xref: /freebsd/sys/netinet/ip_mroute.c (revision 0fd31cf690328558b8a12ff65397438efc345932)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989 Stephen Deering
5  * Copyright (c) 1992, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Stephen Deering of Stanford University.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /*
37  * IP multicast forwarding procedures
38  *
39  * Written by David Waitzman, BBN Labs, August 1988.
40  * Modified by Steve Deering, Stanford, February 1989.
41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
42  * Modified by Van Jacobson, LBL, January 1993
43  * Modified by Ajit Thyagarajan, PARC, August 1993
44  * Modified by Bill Fenner, PARC, April 1995
45  * Modified by Ahmed Helmy, SGI, June 1996
46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48  * Modified by Hitoshi Asaeda, WIDE, August 2000
49  * Modified by Pavlin Radoslavov, ICSI, October 2002
50  * Modified by Wojciech Macek, Semihalf, May 2021
51  *
52  * MROUTING Revision: 3.5
53  * and PIM-SMv2 and PIM-DM support, advanced API support,
54  * bandwidth metering and signaling
55  */
56 
57 /*
58  * TODO: Prefix functions with ipmf_.
59  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
60  * domain attachment (if_afdata) so we can track consumers of that service.
61  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
62  * move it to socket options.
63  * TODO: Cleanup LSRR removal further.
64  * TODO: Push RSVP stubs into raw_ip.c.
65  * TODO: Use bitstring.h for vif set.
66  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
67  * TODO: Sync ip6_mroute.c with this file.
68  */
69 
70 #include <sys/cdefs.h>
71 #include "opt_inet.h"
72 #include "opt_mrouting.h"
73 
74 #define _PIM_VT 1
75 
76 #include <sys/types.h>
77 #include <sys/param.h>
78 #include <sys/kernel.h>
79 #include <sys/stddef.h>
80 #include <sys/condvar.h>
81 #include <sys/eventhandler.h>
82 #include <sys/lock.h>
83 #include <sys/kthread.h>
84 #include <sys/ktr.h>
85 #include <sys/malloc.h>
86 #include <sys/mbuf.h>
87 #include <sys/module.h>
88 #include <sys/priv.h>
89 #include <sys/protosw.h>
90 #include <sys/signalvar.h>
91 #include <sys/socket.h>
92 #include <sys/socketvar.h>
93 #include <sys/sockio.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96 #include <sys/syslog.h>
97 #include <sys/systm.h>
98 #include <sys/taskqueue.h>
99 #include <sys/time.h>
100 #include <sys/counter.h>
101 #include <machine/atomic.h>
102 
103 #include <net/if.h>
104 #include <net/if_var.h>
105 #include <net/if_private.h>
106 #include <net/if_types.h>
107 #include <net/netisr.h>
108 #include <net/route.h>
109 #include <net/vnet.h>
110 
111 #include <netinet/in.h>
112 #include <netinet/igmp.h>
113 #include <netinet/in_systm.h>
114 #include <netinet/in_var.h>
115 #include <netinet/ip.h>
116 #include <netinet/ip_encap.h>
117 #include <netinet/ip_mroute.h>
118 #include <netinet/ip_var.h>
119 #include <netinet/ip_options.h>
120 #include <netinet/pim.h>
121 #include <netinet/pim_var.h>
122 #include <netinet/udp.h>
123 
124 #include <machine/in_cksum.h>
125 
126 #ifndef KTR_IPMF
127 #define KTR_IPMF KTR_INET
128 #endif
129 
130 #define		VIFI_INVALID	((vifi_t) -1)
131 
132 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
133 
134 /*
135  * Locking.  We use two locks: one for the virtual interface table and
136  * one for the forwarding table.  These locks may be nested in which case
137  * the VIF lock must always be taken first.  Note that each lock is used
138  * to cover not only the specific data structure but also related data
139  * structures.
140  */
141 
142 static struct sx __exclusive_cache_line mrouter_teardown;
143 #define	MRW_TEARDOWN_WLOCK()	sx_xlock(&mrouter_teardown)
144 #define	MRW_TEARDOWN_WUNLOCK()	sx_xunlock(&mrouter_teardown)
145 #define	MRW_TEARDOWN_LOCK_INIT()				\
146 	sx_init(&mrouter_teardown, "IPv4 multicast forwarding teardown")
147 #define	MRW_TEARDOWN_LOCK_DESTROY()	sx_destroy(&mrouter_teardown)
148 
149 static struct rwlock mrouter_lock;
150 #define	MRW_RLOCK()		rw_rlock(&mrouter_lock)
151 #define	MRW_WLOCK()		rw_wlock(&mrouter_lock)
152 #define	MRW_RUNLOCK()		rw_runlock(&mrouter_lock)
153 #define	MRW_WUNLOCK()		rw_wunlock(&mrouter_lock)
154 #define	MRW_UNLOCK()		rw_unlock(&mrouter_lock)
155 #define	MRW_LOCK_ASSERT()	rw_assert(&mrouter_lock, RA_LOCKED)
156 #define	MRW_WLOCK_ASSERT()	rw_assert(&mrouter_lock, RA_WLOCKED)
157 #define	MRW_LOCK_TRY_UPGRADE()	rw_try_upgrade(&mrouter_lock)
158 #define	MRW_WOWNED()		rw_wowned(&mrouter_lock)
159 #define	MRW_LOCK_INIT()						\
160 	rw_init(&mrouter_lock, "IPv4 multicast forwarding")
161 #define	MRW_LOCK_DESTROY()	rw_destroy(&mrouter_lock)
162 
163 static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
164 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
165 
166 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
167 VNET_PCPUSTAT_SYSINIT(mrtstat);
168 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
169 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
170     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
171     "netinet/ip_mroute.h)");
172 
173 VNET_DEFINE_STATIC(u_long, mfchash);
174 #define	V_mfchash		VNET(mfchash)
175 #define	MFCHASH(a, g)							\
176 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
177 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
178 #define	MFCHASHSIZE	256
179 
180 static u_long mfchashsize = MFCHASHSIZE;	/* Hash size */
181 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, mfchashsize, CTLFLAG_RDTUN,
182     &mfchashsize, 0, "IPv4 Multicast Forwarding Table hash size");
183 VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
184 #define	V_nexpire		VNET(nexpire)
185 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
186 #define	V_mfchashtbl		VNET(mfchashtbl)
187 VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
188 #define	V_task_queue		VNET(task_queue)
189 VNET_DEFINE_STATIC(struct task, task);
190 #define	V_task		VNET(task)
191 
192 VNET_DEFINE_STATIC(vifi_t, numvifs);
193 #define	V_numvifs		VNET(numvifs)
194 VNET_DEFINE_STATIC(struct vif *, viftable);
195 #define	V_viftable		VNET(viftable)
196 
197 static eventhandler_tag if_detach_event_tag = NULL;
198 
199 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
200 #define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
201 
202 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
203 #define	V_buf_ring_mtx	VNET(buf_ring_mtx)
204 
205 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
206 #define		UPCALL_EXPIRE	6		/* number of timeouts	*/
207 
208 /*
209  * Bandwidth meter variables and constants
210  */
211 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
212 
213 /*
214  * Pending upcalls are stored in a ring which is flushed when
215  * full, or periodically
216  */
217 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
218 #define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
219 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
220 #define	V_bw_upcalls_ring    	VNET(bw_upcalls_ring)
221 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
222 #define	V_bw_upcalls_ring_mtx    	VNET(bw_upcalls_ring_mtx)
223 
224 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
225 
226 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
227 VNET_PCPUSTAT_SYSINIT(pimstat);
228 VNET_PCPUSTAT_SYSUNINIT(pimstat);
229 
230 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
231     "PIM");
232 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
233     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
234 
235 static u_long	pim_squelch_wholepkt = 0;
236 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RWTUN,
237     &pim_squelch_wholepkt, 0,
238     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
239 
240 static const struct encaptab *pim_encap_cookie;
241 static int pim_encapcheck(const struct mbuf *, int, int, void *);
242 static int pim_input(struct mbuf *, int, int, void *);
243 
244 extern int in_mcast_loop;
245 
246 static const struct encap_config ipv4_encap_cfg = {
247 	.proto = IPPROTO_PIM,
248 	.min_length = sizeof(struct ip) + PIM_MINLEN,
249 	.exact_match = 8,
250 	.check = pim_encapcheck,
251 	.input = pim_input
252 };
253 
254 /*
255  * Note: the PIM Register encapsulation adds the following in front of a
256  * data packet:
257  *
258  * struct pim_encap_hdr {
259  *    struct ip ip;
260  *    struct pim_encap_pimhdr  pim;
261  * }
262  *
263  */
264 
265 struct pim_encap_pimhdr {
266 	struct pim pim;
267 	uint32_t   flags;
268 };
269 #define		PIM_ENCAP_TTL	64
270 
271 static struct ip pim_encap_iphdr = {
272 #if BYTE_ORDER == LITTLE_ENDIAN
273 	sizeof(struct ip) >> 2,
274 	IPVERSION,
275 #else
276 	IPVERSION,
277 	sizeof(struct ip) >> 2,
278 #endif
279 	0,			/* tos */
280 	sizeof(struct ip),	/* total length */
281 	0,			/* id */
282 	0,			/* frag offset */
283 	PIM_ENCAP_TTL,
284 	IPPROTO_PIM,
285 	0,			/* checksum */
286 };
287 
288 static struct pim_encap_pimhdr pim_encap_pimhdr = {
289     {
290 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
291 	0,			/* reserved */
292 	0,			/* checksum */
293     },
294     0				/* flags */
295 };
296 
297 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
298 #define	V_reg_vif_num		VNET(reg_vif_num)
299 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
300 #define	V_multicast_register_if	VNET(multicast_register_if)
301 
302 /*
303  * Private variables.
304  */
305 
306 static u_long	X_ip_mcast_src(int);
307 static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
308 		    struct ip_moptions *);
309 static int	X_ip_mrouter_done(void);
310 static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
311 static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
312 static int	X_legal_vif_num(int);
313 static int	X_mrt_ioctl(u_long, caddr_t, int);
314 
315 static int	add_bw_upcall(struct bw_upcall *);
316 static int	add_mfc(struct mfcctl2 *);
317 static int	add_vif(struct vifctl *);
318 static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
319 static void	bw_meter_geq_receive_packet(struct bw_meter *, int,
320 		    struct timeval *);
321 static void	bw_upcalls_send(void);
322 static int	del_bw_upcall(struct bw_upcall *);
323 static int	del_mfc(struct mfcctl2 *);
324 static int	del_vif(vifi_t);
325 static int	del_vif_locked(vifi_t, struct ifnet **, struct ifnet **);
326 static void	expire_bw_upcalls_send(void *);
327 static void	expire_mfc(struct mfc *);
328 static void	expire_upcalls(void *);
329 static void	free_bw_list(struct bw_meter *);
330 static int	get_sg_cnt(struct sioc_sg_req *);
331 static int	get_vif_cnt(struct sioc_vif_req *);
332 static void	if_detached_event(void *, struct ifnet *);
333 static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
334 static int	ip_mrouter_init(struct socket *, int);
335 static __inline struct mfc *
336 		mfc_find(struct in_addr *, struct in_addr *);
337 static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
338 static struct mbuf *
339 		pim_register_prepare(struct ip *, struct mbuf *);
340 static int	pim_register_send(struct ip *, struct vif *,
341 		    struct mbuf *, struct mfc *);
342 static int	pim_register_send_rp(struct ip *, struct vif *,
343 		    struct mbuf *, struct mfc *);
344 static int	pim_register_send_upcall(struct ip *, struct vif *,
345 		    struct mbuf *, struct mfc *);
346 static void	send_packet(struct vif *, struct mbuf *);
347 static int	set_api_config(uint32_t *);
348 static int	set_assert(int);
349 static int	socket_send(struct socket *, struct mbuf *,
350 		    struct sockaddr_in *);
351 
352 /*
353  * Kernel multicast forwarding API capabilities and setup.
354  * If more API capabilities are added to the kernel, they should be
355  * recorded in `mrt_api_support'.
356  */
357 #define MRT_API_VERSION		0x0305
358 
359 static const int mrt_api_version = MRT_API_VERSION;
360 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
361 					 MRT_MFC_FLAGS_BORDER_VIF |
362 					 MRT_MFC_RP |
363 					 MRT_MFC_BW_UPCALL);
364 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
365 #define	V_mrt_api_config	VNET(mrt_api_config)
366 VNET_DEFINE_STATIC(int, pim_assert_enabled);
367 #define	V_pim_assert_enabled	VNET(pim_assert_enabled)
368 static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
369 
370 /*
371  * Find a route for a given origin IP address and multicast group address.
372  * Statistics must be updated by the caller.
373  */
374 static __inline struct mfc *
mfc_find(struct in_addr * o,struct in_addr * g)375 mfc_find(struct in_addr *o, struct in_addr *g)
376 {
377 	struct mfc *rt;
378 
379 	/*
380 	 * Might be called both RLOCK and WLOCK.
381 	 * Check if any, it's caller responsibility
382 	 * to choose correct option.
383 	 */
384 	MRW_LOCK_ASSERT();
385 
386 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
387 		if (in_hosteq(rt->mfc_origin, *o) &&
388 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
389 		    buf_ring_empty(rt->mfc_stall_ring))
390 			break;
391 	}
392 
393 	return (rt);
394 }
395 
396 static __inline struct mfc *
mfc_alloc(void)397 mfc_alloc(void)
398 {
399 	struct mfc *rt;
400 	rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
401 	if (rt == NULL)
402 		return rt;
403 
404 	rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
405 	    M_NOWAIT, &V_buf_ring_mtx);
406 	if (rt->mfc_stall_ring == NULL) {
407 		free(rt, M_MRTABLE);
408 		return NULL;
409 	}
410 
411 	return rt;
412 }
413 
414 /*
415  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
416  */
417 static int
X_ip_mrouter_set(struct socket * so,struct sockopt * sopt)418 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
419 {
420 	int error, optval;
421 	vifi_t vifi;
422 	struct vifctl vifc;
423 	struct mfcctl2 mfc;
424 	struct bw_upcall bw_upcall;
425 	uint32_t i;
426 
427 	if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
428 		return EPERM;
429 
430 	error = 0;
431 	switch (sopt->sopt_name) {
432 	case MRT_INIT:
433 		error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
434 		if (error)
435 			break;
436 		error = ip_mrouter_init(so, optval);
437 		break;
438 	case MRT_DONE:
439 		error = ip_mrouter_done();
440 		break;
441 	case MRT_ADD_VIF:
442 		error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
443 		if (error)
444 			break;
445 		error = add_vif(&vifc);
446 		break;
447 	case MRT_DEL_VIF:
448 		error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
449 		if (error)
450 			break;
451 		error = del_vif(vifi);
452 		break;
453 	case MRT_ADD_MFC:
454 	case MRT_DEL_MFC:
455 		/*
456 		 * select data size depending on API version.
457 		 */
458 		if (sopt->sopt_name == MRT_ADD_MFC &&
459 		    V_mrt_api_config & MRT_API_FLAGS_ALL) {
460 			error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
461 			    sizeof(struct mfcctl2));
462 		} else {
463 			error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
464 			    sizeof(struct mfcctl));
465 			bzero((caddr_t)&mfc + sizeof(struct mfcctl),
466 			    sizeof(mfc) - sizeof(struct mfcctl));
467 		}
468 		if (error)
469 			break;
470 		if (sopt->sopt_name == MRT_ADD_MFC)
471 			error = add_mfc(&mfc);
472 		else
473 			error = del_mfc(&mfc);
474 		break;
475 
476 	case MRT_ASSERT:
477 		error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
478 		if (error)
479 			break;
480 		set_assert(optval);
481 		break;
482 
483 	case MRT_API_CONFIG:
484 		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
485 		if (!error)
486 			error = set_api_config(&i);
487 		if (!error)
488 			error = sooptcopyout(sopt, &i, sizeof i);
489 		break;
490 
491 	case MRT_ADD_BW_UPCALL:
492 	case MRT_DEL_BW_UPCALL:
493 		error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
494 		    sizeof bw_upcall);
495 		if (error)
496 			break;
497 		if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
498 			error = add_bw_upcall(&bw_upcall);
499 		else
500 			error = del_bw_upcall(&bw_upcall);
501 		break;
502 
503 	default:
504 		error = EOPNOTSUPP;
505 		break;
506 	}
507 	return error;
508 }
509 
510 /*
511  * Handle MRT getsockopt commands
512  */
513 static int
X_ip_mrouter_get(struct socket * so,struct sockopt * sopt)514 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
515 {
516 	int error;
517 
518 	switch (sopt->sopt_name) {
519 	case MRT_VERSION:
520 		error = sooptcopyout(sopt, &mrt_api_version,
521 		    sizeof mrt_api_version);
522 		break;
523 	case MRT_ASSERT:
524 		error = sooptcopyout(sopt, &V_pim_assert_enabled,
525 		    sizeof V_pim_assert_enabled);
526 		break;
527 	case MRT_API_SUPPORT:
528 		error = sooptcopyout(sopt, &mrt_api_support,
529 		    sizeof mrt_api_support);
530 		break;
531 	case MRT_API_CONFIG:
532 		error = sooptcopyout(sopt, &V_mrt_api_config,
533 		    sizeof V_mrt_api_config);
534 		break;
535 	default:
536 		error = EOPNOTSUPP;
537 		break;
538 	}
539 	return error;
540 }
541 
542 /*
543  * Handle ioctl commands to obtain information from the cache
544  */
545 static int
X_mrt_ioctl(u_long cmd,caddr_t data,int fibnum __unused)546 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
547 {
548 	int error;
549 
550 	/*
551 	 * Currently the only function calling this ioctl routine is rtioctl_fib().
552 	 * Typically, only root can create the raw socket in order to execute
553 	 * this ioctl method, however the request might be coming from a prison
554 	 */
555 	error = priv_check(curthread, PRIV_NETINET_MROUTE);
556 	if (error)
557 		return (error);
558 	switch (cmd) {
559 	case (SIOCGETVIFCNT):
560 		error = get_vif_cnt((struct sioc_vif_req *)data);
561 		break;
562 
563 	case (SIOCGETSGCNT):
564 		error = get_sg_cnt((struct sioc_sg_req *)data);
565 		break;
566 
567 	default:
568 		error = EINVAL;
569 		break;
570 	}
571 	return error;
572 }
573 
574 /*
575  * returns the packet, byte, rpf-failure count for the source group provided
576  */
577 static int
get_sg_cnt(struct sioc_sg_req * req)578 get_sg_cnt(struct sioc_sg_req *req)
579 {
580 	struct mfc *rt;
581 
582 	MRW_RLOCK();
583 	rt = mfc_find(&req->src, &req->grp);
584 	if (rt == NULL) {
585 		MRW_RUNLOCK();
586 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
587 		return EADDRNOTAVAIL;
588 	}
589 	req->pktcnt = rt->mfc_pkt_cnt;
590 	req->bytecnt = rt->mfc_byte_cnt;
591 	req->wrong_if = rt->mfc_wrong_if;
592 	MRW_RUNLOCK();
593 	return 0;
594 }
595 
596 /*
597  * returns the input and output packet and byte counts on the vif provided
598  */
599 static int
get_vif_cnt(struct sioc_vif_req * req)600 get_vif_cnt(struct sioc_vif_req *req)
601 {
602 	vifi_t vifi = req->vifi;
603 
604 	MRW_RLOCK();
605 	if (vifi >= V_numvifs) {
606 		MRW_RUNLOCK();
607 		return EINVAL;
608 	}
609 
610 	mtx_lock_spin(&V_viftable[vifi].v_spin);
611 	req->icount = V_viftable[vifi].v_pkt_in;
612 	req->ocount = V_viftable[vifi].v_pkt_out;
613 	req->ibytes = V_viftable[vifi].v_bytes_in;
614 	req->obytes = V_viftable[vifi].v_bytes_out;
615 	mtx_unlock_spin(&V_viftable[vifi].v_spin);
616 	MRW_RUNLOCK();
617 
618 	return 0;
619 }
620 
621 static void
if_detached_event(void * arg __unused,struct ifnet * ifp)622 if_detached_event(void *arg __unused, struct ifnet *ifp)
623 {
624 	vifi_t vifi;
625 	u_long i, vifi_cnt = 0;
626 	struct ifnet *free_ptr, *multi_leave;
627 
628 	MRW_WLOCK();
629 
630 	if (V_ip_mrouter == NULL) {
631 		MRW_WUNLOCK();
632 		return;
633 	}
634 
635 	/*
636 	 * Tear down multicast forwarder state associated with this ifnet.
637 	 * 1. Walk the vif list, matching vifs against this ifnet.
638 	 * 2. Walk the multicast forwarding cache (mfc) looking for
639 	 *    inner matches with this vif's index.
640 	 * 3. Expire any matching multicast forwarding cache entries.
641 	 * 4. Free vif state. This should disable ALLMULTI on the interface.
642 	 */
643 restart:
644 	for (vifi = 0; vifi < V_numvifs; vifi++) {
645 		if (V_viftable[vifi].v_ifp != ifp)
646 			continue;
647 		for (i = 0; i < mfchashsize; i++) {
648 			struct mfc *rt, *nrt;
649 
650 			LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
651 				if (rt->mfc_parent == vifi) {
652 					expire_mfc(rt);
653 				}
654 			}
655 		}
656 		del_vif_locked(vifi, &multi_leave, &free_ptr);
657 		if (free_ptr != NULL)
658 			vifi_cnt++;
659 		if (multi_leave) {
660 			MRW_WUNLOCK();
661 			if_allmulti(multi_leave, 0);
662 			MRW_WLOCK();
663 			goto restart;
664 		}
665 	}
666 
667 	MRW_WUNLOCK();
668 
669 	/*
670 	 * Free IFP. We don't have to use free_ptr here as it is the same
671 	 * that ifp. Perform free as many times as required in case
672 	 * refcount is greater than 1.
673 	 */
674 	for (i = 0; i < vifi_cnt; i++)
675 		if_free(ifp);
676 }
677 
678 static void
ip_mrouter_upcall_thread(void * arg,int pending __unused)679 ip_mrouter_upcall_thread(void *arg, int pending __unused)
680 {
681 	CURVNET_SET((struct vnet *) arg);
682 
683 	MRW_WLOCK();
684 	bw_upcalls_send();
685 	MRW_WUNLOCK();
686 
687 	CURVNET_RESTORE();
688 }
689 
690 /*
691  * Enable multicast forwarding.
692  */
693 static int
ip_mrouter_init(struct socket * so,int version)694 ip_mrouter_init(struct socket *so, int version)
695 {
696 
697 	CTR2(KTR_IPMF, "%s: so %p", __func__, so);
698 
699 	if (version != 1)
700 		return ENOPROTOOPT;
701 
702 	MRW_TEARDOWN_WLOCK();
703 	MRW_WLOCK();
704 
705 	if (ip_mrouter_unloading) {
706 		MRW_WUNLOCK();
707 		MRW_TEARDOWN_WUNLOCK();
708 		return ENOPROTOOPT;
709 	}
710 
711 	if (V_ip_mrouter != NULL) {
712 		MRW_WUNLOCK();
713 		MRW_TEARDOWN_WUNLOCK();
714 		return EADDRINUSE;
715 	}
716 
717 	V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
718 	    HASH_NOWAIT);
719 	if (V_mfchashtbl == NULL) {
720 		MRW_WUNLOCK();
721 		MRW_TEARDOWN_WUNLOCK();
722 		return (ENOMEM);
723 	}
724 
725 	/* Create upcall ring */
726 	mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
727 	V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
728 	    M_NOWAIT, &V_bw_upcalls_ring_mtx);
729 	if (!V_bw_upcalls_ring) {
730 		MRW_WUNLOCK();
731 		MRW_TEARDOWN_WUNLOCK();
732 		return (ENOMEM);
733 	}
734 
735 	TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
736 	taskqueue_cancel(V_task_queue, &V_task, NULL);
737 	taskqueue_unblock(V_task_queue);
738 
739 	callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
740 	    curvnet);
741 	callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
742 	    curvnet);
743 
744 	V_ip_mrouter = so;
745 	atomic_add_int(&ip_mrouter_cnt, 1);
746 
747 	/* This is a mutex required by buf_ring init, but not used internally */
748 	mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
749 
750 	MRW_WUNLOCK();
751 	MRW_TEARDOWN_WUNLOCK();
752 
753 	CTR1(KTR_IPMF, "%s: done", __func__);
754 
755 	return 0;
756 }
757 
758 /*
759  * Disable multicast forwarding.
760  */
761 static int
X_ip_mrouter_done(void)762 X_ip_mrouter_done(void)
763 {
764 	struct ifnet **ifps;
765 	int nifp;
766 	u_long i;
767 	vifi_t vifi;
768 	struct bw_upcall *bu;
769 
770 	MRW_TEARDOWN_WLOCK();
771 
772 	if (V_ip_mrouter == NULL) {
773 		MRW_TEARDOWN_WUNLOCK();
774 		return (EINVAL);
775 	}
776 
777 	/*
778 	 * Detach/disable hooks to the reset of the system.
779 	 */
780 	V_ip_mrouter = NULL;
781 	atomic_subtract_int(&ip_mrouter_cnt, 1);
782 	V_mrt_api_config = 0;
783 
784 	/*
785 	 * Wait for all epoch sections to complete to ensure
786 	 * V_ip_mrouter = NULL is visible to others.
787 	 */
788 	NET_EPOCH_WAIT();
789 
790 	/* Stop and drain task queue */
791 	taskqueue_block(V_task_queue);
792 	while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
793 		taskqueue_drain(V_task_queue, &V_task);
794 	}
795 
796 	ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK);
797 
798 	MRW_WLOCK();
799 	taskqueue_cancel(V_task_queue, &V_task, NULL);
800 
801 	/* Destroy upcall ring */
802 	while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
803 		free(bu, M_MRTABLE);
804 	}
805 	buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
806 	mtx_destroy(&V_bw_upcalls_ring_mtx);
807 
808 	/*
809 	 * For each phyint in use, prepare to disable promiscuous reception
810 	 * of all IP multicasts.  Defer the actual call until the lock is released;
811 	 * just record the list of interfaces while locked.  Some interfaces use
812 	 * sx locks in their ioctl routines, which is not allowed while holding
813 	 * a non-sleepable lock.
814 	 */
815 	KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible"));
816 	for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) {
817 		if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
818 		    !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
819 			ifps[nifp++] = V_viftable[vifi].v_ifp;
820 		}
821 	}
822 	bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
823 	V_numvifs = 0;
824 	V_pim_assert_enabled = 0;
825 
826 	callout_stop(&V_expire_upcalls_ch);
827 	callout_stop(&V_bw_upcalls_ch);
828 
829 	/*
830 	 * Free all multicast forwarding cache entries.
831 	 * Do not use hashdestroy(), as we must perform other cleanup.
832 	 */
833 	for (i = 0; i < mfchashsize; i++) {
834 		struct mfc *rt, *nrt;
835 
836 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
837 			expire_mfc(rt);
838 		}
839 	}
840 	free(V_mfchashtbl, M_MRTABLE);
841 	V_mfchashtbl = NULL;
842 
843 	bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
844 
845 	V_reg_vif_num = VIFI_INVALID;
846 
847 	mtx_destroy(&V_buf_ring_mtx);
848 
849 	MRW_WUNLOCK();
850 	MRW_TEARDOWN_WUNLOCK();
851 
852 	/*
853 	 * Now drop our claim on promiscuous multicast on the interfaces recorded
854 	 * above.  This is safe to do now because ALLMULTI is reference counted.
855 	 */
856 	for (vifi = 0; vifi < nifp; vifi++)
857 		if_allmulti(ifps[vifi], 0);
858 	free(ifps, M_TEMP);
859 
860 	CTR1(KTR_IPMF, "%s: done", __func__);
861 
862 	return 0;
863 }
864 
865 /*
866  * Set PIM assert processing global
867  */
868 static int
set_assert(int i)869 set_assert(int i)
870 {
871 	if ((i != 1) && (i != 0))
872 		return EINVAL;
873 
874 	V_pim_assert_enabled = i;
875 
876 	return 0;
877 }
878 
879 /*
880  * Configure API capabilities
881  */
882 int
set_api_config(uint32_t * apival)883 set_api_config(uint32_t *apival)
884 {
885 	u_long i;
886 
887 	/*
888 	 * We can set the API capabilities only if it is the first operation
889 	 * after MRT_INIT. I.e.:
890 	 *  - there are no vifs installed
891 	 *  - pim_assert is not enabled
892 	 *  - the MFC table is empty
893 	 */
894 	if (V_numvifs > 0) {
895 		*apival = 0;
896 		return EPERM;
897 	}
898 	if (V_pim_assert_enabled) {
899 		*apival = 0;
900 		return EPERM;
901 	}
902 
903 	MRW_RLOCK();
904 
905 	for (i = 0; i < mfchashsize; i++) {
906 		if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
907 			MRW_RUNLOCK();
908 			*apival = 0;
909 			return EPERM;
910 		}
911 	}
912 
913 	MRW_RUNLOCK();
914 
915 	V_mrt_api_config = *apival & mrt_api_support;
916 	*apival = V_mrt_api_config;
917 
918 	return 0;
919 }
920 
921 /*
922  * Add a vif to the vif table
923  */
924 static int
add_vif(struct vifctl * vifcp)925 add_vif(struct vifctl *vifcp)
926 {
927 	struct vif *vifp = V_viftable + vifcp->vifc_vifi;
928 	struct sockaddr_in sin = {sizeof sin, AF_INET};
929 	struct ifaddr *ifa;
930 	struct ifnet *ifp;
931 	int error;
932 
933 	if (vifcp->vifc_vifi >= MAXVIFS)
934 		return EINVAL;
935 	/* rate limiting is no longer supported by this code */
936 	if (vifcp->vifc_rate_limit != 0) {
937 		log(LOG_ERR, "rate limiting is no longer supported\n");
938 		return EINVAL;
939 	}
940 
941 	if (in_nullhost(vifcp->vifc_lcl_addr))
942 		return EADDRNOTAVAIL;
943 
944 	/* Find the interface with an address in AF_INET family */
945 	if (vifcp->vifc_flags & VIFF_REGISTER) {
946 		/*
947 		 * XXX: Because VIFF_REGISTER does not really need a valid
948 		 * local interface (e.g. it could be 127.0.0.2), we don't
949 		 * check its address.
950 		 */
951 		ifp = NULL;
952 	} else {
953 		struct epoch_tracker et;
954 
955 		sin.sin_addr = vifcp->vifc_lcl_addr;
956 		NET_EPOCH_ENTER(et);
957 		ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
958 		if (ifa == NULL) {
959 			NET_EPOCH_EXIT(et);
960 			return EADDRNOTAVAIL;
961 		}
962 		ifp = ifa->ifa_ifp;
963 		/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
964 		NET_EPOCH_EXIT(et);
965 	}
966 
967 	if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
968 		CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
969 		return EOPNOTSUPP;
970 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
971 		ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
972 		CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
973 		if (V_reg_vif_num == VIFI_INVALID) {
974 			if_initname(V_multicast_register_if, "register_vif", 0);
975 			V_reg_vif_num = vifcp->vifc_vifi;
976 		}
977 	} else {		/* Make sure the interface supports multicast */
978 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
979 			return EOPNOTSUPP;
980 
981 		/* Enable promiscuous reception of all IP multicasts from the if */
982 		error = if_allmulti(ifp, 1);
983 		if (error)
984 			return error;
985 	}
986 
987 	MRW_WLOCK();
988 
989 	if (!in_nullhost(vifp->v_lcl_addr)) {
990 		if (ifp)
991 			V_multicast_register_if = NULL;
992 		MRW_WUNLOCK();
993 		if (ifp)
994 			if_free(ifp);
995 		return EADDRINUSE;
996 	}
997 
998 	vifp->v_flags     = vifcp->vifc_flags;
999 	vifp->v_threshold = vifcp->vifc_threshold;
1000 	vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
1001 	vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
1002 	vifp->v_ifp       = ifp;
1003 	/* initialize per vif pkt counters */
1004 	vifp->v_pkt_in    = 0;
1005 	vifp->v_pkt_out   = 0;
1006 	vifp->v_bytes_in  = 0;
1007 	vifp->v_bytes_out = 0;
1008 	sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
1009 	mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
1010 
1011 	/* Adjust numvifs up if the vifi is higher than numvifs */
1012 	if (V_numvifs <= vifcp->vifc_vifi)
1013 		V_numvifs = vifcp->vifc_vifi + 1;
1014 
1015 	MRW_WUNLOCK();
1016 
1017 	CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
1018 	    (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
1019 	    (int)vifcp->vifc_threshold);
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Delete a vif from the vif table
1026  */
1027 static int
del_vif_locked(vifi_t vifi,struct ifnet ** ifp_multi_leave,struct ifnet ** ifp_free)1028 del_vif_locked(vifi_t vifi, struct ifnet **ifp_multi_leave, struct ifnet **ifp_free)
1029 {
1030 	struct vif *vifp;
1031 
1032 	*ifp_free = NULL;
1033 	*ifp_multi_leave = NULL;
1034 
1035 	MRW_WLOCK_ASSERT();
1036 
1037 	if (vifi >= V_numvifs) {
1038 		return EINVAL;
1039 	}
1040 	vifp = &V_viftable[vifi];
1041 	if (in_nullhost(vifp->v_lcl_addr)) {
1042 		return EADDRNOTAVAIL;
1043 	}
1044 
1045 	if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
1046 		*ifp_multi_leave = vifp->v_ifp;
1047 
1048 	if (vifp->v_flags & VIFF_REGISTER) {
1049 		V_reg_vif_num = VIFI_INVALID;
1050 		if (vifp->v_ifp) {
1051 			if (vifp->v_ifp == V_multicast_register_if)
1052 				V_multicast_register_if = NULL;
1053 			*ifp_free = vifp->v_ifp;
1054 		}
1055 	}
1056 
1057 	mtx_destroy(&vifp->v_spin);
1058 
1059 	bzero((caddr_t)vifp, sizeof (*vifp));
1060 
1061 	CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
1062 
1063 	/* Adjust numvifs down */
1064 	for (vifi = V_numvifs; vifi > 0; vifi--)
1065 		if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
1066 			break;
1067 	V_numvifs = vifi;
1068 
1069 	return 0;
1070 }
1071 
1072 static int
del_vif(vifi_t vifi)1073 del_vif(vifi_t vifi)
1074 {
1075 	int cc;
1076 	struct ifnet *free_ptr, *multi_leave;
1077 
1078 	MRW_WLOCK();
1079 	cc = del_vif_locked(vifi, &multi_leave, &free_ptr);
1080 	MRW_WUNLOCK();
1081 
1082 	if (multi_leave)
1083 		if_allmulti(multi_leave, 0);
1084 	if (free_ptr) {
1085 		if_free(free_ptr);
1086 	}
1087 
1088 	return cc;
1089 }
1090 
1091 /*
1092  * update an mfc entry without resetting counters and S,G addresses.
1093  */
1094 static void
update_mfc_params(struct mfc * rt,struct mfcctl2 * mfccp)1095 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1096 {
1097 	int i;
1098 
1099 	rt->mfc_parent = mfccp->mfcc_parent;
1100 	for (i = 0; i < V_numvifs; i++) {
1101 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1102 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1103 			MRT_MFC_FLAGS_ALL;
1104 	}
1105 	/* set the RP address */
1106 	if (V_mrt_api_config & MRT_MFC_RP)
1107 		rt->mfc_rp = mfccp->mfcc_rp;
1108 	else
1109 		rt->mfc_rp.s_addr = INADDR_ANY;
1110 }
1111 
1112 /*
1113  * fully initialize an mfc entry from the parameter.
1114  */
1115 static void
init_mfc_params(struct mfc * rt,struct mfcctl2 * mfccp)1116 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1117 {
1118 	rt->mfc_origin     = mfccp->mfcc_origin;
1119 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1120 
1121 	update_mfc_params(rt, mfccp);
1122 
1123 	/* initialize pkt counters per src-grp */
1124 	rt->mfc_pkt_cnt    = 0;
1125 	rt->mfc_byte_cnt   = 0;
1126 	rt->mfc_wrong_if   = 0;
1127 	timevalclear(&rt->mfc_last_assert);
1128 }
1129 
1130 static void
expire_mfc(struct mfc * rt)1131 expire_mfc(struct mfc *rt)
1132 {
1133 	struct rtdetq *rte;
1134 
1135 	MRW_WLOCK_ASSERT();
1136 
1137 	free_bw_list(rt->mfc_bw_meter_leq);
1138 	free_bw_list(rt->mfc_bw_meter_geq);
1139 
1140 	while (!buf_ring_empty(rt->mfc_stall_ring)) {
1141 		rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1142 		if (rte) {
1143 			m_freem(rte->m);
1144 			free(rte, M_MRTABLE);
1145 		}
1146 	}
1147 	buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
1148 
1149 	LIST_REMOVE(rt, mfc_hash);
1150 	free(rt, M_MRTABLE);
1151 }
1152 
1153 /*
1154  * Add an mfc entry
1155  */
1156 static int
add_mfc(struct mfcctl2 * mfccp)1157 add_mfc(struct mfcctl2 *mfccp)
1158 {
1159 	struct mfc *rt;
1160 	struct rtdetq *rte;
1161 	u_long hash = 0;
1162 	u_short nstl;
1163 	struct epoch_tracker et;
1164 
1165 	MRW_WLOCK();
1166 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1167 
1168 	/* If an entry already exists, just update the fields */
1169 	if (rt) {
1170 		CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1171 		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1172 		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1173 		    mfccp->mfcc_parent);
1174 		update_mfc_params(rt, mfccp);
1175 		MRW_WUNLOCK();
1176 		return (0);
1177 	}
1178 
1179 	/*
1180 	 * Find the entry for which the upcall was made and update
1181 	 */
1182 	nstl = 0;
1183 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1184 	NET_EPOCH_ENTER(et);
1185 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1186 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1187 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1188 		    !buf_ring_empty(rt->mfc_stall_ring)) {
1189 			CTR5(KTR_IPMF,
1190 			   "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1191 			    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1192 			    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1193 			    mfccp->mfcc_parent,
1194 			    rt->mfc_stall_ring);
1195 			if (nstl++)
1196 				CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1197 
1198 			init_mfc_params(rt, mfccp);
1199 			rt->mfc_expire = 0;	/* Don't clean this guy up */
1200 			V_nexpire[hash]--;
1201 
1202 			/* Free queued packets, but attempt to forward them first. */
1203 			while (!buf_ring_empty(rt->mfc_stall_ring)) {
1204 				rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
1205 				if (rte->ifp != NULL)
1206 					ip_mdq(rte->m, rte->ifp, rt, -1);
1207 				m_freem(rte->m);
1208 				free(rte, M_MRTABLE);
1209 			}
1210 		}
1211 	}
1212 	NET_EPOCH_EXIT(et);
1213 
1214 	/*
1215 	 * It is possible that an entry is being inserted without an upcall
1216 	 */
1217 	if (nstl == 0) {
1218 		CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1219 		LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1220 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1221 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1222 				init_mfc_params(rt, mfccp);
1223 				if (rt->mfc_expire)
1224 					V_nexpire[hash]--;
1225 				rt->mfc_expire = 0;
1226 				break; /* XXX */
1227 			}
1228 		}
1229 
1230 		if (rt == NULL) {		/* no upcall, so make a new entry */
1231 			rt = mfc_alloc();
1232 			if (rt == NULL) {
1233 				MRW_WUNLOCK();
1234 				return (ENOBUFS);
1235 			}
1236 
1237 			init_mfc_params(rt, mfccp);
1238 
1239 			rt->mfc_expire     = 0;
1240 			rt->mfc_bw_meter_leq = NULL;
1241 			rt->mfc_bw_meter_geq = NULL;
1242 
1243 			/* insert new entry at head of hash chain */
1244 			LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1245 		}
1246 	}
1247 
1248 	MRW_WUNLOCK();
1249 
1250 	return (0);
1251 }
1252 
1253 /*
1254  * Delete an mfc entry
1255  */
1256 static int
del_mfc(struct mfcctl2 * mfccp)1257 del_mfc(struct mfcctl2 *mfccp)
1258 {
1259 	struct in_addr origin;
1260 	struct in_addr mcastgrp;
1261 	struct mfc *rt;
1262 
1263 	origin = mfccp->mfcc_origin;
1264 	mcastgrp = mfccp->mfcc_mcastgrp;
1265 
1266 	CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1267 			ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1268 
1269 	MRW_WLOCK();
1270 
1271 	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(origin, mcastgrp)], mfc_hash) {
1272 		if (in_hosteq(rt->mfc_origin, origin) &&
1273 		    in_hosteq(rt->mfc_mcastgrp, mcastgrp))
1274 			break;
1275 	}
1276 	if (rt == NULL) {
1277 		MRW_WUNLOCK();
1278 		return EADDRNOTAVAIL;
1279 	}
1280 
1281 	expire_mfc(rt);
1282 
1283 	MRW_WUNLOCK();
1284 
1285 	return (0);
1286 }
1287 
1288 /*
1289  * Send a message to the routing daemon on the multicast routing socket.
1290  */
1291 static int
socket_send(struct socket * s,struct mbuf * mm,struct sockaddr_in * src)1292 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1293 {
1294 	if (s) {
1295 		SOCKBUF_LOCK(&s->so_rcv);
1296 		if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1297 		    NULL) != 0) {
1298 			sorwakeup_locked(s);
1299 			return 0;
1300 		}
1301 		soroverflow_locked(s);
1302 	}
1303 	m_freem(mm);
1304 	return -1;
1305 }
1306 
1307 /*
1308  * IP multicast forwarding function. This function assumes that the packet
1309  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1310  * pointed to by "ifp", and the packet is to be relayed to other networks
1311  * that have members of the packet's destination IP multicast group.
1312  *
1313  * The packet is returned unscathed to the caller, unless it is
1314  * erroneous, in which case a non-zero return value tells the caller to
1315  * discard it.
1316  */
1317 
1318 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1319 
1320 static int
X_ip_mforward(struct ip * ip,struct ifnet * ifp,struct mbuf * m,struct ip_moptions * imo)1321 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1322     struct ip_moptions *imo)
1323 {
1324 	struct mfc *rt;
1325 	int error;
1326 	vifi_t vifi;
1327 	struct mbuf *mb0;
1328 	struct rtdetq *rte;
1329 	u_long hash;
1330 	int hlen;
1331 
1332 	M_ASSERTMAPPED(m);
1333 
1334 	CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1335 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1336 
1337 	if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1338 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1339 		/*
1340 		 * Packet arrived via a physical interface or
1341 		 * an encapsulated tunnel or a register_vif.
1342 		 */
1343 	} else {
1344 		/*
1345 		 * Packet arrived through a source-route tunnel.
1346 		 * Source-route tunnels are no longer supported.
1347 		 */
1348 		return (1);
1349 	}
1350 
1351 	/*
1352 	 * BEGIN: MCAST ROUTING HOT PATH
1353 	 */
1354 	MRW_RLOCK();
1355 	if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1356 		if (ip->ip_ttl < MAXTTL)
1357 			ip->ip_ttl++; /* compensate for -1 in *_send routines */
1358 		error = ip_mdq(m, ifp, NULL, vifi);
1359 		MRW_RUNLOCK();
1360 		return error;
1361 	}
1362 
1363 	/*
1364 	 * Don't forward a packet with time-to-live of zero or one,
1365 	 * or a packet destined to a local-only group.
1366 	 */
1367 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1368 		MRW_RUNLOCK();
1369 		return 0;
1370 	}
1371 
1372 mfc_find_retry:
1373 	/*
1374 	 * Determine forwarding vifs from the forwarding cache table
1375 	 */
1376 	MRTSTAT_INC(mrts_mfc_lookups);
1377 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1378 
1379 	/* Entry exists, so forward if necessary */
1380 	if (rt != NULL) {
1381 		error = ip_mdq(m, ifp, rt, -1);
1382 		/* Generic unlock here as we might release R or W lock */
1383 		MRW_UNLOCK();
1384 		return error;
1385 	}
1386 
1387 	/*
1388 	 * END: MCAST ROUTING HOT PATH
1389 	 */
1390 
1391 	/* Further processing must be done with WLOCK taken */
1392 	if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
1393 		MRW_RUNLOCK();
1394 		MRW_WLOCK();
1395 		goto mfc_find_retry;
1396 	}
1397 
1398 	/*
1399 	 * If we don't have a route for packet's origin,
1400 	 * Make a copy of the packet & send message to routing daemon
1401 	 */
1402 	hlen = ip->ip_hl << 2;
1403 
1404 	MRTSTAT_INC(mrts_mfc_misses);
1405 	MRTSTAT_INC(mrts_no_route);
1406 	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1407 	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1408 
1409 	/*
1410 	 * Allocate mbufs early so that we don't do extra work if we are
1411 	 * just going to fail anyway.  Make sure to pullup the header so
1412 	 * that other people can't step on it.
1413 	 */
1414 	rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO);
1415 	if (rte == NULL) {
1416 		MRW_WUNLOCK();
1417 		return ENOBUFS;
1418 	}
1419 
1420 	mb0 = m_copypacket(m, M_NOWAIT);
1421 	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1422 		mb0 = m_pullup(mb0, hlen);
1423 	if (mb0 == NULL) {
1424 		free(rte, M_MRTABLE);
1425 		MRW_WUNLOCK();
1426 		return ENOBUFS;
1427 	}
1428 
1429 	/* is there an upcall waiting for this flow ? */
1430 	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1431 	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
1432 	{
1433 		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1434 		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1435 		    !buf_ring_empty(rt->mfc_stall_ring))
1436 			break;
1437 	}
1438 
1439 	if (rt == NULL) {
1440 		int i;
1441 		struct igmpmsg *im;
1442 		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1443 		struct mbuf *mm;
1444 
1445 		/*
1446 		 * Locate the vifi for the incoming interface for this packet.
1447 		 * If none found, drop packet.
1448 		 */
1449 		for (vifi = 0; vifi < V_numvifs &&
1450 		    V_viftable[vifi].v_ifp != ifp; vifi++)
1451 			;
1452 		if (vifi >= V_numvifs) /* vif not found, drop packet */
1453 			goto non_fatal;
1454 
1455 		/* no upcall, so make a new entry */
1456 		rt = mfc_alloc();
1457 		if (rt == NULL)
1458 			goto fail;
1459 
1460 		/* Make a copy of the header to send to the user level process */
1461 		mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1462 		if (mm == NULL)
1463 			goto fail1;
1464 
1465 		/*
1466 		 * Send message to routing daemon to install
1467 		 * a route into the kernel table
1468 		 */
1469 
1470 		im = mtod(mm, struct igmpmsg*);
1471 		im->im_msgtype = IGMPMSG_NOCACHE;
1472 		im->im_mbz = 0;
1473 		im->im_vif = vifi;
1474 
1475 		MRTSTAT_INC(mrts_upcalls);
1476 
1477 		k_igmpsrc.sin_addr = ip->ip_src;
1478 		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1479 			CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1480 			MRTSTAT_INC(mrts_upq_sockfull);
1481 			fail1: free(rt, M_MRTABLE);
1482 			fail: free(rte, M_MRTABLE);
1483 			m_freem(mb0);
1484 			MRW_WUNLOCK();
1485 			return ENOBUFS;
1486 		}
1487 
1488 		/* insert new entry at head of hash chain */
1489 		rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1490 		rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1491 		rt->mfc_expire = UPCALL_EXPIRE;
1492 		V_nexpire[hash]++;
1493 		for (i = 0; i < V_numvifs; i++) {
1494 			rt->mfc_ttls[i] = 0;
1495 			rt->mfc_flags[i] = 0;
1496 		}
1497 		rt->mfc_parent = -1;
1498 
1499 		/* clear the RP address */
1500 		rt->mfc_rp.s_addr = INADDR_ANY;
1501 		rt->mfc_bw_meter_leq = NULL;
1502 		rt->mfc_bw_meter_geq = NULL;
1503 
1504 		/* initialize pkt counters per src-grp */
1505 		rt->mfc_pkt_cnt = 0;
1506 		rt->mfc_byte_cnt = 0;
1507 		rt->mfc_wrong_if = 0;
1508 		timevalclear(&rt->mfc_last_assert);
1509 
1510 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1511 
1512 		/* Add RT to hashtable as it didn't exist before */
1513 		LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1514 	} else {
1515 		/* determine if queue has overflowed */
1516 		if (buf_ring_full(rt->mfc_stall_ring)) {
1517 			MRTSTAT_INC(mrts_upq_ovflw);
1518 			non_fatal: free(rte, M_MRTABLE);
1519 			m_freem(mb0);
1520 			MRW_WUNLOCK();
1521 			return (0);
1522 		}
1523 
1524 		buf_ring_enqueue(rt->mfc_stall_ring, rte);
1525 	}
1526 
1527 	rte->m = mb0;
1528 	rte->ifp = ifp;
1529 
1530 	MRW_WUNLOCK();
1531 
1532 	return 0;
1533 }
1534 
1535 /*
1536  * Clean up the cache entry if upcall is not serviced
1537  */
1538 static void
expire_upcalls(void * arg)1539 expire_upcalls(void *arg)
1540 {
1541 	u_long i;
1542 
1543 	CURVNET_SET((struct vnet *) arg);
1544 
1545 	/*This callout is always run with MRW_WLOCK taken. */
1546 
1547 	for (i = 0; i < mfchashsize; i++) {
1548 		struct mfc *rt, *nrt;
1549 
1550 		if (V_nexpire[i] == 0)
1551 			continue;
1552 
1553 		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1554 			if (buf_ring_empty(rt->mfc_stall_ring))
1555 				continue;
1556 
1557 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1558 				continue;
1559 
1560 			MRTSTAT_INC(mrts_cache_cleanups);
1561 			CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1562 			    (u_long)ntohl(rt->mfc_origin.s_addr),
1563 			    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1564 
1565 			expire_mfc(rt);
1566 		}
1567 	}
1568 
1569 	callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1570 	    curvnet);
1571 
1572 	CURVNET_RESTORE();
1573 }
1574 
1575 /*
1576  * Packet forwarding routine once entry in the cache is made
1577  */
1578 static int
ip_mdq(struct mbuf * m,struct ifnet * ifp,struct mfc * rt,vifi_t xmt_vif)1579 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1580 {
1581 	struct ip *ip = mtod(m, struct ip *);
1582 	vifi_t vifi;
1583 	int plen = ntohs(ip->ip_len);
1584 
1585 	M_ASSERTMAPPED(m);
1586 	MRW_LOCK_ASSERT();
1587 	NET_EPOCH_ASSERT();
1588 
1589 	/*
1590 	 * If xmt_vif is not -1, send on only the requested vif.
1591 	 *
1592 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1593 	 */
1594 	if (xmt_vif < V_numvifs) {
1595 		if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1596 			pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1597 		else
1598 			phyint_send(ip, V_viftable + xmt_vif, m);
1599 		return 1;
1600 	}
1601 
1602 	/*
1603 	 * Don't forward if it didn't arrive from the parent vif for its origin.
1604 	 */
1605 	vifi = rt->mfc_parent;
1606 	if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1607 		CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1608 				__func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1609 		MRTSTAT_INC(mrts_wrong_if);
1610 		++rt->mfc_wrong_if;
1611 		/*
1612 		 * If we are doing PIM assert processing, send a message
1613 		 * to the routing daemon.
1614 		 *
1615 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1616 		 * can complete the SPT switch, regardless of the type
1617 		 * of the iif (broadcast media, GRE tunnel, etc).
1618 		 */
1619 		if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1620 		    V_viftable[vifi].v_ifp) {
1621 			if (ifp == V_multicast_register_if)
1622 				PIMSTAT_INC(pims_rcv_registers_wrongiif);
1623 
1624 			/* Get vifi for the incoming packet */
1625 			for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++)
1626 				;
1627 			if (vifi >= V_numvifs)
1628 				return 0;	/* The iif is not found: ignore the packet. */
1629 
1630 			if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1631 				return 0;	/* WRONGVIF disabled: ignore the packet */
1632 
1633 			if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1634 				struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1635 				struct igmpmsg *im;
1636 				int hlen = ip->ip_hl << 2;
1637 				struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1638 
1639 				if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1640 					mm = m_pullup(mm, hlen);
1641 				if (mm == NULL)
1642 					return ENOBUFS;
1643 
1644 				im = mtod(mm, struct igmpmsg *);
1645 				im->im_msgtype = IGMPMSG_WRONGVIF;
1646 				im->im_mbz = 0;
1647 				im->im_vif = vifi;
1648 
1649 				MRTSTAT_INC(mrts_upcalls);
1650 
1651 				k_igmpsrc.sin_addr = im->im_src;
1652 				if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1653 					CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1654 					MRTSTAT_INC(mrts_upq_sockfull);
1655 					return ENOBUFS;
1656 				}
1657 			}
1658 		}
1659 		return 0;
1660 	}
1661 
1662 	/* If I sourced this packet, it counts as output, else it was input. */
1663 	mtx_lock_spin(&V_viftable[vifi].v_spin);
1664 	if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1665 		V_viftable[vifi].v_pkt_out++;
1666 		V_viftable[vifi].v_bytes_out += plen;
1667 	} else {
1668 		V_viftable[vifi].v_pkt_in++;
1669 		V_viftable[vifi].v_bytes_in += plen;
1670 	}
1671 	mtx_unlock_spin(&V_viftable[vifi].v_spin);
1672 
1673 	rt->mfc_pkt_cnt++;
1674 	rt->mfc_byte_cnt += plen;
1675 
1676 	/*
1677 	 * For each vif, decide if a copy of the packet should be forwarded.
1678 	 * Forward if:
1679 	 *		- the ttl exceeds the vif's threshold
1680 	 *		- there are group members downstream on interface
1681 	 */
1682 	for (vifi = 0; vifi < V_numvifs; vifi++)
1683 		if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1684 			V_viftable[vifi].v_pkt_out++;
1685 			V_viftable[vifi].v_bytes_out += plen;
1686 			if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1687 				pim_register_send(ip, V_viftable + vifi, m, rt);
1688 			else
1689 				phyint_send(ip, V_viftable + vifi, m);
1690 		}
1691 
1692 	/*
1693 	 * Perform upcall-related bw measuring.
1694 	 */
1695 	if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
1696 		struct bw_meter *x;
1697 		struct timeval now;
1698 
1699 		microtime(&now);
1700 		/* Process meters for Greater-or-EQual case */
1701 		for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
1702 			bw_meter_geq_receive_packet(x, plen, &now);
1703 
1704 		/* Process meters for Lower-or-EQual case */
1705 		for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
1706 			/*
1707 			 * Record that a packet is received.
1708 			 * Spin lock has to be taken as callout context
1709 			 * (expire_bw_meter_leq) might modify these fields
1710 			 * as well
1711 			 */
1712 			mtx_lock_spin(&x->bm_spin);
1713 			x->bm_measured.b_packets++;
1714 			x->bm_measured.b_bytes += plen;
1715 			mtx_unlock_spin(&x->bm_spin);
1716 		}
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 /*
1723  * Check if a vif number is legal/ok. This is used by in_mcast.c.
1724  */
1725 static int
X_legal_vif_num(int vif)1726 X_legal_vif_num(int vif)
1727 {
1728 	int ret;
1729 
1730 	ret = 0;
1731 	if (vif < 0)
1732 		return (ret);
1733 
1734 	MRW_RLOCK();
1735 	if (vif < V_numvifs)
1736 		ret = 1;
1737 	MRW_RUNLOCK();
1738 
1739 	return (ret);
1740 }
1741 
1742 /*
1743  * Return the local address used by this vif
1744  */
1745 static u_long
X_ip_mcast_src(int vifi)1746 X_ip_mcast_src(int vifi)
1747 {
1748 	in_addr_t addr;
1749 
1750 	addr = INADDR_ANY;
1751 	if (vifi < 0)
1752 		return (addr);
1753 
1754 	MRW_RLOCK();
1755 	if (vifi < V_numvifs)
1756 		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1757 	MRW_RUNLOCK();
1758 
1759 	return (addr);
1760 }
1761 
1762 static void
phyint_send(struct ip * ip,struct vif * vifp,struct mbuf * m)1763 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1764 {
1765 	struct mbuf *mb_copy;
1766 	int hlen = ip->ip_hl << 2;
1767 
1768 	MRW_LOCK_ASSERT();
1769 	M_ASSERTMAPPED(m);
1770 
1771 	/*
1772 	 * Make a new reference to the packet; make sure that
1773 	 * the IP header is actually copied, not just referenced,
1774 	 * so that ip_output() only scribbles on the copy.
1775 	 */
1776 	mb_copy = m_copypacket(m, M_NOWAIT);
1777 	if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1778 		mb_copy = m_pullup(mb_copy, hlen);
1779 	if (mb_copy == NULL)
1780 		return;
1781 
1782 	send_packet(vifp, mb_copy);
1783 }
1784 
1785 static void
send_packet(struct vif * vifp,struct mbuf * m)1786 send_packet(struct vif *vifp, struct mbuf *m)
1787 {
1788 	struct ip_moptions imo;
1789 	int error __unused;
1790 
1791 	MRW_LOCK_ASSERT();
1792 	NET_EPOCH_ASSERT();
1793 
1794 	imo.imo_multicast_ifp  = vifp->v_ifp;
1795 	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1796 	imo.imo_multicast_loop = !!in_mcast_loop;
1797 	imo.imo_multicast_vif  = -1;
1798 	STAILQ_INIT(&imo.imo_head);
1799 
1800 	/*
1801 	 * Re-entrancy should not be a problem here, because
1802 	 * the packets that we send out and are looped back at us
1803 	 * should get rejected because they appear to come from
1804 	 * the loopback interface, thus preventing looping.
1805 	 */
1806 	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1807 	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1808 	    (ptrdiff_t)(vifp - V_viftable), error);
1809 }
1810 
1811 /*
1812  * Stubs for old RSVP socket shim implementation.
1813  */
1814 
1815 static int
X_ip_rsvp_vif(struct socket * so __unused,struct sockopt * sopt __unused)1816 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1817 {
1818 
1819 	return (EOPNOTSUPP);
1820 }
1821 
1822 static void
X_ip_rsvp_force_done(struct socket * so __unused)1823 X_ip_rsvp_force_done(struct socket *so __unused)
1824 {
1825 
1826 }
1827 
1828 static int
X_rsvp_input(struct mbuf ** mp,int * offp,int proto)1829 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1830 {
1831 	struct mbuf *m;
1832 
1833 	m = *mp;
1834 	*mp = NULL;
1835 	if (!V_rsvp_on)
1836 		m_freem(m);
1837 	return (IPPROTO_DONE);
1838 }
1839 
1840 /*
1841  * Code for bandwidth monitors
1842  */
1843 
1844 /*
1845  * Define common interface for timeval-related methods
1846  */
1847 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1848 #define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1849 #define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1850 
1851 static uint32_t
compute_bw_meter_flags(struct bw_upcall * req)1852 compute_bw_meter_flags(struct bw_upcall *req)
1853 {
1854 	uint32_t flags = 0;
1855 
1856 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1857 		flags |= BW_METER_UNIT_PACKETS;
1858 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1859 		flags |= BW_METER_UNIT_BYTES;
1860 	if (req->bu_flags & BW_UPCALL_GEQ)
1861 		flags |= BW_METER_GEQ;
1862 	if (req->bu_flags & BW_UPCALL_LEQ)
1863 		flags |= BW_METER_LEQ;
1864 
1865 	return flags;
1866 }
1867 
1868 static void
expire_bw_meter_leq(void * arg)1869 expire_bw_meter_leq(void *arg)
1870 {
1871 	struct bw_meter *x = arg;
1872 	struct timeval now;
1873 	/*
1874 	 * INFO:
1875 	 * callout is always executed with MRW_WLOCK taken
1876 	 */
1877 
1878 	CURVNET_SET((struct vnet *)x->arg);
1879 
1880 	microtime(&now);
1881 
1882 	/*
1883 	 * Test if we should deliver an upcall
1884 	 */
1885 	if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1886 	    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1887 	    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1888 	    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1889 		/* Prepare an upcall for delivery */
1890 		bw_meter_prepare_upcall(x, &now);
1891 	}
1892 
1893 	/* Send all upcalls that are pending delivery */
1894 	taskqueue_enqueue(V_task_queue, &V_task);
1895 
1896 	/* Reset counters */
1897 	x->bm_start_time = now;
1898 	/* Spin lock has to be taken as ip_forward context
1899 	 * might modify these fields as well
1900 	 */
1901 	mtx_lock_spin(&x->bm_spin);
1902 	x->bm_measured.b_bytes = 0;
1903 	x->bm_measured.b_packets = 0;
1904 	mtx_unlock_spin(&x->bm_spin);
1905 
1906 	callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
1907 
1908 	CURVNET_RESTORE();
1909 }
1910 
1911 /*
1912  * Add a bw_meter entry
1913  */
1914 static int
add_bw_upcall(struct bw_upcall * req)1915 add_bw_upcall(struct bw_upcall *req)
1916 {
1917 	struct mfc *mfc;
1918 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1919 	BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1920 	struct timeval now;
1921 	struct bw_meter *x, **bwm_ptr;
1922 	uint32_t flags;
1923 
1924 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1925 		return EOPNOTSUPP;
1926 
1927 	/* Test if the flags are valid */
1928 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1929 		return EINVAL;
1930 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1931 		return EINVAL;
1932 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1933 		return EINVAL;
1934 
1935 	/* Test if the threshold time interval is valid */
1936 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1937 		return EINVAL;
1938 
1939 	flags = compute_bw_meter_flags(req);
1940 
1941 	/*
1942 	 * Find if we have already same bw_meter entry
1943 	 */
1944 	MRW_WLOCK();
1945 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
1946 	if (mfc == NULL) {
1947 		MRW_WUNLOCK();
1948 		return EADDRNOTAVAIL;
1949 	}
1950 
1951 	/* Choose an appropriate bw_meter list */
1952 	if (req->bu_flags & BW_UPCALL_GEQ)
1953 		bwm_ptr = &mfc->mfc_bw_meter_geq;
1954 	else
1955 		bwm_ptr = &mfc->mfc_bw_meter_leq;
1956 
1957 	for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
1958 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1959 		    &req->bu_threshold.b_time, ==))
1960 		    && (x->bm_threshold.b_packets
1961 		    == req->bu_threshold.b_packets)
1962 		    && (x->bm_threshold.b_bytes
1963 		    == req->bu_threshold.b_bytes)
1964 		    && (x->bm_flags & BW_METER_USER_FLAGS)
1965 		    == flags) {
1966 			MRW_WUNLOCK();
1967 			return 0; /* XXX Already installed */
1968 		}
1969 	}
1970 
1971 	/* Allocate the new bw_meter entry */
1972 	x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT);
1973 	if (x == NULL) {
1974 		MRW_WUNLOCK();
1975 		return ENOBUFS;
1976 	}
1977 
1978 	/* Set the new bw_meter entry */
1979 	x->bm_threshold.b_time = req->bu_threshold.b_time;
1980 	microtime(&now);
1981 	x->bm_start_time = now;
1982 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1983 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1984 	x->bm_measured.b_packets = 0;
1985 	x->bm_measured.b_bytes = 0;
1986 	x->bm_flags = flags;
1987 	x->bm_time_next = NULL;
1988 	x->bm_mfc = mfc;
1989 	x->arg = curvnet;
1990 	sprintf(x->bm_spin_name, "BM spin %p", x);
1991 	mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
1992 
1993 	/* For LEQ case create periodic callout */
1994 	if (req->bu_flags & BW_UPCALL_LEQ) {
1995 		callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK);
1996 		callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
1997 		    expire_bw_meter_leq, x);
1998 	}
1999 
2000 	/* Add the new bw_meter entry to the front of entries for this MFC */
2001 	x->bm_mfc_next = *bwm_ptr;
2002 	*bwm_ptr = x;
2003 
2004 	MRW_WUNLOCK();
2005 
2006 	return 0;
2007 }
2008 
2009 static void
free_bw_list(struct bw_meter * list)2010 free_bw_list(struct bw_meter *list)
2011 {
2012 	while (list != NULL) {
2013 		struct bw_meter *x = list;
2014 
2015 		/* MRW_WLOCK must be held here */
2016 		if (x->bm_flags & BW_METER_LEQ) {
2017 			callout_drain(&x->bm_meter_callout);
2018 			mtx_destroy(&x->bm_spin);
2019 		}
2020 
2021 		list = list->bm_mfc_next;
2022 		free(x, M_BWMETER);
2023 	}
2024 }
2025 
2026 /*
2027  * Delete one or multiple bw_meter entries
2028  */
2029 static int
del_bw_upcall(struct bw_upcall * req)2030 del_bw_upcall(struct bw_upcall *req)
2031 {
2032 	struct mfc *mfc;
2033 	struct bw_meter *x, **bwm_ptr;
2034 
2035 	if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
2036 		return EOPNOTSUPP;
2037 
2038 	MRW_WLOCK();
2039 
2040 	/* Find the corresponding MFC entry */
2041 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2042 	if (mfc == NULL) {
2043 		MRW_WUNLOCK();
2044 		return EADDRNOTAVAIL;
2045 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2046 		/*
2047 		 * Delete all bw_meter entries for this mfc
2048 		 */
2049 		struct bw_meter *list;
2050 
2051 		/* Free LEQ list */
2052 		list = mfc->mfc_bw_meter_leq;
2053 		mfc->mfc_bw_meter_leq = NULL;
2054 		free_bw_list(list);
2055 
2056 		/* Free GEQ list */
2057 		list = mfc->mfc_bw_meter_geq;
2058 		mfc->mfc_bw_meter_geq = NULL;
2059 		free_bw_list(list);
2060 		MRW_WUNLOCK();
2061 		return 0;
2062 	} else {			/* Delete a single bw_meter entry */
2063 		struct bw_meter *prev;
2064 		uint32_t flags = 0;
2065 
2066 		flags = compute_bw_meter_flags(req);
2067 
2068 		/* Choose an appropriate bw_meter list */
2069 		if (req->bu_flags & BW_UPCALL_GEQ)
2070 			bwm_ptr = &mfc->mfc_bw_meter_geq;
2071 		else
2072 			bwm_ptr = &mfc->mfc_bw_meter_leq;
2073 
2074 		/* Find the bw_meter entry to delete */
2075 		for (prev = NULL, x = *bwm_ptr; x != NULL;
2076 				prev = x, x = x->bm_mfc_next) {
2077 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) &&
2078 			    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2079 			    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2080 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2081 				break;
2082 		}
2083 		if (x != NULL) { /* Delete entry from the list for this MFC */
2084 			if (prev != NULL)
2085 				prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2086 			else
2087 				*bwm_ptr = x->bm_mfc_next;/* new head of list */
2088 
2089 			if (req->bu_flags & BW_UPCALL_LEQ)
2090 				callout_stop(&x->bm_meter_callout);
2091 
2092 			MRW_WUNLOCK();
2093 			/* Free the bw_meter entry */
2094 			free(x, M_BWMETER);
2095 			return 0;
2096 		} else {
2097 			MRW_WUNLOCK();
2098 			return EINVAL;
2099 		}
2100 	}
2101 	__assert_unreachable();
2102 }
2103 
2104 /*
2105  * Perform bandwidth measurement processing that may result in an upcall
2106  */
2107 static void
bw_meter_geq_receive_packet(struct bw_meter * x,int plen,struct timeval * nowp)2108 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2109 {
2110 	struct timeval delta;
2111 
2112 	MRW_LOCK_ASSERT();
2113 
2114 	delta = *nowp;
2115 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2116 
2117 	/*
2118 	 * Processing for ">=" type of bw_meter entry.
2119 	 * bm_spin does not have to be hold here as in GEQ
2120 	 * case this is the only context accessing bm_measured.
2121 	 */
2122 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2123 	    /* Reset the bw_meter entry */
2124 	    x->bm_start_time = *nowp;
2125 	    x->bm_measured.b_packets = 0;
2126 	    x->bm_measured.b_bytes = 0;
2127 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2128 	}
2129 
2130 	/* Record that a packet is received */
2131 	x->bm_measured.b_packets++;
2132 	x->bm_measured.b_bytes += plen;
2133 
2134 	/*
2135 	 * Test if we should deliver an upcall
2136 	 */
2137 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2138 		if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2139 		    (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2140 		    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2141 		    (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2142 			/* Prepare an upcall for delivery */
2143 			bw_meter_prepare_upcall(x, nowp);
2144 			x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2145 		}
2146 	}
2147 }
2148 
2149 /*
2150  * Prepare a bandwidth-related upcall
2151  */
2152 static void
bw_meter_prepare_upcall(struct bw_meter * x,struct timeval * nowp)2153 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2154 {
2155 	struct timeval delta;
2156 	struct bw_upcall *u;
2157 
2158 	MRW_LOCK_ASSERT();
2159 
2160 	/*
2161 	 * Compute the measured time interval
2162 	 */
2163 	delta = *nowp;
2164 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2165 
2166 	/*
2167 	 * Set the bw_upcall entry
2168 	 */
2169 	u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
2170 	if (!u) {
2171 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
2172 		return;
2173 	}
2174 	u->bu_src = x->bm_mfc->mfc_origin;
2175 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2176 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2177 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2178 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2179 	u->bu_measured.b_time = delta;
2180 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2181 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2182 	u->bu_flags = 0;
2183 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2184 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2185 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2186 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2187 	if (x->bm_flags & BW_METER_GEQ)
2188 		u->bu_flags |= BW_UPCALL_GEQ;
2189 	if (x->bm_flags & BW_METER_LEQ)
2190 		u->bu_flags |= BW_UPCALL_LEQ;
2191 
2192 	if (buf_ring_enqueue(V_bw_upcalls_ring, u))
2193 		log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
2194 	if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
2195 		taskqueue_enqueue(V_task_queue, &V_task);
2196 	}
2197 }
2198 /*
2199  * Send the pending bandwidth-related upcalls
2200  */
2201 static void
bw_upcalls_send(void)2202 bw_upcalls_send(void)
2203 {
2204 	struct mbuf *m;
2205 	int len = 0;
2206 	struct bw_upcall *bu;
2207 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2208 	static struct igmpmsg igmpmsg = {
2209 		0,		/* unused1 */
2210 		0,		/* unused2 */
2211 		IGMPMSG_BW_UPCALL,/* im_msgtype */
2212 		0,		/* im_mbz  */
2213 		0,		/* im_vif  */
2214 		0,		/* unused3 */
2215 		{ 0 },		/* im_src  */
2216 		{ 0 }		/* im_dst  */
2217 	};
2218 
2219 	MRW_LOCK_ASSERT();
2220 
2221 	if (buf_ring_empty(V_bw_upcalls_ring))
2222 		return;
2223 
2224 	/*
2225 	 * Allocate a new mbuf, initialize it with the header and
2226 	 * the payload for the pending calls.
2227 	 */
2228 	m = m_gethdr(M_NOWAIT, MT_DATA);
2229 	if (m == NULL) {
2230 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2231 		return;
2232 	}
2233 
2234 	m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2235 	len += sizeof(struct igmpmsg);
2236 	while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
2237 		m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
2238 		len += sizeof(struct bw_upcall);
2239 		free(bu, M_MRTABLE);
2240 	}
2241 
2242 	/*
2243 	 * Send the upcalls
2244 	 * XXX do we need to set the address in k_igmpsrc ?
2245 	 */
2246 	MRTSTAT_INC(mrts_upcalls);
2247 	if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2248 		log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2249 		MRTSTAT_INC(mrts_upq_sockfull);
2250 	}
2251 }
2252 
2253 /*
2254  * A periodic function for sending all upcalls that are pending delivery
2255  */
2256 static void
expire_bw_upcalls_send(void * arg)2257 expire_bw_upcalls_send(void *arg)
2258 {
2259 	CURVNET_SET((struct vnet *) arg);
2260 
2261 	/* This callout is run with MRW_RLOCK taken */
2262 
2263 	bw_upcalls_send();
2264 
2265 	callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2266 	    curvnet);
2267 	CURVNET_RESTORE();
2268 }
2269 
2270 /*
2271  * End of bandwidth monitoring code
2272  */
2273 
2274 /*
2275  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2276  *
2277  */
2278 static int
pim_register_send(struct ip * ip,struct vif * vifp,struct mbuf * m,struct mfc * rt)2279 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2280     struct mfc *rt)
2281 {
2282 	struct mbuf *mb_copy, *mm;
2283 
2284 	/*
2285 	 * Do not send IGMP_WHOLEPKT notifications to userland, if the
2286 	 * rendezvous point was unspecified, and we were told not to.
2287 	 */
2288 	if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2289 	    in_nullhost(rt->mfc_rp))
2290 		return 0;
2291 
2292 	mb_copy = pim_register_prepare(ip, m);
2293 	if (mb_copy == NULL)
2294 		return ENOBUFS;
2295 
2296 	/*
2297 	 * Send all the fragments. Note that the mbuf for each fragment
2298 	 * is freed by the sending machinery.
2299 	 */
2300 	for (mm = mb_copy; mm; mm = mb_copy) {
2301 		mb_copy = mm->m_nextpkt;
2302 		mm->m_nextpkt = 0;
2303 		mm = m_pullup(mm, sizeof(struct ip));
2304 		if (mm != NULL) {
2305 			ip = mtod(mm, struct ip *);
2306 			if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2307 				pim_register_send_rp(ip, vifp, mm, rt);
2308 			} else {
2309 				pim_register_send_upcall(ip, vifp, mm, rt);
2310 			}
2311 		}
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 /*
2318  * Return a copy of the data packet that is ready for PIM Register
2319  * encapsulation.
2320  * XXX: Note that in the returned copy the IP header is a valid one.
2321  */
2322 static struct mbuf *
pim_register_prepare(struct ip * ip,struct mbuf * m)2323 pim_register_prepare(struct ip *ip, struct mbuf *m)
2324 {
2325 	struct mbuf *mb_copy = NULL;
2326 	int mtu;
2327 
2328 	/* Take care of delayed checksums */
2329 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2330 		in_delayed_cksum(m);
2331 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2332 	}
2333 
2334 	/*
2335 	 * Copy the old packet & pullup its IP header into the
2336 	 * new mbuf so we can modify it.
2337 	 */
2338 	mb_copy = m_copypacket(m, M_NOWAIT);
2339 	if (mb_copy == NULL)
2340 		return NULL;
2341 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2342 	if (mb_copy == NULL)
2343 		return NULL;
2344 
2345 	/* take care of the TTL */
2346 	ip = mtod(mb_copy, struct ip *);
2347 	--ip->ip_ttl;
2348 
2349 	/* Compute the MTU after the PIM Register encapsulation */
2350 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2351 
2352 	if (ntohs(ip->ip_len) <= mtu) {
2353 		/* Turn the IP header into a valid one */
2354 		ip->ip_sum = 0;
2355 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2356 	} else {
2357 		/* Fragment the packet */
2358 		mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2359 		if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2360 			m_freem(mb_copy);
2361 			return NULL;
2362 		}
2363 	}
2364 	return mb_copy;
2365 }
2366 
2367 /*
2368  * Send an upcall with the data packet to the user-level process.
2369  */
2370 static int
pim_register_send_upcall(struct ip * ip,struct vif * vifp,struct mbuf * mb_copy,struct mfc * rt)2371 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2372     struct mbuf *mb_copy, struct mfc *rt)
2373 {
2374 	struct mbuf *mb_first;
2375 	int len = ntohs(ip->ip_len);
2376 	struct igmpmsg *im;
2377 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2378 
2379 	MRW_LOCK_ASSERT();
2380 
2381 	/*
2382 	 * Add a new mbuf with an upcall header
2383 	 */
2384 	mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2385 	if (mb_first == NULL) {
2386 		m_freem(mb_copy);
2387 		return ENOBUFS;
2388 	}
2389 	mb_first->m_data += max_linkhdr;
2390 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2391 	mb_first->m_len = sizeof(struct igmpmsg);
2392 	mb_first->m_next = mb_copy;
2393 
2394 	/* Send message to routing daemon */
2395 	im = mtod(mb_first, struct igmpmsg *);
2396 	im->im_msgtype	= IGMPMSG_WHOLEPKT;
2397 	im->im_mbz		= 0;
2398 	im->im_vif		= vifp - V_viftable;
2399 	im->im_src		= ip->ip_src;
2400 	im->im_dst		= ip->ip_dst;
2401 
2402 	k_igmpsrc.sin_addr	= ip->ip_src;
2403 
2404 	MRTSTAT_INC(mrts_upcalls);
2405 
2406 	if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2407 		CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2408 		MRTSTAT_INC(mrts_upq_sockfull);
2409 		return ENOBUFS;
2410 	}
2411 
2412 	/* Keep statistics */
2413 	PIMSTAT_INC(pims_snd_registers_msgs);
2414 	PIMSTAT_ADD(pims_snd_registers_bytes, len);
2415 
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Encapsulate the data packet in PIM Register message and send it to the RP.
2421  */
2422 static int
pim_register_send_rp(struct ip * ip,struct vif * vifp,struct mbuf * mb_copy,struct mfc * rt)2423 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2424     struct mfc *rt)
2425 {
2426 	struct mbuf *mb_first;
2427 	struct ip *ip_outer;
2428 	struct pim_encap_pimhdr *pimhdr;
2429 	int len = ntohs(ip->ip_len);
2430 	vifi_t vifi = rt->mfc_parent;
2431 
2432 	MRW_LOCK_ASSERT();
2433 
2434 	if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2435 		m_freem(mb_copy);
2436 		return EADDRNOTAVAIL;		/* The iif vif is invalid */
2437 	}
2438 
2439 	/*
2440 	 * Add a new mbuf with the encapsulating header
2441 	 */
2442 	mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2443 	if (mb_first == NULL) {
2444 		m_freem(mb_copy);
2445 		return ENOBUFS;
2446 	}
2447 	mb_first->m_data += max_linkhdr;
2448 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2449 	mb_first->m_next = mb_copy;
2450 
2451 	mb_first->m_pkthdr.len = len + mb_first->m_len;
2452 
2453 	/*
2454 	 * Fill in the encapsulating IP and PIM header
2455 	 */
2456 	ip_outer = mtod(mb_first, struct ip *);
2457 	*ip_outer = pim_encap_iphdr;
2458 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2459 			sizeof(pim_encap_pimhdr));
2460 	ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2461 	ip_outer->ip_dst = rt->mfc_rp;
2462 	/*
2463 	 * Copy the inner header TOS to the outer header, and take care of the
2464 	 * IP_DF bit.
2465 	 */
2466 	ip_outer->ip_tos = ip->ip_tos;
2467 	if (ip->ip_off & htons(IP_DF))
2468 		ip_outer->ip_off |= htons(IP_DF);
2469 	ip_fillid(ip_outer);
2470 	pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2471 			+ sizeof(pim_encap_iphdr));
2472 	*pimhdr = pim_encap_pimhdr;
2473 	/* If the iif crosses a border, set the Border-bit */
2474 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2475 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2476 
2477 	mb_first->m_data += sizeof(pim_encap_iphdr);
2478 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2479 	mb_first->m_data -= sizeof(pim_encap_iphdr);
2480 
2481 	send_packet(vifp, mb_first);
2482 
2483 	/* Keep statistics */
2484 	PIMSTAT_INC(pims_snd_registers_msgs);
2485 	PIMSTAT_ADD(pims_snd_registers_bytes, len);
2486 
2487 	return 0;
2488 }
2489 
2490 /*
2491  * pim_encapcheck() is called by the encap4_input() path at runtime to
2492  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2493  * into the kernel.
2494  */
2495 static int
pim_encapcheck(const struct mbuf * m __unused,int off __unused,int proto __unused,void * arg __unused)2496 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2497     int proto __unused, void *arg __unused)
2498 {
2499 
2500 	KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2501 	return (8);		/* claim the datagram. */
2502 }
2503 
2504 /*
2505  * PIM-SMv2 and PIM-DM messages processing.
2506  * Receives and verifies the PIM control messages, and passes them
2507  * up to the listening socket, using rip_input().
2508  * The only message with special processing is the PIM_REGISTER message
2509  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2510  * is passed to if_simloop().
2511  */
2512 static int
pim_input(struct mbuf * m,int off,int proto,void * arg __unused)2513 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2514 {
2515 	struct ip *ip = mtod(m, struct ip *);
2516 	struct pim *pim;
2517 	int iphlen = off;
2518 	int minlen;
2519 	int datalen = ntohs(ip->ip_len) - iphlen;
2520 	int ip_tos;
2521 
2522 	/* Keep statistics */
2523 	PIMSTAT_INC(pims_rcv_total_msgs);
2524 	PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2525 
2526 	/*
2527 	 * Validate lengths
2528 	 */
2529 	if (datalen < PIM_MINLEN) {
2530 		PIMSTAT_INC(pims_rcv_tooshort);
2531 		CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2532 		    __func__, datalen, ntohl(ip->ip_src.s_addr));
2533 		m_freem(m);
2534 		return (IPPROTO_DONE);
2535 	}
2536 
2537 	/*
2538 	 * If the packet is at least as big as a REGISTER, go agead
2539 	 * and grab the PIM REGISTER header size, to avoid another
2540 	 * possible m_pullup() later.
2541 	 *
2542 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2543 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2544 	 */
2545 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2546 	/*
2547 	 * Get the IP and PIM headers in contiguous memory, and
2548 	 * possibly the PIM REGISTER header.
2549 	 */
2550 	if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2551 		CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2552 		return (IPPROTO_DONE);
2553 	}
2554 
2555 	/* m_pullup() may have given us a new mbuf so reset ip. */
2556 	ip = mtod(m, struct ip *);
2557 	ip_tos = ip->ip_tos;
2558 
2559 	/* adjust mbuf to point to the PIM header */
2560 	m->m_data += iphlen;
2561 	m->m_len  -= iphlen;
2562 	pim = mtod(m, struct pim *);
2563 
2564 	/*
2565 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
2566 	 *
2567 	 * XXX: some older PIMv2 implementations don't make this distinction,
2568 	 * so for compatibility reason perform the checksum over part of the
2569 	 * message, and if error, then over the whole message.
2570 	 */
2571 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2572 		/* do nothing, checksum okay */
2573 	} else if (in_cksum(m, datalen)) {
2574 		PIMSTAT_INC(pims_rcv_badsum);
2575 		CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2576 		m_freem(m);
2577 		return (IPPROTO_DONE);
2578 	}
2579 
2580 	/* PIM version check */
2581 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2582 		PIMSTAT_INC(pims_rcv_badversion);
2583 		CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2584 		    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2585 		m_freem(m);
2586 		return (IPPROTO_DONE);
2587 	}
2588 
2589 	/* restore mbuf back to the outer IP */
2590 	m->m_data -= iphlen;
2591 	m->m_len  += iphlen;
2592 
2593 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2594 		/*
2595 		 * Since this is a REGISTER, we'll make a copy of the register
2596 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2597 		 * routing daemon.
2598 		 */
2599 		struct sockaddr_in dst = { sizeof(dst), AF_INET };
2600 		struct mbuf *mcp;
2601 		struct ip *encap_ip;
2602 		u_int32_t *reghdr;
2603 		struct ifnet *vifp;
2604 
2605 		MRW_RLOCK();
2606 		if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2607 			MRW_RUNLOCK();
2608 			CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2609 			    (int)V_reg_vif_num);
2610 			m_freem(m);
2611 			return (IPPROTO_DONE);
2612 		}
2613 		/* XXX need refcnt? */
2614 		vifp = V_viftable[V_reg_vif_num].v_ifp;
2615 		MRW_RUNLOCK();
2616 
2617 		/*
2618 		 * Validate length
2619 		 */
2620 		if (datalen < PIM_REG_MINLEN) {
2621 			PIMSTAT_INC(pims_rcv_tooshort);
2622 			PIMSTAT_INC(pims_rcv_badregisters);
2623 			CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2624 			m_freem(m);
2625 			return (IPPROTO_DONE);
2626 		}
2627 
2628 		reghdr = (u_int32_t *)(pim + 1);
2629 		encap_ip = (struct ip *)(reghdr + 1);
2630 
2631 		CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2632 		    __func__, ntohl(encap_ip->ip_src.s_addr),
2633 		    ntohs(encap_ip->ip_len));
2634 
2635 		/* verify the version number of the inner packet */
2636 		if (encap_ip->ip_v != IPVERSION) {
2637 			PIMSTAT_INC(pims_rcv_badregisters);
2638 			CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2639 			m_freem(m);
2640 			return (IPPROTO_DONE);
2641 		}
2642 
2643 		/* verify the inner packet is destined to a mcast group */
2644 		if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2645 			PIMSTAT_INC(pims_rcv_badregisters);
2646 			CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2647 			    ntohl(encap_ip->ip_dst.s_addr));
2648 			m_freem(m);
2649 			return (IPPROTO_DONE);
2650 		}
2651 
2652 		/* If a NULL_REGISTER, pass it to the daemon */
2653 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2654 			goto pim_input_to_daemon;
2655 
2656 		/*
2657 		 * Copy the TOS from the outer IP header to the inner IP header.
2658 		 */
2659 		if (encap_ip->ip_tos != ip_tos) {
2660 			/* Outer TOS -> inner TOS */
2661 			encap_ip->ip_tos = ip_tos;
2662 			/* Recompute the inner header checksum. Sigh... */
2663 
2664 			/* adjust mbuf to point to the inner IP header */
2665 			m->m_data += (iphlen + PIM_MINLEN);
2666 			m->m_len  -= (iphlen + PIM_MINLEN);
2667 
2668 			encap_ip->ip_sum = 0;
2669 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2670 
2671 			/* restore mbuf to point back to the outer IP header */
2672 			m->m_data -= (iphlen + PIM_MINLEN);
2673 			m->m_len  += (iphlen + PIM_MINLEN);
2674 		}
2675 
2676 		/*
2677 		 * Decapsulate the inner IP packet and loopback to forward it
2678 		 * as a normal multicast packet. Also, make a copy of the
2679 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2680 		 * to pass to the daemon later, so it can take the appropriate
2681 		 * actions (e.g., send back PIM_REGISTER_STOP).
2682 		 * XXX: here m->m_data points to the outer IP header.
2683 		 */
2684 		mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2685 		if (mcp == NULL) {
2686 			CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2687 			m_freem(m);
2688 			return (IPPROTO_DONE);
2689 		}
2690 
2691 		/* Keep statistics */
2692 		/* XXX: registers_bytes include only the encap. mcast pkt */
2693 		PIMSTAT_INC(pims_rcv_registers_msgs);
2694 		PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2695 
2696 		/*
2697 		 * forward the inner ip packet; point m_data at the inner ip.
2698 		 */
2699 		m_adj(m, iphlen + PIM_MINLEN);
2700 
2701 		CTR4(KTR_IPMF,
2702 		    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2703 		    __func__,
2704 		    (u_long)ntohl(encap_ip->ip_src.s_addr),
2705 		    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2706 		    (int)V_reg_vif_num);
2707 
2708 		/* NB: vifp was collected above; can it change on us? */
2709 		if_simloop(vifp, m, dst.sin_family, 0);
2710 
2711 		/* prepare the register head to send to the mrouting daemon */
2712 		m = mcp;
2713 	}
2714 
2715 pim_input_to_daemon:
2716 	/*
2717 	 * Pass the PIM message up to the daemon; if it is a Register message,
2718 	 * pass the 'head' only up to the daemon. This includes the
2719 	 * outer IP header, PIM header, PIM-Register header and the
2720 	 * inner IP header.
2721 	 * XXX: the outer IP header pkt size of a Register is not adjust to
2722 	 * reflect the fact that the inner multicast data is truncated.
2723 	 */
2724 	return (rip_input(&m, &off, proto));
2725 }
2726 
2727 static int
sysctl_mfctable(SYSCTL_HANDLER_ARGS)2728 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2729 {
2730 	struct mfc	*rt;
2731 	int		 error, i;
2732 
2733 	if (req->newptr)
2734 		return (EPERM);
2735 	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2736 		return (0);
2737 	error = sysctl_wire_old_buffer(req, 0);
2738 	if (error)
2739 		return (error);
2740 
2741 	MRW_RLOCK();
2742 	if (V_mfchashtbl == NULL)
2743 		goto out_locked;
2744 
2745 	for (i = 0; i < mfchashsize; i++) {
2746 		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2747 			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2748 			if (error)
2749 				goto out_locked;
2750 		}
2751 	}
2752 out_locked:
2753 	MRW_RUNLOCK();
2754 	return (error);
2755 }
2756 
2757 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2758     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2759     "IPv4 Multicast Forwarding Table "
2760     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2761 
2762 static int
sysctl_viflist(SYSCTL_HANDLER_ARGS)2763 sysctl_viflist(SYSCTL_HANDLER_ARGS)
2764 {
2765 	int error, i;
2766 
2767 	if (req->newptr)
2768 		return (EPERM);
2769 	if (V_viftable == NULL)		/* XXX unlocked */
2770 		return (0);
2771 	error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS);
2772 	if (error)
2773 		return (error);
2774 
2775 	MRW_RLOCK();
2776 	/* Copy out user-visible portion of vif entry. */
2777 	for (i = 0; i < MAXVIFS; i++) {
2778 		error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN);
2779 		if (error)
2780 			break;
2781 	}
2782 	MRW_RUNLOCK();
2783 	return (error);
2784 }
2785 
2786 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2787     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2788     sysctl_viflist, "S,vif[MAXVIFS]",
2789     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2790 
2791 static void
vnet_mroute_init(const void * unused __unused)2792 vnet_mroute_init(const void *unused __unused)
2793 {
2794 
2795 	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2796 
2797 	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2798 	    M_MRTABLE, M_WAITOK|M_ZERO);
2799 
2800 	callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0);
2801 	callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0);
2802 
2803 	/* Prepare taskqueue */
2804 	V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
2805 		    taskqueue_thread_enqueue, &V_task_queue);
2806 	taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
2807 }
2808 
2809 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2810 	NULL);
2811 
2812 static void
vnet_mroute_uninit(const void * unused __unused)2813 vnet_mroute_uninit(const void *unused __unused)
2814 {
2815 
2816 	/* Taskqueue should be cancelled and drained before freeing */
2817 	taskqueue_free(V_task_queue);
2818 
2819 	free(V_viftable, M_MRTABLE);
2820 	free(V_nexpire, M_MRTABLE);
2821 	V_nexpire = NULL;
2822 }
2823 
2824 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2825     vnet_mroute_uninit, NULL);
2826 
2827 static int
ip_mroute_modevent(module_t mod,int type,void * unused)2828 ip_mroute_modevent(module_t mod, int type, void *unused)
2829 {
2830 
2831 	switch (type) {
2832 	case MOD_LOAD:
2833 		MRW_TEARDOWN_LOCK_INIT();
2834 		MRW_LOCK_INIT();
2835 
2836 		if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2837 		    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2838 		if (if_detach_event_tag == NULL) {
2839 			printf("ip_mroute: unable to register "
2840 					"ifnet_departure_event handler\n");
2841 			MRW_LOCK_DESTROY();
2842 			return (EINVAL);
2843 		}
2844 
2845 		if (!powerof2(mfchashsize)) {
2846 			printf("WARNING: %s not a power of 2; using default\n",
2847 					"net.inet.ip.mfchashsize");
2848 			mfchashsize = MFCHASHSIZE;
2849 		}
2850 
2851 		pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2852 
2853 		ip_mcast_src = X_ip_mcast_src;
2854 		ip_mforward = X_ip_mforward;
2855 		ip_mrouter_done = X_ip_mrouter_done;
2856 		ip_mrouter_get = X_ip_mrouter_get;
2857 		ip_mrouter_set = X_ip_mrouter_set;
2858 
2859 		ip_rsvp_force_done = X_ip_rsvp_force_done;
2860 		ip_rsvp_vif = X_ip_rsvp_vif;
2861 
2862 		legal_vif_num = X_legal_vif_num;
2863 		mrt_ioctl = X_mrt_ioctl;
2864 		rsvp_input_p = X_rsvp_input;
2865 		break;
2866 
2867 	case MOD_UNLOAD:
2868 		/*
2869 		 * Typically module unload happens after the user-level
2870 		 * process has shutdown the kernel services (the check
2871 		 * below insures someone can't just yank the module out
2872 		 * from under a running process).  But if the module is
2873 		 * just loaded and then unloaded w/o starting up a user
2874 		 * process we still need to cleanup.
2875 		 */
2876 		MRW_WLOCK();
2877 		if (ip_mrouter_cnt != 0) {
2878 			MRW_WUNLOCK();
2879 			return (EINVAL);
2880 		}
2881 		ip_mrouter_unloading = 1;
2882 		MRW_WUNLOCK();
2883 
2884 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2885 
2886 		if (pim_encap_cookie) {
2887 			ip_encap_detach(pim_encap_cookie);
2888 			pim_encap_cookie = NULL;
2889 		}
2890 
2891 		ip_mcast_src = NULL;
2892 		ip_mforward = NULL;
2893 		ip_mrouter_done = NULL;
2894 		ip_mrouter_get = NULL;
2895 		ip_mrouter_set = NULL;
2896 
2897 		ip_rsvp_force_done = NULL;
2898 		ip_rsvp_vif = NULL;
2899 
2900 		legal_vif_num = NULL;
2901 		mrt_ioctl = NULL;
2902 		rsvp_input_p = NULL;
2903 
2904 		MRW_LOCK_DESTROY();
2905 		MRW_TEARDOWN_LOCK_DESTROY();
2906 		break;
2907 
2908 	default:
2909 		return EOPNOTSUPP;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static moduledata_t ip_mroutemod = {
2915 	"ip_mroute",
2916 	ip_mroute_modevent,
2917 	0
2918 };
2919 
2920 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2921