kvm);
2133 	return ret;
2134 }
2135 
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2136 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2137 {
2138 	if (group != KVM_X86_GRP_SEV)
2139 		return -ENXIO;
2140 
2141 	switch (attr) {
2142 	case KVM_X86_SEV_VMSA_FEATURES:
2143 		*val = sev_supported_vmsa_features;
2144 		return 0;
2145 
2146 	default:
2147 		return -ENXIO;
2148 	}
2149 }
2150 
2151 /*
2152  * The guest context contains all the information, keys and metadata
2153  * associated with the guest that the firmware tracks to implement SEV
2154  * and SNP features. The firmware stores the guest context in hypervisor
2155  * provide page via the SNP_GCTX_CREATE command.
2156  */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2157 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2158 {
2159 	struct sev_data_snp_addr data = {};
2160 	void *context;
2161 	int rc;
2162 
2163 	/* Allocate memory for context page */
2164 	context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2165 	if (!context)
2166 		return NULL;
2167 
2168 	data.address = __psp_pa(context);
2169 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2170 	if (rc) {
2171 		pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2172 			rc, argp->error);
2173 		snp_free_firmware_page(context);
2174 		return NULL;
2175 	}
2176 
2177 	return context;
2178 }
2179 
snp_bind_asid(struct kvm * kvm,int * error)2180 static int snp_bind_asid(struct kvm *kvm, int *error)
2181 {
2182 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2183 	struct sev_data_snp_activate data = {0};
2184 
2185 	data.gctx_paddr = __psp_pa(sev->snp_context);
2186 	data.asid = sev_get_asid(kvm);
2187 	return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2188 }
2189 
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2190 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2191 {
2192 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2193 	struct sev_data_snp_launch_start start = {0};
2194 	struct kvm_sev_snp_launch_start params;
2195 	int rc;
2196 
2197 	if (!sev_snp_guest(kvm))
2198 		return -ENOTTY;
2199 
2200 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2201 		return -EFAULT;
2202 
2203 	/* Don't allow userspace to allocate memory for more than 1 SNP context. */
2204 	if (sev->snp_context)
2205 		return -EINVAL;
2206 
2207 	if (params.flags)
2208 		return -EINVAL;
2209 
2210 	if (params.policy & ~SNP_POLICY_MASK_VALID)
2211 		return -EINVAL;
2212 
2213 	/* Check for policy bits that must be set */
2214 	if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO))
2215 		return -EINVAL;
2216 
2217 	if (snp_is_secure_tsc_enabled(kvm)) {
2218 		if (WARN_ON_ONCE(!kvm->arch.default_tsc_khz))
2219 			return -EINVAL;
2220 
2221 		start.desired_tsc_khz = kvm->arch.default_tsc_khz;
2222 	}
2223 
2224 	sev->snp_context = snp_context_create(kvm, argp);
2225 	if (!sev->snp_context)
2226 		return -ENOTTY;
2227 
2228 	start.gctx_paddr = __psp_pa(sev->snp_context);
2229 	start.policy = params.policy;
2230 
2231 	memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2232 	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2233 	if (rc) {
2234 		pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2235 			 __func__, rc);
2236 		goto e_free_context;
2237 	}
2238 
2239 	sev->policy = params.policy;
2240 	sev->fd = argp->sev_fd;
2241 	rc = snp_bind_asid(kvm, &argp->error);
2242 	if (rc) {
2243 		pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2244 			 __func__, rc);
2245 		goto e_free_context;
2246 	}
2247 
2248 	return 0;
2249 
2250 e_free_context:
2251 	snp_decommission_context(kvm);
2252 
2253 	return rc;
2254 }
2255 
2256 struct sev_gmem_populate_args {
2257 	__u8 type;
2258 	int sev_fd;
2259 	int fw_error;
2260 };
2261 
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2262 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2263 				  void __user *src, int order, void *opaque)
2264 {
2265 	struct sev_gmem_populate_args *sev_populate_args = opaque;
2266 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2267 	int n_private = 0, ret, i;
2268 	int npages = (1 << order);
2269 	gfn_t gfn;
2270 
2271 	if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2272 		return -EINVAL;
2273 
2274 	for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2275 		struct sev_data_snp_launch_update fw_args = {0};
2276 		bool assigned = false;
2277 		int level;
2278 
2279 		ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2280 		if (ret || assigned) {
2281 			pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2282 				 __func__, gfn, ret, assigned);
2283 			ret = ret ? -EINVAL : -EEXIST;
2284 			goto err;
2285 		}
2286 
2287 		if (src) {
2288 			void *vaddr = kmap_local_pfn(pfn + i);
2289 
2290 			if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2291 				ret = -EFAULT;
2292 				goto err;
2293 			}
2294 			kunmap_local(vaddr);
2295 		}
2296 
2297 		ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2298 				       sev_get_asid(kvm), true);
2299 		if (ret)
2300 			goto err;
2301 
2302 		n_private++;
2303 
2304 		fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2305 		fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2306 		fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2307 		fw_args.page_type = sev_populate_args->type;
2308 
2309 		ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2310 				      &fw_args, &sev_populate_args->fw_error);
2311 		if (ret)
2312 			goto fw_err;
2313 	}
2314 
2315 	return 0;
2316 
2317 fw_err:
2318 	/*
2319 	 * If the firmware command failed handle the reclaim and cleanup of that
2320 	 * PFN specially vs. prior pages which can be cleaned up below without
2321 	 * needing to reclaim in advance.
2322 	 *
2323 	 * Additionally, when invalid CPUID function entries are detected,
2324 	 * firmware writes the expected values into the page and leaves it
2325 	 * unencrypted so it can be used for debugging and error-reporting.
2326 	 *
2327 	 * Copy this page back into the source buffer so userspace can use this
2328 	 * information to provide information on which CPUID leaves/fields
2329 	 * failed CPUID validation.
2330 	 */
2331 	if (!snp_page_reclaim(kvm, pfn + i) &&
2332 	    sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2333 	    sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2334 		void *vaddr = kmap_local_pfn(pfn + i);
2335 
2336 		if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2337 			pr_debug("Failed to write CPUID page back to userspace\n");
2338 
2339 		kunmap_local(vaddr);
2340 	}
2341 
2342 	/* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2343 	n_private--;
2344 
2345 err:
2346 	pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2347 		 __func__, ret, sev_populate_args->fw_error, n_private);
2348 	for (i = 0; i < n_private; i++)
2349 		kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2350 
2351 	return ret;
2352 }
2353 
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2354 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2355 {
2356 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2357 	struct sev_gmem_populate_args sev_populate_args = {0};
2358 	struct kvm_sev_snp_launch_update params;
2359 	struct kvm_memory_slot *memslot;
2360 	long npages, count;
2361 	void __user *src;
2362 	int ret = 0;
2363 
2364 	if (!sev_snp_guest(kvm) || !sev->snp_context)
2365 		return -EINVAL;
2366 
2367 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2368 		return -EFAULT;
2369 
2370 	pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2371 		 params.gfn_start, params.len, params.type, params.flags);
2372 
2373 	if (!params.len || !PAGE_ALIGNED(params.len) || params.flags ||
2374 	    (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2375 	     params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2376 	     params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2377 	     params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2378 	     params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2379 		return -EINVAL;
2380 
2381 	npages = params.len / PAGE_SIZE;
2382 
2383 	/*
2384 	 * For each GFN that's being prepared as part of the initial guest
2385 	 * state, the following pre-conditions are verified:
2386 	 *
2387 	 *   1) The backing memslot is a valid private memslot.
2388 	 *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2389 	 *      beforehand.
2390 	 *   3) The PFN of the guest_memfd has not already been set to private
2391 	 *      in the RMP table.
2392 	 *
2393 	 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2394 	 * faults if there's a race between a fault and an attribute update via
2395 	 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2396 	 * here. However, kvm->slots_lock guards against both this as well as
2397 	 * concurrent memslot updates occurring while these checks are being
2398 	 * performed, so use that here to make it easier to reason about the
2399 	 * initial expected state and better guard against unexpected
2400 	 * situations.
2401 	 */
2402 	mutex_lock(&kvm->slots_lock);
2403 
2404 	memslot = gfn_to_memslot(kvm, params.gfn_start);
2405 	if (!kvm_slot_has_gmem(memslot)) {
2406 		ret = -EINVAL;
2407 		goto out;
2408 	}
2409 
2410 	sev_populate_args.sev_fd = argp->sev_fd;
2411 	sev_populate_args.type = params.type;
2412 	src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2413 
2414 	count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2415 				  sev_gmem_post_populate, &sev_populate_args);
2416 	if (count < 0) {
2417 		argp->error = sev_populate_args.fw_error;
2418 		pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2419 			 __func__, count, argp->error);
2420 		ret = -EIO;
2421 	} else {
2422 		params.gfn_start += count;
2423 		params.len -= count * PAGE_SIZE;
2424 		if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2425 			params.uaddr += count * PAGE_SIZE;
2426 
2427 		ret = 0;
2428 		if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
2429 			ret = -EFAULT;
2430 	}
2431 
2432 out:
2433 	mutex_unlock(&kvm->slots_lock);
2434 
2435 	return ret;
2436 }
2437 
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2438 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2439 {
2440 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2441 	struct sev_data_snp_launch_update data = {};
2442 	struct kvm_vcpu *vcpu;
2443 	unsigned long i;
2444 	int ret;
2445 
2446 	data.gctx_paddr = __psp_pa(sev->snp_context);
2447 	data.page_type = SNP_PAGE_TYPE_VMSA;
2448 
2449 	kvm_for_each_vcpu(i, vcpu, kvm) {
2450 		struct vcpu_svm *svm = to_svm(vcpu);
2451 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2452 
2453 		ret = sev_es_sync_vmsa(svm);
2454 		if (ret)
2455 			return ret;
2456 
2457 		/* Transition the VMSA page to a firmware state. */
2458 		ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2459 		if (ret)
2460 			return ret;
2461 
2462 		/* Issue the SNP command to encrypt the VMSA */
2463 		data.address = __sme_pa(svm->sev_es.vmsa);
2464 		ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2465 				      &data, &argp->error);
2466 		if (ret) {
2467 			snp_page_reclaim(kvm, pfn);
2468 
2469 			return ret;
2470 		}
2471 
2472 		svm->vcpu.arch.guest_state_protected = true;
2473 		/*
2474 		 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2475 		 * be _always_ ON. Enable it only after setting
2476 		 * guest_state_protected because KVM_SET_MSRS allows dynamic
2477 		 * toggling of LBRV (for performance reason) on write access to
2478 		 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2479 		 */
2480 		svm_enable_lbrv(vcpu);
2481 	}
2482 
2483 	return 0;
2484 }
2485 
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2486 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2487 {
2488 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2489 	struct kvm_sev_snp_launch_finish params;
2490 	struct sev_data_snp_launch_finish *data;
2491 	void *id_block = NULL, *id_auth = NULL;
2492 	int ret;
2493 
2494 	if (!sev_snp_guest(kvm))
2495 		return -ENOTTY;
2496 
2497 	if (!sev->snp_context)
2498 		return -EINVAL;
2499 
2500 	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
2501 		return -EFAULT;
2502 
2503 	if (params.flags)
2504 		return -EINVAL;
2505 
2506 	/* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2507 	ret = snp_launch_update_vmsa(kvm, argp);
2508 	if (ret)
2509 		return ret;
2510 
2511 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2512 	if (!data)
2513 		return -ENOMEM;
2514 
2515 	if (params.id_block_en) {
2516 		id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2517 		if (IS_ERR(id_block)) {
2518 			ret = PTR_ERR(id_block);
2519 			goto e_free;
2520 		}
2521 
2522 		data->id_block_en = 1;
2523 		data->id_block_paddr = __sme_pa(id_block);
2524 
2525 		id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2526 		if (IS_ERR(id_auth)) {
2527 			ret = PTR_ERR(id_auth);
2528 			goto e_free_id_block;
2529 		}
2530 
2531 		data->id_auth_paddr = __sme_pa(id_auth);
2532 
2533 		if (params.auth_key_en)
2534 			data->auth_key_en = 1;
2535 	}
2536 
2537 	data->vcek_disabled = params.vcek_disabled;
2538 
2539 	memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2540 	data->gctx_paddr = __psp_pa(sev->snp_context);
2541 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2542 
2543 	/*
2544 	 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2545 	 * can be given to the guest simply by marking the RMP entry as private.
2546 	 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2547 	 */
2548 	if (!ret)
2549 		kvm->arch.pre_fault_allowed = true;
2550 
2551 	kfree(id_auth);
2552 
2553 e_free_id_block:
2554 	kfree(id_block);
2555 
2556 e_free:
2557 	kfree(data);
2558 
2559 	return ret;
2560 }
2561 
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2562 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2563 {
2564 	struct kvm_sev_cmd sev_cmd;
2565 	int r;
2566 
2567 	if (!sev_enabled)
2568 		return -ENOTTY;
2569 
2570 	if (!argp)
2571 		return 0;
2572 
2573 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2574 		return -EFAULT;
2575 
2576 	mutex_lock(&kvm->lock);
2577 
2578 	/* Only the enc_context_owner handles some memory enc operations. */
2579 	if (is_mirroring_enc_context(kvm) &&
2580 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2581 		r = -EINVAL;
2582 		goto out;
2583 	}
2584 
2585 	/*
2586 	 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2587 	 * allow the use of SNP-specific commands.
2588 	 */
2589 	if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2590 		r = -EPERM;
2591 		goto out;
2592 	}
2593 
2594 	switch (sev_cmd.id) {
2595 	case KVM_SEV_ES_INIT:
2596 		if (!sev_es_enabled) {
2597 			r = -ENOTTY;
2598 			goto out;
2599 		}
2600 		fallthrough;
2601 	case KVM_SEV_INIT:
2602 		r = sev_guest_init(kvm, &sev_cmd);
2603 		break;
2604 	case KVM_SEV_INIT2:
2605 		r = sev_guest_init2(kvm, &sev_cmd);
2606 		break;
2607 	case KVM_SEV_LAUNCH_START:
2608 		r = sev_launch_start(kvm, &sev_cmd);
2609 		break;
2610 	case KVM_SEV_LAUNCH_UPDATE_DATA:
2611 		r = sev_launch_update_data(kvm, &sev_cmd);
2612 		break;
2613 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
2614 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
2615 		break;
2616 	case KVM_SEV_LAUNCH_MEASURE:
2617 		r = sev_launch_measure(kvm, &sev_cmd);
2618 		break;
2619 	case KVM_SEV_LAUNCH_FINISH:
2620 		r = sev_launch_finish(kvm, &sev_cmd);
2621 		break;
2622 	case KVM_SEV_GUEST_STATUS:
2623 		r = sev_guest_status(kvm, &sev_cmd);
2624 		break;
2625 	case KVM_SEV_DBG_DECRYPT:
2626 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
2627 		break;
2628 	case KVM_SEV_DBG_ENCRYPT:
2629 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
2630 		break;
2631 	case KVM_SEV_LAUNCH_SECRET:
2632 		r = sev_launch_secret(kvm, &sev_cmd);
2633 		break;
2634 	case KVM_SEV_GET_ATTESTATION_REPORT:
2635 		r = sev_get_attestation_report(kvm, &sev_cmd);
2636 		break;
2637 	case KVM_SEV_SEND_START:
2638 		r = sev_send_start(kvm, &sev_cmd);
2639 		break;
2640 	case KVM_SEV_SEND_UPDATE_DATA:
2641 		r = sev_send_update_data(kvm, &sev_cmd);
2642 		break;
2643 	case KVM_SEV_SEND_FINISH:
2644 		r = sev_send_finish(kvm, &sev_cmd);
2645 		break;
2646 	case KVM_SEV_SEND_CANCEL:
2647 		r = sev_send_cancel(kvm, &sev_cmd);
2648 		break;
2649 	case KVM_SEV_RECEIVE_START:
2650 		r = sev_receive_start(kvm, &sev_cmd);
2651 		break;
2652 	case KVM_SEV_RECEIVE_UPDATE_DATA:
2653 		r = sev_receive_update_data(kvm, &sev_cmd);
2654 		break;
2655 	case KVM_SEV_RECEIVE_FINISH:
2656 		r = sev_receive_finish(kvm, &sev_cmd);
2657 		break;
2658 	case KVM_SEV_SNP_LAUNCH_START:
2659 		r = snp_launch_start(kvm, &sev_cmd);
2660 		break;
2661 	case KVM_SEV_SNP_LAUNCH_UPDATE:
2662 		r = snp_launch_update(kvm, &sev_cmd);
2663 		break;
2664 	case KVM_SEV_SNP_LAUNCH_FINISH:
2665 		r = snp_launch_finish(kvm, &sev_cmd);
2666 		break;
2667 	default:
2668 		r = -EINVAL;
2669 		goto out;
2670 	}
2671 
2672 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2673 		r = -EFAULT;
2674 
2675 out:
2676 	mutex_unlock(&kvm->lock);
2677 	return r;
2678 }
2679 
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2680 int sev_mem_enc_register_region(struct kvm *kvm,
2681 				struct kvm_enc_region *range)
2682 {
2683 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2684 	struct enc_region *region;
2685 	int ret = 0;
2686 
2687 	if (!sev_guest(kvm))
2688 		return -ENOTTY;
2689 
2690 	/* If kvm is mirroring encryption context it isn't responsible for it */
2691 	if (is_mirroring_enc_context(kvm))
2692 		return -EINVAL;
2693 
2694 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2695 		return -EINVAL;
2696 
2697 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2698 	if (!region)
2699 		return -ENOMEM;
2700 
2701 	mutex_lock(&kvm->lock);
2702 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages,
2703 				       FOLL_WRITE | FOLL_LONGTERM);
2704 	if (IS_ERR(region->pages)) {
2705 		ret = PTR_ERR(region->pages);
2706 		mutex_unlock(&kvm->lock);
2707 		goto e_free;
2708 	}
2709 
2710 	/*
2711 	 * The guest may change the memory encryption attribute from C=0 -> C=1
2712 	 * or vice versa for this memory range. Lets make sure caches are
2713 	 * flushed to ensure that guest data gets written into memory with
2714 	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
2715 	 * as region and its array of pages can be freed by a different task
2716 	 * once kvm->lock is released.
2717 	 */
2718 	sev_clflush_pages(region->pages, region->npages);
2719 
2720 	region->uaddr = range->addr;
2721 	region->size = range->size;
2722 
2723 	list_add_tail(&region->list, &sev->regions_list);
2724 	mutex_unlock(&kvm->lock);
2725 
2726 	return ret;
2727 
2728 e_free:
2729 	kfree(region);
2730 	return ret;
2731 }
2732 
2733 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2734 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2735 {
2736 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2737 	struct list_head *head = &sev->regions_list;
2738 	struct enc_region *i;
2739 
2740 	list_for_each_entry(i, head, list) {
2741 		if (i->uaddr == range->addr &&
2742 		    i->size == range->size)
2743 			return i;
2744 	}
2745 
2746 	return NULL;
2747 }
2748 
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2749 static void __unregister_enc_region_locked(struct kvm *kvm,
2750 					   struct enc_region *region)
2751 {
2752 	sev_unpin_memory(kvm, region->pages, region->npages);
2753 	list_del(&region->list);
2754 	kfree(region);
2755 }
2756 
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2757 int sev_mem_enc_unregister_region(struct kvm *kvm,
2758 				  struct kvm_enc_region *range)
2759 {
2760 	struct enc_region *region;
2761 	int ret;
2762 
2763 	/* If kvm is mirroring encryption context it isn't responsible for it */
2764 	if (is_mirroring_enc_context(kvm))
2765 		return -EINVAL;
2766 
2767 	mutex_lock(&kvm->lock);
2768 
2769 	if (!sev_guest(kvm)) {
2770 		ret = -ENOTTY;
2771 		goto failed;
2772 	}
2773 
2774 	region = find_enc_region(kvm, range);
2775 	if (!region) {
2776 		ret = -EINVAL;
2777 		goto failed;
2778 	}
2779 
2780 	sev_writeback_caches(kvm);
2781 
2782 	__unregister_enc_region_locked(kvm, region);
2783 
2784 	mutex_unlock(&kvm->lock);
2785 	return 0;
2786 
2787 failed:
2788 	mutex_unlock(&kvm->lock);
2789 	return ret;
2790 }
2791 
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2792 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2793 {
2794 	CLASS(fd, f)(source_fd);
2795 	struct kvm *source_kvm;
2796 	struct kvm_sev_info *source_sev, *mirror_sev;
2797 	int ret;
2798 
2799 	if (fd_empty(f))
2800 		return -EBADF;
2801 
2802 	if (!file_is_kvm(fd_file(f)))
2803 		return -EBADF;
2804 
2805 	source_kvm = fd_file(f)->private_data;
2806 	ret = sev_lock_two_vms(kvm, source_kvm);
2807 	if (ret)
2808 		return ret;
2809 
2810 	/*
2811 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2812 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2813 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2814 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2815 	 */
2816 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2817 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2818 		ret = -EINVAL;
2819 		goto e_unlock;
2820 	}
2821 
2822 	mirror_sev = to_kvm_sev_info(kvm);
2823 	if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2824 		ret = -ENOMEM;
2825 		goto e_unlock;
2826 	}
2827 
2828 	/*
2829 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2830 	 * disappear until we're done with it
2831 	 */
2832 	source_sev = to_kvm_sev_info(source_kvm);
2833 	kvm_get_kvm(source_kvm);
2834 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2835 
2836 	/* Set enc_context_owner and copy its encryption context over */
2837 	mirror_sev->enc_context_owner = source_kvm;
2838 	mirror_sev->active = true;
2839 	mirror_sev->asid = source_sev->asid;
2840 	mirror_sev->fd = source_sev->fd;
2841 	mirror_sev->es_active = source_sev->es_active;
2842 	mirror_sev->need_init = false;
2843 	mirror_sev->handle = source_sev->handle;
2844 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2845 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2846 	ret = 0;
2847 
2848 	/*
2849 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2850 	 * KVM contexts as the original, and they may have different
2851 	 * memory-views.
2852 	 */
2853 
2854 e_unlock:
2855 	sev_unlock_two_vms(kvm, source_kvm);
2856 	return ret;
2857 }
2858 
snp_decommission_context(struct kvm * kvm)2859 static int snp_decommission_context(struct kvm *kvm)
2860 {
2861 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2862 	struct sev_data_snp_addr data = {};
2863 	int ret;
2864 
2865 	/* If context is not created then do nothing */
2866 	if (!sev->snp_context)
2867 		return 0;
2868 
2869 	/* Do the decommision, which will unbind the ASID from the SNP context */
2870 	data.address = __sme_pa(sev->snp_context);
2871 	down_write(&sev_deactivate_lock);
2872 	ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2873 	up_write(&sev_deactivate_lock);
2874 
2875 	if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2876 		return ret;
2877 
2878 	snp_free_firmware_page(sev->snp_context);
2879 	sev->snp_context = NULL;
2880 
2881 	return 0;
2882 }
2883 
sev_vm_destroy(struct kvm * kvm)2884 void sev_vm_destroy(struct kvm *kvm)
2885 {
2886 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2887 	struct list_head *head = &sev->regions_list;
2888 	struct list_head *pos, *q;
2889 
2890 	if (!sev_guest(kvm))
2891 		return;
2892 
2893 	WARN_ON(!list_empty(&sev->mirror_vms));
2894 
2895 	free_cpumask_var(sev->have_run_cpus);
2896 
2897 	/*
2898 	 * If this is a mirror VM, remove it from the owner's list of a mirrors
2899 	 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner).
2900 	 * Note, mirror VMs don't support registering encrypted regions.
2901 	 */
2902 	if (is_mirroring_enc_context(kvm)) {
2903 		struct kvm *owner_kvm = sev->enc_context_owner;
2904 
2905 		mutex_lock(&owner_kvm->lock);
2906 		list_del(&sev->mirror_entry);
2907 		mutex_unlock(&owner_kvm->lock);
2908 		kvm_put_kvm(owner_kvm);
2909 		return;
2910 	}
2911 
2912 
2913 	/*
2914 	 * if userspace was terminated before unregistering the memory regions
2915 	 * then lets unpin all the registered memory.
2916 	 */
2917 	if (!list_empty(head)) {
2918 		list_for_each_safe(pos, q, head) {
2919 			__unregister_enc_region_locked(kvm,
2920 				list_entry(pos, struct enc_region, list));
2921 			cond_resched();
2922 		}
2923 	}
2924 
2925 	if (sev_snp_guest(kvm)) {
2926 		snp_guest_req_cleanup(kvm);
2927 
2928 		/*
2929 		 * Decomission handles unbinding of the ASID. If it fails for
2930 		 * some unexpected reason, just leak the ASID.
2931 		 */
2932 		if (snp_decommission_context(kvm))
2933 			return;
2934 	} else {
2935 		sev_unbind_asid(kvm, sev->handle);
2936 	}
2937 
2938 	sev_asid_free(sev);
2939 }
2940 
sev_set_cpu_caps(void)2941 void __init sev_set_cpu_caps(void)
2942 {
2943 	if (sev_enabled) {
2944 		kvm_cpu_cap_set(X86_FEATURE_SEV);
2945 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2946 	}
2947 	if (sev_es_enabled) {
2948 		kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2949 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2950 	}
2951 	if (sev_snp_enabled) {
2952 		kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2953 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2954 	}
2955 }
2956 
is_sev_snp_initialized(void)2957 static bool is_sev_snp_initialized(void)
2958 {
2959 	struct sev_user_data_snp_status *status;
2960 	struct sev_data_snp_addr buf;
2961 	bool initialized = false;
2962 	int ret, error = 0;
2963 
2964 	status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO);
2965 	if (!status)
2966 		return false;
2967 
2968 	buf.address = __psp_pa(status);
2969 	ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error);
2970 	if (ret) {
2971 		pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n",
2972 		       ret, error, error);
2973 		goto out;
2974 	}
2975 
2976 	initialized = !!status->state;
2977 
2978 out:
2979 	snp_free_firmware_page(status);
2980 
2981 	return initialized;
2982 }
2983 
sev_hardware_setup(void)2984 void __init sev_hardware_setup(void)
2985 {
2986 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2987 	struct sev_platform_init_args init_args = {0};
2988 	bool sev_snp_supported = false;
2989 	bool sev_es_supported = false;
2990 	bool sev_supported = false;
2991 
2992 	if (!sev_enabled || !npt_enabled || !nrips)
2993 		goto out;
2994 
2995 	/*
2996 	 * SEV must obviously be supported in hardware.  Sanity check that the
2997 	 * CPU supports decode assists, which is mandatory for SEV guests to
2998 	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2999 	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
3000 	 * ASID to effect a TLB flush.
3001 	 */
3002 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
3003 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
3004 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
3005 		goto out;
3006 
3007 	/*
3008 	 * The kernel's initcall infrastructure lacks the ability to express
3009 	 * dependencies between initcalls, whereas the modules infrastructure
3010 	 * automatically handles dependencies via symbol loading.  Ensure the
3011 	 * PSP SEV driver is initialized before proceeding if KVM is built-in,
3012 	 * as the dependency isn't handled by the initcall infrastructure.
3013 	 */
3014 	if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
3015 		goto out;
3016 
3017 	/* Retrieve SEV CPUID information */
3018 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
3019 
3020 	/* Set encryption bit location for SEV-ES guests */
3021 	sev_enc_bit = ebx & 0x3f;
3022 
3023 	/* Maximum number of encrypted guests supported simultaneously */
3024 	max_sev_asid = ecx;
3025 	if (!max_sev_asid)
3026 		goto out;
3027 
3028 	/* Minimum ASID value that should be used for SEV guest */
3029 	min_sev_asid = edx;
3030 	sev_me_mask = 1UL << (ebx & 0x3f);
3031 
3032 	/*
3033 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
3034 	 * even though it's never used, so that the bitmap is indexed by the
3035 	 * actual ASID.
3036 	 */
3037 	nr_asids = max_sev_asid + 1;
3038 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3039 	if (!sev_asid_bitmap)
3040 		goto out;
3041 
3042 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3043 	if (!sev_reclaim_asid_bitmap) {
3044 		bitmap_free(sev_asid_bitmap);
3045 		sev_asid_bitmap = NULL;
3046 		goto out;
3047 	}
3048 
3049 	if (min_sev_asid <= max_sev_asid) {
3050 		sev_asid_count = max_sev_asid - min_sev_asid + 1;
3051 		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3052 	}
3053 	sev_supported = true;
3054 
3055 	/* SEV-ES support requested? */
3056 	if (!sev_es_enabled)
3057 		goto out;
3058 
3059 	/*
3060 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3061 	 * instruction stream, i.e. can't emulate in response to a #NPF and
3062 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3063 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3064 	 */
3065 	if (!enable_mmio_caching)
3066 		goto out;
3067 
3068 	/* Does the CPU support SEV-ES? */
3069 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3070 		goto out;
3071 
3072 	if (!lbrv) {
3073 		WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3074 			  "LBRV must be present for SEV-ES support");
3075 		goto out;
3076 	}
3077 
3078 	/* Has the system been allocated ASIDs for SEV-ES? */
3079 	if (min_sev_asid == 1)
3080 		goto out;
3081 
3082 	min_sev_es_asid = min_snp_asid = 1;
3083 	max_sev_es_asid = max_snp_asid = min_sev_asid - 1;
3084 
3085 	sev_es_asid_count = min_sev_asid - 1;
3086 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3087 	sev_es_supported = true;
3088 	sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3089 
3090 out:
3091 	if (sev_enabled) {
3092 		init_args.probe = true;
3093 
3094 		if (sev_is_snp_ciphertext_hiding_supported())
3095 			init_args.max_snp_asid = min(nr_ciphertext_hiding_asids,
3096 						     min_sev_asid - 1);
3097 
3098 		if (sev_platform_init(&init_args))
3099 			sev_supported = sev_es_supported = sev_snp_supported = false;
3100 		else if (sev_snp_supported)
3101 			sev_snp_supported = is_sev_snp_initialized();
3102 
3103 		if (sev_snp_supported)
3104 			nr_ciphertext_hiding_asids = init_args.max_snp_asid;
3105 
3106 		/*
3107 		 * If ciphertext hiding is enabled, the joint SEV-ES/SEV-SNP
3108 		 * ASID range is partitioned into separate SEV-ES and SEV-SNP
3109 		 * ASID ranges, with the SEV-SNP range being [1..max_snp_asid]
3110 		 * and the SEV-ES range being (max_snp_asid..max_sev_es_asid].
3111 		 * Note, SEV-ES may effectively be disabled if all ASIDs from
3112 		 * the joint range are assigned to SEV-SNP.
3113 		 */
3114 		if (nr_ciphertext_hiding_asids) {
3115 			max_snp_asid = nr_ciphertext_hiding_asids;
3116 			min_sev_es_asid = max_snp_asid + 1;
3117 			pr_info("SEV-SNP ciphertext hiding enabled\n");
3118 		}
3119 	}
3120 
3121 	if (boot_cpu_has(X86_FEATURE_SEV))
3122 		pr_info("SEV %s (ASIDs %u - %u)\n",
3123 			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3124 								       "unusable" :
3125 								       "disabled",
3126 			min_sev_asid, max_sev_asid);
3127 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
3128 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3129 			sev_es_supported ? min_sev_es_asid <= max_sev_es_asid ? "enabled" :
3130 										"unusable" :
3131 										"disabled",
3132 			min_sev_es_asid, max_sev_es_asid);
3133 	if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3134 		pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3135 			str_enabled_disabled(sev_snp_supported),
3136 			min_snp_asid, max_snp_asid);
3137 
3138 	sev_enabled = sev_supported;
3139 	sev_es_enabled = sev_es_supported;
3140 	sev_snp_enabled = sev_snp_supported;
3141 
3142 	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3143 	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3144 		sev_es_debug_swap_enabled = false;
3145 
3146 	sev_supported_vmsa_features = 0;
3147 	if (sev_es_debug_swap_enabled)
3148 		sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3149 
3150 	if (sev_snp_enabled && tsc_khz && cpu_feature_enabled(X86_FEATURE_SNP_SECURE_TSC))
3151 		sev_supported_vmsa_features |= SVM_SEV_FEAT_SECURE_TSC;
3152 }
3153 
sev_hardware_unsetup(void)3154 void sev_hardware_unsetup(void)
3155 {
3156 	if (!sev_enabled)
3157 		return;
3158 
3159 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3160 	sev_flush_asids(1, max_sev_asid);
3161 
3162 	bitmap_free(sev_asid_bitmap);
3163 	bitmap_free(sev_reclaim_asid_bitmap);
3164 
3165 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3166 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3167 
3168 	sev_platform_shutdown();
3169 }
3170 
sev_cpu_init(struct svm_cpu_data * sd)3171 int sev_cpu_init(struct svm_cpu_data *sd)
3172 {
3173 	if (!sev_enabled)
3174 		return 0;
3175 
3176 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3177 	if (!sd->sev_vmcbs)
3178 		return -ENOMEM;
3179 
3180 	return 0;
3181 }
3182 
3183 /*
3184  * Pages used by hardware to hold guest encrypted state must be flushed before
3185  * returning them to the system.
3186  */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3187 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3188 {
3189 	unsigned int asid = sev_get_asid(vcpu->kvm);
3190 
3191 	/*
3192 	 * Note!  The address must be a kernel address, as regular page walk
3193 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3194 	 * address is non-deterministic and unsafe.  This function deliberately
3195 	 * takes a pointer to deter passing in a user address.
3196 	 */
3197 	unsigned long addr = (unsigned long)va;
3198 
3199 	/*
3200 	 * If CPU enforced cache coherency for encrypted mappings of the
3201 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3202 	 * flush is still needed in order to work properly with DMA devices.
3203 	 */
3204 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3205 		clflush_cache_range(va, PAGE_SIZE);
3206 		return;
3207 	}
3208 
3209 	/*
3210 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
3211 	 * back to full writeback of caches if this faults so as not to make
3212 	 * any problems worse by leaving stale encrypted data in the cache.
3213 	 */
3214 	if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3215 		goto do_sev_writeback_caches;
3216 
3217 	return;
3218 
3219 do_sev_writeback_caches:
3220 	sev_writeback_caches(vcpu->kvm);
3221 }
3222 
sev_guest_memory_reclaimed(struct kvm * kvm)3223 void sev_guest_memory_reclaimed(struct kvm *kvm)
3224 {
3225 	/*
3226 	 * With SNP+gmem, private/encrypted memory is unreachable via the
3227 	 * hva-based mmu notifiers, i.e. these events are explicitly scoped to
3228 	 * shared pages, where there's no need to flush caches.
3229 	 */
3230 	if (!sev_guest(kvm) || sev_snp_guest(kvm))
3231 		return;
3232 
3233 	sev_writeback_caches(kvm);
3234 }
3235 
sev_free_vcpu(struct kvm_vcpu * vcpu)3236 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3237 {
3238 	struct vcpu_svm *svm;
3239 
3240 	if (!sev_es_guest(vcpu->kvm))
3241 		return;
3242 
3243 	svm = to_svm(vcpu);
3244 
3245 	/*
3246 	 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3247 	 * a guest-owned page. Transition the page to hypervisor state before
3248 	 * releasing it back to the system.
3249 	 */
3250 	if (sev_snp_guest(vcpu->kvm)) {
3251 		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3252 
3253 		if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3254 			goto skip_vmsa_free;
3255 	}
3256 
3257 	if (vcpu->arch.guest_state_protected)
3258 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3259 
3260 	__free_page(virt_to_page(svm->sev_es.vmsa));
3261 
3262 skip_vmsa_free:
3263 	if (svm->sev_es.ghcb_sa_free)
3264 		kvfree(svm->sev_es.ghcb_sa);
3265 }
3266 
kvm_get_cached_sw_exit_code(struct vmcb_control_area * control)3267 static u64 kvm_get_cached_sw_exit_code(struct vmcb_control_area *control)
3268 {
3269 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3270 }
3271 
dump_ghcb(struct vcpu_svm * svm)3272 static void dump_ghcb(struct vcpu_svm *svm)
3273 {
3274 	struct vmcb_control_area *control = &svm->vmcb->control;
3275 	unsigned int nbits;
3276 
3277 	/* Re-use the dump_invalid_vmcb module parameter */
3278 	if (!dump_invalid_vmcb) {
3279 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3280 		return;
3281 	}
3282 
3283 	nbits = sizeof(svm->sev_es.valid_bitmap) * 8;
3284 
3285 	/*
3286 	 * Print KVM's snapshot of the GHCB values that were (unsuccessfully)
3287 	 * used to handle the exit.  If the guest has since modified the GHCB
3288 	 * itself, dumping the raw GHCB won't help debug why KVM was unable to
3289 	 * handle the VMGEXIT that KVM observed.
3290 	 */
3291 	pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa);
3292 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3293 	       kvm_get_cached_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm));
3294 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3295 	       control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm));
3296 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3297 	       control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm));
3298 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3299 	       svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm));
3300 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap);
3301 }
3302 
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3303 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3304 {
3305 	struct kvm_vcpu *vcpu = &svm->vcpu;
3306 	struct ghcb *ghcb = svm->sev_es.ghcb;
3307 
3308 	/*
3309 	 * The GHCB protocol so far allows for the following data
3310 	 * to be returned:
3311 	 *   GPRs RAX, RBX, RCX, RDX
3312 	 *
3313 	 * Copy their values, even if they may not have been written during the
3314 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
3315 	 */
3316 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3317 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3318 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3319 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3320 }
3321 
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3322 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3323 {
3324 	struct vmcb_control_area *control = &svm->vmcb->control;
3325 	struct kvm_vcpu *vcpu = &svm->vcpu;
3326 	struct ghcb *ghcb = svm->sev_es.ghcb;
3327 	u64 exit_code;
3328 
3329 	/*
3330 	 * The GHCB protocol so far allows for the following data
3331 	 * to be supplied:
3332 	 *   GPRs RAX, RBX, RCX, RDX
3333 	 *   XCR0
3334 	 *   CPL
3335 	 *
3336 	 * VMMCALL allows the guest to provide extra registers. KVM also
3337 	 * expects RSI for hypercalls, so include that, too.
3338 	 *
3339 	 * Copy their values to the appropriate location if supplied.
3340 	 */
3341 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3342 
3343 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3344 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3345 
3346 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm);
3347 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm);
3348 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm);
3349 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm);
3350 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm);
3351 
3352 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm);
3353 
3354 	if (kvm_ghcb_xcr0_is_valid(svm))
3355 		__kvm_set_xcr(vcpu, 0, kvm_ghcb_get_xcr0(svm));
3356 
3357 	if (kvm_ghcb_xss_is_valid(svm))
3358 		__kvm_emulate_msr_write(vcpu, MSR_IA32_XSS, kvm_ghcb_get_xss(svm));
3359 
3360 	/* Copy the GHCB exit information into the VMCB fields */
3361 	exit_code = kvm_ghcb_get_sw_exit_code(svm);
3362 	control->exit_code = lower_32_bits(exit_code);
3363 	control->exit_code_hi = upper_32_bits(exit_code);
3364 	control->exit_info_1 = kvm_ghcb_get_sw_exit_info_1(svm);
3365 	control->exit_info_2 = kvm_ghcb_get_sw_exit_info_2(svm);
3366 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm);
3367 
3368 	/* Clear the valid entries fields */
3369 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3370 }
3371 
sev_es_validate_vmgexit(struct vcpu_svm * svm)3372 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3373 {
3374 	struct vmcb_control_area *control = &svm->vmcb->control;
3375 	struct kvm_vcpu *vcpu = &svm->vcpu;
3376 	u64 exit_code;
3377 	u64 reason;
3378 
3379 	/*
3380 	 * Retrieve the exit code now even though it may not be marked valid
3381 	 * as it could help with debugging.
3382 	 */
3383 	exit_code = kvm_get_cached_sw_exit_code(control);
3384 
3385 	/* Only GHCB Usage code 0 is supported */
3386 	if (svm->sev_es.ghcb->ghcb_usage) {
3387 		reason = GHCB_ERR_INVALID_USAGE;
3388 		goto vmgexit_err;
3389 	}
3390 
3391 	reason = GHCB_ERR_MISSING_INPUT;
3392 
3393 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3394 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3395 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3396 		goto vmgexit_err;
3397 
3398 	switch (exit_code) {
3399 	case SVM_EXIT_READ_DR7:
3400 		break;
3401 	case SVM_EXIT_WRITE_DR7:
3402 		if (!kvm_ghcb_rax_is_valid(svm))
3403 			goto vmgexit_err;
3404 		break;
3405 	case SVM_EXIT_RDTSC:
3406 		break;
3407 	case SVM_EXIT_RDPMC:
3408 		if (!kvm_ghcb_rcx_is_valid(svm))
3409 			goto vmgexit_err;
3410 		break;
3411 	case SVM_EXIT_CPUID:
3412 		if (!kvm_ghcb_rax_is_valid(svm) ||
3413 		    !kvm_ghcb_rcx_is_valid(svm))
3414 			goto vmgexit_err;
3415 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3416 			if (!kvm_ghcb_xcr0_is_valid(svm))
3417 				goto vmgexit_err;
3418 		break;
3419 	case SVM_EXIT_INVD:
3420 		break;
3421 	case SVM_EXIT_IOIO:
3422 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3423 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
3424 				goto vmgexit_err;
3425 		} else {
3426 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3427 				if (!kvm_ghcb_rax_is_valid(svm))
3428 					goto vmgexit_err;
3429 		}
3430 		break;
3431 	case SVM_EXIT_MSR:
3432 		if (!kvm_ghcb_rcx_is_valid(svm))
3433 			goto vmgexit_err;
3434 		if (control->exit_info_1) {
3435 			if (!kvm_ghcb_rax_is_valid(svm) ||
3436 			    !kvm_ghcb_rdx_is_valid(svm))
3437 				goto vmgexit_err;
3438 		}
3439 		break;
3440 	case SVM_EXIT_VMMCALL:
3441 		if (!kvm_ghcb_rax_is_valid(svm) ||
3442 		    !kvm_ghcb_cpl_is_valid(svm))
3443 			goto vmgexit_err;
3444 		break;
3445 	case SVM_EXIT_RDTSCP:
3446 		break;
3447 	case SVM_EXIT_WBINVD:
3448 		break;
3449 	case SVM_EXIT_MONITOR:
3450 		if (!kvm_ghcb_rax_is_valid(svm) ||
3451 		    !kvm_ghcb_rcx_is_valid(svm) ||
3452 		    !kvm_ghcb_rdx_is_valid(svm))
3453 			goto vmgexit_err;
3454 		break;
3455 	case SVM_EXIT_MWAIT:
3456 		if (!kvm_ghcb_rax_is_valid(svm) ||
3457 		    !kvm_ghcb_rcx_is_valid(svm))
3458 			goto vmgexit_err;
3459 		break;
3460 	case SVM_VMGEXIT_MMIO_READ:
3461 	case SVM_VMGEXIT_MMIO_WRITE:
3462 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
3463 			goto vmgexit_err;
3464 		break;
3465 	case SVM_VMGEXIT_AP_CREATION:
3466 		if (!sev_snp_guest(vcpu->kvm))
3467 			goto vmgexit_err;
3468 		if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3469 			if (!kvm_ghcb_rax_is_valid(svm))
3470 				goto vmgexit_err;
3471 		break;
3472 	case SVM_VMGEXIT_NMI_COMPLETE:
3473 	case SVM_VMGEXIT_AP_HLT_LOOP:
3474 	case SVM_VMGEXIT_AP_JUMP_TABLE:
3475 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3476 	case SVM_VMGEXIT_HV_FEATURES:
3477 	case SVM_VMGEXIT_TERM_REQUEST:
3478 		break;
3479 	case SVM_VMGEXIT_PSC:
3480 		if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3481 			goto vmgexit_err;
3482 		break;
3483 	case SVM_VMGEXIT_GUEST_REQUEST:
3484 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3485 		if (!sev_snp_guest(vcpu->kvm) ||
3486 		    !PAGE_ALIGNED(control->exit_info_1) ||
3487 		    !PAGE_ALIGNED(control->exit_info_2) ||
3488 		    control->exit_info_1 == control->exit_info_2)
3489 			goto vmgexit_err;
3490 		break;
3491 	default:
3492 		reason = GHCB_ERR_INVALID_EVENT;
3493 		goto vmgexit_err;
3494 	}
3495 
3496 	return 0;
3497 
3498 vmgexit_err:
3499 	if (reason == GHCB_ERR_INVALID_USAGE) {
3500 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3501 			    svm->sev_es.ghcb->ghcb_usage);
3502 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
3503 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3504 			    exit_code);
3505 	} else {
3506 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3507 			    exit_code);
3508 		dump_ghcb(svm);
3509 	}
3510 
3511 	svm_vmgexit_bad_input(svm, reason);
3512 
3513 	/* Resume the guest to "return" the error code. */
3514 	return 1;
3515 }
3516 
sev_es_unmap_ghcb(struct vcpu_svm * svm)3517 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3518 {
3519 	/* Clear any indication that the vCPU is in a type of AP Reset Hold */
3520 	svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3521 
3522 	if (!svm->sev_es.ghcb)
3523 		return;
3524 
3525 	if (svm->sev_es.ghcb_sa_free) {
3526 		/*
3527 		 * The scratch area lives outside the GHCB, so there is a
3528 		 * buffer that, depending on the operation performed, may
3529 		 * need to be synced, then freed.
3530 		 */
3531 		if (svm->sev_es.ghcb_sa_sync) {
3532 			kvm_write_guest(svm->vcpu.kvm,
3533 					svm->sev_es.sw_scratch,
3534 					svm->sev_es.ghcb_sa,
3535 					svm->sev_es.ghcb_sa_len);
3536 			svm->sev_es.ghcb_sa_sync = false;
3537 		}
3538 
3539 		kvfree(svm->sev_es.ghcb_sa);
3540 		svm->sev_es.ghcb_sa = NULL;
3541 		svm->sev_es.ghcb_sa_free = false;
3542 	}
3543 
3544 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3545 
3546 	sev_es_sync_to_ghcb(svm);
3547 
3548 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3549 	svm->sev_es.ghcb = NULL;
3550 }
3551 
pre_sev_run(struct vcpu_svm * svm,int cpu)3552 int pre_sev_run(struct vcpu_svm *svm, int cpu)
3553 {
3554 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3555 	struct kvm *kvm = svm->vcpu.kvm;
3556 	unsigned int asid = sev_get_asid(kvm);
3557 
3558 	/*
3559 	 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
3560 	 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
3561 	 * AP Destroy event.
3562 	 */
3563 	if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
3564 		return -EINVAL;
3565 
3566 	/*
3567 	 * To optimize cache flushes when memory is reclaimed from an SEV VM,
3568 	 * track physical CPUs that enter the guest for SEV VMs and thus can
3569 	 * have encrypted, dirty data in the cache, and flush caches only for
3570 	 * CPUs that have entered the guest.
3571 	 */
3572 	if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus))
3573 		cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus);
3574 
3575 	/* Assign the asid allocated with this SEV guest */
3576 	svm->asid = asid;
3577 
3578 	/*
3579 	 * Flush guest TLB:
3580 	 *
3581 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3582 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3583 	 */
3584 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
3585 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
3586 		return 0;
3587 
3588 	sd->sev_vmcbs[asid] = svm->vmcb;
3589 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3590 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3591 	return 0;
3592 }
3593 
3594 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3595 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3596 {
3597 	struct vmcb_control_area *control = &svm->vmcb->control;
3598 	u64 ghcb_scratch_beg, ghcb_scratch_end;
3599 	u64 scratch_gpa_beg, scratch_gpa_end;
3600 	void *scratch_va;
3601 
3602 	scratch_gpa_beg = svm->sev_es.sw_scratch;
3603 	if (!scratch_gpa_beg) {
3604 		pr_err("vmgexit: scratch gpa not provided\n");
3605 		goto e_scratch;
3606 	}
3607 
3608 	scratch_gpa_end = scratch_gpa_beg + len;
3609 	if (scratch_gpa_end < scratch_gpa_beg) {
3610 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3611 		       len, scratch_gpa_beg);
3612 		goto e_scratch;
3613 	}
3614 
3615 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3616 		/* Scratch area begins within GHCB */
3617 		ghcb_scratch_beg = control->ghcb_gpa +
3618 				   offsetof(struct ghcb, shared_buffer);
3619 		ghcb_scratch_end = control->ghcb_gpa +
3620 				   offsetof(struct ghcb, reserved_0xff0);
3621 
3622 		/*
3623 		 * If the scratch area begins within the GHCB, it must be
3624 		 * completely contained in the GHCB shared buffer area.
3625 		 */
3626 		if (scratch_gpa_beg < ghcb_scratch_beg ||
3627 		    scratch_gpa_end > ghcb_scratch_end) {
3628 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3629 			       scratch_gpa_beg, scratch_gpa_end);
3630 			goto e_scratch;
3631 		}
3632 
3633 		scratch_va = (void *)svm->sev_es.ghcb;
3634 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3635 	} else {
3636 		/*
3637 		 * The guest memory must be read into a kernel buffer, so
3638 		 * limit the size
3639 		 */
3640 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
3641 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3642 			       len, GHCB_SCRATCH_AREA_LIMIT);
3643 			goto e_scratch;
3644 		}
3645 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3646 		if (!scratch_va)
3647 			return -ENOMEM;
3648 
3649 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3650 			/* Unable to copy scratch area from guest */
3651 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3652 
3653 			kvfree(scratch_va);
3654 			return -EFAULT;
3655 		}
3656 
3657 		/*
3658 		 * The scratch area is outside the GHCB. The operation will
3659 		 * dictate whether the buffer needs to be synced before running
3660 		 * the vCPU next time (i.e. a read was requested so the data
3661 		 * must be written back to the guest memory).
3662 		 */
3663 		svm->sev_es.ghcb_sa_sync = sync;
3664 		svm->sev_es.ghcb_sa_free = true;
3665 	}
3666 
3667 	svm->sev_es.ghcb_sa = scratch_va;
3668 	svm->sev_es.ghcb_sa_len = len;
3669 
3670 	return 0;
3671 
3672 e_scratch:
3673 	svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
3674 
3675 	return 1;
3676 }
3677 
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3678 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3679 			      unsigned int pos)
3680 {
3681 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3682 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3683 }
3684 
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3685 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3686 {
3687 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3688 }
3689 
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3690 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3691 {
3692 	svm->vmcb->control.ghcb_gpa = value;
3693 }
3694 
snp_rmptable_psmash(kvm_pfn_t pfn)3695 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3696 {
3697 	int ret;
3698 
3699 	pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3700 
3701 	/*
3702 	 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3703 	 * entry, so retry until that's no longer the case.
3704 	 */
3705 	do {
3706 		ret = psmash(pfn);
3707 	} while (ret == PSMASH_FAIL_INUSE);
3708 
3709 	return ret;
3710 }
3711 
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3712 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3713 {
3714 	struct vcpu_svm *svm = to_svm(vcpu);
3715 
3716 	if (vcpu->run->hypercall.ret)
3717 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3718 	else
3719 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3720 
3721 	return 1; /* resume guest */
3722 }
3723 
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3724 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3725 {
3726 	u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3727 	u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3728 	struct kvm_vcpu *vcpu = &svm->vcpu;
3729 
3730 	if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3731 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3732 		return 1; /* resume guest */
3733 	}
3734 
3735 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3736 		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3737 		return 1; /* resume guest */
3738 	}
3739 
3740 	vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3741 	vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3742 	/*
3743 	 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3744 	 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3745 	 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
3746 	 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3747 	 */
3748 	vcpu->run->hypercall.ret = 0;
3749 	vcpu->run->hypercall.args[0] = gpa;
3750 	vcpu->run->hypercall.args[1] = 1;
3751 	vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3752 				       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3753 				       : KVM_MAP_GPA_RANGE_DECRYPTED;
3754 	vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3755 
3756 	vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3757 
3758 	return 0; /* forward request to userspace */
3759 }
3760 
3761 struct psc_buffer {
3762 	struct psc_hdr hdr;
3763 	struct psc_entry entries[];
3764 } __packed;
3765 
3766 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3767 
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3768 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3769 {
3770 	svm->sev_es.psc_inflight = 0;
3771 	svm->sev_es.psc_idx = 0;
3772 	svm->sev_es.psc_2m = false;
3773 
3774 	/*
3775 	 * PSC requests always get a "no action" response in SW_EXITINFO1, with
3776 	 * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
3777 	 * return code.  E.g. if the PSC request was interrupted, the need to
3778 	 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
3779 	 */
3780 	svm_vmgexit_no_action(svm, psc_ret);
3781 }
3782 
__snp_complete_one_psc(struct vcpu_svm * svm)3783 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3784 {
3785 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3786 	struct psc_entry *entries = psc->entries;
3787 	struct psc_hdr *hdr = &psc->hdr;
3788 	__u16 idx;
3789 
3790 	/*
3791 	 * Everything in-flight has been processed successfully. Update the
3792 	 * corresponding entries in the guest's PSC buffer and zero out the
3793 	 * count of in-flight PSC entries.
3794 	 */
3795 	for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3796 	     svm->sev_es.psc_inflight--, idx++) {
3797 		struct psc_entry *entry = &entries[idx];
3798 
3799 		entry->cur_page = entry->pagesize ? 512 : 1;
3800 	}
3801 
3802 	hdr->cur_entry = idx;
3803 }
3804 
snp_complete_one_psc(struct kvm_vcpu * vcpu)3805 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3806 {
3807 	struct vcpu_svm *svm = to_svm(vcpu);
3808 	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3809 
3810 	if (vcpu->run->hypercall.ret) {
3811 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3812 		return 1; /* resume guest */
3813 	}
3814 
3815 	__snp_complete_one_psc(svm);
3816 
3817 	/* Handle the next range (if any). */
3818 	return snp_begin_psc(svm, psc);
3819 }
3820 
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3821 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3822 {
3823 	struct psc_entry *entries = psc->entries;
3824 	struct kvm_vcpu *vcpu = &svm->vcpu;
3825 	struct psc_hdr *hdr = &psc->hdr;
3826 	struct psc_entry entry_start;
3827 	u16 idx, idx_start, idx_end;
3828 	int npages;
3829 	bool huge;
3830 	u64 gfn;
3831 
3832 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3833 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3834 		return 1;
3835 	}
3836 
3837 next_range:
3838 	/* There should be no other PSCs in-flight at this point. */
3839 	if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3840 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3841 		return 1;
3842 	}
3843 
3844 	/*
3845 	 * The PSC descriptor buffer can be modified by a misbehaved guest after
3846 	 * validation, so take care to only use validated copies of values used
3847 	 * for things like array indexing.
3848 	 */
3849 	idx_start = hdr->cur_entry;
3850 	idx_end = hdr->end_entry;
3851 
3852 	if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3853 		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3854 		return 1;
3855 	}
3856 
3857 	/* Find the start of the next range which needs processing. */
3858 	for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3859 		entry_start = entries[idx];
3860 
3861 		gfn = entry_start.gfn;
3862 		huge = entry_start.pagesize;
3863 		npages = huge ? 512 : 1;
3864 
3865 		if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3866 			snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3867 			return 1;
3868 		}
3869 
3870 		if (entry_start.cur_page) {
3871 			/*
3872 			 * If this is a partially-completed 2M range, force 4K handling
3873 			 * for the remaining pages since they're effectively split at
3874 			 * this point. Subsequent code should ensure this doesn't get
3875 			 * combined with adjacent PSC entries where 2M handling is still
3876 			 * possible.
3877 			 */
3878 			npages -= entry_start.cur_page;
3879 			gfn += entry_start.cur_page;
3880 			huge = false;
3881 		}
3882 
3883 		if (npages)
3884 			break;
3885 	}
3886 
3887 	if (idx > idx_end) {
3888 		/* Nothing more to process. */
3889 		snp_complete_psc(svm, 0);
3890 		return 1;
3891 	}
3892 
3893 	svm->sev_es.psc_2m = huge;
3894 	svm->sev_es.psc_idx = idx;
3895 	svm->sev_es.psc_inflight = 1;
3896 
3897 	/*
3898 	 * Find all subsequent PSC entries that contain adjacent GPA
3899 	 * ranges/operations and can be combined into a single
3900 	 * KVM_HC_MAP_GPA_RANGE exit.
3901 	 */
3902 	while (++idx <= idx_end) {
3903 		struct psc_entry entry = entries[idx];
3904 
3905 		if (entry.operation != entry_start.operation ||
3906 		    entry.gfn != entry_start.gfn + npages ||
3907 		    entry.cur_page || !!entry.pagesize != huge)
3908 			break;
3909 
3910 		svm->sev_es.psc_inflight++;
3911 		npages += huge ? 512 : 1;
3912 	}
3913 
3914 	switch (entry_start.operation) {
3915 	case VMGEXIT_PSC_OP_PRIVATE:
3916 	case VMGEXIT_PSC_OP_SHARED:
3917 		vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3918 		vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3919 		/*
3920 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3921 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3922 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
3923 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3924 		 */
3925 		vcpu->run->hypercall.ret = 0;
3926 		vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3927 		vcpu->run->hypercall.args[1] = npages;
3928 		vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3929 					       ? KVM_MAP_GPA_RANGE_ENCRYPTED
3930 					       : KVM_MAP_GPA_RANGE_DECRYPTED;
3931 		vcpu->run->hypercall.args[2] |= entry_start.pagesize
3932 						? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3933 						: KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3934 		vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3935 		return 0; /* forward request to userspace */
3936 	default:
3937 		/*
3938 		 * Only shared/private PSC operations are currently supported, so if the
3939 		 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3940 		 * then consider the entire range completed and avoid exiting to
3941 		 * userspace. In theory snp_complete_psc() can always be called directly
3942 		 * at this point to complete the current range and start the next one,
3943 		 * but that could lead to unexpected levels of recursion.
3944 		 */
3945 		__snp_complete_one_psc(svm);
3946 		goto next_range;
3947 	}
3948 
3949 	BUG();
3950 }
3951 
3952 /*
3953  * Invoked as part of svm_vcpu_reset() processing of an init event.
3954  */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3955 static void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3956 {
3957 	struct vcpu_svm *svm = to_svm(vcpu);
3958 	struct kvm_memory_slot *slot;
3959 	struct page *page;
3960 	kvm_pfn_t pfn;
3961 	gfn_t gfn;
3962 
3963 	guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
3964 
3965 	if (!svm->sev_es.snp_ap_waiting_for_reset)
3966 		return;
3967 
3968 	svm->sev_es.snp_ap_waiting_for_reset = false;
3969 
3970 	/* Mark the vCPU as offline and not runnable */
3971 	vcpu->arch.pv.pv_unhalted = false;
3972 	kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
3973 
3974 	/* Clear use of the VMSA */
3975 	svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3976 
3977 	/*
3978 	 * When replacing the VMSA during SEV-SNP AP creation,
3979 	 * mark the VMCB dirty so that full state is always reloaded.
3980 	 */
3981 	vmcb_mark_all_dirty(svm->vmcb);
3982 
3983 	if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
3984 		return;
3985 
3986 	gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3987 	svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3988 
3989 	slot = gfn_to_memslot(vcpu->kvm, gfn);
3990 	if (!slot)
3991 		return;
3992 
3993 	/*
3994 	 * The new VMSA will be private memory guest memory, so retrieve the
3995 	 * PFN from the gmem backend.
3996 	 */
3997 	if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
3998 		return;
3999 
4000 	/*
4001 	 * From this point forward, the VMSA will always be a guest-mapped page
4002 	 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
4003 	 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
4004 	 * that involves cleanups like flushing caches, which would ideally be
4005 	 * handled during teardown rather than guest boot.  Deferring that also
4006 	 * allows the existing logic for SEV-ES VMSAs to be re-used with
4007 	 * minimal SNP-specific changes.
4008 	 */
4009 	svm->sev_es.snp_has_guest_vmsa = true;
4010 
4011 	/* Use the new VMSA */
4012 	svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
4013 
4014 	/* Mark the vCPU as runnable */
4015 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
4016 
4017 	/*
4018 	 * gmem pages aren't currently migratable, but if this ever changes
4019 	 * then care should be taken to ensure svm->sev_es.vmsa is pinned
4020 	 * through some other means.
4021 	 */
4022 	kvm_release_page_clean(page);
4023 }
4024 
sev_snp_ap_creation(struct vcpu_svm * svm)4025 static int sev_snp_ap_creation(struct vcpu_svm *svm)
4026 {
4027 	struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4028 	struct kvm_vcpu *vcpu = &svm->vcpu;
4029 	struct kvm_vcpu *target_vcpu;
4030 	struct vcpu_svm *target_svm;
4031 	unsigned int request;
4032 	unsigned int apic_id;
4033 
4034 	request = lower_32_bits(svm->vmcb->control.exit_info_1);
4035 	apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
4036 
4037 	/* Validate the APIC ID */
4038 	target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
4039 	if (!target_vcpu) {
4040 		vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
4041 			    apic_id);
4042 		return -EINVAL;
4043 	}
4044 
4045 	target_svm = to_svm(target_vcpu);
4046 
4047 	guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
4048 
4049 	switch (request) {
4050 	case SVM_VMGEXIT_AP_CREATE_ON_INIT:
4051 	case SVM_VMGEXIT_AP_CREATE:
4052 		if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
4053 			vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
4054 				    vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
4055 			return -EINVAL;
4056 		}
4057 
4058 		if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
4059 			vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
4060 				    svm->vmcb->control.exit_info_2);
4061 			return -EINVAL;
4062 		}
4063 
4064 		/*
4065 		 * Malicious guest can RMPADJUST a large page into VMSA which
4066 		 * will hit the SNP erratum where the CPU will incorrectly signal
4067 		 * an RMP violation #PF if a hugepage collides with the RMP entry
4068 		 * of VMSA page, reject the AP CREATE request if VMSA address from
4069 		 * guest is 2M aligned.
4070 		 */
4071 		if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4072 			vcpu_unimpl(vcpu,
4073 				    "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4074 				    svm->vmcb->control.exit_info_2);
4075 			return -EINVAL;
4076 		}
4077 
4078 		target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4079 		break;
4080 	case SVM_VMGEXIT_AP_DESTROY:
4081 		target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
4082 		break;
4083 	default:
4084 		vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4085 			    request);
4086 		return -EINVAL;
4087 	}
4088 
4089 	target_svm->sev_es.snp_ap_waiting_for_reset = true;
4090 
4091 	/*
4092 	 * Unless Creation is deferred until INIT, signal the vCPU to update
4093 	 * its state.
4094 	 */
4095 	if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT)
4096 		kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4097 
4098 	return 0;
4099 }
4100 
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4101 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4102 {
4103 	struct sev_data_snp_guest_request data = {0};
4104 	struct kvm *kvm = svm->vcpu.kvm;
4105 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4106 	sev_ret_code fw_err = 0;
4107 	int ret;
4108 
4109 	if (!sev_snp_guest(kvm))
4110 		return -EINVAL;
4111 
4112 	mutex_lock(&sev->guest_req_mutex);
4113 
4114 	if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4115 		ret = -EIO;
4116 		goto out_unlock;
4117 	}
4118 
4119 	data.gctx_paddr = __psp_pa(sev->snp_context);
4120 	data.req_paddr = __psp_pa(sev->guest_req_buf);
4121 	data.res_paddr = __psp_pa(sev->guest_resp_buf);
4122 
4123 	/*
4124 	 * Firmware failures are propagated on to guest, but any other failure
4125 	 * condition along the way should be reported to userspace. E.g. if
4126 	 * the PSP is dead and commands are timing out.
4127 	 */
4128 	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4129 	if (ret && !fw_err)
4130 		goto out_unlock;
4131 
4132 	if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4133 		ret = -EIO;
4134 		goto out_unlock;
4135 	}
4136 
4137 	/* No action is requested *from KVM* if there was a firmware error. */
4138 	svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
4139 
4140 	ret = 1; /* resume guest */
4141 
4142 out_unlock:
4143 	mutex_unlock(&sev->guest_req_mutex);
4144 	return ret;
4145 }
4146 
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4147 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4148 {
4149 	struct kvm *kvm = svm->vcpu.kvm;
4150 	u8 msg_type;
4151 
4152 	if (!sev_snp_guest(kvm))
4153 		return -EINVAL;
4154 
4155 	if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4156 			   &msg_type, 1))
4157 		return -EIO;
4158 
4159 	/*
4160 	 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4161 	 * additional certificate data to be provided alongside the attestation
4162 	 * report via the guest-provided data pages indicated by RAX/RBX. The
4163 	 * certificate data is optional and requires additional KVM enablement
4164 	 * to provide an interface for userspace to provide it, but KVM still
4165 	 * needs to be able to handle extended guest requests either way. So
4166 	 * provide a stub implementation that will always return an empty
4167 	 * certificate table in the guest-provided data pages.
4168 	 */
4169 	if (msg_type == SNP_MSG_REPORT_REQ) {
4170 		struct kvm_vcpu *vcpu = &svm->vcpu;
4171 		u64 data_npages;
4172 		gpa_t data_gpa;
4173 
4174 		if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4175 			goto request_invalid;
4176 
4177 		data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4178 		data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4179 
4180 		if (!PAGE_ALIGNED(data_gpa))
4181 			goto request_invalid;
4182 
4183 		/*
4184 		 * As per GHCB spec (see "SNP Extended Guest Request"), the
4185 		 * certificate table is terminated by 24-bytes of zeroes.
4186 		 */
4187 		if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4188 			return -EIO;
4189 	}
4190 
4191 	return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4192 
4193 request_invalid:
4194 	svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4195 	return 1; /* resume guest */
4196 }
4197 
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4198 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4199 {
4200 	struct vmcb_control_area *control = &svm->vmcb->control;
4201 	struct kvm_vcpu *vcpu = &svm->vcpu;
4202 	struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4203 	u64 ghcb_info;
4204 	int ret = 1;
4205 
4206 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4207 
4208 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4209 					     control->ghcb_gpa);
4210 
4211 	switch (ghcb_info) {
4212 	case GHCB_MSR_SEV_INFO_REQ:
4213 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4214 						    GHCB_VERSION_MIN,
4215 						    sev_enc_bit));
4216 		break;
4217 	case GHCB_MSR_CPUID_REQ: {
4218 		u64 cpuid_fn, cpuid_reg, cpuid_value;
4219 
4220 		cpuid_fn = get_ghcb_msr_bits(svm,
4221 					     GHCB_MSR_CPUID_FUNC_MASK,
4222 					     GHCB_MSR_CPUID_FUNC_POS);
4223 
4224 		/* Initialize the registers needed by the CPUID intercept */
4225 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4226 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4227 
4228 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4229 		if (!ret) {
4230 			/* Error, keep GHCB MSR value as-is */
4231 			break;
4232 		}
4233 
4234 		cpuid_reg = get_ghcb_msr_bits(svm,
4235 					      GHCB_MSR_CPUID_REG_MASK,
4236 					      GHCB_MSR_CPUID_REG_POS);
4237 		if (cpuid_reg == 0)
4238 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4239 		else if (cpuid_reg == 1)
4240 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4241 		else if (cpuid_reg == 2)
4242 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4243 		else
4244 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4245 
4246 		set_ghcb_msr_bits(svm, cpuid_value,
4247 				  GHCB_MSR_CPUID_VALUE_MASK,
4248 				  GHCB_MSR_CPUID_VALUE_POS);
4249 
4250 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4251 				  GHCB_MSR_INFO_MASK,
4252 				  GHCB_MSR_INFO_POS);
4253 		break;
4254 	}
4255 	case GHCB_MSR_AP_RESET_HOLD_REQ:
4256 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4257 		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4258 
4259 		/*
4260 		 * Preset the result to a non-SIPI return and then only set
4261 		 * the result to non-zero when delivering a SIPI.
4262 		 */
4263 		set_ghcb_msr_bits(svm, 0,
4264 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4265 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4266 
4267 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4268 				  GHCB_MSR_INFO_MASK,
4269 				  GHCB_MSR_INFO_POS);
4270 		break;
4271 	case GHCB_MSR_HV_FT_REQ:
4272 		set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4273 				  GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4274 		set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4275 				  GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4276 		break;
4277 	case GHCB_MSR_PREF_GPA_REQ:
4278 		if (!sev_snp_guest(vcpu->kvm))
4279 			goto out_terminate;
4280 
4281 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4282 				  GHCB_MSR_GPA_VALUE_POS);
4283 		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4284 				  GHCB_MSR_INFO_POS);
4285 		break;
4286 	case GHCB_MSR_REG_GPA_REQ: {
4287 		u64 gfn;
4288 
4289 		if (!sev_snp_guest(vcpu->kvm))
4290 			goto out_terminate;
4291 
4292 		gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4293 					GHCB_MSR_GPA_VALUE_POS);
4294 
4295 		svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4296 
4297 		set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4298 				  GHCB_MSR_GPA_VALUE_POS);
4299 		set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4300 				  GHCB_MSR_INFO_POS);
4301 		break;
4302 	}
4303 	case GHCB_MSR_PSC_REQ:
4304 		if (!sev_snp_guest(vcpu->kvm))
4305 			goto out_terminate;
4306 
4307 		ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4308 		break;
4309 	case GHCB_MSR_TERM_REQ: {
4310 		u64 reason_set, reason_code;
4311 
4312 		reason_set = get_ghcb_msr_bits(svm,
4313 					       GHCB_MSR_TERM_REASON_SET_MASK,
4314 					       GHCB_MSR_TERM_REASON_SET_POS);
4315 		reason_code = get_ghcb_msr_bits(svm,
4316 						GHCB_MSR_TERM_REASON_MASK,
4317 						GHCB_MSR_TERM_REASON_POS);
4318 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4319 			reason_set, reason_code);
4320 
4321 		goto out_terminate;
4322 	}
4323 	default:
4324 		/* Error, keep GHCB MSR value as-is */
4325 		break;
4326 	}
4327 
4328 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4329 					    control->ghcb_gpa, ret);
4330 
4331 	return ret;
4332 
4333 out_terminate:
4334 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4335 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4336 	vcpu->run->system_event.ndata = 1;
4337 	vcpu->run->system_event.data[0] = control->ghcb_gpa;
4338 
4339 	return 0;
4340 }
4341 
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4342 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4343 {
4344 	struct vcpu_svm *svm = to_svm(vcpu);
4345 	struct vmcb_control_area *control = &svm->vmcb->control;
4346 	u64 ghcb_gpa, exit_code;
4347 	int ret;
4348 
4349 	/* Validate the GHCB */
4350 	ghcb_gpa = control->ghcb_gpa;
4351 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4352 		return sev_handle_vmgexit_msr_protocol(svm);
4353 
4354 	if (!ghcb_gpa) {
4355 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4356 
4357 		/* Without a GHCB, just return right back to the guest */
4358 		return 1;
4359 	}
4360 
4361 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4362 		/* Unable to map GHCB from guest */
4363 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4364 			    ghcb_gpa);
4365 
4366 		/* Without a GHCB, just return right back to the guest */
4367 		return 1;
4368 	}
4369 
4370 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4371 
4372 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4373 
4374 	sev_es_sync_from_ghcb(svm);
4375 
4376 	/* SEV-SNP guest requires that the GHCB GPA must be registered */
4377 	if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4378 		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4379 		return -EINVAL;
4380 	}
4381 
4382 	ret = sev_es_validate_vmgexit(svm);
4383 	if (ret)
4384 		return ret;
4385 
4386 	svm_vmgexit_success(svm, 0);
4387 
4388 	exit_code = kvm_get_cached_sw_exit_code(control);
4389 	switch (exit_code) {
4390 	case SVM_VMGEXIT_MMIO_READ:
4391 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4392 		if (ret)
4393 			break;
4394 
4395 		ret = kvm_sev_es_mmio_read(vcpu,
4396 					   control->exit_info_1,
4397 					   control->exit_info_2,
4398 					   svm->sev_es.ghcb_sa);
4399 		break;
4400 	case SVM_VMGEXIT_MMIO_WRITE:
4401 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4402 		if (ret)
4403 			break;
4404 
4405 		ret = kvm_sev_es_mmio_write(vcpu,
4406 					    control->exit_info_1,
4407 					    control->exit_info_2,
4408 					    svm->sev_es.ghcb_sa);
4409 		break;
4410 	case SVM_VMGEXIT_NMI_COMPLETE:
4411 		++vcpu->stat.nmi_window_exits;
4412 		svm->nmi_masked = false;
4413 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4414 		ret = 1;
4415 		break;
4416 	case SVM_VMGEXIT_AP_HLT_LOOP:
4417 		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4418 		ret = kvm_emulate_ap_reset_hold(vcpu);
4419 		break;
4420 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
4421 		struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4422 
4423 		switch (control->exit_info_1) {
4424 		case 0:
4425 			/* Set AP jump table address */
4426 			sev->ap_jump_table = control->exit_info_2;
4427 			break;
4428 		case 1:
4429 			/* Get AP jump table address */
4430 			svm_vmgexit_success(svm, sev->ap_jump_table);
4431 			break;
4432 		default:
4433 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4434 			       control->exit_info_1);
4435 			svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4436 		}
4437 
4438 		ret = 1;
4439 		break;
4440 	}
4441 	case SVM_VMGEXIT_HV_FEATURES:
4442 		svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
4443 		ret = 1;
4444 		break;
4445 	case SVM_VMGEXIT_TERM_REQUEST:
4446 		pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4447 			control->exit_info_1, control->exit_info_2);
4448 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4449 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4450 		vcpu->run->system_event.ndata = 1;
4451 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
4452 		break;
4453 	case SVM_VMGEXIT_PSC:
4454 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4455 		if (ret)
4456 			break;
4457 
4458 		ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4459 		break;
4460 	case SVM_VMGEXIT_AP_CREATION:
4461 		ret = sev_snp_ap_creation(svm);
4462 		if (ret) {
4463 			svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4464 		}
4465 
4466 		ret = 1;
4467 		break;
4468 	case SVM_VMGEXIT_GUEST_REQUEST:
4469 		ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4470 		break;
4471 	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4472 		ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4473 		break;
4474 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4475 		vcpu_unimpl(vcpu,
4476 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4477 			    control->exit_info_1, control->exit_info_2);
4478 		ret = -EINVAL;
4479 		break;
4480 	default:
4481 		ret = svm_invoke_exit_handler(vcpu, exit_code);
4482 	}
4483 
4484 	return ret;
4485 }
4486 
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4487 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4488 {
4489 	int count;
4490 	int bytes;
4491 	int r;
4492 
4493 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
4494 		return -EINVAL;
4495 
4496 	count = svm->vmcb->control.exit_info_2;
4497 	if (unlikely(check_mul_overflow(count, size, &bytes)))
4498 		return -EINVAL;
4499 
4500 	r = setup_vmgexit_scratch(svm, in, bytes);
4501 	if (r)
4502 		return r;
4503 
4504 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4505 				    count, in);
4506 }
4507 
sev_es_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4508 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4509 {
4510 	/* Clear intercepts on MSRs that are context switched by hardware. */
4511 	svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW);
4512 	svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW);
4513 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW);
4514 
4515 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX))
4516 		svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW,
4517 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
4518 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID));
4519 
4520 	svm_set_intercept_for_msr(vcpu, MSR_AMD64_GUEST_TSC_FREQ, MSR_TYPE_R,
4521 				  !snp_is_secure_tsc_enabled(vcpu->kvm));
4522 
4523 	/*
4524 	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4525 	 * the host/guest supports its use.
4526 	 *
4527 	 * KVM treats the guest as being capable of using XSAVES even if XSAVES
4528 	 * isn't enabled in guest CPUID as there is no intercept for XSAVES,
4529 	 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
4530 	 * exposed to the guest and XSAVES is supported in hardware.  Condition
4531 	 * full XSS passthrough on the guest being able to use XSAVES *and*
4532 	 * XSAVES being exposed to the guest so that KVM can at least honor
4533 	 * guest CPUID for RDMSR and WRMSR.
4534 	 */
4535 	svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW,
4536 				  !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) ||
4537 				  !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES));
4538 }
4539 
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4540 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4541 {
4542 	struct kvm_vcpu *vcpu = &svm->vcpu;
4543 	struct kvm_cpuid_entry2 *best;
4544 
4545 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4546 	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4547 	if (best)
4548 		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4549 }
4550 
sev_es_init_vmcb(struct vcpu_svm * svm,bool init_event)4551 static void sev_es_init_vmcb(struct vcpu_svm *svm, bool init_event)
4552 {
4553 	struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4554 	struct vmcb *vmcb = svm->vmcb01.ptr;
4555 
4556 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4557 
4558 	/*
4559 	 * An SEV-ES guest requires a VMSA area that is a separate from the
4560 	 * VMCB page. Do not include the encryption mask on the VMSA physical
4561 	 * address since hardware will access it using the guest key.  Note,
4562 	 * the VMSA will be NULL if this vCPU is the destination for intrahost
4563 	 * migration, and will be copied later.
4564 	 */
4565 	if (!svm->sev_es.snp_has_guest_vmsa) {
4566 		if (svm->sev_es.vmsa)
4567 			svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4568 		else
4569 			svm->vmcb->control.vmsa_pa = INVALID_PAGE;
4570 	}
4571 
4572 	if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES))
4573 		svm->vmcb->control.allowed_sev_features = sev->vmsa_features |
4574 							  VMCB_ALLOWED_SEV_FEATURES_VALID;
4575 
4576 	/* Can't intercept CR register access, HV can't modify CR registers */
4577 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4578 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4579 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4580 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4581 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4582 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4583 
4584 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4585 
4586 	/* Track EFER/CR register changes */
4587 	svm_set_intercept(svm, TRAP_EFER_WRITE);
4588 	svm_set_intercept(svm, TRAP_CR0_WRITE);
4589 	svm_set_intercept(svm, TRAP_CR4_WRITE);
4590 	svm_set_intercept(svm, TRAP_CR8_WRITE);
4591 
4592 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
4593 	if (!sev_vcpu_has_debug_swap(svm)) {
4594 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4595 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4596 		recalc_intercepts(svm);
4597 	} else {
4598 		/*
4599 		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
4600 		 * allow debugging SEV-ES guests, and enables DebugSwap iff
4601 		 * NO_NESTED_DATA_BP is supported, so there's no reason to
4602 		 * intercept #DB when DebugSwap is enabled.  For simplicity
4603 		 * with respect to guest debug, intercept #DB for other VMs
4604 		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4605 		 * guest can't DoS the CPU with infinite #DB vectoring.
4606 		 */
4607 		clr_exception_intercept(svm, DB_VECTOR);
4608 	}
4609 
4610 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
4611 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
4612 
4613 	/*
4614 	 * Set the GHCB MSR value as per the GHCB specification when emulating
4615 	 * vCPU RESET for an SEV-ES guest.
4616 	 */
4617 	if (!init_event)
4618 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4619 						    GHCB_VERSION_MIN,
4620 						    sev_enc_bit));
4621 }
4622 
sev_init_vmcb(struct vcpu_svm * svm,bool init_event)4623 void sev_init_vmcb(struct vcpu_svm *svm, bool init_event)
4624 {
4625 	struct kvm_vcpu *vcpu = &svm->vcpu;
4626 
4627 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4628 	clr_exception_intercept(svm, UD_VECTOR);
4629 
4630 	/*
4631 	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4632 	 * KVM can't decrypt guest memory to decode the faulting instruction.
4633 	 */
4634 	clr_exception_intercept(svm, GP_VECTOR);
4635 
4636 	if (init_event && sev_snp_guest(vcpu->kvm))
4637 		sev_snp_init_protected_guest_state(vcpu);
4638 
4639 	if (sev_es_guest(vcpu->kvm))
4640 		sev_es_init_vmcb(svm, init_event);
4641 }
4642 
sev_vcpu_create(struct kvm_vcpu * vcpu)4643 int sev_vcpu_create(struct kvm_vcpu *vcpu)
4644 {
4645 	struct vcpu_svm *svm = to_svm(vcpu);
4646 	struct page *vmsa_page;
4647 
4648 	mutex_init(&svm->sev_es.snp_vmsa_mutex);
4649 
4650 	if (!sev_es_guest(vcpu->kvm))
4651 		return 0;
4652 
4653 	/*
4654 	 * SEV-ES guests require a separate (from the VMCB) VMSA page used to
4655 	 * contain the encrypted register state of the guest.
4656 	 */
4657 	vmsa_page = snp_safe_alloc_page();
4658 	if (!vmsa_page)
4659 		return -ENOMEM;
4660 
4661 	svm->sev_es.vmsa = page_address(vmsa_page);
4662 
4663 	vcpu->arch.guest_tsc_protected = snp_is_secure_tsc_enabled(vcpu->kvm);
4664 
4665 	return 0;
4666 }
4667 
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4668 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4669 {
4670 	struct kvm *kvm = svm->vcpu.kvm;
4671 
4672 	/*
4673 	 * All host state for SEV-ES guests is categorized into three swap types
4674 	 * based on how it is handled by hardware during a world switch:
4675 	 *
4676 	 * A: VMRUN:   Host state saved in host save area
4677 	 *    VMEXIT:  Host state loaded from host save area
4678 	 *
4679 	 * B: VMRUN:   Host state _NOT_ saved in host save area
4680 	 *    VMEXIT:  Host state loaded from host save area
4681 	 *
4682 	 * C: VMRUN:   Host state _NOT_ saved in host save area
4683 	 *    VMEXIT:  Host state initialized to default(reset) values
4684 	 *
4685 	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4686 	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4687 	 * by common SVM code).
4688 	 */
4689 	hostsa->xcr0 = kvm_host.xcr0;
4690 	hostsa->pkru = read_pkru();
4691 	hostsa->xss = kvm_host.xss;
4692 
4693 	/*
4694 	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4695 	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
4696 	 * not save or load debug registers.  Sadly, KVM can't prevent SNP
4697 	 * guests from lying about DebugSwap on secondary vCPUs, i.e. the
4698 	 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
4699 	 * the guest has actually enabled (or not!) in the VMSA.
4700 	 *
4701 	 * If DebugSwap is *possible*, save the masks so that they're restored
4702 	 * if the guest enables DebugSwap.  But for the DRs themselves, do NOT
4703 	 * rely on the CPU to restore the host values; KVM will restore them as
4704 	 * needed in common code, via hw_breakpoint_restore().  Note, KVM does
4705 	 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
4706 	 * don't need to be restored per se, KVM just needs to ensure they are
4707 	 * loaded with the correct values *if* the CPU writes the MSRs.
4708 	 */
4709 	if (sev_vcpu_has_debug_swap(svm) ||
4710 	    (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
4711 		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4712 		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4713 		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4714 		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4715 	}
4716 
4717 	/*
4718 	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
4719 	 * available, i.e. TSC_AUX is loaded on #VMEXIT from the host save area.
4720 	 * Set the save area to the current hardware value, i.e. the current
4721 	 * user return value, so that the correct value is restored on #VMEXIT.
4722 	 */
4723 	if (cpu_feature_enabled(X86_FEATURE_V_TSC_AUX) &&
4724 	    !WARN_ON_ONCE(tsc_aux_uret_slot < 0))
4725 		hostsa->tsc_aux = kvm_get_user_return_msr(tsc_aux_uret_slot);
4726 }
4727 
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4728 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4729 {
4730 	struct vcpu_svm *svm = to_svm(vcpu);
4731 
4732 	/* First SIPI: Use the values as initially set by the VMM */
4733 	if (!svm->sev_es.received_first_sipi) {
4734 		svm->sev_es.received_first_sipi = true;
4735 		return;
4736 	}
4737 
4738 	/* Subsequent SIPI */
4739 	switch (svm->sev_es.ap_reset_hold_type) {
4740 	case AP_RESET_HOLD_NAE_EVENT:
4741 		/*
4742 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4743 		 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4744 		 */
4745 		svm_vmgexit_success(svm, 1);
4746 		break;
4747 	case AP_RESET_HOLD_MSR_PROTO:
4748 		/*
4749 		 * Return from an AP Reset Hold VMGEXIT, where the guest will
4750 		 * set the CS and RIP. Set GHCB data field to a non-zero value.
4751 		 */
4752 		set_ghcb_msr_bits(svm, 1,
4753 				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4754 				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4755 
4756 		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4757 				  GHCB_MSR_INFO_MASK,
4758 				  GHCB_MSR_INFO_POS);
4759 		break;
4760 	default:
4761 		break;
4762 	}
4763 }
4764 
snp_safe_alloc_page_node(int node,gfp_t gfp)4765 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4766 {
4767 	unsigned long pfn;
4768 	struct page *p;
4769 
4770 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4771 		return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4772 
4773 	/*
4774 	 * Allocate an SNP-safe page to workaround the SNP erratum where
4775 	 * the CPU will incorrectly signal an RMP violation #PF if a
4776 	 * hugepage (2MB or 1GB) collides with the RMP entry of a
4777 	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4778 	 *
4779 	 * Allocate one extra page, choose a page which is not
4780 	 * 2MB-aligned, and free the other.
4781 	 */
4782 	p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4783 	if (!p)
4784 		return NULL;
4785 
4786 	split_page(p, 1);
4787 
4788 	pfn = page_to_pfn(p);
4789 	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4790 		__free_page(p++);
4791 	else
4792 		__free_page(p + 1);
4793 
4794 	return p;
4795 }
4796 
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4797 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4798 {
4799 	struct kvm_memory_slot *slot;
4800 	struct kvm *kvm = vcpu->kvm;
4801 	int order, rmp_level, ret;
4802 	struct page *page;
4803 	bool assigned;
4804 	kvm_pfn_t pfn;
4805 	gfn_t gfn;
4806 
4807 	gfn = gpa >> PAGE_SHIFT;
4808 
4809 	/*
4810 	 * The only time RMP faults occur for shared pages is when the guest is
4811 	 * triggering an RMP fault for an implicit page-state change from
4812 	 * shared->private. Implicit page-state changes are forwarded to
4813 	 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4814 	 * for shared pages should not end up here.
4815 	 */
4816 	if (!kvm_mem_is_private(kvm, gfn)) {
4817 		pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4818 				    gpa);
4819 		return;
4820 	}
4821 
4822 	slot = gfn_to_memslot(kvm, gfn);
4823 	if (!kvm_slot_has_gmem(slot)) {
4824 		pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4825 				    gpa);
4826 		return;
4827 	}
4828 
4829 	ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4830 	if (ret) {
4831 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4832 				    gpa);
4833 		return;
4834 	}
4835 
4836 	ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4837 	if (ret || !assigned) {
4838 		pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4839 				    gpa, pfn, ret);
4840 		goto out_no_trace;
4841 	}
4842 
4843 	/*
4844 	 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4845 	 * with PFERR_GUEST_RMP_BIT set:
4846 	 *
4847 	 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4848 	 *    bit set if the guest issues them with a smaller granularity than
4849 	 *    what is indicated by the page-size bit in the 2MB RMP entry for
4850 	 *    the PFN that backs the GPA.
4851 	 *
4852 	 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4853 	 *    smaller than what is indicated by the 2MB RMP entry for the PFN
4854 	 *    that backs the GPA.
4855 	 *
4856 	 * In both these cases, the corresponding 2M RMP entry needs to
4857 	 * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
4858 	 * split into 4K RMP entries, then this is likely a spurious case which
4859 	 * can occur when there are concurrent accesses by the guest to a 2MB
4860 	 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4861 	 * the process of being PMASH'd into 4K entries. These cases should
4862 	 * resolve automatically on subsequent accesses, so just ignore them
4863 	 * here.
4864 	 */
4865 	if (rmp_level == PG_LEVEL_4K)
4866 		goto out;
4867 
4868 	ret = snp_rmptable_psmash(pfn);
4869 	if (ret) {
4870 		/*
4871 		 * Look it up again. If it's 4K now then the PSMASH may have
4872 		 * raced with another process and the issue has already resolved
4873 		 * itself.
4874 		 */
4875 		if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4876 		    assigned && rmp_level == PG_LEVEL_4K)
4877 			goto out;
4878 
4879 		pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4880 				    gpa, pfn, ret);
4881 	}
4882 
4883 	kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4884 out:
4885 	trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4886 out_no_trace:
4887 	kvm_release_page_unused(page);
4888 }
4889 
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4890 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4891 {
4892 	kvm_pfn_t pfn = start;
4893 
4894 	while (pfn < end) {
4895 		int ret, rmp_level;
4896 		bool assigned;
4897 
4898 		ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4899 		if (ret) {
4900 			pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4901 					    pfn, start, end, rmp_level, ret);
4902 			return false;
4903 		}
4904 
4905 		if (assigned) {
4906 			pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4907 				 __func__, pfn, start, end, rmp_level);
4908 			return false;
4909 		}
4910 
4911 		pfn++;
4912 	}
4913 
4914 	return true;
4915 }
4916 
max_level_for_order(int order)4917 static u8 max_level_for_order(int order)
4918 {
4919 	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4920 		return PG_LEVEL_2M;
4921 
4922 	return PG_LEVEL_4K;
4923 }
4924 
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4925 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4926 {
4927 	kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4928 
4929 	/*
4930 	 * If this is a large folio, and the entire 2M range containing the
4931 	 * PFN is currently shared, then the entire 2M-aligned range can be
4932 	 * set to private via a single 2M RMP entry.
4933 	 */
4934 	if (max_level_for_order(order) > PG_LEVEL_4K &&
4935 	    is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4936 		return true;
4937 
4938 	return false;
4939 }
4940 
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4941 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4942 {
4943 	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4944 	kvm_pfn_t pfn_aligned;
4945 	gfn_t gfn_aligned;
4946 	int level, rc;
4947 	bool assigned;
4948 
4949 	if (!sev_snp_guest(kvm))
4950 		return 0;
4951 
4952 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4953 	if (rc) {
4954 		pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4955 				   gfn, pfn, rc);
4956 		return -ENOENT;
4957 	}
4958 
4959 	if (assigned) {
4960 		pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4961 			 __func__, gfn, pfn, max_order, level);
4962 		return 0;
4963 	}
4964 
4965 	if (is_large_rmp_possible(kvm, pfn, max_order)) {
4966 		level = PG_LEVEL_2M;
4967 		pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4968 		gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4969 	} else {
4970 		level = PG_LEVEL_4K;
4971 		pfn_aligned = pfn;
4972 		gfn_aligned = gfn;
4973 	}
4974 
4975 	rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4976 	if (rc) {
4977 		pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4978 				   gfn, pfn, level, rc);
4979 		return -EINVAL;
4980 	}
4981 
4982 	pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4983 		 __func__, gfn, pfn, pfn_aligned, max_order, level);
4984 
4985 	return 0;
4986 }
4987 
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4988 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
4989 {
4990 	kvm_pfn_t pfn;
4991 
4992 	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4993 		return;
4994 
4995 	pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
4996 
4997 	for (pfn = start; pfn < end;) {
4998 		bool use_2m_update = false;
4999 		int rc, rmp_level;
5000 		bool assigned;
5001 
5002 		rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
5003 		if (rc || !assigned)
5004 			goto next_pfn;
5005 
5006 		use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
5007 				end >= (pfn + PTRS_PER_PMD) &&
5008 				rmp_level > PG_LEVEL_4K;
5009 
5010 		/*
5011 		 * If an unaligned PFN corresponds to a 2M region assigned as a
5012 		 * large page in the RMP table, PSMASH the region into individual
5013 		 * 4K RMP entries before attempting to convert a 4K sub-page.
5014 		 */
5015 		if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
5016 			/*
5017 			 * This shouldn't fail, but if it does, report it, but
5018 			 * still try to update RMP entry to shared and pray this
5019 			 * was a spurious error that can be addressed later.
5020 			 */
5021 			rc = snp_rmptable_psmash(pfn);
5022 			WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
5023 				  pfn, rc);
5024 		}
5025 
5026 		rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
5027 		if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
5028 			      pfn, rc))
5029 			goto next_pfn;
5030 
5031 		/*
5032 		 * SEV-ES avoids host/guest cache coherency issues through
5033 		 * WBNOINVD hooks issued via MMU notifiers during run-time, and
5034 		 * KVM's VM destroy path at shutdown. Those MMU notifier events
5035 		 * don't cover gmem since there is no requirement to map pages
5036 		 * to a HVA in order to use them for a running guest. While the
5037 		 * shutdown path would still likely cover things for SNP guests,
5038 		 * userspace may also free gmem pages during run-time via
5039 		 * hole-punching operations on the guest_memfd, so flush the
5040 		 * cache entries for these pages before free'ing them back to
5041 		 * the host.
5042 		 */
5043 		clflush_cache_range(__va(pfn_to_hpa(pfn)),
5044 				    use_2m_update ? PMD_SIZE : PAGE_SIZE);
5045 next_pfn:
5046 		pfn += use_2m_update ? PTRS_PER_PMD : 1;
5047 		cond_resched();
5048 	}
5049 }
5050 
sev_gmem_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn,bool is_private)5051 int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private)
5052 {
5053 	int level, rc;
5054 	bool assigned;
5055 
5056 	if (!sev_snp_guest(kvm))
5057 		return 0;
5058 
5059 	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
5060 	if (rc || !assigned)
5061 		return PG_LEVEL_4K;
5062 
5063 	return level;
5064 }
5065 
sev_decrypt_vmsa(struct kvm_vcpu * vcpu)5066 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
5067 {
5068 	struct vcpu_svm *svm = to_svm(vcpu);
5069 	struct vmcb_save_area *vmsa;
5070 	struct kvm_sev_info *sev;
5071 	int error = 0;
5072 	int ret;
5073 
5074 	if (!sev_es_guest(vcpu->kvm))
5075 		return NULL;
5076 
5077 	/*
5078 	 * If the VMSA has not yet been encrypted, return a pointer to the
5079 	 * current un-encrypted VMSA.
5080 	 */
5081 	if (!vcpu->arch.guest_state_protected)
5082 		return (struct vmcb_save_area *)svm->sev_es.vmsa;
5083 
5084 	sev = to_kvm_sev_info(vcpu->kvm);
5085 
5086 	/* Check if the SEV policy allows debugging */
5087 	if (sev_snp_guest(vcpu->kvm)) {
5088 		if (!(sev->policy & SNP_POLICY_DEBUG))
5089 			return NULL;
5090 	} else {
5091 		if (sev->policy & SEV_POLICY_NODBG)
5092 			return NULL;
5093 	}
5094 
5095 	if (sev_snp_guest(vcpu->kvm)) {
5096 		struct sev_data_snp_dbg dbg = {0};
5097 
5098 		vmsa = snp_alloc_firmware_page(__GFP_ZERO);
5099 		if (!vmsa)
5100 			return NULL;
5101 
5102 		dbg.gctx_paddr = __psp_pa(sev->snp_context);
5103 		dbg.src_addr = svm->vmcb->control.vmsa_pa;
5104 		dbg.dst_addr = __psp_pa(vmsa);
5105 
5106 		ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error);
5107 
5108 		/*
5109 		 * Return the target page to a hypervisor page no matter what.
5110 		 * If this fails, the page can't be used, so leak it and don't
5111 		 * try to use it.
5112 		 */
5113 		if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa))))
5114 			return NULL;
5115 
5116 		if (ret) {
5117 			pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n",
5118 			       ret, error, error);
5119 			free_page((unsigned long)vmsa);
5120 
5121 			return NULL;
5122 		}
5123 	} else {
5124 		struct sev_data_dbg dbg = {0};
5125 		struct page *vmsa_page;
5126 
5127 		vmsa_page = alloc_page(GFP_KERNEL);
5128 		if (!vmsa_page)
5129 			return NULL;
5130 
5131 		vmsa = page_address(vmsa_page);
5132 
5133 		dbg.handle = sev->handle;
5134 		dbg.src_addr = svm->vmcb->control.vmsa_pa;
5135 		dbg.dst_addr = __psp_pa(vmsa);
5136 		dbg.len = PAGE_SIZE;
5137 
5138 		ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error);
5139 		if (ret) {
5140 			pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n",
5141 			       ret, error, error);
5142 			__free_page(vmsa_page);
5143 
5144 			return NULL;
5145 		}
5146 	}
5147 
5148 	return vmsa;
5149 }
5150 
sev_free_decrypted_vmsa(struct kvm_vcpu * vcpu,struct vmcb_save_area * vmsa)5151 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa)
5152 {
5153 	/* If the VMSA has not yet been encrypted, nothing was allocated */
5154 	if (!vcpu->arch.guest_state_protected || !vmsa)
5155 		return;
5156 
5157 	free_page((unsigned long)vmsa);
5158 }
5159