xref: /freebsd/contrib/llvm-project/lld/ELF/Arch/LoongArch.cpp (revision 52418fc2be8efa5172b90a3a9e617017173612c4)
1 //===- LoongArch.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Support/LEB128.h"
16 
17 using namespace llvm;
18 using namespace llvm::object;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
23 
24 namespace {
25 class LoongArch final : public TargetInfo {
26 public:
27   LoongArch();
28   uint32_t calcEFlags() const override;
29   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
30   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
31   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
32   void writePltHeader(uint8_t *buf) const override;
33   void writePlt(uint8_t *buf, const Symbol &sym,
34                 uint64_t pltEntryAddr) const override;
35   RelType getDynRel(RelType type) const override;
36   RelExpr getRelExpr(RelType type, const Symbol &s,
37                      const uint8_t *loc) const override;
38   bool usesOnlyLowPageBits(RelType type) const override;
39   void relocate(uint8_t *loc, const Relocation &rel,
40                 uint64_t val) const override;
41   bool relaxOnce(int pass) const override;
42   void finalizeRelax(int passes) const override;
43 };
44 } // end anonymous namespace
45 
46 namespace {
47 enum Op {
48   SUB_W = 0x00110000,
49   SUB_D = 0x00118000,
50   BREAK = 0x002a0000,
51   SRLI_W = 0x00448000,
52   SRLI_D = 0x00450000,
53   ADDI_W = 0x02800000,
54   ADDI_D = 0x02c00000,
55   ANDI = 0x03400000,
56   PCADDU12I = 0x1c000000,
57   LD_W = 0x28800000,
58   LD_D = 0x28c00000,
59   JIRL = 0x4c000000,
60 };
61 
62 enum Reg {
63   R_ZERO = 0,
64   R_RA = 1,
65   R_TP = 2,
66   R_T0 = 12,
67   R_T1 = 13,
68   R_T2 = 14,
69   R_T3 = 15,
70 };
71 } // namespace
72 
73 // Mask out the input's lowest 12 bits for use with `pcalau12i`, in sequences
74 // like `pcalau12i + addi.[wd]` or `pcalau12i + {ld,st}.*` where the `pcalau12i`
75 // produces a PC-relative intermediate value with the lowest 12 bits zeroed (the
76 // "page") for the next instruction to add in the "page offset". (`pcalau12i`
77 // stands for something like "PC ALigned Add Upper that starts from the 12th
78 // bit, Immediate".)
79 //
80 // Here a "page" is in fact just another way to refer to the 12-bit range
81 // allowed by the immediate field of the addi/ld/st instructions, and not
82 // related to the system or the kernel's actual page size. The semantics happen
83 // to match the AArch64 `adrp`, so the concept of "page" is borrowed here.
getLoongArchPage(uint64_t p)84 static uint64_t getLoongArchPage(uint64_t p) {
85   return p & ~static_cast<uint64_t>(0xfff);
86 }
87 
lo12(uint32_t val)88 static uint32_t lo12(uint32_t val) { return val & 0xfff; }
89 
90 // Calculate the adjusted page delta between dest and PC.
getLoongArchPageDelta(uint64_t dest,uint64_t pc,RelType type)91 uint64_t elf::getLoongArchPageDelta(uint64_t dest, uint64_t pc, RelType type) {
92   // Note that if the sequence being relocated is `pcalau12i + addi.d + lu32i.d
93   // + lu52i.d`, they must be adjacent so that we can infer the PC of
94   // `pcalau12i` when calculating the page delta for the other two instructions
95   // (lu32i.d and lu52i.d). Compensate all the sign-extensions is a bit
96   // complicated. Just use psABI recommended algorithm.
97   uint64_t pcalau12i_pc;
98   switch (type) {
99   case R_LARCH_PCALA64_LO20:
100   case R_LARCH_GOT64_PC_LO20:
101   case R_LARCH_TLS_IE64_PC_LO20:
102   case R_LARCH_TLS_DESC64_PC_LO20:
103     pcalau12i_pc = pc - 8;
104     break;
105   case R_LARCH_PCALA64_HI12:
106   case R_LARCH_GOT64_PC_HI12:
107   case R_LARCH_TLS_IE64_PC_HI12:
108   case R_LARCH_TLS_DESC64_PC_HI12:
109     pcalau12i_pc = pc - 12;
110     break;
111   default:
112     pcalau12i_pc = pc;
113     break;
114   }
115   uint64_t result = getLoongArchPage(dest) - getLoongArchPage(pcalau12i_pc);
116   if (dest & 0x800)
117     result += 0x1000 - 0x1'0000'0000;
118   if (result & 0x8000'0000)
119     result += 0x1'0000'0000;
120   return result;
121 }
122 
hi20(uint32_t val)123 static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; }
124 
insn(uint32_t op,uint32_t d,uint32_t j,uint32_t k)125 static uint32_t insn(uint32_t op, uint32_t d, uint32_t j, uint32_t k) {
126   return op | d | (j << 5) | (k << 10);
127 }
128 
129 // Extract bits v[begin:end], where range is inclusive.
extractBits(uint64_t v,uint32_t begin,uint32_t end)130 static uint32_t extractBits(uint64_t v, uint32_t begin, uint32_t end) {
131   return begin == 63 ? v >> end : (v & ((1ULL << (begin + 1)) - 1)) >> end;
132 }
133 
setD5k16(uint32_t insn,uint32_t imm)134 static uint32_t setD5k16(uint32_t insn, uint32_t imm) {
135   uint32_t immLo = extractBits(imm, 15, 0);
136   uint32_t immHi = extractBits(imm, 20, 16);
137   return (insn & 0xfc0003e0) | (immLo << 10) | immHi;
138 }
139 
setD10k16(uint32_t insn,uint32_t imm)140 static uint32_t setD10k16(uint32_t insn, uint32_t imm) {
141   uint32_t immLo = extractBits(imm, 15, 0);
142   uint32_t immHi = extractBits(imm, 25, 16);
143   return (insn & 0xfc000000) | (immLo << 10) | immHi;
144 }
145 
setJ20(uint32_t insn,uint32_t imm)146 static uint32_t setJ20(uint32_t insn, uint32_t imm) {
147   return (insn & 0xfe00001f) | (extractBits(imm, 19, 0) << 5);
148 }
149 
setK12(uint32_t insn,uint32_t imm)150 static uint32_t setK12(uint32_t insn, uint32_t imm) {
151   return (insn & 0xffc003ff) | (extractBits(imm, 11, 0) << 10);
152 }
153 
setK16(uint32_t insn,uint32_t imm)154 static uint32_t setK16(uint32_t insn, uint32_t imm) {
155   return (insn & 0xfc0003ff) | (extractBits(imm, 15, 0) << 10);
156 }
157 
isJirl(uint32_t insn)158 static bool isJirl(uint32_t insn) {
159   return (insn & 0xfc000000) == JIRL;
160 }
161 
handleUleb128(uint8_t * loc,uint64_t val)162 static void handleUleb128(uint8_t *loc, uint64_t val) {
163   const uint32_t maxcount = 1 + 64 / 7;
164   uint32_t count;
165   const char *error = nullptr;
166   uint64_t orig = decodeULEB128(loc, &count, nullptr, &error);
167   if (count > maxcount || (count == maxcount && error))
168     errorOrWarn(getErrorLocation(loc) + "extra space for uleb128");
169   uint64_t mask = count < maxcount ? (1ULL << 7 * count) - 1 : -1ULL;
170   encodeULEB128((orig + val) & mask, loc, count);
171 }
172 
LoongArch()173 LoongArch::LoongArch() {
174   // The LoongArch ISA itself does not have a limit on page sizes. According to
175   // the ISA manual, the PS (page size) field in MTLB entries and CSR.STLBPS is
176   // 6 bits wide, meaning the maximum page size is 2^63 which is equivalent to
177   // "unlimited".
178   // However, practically the maximum usable page size is constrained by the
179   // kernel implementation, and 64KiB is the biggest non-huge page size
180   // supported by Linux as of v6.4. The most widespread page size in use,
181   // though, is 16KiB.
182   defaultCommonPageSize = 16384;
183   defaultMaxPageSize = 65536;
184   write32le(trapInstr.data(), BREAK); // break 0
185 
186   copyRel = R_LARCH_COPY;
187   pltRel = R_LARCH_JUMP_SLOT;
188   relativeRel = R_LARCH_RELATIVE;
189   iRelativeRel = R_LARCH_IRELATIVE;
190 
191   if (config->is64) {
192     symbolicRel = R_LARCH_64;
193     tlsModuleIndexRel = R_LARCH_TLS_DTPMOD64;
194     tlsOffsetRel = R_LARCH_TLS_DTPREL64;
195     tlsGotRel = R_LARCH_TLS_TPREL64;
196     tlsDescRel = R_LARCH_TLS_DESC64;
197   } else {
198     symbolicRel = R_LARCH_32;
199     tlsModuleIndexRel = R_LARCH_TLS_DTPMOD32;
200     tlsOffsetRel = R_LARCH_TLS_DTPREL32;
201     tlsGotRel = R_LARCH_TLS_TPREL32;
202     tlsDescRel = R_LARCH_TLS_DESC32;
203   }
204 
205   gotRel = symbolicRel;
206 
207   // .got.plt[0] = _dl_runtime_resolve, .got.plt[1] = link_map
208   gotPltHeaderEntriesNum = 2;
209 
210   pltHeaderSize = 32;
211   pltEntrySize = 16;
212   ipltEntrySize = 16;
213 }
214 
getEFlags(const InputFile * f)215 static uint32_t getEFlags(const InputFile *f) {
216   if (config->is64)
217     return cast<ObjFile<ELF64LE>>(f)->getObj().getHeader().e_flags;
218   return cast<ObjFile<ELF32LE>>(f)->getObj().getHeader().e_flags;
219 }
220 
inputFileHasCode(const InputFile * f)221 static bool inputFileHasCode(const InputFile *f) {
222   for (const auto *sec : f->getSections())
223     if (sec && sec->flags & SHF_EXECINSTR)
224       return true;
225 
226   return false;
227 }
228 
calcEFlags() const229 uint32_t LoongArch::calcEFlags() const {
230   // If there are only binary input files (from -b binary), use a
231   // value of 0 for the ELF header flags.
232   if (ctx.objectFiles.empty())
233     return 0;
234 
235   uint32_t target = 0;
236   const InputFile *targetFile;
237   for (const InputFile *f : ctx.objectFiles) {
238     // Do not enforce ABI compatibility if the input file does not contain code.
239     // This is useful for allowing linkage with data-only object files produced
240     // with tools like objcopy, that have zero e_flags.
241     if (!inputFileHasCode(f))
242       continue;
243 
244     // Take the first non-zero e_flags as the reference.
245     uint32_t flags = getEFlags(f);
246     if (target == 0 && flags != 0) {
247       target = flags;
248       targetFile = f;
249     }
250 
251     if ((flags & EF_LOONGARCH_ABI_MODIFIER_MASK) !=
252         (target & EF_LOONGARCH_ABI_MODIFIER_MASK))
253       error(toString(f) +
254             ": cannot link object files with different ABI from " +
255             toString(targetFile));
256 
257     // We cannot process psABI v1.x / object ABI v0 files (containing stack
258     // relocations), unlike ld.bfd.
259     //
260     // Instead of blindly accepting every v0 object and only failing at
261     // relocation processing time, just disallow interlink altogether. We
262     // don't expect significant usage of object ABI v0 in the wild (the old
263     // world may continue using object ABI v0 for a while, but as it's not
264     // binary-compatible with the upstream i.e. new-world ecosystem, it's not
265     // being considered here).
266     //
267     // There are briefly some new-world systems with object ABI v0 binaries too.
268     // It is because these systems were built before the new ABI was finalized.
269     // These are not supported either due to the extremely small number of them,
270     // and the few impacted users are advised to simply rebuild world or
271     // reinstall a recent system.
272     if ((flags & EF_LOONGARCH_OBJABI_MASK) != EF_LOONGARCH_OBJABI_V1)
273       error(toString(f) + ": unsupported object file ABI version");
274   }
275 
276   return target;
277 }
278 
getImplicitAddend(const uint8_t * buf,RelType type) const279 int64_t LoongArch::getImplicitAddend(const uint8_t *buf, RelType type) const {
280   switch (type) {
281   default:
282     internalLinkerError(getErrorLocation(buf),
283                         "cannot read addend for relocation " + toString(type));
284     return 0;
285   case R_LARCH_32:
286   case R_LARCH_TLS_DTPMOD32:
287   case R_LARCH_TLS_DTPREL32:
288   case R_LARCH_TLS_TPREL32:
289     return SignExtend64<32>(read32le(buf));
290   case R_LARCH_64:
291   case R_LARCH_TLS_DTPMOD64:
292   case R_LARCH_TLS_DTPREL64:
293   case R_LARCH_TLS_TPREL64:
294     return read64le(buf);
295   case R_LARCH_RELATIVE:
296   case R_LARCH_IRELATIVE:
297     return config->is64 ? read64le(buf) : read32le(buf);
298   case R_LARCH_NONE:
299   case R_LARCH_JUMP_SLOT:
300     // These relocations are defined as not having an implicit addend.
301     return 0;
302   case R_LARCH_TLS_DESC32:
303     return read32le(buf + 4);
304   case R_LARCH_TLS_DESC64:
305     return read64le(buf + 8);
306   }
307 }
308 
writeGotPlt(uint8_t * buf,const Symbol & s) const309 void LoongArch::writeGotPlt(uint8_t *buf, const Symbol &s) const {
310   if (config->is64)
311     write64le(buf, in.plt->getVA());
312   else
313     write32le(buf, in.plt->getVA());
314 }
315 
writeIgotPlt(uint8_t * buf,const Symbol & s) const316 void LoongArch::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
317   if (config->writeAddends) {
318     if (config->is64)
319       write64le(buf, s.getVA());
320     else
321       write32le(buf, s.getVA());
322   }
323 }
324 
writePltHeader(uint8_t * buf) const325 void LoongArch::writePltHeader(uint8_t *buf) const {
326   // The LoongArch PLT is currently structured just like that of RISCV.
327   // Annoyingly, this means the PLT is still using `pcaddu12i` to perform
328   // PC-relative addressing (because `pcaddu12i` is the same as RISCV `auipc`),
329   // in contrast to the AArch64-like page-offset scheme with `pcalau12i` that
330   // is used everywhere else involving PC-relative operations in the LoongArch
331   // ELF psABI v2.00.
332   //
333   // The `pcrel_{hi20,lo12}` operators are illustrative only and not really
334   // supported by LoongArch assemblers.
335   //
336   //   pcaddu12i $t2, %pcrel_hi20(.got.plt)
337   //   sub.[wd]  $t1, $t1, $t3
338   //   ld.[wd]   $t3, $t2, %pcrel_lo12(.got.plt)  ; t3 = _dl_runtime_resolve
339   //   addi.[wd] $t1, $t1, -pltHeaderSize-12      ; t1 = &.plt[i] - &.plt[0]
340   //   addi.[wd] $t0, $t2, %pcrel_lo12(.got.plt)
341   //   srli.[wd] $t1, $t1, (is64?1:2)             ; t1 = &.got.plt[i] - &.got.plt[0]
342   //   ld.[wd]   $t0, $t0, Wordsize               ; t0 = link_map
343   //   jr        $t3
344   uint32_t offset = in.gotPlt->getVA() - in.plt->getVA();
345   uint32_t sub = config->is64 ? SUB_D : SUB_W;
346   uint32_t ld = config->is64 ? LD_D : LD_W;
347   uint32_t addi = config->is64 ? ADDI_D : ADDI_W;
348   uint32_t srli = config->is64 ? SRLI_D : SRLI_W;
349   write32le(buf + 0, insn(PCADDU12I, R_T2, hi20(offset), 0));
350   write32le(buf + 4, insn(sub, R_T1, R_T1, R_T3));
351   write32le(buf + 8, insn(ld, R_T3, R_T2, lo12(offset)));
352   write32le(buf + 12, insn(addi, R_T1, R_T1, lo12(-target->pltHeaderSize - 12)));
353   write32le(buf + 16, insn(addi, R_T0, R_T2, lo12(offset)));
354   write32le(buf + 20, insn(srli, R_T1, R_T1, config->is64 ? 1 : 2));
355   write32le(buf + 24, insn(ld, R_T0, R_T0, config->wordsize));
356   write32le(buf + 28, insn(JIRL, R_ZERO, R_T3, 0));
357 }
358 
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const359 void LoongArch::writePlt(uint8_t *buf, const Symbol &sym,
360                      uint64_t pltEntryAddr) const {
361   // See the comment in writePltHeader for reason why pcaddu12i is used instead
362   // of the pcalau12i that's more commonly seen in the ELF psABI v2.0 days.
363   //
364   //   pcaddu12i $t3, %pcrel_hi20(f@.got.plt)
365   //   ld.[wd]   $t3, $t3, %pcrel_lo12(f@.got.plt)
366   //   jirl      $t1, $t3, 0
367   //   nop
368   uint32_t offset = sym.getGotPltVA() - pltEntryAddr;
369   write32le(buf + 0, insn(PCADDU12I, R_T3, hi20(offset), 0));
370   write32le(buf + 4,
371             insn(config->is64 ? LD_D : LD_W, R_T3, R_T3, lo12(offset)));
372   write32le(buf + 8, insn(JIRL, R_T1, R_T3, 0));
373   write32le(buf + 12, insn(ANDI, R_ZERO, R_ZERO, 0));
374 }
375 
getDynRel(RelType type) const376 RelType LoongArch::getDynRel(RelType type) const {
377   return type == target->symbolicRel ? type
378                                      : static_cast<RelType>(R_LARCH_NONE);
379 }
380 
getRelExpr(const RelType type,const Symbol & s,const uint8_t * loc) const381 RelExpr LoongArch::getRelExpr(const RelType type, const Symbol &s,
382                               const uint8_t *loc) const {
383   switch (type) {
384   case R_LARCH_NONE:
385   case R_LARCH_MARK_LA:
386   case R_LARCH_MARK_PCREL:
387     return R_NONE;
388   case R_LARCH_32:
389   case R_LARCH_64:
390   case R_LARCH_ABS_HI20:
391   case R_LARCH_ABS_LO12:
392   case R_LARCH_ABS64_LO20:
393   case R_LARCH_ABS64_HI12:
394     return R_ABS;
395   case R_LARCH_PCALA_LO12:
396     // We could just R_ABS, but the JIRL instruction reuses the relocation type
397     // for a different purpose. The questionable usage is part of glibc 2.37
398     // libc_nonshared.a [1], which is linked into user programs, so we have to
399     // work around it for a while, even if a new relocation type may be
400     // introduced in the future [2].
401     //
402     // [1]: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=9f482b73f41a9a1bbfb173aad0733d1c824c788a
403     // [2]: https://github.com/loongson/la-abi-specs/pull/3
404     return isJirl(read32le(loc)) ? R_PLT : R_ABS;
405   case R_LARCH_TLS_DTPREL32:
406   case R_LARCH_TLS_DTPREL64:
407     return R_DTPREL;
408   case R_LARCH_TLS_TPREL32:
409   case R_LARCH_TLS_TPREL64:
410   case R_LARCH_TLS_LE_HI20:
411   case R_LARCH_TLS_LE_HI20_R:
412   case R_LARCH_TLS_LE_LO12:
413   case R_LARCH_TLS_LE_LO12_R:
414   case R_LARCH_TLS_LE64_LO20:
415   case R_LARCH_TLS_LE64_HI12:
416     return R_TPREL;
417   case R_LARCH_ADD6:
418   case R_LARCH_ADD8:
419   case R_LARCH_ADD16:
420   case R_LARCH_ADD32:
421   case R_LARCH_ADD64:
422   case R_LARCH_ADD_ULEB128:
423   case R_LARCH_SUB6:
424   case R_LARCH_SUB8:
425   case R_LARCH_SUB16:
426   case R_LARCH_SUB32:
427   case R_LARCH_SUB64:
428   case R_LARCH_SUB_ULEB128:
429     // The LoongArch add/sub relocs behave like the RISCV counterparts; reuse
430     // the RelExpr to avoid code duplication.
431     return R_RISCV_ADD;
432   case R_LARCH_32_PCREL:
433   case R_LARCH_64_PCREL:
434   case R_LARCH_PCREL20_S2:
435     return R_PC;
436   case R_LARCH_B16:
437   case R_LARCH_B21:
438   case R_LARCH_B26:
439   case R_LARCH_CALL36:
440     return R_PLT_PC;
441   case R_LARCH_GOT_PC_HI20:
442   case R_LARCH_GOT64_PC_LO20:
443   case R_LARCH_GOT64_PC_HI12:
444   case R_LARCH_TLS_IE_PC_HI20:
445   case R_LARCH_TLS_IE64_PC_LO20:
446   case R_LARCH_TLS_IE64_PC_HI12:
447     return R_LOONGARCH_GOT_PAGE_PC;
448   case R_LARCH_GOT_PC_LO12:
449   case R_LARCH_TLS_IE_PC_LO12:
450     return R_LOONGARCH_GOT;
451   case R_LARCH_TLS_LD_PC_HI20:
452   case R_LARCH_TLS_GD_PC_HI20:
453     return R_LOONGARCH_TLSGD_PAGE_PC;
454   case R_LARCH_PCALA_HI20:
455     // Why not R_LOONGARCH_PAGE_PC, majority of references don't go through PLT
456     // anyway so why waste time checking only to get everything relaxed back to
457     // it?
458     //
459     // This is again due to the R_LARCH_PCALA_LO12 on JIRL case, where we want
460     // both the HI20 and LO12 to potentially refer to the PLT. But in reality
461     // the HI20 reloc appears earlier, and the relocs don't contain enough
462     // information to let us properly resolve semantics per symbol.
463     // Unlike RISCV, our LO12 relocs *do not* point to their corresponding HI20
464     // relocs, hence it is nearly impossible to 100% accurately determine each
465     // HI20's "flavor" without taking big performance hits, in the presence of
466     // edge cases (e.g. HI20 without pairing LO12; paired LO12 placed so far
467     // apart that relationship is not certain anymore), and programmer mistakes
468     // (e.g. as outlined in https://github.com/loongson/la-abi-specs/pull/3).
469     //
470     // Ideally we would scan in an extra pass for all LO12s on JIRL, then mark
471     // every HI20 reloc referring to the same symbol differently; this is not
472     // feasible with the current function signature of getRelExpr that doesn't
473     // allow for such inter-pass state.
474     //
475     // So, unfortunately we have to again workaround this quirk the same way as
476     // BFD: assuming every R_LARCH_PCALA_HI20 is potentially PLT-needing, only
477     // relaxing back to R_LOONGARCH_PAGE_PC if it's known not so at a later
478     // stage.
479     return R_LOONGARCH_PLT_PAGE_PC;
480   case R_LARCH_PCALA64_LO20:
481   case R_LARCH_PCALA64_HI12:
482     return R_LOONGARCH_PAGE_PC;
483   case R_LARCH_GOT_HI20:
484   case R_LARCH_GOT_LO12:
485   case R_LARCH_GOT64_LO20:
486   case R_LARCH_GOT64_HI12:
487   case R_LARCH_TLS_IE_HI20:
488   case R_LARCH_TLS_IE_LO12:
489   case R_LARCH_TLS_IE64_LO20:
490   case R_LARCH_TLS_IE64_HI12:
491     return R_GOT;
492   case R_LARCH_TLS_LD_HI20:
493     return R_TLSLD_GOT;
494   case R_LARCH_TLS_GD_HI20:
495     return R_TLSGD_GOT;
496   case R_LARCH_TLS_LE_ADD_R:
497   case R_LARCH_RELAX:
498     return config->relax ? R_RELAX_HINT : R_NONE;
499   case R_LARCH_ALIGN:
500     return R_RELAX_HINT;
501   case R_LARCH_TLS_DESC_PC_HI20:
502   case R_LARCH_TLS_DESC64_PC_LO20:
503   case R_LARCH_TLS_DESC64_PC_HI12:
504     return R_LOONGARCH_TLSDESC_PAGE_PC;
505   case R_LARCH_TLS_DESC_PC_LO12:
506   case R_LARCH_TLS_DESC_LD:
507   case R_LARCH_TLS_DESC_HI20:
508   case R_LARCH_TLS_DESC_LO12:
509   case R_LARCH_TLS_DESC64_LO20:
510   case R_LARCH_TLS_DESC64_HI12:
511     return R_TLSDESC;
512   case R_LARCH_TLS_DESC_CALL:
513     return R_TLSDESC_CALL;
514   case R_LARCH_TLS_LD_PCREL20_S2:
515     return R_TLSLD_PC;
516   case R_LARCH_TLS_GD_PCREL20_S2:
517     return R_TLSGD_PC;
518   case R_LARCH_TLS_DESC_PCREL20_S2:
519     return R_TLSDESC_PC;
520 
521   // Other known relocs that are explicitly unimplemented:
522   //
523   // - psABI v1 relocs that need a stateful stack machine to work, and not
524   //   required when implementing psABI v2;
525   // - relocs that are not used anywhere (R_LARCH_{ADD,SUB}_24 [1], and the
526   //   two GNU vtable-related relocs).
527   //
528   // [1]: https://web.archive.org/web/20230709064026/https://github.com/loongson/LoongArch-Documentation/issues/51
529   default:
530     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
531           ") against symbol " + toString(s));
532     return R_NONE;
533   }
534 }
535 
usesOnlyLowPageBits(RelType type) const536 bool LoongArch::usesOnlyLowPageBits(RelType type) const {
537   switch (type) {
538   default:
539     return false;
540   case R_LARCH_PCALA_LO12:
541   case R_LARCH_GOT_LO12:
542   case R_LARCH_GOT_PC_LO12:
543   case R_LARCH_TLS_IE_PC_LO12:
544   case R_LARCH_TLS_DESC_LO12:
545   case R_LARCH_TLS_DESC_PC_LO12:
546     return true;
547   }
548 }
549 
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const550 void LoongArch::relocate(uint8_t *loc, const Relocation &rel,
551                          uint64_t val) const {
552   switch (rel.type) {
553   case R_LARCH_32_PCREL:
554     checkInt(loc, val, 32, rel);
555     [[fallthrough]];
556   case R_LARCH_32:
557   case R_LARCH_TLS_DTPREL32:
558     write32le(loc, val);
559     return;
560   case R_LARCH_64:
561   case R_LARCH_TLS_DTPREL64:
562   case R_LARCH_64_PCREL:
563     write64le(loc, val);
564     return;
565 
566   // Relocs intended for `pcaddi`.
567   case R_LARCH_PCREL20_S2:
568   case R_LARCH_TLS_LD_PCREL20_S2:
569   case R_LARCH_TLS_GD_PCREL20_S2:
570   case R_LARCH_TLS_DESC_PCREL20_S2:
571     checkInt(loc, val, 22, rel);
572     checkAlignment(loc, val, 4, rel);
573     write32le(loc, setJ20(read32le(loc), val >> 2));
574     return;
575 
576   case R_LARCH_B16:
577     checkInt(loc, val, 18, rel);
578     checkAlignment(loc, val, 4, rel);
579     write32le(loc, setK16(read32le(loc), val >> 2));
580     return;
581 
582   case R_LARCH_B21:
583     checkInt(loc, val, 23, rel);
584     checkAlignment(loc, val, 4, rel);
585     write32le(loc, setD5k16(read32le(loc), val >> 2));
586     return;
587 
588   case R_LARCH_B26:
589     checkInt(loc, val, 28, rel);
590     checkAlignment(loc, val, 4, rel);
591     write32le(loc, setD10k16(read32le(loc), val >> 2));
592     return;
593 
594   case R_LARCH_CALL36: {
595     // This relocation is designed for adjacent pcaddu18i+jirl pairs that
596     // are patched in one time. Because of sign extension of these insns'
597     // immediate fields, the relocation range is [-128G - 0x20000, +128G -
598     // 0x20000) (of course must be 4-byte aligned).
599     if (((int64_t)val + 0x20000) != llvm::SignExtend64(val + 0x20000, 38))
600       reportRangeError(loc, rel, Twine(val), llvm::minIntN(38) - 0x20000,
601                        llvm::maxIntN(38) - 0x20000);
602     checkAlignment(loc, val, 4, rel);
603     // Since jirl performs sign extension on the offset immediate, adds (1<<17)
604     // to original val to get the correct hi20.
605     uint32_t hi20 = extractBits(val + (1 << 17), 37, 18);
606     // Despite the name, the lower part is actually 18 bits with 4-byte aligned.
607     uint32_t lo16 = extractBits(val, 17, 2);
608     write32le(loc, setJ20(read32le(loc), hi20));
609     write32le(loc + 4, setK16(read32le(loc + 4), lo16));
610     return;
611   }
612 
613   // Relocs intended for `addi`, `ld` or `st`.
614   case R_LARCH_PCALA_LO12:
615     // We have to again inspect the insn word to handle the R_LARCH_PCALA_LO12
616     // on JIRL case: firstly JIRL wants its immediate's 2 lowest zeroes
617     // removed by us (in contrast to regular R_LARCH_PCALA_LO12), secondly
618     // its immediate slot width is different too (16, not 12).
619     // In this case, process like an R_LARCH_B16, but without overflow checking
620     // and only taking the value's lowest 12 bits.
621     if (isJirl(read32le(loc))) {
622       checkAlignment(loc, val, 4, rel);
623       val = SignExtend64<12>(val);
624       write32le(loc, setK16(read32le(loc), val >> 2));
625       return;
626     }
627     [[fallthrough]];
628   case R_LARCH_ABS_LO12:
629   case R_LARCH_GOT_PC_LO12:
630   case R_LARCH_GOT_LO12:
631   case R_LARCH_TLS_LE_LO12:
632   case R_LARCH_TLS_IE_PC_LO12:
633   case R_LARCH_TLS_IE_LO12:
634   case R_LARCH_TLS_LE_LO12_R:
635   case R_LARCH_TLS_DESC_PC_LO12:
636   case R_LARCH_TLS_DESC_LO12:
637     write32le(loc, setK12(read32le(loc), extractBits(val, 11, 0)));
638     return;
639 
640   // Relocs intended for `lu12i.w` or `pcalau12i`.
641   case R_LARCH_ABS_HI20:
642   case R_LARCH_PCALA_HI20:
643   case R_LARCH_GOT_PC_HI20:
644   case R_LARCH_GOT_HI20:
645   case R_LARCH_TLS_LE_HI20:
646   case R_LARCH_TLS_IE_PC_HI20:
647   case R_LARCH_TLS_IE_HI20:
648   case R_LARCH_TLS_LD_PC_HI20:
649   case R_LARCH_TLS_LD_HI20:
650   case R_LARCH_TLS_GD_PC_HI20:
651   case R_LARCH_TLS_GD_HI20:
652   case R_LARCH_TLS_DESC_PC_HI20:
653   case R_LARCH_TLS_DESC_HI20:
654     write32le(loc, setJ20(read32le(loc), extractBits(val, 31, 12)));
655     return;
656   case R_LARCH_TLS_LE_HI20_R:
657     write32le(loc, setJ20(read32le(loc), extractBits(val + 0x800, 31, 12)));
658     return;
659 
660   // Relocs intended for `lu32i.d`.
661   case R_LARCH_ABS64_LO20:
662   case R_LARCH_PCALA64_LO20:
663   case R_LARCH_GOT64_PC_LO20:
664   case R_LARCH_GOT64_LO20:
665   case R_LARCH_TLS_LE64_LO20:
666   case R_LARCH_TLS_IE64_PC_LO20:
667   case R_LARCH_TLS_IE64_LO20:
668   case R_LARCH_TLS_DESC64_PC_LO20:
669   case R_LARCH_TLS_DESC64_LO20:
670     write32le(loc, setJ20(read32le(loc), extractBits(val, 51, 32)));
671     return;
672 
673   // Relocs intended for `lu52i.d`.
674   case R_LARCH_ABS64_HI12:
675   case R_LARCH_PCALA64_HI12:
676   case R_LARCH_GOT64_PC_HI12:
677   case R_LARCH_GOT64_HI12:
678   case R_LARCH_TLS_LE64_HI12:
679   case R_LARCH_TLS_IE64_PC_HI12:
680   case R_LARCH_TLS_IE64_HI12:
681   case R_LARCH_TLS_DESC64_PC_HI12:
682   case R_LARCH_TLS_DESC64_HI12:
683     write32le(loc, setK12(read32le(loc), extractBits(val, 63, 52)));
684     return;
685 
686   case R_LARCH_ADD6:
687     *loc = (*loc & 0xc0) | ((*loc + val) & 0x3f);
688     return;
689   case R_LARCH_ADD8:
690     *loc += val;
691     return;
692   case R_LARCH_ADD16:
693     write16le(loc, read16le(loc) + val);
694     return;
695   case R_LARCH_ADD32:
696     write32le(loc, read32le(loc) + val);
697     return;
698   case R_LARCH_ADD64:
699     write64le(loc, read64le(loc) + val);
700     return;
701   case R_LARCH_ADD_ULEB128:
702     handleUleb128(loc, val);
703     return;
704   case R_LARCH_SUB6:
705     *loc = (*loc & 0xc0) | ((*loc - val) & 0x3f);
706     return;
707   case R_LARCH_SUB8:
708     *loc -= val;
709     return;
710   case R_LARCH_SUB16:
711     write16le(loc, read16le(loc) - val);
712     return;
713   case R_LARCH_SUB32:
714     write32le(loc, read32le(loc) - val);
715     return;
716   case R_LARCH_SUB64:
717     write64le(loc, read64le(loc) - val);
718     return;
719   case R_LARCH_SUB_ULEB128:
720     handleUleb128(loc, -val);
721     return;
722 
723   case R_LARCH_MARK_LA:
724   case R_LARCH_MARK_PCREL:
725     // no-op
726     return;
727 
728   case R_LARCH_TLS_LE_ADD_R:
729   case R_LARCH_RELAX:
730     return; // Ignored (for now)
731 
732   case R_LARCH_TLS_DESC_LD:
733     return; // nothing to do.
734   case R_LARCH_TLS_DESC32:
735     write32le(loc + 4, val);
736     return;
737   case R_LARCH_TLS_DESC64:
738     write64le(loc + 8, val);
739     return;
740 
741   default:
742     llvm_unreachable("unknown relocation");
743   }
744 }
745 
relax(InputSection & sec)746 static bool relax(InputSection &sec) {
747   const uint64_t secAddr = sec.getVA();
748   const MutableArrayRef<Relocation> relocs = sec.relocs();
749   auto &aux = *sec.relaxAux;
750   bool changed = false;
751   ArrayRef<SymbolAnchor> sa = ArrayRef(aux.anchors);
752   uint64_t delta = 0;
753 
754   std::fill_n(aux.relocTypes.get(), relocs.size(), R_LARCH_NONE);
755   aux.writes.clear();
756   for (auto [i, r] : llvm::enumerate(relocs)) {
757     const uint64_t loc = secAddr + r.offset - delta;
758     uint32_t &cur = aux.relocDeltas[i], remove = 0;
759     switch (r.type) {
760     case R_LARCH_ALIGN: {
761       const uint64_t addend =
762           r.sym->isUndefined() ? Log2_64(r.addend) + 1 : r.addend;
763       const uint64_t allBytes = (1ULL << (addend & 0xff)) - 4;
764       const uint64_t align = 1ULL << (addend & 0xff);
765       const uint64_t maxBytes = addend >> 8;
766       const uint64_t off = loc & (align - 1);
767       const uint64_t curBytes = off == 0 ? 0 : align - off;
768       // All bytes beyond the alignment boundary should be removed.
769       // If emit bytes more than max bytes to emit, remove all.
770       if (maxBytes != 0 && curBytes > maxBytes)
771         remove = allBytes;
772       else
773         remove = allBytes - curBytes;
774       // If we can't satisfy this alignment, we've found a bad input.
775       if (LLVM_UNLIKELY(static_cast<int32_t>(remove) < 0)) {
776         errorOrWarn(getErrorLocation((const uint8_t *)loc) +
777                     "insufficient padding bytes for " + lld::toString(r.type) +
778                     ": " + Twine(allBytes) + " bytes available for " +
779                     "requested alignment of " + Twine(align) + " bytes");
780         remove = 0;
781       }
782       break;
783     }
784     }
785 
786     // For all anchors whose offsets are <= r.offset, they are preceded by
787     // the previous relocation whose `relocDeltas` value equals `delta`.
788     // Decrease their st_value and update their st_size.
789     for (; sa.size() && sa[0].offset <= r.offset; sa = sa.slice(1)) {
790       if (sa[0].end)
791         sa[0].d->size = sa[0].offset - delta - sa[0].d->value;
792       else
793         sa[0].d->value = sa[0].offset - delta;
794     }
795     delta += remove;
796     if (delta != cur) {
797       cur = delta;
798       changed = true;
799     }
800   }
801 
802   for (const SymbolAnchor &a : sa) {
803     if (a.end)
804       a.d->size = a.offset - delta - a.d->value;
805     else
806       a.d->value = a.offset - delta;
807   }
808   // Inform assignAddresses that the size has changed.
809   if (!isUInt<32>(delta))
810     fatal("section size decrease is too large: " + Twine(delta));
811   sec.bytesDropped = delta;
812   return changed;
813 }
814 
815 // When relaxing just R_LARCH_ALIGN, relocDeltas is usually changed only once in
816 // the absence of a linker script. For call and load/store R_LARCH_RELAX, code
817 // shrinkage may reduce displacement and make more relocations eligible for
818 // relaxation. Code shrinkage may increase displacement to a call/load/store
819 // target at a higher fixed address, invalidating an earlier relaxation. Any
820 // change in section sizes can have cascading effect and require another
821 // relaxation pass.
relaxOnce(int pass) const822 bool LoongArch::relaxOnce(int pass) const {
823   if (config->relocatable)
824     return false;
825 
826   if (pass == 0)
827     initSymbolAnchors();
828 
829   SmallVector<InputSection *, 0> storage;
830   bool changed = false;
831   for (OutputSection *osec : outputSections) {
832     if (!(osec->flags & SHF_EXECINSTR))
833       continue;
834     for (InputSection *sec : getInputSections(*osec, storage))
835       changed |= relax(*sec);
836   }
837   return changed;
838 }
839 
finalizeRelax(int passes) const840 void LoongArch::finalizeRelax(int passes) const {
841   log("relaxation passes: " + Twine(passes));
842   SmallVector<InputSection *, 0> storage;
843   for (OutputSection *osec : outputSections) {
844     if (!(osec->flags & SHF_EXECINSTR))
845       continue;
846     for (InputSection *sec : getInputSections(*osec, storage)) {
847       RelaxAux &aux = *sec->relaxAux;
848       if (!aux.relocDeltas)
849         continue;
850 
851       MutableArrayRef<Relocation> rels = sec->relocs();
852       ArrayRef<uint8_t> old = sec->content();
853       size_t newSize = old.size() - aux.relocDeltas[rels.size() - 1];
854       uint8_t *p = context().bAlloc.Allocate<uint8_t>(newSize);
855       uint64_t offset = 0;
856       int64_t delta = 0;
857       sec->content_ = p;
858       sec->size = newSize;
859       sec->bytesDropped = 0;
860 
861       // Update section content: remove NOPs for R_LARCH_ALIGN and rewrite
862       // instructions for relaxed relocations.
863       for (size_t i = 0, e = rels.size(); i != e; ++i) {
864         uint32_t remove = aux.relocDeltas[i] - delta;
865         delta = aux.relocDeltas[i];
866         if (remove == 0 && aux.relocTypes[i] == R_LARCH_NONE)
867           continue;
868 
869         // Copy from last location to the current relocated location.
870         const Relocation &r = rels[i];
871         uint64_t size = r.offset - offset;
872         memcpy(p, old.data() + offset, size);
873         p += size;
874         offset = r.offset + remove;
875       }
876       memcpy(p, old.data() + offset, old.size() - offset);
877 
878       // Subtract the previous relocDeltas value from the relocation offset.
879       // For a pair of R_LARCH_XXX/R_LARCH_RELAX with the same offset, decrease
880       // their r_offset by the same delta.
881       delta = 0;
882       for (size_t i = 0, e = rels.size(); i != e;) {
883         uint64_t cur = rels[i].offset;
884         do {
885           rels[i].offset -= delta;
886           if (aux.relocTypes[i] != R_LARCH_NONE)
887             rels[i].type = aux.relocTypes[i];
888         } while (++i != e && rels[i].offset == cur);
889         delta = aux.relocDeltas[i - 1];
890       }
891     }
892   }
893 }
894 
getLoongArchTargetInfo()895 TargetInfo *elf::getLoongArchTargetInfo() {
896   static LoongArch target;
897   return &target;
898 }
899