1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2013, Ira Cooper. All rights reserved.
23 */
24 /*
25 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
26 */
27
28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30
31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
35 *
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
39 */
40
41 #include <sys/types.h>
42 #include <sys/sysmacros.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/cred_impl.h>
46 #include <sys/policy.h>
47 #include <sys/vnode.h>
48 #include <sys/errno.h>
49 #include <sys/kmem.h>
50 #include <sys/user.h>
51 #include <sys/proc.h>
52 #include <sys/syscall.h>
53 #include <sys/debug.h>
54 #include <sys/atomic.h>
55 #include <sys/ucred.h>
56 #include <sys/prsystm.h>
57 #include <sys/modctl.h>
58 #include <sys/avl.h>
59 #include <sys/door.h>
60 #include <c2/audit.h>
61 #include <sys/zone.h>
62 #include <sys/tsol/label.h>
63 #include <sys/sid.h>
64 #include <sys/idmap.h>
65 #include <sys/klpd.h>
66 #include <sys/varargs.h>
67 #include <sys/sysconf.h>
68 #include <util/qsort.h>
69
70
71 /* Ephemeral IDs Zones specific data */
72 typedef struct ephemeral_zsd {
73 uid_t min_uid;
74 uid_t last_uid;
75 gid_t min_gid;
76 gid_t last_gid;
77 kmutex_t eph_lock;
78 cred_t *eph_nobody;
79 } ephemeral_zsd_t;
80
81 static void crgrphold(credgrp_t *);
82
83 #define CREDGRPSZ(ngrp) (sizeof (credgrp_t) + ((ngrp - 1) * sizeof (gid_t)))
84
85 static kmutex_t ephemeral_zone_mutex;
86 static zone_key_t ephemeral_zone_key;
87
88 static struct kmem_cache *cred_cache;
89 static size_t crsize = 0;
90 static int audoff = 0;
91 uint32_t ucredsize;
92 cred_t *kcred;
93 static cred_t *dummycr;
94
95 int rstlink; /* link(2) restricted to files owned by user? */
96
97 static int get_c2audit_load(void);
98
99 #define CR_AUINFO(c) (auditinfo_addr_t *)((audoff == 0) ? NULL : \
100 ((char *)(c)) + audoff)
101
102 #define REMOTE_PEER_CRED(c) ((c)->cr_gid == -1)
103
104 #define BIN_GROUP_SEARCH_CUTOFF 16
105
106 static boolean_t hasephids = B_FALSE;
107
108 static ephemeral_zsd_t *
get_ephemeral_zsd(zone_t * zone)109 get_ephemeral_zsd(zone_t *zone)
110 {
111 ephemeral_zsd_t *eph_zsd;
112
113 eph_zsd = zone_getspecific(ephemeral_zone_key, zone);
114 if (eph_zsd != NULL) {
115 return (eph_zsd);
116 }
117
118 mutex_enter(&ephemeral_zone_mutex);
119 eph_zsd = zone_getspecific(ephemeral_zone_key, zone);
120 if (eph_zsd == NULL) {
121 eph_zsd = kmem_zalloc(sizeof (ephemeral_zsd_t), KM_SLEEP);
122 eph_zsd->min_uid = MAXUID;
123 eph_zsd->last_uid = IDMAP_WK__MAX_UID;
124 eph_zsd->min_gid = MAXUID;
125 eph_zsd->last_gid = IDMAP_WK__MAX_GID;
126 mutex_init(&eph_zsd->eph_lock, NULL, MUTEX_DEFAULT, NULL);
127
128 /*
129 * nobody is used to map SID containing CRs.
130 */
131 eph_zsd->eph_nobody = crdup(zone->zone_kcred);
132 (void) crsetugid(eph_zsd->eph_nobody, UID_NOBODY, GID_NOBODY);
133 CR_FLAGS(eph_zsd->eph_nobody) = 0;
134 eph_zsd->eph_nobody->cr_zone = zone;
135
136 (void) zone_setspecific(ephemeral_zone_key, zone, eph_zsd);
137 }
138 mutex_exit(&ephemeral_zone_mutex);
139 return (eph_zsd);
140 }
141
142 static cred_t *crdup_flags(const cred_t *, int);
143 static cred_t *cralloc_flags(int);
144
145 /*
146 * This function is called when a zone is destroyed
147 */
148 static void
149 /* ARGSUSED */
destroy_ephemeral_zsd(zoneid_t zone_id,void * arg)150 destroy_ephemeral_zsd(zoneid_t zone_id, void *arg)
151 {
152 ephemeral_zsd_t *eph_zsd = arg;
153 if (eph_zsd != NULL) {
154 mutex_destroy(&eph_zsd->eph_lock);
155 crfree(eph_zsd->eph_nobody);
156 kmem_free(eph_zsd, sizeof (ephemeral_zsd_t));
157 }
158 }
159
160
161
162 /*
163 * Initialize credentials data structures.
164 */
165
166 void
cred_init(void)167 cred_init(void)
168 {
169 priv_init();
170
171 crsize = sizeof (cred_t);
172
173 if (get_c2audit_load() > 0) {
174 #ifdef _LP64
175 /* assure audit context is 64-bit aligned */
176 audoff = (crsize +
177 sizeof (int64_t) - 1) & ~(sizeof (int64_t) - 1);
178 #else /* _LP64 */
179 audoff = crsize;
180 #endif /* _LP64 */
181 crsize = audoff + sizeof (auditinfo_addr_t);
182 crsize = (crsize + sizeof (int) - 1) & ~(sizeof (int) - 1);
183 }
184
185 cred_cache = kmem_cache_create("cred_cache", crsize, 0,
186 NULL, NULL, NULL, NULL, NULL, 0);
187
188 /*
189 * dummycr is used to copy initial state for creds.
190 */
191 dummycr = cralloc();
192 bzero(dummycr, crsize);
193 dummycr->cr_ref = 1;
194 dummycr->cr_uid = (uid_t)-1;
195 dummycr->cr_gid = (gid_t)-1;
196 dummycr->cr_ruid = (uid_t)-1;
197 dummycr->cr_rgid = (gid_t)-1;
198 dummycr->cr_suid = (uid_t)-1;
199 dummycr->cr_sgid = (gid_t)-1;
200
201
202 /*
203 * kcred is used by anything that needs all privileges; it's
204 * also the template used for crget as it has all the compatible
205 * sets filled in.
206 */
207 kcred = cralloc();
208
209 bzero(kcred, crsize);
210 kcred->cr_ref = 1;
211
212 /* kcred is never freed, so we don't need zone_cred_hold here */
213 kcred->cr_zone = &zone0;
214
215 priv_fillset(&CR_LPRIV(kcred));
216 CR_IPRIV(kcred) = *priv_basic;
217
218 /* Not a basic privilege, if chown is not restricted add it to I0 */
219 if (!rstchown)
220 priv_addset(&CR_IPRIV(kcred), PRIV_FILE_CHOWN_SELF);
221
222 /* Basic privilege, if link is restricted remove it from I0 */
223 if (rstlink)
224 priv_delset(&CR_IPRIV(kcred), PRIV_FILE_LINK_ANY);
225
226 CR_EPRIV(kcred) = CR_PPRIV(kcred) = CR_IPRIV(kcred);
227
228 CR_FLAGS(kcred) = NET_MAC_AWARE;
229
230 /*
231 * Set up credentials of p0.
232 */
233 ttoproc(curthread)->p_cred = kcred;
234 curthread->t_cred = kcred;
235
236 ucredsize = UCRED_SIZE;
237
238 mutex_init(&ephemeral_zone_mutex, NULL, MUTEX_DEFAULT, NULL);
239 zone_key_create(&ephemeral_zone_key, NULL, NULL, destroy_ephemeral_zsd);
240 }
241
242 /*
243 * Allocate (nearly) uninitialized cred_t.
244 */
245 static cred_t *
cralloc_flags(int flgs)246 cralloc_flags(int flgs)
247 {
248 cred_t *cr = kmem_cache_alloc(cred_cache, flgs);
249
250 if (cr == NULL)
251 return (NULL);
252
253 cr->cr_ref = 1; /* So we can crfree() */
254 cr->cr_zone = NULL;
255 cr->cr_label = NULL;
256 cr->cr_ksid = NULL;
257 cr->cr_klpd = NULL;
258 cr->cr_grps = NULL;
259 return (cr);
260 }
261
262 cred_t *
cralloc(void)263 cralloc(void)
264 {
265 return (cralloc_flags(KM_SLEEP));
266 }
267
268 /*
269 * As cralloc but prepared for ksid change (if appropriate).
270 */
271 cred_t *
cralloc_ksid(void)272 cralloc_ksid(void)
273 {
274 cred_t *cr = cralloc();
275 if (hasephids)
276 cr->cr_ksid = kcrsid_alloc();
277 return (cr);
278 }
279
280 /*
281 * Allocate a initialized cred structure and crhold() it.
282 * Initialized means: all ids 0, group count 0, L=Full, E=P=I=I0
283 */
284 cred_t *
crget(void)285 crget(void)
286 {
287 cred_t *cr = kmem_cache_alloc(cred_cache, KM_SLEEP);
288
289 bcopy(kcred, cr, crsize);
290 cr->cr_ref = 1;
291 zone_cred_hold(cr->cr_zone);
292 if (cr->cr_label)
293 label_hold(cr->cr_label);
294 ASSERT(cr->cr_klpd == NULL);
295 ASSERT(cr->cr_grps == NULL);
296 return (cr);
297 }
298
299 /*
300 * Broadcast the cred to all the threads in the process.
301 * The current thread's credentials can be set right away, but other
302 * threads must wait until the start of the next system call or trap.
303 * This avoids changing the cred in the middle of a system call.
304 *
305 * The cred has already been held for the process and the thread (2 holds),
306 * and p->p_cred set.
307 *
308 * p->p_crlock shouldn't be held here, since p_lock must be acquired.
309 */
310 void
crset(proc_t * p,cred_t * cr)311 crset(proc_t *p, cred_t *cr)
312 {
313 kthread_id_t t;
314 kthread_id_t first;
315 cred_t *oldcr;
316
317 ASSERT(p == curproc); /* assumes p_lwpcnt can't change */
318
319 /*
320 * DTrace accesses t_cred in probe context. t_cred must always be
321 * either NULL, or point to a valid, allocated cred structure.
322 */
323 t = curthread;
324 oldcr = t->t_cred;
325 t->t_cred = cr; /* the cred is held by caller for this thread */
326 crfree(oldcr); /* free the old cred for the thread */
327
328 /*
329 * Broadcast to other threads, if any.
330 */
331 if (p->p_lwpcnt > 1) {
332 mutex_enter(&p->p_lock); /* to keep thread list safe */
333 first = curthread;
334 for (t = first->t_forw; t != first; t = t->t_forw)
335 t->t_pre_sys = 1; /* so syscall will get new cred */
336 mutex_exit(&p->p_lock);
337 }
338 }
339
340 /*
341 * Put a hold on a cred structure.
342 */
343 void
crhold(cred_t * cr)344 crhold(cred_t *cr)
345 {
346 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0);
347 atomic_inc_32(&cr->cr_ref);
348 }
349
350 /*
351 * Release previous hold on a cred structure. Free it if refcnt == 0.
352 * If cred uses label different from zone label, free it.
353 */
354 void
crfree(cred_t * cr)355 crfree(cred_t *cr)
356 {
357 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0);
358 if (atomic_dec_32_nv(&cr->cr_ref) == 0) {
359 ASSERT(cr != kcred);
360 if (cr->cr_label)
361 label_rele(cr->cr_label);
362 if (cr->cr_klpd)
363 crklpd_rele(cr->cr_klpd);
364 if (cr->cr_zone)
365 zone_cred_rele(cr->cr_zone);
366 if (cr->cr_ksid)
367 kcrsid_rele(cr->cr_ksid);
368 if (cr->cr_grps)
369 crgrprele(cr->cr_grps);
370
371 kmem_cache_free(cred_cache, cr);
372 }
373 }
374
375 /*
376 * Copy a cred structure to a new one and free the old one.
377 * The new cred will have two references. One for the calling process,
378 * and one for the thread.
379 */
380 cred_t *
crcopy(cred_t * cr)381 crcopy(cred_t *cr)
382 {
383 cred_t *newcr;
384
385 newcr = cralloc();
386 bcopy(cr, newcr, crsize);
387 if (newcr->cr_zone)
388 zone_cred_hold(newcr->cr_zone);
389 if (newcr->cr_label)
390 label_hold(newcr->cr_label);
391 if (newcr->cr_ksid)
392 kcrsid_hold(newcr->cr_ksid);
393 if (newcr->cr_klpd)
394 crklpd_hold(newcr->cr_klpd);
395 if (newcr->cr_grps)
396 crgrphold(newcr->cr_grps);
397 crfree(cr);
398 newcr->cr_ref = 2; /* caller gets two references */
399 return (newcr);
400 }
401
402 /*
403 * Copy a cred structure to a new one and free the old one.
404 * The new cred will have two references. One for the calling process,
405 * and one for the thread.
406 * This variation on crcopy uses a pre-allocated structure for the
407 * "new" cred.
408 */
409 void
crcopy_to(cred_t * oldcr,cred_t * newcr)410 crcopy_to(cred_t *oldcr, cred_t *newcr)
411 {
412 credsid_t *nkcr = newcr->cr_ksid;
413
414 bcopy(oldcr, newcr, crsize);
415 if (newcr->cr_zone)
416 zone_cred_hold(newcr->cr_zone);
417 if (newcr->cr_label)
418 label_hold(newcr->cr_label);
419 if (newcr->cr_klpd)
420 crklpd_hold(newcr->cr_klpd);
421 if (newcr->cr_grps)
422 crgrphold(newcr->cr_grps);
423 if (nkcr) {
424 newcr->cr_ksid = nkcr;
425 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid);
426 } else if (newcr->cr_ksid)
427 kcrsid_hold(newcr->cr_ksid);
428 crfree(oldcr);
429 newcr->cr_ref = 2; /* caller gets two references */
430 }
431
432 /*
433 * Dup a cred struct to a new held one.
434 * The old cred is not freed.
435 */
436 static cred_t *
crdup_flags(const cred_t * cr,int flgs)437 crdup_flags(const cred_t *cr, int flgs)
438 {
439 cred_t *newcr;
440
441 newcr = cralloc_flags(flgs);
442
443 if (newcr == NULL)
444 return (NULL);
445
446 bcopy(cr, newcr, crsize);
447 if (newcr->cr_zone)
448 zone_cred_hold(newcr->cr_zone);
449 if (newcr->cr_label)
450 label_hold(newcr->cr_label);
451 if (newcr->cr_klpd)
452 crklpd_hold(newcr->cr_klpd);
453 if (newcr->cr_ksid)
454 kcrsid_hold(newcr->cr_ksid);
455 if (newcr->cr_grps)
456 crgrphold(newcr->cr_grps);
457 newcr->cr_ref = 1;
458 return (newcr);
459 }
460
461 cred_t *
crdup(cred_t * cr)462 crdup(cred_t *cr)
463 {
464 return (crdup_flags(cr, KM_SLEEP));
465 }
466
467 /*
468 * Dup a cred struct to a new held one.
469 * The old cred is not freed.
470 * This variation on crdup uses a pre-allocated structure for the
471 * "new" cred.
472 */
473 void
crdup_to(cred_t * oldcr,cred_t * newcr)474 crdup_to(cred_t *oldcr, cred_t *newcr)
475 {
476 credsid_t *nkcr = newcr->cr_ksid;
477
478 bcopy(oldcr, newcr, crsize);
479 if (newcr->cr_zone)
480 zone_cred_hold(newcr->cr_zone);
481 if (newcr->cr_label)
482 label_hold(newcr->cr_label);
483 if (newcr->cr_klpd)
484 crklpd_hold(newcr->cr_klpd);
485 if (newcr->cr_grps)
486 crgrphold(newcr->cr_grps);
487 if (nkcr) {
488 newcr->cr_ksid = nkcr;
489 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid);
490 } else if (newcr->cr_ksid)
491 kcrsid_hold(newcr->cr_ksid);
492 newcr->cr_ref = 1;
493 }
494
495 /*
496 * Return the (held) credentials for the current running process.
497 */
498 cred_t *
crgetcred(void)499 crgetcred(void)
500 {
501 cred_t *cr;
502 proc_t *p;
503
504 p = ttoproc(curthread);
505 mutex_enter(&p->p_crlock);
506 crhold(cr = p->p_cred);
507 mutex_exit(&p->p_crlock);
508 return (cr);
509 }
510
511 /*
512 * Backward compatibility check for suser().
513 * Accounting flag is now set in the policy functions; auditing is
514 * done through use of privilege in the audit trail.
515 */
516 int
suser(cred_t * cr)517 suser(cred_t *cr)
518 {
519 return (PRIV_POLICY(cr, PRIV_SYS_SUSER_COMPAT, B_FALSE, EPERM, NULL)
520 == 0);
521 }
522
523 /*
524 * Determine whether the supplied group id is a member of the group
525 * described by the supplied credentials.
526 */
527 int
groupmember(gid_t gid,const cred_t * cr)528 groupmember(gid_t gid, const cred_t *cr)
529 {
530 if (gid == cr->cr_gid)
531 return (1);
532 return (supgroupmember(gid, cr));
533 }
534
535 /*
536 * As groupmember but only check against the supplemental groups.
537 */
538 int
supgroupmember(gid_t gid,const cred_t * cr)539 supgroupmember(gid_t gid, const cred_t *cr)
540 {
541 int hi, lo;
542 credgrp_t *grps = cr->cr_grps;
543 const gid_t *gp, *endgp;
544
545 if (grps == NULL)
546 return (0);
547
548 /* For a small number of groups, use sequentials search. */
549 if (grps->crg_ngroups <= BIN_GROUP_SEARCH_CUTOFF) {
550 endgp = &grps->crg_groups[grps->crg_ngroups];
551 for (gp = grps->crg_groups; gp < endgp; gp++)
552 if (*gp == gid)
553 return (1);
554 return (0);
555 }
556
557 /* We use binary search when we have many groups. */
558 lo = 0;
559 hi = grps->crg_ngroups - 1;
560 gp = grps->crg_groups;
561
562 do {
563 int m = (lo + hi) / 2;
564
565 if (gid > gp[m])
566 lo = m + 1;
567 else if (gid < gp[m])
568 hi = m - 1;
569 else
570 return (1);
571 } while (lo <= hi);
572
573 return (0);
574 }
575
576 /*
577 * This function is called to check whether the credentials set
578 * "scrp" has permission to act on credentials set "tcrp". It enforces the
579 * permission requirements needed to send a signal to a process.
580 * The same requirements are imposed by other system calls, however.
581 *
582 * The rules are:
583 * (1) if the credentials are the same, the check succeeds
584 * (2) if the zone ids don't match, and scrp is not in the global zone or
585 * does not have the PRIV_PROC_ZONE privilege, the check fails
586 * (3) if the real or effective user id of scrp matches the real or saved
587 * user id of tcrp or scrp has the PRIV_PROC_OWNER privilege, the check
588 * succeeds
589 * (4) otherwise, the check fails
590 */
591 int
hasprocperm(const cred_t * tcrp,const cred_t * scrp)592 hasprocperm(const cred_t *tcrp, const cred_t *scrp)
593 {
594 if (scrp == tcrp)
595 return (1);
596 if (scrp->cr_zone != tcrp->cr_zone &&
597 (scrp->cr_zone != global_zone ||
598 secpolicy_proc_zone(scrp) != 0))
599 return (0);
600 if (scrp->cr_uid == tcrp->cr_ruid ||
601 scrp->cr_ruid == tcrp->cr_ruid ||
602 scrp->cr_uid == tcrp->cr_suid ||
603 scrp->cr_ruid == tcrp->cr_suid ||
604 !PRIV_POLICY(scrp, PRIV_PROC_OWNER, B_FALSE, EPERM, "hasprocperm"))
605 return (1);
606 return (0);
607 }
608
609 /*
610 * This interface replaces hasprocperm; it works like hasprocperm but
611 * additionally returns success if the proc_t's match
612 * It is the preferred interface for most uses.
613 * And it will acquire p_crlock itself, so it assert's that it shouldn't
614 * be held.
615 */
616 int
prochasprocperm(proc_t * tp,proc_t * sp,const cred_t * scrp)617 prochasprocperm(proc_t *tp, proc_t *sp, const cred_t *scrp)
618 {
619 int rets;
620 cred_t *tcrp;
621
622 ASSERT(MUTEX_NOT_HELD(&tp->p_crlock));
623
624 if (tp == sp)
625 return (1);
626
627 if (tp->p_sessp != sp->p_sessp && secpolicy_basic_proc(scrp) != 0)
628 return (0);
629
630 mutex_enter(&tp->p_crlock);
631 crhold(tcrp = tp->p_cred);
632 mutex_exit(&tp->p_crlock);
633 rets = hasprocperm(tcrp, scrp);
634 crfree(tcrp);
635
636 return (rets);
637 }
638
639 /*
640 * This routine is used to compare two credentials to determine if
641 * they refer to the same "user". If the pointers are equal, then
642 * they must refer to the same user. Otherwise, the contents of
643 * the credentials are compared to see whether they are equivalent.
644 *
645 * This routine returns 0 if the credentials refer to the same user,
646 * 1 if they do not.
647 */
648 int
crcmp(const cred_t * cr1,const cred_t * cr2)649 crcmp(const cred_t *cr1, const cred_t *cr2)
650 {
651 credgrp_t *grp1, *grp2;
652
653 if (cr1 == cr2)
654 return (0);
655
656 if (cr1->cr_uid == cr2->cr_uid &&
657 cr1->cr_gid == cr2->cr_gid &&
658 cr1->cr_ruid == cr2->cr_ruid &&
659 cr1->cr_rgid == cr2->cr_rgid &&
660 cr1->cr_zone == cr2->cr_zone &&
661 ((grp1 = cr1->cr_grps) == (grp2 = cr2->cr_grps) ||
662 (grp1 != NULL && grp2 != NULL &&
663 grp1->crg_ngroups == grp2->crg_ngroups &&
664 bcmp(grp1->crg_groups, grp2->crg_groups,
665 grp1->crg_ngroups * sizeof (gid_t)) == 0))) {
666 return (!priv_isequalset(&CR_OEPRIV(cr1), &CR_OEPRIV(cr2)));
667 }
668 return (1);
669 }
670
671 /*
672 * Read access functions to cred_t.
673 */
674 uid_t
crgetuid(const cred_t * cr)675 crgetuid(const cred_t *cr)
676 {
677 return (cr->cr_uid);
678 }
679
680 uid_t
crgetruid(const cred_t * cr)681 crgetruid(const cred_t *cr)
682 {
683 return (cr->cr_ruid);
684 }
685
686 uid_t
crgetsuid(const cred_t * cr)687 crgetsuid(const cred_t *cr)
688 {
689 return (cr->cr_suid);
690 }
691
692 gid_t
crgetgid(const cred_t * cr)693 crgetgid(const cred_t *cr)
694 {
695 return (cr->cr_gid);
696 }
697
698 gid_t
crgetrgid(const cred_t * cr)699 crgetrgid(const cred_t *cr)
700 {
701 return (cr->cr_rgid);
702 }
703
704 gid_t
crgetsgid(const cred_t * cr)705 crgetsgid(const cred_t *cr)
706 {
707 return (cr->cr_sgid);
708 }
709
710 const auditinfo_addr_t *
crgetauinfo(const cred_t * cr)711 crgetauinfo(const cred_t *cr)
712 {
713 return ((const auditinfo_addr_t *)CR_AUINFO(cr));
714 }
715
716 auditinfo_addr_t *
crgetauinfo_modifiable(cred_t * cr)717 crgetauinfo_modifiable(cred_t *cr)
718 {
719 return (CR_AUINFO(cr));
720 }
721
722 zoneid_t
crgetzoneid(const cred_t * cr)723 crgetzoneid(const cred_t *cr)
724 {
725 return (cr->cr_zone == NULL ?
726 (cr->cr_uid == -1 ? (zoneid_t)-1 : GLOBAL_ZONEID) :
727 cr->cr_zone->zone_id);
728 }
729
730 projid_t
crgetprojid(const cred_t * cr)731 crgetprojid(const cred_t *cr)
732 {
733 return (cr->cr_projid);
734 }
735
736 zone_t *
crgetzone(const cred_t * cr)737 crgetzone(const cred_t *cr)
738 {
739 return (cr->cr_zone);
740 }
741
742 struct ts_label_s *
crgetlabel(const cred_t * cr)743 crgetlabel(const cred_t *cr)
744 {
745 return (cr->cr_label ?
746 cr->cr_label :
747 (cr->cr_zone ? cr->cr_zone->zone_slabel : NULL));
748 }
749
750 boolean_t
crisremote(const cred_t * cr)751 crisremote(const cred_t *cr)
752 {
753 return (REMOTE_PEER_CRED(cr));
754 }
755
756 #define BADUID(x, zn) ((x) != -1 && !VALID_UID((x), (zn)))
757 #define BADGID(x, zn) ((x) != -1 && !VALID_GID((x), (zn)))
758
759 int
crsetresuid(cred_t * cr,uid_t r,uid_t e,uid_t s)760 crsetresuid(cred_t *cr, uid_t r, uid_t e, uid_t s)
761 {
762 zone_t *zone = crgetzone(cr);
763
764 ASSERT(cr->cr_ref <= 2);
765
766 if (BADUID(r, zone) || BADUID(e, zone) || BADUID(s, zone))
767 return (-1);
768
769 if (r != -1)
770 cr->cr_ruid = r;
771 if (e != -1)
772 cr->cr_uid = e;
773 if (s != -1)
774 cr->cr_suid = s;
775
776 return (0);
777 }
778
779 int
crsetresgid(cred_t * cr,gid_t r,gid_t e,gid_t s)780 crsetresgid(cred_t *cr, gid_t r, gid_t e, gid_t s)
781 {
782 zone_t *zone = crgetzone(cr);
783
784 ASSERT(cr->cr_ref <= 2);
785
786 if (BADGID(r, zone) || BADGID(e, zone) || BADGID(s, zone))
787 return (-1);
788
789 if (r != -1)
790 cr->cr_rgid = r;
791 if (e != -1)
792 cr->cr_gid = e;
793 if (s != -1)
794 cr->cr_sgid = s;
795
796 return (0);
797 }
798
799 int
crsetugid(cred_t * cr,uid_t uid,gid_t gid)800 crsetugid(cred_t *cr, uid_t uid, gid_t gid)
801 {
802 zone_t *zone = crgetzone(cr);
803
804 ASSERT(cr->cr_ref <= 2);
805
806 if (!VALID_UID(uid, zone) || !VALID_GID(gid, zone))
807 return (-1);
808
809 cr->cr_uid = cr->cr_ruid = cr->cr_suid = uid;
810 cr->cr_gid = cr->cr_rgid = cr->cr_sgid = gid;
811
812 return (0);
813 }
814
815 static int
gidcmp(const void * v1,const void * v2)816 gidcmp(const void *v1, const void *v2)
817 {
818 gid_t g1 = *(gid_t *)v1;
819 gid_t g2 = *(gid_t *)v2;
820
821 if (g1 < g2)
822 return (-1);
823 else if (g1 > g2)
824 return (1);
825 else
826 return (0);
827 }
828
829 int
crsetgroups(cred_t * cr,int n,gid_t * grp)830 crsetgroups(cred_t *cr, int n, gid_t *grp)
831 {
832 ASSERT(cr->cr_ref <= 2);
833
834 if (n > ngroups_max || n < 0)
835 return (-1);
836
837 if (cr->cr_grps != NULL)
838 crgrprele(cr->cr_grps);
839
840 if (n > 0) {
841 cr->cr_grps = kmem_alloc(CREDGRPSZ(n), KM_SLEEP);
842 bcopy(grp, cr->cr_grps->crg_groups, n * sizeof (gid_t));
843 cr->cr_grps->crg_ref = 1;
844 cr->cr_grps->crg_ngroups = n;
845 qsort(cr->cr_grps->crg_groups, n, sizeof (gid_t), gidcmp);
846 } else {
847 cr->cr_grps = NULL;
848 }
849
850 return (0);
851 }
852
853 void
crsetprojid(cred_t * cr,projid_t projid)854 crsetprojid(cred_t *cr, projid_t projid)
855 {
856 ASSERT(projid >= 0 && projid <= MAXPROJID);
857 cr->cr_projid = projid;
858 }
859
860 /*
861 * This routine returns the pointer to the first element of the crg_groups
862 * array. It can move around in an implementation defined way.
863 * Note that when we have no grouplist, we return one element but the
864 * caller should never reference it.
865 */
866 const gid_t *
crgetgroups(const cred_t * cr)867 crgetgroups(const cred_t *cr)
868 {
869 return (cr->cr_grps == NULL ? &cr->cr_gid : cr->cr_grps->crg_groups);
870 }
871
872 int
crgetngroups(const cred_t * cr)873 crgetngroups(const cred_t *cr)
874 {
875 return (cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups);
876 }
877
878 void
cred2prcred(const cred_t * cr,prcred_t * pcrp)879 cred2prcred(const cred_t *cr, prcred_t *pcrp)
880 {
881 pcrp->pr_euid = cr->cr_uid;
882 pcrp->pr_ruid = cr->cr_ruid;
883 pcrp->pr_suid = cr->cr_suid;
884 pcrp->pr_egid = cr->cr_gid;
885 pcrp->pr_rgid = cr->cr_rgid;
886 pcrp->pr_sgid = cr->cr_sgid;
887 pcrp->pr_groups[0] = 0; /* in case ngroups == 0 */
888 pcrp->pr_ngroups = cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups;
889
890 if (pcrp->pr_ngroups != 0)
891 bcopy(cr->cr_grps->crg_groups, pcrp->pr_groups,
892 sizeof (gid_t) * pcrp->pr_ngroups);
893 }
894
895 static int
cred2ucaud(const cred_t * cr,auditinfo64_addr_t * ainfo,const cred_t * rcr)896 cred2ucaud(const cred_t *cr, auditinfo64_addr_t *ainfo, const cred_t *rcr)
897 {
898 auditinfo_addr_t *ai;
899 au_tid_addr_t tid;
900
901 if (secpolicy_audit_getattr(rcr, B_TRUE) != 0)
902 return (-1);
903
904 ai = CR_AUINFO(cr); /* caller makes sure this is non-NULL */
905 tid = ai->ai_termid;
906
907 ainfo->ai_auid = ai->ai_auid;
908 ainfo->ai_mask = ai->ai_mask;
909 ainfo->ai_asid = ai->ai_asid;
910
911 ainfo->ai_termid.at_type = tid.at_type;
912 bcopy(&tid.at_addr, &ainfo->ai_termid.at_addr, 4 * sizeof (uint_t));
913
914 ainfo->ai_termid.at_port.at_major = (uint32_t)getmajor(tid.at_port);
915 ainfo->ai_termid.at_port.at_minor = (uint32_t)getminor(tid.at_port);
916
917 return (0);
918 }
919
920 void
cred2uclabel(const cred_t * cr,bslabel_t * labelp)921 cred2uclabel(const cred_t *cr, bslabel_t *labelp)
922 {
923 ts_label_t *tslp;
924
925 if ((tslp = crgetlabel(cr)) != NULL)
926 bcopy(&tslp->tsl_label, labelp, sizeof (bslabel_t));
927 }
928
929 /*
930 * Convert a credential into a "ucred". Allow the caller to specify
931 * and aligned buffer, e.g., in an mblk, so we don't have to allocate
932 * memory and copy it twice.
933 *
934 * This function may call cred2ucaud(), which calls CRED(). Since this
935 * can be called from an interrupt thread, receiver's cred (rcr) is needed
936 * to determine whether audit info should be included.
937 */
938 struct ucred_s *
cred2ucred(const cred_t * cr,pid_t pid,void * buf,const cred_t * rcr)939 cred2ucred(const cred_t *cr, pid_t pid, void *buf, const cred_t *rcr)
940 {
941 struct ucred_s *uc;
942 uint32_t realsz = ucredminsize(cr);
943 ts_label_t *tslp = is_system_labeled() ? crgetlabel(cr) : NULL;
944
945 /* The structure isn't always completely filled in, so zero it */
946 if (buf == NULL) {
947 uc = kmem_zalloc(realsz, KM_SLEEP);
948 } else {
949 bzero(buf, realsz);
950 uc = buf;
951 }
952 uc->uc_size = realsz;
953 uc->uc_pid = pid;
954 uc->uc_projid = cr->cr_projid;
955 uc->uc_zoneid = crgetzoneid(cr);
956
957 if (REMOTE_PEER_CRED(cr)) {
958 /*
959 * Other than label, the rest of cred info about a
960 * remote peer isn't available. Copy the label directly
961 * after the header where we generally copy the prcred.
962 * That's why we use sizeof (struct ucred_s). The other
963 * offset fields are initialized to 0.
964 */
965 uc->uc_labeloff = tslp == NULL ? 0 : sizeof (struct ucred_s);
966 } else {
967 uc->uc_credoff = UCRED_CRED_OFF;
968 uc->uc_privoff = UCRED_PRIV_OFF;
969 uc->uc_audoff = UCRED_AUD_OFF;
970 uc->uc_labeloff = tslp == NULL ? 0 : UCRED_LABEL_OFF;
971
972 cred2prcred(cr, UCCRED(uc));
973 cred2prpriv(cr, UCPRIV(uc));
974
975 if (audoff == 0 || cred2ucaud(cr, UCAUD(uc), rcr) != 0)
976 uc->uc_audoff = 0;
977 }
978 if (tslp != NULL)
979 bcopy(&tslp->tsl_label, UCLABEL(uc), sizeof (bslabel_t));
980
981 return (uc);
982 }
983
984 /*
985 * Don't allocate the non-needed group entries. Note: this function
986 * must match the code in cred2ucred; they must agree about the
987 * minimal size of the ucred.
988 */
989 uint32_t
ucredminsize(const cred_t * cr)990 ucredminsize(const cred_t *cr)
991 {
992 int ndiff;
993
994 if (cr == NULL)
995 return (ucredsize);
996
997 if (REMOTE_PEER_CRED(cr)) {
998 if (is_system_labeled())
999 return (sizeof (struct ucred_s) + sizeof (bslabel_t));
1000 else
1001 return (sizeof (struct ucred_s));
1002 }
1003
1004 if (cr->cr_grps == NULL)
1005 ndiff = ngroups_max - 1; /* Needs one for prcred_t */
1006 else
1007 ndiff = ngroups_max - cr->cr_grps->crg_ngroups;
1008
1009 return (ucredsize - ndiff * sizeof (gid_t));
1010 }
1011
1012 /*
1013 * Get the "ucred" of a process.
1014 */
1015 struct ucred_s *
pgetucred(proc_t * p)1016 pgetucred(proc_t *p)
1017 {
1018 cred_t *cr;
1019 struct ucred_s *uc;
1020
1021 mutex_enter(&p->p_crlock);
1022 cr = p->p_cred;
1023 crhold(cr);
1024 mutex_exit(&p->p_crlock);
1025
1026 uc = cred2ucred(cr, p->p_pid, NULL, CRED());
1027 crfree(cr);
1028
1029 return (uc);
1030 }
1031
1032 /*
1033 * If the reply status is NFSERR_EACCES, it may be because we are
1034 * root (no root net access). Check the real uid, if it isn't root
1035 * make that the uid instead and retry the call.
1036 * Private interface for NFS.
1037 */
1038 cred_t *
crnetadjust(cred_t * cr)1039 crnetadjust(cred_t *cr)
1040 {
1041 if (cr->cr_uid == 0 && cr->cr_ruid != 0) {
1042 cr = crdup(cr);
1043 cr->cr_uid = cr->cr_ruid;
1044 return (cr);
1045 }
1046 return (NULL);
1047 }
1048
1049 /*
1050 * The reference count is of interest when you want to check
1051 * whether it is ok to modify the credential in place.
1052 */
1053 uint_t
crgetref(const cred_t * cr)1054 crgetref(const cred_t *cr)
1055 {
1056 return (cr->cr_ref);
1057 }
1058
1059 static int
get_c2audit_load(void)1060 get_c2audit_load(void)
1061 {
1062 static int gotit = 0;
1063 static int c2audit_load;
1064
1065 if (gotit)
1066 return (c2audit_load);
1067 c2audit_load = 1; /* set default value once */
1068 if (mod_sysctl(SYS_CHECK_EXCLUDE, "c2audit") != 0)
1069 c2audit_load = 0;
1070 gotit++;
1071
1072 return (c2audit_load);
1073 }
1074
1075 int
get_audit_ucrsize(void)1076 get_audit_ucrsize(void)
1077 {
1078 return (get_c2audit_load() ? sizeof (auditinfo64_addr_t) : 0);
1079 }
1080
1081 /*
1082 * Set zone pointer in credential to indicated value. First adds a
1083 * hold for the new zone, then drops the hold on previous zone (if any).
1084 * This is done in this order in case the old and new zones are the
1085 * same.
1086 */
1087 void
crsetzone(cred_t * cr,zone_t * zptr)1088 crsetzone(cred_t *cr, zone_t *zptr)
1089 {
1090 zone_t *oldzptr = cr->cr_zone;
1091
1092 ASSERT(cr != kcred);
1093 ASSERT(cr->cr_ref <= 2);
1094 cr->cr_zone = zptr;
1095 zone_cred_hold(zptr);
1096 if (oldzptr)
1097 zone_cred_rele(oldzptr);
1098 }
1099
1100 /*
1101 * Create a new cred based on the supplied label
1102 */
1103 cred_t *
newcred_from_bslabel(bslabel_t * blabel,uint32_t doi,int flags)1104 newcred_from_bslabel(bslabel_t *blabel, uint32_t doi, int flags)
1105 {
1106 ts_label_t *lbl = labelalloc(blabel, doi, flags);
1107 cred_t *cr = NULL;
1108
1109 if (lbl != NULL) {
1110 if ((cr = crdup_flags(dummycr, flags)) != NULL) {
1111 cr->cr_label = lbl;
1112 } else {
1113 label_rele(lbl);
1114 }
1115 }
1116
1117 return (cr);
1118 }
1119
1120 /*
1121 * Derive a new cred from the existing cred, but with a different label.
1122 * To be used when a cred is being shared, but the label needs to be changed
1123 * by a caller without affecting other users
1124 */
1125 cred_t *
copycred_from_tslabel(const cred_t * cr,ts_label_t * label,int flags)1126 copycred_from_tslabel(const cred_t *cr, ts_label_t *label, int flags)
1127 {
1128 cred_t *newcr = NULL;
1129
1130 if ((newcr = crdup_flags(cr, flags)) != NULL) {
1131 if (newcr->cr_label != NULL)
1132 label_rele(newcr->cr_label);
1133 label_hold(label);
1134 newcr->cr_label = label;
1135 }
1136
1137 return (newcr);
1138 }
1139
1140 /*
1141 * Derive a new cred from the existing cred, but with a different label.
1142 */
1143 cred_t *
copycred_from_bslabel(const cred_t * cr,bslabel_t * blabel,uint32_t doi,int flags)1144 copycred_from_bslabel(const cred_t *cr, bslabel_t *blabel,
1145 uint32_t doi, int flags)
1146 {
1147 ts_label_t *lbl = labelalloc(blabel, doi, flags);
1148 cred_t *newcr = NULL;
1149
1150 if (lbl != NULL) {
1151 newcr = copycred_from_tslabel(cr, lbl, flags);
1152 label_rele(lbl);
1153 }
1154
1155 return (newcr);
1156 }
1157
1158 /*
1159 * This function returns a pointer to the kcred-equivalent in the current zone.
1160 */
1161 cred_t *
zone_kcred(void)1162 zone_kcred(void)
1163 {
1164 zone_t *zone;
1165
1166 if ((zone = CRED()->cr_zone) != NULL)
1167 return (zone->zone_kcred);
1168 else
1169 return (kcred);
1170 }
1171
1172 boolean_t
valid_ephemeral_uid(zone_t * zone,uid_t id)1173 valid_ephemeral_uid(zone_t *zone, uid_t id)
1174 {
1175 ephemeral_zsd_t *eph_zsd;
1176 if (id <= IDMAP_WK__MAX_UID)
1177 return (B_TRUE);
1178
1179 eph_zsd = get_ephemeral_zsd(zone);
1180 ASSERT(eph_zsd != NULL);
1181 membar_consumer();
1182 return (id > eph_zsd->min_uid && id <= eph_zsd->last_uid);
1183 }
1184
1185 boolean_t
valid_ephemeral_gid(zone_t * zone,gid_t id)1186 valid_ephemeral_gid(zone_t *zone, gid_t id)
1187 {
1188 ephemeral_zsd_t *eph_zsd;
1189 if (id <= IDMAP_WK__MAX_GID)
1190 return (B_TRUE);
1191
1192 eph_zsd = get_ephemeral_zsd(zone);
1193 ASSERT(eph_zsd != NULL);
1194 membar_consumer();
1195 return (id > eph_zsd->min_gid && id <= eph_zsd->last_gid);
1196 }
1197
1198 int
eph_uid_alloc(zone_t * zone,int flags,uid_t * start,int count)1199 eph_uid_alloc(zone_t *zone, int flags, uid_t *start, int count)
1200 {
1201 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1202
1203 ASSERT(eph_zsd != NULL);
1204
1205 mutex_enter(&eph_zsd->eph_lock);
1206
1207 /* Test for unsigned integer wrap around */
1208 if (eph_zsd->last_uid + count < eph_zsd->last_uid) {
1209 mutex_exit(&eph_zsd->eph_lock);
1210 return (-1);
1211 }
1212
1213 /* first call or idmap crashed and state corrupted */
1214 if (flags != 0)
1215 eph_zsd->min_uid = eph_zsd->last_uid;
1216
1217 hasephids = B_TRUE;
1218 *start = eph_zsd->last_uid + 1;
1219 atomic_add_32(&eph_zsd->last_uid, count);
1220 mutex_exit(&eph_zsd->eph_lock);
1221 return (0);
1222 }
1223
1224 int
eph_gid_alloc(zone_t * zone,int flags,gid_t * start,int count)1225 eph_gid_alloc(zone_t *zone, int flags, gid_t *start, int count)
1226 {
1227 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1228
1229 ASSERT(eph_zsd != NULL);
1230
1231 mutex_enter(&eph_zsd->eph_lock);
1232
1233 /* Test for unsigned integer wrap around */
1234 if (eph_zsd->last_gid + count < eph_zsd->last_gid) {
1235 mutex_exit(&eph_zsd->eph_lock);
1236 return (-1);
1237 }
1238
1239 /* first call or idmap crashed and state corrupted */
1240 if (flags != 0)
1241 eph_zsd->min_gid = eph_zsd->last_gid;
1242
1243 hasephids = B_TRUE;
1244 *start = eph_zsd->last_gid + 1;
1245 atomic_add_32(&eph_zsd->last_gid, count);
1246 mutex_exit(&eph_zsd->eph_lock);
1247 return (0);
1248 }
1249
1250 /*
1251 * IMPORTANT.The two functions get_ephemeral_data() and set_ephemeral_data()
1252 * are project private functions that are for use of the test system only and
1253 * are not to be used for other purposes.
1254 */
1255
1256 void
get_ephemeral_data(zone_t * zone,uid_t * min_uid,uid_t * last_uid,gid_t * min_gid,gid_t * last_gid)1257 get_ephemeral_data(zone_t *zone, uid_t *min_uid, uid_t *last_uid,
1258 gid_t *min_gid, gid_t *last_gid)
1259 {
1260 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1261
1262 ASSERT(eph_zsd != NULL);
1263
1264 mutex_enter(&eph_zsd->eph_lock);
1265
1266 *min_uid = eph_zsd->min_uid;
1267 *last_uid = eph_zsd->last_uid;
1268 *min_gid = eph_zsd->min_gid;
1269 *last_gid = eph_zsd->last_gid;
1270
1271 mutex_exit(&eph_zsd->eph_lock);
1272 }
1273
1274
1275 void
set_ephemeral_data(zone_t * zone,uid_t min_uid,uid_t last_uid,gid_t min_gid,gid_t last_gid)1276 set_ephemeral_data(zone_t *zone, uid_t min_uid, uid_t last_uid,
1277 gid_t min_gid, gid_t last_gid)
1278 {
1279 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone);
1280
1281 ASSERT(eph_zsd != NULL);
1282
1283 mutex_enter(&eph_zsd->eph_lock);
1284
1285 if (min_uid != 0)
1286 eph_zsd->min_uid = min_uid;
1287 if (last_uid != 0)
1288 eph_zsd->last_uid = last_uid;
1289 if (min_gid != 0)
1290 eph_zsd->min_gid = min_gid;
1291 if (last_gid != 0)
1292 eph_zsd->last_gid = last_gid;
1293
1294 mutex_exit(&eph_zsd->eph_lock);
1295 }
1296
1297 /*
1298 * If the credential user SID or group SID is mapped to an ephemeral
1299 * ID, map the credential to nobody.
1300 */
1301 cred_t *
crgetmapped(const cred_t * cr)1302 crgetmapped(const cred_t *cr)
1303 {
1304 ephemeral_zsd_t *eph_zsd;
1305 /*
1306 * Someone incorrectly passed a NULL cred to a vnode operation
1307 * either on purpose or by calling CRED() in interrupt context.
1308 */
1309 if (cr == NULL)
1310 return (NULL);
1311
1312 if (cr->cr_ksid != NULL) {
1313 if (cr->cr_ksid->kr_sidx[KSID_USER].ks_id > MAXUID) {
1314 eph_zsd = get_ephemeral_zsd(crgetzone(cr));
1315 return (eph_zsd->eph_nobody);
1316 }
1317
1318 if (cr->cr_ksid->kr_sidx[KSID_GROUP].ks_id > MAXUID) {
1319 eph_zsd = get_ephemeral_zsd(crgetzone(cr));
1320 return (eph_zsd->eph_nobody);
1321 }
1322 }
1323
1324 return ((cred_t *)cr);
1325 }
1326
1327 /* index should be in range for a ksidindex_t */
1328 void
crsetsid(cred_t * cr,ksid_t * ksp,int index)1329 crsetsid(cred_t *cr, ksid_t *ksp, int index)
1330 {
1331 ASSERT(cr->cr_ref <= 2);
1332 ASSERT(index >= 0 && index < KSID_COUNT);
1333 if (cr->cr_ksid == NULL && ksp == NULL)
1334 return;
1335 cr->cr_ksid = kcrsid_setsid(cr->cr_ksid, ksp, index);
1336 }
1337
1338 void
crsetsidlist(cred_t * cr,ksidlist_t * ksl)1339 crsetsidlist(cred_t *cr, ksidlist_t *ksl)
1340 {
1341 ASSERT(cr->cr_ref <= 2);
1342 if (cr->cr_ksid == NULL && ksl == NULL)
1343 return;
1344 cr->cr_ksid = kcrsid_setsidlist(cr->cr_ksid, ksl);
1345 }
1346
1347 ksid_t *
crgetsid(const cred_t * cr,int i)1348 crgetsid(const cred_t *cr, int i)
1349 {
1350 ASSERT(i >= 0 && i < KSID_COUNT);
1351 if (cr->cr_ksid != NULL && cr->cr_ksid->kr_sidx[i].ks_domain)
1352 return ((ksid_t *)&cr->cr_ksid->kr_sidx[i]);
1353 return (NULL);
1354 }
1355
1356 ksidlist_t *
crgetsidlist(const cred_t * cr)1357 crgetsidlist(const cred_t *cr)
1358 {
1359 if (cr->cr_ksid != NULL)
1360 return (cr->cr_ksid->kr_sidlist);
1361 return (NULL);
1362 }
1363
1364 /*
1365 * Interface to set the effective and permitted privileges for
1366 * a credential; this interface does no security checks and is
1367 * intended for kernel (file)servers creating credentials with
1368 * specific privileges.
1369 */
1370 int
crsetpriv(cred_t * cr,...)1371 crsetpriv(cred_t *cr, ...)
1372 {
1373 va_list ap;
1374 const char *privnm;
1375
1376 ASSERT(cr->cr_ref <= 2);
1377
1378 priv_set_PA(cr);
1379
1380 va_start(ap, cr);
1381
1382 while ((privnm = va_arg(ap, const char *)) != NULL) {
1383 int priv = priv_getbyname(privnm, 0);
1384 if (priv < 0)
1385 return (-1);
1386
1387 priv_addset(&CR_PPRIV(cr), priv);
1388 priv_addset(&CR_EPRIV(cr), priv);
1389 }
1390 priv_adjust_PA(cr);
1391 va_end(ap);
1392 return (0);
1393 }
1394
1395 /*
1396 * Interface to effectively set the PRIV_ALL for
1397 * a credential; this interface does no security checks and is
1398 * intended for kernel (file)servers to extend the user credentials
1399 * to be ALL, like either kcred or zcred.
1400 */
1401 void
crset_zone_privall(cred_t * cr)1402 crset_zone_privall(cred_t *cr)
1403 {
1404 zone_t *zone = crgetzone(cr);
1405
1406 priv_fillset(&CR_LPRIV(cr));
1407 CR_EPRIV(cr) = CR_PPRIV(cr) = CR_IPRIV(cr) = CR_LPRIV(cr);
1408 priv_intersect(zone->zone_privset, &CR_LPRIV(cr));
1409 priv_intersect(zone->zone_privset, &CR_EPRIV(cr));
1410 priv_intersect(zone->zone_privset, &CR_IPRIV(cr));
1411 priv_intersect(zone->zone_privset, &CR_PPRIV(cr));
1412 }
1413
1414 struct credklpd *
crgetcrklpd(const cred_t * cr)1415 crgetcrklpd(const cred_t *cr)
1416 {
1417 return (cr->cr_klpd);
1418 }
1419
1420 void
crsetcrklpd(cred_t * cr,struct credklpd * crklpd)1421 crsetcrklpd(cred_t *cr, struct credklpd *crklpd)
1422 {
1423 ASSERT(cr->cr_ref <= 2);
1424
1425 if (cr->cr_klpd != NULL)
1426 crklpd_rele(cr->cr_klpd);
1427 cr->cr_klpd = crklpd;
1428 }
1429
1430 credgrp_t *
crgrpcopyin(int n,gid_t * gidset)1431 crgrpcopyin(int n, gid_t *gidset)
1432 {
1433 credgrp_t *mem;
1434 size_t sz = CREDGRPSZ(n);
1435
1436 ASSERT(n > 0);
1437
1438 mem = kmem_alloc(sz, KM_SLEEP);
1439
1440 if (copyin(gidset, mem->crg_groups, sizeof (gid_t) * n)) {
1441 kmem_free(mem, sz);
1442 return (NULL);
1443 }
1444 mem->crg_ref = 1;
1445 mem->crg_ngroups = n;
1446 qsort(mem->crg_groups, n, sizeof (gid_t), gidcmp);
1447 return (mem);
1448 }
1449
1450 const gid_t *
crgetggroups(const credgrp_t * grps)1451 crgetggroups(const credgrp_t *grps)
1452 {
1453 return (grps->crg_groups);
1454 }
1455
1456 void
crsetcredgrp(cred_t * cr,credgrp_t * grps)1457 crsetcredgrp(cred_t *cr, credgrp_t *grps)
1458 {
1459 ASSERT(cr->cr_ref <= 2);
1460
1461 if (cr->cr_grps != NULL)
1462 crgrprele(cr->cr_grps);
1463
1464 cr->cr_grps = grps;
1465 }
1466
1467 void
crgrprele(credgrp_t * grps)1468 crgrprele(credgrp_t *grps)
1469 {
1470 if (atomic_dec_32_nv(&grps->crg_ref) == 0)
1471 kmem_free(grps, CREDGRPSZ(grps->crg_ngroups));
1472 }
1473
1474 static void
crgrphold(credgrp_t * grps)1475 crgrphold(credgrp_t *grps)
1476 {
1477 atomic_inc_32(&grps->crg_ref);
1478 }
1479