xref: /freebsd/contrib/llvm-project/clang/include/clang/AST/Decl.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_DECL_H
14 #define LLVM_CLANG_AST_DECL_H
15 
16 #include "clang/AST/APNumericStorage.h"
17 #include "clang/AST/APValue.h"
18 #include "clang/AST/ASTContextAllocate.h"
19 #include "clang/AST/DeclAccessPair.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclarationName.h"
22 #include "clang/AST/ExternalASTSource.h"
23 #include "clang/AST/NestedNameSpecifier.h"
24 #include "clang/AST/Redeclarable.h"
25 #include "clang/AST/Type.h"
26 #include "clang/Basic/AddressSpaces.h"
27 #include "clang/Basic/Diagnostic.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/Linkage.h"
31 #include "clang/Basic/OperatorKinds.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/PragmaKinds.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/Specifiers.h"
36 #include "clang/Basic/Visibility.h"
37 #include "llvm/ADT/APSInt.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/TrailingObjects.h"
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <optional>
50 #include <string>
51 #include <utility>
52 
53 namespace clang {
54 
55 class ASTContext;
56 struct ASTTemplateArgumentListInfo;
57 class CompoundStmt;
58 class DependentFunctionTemplateSpecializationInfo;
59 class EnumDecl;
60 class Expr;
61 class FunctionTemplateDecl;
62 class FunctionTemplateSpecializationInfo;
63 class FunctionTypeLoc;
64 class LabelStmt;
65 class MemberSpecializationInfo;
66 class Module;
67 class NamespaceDecl;
68 class ParmVarDecl;
69 class RecordDecl;
70 class Stmt;
71 class StringLiteral;
72 class TagDecl;
73 class TemplateArgumentList;
74 class TemplateArgumentListInfo;
75 class TemplateParameterList;
76 class TypeAliasTemplateDecl;
77 class UnresolvedSetImpl;
78 class VarTemplateDecl;
79 enum class ImplicitParamKind;
80 
81 /// The top declaration context.
82 class TranslationUnitDecl : public Decl,
83                             public DeclContext,
84                             public Redeclarable<TranslationUnitDecl> {
85   using redeclarable_base = Redeclarable<TranslationUnitDecl>;
86 
getNextRedeclarationImpl()87   TranslationUnitDecl *getNextRedeclarationImpl() override {
88     return getNextRedeclaration();
89   }
90 
getPreviousDeclImpl()91   TranslationUnitDecl *getPreviousDeclImpl() override {
92     return getPreviousDecl();
93   }
94 
getMostRecentDeclImpl()95   TranslationUnitDecl *getMostRecentDeclImpl() override {
96     return getMostRecentDecl();
97   }
98 
99   ASTContext &Ctx;
100 
101   /// The (most recently entered) anonymous namespace for this
102   /// translation unit, if one has been created.
103   NamespaceDecl *AnonymousNamespace = nullptr;
104 
105   explicit TranslationUnitDecl(ASTContext &ctx);
106 
107   virtual void anchor();
108 
109 public:
110   using redecl_range = redeclarable_base::redecl_range;
111   using redecl_iterator = redeclarable_base::redecl_iterator;
112 
113   using redeclarable_base::getMostRecentDecl;
114   using redeclarable_base::getPreviousDecl;
115   using redeclarable_base::isFirstDecl;
116   using redeclarable_base::redecls;
117   using redeclarable_base::redecls_begin;
118   using redeclarable_base::redecls_end;
119 
getASTContext()120   ASTContext &getASTContext() const { return Ctx; }
121 
getAnonymousNamespace()122   NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
123   void setAnonymousNamespace(NamespaceDecl *D);
124 
125   static TranslationUnitDecl *Create(ASTContext &C);
126 
127   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)128   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)129   static bool classofKind(Kind K) { return K == TranslationUnit; }
castToDeclContext(const TranslationUnitDecl * D)130   static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
131     return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
132   }
castFromDeclContext(const DeclContext * DC)133   static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
134     return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
135   }
136 };
137 
138 /// Represents a `#pragma comment` line. Always a child of
139 /// TranslationUnitDecl.
140 class PragmaCommentDecl final
141     : public Decl,
142       private llvm::TrailingObjects<PragmaCommentDecl, char> {
143   friend class ASTDeclReader;
144   friend class ASTDeclWriter;
145   friend TrailingObjects;
146 
147   PragmaMSCommentKind CommentKind;
148 
PragmaCommentDecl(TranslationUnitDecl * TU,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind)149   PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
150                     PragmaMSCommentKind CommentKind)
151       : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
152 
153   virtual void anchor();
154 
155 public:
156   static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
157                                    SourceLocation CommentLoc,
158                                    PragmaMSCommentKind CommentKind,
159                                    StringRef Arg);
160   static PragmaCommentDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID,
161                                                unsigned ArgSize);
162 
getCommentKind()163   PragmaMSCommentKind getCommentKind() const { return CommentKind; }
164 
getArg()165   StringRef getArg() const { return getTrailingObjects<char>(); }
166 
167   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)168   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)169   static bool classofKind(Kind K) { return K == PragmaComment; }
170 };
171 
172 /// Represents a `#pragma detect_mismatch` line. Always a child of
173 /// TranslationUnitDecl.
174 class PragmaDetectMismatchDecl final
175     : public Decl,
176       private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
177   friend class ASTDeclReader;
178   friend class ASTDeclWriter;
179   friend TrailingObjects;
180 
181   size_t ValueStart;
182 
PragmaDetectMismatchDecl(TranslationUnitDecl * TU,SourceLocation Loc,size_t ValueStart)183   PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
184                            size_t ValueStart)
185       : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
186 
187   virtual void anchor();
188 
189 public:
190   static PragmaDetectMismatchDecl *Create(const ASTContext &C,
191                                           TranslationUnitDecl *DC,
192                                           SourceLocation Loc, StringRef Name,
193                                           StringRef Value);
194   static PragmaDetectMismatchDecl *
195   CreateDeserialized(ASTContext &C, GlobalDeclID ID, unsigned NameValueSize);
196 
getName()197   StringRef getName() const { return getTrailingObjects<char>(); }
getValue()198   StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
199 
200   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)201   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)202   static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
203 };
204 
205 /// Declaration context for names declared as extern "C" in C++. This
206 /// is neither the semantic nor lexical context for such declarations, but is
207 /// used to check for conflicts with other extern "C" declarations. Example:
208 ///
209 /// \code
210 ///   namespace N { extern "C" void f(); } // #1
211 ///   void N::f() {}                       // #2
212 ///   namespace M { extern "C" void f(); } // #3
213 /// \endcode
214 ///
215 /// The semantic context of #1 is namespace N and its lexical context is the
216 /// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
217 /// context is the TU. However, both declarations are also visible in the
218 /// extern "C" context.
219 ///
220 /// The declaration at #3 finds it is a redeclaration of \c N::f through
221 /// lookup in the extern "C" context.
222 class ExternCContextDecl : public Decl, public DeclContext {
ExternCContextDecl(TranslationUnitDecl * TU)223   explicit ExternCContextDecl(TranslationUnitDecl *TU)
224     : Decl(ExternCContext, TU, SourceLocation()),
225       DeclContext(ExternCContext) {}
226 
227   virtual void anchor();
228 
229 public:
230   static ExternCContextDecl *Create(const ASTContext &C,
231                                     TranslationUnitDecl *TU);
232 
233   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)234   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)235   static bool classofKind(Kind K) { return K == ExternCContext; }
castToDeclContext(const ExternCContextDecl * D)236   static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
237     return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
238   }
castFromDeclContext(const DeclContext * DC)239   static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
240     return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
241   }
242 };
243 
244 /// This represents a decl that may have a name.  Many decls have names such
245 /// as ObjCMethodDecl, but not \@class, etc.
246 ///
247 /// Note that not every NamedDecl is actually named (e.g., a struct might
248 /// be anonymous), and not every name is an identifier.
249 class NamedDecl : public Decl {
250   /// The name of this declaration, which is typically a normal
251   /// identifier but may also be a special kind of name (C++
252   /// constructor, Objective-C selector, etc.)
253   DeclarationName Name;
254 
255   virtual void anchor();
256 
257 private:
258   NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
259 
260 protected:
NamedDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N)261   NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
262       : Decl(DK, DC, L), Name(N) {}
263 
264 public:
265   /// Get the identifier that names this declaration, if there is one.
266   ///
267   /// This will return NULL if this declaration has no name (e.g., for
268   /// an unnamed class) or if the name is a special name (C++ constructor,
269   /// Objective-C selector, etc.).
getIdentifier()270   IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
271 
272   /// Get the name of identifier for this declaration as a StringRef.
273   ///
274   /// This requires that the declaration have a name and that it be a simple
275   /// identifier.
getName()276   StringRef getName() const {
277     assert(Name.isIdentifier() && "Name is not a simple identifier");
278     return getIdentifier() ? getIdentifier()->getName() : "";
279   }
280 
281   /// Get a human-readable name for the declaration, even if it is one of the
282   /// special kinds of names (C++ constructor, Objective-C selector, etc).
283   ///
284   /// Creating this name requires expensive string manipulation, so it should
285   /// be called only when performance doesn't matter. For simple declarations,
286   /// getNameAsCString() should suffice.
287   //
288   // FIXME: This function should be renamed to indicate that it is not just an
289   // alternate form of getName(), and clients should move as appropriate.
290   //
291   // FIXME: Deprecated, move clients to getName().
getNameAsString()292   std::string getNameAsString() const { return Name.getAsString(); }
293 
294   /// Pretty-print the unqualified name of this declaration. Can be overloaded
295   /// by derived classes to provide a more user-friendly name when appropriate.
296   virtual void printName(raw_ostream &OS, const PrintingPolicy &Policy) const;
297   /// Calls printName() with the ASTContext printing policy from the decl.
298   void printName(raw_ostream &OS) const;
299 
300   /// Get the actual, stored name of the declaration, which may be a special
301   /// name.
302   ///
303   /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
304   /// should be sent into the diagnostic instead of using the result of
305   /// \p getDeclName().
306   ///
307   /// A \p DeclarationName in a diagnostic will just be streamed to the output,
308   /// which will directly result in a call to \p DeclarationName::print.
309   ///
310   /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
311   /// \p DeclarationName::print, but with two customisation points along the
312   /// way (\p getNameForDiagnostic and \p printName). These are used to print
313   /// the template arguments if any, and to provide a user-friendly name for
314   /// some entities (such as unnamed variables and anonymous records).
getDeclName()315   DeclarationName getDeclName() const { return Name; }
316 
317   /// Set the name of this declaration.
setDeclName(DeclarationName N)318   void setDeclName(DeclarationName N) { Name = N; }
319 
320   /// Returns a human-readable qualified name for this declaration, like
321   /// A::B::i, for i being member of namespace A::B.
322   ///
323   /// If the declaration is not a member of context which can be named (record,
324   /// namespace), it will return the same result as printName().
325   ///
326   /// Creating this name is expensive, so it should be called only when
327   /// performance doesn't matter.
328   void printQualifiedName(raw_ostream &OS) const;
329   void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
330 
331   /// Print only the nested name specifier part of a fully-qualified name,
332   /// including the '::' at the end. E.g.
333   ///    when `printQualifiedName(D)` prints "A::B::i",
334   ///    this function prints "A::B::".
335   void printNestedNameSpecifier(raw_ostream &OS) const;
336   void printNestedNameSpecifier(raw_ostream &OS,
337                                 const PrintingPolicy &Policy) const;
338 
339   // FIXME: Remove string version.
340   std::string getQualifiedNameAsString() const;
341 
342   /// Appends a human-readable name for this declaration into the given stream.
343   ///
344   /// This is the method invoked by Sema when displaying a NamedDecl
345   /// in a diagnostic.  It does not necessarily produce the same
346   /// result as printName(); for example, class template
347   /// specializations are printed with their template arguments.
348   virtual void getNameForDiagnostic(raw_ostream &OS,
349                                     const PrintingPolicy &Policy,
350                                     bool Qualified) const;
351 
352   /// Determine whether this declaration, if known to be well-formed within
353   /// its context, will replace the declaration OldD if introduced into scope.
354   ///
355   /// A declaration will replace another declaration if, for example, it is
356   /// a redeclaration of the same variable or function, but not if it is a
357   /// declaration of a different kind (function vs. class) or an overloaded
358   /// function.
359   ///
360   /// \param IsKnownNewer \c true if this declaration is known to be newer
361   /// than \p OldD (for instance, if this declaration is newly-created).
362   bool declarationReplaces(const NamedDecl *OldD,
363                            bool IsKnownNewer = true) const;
364 
365   /// Determine whether this declaration has linkage.
366   bool hasLinkage() const;
367 
368   using Decl::isModulePrivate;
369   using Decl::setModulePrivate;
370 
371   /// Determine whether this declaration is a C++ class member.
isCXXClassMember()372   bool isCXXClassMember() const {
373     const DeclContext *DC = getDeclContext();
374 
375     // C++0x [class.mem]p1:
376     //   The enumerators of an unscoped enumeration defined in
377     //   the class are members of the class.
378     if (isa<EnumDecl>(DC))
379       DC = DC->getRedeclContext();
380 
381     return DC->isRecord();
382   }
383 
384   /// Determine whether the given declaration is an instance member of
385   /// a C++ class.
386   bool isCXXInstanceMember() const;
387 
388   /// Determine if the declaration obeys the reserved identifier rules of the
389   /// given language.
390   ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
391 
392   /// Determine what kind of linkage this entity has.
393   ///
394   /// This is not the linkage as defined by the standard or the codegen notion
395   /// of linkage. It is just an implementation detail that is used to compute
396   /// those.
397   Linkage getLinkageInternal() const;
398 
399   /// Get the linkage from a semantic point of view. Entities in
400   /// anonymous namespaces are external (in c++98).
401   Linkage getFormalLinkage() const;
402 
403   /// True if this decl has external linkage.
hasExternalFormalLinkage()404   bool hasExternalFormalLinkage() const {
405     return isExternalFormalLinkage(getLinkageInternal());
406   }
407 
isExternallyVisible()408   bool isExternallyVisible() const {
409     return clang::isExternallyVisible(getLinkageInternal());
410   }
411 
412   /// Determine whether this declaration can be redeclared in a
413   /// different translation unit.
isExternallyDeclarable()414   bool isExternallyDeclarable() const {
415     return isExternallyVisible() && !getOwningModuleForLinkage();
416   }
417 
418   /// Determines the visibility of this entity.
getVisibility()419   Visibility getVisibility() const {
420     return getLinkageAndVisibility().getVisibility();
421   }
422 
423   /// Determines the linkage and visibility of this entity.
424   LinkageInfo getLinkageAndVisibility() const;
425 
426   /// Kinds of explicit visibility.
427   enum ExplicitVisibilityKind {
428     /// Do an LV computation for, ultimately, a type.
429     /// Visibility may be restricted by type visibility settings and
430     /// the visibility of template arguments.
431     VisibilityForType,
432 
433     /// Do an LV computation for, ultimately, a non-type declaration.
434     /// Visibility may be restricted by value visibility settings and
435     /// the visibility of template arguments.
436     VisibilityForValue
437   };
438 
439   /// If visibility was explicitly specified for this
440   /// declaration, return that visibility.
441   std::optional<Visibility>
442   getExplicitVisibility(ExplicitVisibilityKind kind) const;
443 
444   /// True if the computed linkage is valid. Used for consistency
445   /// checking. Should always return true.
446   bool isLinkageValid() const;
447 
448   /// True if something has required us to compute the linkage
449   /// of this declaration.
450   ///
451   /// Language features which can retroactively change linkage (like a
452   /// typedef name for linkage purposes) may need to consider this,
453   /// but hopefully only in transitory ways during parsing.
hasLinkageBeenComputed()454   bool hasLinkageBeenComputed() const {
455     return hasCachedLinkage();
456   }
457 
458   bool isPlaceholderVar(const LangOptions &LangOpts) const;
459 
460   /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
461   /// the underlying named decl.
getUnderlyingDecl()462   NamedDecl *getUnderlyingDecl() {
463     // Fast-path the common case.
464     if (this->getKind() != UsingShadow &&
465         this->getKind() != ConstructorUsingShadow &&
466         this->getKind() != ObjCCompatibleAlias &&
467         this->getKind() != NamespaceAlias)
468       return this;
469 
470     return getUnderlyingDeclImpl();
471   }
getUnderlyingDecl()472   const NamedDecl *getUnderlyingDecl() const {
473     return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
474   }
475 
getMostRecentDecl()476   NamedDecl *getMostRecentDecl() {
477     return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
478   }
getMostRecentDecl()479   const NamedDecl *getMostRecentDecl() const {
480     return const_cast<NamedDecl*>(this)->getMostRecentDecl();
481   }
482 
483   ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
484 
classof(const Decl * D)485   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)486   static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
487 };
488 
489 inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
490   ND.printName(OS);
491   return OS;
492 }
493 
494 /// Represents the declaration of a label.  Labels also have a
495 /// corresponding LabelStmt, which indicates the position that the label was
496 /// defined at.  For normal labels, the location of the decl is the same as the
497 /// location of the statement.  For GNU local labels (__label__), the decl
498 /// location is where the __label__ is.
499 class LabelDecl : public NamedDecl {
500   LabelStmt *TheStmt;
501   StringRef MSAsmName;
502   bool MSAsmNameResolved = false;
503 
504   /// For normal labels, this is the same as the main declaration
505   /// label, i.e., the location of the identifier; for GNU local labels,
506   /// this is the location of the __label__ keyword.
507   SourceLocation LocStart;
508 
LabelDecl(DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,LabelStmt * S,SourceLocation StartL)509   LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
510             LabelStmt *S, SourceLocation StartL)
511       : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
512 
513   void anchor() override;
514 
515 public:
516   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
517                            SourceLocation IdentL, IdentifierInfo *II);
518   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
519                            SourceLocation IdentL, IdentifierInfo *II,
520                            SourceLocation GnuLabelL);
521   static LabelDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
522 
getStmt()523   LabelStmt *getStmt() const { return TheStmt; }
setStmt(LabelStmt * T)524   void setStmt(LabelStmt *T) { TheStmt = T; }
525 
isGnuLocal()526   bool isGnuLocal() const { return LocStart != getLocation(); }
setLocStart(SourceLocation L)527   void setLocStart(SourceLocation L) { LocStart = L; }
528 
getSourceRange()529   SourceRange getSourceRange() const override LLVM_READONLY {
530     return SourceRange(LocStart, getLocation());
531   }
532 
isMSAsmLabel()533   bool isMSAsmLabel() const { return !MSAsmName.empty(); }
isResolvedMSAsmLabel()534   bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
535   void setMSAsmLabel(StringRef Name);
getMSAsmLabel()536   StringRef getMSAsmLabel() const { return MSAsmName; }
setMSAsmLabelResolved()537   void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
538 
539   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)540   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)541   static bool classofKind(Kind K) { return K == Label; }
542 };
543 
544 /// Represent a C++ namespace.
545 class NamespaceDecl : public NamedDecl,
546                       public DeclContext,
547                       public Redeclarable<NamespaceDecl> {
548   /// The starting location of the source range, pointing
549   /// to either the namespace or the inline keyword.
550   SourceLocation LocStart;
551 
552   /// The ending location of the source range.
553   SourceLocation RBraceLoc;
554 
555   /// The unnamed namespace that inhabits this namespace, if any.
556   NamespaceDecl *AnonymousNamespace = nullptr;
557 
558   NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
559                 SourceLocation StartLoc, SourceLocation IdLoc,
560                 IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested);
561 
562   using redeclarable_base = Redeclarable<NamespaceDecl>;
563 
564   NamespaceDecl *getNextRedeclarationImpl() override;
565   NamespaceDecl *getPreviousDeclImpl() override;
566   NamespaceDecl *getMostRecentDeclImpl() override;
567 
568 public:
569   friend class ASTDeclReader;
570   friend class ASTDeclWriter;
571 
572   static NamespaceDecl *Create(ASTContext &C, DeclContext *DC, bool Inline,
573                                SourceLocation StartLoc, SourceLocation IdLoc,
574                                IdentifierInfo *Id, NamespaceDecl *PrevDecl,
575                                bool Nested);
576 
577   static NamespaceDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
578 
579   using redecl_range = redeclarable_base::redecl_range;
580   using redecl_iterator = redeclarable_base::redecl_iterator;
581 
582   using redeclarable_base::redecls_begin;
583   using redeclarable_base::redecls_end;
584   using redeclarable_base::redecls;
585   using redeclarable_base::getPreviousDecl;
586   using redeclarable_base::getMostRecentDecl;
587   using redeclarable_base::isFirstDecl;
588 
589   /// Returns true if this is an anonymous namespace declaration.
590   ///
591   /// For example:
592   /// \code
593   ///   namespace {
594   ///     ...
595   ///   };
596   /// \endcode
597   /// q.v. C++ [namespace.unnamed]
isAnonymousNamespace()598   bool isAnonymousNamespace() const {
599     return !getIdentifier();
600   }
601 
602   /// Returns true if this is an inline namespace declaration.
isInline()603   bool isInline() const { return NamespaceDeclBits.IsInline; }
604 
605   /// Set whether this is an inline namespace declaration.
setInline(bool Inline)606   void setInline(bool Inline) { NamespaceDeclBits.IsInline = Inline; }
607 
608   /// Returns true if this is a nested namespace declaration.
609   /// \code
610   /// namespace outer::nested { }
611   /// \endcode
isNested()612   bool isNested() const { return NamespaceDeclBits.IsNested; }
613 
614   /// Set whether this is a nested namespace declaration.
setNested(bool Nested)615   void setNested(bool Nested) { NamespaceDeclBits.IsNested = Nested; }
616 
617   /// Returns true if the inline qualifier for \c Name is redundant.
isRedundantInlineQualifierFor(DeclarationName Name)618   bool isRedundantInlineQualifierFor(DeclarationName Name) const {
619     if (!isInline())
620       return false;
621     auto X = lookup(Name);
622     // We should not perform a lookup within a transparent context, so find a
623     // non-transparent parent context.
624     auto Y = getParent()->getNonTransparentContext()->lookup(Name);
625     return std::distance(X.begin(), X.end()) ==
626       std::distance(Y.begin(), Y.end());
627   }
628 
629   /// Retrieve the anonymous namespace that inhabits this namespace, if any.
getAnonymousNamespace()630   NamespaceDecl *getAnonymousNamespace() const {
631     return getFirstDecl()->AnonymousNamespace;
632   }
633 
setAnonymousNamespace(NamespaceDecl * D)634   void setAnonymousNamespace(NamespaceDecl *D) {
635     getFirstDecl()->AnonymousNamespace = D;
636   }
637 
638   /// Retrieves the canonical declaration of this namespace.
getCanonicalDecl()639   NamespaceDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()640   const NamespaceDecl *getCanonicalDecl() const { return getFirstDecl(); }
641 
getSourceRange()642   SourceRange getSourceRange() const override LLVM_READONLY {
643     return SourceRange(LocStart, RBraceLoc);
644   }
645 
getBeginLoc()646   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
getRBraceLoc()647   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setLocStart(SourceLocation L)648   void setLocStart(SourceLocation L) { LocStart = L; }
setRBraceLoc(SourceLocation L)649   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
650 
651   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)652   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)653   static bool classofKind(Kind K) { return K == Namespace; }
castToDeclContext(const NamespaceDecl * D)654   static DeclContext *castToDeclContext(const NamespaceDecl *D) {
655     return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
656   }
castFromDeclContext(const DeclContext * DC)657   static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
658     return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
659   }
660 };
661 
662 class VarDecl;
663 
664 /// Represent the declaration of a variable (in which case it is
665 /// an lvalue) a function (in which case it is a function designator) or
666 /// an enum constant.
667 class ValueDecl : public NamedDecl {
668   QualType DeclType;
669 
670   void anchor() override;
671 
672 protected:
ValueDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T)673   ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
674             DeclarationName N, QualType T)
675     : NamedDecl(DK, DC, L, N), DeclType(T) {}
676 
677 public:
getType()678   QualType getType() const { return DeclType; }
setType(QualType newType)679   void setType(QualType newType) { DeclType = newType; }
680 
681   /// Determine whether this symbol is weakly-imported,
682   ///        or declared with the weak or weak-ref attr.
683   bool isWeak() const;
684 
685   /// Whether this variable is the implicit variable for a lambda init-capture.
686   /// Only VarDecl can be init captures, but both VarDecl and BindingDecl
687   /// can be captured.
688   bool isInitCapture() const;
689 
690   // If this is a VarDecl, or a BindindDecl with an
691   // associated decomposed VarDecl, return that VarDecl.
692   VarDecl *getPotentiallyDecomposedVarDecl();
getPotentiallyDecomposedVarDecl()693   const VarDecl *getPotentiallyDecomposedVarDecl() const {
694     return const_cast<ValueDecl *>(this)->getPotentiallyDecomposedVarDecl();
695   }
696 
697   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)698   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)699   static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
700 };
701 
702 /// A struct with extended info about a syntactic
703 /// name qualifier, to be used for the case of out-of-line declarations.
704 struct QualifierInfo {
705   NestedNameSpecifierLoc QualifierLoc;
706 
707   /// The number of "outer" template parameter lists.
708   /// The count includes all of the template parameter lists that were matched
709   /// against the template-ids occurring into the NNS and possibly (in the
710   /// case of an explicit specialization) a final "template <>".
711   unsigned NumTemplParamLists = 0;
712 
713   /// A new-allocated array of size NumTemplParamLists,
714   /// containing pointers to the "outer" template parameter lists.
715   /// It includes all of the template parameter lists that were matched
716   /// against the template-ids occurring into the NNS and possibly (in the
717   /// case of an explicit specialization) a final "template <>".
718   TemplateParameterList** TemplParamLists = nullptr;
719 
720   QualifierInfo() = default;
721   QualifierInfo(const QualifierInfo &) = delete;
722   QualifierInfo& operator=(const QualifierInfo &) = delete;
723 
724   /// Sets info about "outer" template parameter lists.
725   void setTemplateParameterListsInfo(ASTContext &Context,
726                                      ArrayRef<TemplateParameterList *> TPLists);
727 };
728 
729 /// Represents a ValueDecl that came out of a declarator.
730 /// Contains type source information through TypeSourceInfo.
731 class DeclaratorDecl : public ValueDecl {
732   // A struct representing a TInfo, a trailing requires-clause and a syntactic
733   // qualifier, to be used for the (uncommon) case of out-of-line declarations
734   // and constrained function decls.
735   struct ExtInfo : public QualifierInfo {
736     TypeSourceInfo *TInfo;
737     Expr *TrailingRequiresClause = nullptr;
738   };
739 
740   llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
741 
742   /// The start of the source range for this declaration,
743   /// ignoring outer template declarations.
744   SourceLocation InnerLocStart;
745 
hasExtInfo()746   bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
getExtInfo()747   ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
getExtInfo()748   const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
749 
750 protected:
DeclaratorDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL)751   DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
752                  DeclarationName N, QualType T, TypeSourceInfo *TInfo,
753                  SourceLocation StartL)
754       : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
755 
756 public:
757   friend class ASTDeclReader;
758   friend class ASTDeclWriter;
759 
getTypeSourceInfo()760   TypeSourceInfo *getTypeSourceInfo() const {
761     return hasExtInfo()
762       ? getExtInfo()->TInfo
763       : DeclInfo.get<TypeSourceInfo*>();
764   }
765 
setTypeSourceInfo(TypeSourceInfo * TI)766   void setTypeSourceInfo(TypeSourceInfo *TI) {
767     if (hasExtInfo())
768       getExtInfo()->TInfo = TI;
769     else
770       DeclInfo = TI;
771   }
772 
773   /// Return start of source range ignoring outer template declarations.
getInnerLocStart()774   SourceLocation getInnerLocStart() const { return InnerLocStart; }
setInnerLocStart(SourceLocation L)775   void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
776 
777   /// Return start of source range taking into account any outer template
778   /// declarations.
779   SourceLocation getOuterLocStart() const;
780 
781   SourceRange getSourceRange() const override LLVM_READONLY;
782 
getBeginLoc()783   SourceLocation getBeginLoc() const LLVM_READONLY {
784     return getOuterLocStart();
785   }
786 
787   /// Retrieve the nested-name-specifier that qualifies the name of this
788   /// declaration, if it was present in the source.
getQualifier()789   NestedNameSpecifier *getQualifier() const {
790     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
791                         : nullptr;
792   }
793 
794   /// Retrieve the nested-name-specifier (with source-location
795   /// information) that qualifies the name of this declaration, if it was
796   /// present in the source.
getQualifierLoc()797   NestedNameSpecifierLoc getQualifierLoc() const {
798     return hasExtInfo() ? getExtInfo()->QualifierLoc
799                         : NestedNameSpecifierLoc();
800   }
801 
802   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
803 
804   /// \brief Get the constraint-expression introduced by the trailing
805   /// requires-clause in the function/member declaration, or null if no
806   /// requires-clause was provided.
getTrailingRequiresClause()807   Expr *getTrailingRequiresClause() {
808     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
809                         : nullptr;
810   }
811 
getTrailingRequiresClause()812   const Expr *getTrailingRequiresClause() const {
813     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
814                         : nullptr;
815   }
816 
817   void setTrailingRequiresClause(Expr *TrailingRequiresClause);
818 
getNumTemplateParameterLists()819   unsigned getNumTemplateParameterLists() const {
820     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
821   }
822 
getTemplateParameterList(unsigned index)823   TemplateParameterList *getTemplateParameterList(unsigned index) const {
824     assert(index < getNumTemplateParameterLists());
825     return getExtInfo()->TemplParamLists[index];
826   }
827 
828   void setTemplateParameterListsInfo(ASTContext &Context,
829                                      ArrayRef<TemplateParameterList *> TPLists);
830 
831   SourceLocation getTypeSpecStartLoc() const;
832   SourceLocation getTypeSpecEndLoc() const;
833 
834   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)835   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)836   static bool classofKind(Kind K) {
837     return K >= firstDeclarator && K <= lastDeclarator;
838   }
839 };
840 
841 /// Structure used to store a statement, the constant value to
842 /// which it was evaluated (if any), and whether or not the statement
843 /// is an integral constant expression (if known).
844 struct EvaluatedStmt {
845   /// Whether this statement was already evaluated.
846   bool WasEvaluated : 1;
847 
848   /// Whether this statement is being evaluated.
849   bool IsEvaluating : 1;
850 
851   /// Whether this variable is known to have constant initialization. This is
852   /// currently only computed in C++, for static / thread storage duration
853   /// variables that might have constant initialization and for variables that
854   /// are usable in constant expressions.
855   bool HasConstantInitialization : 1;
856 
857   /// Whether this variable is known to have constant destruction. That is,
858   /// whether running the destructor on the initial value is a side-effect
859   /// (and doesn't inspect any state that might have changed during program
860   /// execution). This is currently only computed if the destructor is
861   /// non-trivial.
862   bool HasConstantDestruction : 1;
863 
864   /// In C++98, whether the initializer is an ICE. This affects whether the
865   /// variable is usable in constant expressions.
866   bool HasICEInit : 1;
867   bool CheckedForICEInit : 1;
868 
869   LazyDeclStmtPtr Value;
870   APValue Evaluated;
871 
EvaluatedStmtEvaluatedStmt872   EvaluatedStmt()
873       : WasEvaluated(false), IsEvaluating(false),
874         HasConstantInitialization(false), HasConstantDestruction(false),
875         HasICEInit(false), CheckedForICEInit(false) {}
876 };
877 
878 /// Represents a variable declaration or definition.
879 class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
880 public:
881   /// Initialization styles.
882   enum InitializationStyle {
883     /// C-style initialization with assignment
884     CInit,
885 
886     /// Call-style initialization (C++98)
887     CallInit,
888 
889     /// Direct list-initialization (C++11)
890     ListInit,
891 
892     /// Parenthesized list-initialization (C++20)
893     ParenListInit
894   };
895 
896   /// Kinds of thread-local storage.
897   enum TLSKind {
898     /// Not a TLS variable.
899     TLS_None,
900 
901     /// TLS with a known-constant initializer.
902     TLS_Static,
903 
904     /// TLS with a dynamic initializer.
905     TLS_Dynamic
906   };
907 
908   /// Return the string used to specify the storage class \p SC.
909   ///
910   /// It is illegal to call this function with SC == None.
911   static const char *getStorageClassSpecifierString(StorageClass SC);
912 
913 protected:
914   // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
915   // have allocated the auxiliary struct of information there.
916   //
917   // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
918   // this as *many* VarDecls are ParmVarDecls that don't have default
919   // arguments. We could save some space by moving this pointer union to be
920   // allocated in trailing space when necessary.
921   using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
922 
923   /// The initializer for this variable or, for a ParmVarDecl, the
924   /// C++ default argument.
925   mutable InitType Init;
926 
927 private:
928   friend class ASTDeclReader;
929   friend class ASTNodeImporter;
930   friend class StmtIteratorBase;
931 
932   class VarDeclBitfields {
933     friend class ASTDeclReader;
934     friend class VarDecl;
935 
936     LLVM_PREFERRED_TYPE(StorageClass)
937     unsigned SClass : 3;
938     LLVM_PREFERRED_TYPE(ThreadStorageClassSpecifier)
939     unsigned TSCSpec : 2;
940     LLVM_PREFERRED_TYPE(InitializationStyle)
941     unsigned InitStyle : 2;
942 
943     /// Whether this variable is an ARC pseudo-__strong variable; see
944     /// isARCPseudoStrong() for details.
945     LLVM_PREFERRED_TYPE(bool)
946     unsigned ARCPseudoStrong : 1;
947   };
948   enum { NumVarDeclBits = 8 };
949 
950 protected:
951   enum { NumParameterIndexBits = 8 };
952 
953   enum DefaultArgKind {
954     DAK_None,
955     DAK_Unparsed,
956     DAK_Uninstantiated,
957     DAK_Normal
958   };
959 
960   enum { NumScopeDepthOrObjCQualsBits = 7 };
961 
962   class ParmVarDeclBitfields {
963     friend class ASTDeclReader;
964     friend class ParmVarDecl;
965 
966     LLVM_PREFERRED_TYPE(VarDeclBitfields)
967     unsigned : NumVarDeclBits;
968 
969     /// Whether this parameter inherits a default argument from a
970     /// prior declaration.
971     LLVM_PREFERRED_TYPE(bool)
972     unsigned HasInheritedDefaultArg : 1;
973 
974     /// Describes the kind of default argument for this parameter. By default
975     /// this is none. If this is normal, then the default argument is stored in
976     /// the \c VarDecl initializer expression unless we were unable to parse
977     /// (even an invalid) expression for the default argument.
978     LLVM_PREFERRED_TYPE(DefaultArgKind)
979     unsigned DefaultArgKind : 2;
980 
981     /// Whether this parameter undergoes K&R argument promotion.
982     LLVM_PREFERRED_TYPE(bool)
983     unsigned IsKNRPromoted : 1;
984 
985     /// Whether this parameter is an ObjC method parameter or not.
986     LLVM_PREFERRED_TYPE(bool)
987     unsigned IsObjCMethodParam : 1;
988 
989     /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
990     /// Otherwise, the number of function parameter scopes enclosing
991     /// the function parameter scope in which this parameter was
992     /// declared.
993     unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
994 
995     /// The number of parameters preceding this parameter in the
996     /// function parameter scope in which it was declared.
997     unsigned ParameterIndex : NumParameterIndexBits;
998   };
999 
1000   class NonParmVarDeclBitfields {
1001     friend class ASTDeclReader;
1002     friend class ImplicitParamDecl;
1003     friend class VarDecl;
1004 
1005     LLVM_PREFERRED_TYPE(VarDeclBitfields)
1006     unsigned : NumVarDeclBits;
1007 
1008     // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
1009     /// Whether this variable is a definition which was demoted due to
1010     /// module merge.
1011     LLVM_PREFERRED_TYPE(bool)
1012     unsigned IsThisDeclarationADemotedDefinition : 1;
1013 
1014     /// Whether this variable is the exception variable in a C++ catch
1015     /// or an Objective-C @catch statement.
1016     LLVM_PREFERRED_TYPE(bool)
1017     unsigned ExceptionVar : 1;
1018 
1019     /// Whether this local variable could be allocated in the return
1020     /// slot of its function, enabling the named return value optimization
1021     /// (NRVO).
1022     LLVM_PREFERRED_TYPE(bool)
1023     unsigned NRVOVariable : 1;
1024 
1025     /// Whether this variable is the for-range-declaration in a C++0x
1026     /// for-range statement.
1027     LLVM_PREFERRED_TYPE(bool)
1028     unsigned CXXForRangeDecl : 1;
1029 
1030     /// Whether this variable is the for-in loop declaration in Objective-C.
1031     LLVM_PREFERRED_TYPE(bool)
1032     unsigned ObjCForDecl : 1;
1033 
1034     /// Whether this variable is (C++1z) inline.
1035     LLVM_PREFERRED_TYPE(bool)
1036     unsigned IsInline : 1;
1037 
1038     /// Whether this variable has (C++1z) inline explicitly specified.
1039     LLVM_PREFERRED_TYPE(bool)
1040     unsigned IsInlineSpecified : 1;
1041 
1042     /// Whether this variable is (C++0x) constexpr.
1043     LLVM_PREFERRED_TYPE(bool)
1044     unsigned IsConstexpr : 1;
1045 
1046     /// Whether this variable is the implicit variable for a lambda
1047     /// init-capture.
1048     LLVM_PREFERRED_TYPE(bool)
1049     unsigned IsInitCapture : 1;
1050 
1051     /// Whether this local extern variable's previous declaration was
1052     /// declared in the same block scope. This controls whether we should merge
1053     /// the type of this declaration with its previous declaration.
1054     LLVM_PREFERRED_TYPE(bool)
1055     unsigned PreviousDeclInSameBlockScope : 1;
1056 
1057     /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1058     /// something else.
1059     LLVM_PREFERRED_TYPE(ImplicitParamKind)
1060     unsigned ImplicitParamKind : 3;
1061 
1062     LLVM_PREFERRED_TYPE(bool)
1063     unsigned EscapingByref : 1;
1064 
1065     LLVM_PREFERRED_TYPE(bool)
1066     unsigned IsCXXCondDecl : 1;
1067   };
1068 
1069   union {
1070     unsigned AllBits;
1071     VarDeclBitfields VarDeclBits;
1072     ParmVarDeclBitfields ParmVarDeclBits;
1073     NonParmVarDeclBitfields NonParmVarDeclBits;
1074   };
1075 
1076   VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1077           SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
1078           TypeSourceInfo *TInfo, StorageClass SC);
1079 
1080   using redeclarable_base = Redeclarable<VarDecl>;
1081 
getNextRedeclarationImpl()1082   VarDecl *getNextRedeclarationImpl() override {
1083     return getNextRedeclaration();
1084   }
1085 
getPreviousDeclImpl()1086   VarDecl *getPreviousDeclImpl() override {
1087     return getPreviousDecl();
1088   }
1089 
getMostRecentDeclImpl()1090   VarDecl *getMostRecentDeclImpl() override {
1091     return getMostRecentDecl();
1092   }
1093 
1094 public:
1095   using redecl_range = redeclarable_base::redecl_range;
1096   using redecl_iterator = redeclarable_base::redecl_iterator;
1097 
1098   using redeclarable_base::redecls_begin;
1099   using redeclarable_base::redecls_end;
1100   using redeclarable_base::redecls;
1101   using redeclarable_base::getPreviousDecl;
1102   using redeclarable_base::getMostRecentDecl;
1103   using redeclarable_base::isFirstDecl;
1104 
1105   static VarDecl *Create(ASTContext &C, DeclContext *DC,
1106                          SourceLocation StartLoc, SourceLocation IdLoc,
1107                          const IdentifierInfo *Id, QualType T,
1108                          TypeSourceInfo *TInfo, StorageClass S);
1109 
1110   static VarDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
1111 
1112   SourceRange getSourceRange() const override LLVM_READONLY;
1113 
1114   /// Returns the storage class as written in the source. For the
1115   /// computed linkage of symbol, see getLinkage.
getStorageClass()1116   StorageClass getStorageClass() const {
1117     return (StorageClass) VarDeclBits.SClass;
1118   }
1119   void setStorageClass(StorageClass SC);
1120 
setTSCSpec(ThreadStorageClassSpecifier TSC)1121   void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1122     VarDeclBits.TSCSpec = TSC;
1123     assert(VarDeclBits.TSCSpec == TSC && "truncation");
1124   }
getTSCSpec()1125   ThreadStorageClassSpecifier getTSCSpec() const {
1126     return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1127   }
1128   TLSKind getTLSKind() const;
1129 
1130   /// Returns true if a variable with function scope is a non-static local
1131   /// variable.
hasLocalStorage()1132   bool hasLocalStorage() const {
1133     if (getStorageClass() == SC_None) {
1134       // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1135       // used to describe variables allocated in global memory and which are
1136       // accessed inside a kernel(s) as read-only variables. As such, variables
1137       // in constant address space cannot have local storage.
1138       if (getType().getAddressSpace() == LangAS::opencl_constant)
1139         return false;
1140       // Second check is for C++11 [dcl.stc]p4.
1141       return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1142     }
1143 
1144     // Global Named Register (GNU extension)
1145     if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1146       return false;
1147 
1148     // Return true for:  Auto, Register.
1149     // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1150 
1151     return getStorageClass() >= SC_Auto;
1152   }
1153 
1154   /// Returns true if a variable with function scope is a static local
1155   /// variable.
isStaticLocal()1156   bool isStaticLocal() const {
1157     return (getStorageClass() == SC_Static ||
1158             // C++11 [dcl.stc]p4
1159             (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1160       && !isFileVarDecl();
1161   }
1162 
1163   /// Returns true if a variable has extern or __private_extern__
1164   /// storage.
hasExternalStorage()1165   bool hasExternalStorage() const {
1166     return getStorageClass() == SC_Extern ||
1167            getStorageClass() == SC_PrivateExtern;
1168   }
1169 
1170   /// Returns true for all variables that do not have local storage.
1171   ///
1172   /// This includes all global variables as well as static variables declared
1173   /// within a function.
hasGlobalStorage()1174   bool hasGlobalStorage() const { return !hasLocalStorage(); }
1175 
1176   /// Get the storage duration of this variable, per C++ [basic.stc].
getStorageDuration()1177   StorageDuration getStorageDuration() const {
1178     return hasLocalStorage() ? SD_Automatic :
1179            getTSCSpec() ? SD_Thread : SD_Static;
1180   }
1181 
1182   /// Compute the language linkage.
1183   LanguageLinkage getLanguageLinkage() const;
1184 
1185   /// Determines whether this variable is a variable with external, C linkage.
1186   bool isExternC() const;
1187 
1188   /// Determines whether this variable's context is, or is nested within,
1189   /// a C++ extern "C" linkage spec.
1190   bool isInExternCContext() const;
1191 
1192   /// Determines whether this variable's context is, or is nested within,
1193   /// a C++ extern "C++" linkage spec.
1194   bool isInExternCXXContext() const;
1195 
1196   /// Returns true for local variable declarations other than parameters.
1197   /// Note that this includes static variables inside of functions. It also
1198   /// includes variables inside blocks.
1199   ///
1200   ///   void foo() { int x; static int y; extern int z; }
isLocalVarDecl()1201   bool isLocalVarDecl() const {
1202     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1203       return false;
1204     if (const DeclContext *DC = getLexicalDeclContext())
1205       return DC->getRedeclContext()->isFunctionOrMethod();
1206     return false;
1207   }
1208 
1209   /// Similar to isLocalVarDecl but also includes parameters.
isLocalVarDeclOrParm()1210   bool isLocalVarDeclOrParm() const {
1211     return isLocalVarDecl() || getKind() == Decl::ParmVar;
1212   }
1213 
1214   /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
isFunctionOrMethodVarDecl()1215   bool isFunctionOrMethodVarDecl() const {
1216     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1217       return false;
1218     const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1219     return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1220   }
1221 
1222   /// Determines whether this is a static data member.
1223   ///
1224   /// This will only be true in C++, and applies to, e.g., the
1225   /// variable 'x' in:
1226   /// \code
1227   /// struct S {
1228   ///   static int x;
1229   /// };
1230   /// \endcode
isStaticDataMember()1231   bool isStaticDataMember() const {
1232     // If it wasn't static, it would be a FieldDecl.
1233     return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1234   }
1235 
1236   VarDecl *getCanonicalDecl() override;
getCanonicalDecl()1237   const VarDecl *getCanonicalDecl() const {
1238     return const_cast<VarDecl*>(this)->getCanonicalDecl();
1239   }
1240 
1241   enum DefinitionKind {
1242     /// This declaration is only a declaration.
1243     DeclarationOnly,
1244 
1245     /// This declaration is a tentative definition.
1246     TentativeDefinition,
1247 
1248     /// This declaration is definitely a definition.
1249     Definition
1250   };
1251 
1252   /// Check whether this declaration is a definition. If this could be
1253   /// a tentative definition (in C), don't check whether there's an overriding
1254   /// definition.
1255   DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
isThisDeclarationADefinition()1256   DefinitionKind isThisDeclarationADefinition() const {
1257     return isThisDeclarationADefinition(getASTContext());
1258   }
1259 
1260   /// Check whether this variable is defined in this translation unit.
1261   DefinitionKind hasDefinition(ASTContext &) const;
hasDefinition()1262   DefinitionKind hasDefinition() const {
1263     return hasDefinition(getASTContext());
1264   }
1265 
1266   /// Get the tentative definition that acts as the real definition in a TU.
1267   /// Returns null if there is a proper definition available.
1268   VarDecl *getActingDefinition();
getActingDefinition()1269   const VarDecl *getActingDefinition() const {
1270     return const_cast<VarDecl*>(this)->getActingDefinition();
1271   }
1272 
1273   /// Get the real (not just tentative) definition for this declaration.
1274   VarDecl *getDefinition(ASTContext &);
getDefinition(ASTContext & C)1275   const VarDecl *getDefinition(ASTContext &C) const {
1276     return const_cast<VarDecl*>(this)->getDefinition(C);
1277   }
getDefinition()1278   VarDecl *getDefinition() {
1279     return getDefinition(getASTContext());
1280   }
getDefinition()1281   const VarDecl *getDefinition() const {
1282     return const_cast<VarDecl*>(this)->getDefinition();
1283   }
1284 
1285   /// Determine whether this is or was instantiated from an out-of-line
1286   /// definition of a static data member.
1287   bool isOutOfLine() const override;
1288 
1289   /// Returns true for file scoped variable declaration.
isFileVarDecl()1290   bool isFileVarDecl() const {
1291     Kind K = getKind();
1292     if (K == ParmVar || K == ImplicitParam)
1293       return false;
1294 
1295     if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1296       return true;
1297 
1298     if (isStaticDataMember())
1299       return true;
1300 
1301     return false;
1302   }
1303 
1304   /// Get the initializer for this variable, no matter which
1305   /// declaration it is attached to.
getAnyInitializer()1306   const Expr *getAnyInitializer() const {
1307     const VarDecl *D;
1308     return getAnyInitializer(D);
1309   }
1310 
1311   /// Get the initializer for this variable, no matter which
1312   /// declaration it is attached to. Also get that declaration.
1313   const Expr *getAnyInitializer(const VarDecl *&D) const;
1314 
1315   bool hasInit() const;
getInit()1316   const Expr *getInit() const {
1317     return const_cast<VarDecl *>(this)->getInit();
1318   }
1319   Expr *getInit();
1320 
1321   /// Retrieve the address of the initializer expression.
1322   Stmt **getInitAddress();
1323 
1324   void setInit(Expr *I);
1325 
1326   /// Get the initializing declaration of this variable, if any. This is
1327   /// usually the definition, except that for a static data member it can be
1328   /// the in-class declaration.
1329   VarDecl *getInitializingDeclaration();
getInitializingDeclaration()1330   const VarDecl *getInitializingDeclaration() const {
1331     return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1332   }
1333 
1334   /// Determine whether this variable's value might be usable in a
1335   /// constant expression, according to the relevant language standard.
1336   /// This only checks properties of the declaration, and does not check
1337   /// whether the initializer is in fact a constant expression.
1338   ///
1339   /// This corresponds to C++20 [expr.const]p3's notion of a
1340   /// "potentially-constant" variable.
1341   bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1342 
1343   /// Determine whether this variable's value can be used in a
1344   /// constant expression, according to the relevant language standard,
1345   /// including checking whether it was initialized by a constant expression.
1346   bool isUsableInConstantExpressions(const ASTContext &C) const;
1347 
1348   EvaluatedStmt *ensureEvaluatedStmt() const;
1349   EvaluatedStmt *getEvaluatedStmt() const;
1350 
1351   /// Attempt to evaluate the value of the initializer attached to this
1352   /// declaration, and produce notes explaining why it cannot be evaluated.
1353   /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1354   APValue *evaluateValue() const;
1355 
1356 private:
1357   APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1358                              bool IsConstantInitialization) const;
1359 
1360 public:
1361   /// Return the already-evaluated value of this variable's
1362   /// initializer, or NULL if the value is not yet known. Returns pointer
1363   /// to untyped APValue if the value could not be evaluated.
1364   APValue *getEvaluatedValue() const;
1365 
1366   /// Evaluate the destruction of this variable to determine if it constitutes
1367   /// constant destruction.
1368   ///
1369   /// \pre hasConstantInitialization()
1370   /// \return \c true if this variable has constant destruction, \c false if
1371   ///         not.
1372   bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1373 
1374   /// Determine whether this variable has constant initialization.
1375   ///
1376   /// This is only set in two cases: when the language semantics require
1377   /// constant initialization (globals in C and some globals in C++), and when
1378   /// the variable is usable in constant expressions (constexpr, const int, and
1379   /// reference variables in C++).
1380   bool hasConstantInitialization() const;
1381 
1382   /// Determine whether the initializer of this variable is an integer constant
1383   /// expression. For use in C++98, where this affects whether the variable is
1384   /// usable in constant expressions.
1385   bool hasICEInitializer(const ASTContext &Context) const;
1386 
1387   /// Evaluate the initializer of this variable to determine whether it's a
1388   /// constant initializer. Should only be called once, after completing the
1389   /// definition of the variable.
1390   bool checkForConstantInitialization(
1391       SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1392 
setInitStyle(InitializationStyle Style)1393   void setInitStyle(InitializationStyle Style) {
1394     VarDeclBits.InitStyle = Style;
1395   }
1396 
1397   /// The style of initialization for this declaration.
1398   ///
1399   /// C-style initialization is "int x = 1;". Call-style initialization is
1400   /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1401   /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1402   /// expression for class types. List-style initialization is C++11 syntax,
1403   /// e.g. "int x{1};". Clients can distinguish between different forms of
1404   /// initialization by checking this value. In particular, "int x = {1};" is
1405   /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1406   /// Init expression in all three cases is an InitListExpr.
getInitStyle()1407   InitializationStyle getInitStyle() const {
1408     return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1409   }
1410 
1411   /// Whether the initializer is a direct-initializer (list or call).
isDirectInit()1412   bool isDirectInit() const {
1413     return getInitStyle() != CInit;
1414   }
1415 
1416   /// If this definition should pretend to be a declaration.
isThisDeclarationADemotedDefinition()1417   bool isThisDeclarationADemotedDefinition() const {
1418     return isa<ParmVarDecl>(this) ? false :
1419       NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1420   }
1421 
1422   /// This is a definition which should be demoted to a declaration.
1423   ///
1424   /// In some cases (mostly module merging) we can end up with two visible
1425   /// definitions one of which needs to be demoted to a declaration to keep
1426   /// the AST invariants.
demoteThisDefinitionToDeclaration()1427   void demoteThisDefinitionToDeclaration() {
1428     assert(isThisDeclarationADefinition() && "Not a definition!");
1429     assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1430     NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1431   }
1432 
1433   /// Determine whether this variable is the exception variable in a
1434   /// C++ catch statememt or an Objective-C \@catch statement.
isExceptionVariable()1435   bool isExceptionVariable() const {
1436     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1437   }
setExceptionVariable(bool EV)1438   void setExceptionVariable(bool EV) {
1439     assert(!isa<ParmVarDecl>(this));
1440     NonParmVarDeclBits.ExceptionVar = EV;
1441   }
1442 
1443   /// Determine whether this local variable can be used with the named
1444   /// return value optimization (NRVO).
1445   ///
1446   /// The named return value optimization (NRVO) works by marking certain
1447   /// non-volatile local variables of class type as NRVO objects. These
1448   /// locals can be allocated within the return slot of their containing
1449   /// function, in which case there is no need to copy the object to the
1450   /// return slot when returning from the function. Within the function body,
1451   /// each return that returns the NRVO object will have this variable as its
1452   /// NRVO candidate.
isNRVOVariable()1453   bool isNRVOVariable() const {
1454     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1455   }
setNRVOVariable(bool NRVO)1456   void setNRVOVariable(bool NRVO) {
1457     assert(!isa<ParmVarDecl>(this));
1458     NonParmVarDeclBits.NRVOVariable = NRVO;
1459   }
1460 
1461   /// Determine whether this variable is the for-range-declaration in
1462   /// a C++0x for-range statement.
isCXXForRangeDecl()1463   bool isCXXForRangeDecl() const {
1464     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1465   }
setCXXForRangeDecl(bool FRD)1466   void setCXXForRangeDecl(bool FRD) {
1467     assert(!isa<ParmVarDecl>(this));
1468     NonParmVarDeclBits.CXXForRangeDecl = FRD;
1469   }
1470 
1471   /// Determine whether this variable is a for-loop declaration for a
1472   /// for-in statement in Objective-C.
isObjCForDecl()1473   bool isObjCForDecl() const {
1474     return NonParmVarDeclBits.ObjCForDecl;
1475   }
1476 
setObjCForDecl(bool FRD)1477   void setObjCForDecl(bool FRD) {
1478     NonParmVarDeclBits.ObjCForDecl = FRD;
1479   }
1480 
1481   /// Determine whether this variable is an ARC pseudo-__strong variable. A
1482   /// pseudo-__strong variable has a __strong-qualified type but does not
1483   /// actually retain the object written into it. Generally such variables are
1484   /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1485   /// the variable is annotated with the objc_externally_retained attribute, 2)
1486   /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1487   /// loop.
isARCPseudoStrong()1488   bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
setARCPseudoStrong(bool PS)1489   void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1490 
1491   /// Whether this variable is (C++1z) inline.
isInline()1492   bool isInline() const {
1493     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1494   }
isInlineSpecified()1495   bool isInlineSpecified() const {
1496     return isa<ParmVarDecl>(this) ? false
1497                                   : NonParmVarDeclBits.IsInlineSpecified;
1498   }
setInlineSpecified()1499   void setInlineSpecified() {
1500     assert(!isa<ParmVarDecl>(this));
1501     NonParmVarDeclBits.IsInline = true;
1502     NonParmVarDeclBits.IsInlineSpecified = true;
1503   }
setImplicitlyInline()1504   void setImplicitlyInline() {
1505     assert(!isa<ParmVarDecl>(this));
1506     NonParmVarDeclBits.IsInline = true;
1507   }
1508 
1509   /// Whether this variable is (C++11) constexpr.
isConstexpr()1510   bool isConstexpr() const {
1511     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1512   }
setConstexpr(bool IC)1513   void setConstexpr(bool IC) {
1514     assert(!isa<ParmVarDecl>(this));
1515     NonParmVarDeclBits.IsConstexpr = IC;
1516   }
1517 
1518   /// Whether this variable is the implicit variable for a lambda init-capture.
isInitCapture()1519   bool isInitCapture() const {
1520     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1521   }
setInitCapture(bool IC)1522   void setInitCapture(bool IC) {
1523     assert(!isa<ParmVarDecl>(this));
1524     NonParmVarDeclBits.IsInitCapture = IC;
1525   }
1526 
1527   /// Determine whether this variable is actually a function parameter pack or
1528   /// init-capture pack.
1529   bool isParameterPack() const;
1530 
1531   /// Whether this local extern variable declaration's previous declaration
1532   /// was declared in the same block scope. Only correct in C++.
isPreviousDeclInSameBlockScope()1533   bool isPreviousDeclInSameBlockScope() const {
1534     return isa<ParmVarDecl>(this)
1535                ? false
1536                : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1537   }
setPreviousDeclInSameBlockScope(bool Same)1538   void setPreviousDeclInSameBlockScope(bool Same) {
1539     assert(!isa<ParmVarDecl>(this));
1540     NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1541   }
1542 
1543   /// Indicates the capture is a __block variable that is captured by a block
1544   /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1545   /// returns false).
1546   bool isEscapingByref() const;
1547 
1548   /// Indicates the capture is a __block variable that is never captured by an
1549   /// escaping block.
1550   bool isNonEscapingByref() const;
1551 
setEscapingByref()1552   void setEscapingByref() {
1553     NonParmVarDeclBits.EscapingByref = true;
1554   }
1555 
isCXXCondDecl()1556   bool isCXXCondDecl() const {
1557     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsCXXCondDecl;
1558   }
1559 
setCXXCondDecl()1560   void setCXXCondDecl() {
1561     assert(!isa<ParmVarDecl>(this));
1562     NonParmVarDeclBits.IsCXXCondDecl = true;
1563   }
1564 
1565   /// Determines if this variable's alignment is dependent.
1566   bool hasDependentAlignment() const;
1567 
1568   /// Retrieve the variable declaration from which this variable could
1569   /// be instantiated, if it is an instantiation (rather than a non-template).
1570   VarDecl *getTemplateInstantiationPattern() const;
1571 
1572   /// If this variable is an instantiated static data member of a
1573   /// class template specialization, returns the templated static data member
1574   /// from which it was instantiated.
1575   VarDecl *getInstantiatedFromStaticDataMember() const;
1576 
1577   /// If this variable is an instantiation of a variable template or a
1578   /// static data member of a class template, determine what kind of
1579   /// template specialization or instantiation this is.
1580   TemplateSpecializationKind getTemplateSpecializationKind() const;
1581 
1582   /// Get the template specialization kind of this variable for the purposes of
1583   /// template instantiation. This differs from getTemplateSpecializationKind()
1584   /// for an instantiation of a class-scope explicit specialization.
1585   TemplateSpecializationKind
1586   getTemplateSpecializationKindForInstantiation() const;
1587 
1588   /// If this variable is an instantiation of a variable template or a
1589   /// static data member of a class template, determine its point of
1590   /// instantiation.
1591   SourceLocation getPointOfInstantiation() const;
1592 
1593   /// If this variable is an instantiation of a static data member of a
1594   /// class template specialization, retrieves the member specialization
1595   /// information.
1596   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1597 
1598   /// For a static data member that was instantiated from a static
1599   /// data member of a class template, set the template specialiation kind.
1600   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1601                         SourceLocation PointOfInstantiation = SourceLocation());
1602 
1603   /// Specify that this variable is an instantiation of the
1604   /// static data member VD.
1605   void setInstantiationOfStaticDataMember(VarDecl *VD,
1606                                           TemplateSpecializationKind TSK);
1607 
1608   /// Retrieves the variable template that is described by this
1609   /// variable declaration.
1610   ///
1611   /// Every variable template is represented as a VarTemplateDecl and a
1612   /// VarDecl. The former contains template properties (such as
1613   /// the template parameter lists) while the latter contains the
1614   /// actual description of the template's
1615   /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1616   /// VarDecl that from a VarTemplateDecl, while
1617   /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1618   /// a VarDecl.
1619   VarTemplateDecl *getDescribedVarTemplate() const;
1620 
1621   void setDescribedVarTemplate(VarTemplateDecl *Template);
1622 
1623   // Is this variable known to have a definition somewhere in the complete
1624   // program? This may be true even if the declaration has internal linkage and
1625   // has no definition within this source file.
1626   bool isKnownToBeDefined() const;
1627 
1628   /// Is destruction of this variable entirely suppressed? If so, the variable
1629   /// need not have a usable destructor at all.
1630   bool isNoDestroy(const ASTContext &) const;
1631 
1632   /// Would the destruction of this variable have any effect, and if so, what
1633   /// kind?
1634   QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1635 
1636   /// Whether this variable has a flexible array member initialized with one
1637   /// or more elements. This can only be called for declarations where
1638   /// hasInit() is true.
1639   ///
1640   /// (The standard doesn't allow initializing flexible array members; this is
1641   /// a gcc/msvc extension.)
1642   bool hasFlexibleArrayInit(const ASTContext &Ctx) const;
1643 
1644   /// If hasFlexibleArrayInit is true, compute the number of additional bytes
1645   /// necessary to store those elements. Otherwise, returns zero.
1646   ///
1647   /// This can only be called for declarations where hasInit() is true.
1648   CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const;
1649 
1650   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1651   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1652   static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1653 };
1654 
1655 /// Defines the kind of the implicit parameter: is this an implicit parameter
1656 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1657 /// context or something else.
1658 enum class ImplicitParamKind {
1659   /// Parameter for Objective-C 'self' argument
1660   ObjCSelf,
1661 
1662   /// Parameter for Objective-C '_cmd' argument
1663   ObjCCmd,
1664 
1665   /// Parameter for C++ 'this' argument
1666   CXXThis,
1667 
1668   /// Parameter for C++ virtual table pointers
1669   CXXVTT,
1670 
1671   /// Parameter for captured context
1672   CapturedContext,
1673 
1674   /// Parameter for Thread private variable
1675   ThreadPrivateVar,
1676 
1677   /// Other implicit parameter
1678   Other,
1679 };
1680 
1681 class ImplicitParamDecl : public VarDecl {
1682   void anchor() override;
1683 
1684 public:
1685   /// Create implicit parameter.
1686   static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1687                                    SourceLocation IdLoc, IdentifierInfo *Id,
1688                                    QualType T, ImplicitParamKind ParamKind);
1689   static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1690                                    ImplicitParamKind ParamKind);
1691 
1692   static ImplicitParamDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
1693 
ImplicitParamDecl(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,const IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)1694   ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1695                     const IdentifierInfo *Id, QualType Type,
1696                     ImplicitParamKind ParamKind)
1697       : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1698                 /*TInfo=*/nullptr, SC_None) {
1699     NonParmVarDeclBits.ImplicitParamKind = llvm::to_underlying(ParamKind);
1700     setImplicit();
1701   }
1702 
ImplicitParamDecl(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)1703   ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1704       : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1705                 SourceLocation(), /*Id=*/nullptr, Type,
1706                 /*TInfo=*/nullptr, SC_None) {
1707     NonParmVarDeclBits.ImplicitParamKind = llvm::to_underlying(ParamKind);
1708     setImplicit();
1709   }
1710 
1711   /// Returns the implicit parameter kind.
getParameterKind()1712   ImplicitParamKind getParameterKind() const {
1713     return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1714   }
1715 
1716   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1717   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1718   static bool classofKind(Kind K) { return K == ImplicitParam; }
1719 };
1720 
1721 /// Represents a parameter to a function.
1722 class ParmVarDecl : public VarDecl {
1723 public:
1724   enum { MaxFunctionScopeDepth = 255 };
1725   enum { MaxFunctionScopeIndex = 255 };
1726 
1727 protected:
ParmVarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)1728   ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1729               SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
1730               TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1731       : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1732     assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1733     assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1734     assert(ParmVarDeclBits.IsKNRPromoted == false);
1735     assert(ParmVarDeclBits.IsObjCMethodParam == false);
1736     setDefaultArg(DefArg);
1737   }
1738 
1739 public:
1740   static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1741                              SourceLocation StartLoc, SourceLocation IdLoc,
1742                              const IdentifierInfo *Id, QualType T,
1743                              TypeSourceInfo *TInfo, StorageClass S,
1744                              Expr *DefArg);
1745 
1746   static ParmVarDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
1747 
1748   SourceRange getSourceRange() const override LLVM_READONLY;
1749 
setObjCMethodScopeInfo(unsigned parameterIndex)1750   void setObjCMethodScopeInfo(unsigned parameterIndex) {
1751     ParmVarDeclBits.IsObjCMethodParam = true;
1752     setParameterIndex(parameterIndex);
1753   }
1754 
setScopeInfo(unsigned scopeDepth,unsigned parameterIndex)1755   void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1756     assert(!ParmVarDeclBits.IsObjCMethodParam);
1757 
1758     ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1759     assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1760            && "truncation!");
1761 
1762     setParameterIndex(parameterIndex);
1763   }
1764 
isObjCMethodParameter()1765   bool isObjCMethodParameter() const {
1766     return ParmVarDeclBits.IsObjCMethodParam;
1767   }
1768 
1769   /// Determines whether this parameter is destroyed in the callee function.
1770   bool isDestroyedInCallee() const;
1771 
getFunctionScopeDepth()1772   unsigned getFunctionScopeDepth() const {
1773     if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1774     return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1775   }
1776 
getMaxFunctionScopeDepth()1777   static constexpr unsigned getMaxFunctionScopeDepth() {
1778     return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1779   }
1780 
1781   /// Returns the index of this parameter in its prototype or method scope.
getFunctionScopeIndex()1782   unsigned getFunctionScopeIndex() const {
1783     return getParameterIndex();
1784   }
1785 
getObjCDeclQualifier()1786   ObjCDeclQualifier getObjCDeclQualifier() const {
1787     if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1788     return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1789   }
setObjCDeclQualifier(ObjCDeclQualifier QTVal)1790   void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1791     assert(ParmVarDeclBits.IsObjCMethodParam);
1792     ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1793   }
1794 
1795   /// True if the value passed to this parameter must undergo
1796   /// K&R-style default argument promotion:
1797   ///
1798   /// C99 6.5.2.2.
1799   ///   If the expression that denotes the called function has a type
1800   ///   that does not include a prototype, the integer promotions are
1801   ///   performed on each argument, and arguments that have type float
1802   ///   are promoted to double.
isKNRPromoted()1803   bool isKNRPromoted() const {
1804     return ParmVarDeclBits.IsKNRPromoted;
1805   }
setKNRPromoted(bool promoted)1806   void setKNRPromoted(bool promoted) {
1807     ParmVarDeclBits.IsKNRPromoted = promoted;
1808   }
1809 
isExplicitObjectParameter()1810   bool isExplicitObjectParameter() const {
1811     return ExplicitObjectParameterIntroducerLoc.isValid();
1812   }
1813 
setExplicitObjectParameterLoc(SourceLocation Loc)1814   void setExplicitObjectParameterLoc(SourceLocation Loc) {
1815     ExplicitObjectParameterIntroducerLoc = Loc;
1816   }
1817 
getExplicitObjectParamThisLoc()1818   SourceLocation getExplicitObjectParamThisLoc() const {
1819     return ExplicitObjectParameterIntroducerLoc;
1820   }
1821 
1822   Expr *getDefaultArg();
getDefaultArg()1823   const Expr *getDefaultArg() const {
1824     return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1825   }
1826 
1827   void setDefaultArg(Expr *defarg);
1828 
1829   /// Retrieve the source range that covers the entire default
1830   /// argument.
1831   SourceRange getDefaultArgRange() const;
1832   void setUninstantiatedDefaultArg(Expr *arg);
1833   Expr *getUninstantiatedDefaultArg();
getUninstantiatedDefaultArg()1834   const Expr *getUninstantiatedDefaultArg() const {
1835     return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1836   }
1837 
1838   /// Determines whether this parameter has a default argument,
1839   /// either parsed or not.
1840   bool hasDefaultArg() const;
1841 
1842   /// Determines whether this parameter has a default argument that has not
1843   /// yet been parsed. This will occur during the processing of a C++ class
1844   /// whose member functions have default arguments, e.g.,
1845   /// @code
1846   ///   class X {
1847   ///   public:
1848   ///     void f(int x = 17); // x has an unparsed default argument now
1849   ///   }; // x has a regular default argument now
1850   /// @endcode
hasUnparsedDefaultArg()1851   bool hasUnparsedDefaultArg() const {
1852     return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1853   }
1854 
hasUninstantiatedDefaultArg()1855   bool hasUninstantiatedDefaultArg() const {
1856     return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1857   }
1858 
1859   /// Specify that this parameter has an unparsed default argument.
1860   /// The argument will be replaced with a real default argument via
1861   /// setDefaultArg when the class definition enclosing the function
1862   /// declaration that owns this default argument is completed.
setUnparsedDefaultArg()1863   void setUnparsedDefaultArg() {
1864     ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1865   }
1866 
hasInheritedDefaultArg()1867   bool hasInheritedDefaultArg() const {
1868     return ParmVarDeclBits.HasInheritedDefaultArg;
1869   }
1870 
1871   void setHasInheritedDefaultArg(bool I = true) {
1872     ParmVarDeclBits.HasInheritedDefaultArg = I;
1873   }
1874 
1875   QualType getOriginalType() const;
1876 
1877   /// Sets the function declaration that owns this
1878   /// ParmVarDecl. Since ParmVarDecls are often created before the
1879   /// FunctionDecls that own them, this routine is required to update
1880   /// the DeclContext appropriately.
setOwningFunction(DeclContext * FD)1881   void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1882 
1883   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)1884   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1885   static bool classofKind(Kind K) { return K == ParmVar; }
1886 
1887 private:
1888   friend class ASTDeclReader;
1889 
1890   enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1891   SourceLocation ExplicitObjectParameterIntroducerLoc;
1892 
setParameterIndex(unsigned parameterIndex)1893   void setParameterIndex(unsigned parameterIndex) {
1894     if (parameterIndex >= ParameterIndexSentinel) {
1895       setParameterIndexLarge(parameterIndex);
1896       return;
1897     }
1898 
1899     ParmVarDeclBits.ParameterIndex = parameterIndex;
1900     assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1901   }
getParameterIndex()1902   unsigned getParameterIndex() const {
1903     unsigned d = ParmVarDeclBits.ParameterIndex;
1904     return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1905   }
1906 
1907   void setParameterIndexLarge(unsigned parameterIndex);
1908   unsigned getParameterIndexLarge() const;
1909 };
1910 
1911 enum class MultiVersionKind {
1912   None,
1913   Target,
1914   CPUSpecific,
1915   CPUDispatch,
1916   TargetClones,
1917   TargetVersion
1918 };
1919 
1920 /// Represents a function declaration or definition.
1921 ///
1922 /// Since a given function can be declared several times in a program,
1923 /// there may be several FunctionDecls that correspond to that
1924 /// function. Only one of those FunctionDecls will be found when
1925 /// traversing the list of declarations in the context of the
1926 /// FunctionDecl (e.g., the translation unit); this FunctionDecl
1927 /// contains all of the information known about the function. Other,
1928 /// previous declarations of the function are available via the
1929 /// getPreviousDecl() chain.
1930 class FunctionDecl : public DeclaratorDecl,
1931                      public DeclContext,
1932                      public Redeclarable<FunctionDecl> {
1933   // This class stores some data in DeclContext::FunctionDeclBits
1934   // to save some space. Use the provided accessors to access it.
1935 public:
1936   /// The kind of templated function a FunctionDecl can be.
1937   enum TemplatedKind {
1938     // Not templated.
1939     TK_NonTemplate,
1940     // The pattern in a function template declaration.
1941     TK_FunctionTemplate,
1942     // A non-template function that is an instantiation or explicit
1943     // specialization of a member of a templated class.
1944     TK_MemberSpecialization,
1945     // An instantiation or explicit specialization of a function template.
1946     // Note: this might have been instantiated from a templated class if it
1947     // is a class-scope explicit specialization.
1948     TK_FunctionTemplateSpecialization,
1949     // A function template specialization that hasn't yet been resolved to a
1950     // particular specialized function template.
1951     TK_DependentFunctionTemplateSpecialization,
1952     // A non-template function which is in a dependent scope.
1953     TK_DependentNonTemplate
1954 
1955   };
1956 
1957   /// Stashed information about a defaulted/deleted function body.
1958   class DefaultedOrDeletedFunctionInfo final
1959       : llvm::TrailingObjects<DefaultedOrDeletedFunctionInfo, DeclAccessPair,
1960                               StringLiteral *> {
1961     friend TrailingObjects;
1962     unsigned NumLookups;
1963     bool HasDeletedMessage;
1964 
numTrailingObjects(OverloadToken<DeclAccessPair>)1965     size_t numTrailingObjects(OverloadToken<DeclAccessPair>) const {
1966       return NumLookups;
1967     }
1968 
1969   public:
1970     static DefaultedOrDeletedFunctionInfo *
1971     Create(ASTContext &Context, ArrayRef<DeclAccessPair> Lookups,
1972            StringLiteral *DeletedMessage = nullptr);
1973 
1974     /// Get the unqualified lookup results that should be used in this
1975     /// defaulted function definition.
getUnqualifiedLookups()1976     ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1977       return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1978     }
1979 
getDeletedMessage()1980     StringLiteral *getDeletedMessage() const {
1981       return HasDeletedMessage ? *getTrailingObjects<StringLiteral *>()
1982                                : nullptr;
1983     }
1984 
1985     void setDeletedMessage(StringLiteral *Message);
1986   };
1987 
1988 private:
1989   /// A new[]'d array of pointers to VarDecls for the formal
1990   /// parameters of this function.  This is null if a prototype or if there are
1991   /// no formals.
1992   ParmVarDecl **ParamInfo = nullptr;
1993 
1994   /// The active member of this union is determined by
1995   /// FunctionDeclBits.HasDefaultedOrDeletedInfo.
1996   union {
1997     /// The body of the function.
1998     LazyDeclStmtPtr Body;
1999     /// Information about a future defaulted function definition.
2000     DefaultedOrDeletedFunctionInfo *DefaultedOrDeletedInfo;
2001   };
2002 
2003   unsigned ODRHash;
2004 
2005   /// End part of this FunctionDecl's source range.
2006   ///
2007   /// We could compute the full range in getSourceRange(). However, when we're
2008   /// dealing with a function definition deserialized from a PCH/AST file,
2009   /// we can only compute the full range once the function body has been
2010   /// de-serialized, so it's far better to have the (sometimes-redundant)
2011   /// EndRangeLoc.
2012   SourceLocation EndRangeLoc;
2013 
2014   SourceLocation DefaultKWLoc;
2015 
2016   /// The template or declaration that this declaration
2017   /// describes or was instantiated from, respectively.
2018   ///
2019   /// For non-templates this value will be NULL, unless this declaration was
2020   /// declared directly inside of a function template, in which case it will
2021   /// have a pointer to a FunctionDecl, stored in the NamedDecl. For function
2022   /// declarations that describe a function template, this will be a pointer to
2023   /// a FunctionTemplateDecl, stored in the NamedDecl. For member functions of
2024   /// class template specializations, this will be a MemberSpecializationInfo
2025   /// pointer containing information about the specialization.
2026   /// For function template specializations, this will be a
2027   /// FunctionTemplateSpecializationInfo, which contains information about
2028   /// the template being specialized and the template arguments involved in
2029   /// that specialization.
2030   llvm::PointerUnion<NamedDecl *, MemberSpecializationInfo *,
2031                      FunctionTemplateSpecializationInfo *,
2032                      DependentFunctionTemplateSpecializationInfo *>
2033       TemplateOrSpecialization;
2034 
2035   /// Provides source/type location info for the declaration name embedded in
2036   /// the DeclaratorDecl base class.
2037   DeclarationNameLoc DNLoc;
2038 
2039   /// Specify that this function declaration is actually a function
2040   /// template specialization.
2041   ///
2042   /// \param C the ASTContext.
2043   ///
2044   /// \param Template the function template that this function template
2045   /// specialization specializes.
2046   ///
2047   /// \param TemplateArgs the template arguments that produced this
2048   /// function template specialization from the template.
2049   ///
2050   /// \param InsertPos If non-NULL, the position in the function template
2051   /// specialization set where the function template specialization data will
2052   /// be inserted.
2053   ///
2054   /// \param TSK the kind of template specialization this is.
2055   ///
2056   /// \param TemplateArgsAsWritten location info of template arguments.
2057   ///
2058   /// \param PointOfInstantiation point at which the function template
2059   /// specialization was first instantiated.
2060   void setFunctionTemplateSpecialization(
2061       ASTContext &C, FunctionTemplateDecl *Template,
2062       TemplateArgumentList *TemplateArgs, void *InsertPos,
2063       TemplateSpecializationKind TSK,
2064       const TemplateArgumentListInfo *TemplateArgsAsWritten,
2065       SourceLocation PointOfInstantiation);
2066 
2067   /// Specify that this record is an instantiation of the
2068   /// member function FD.
2069   void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
2070                                         TemplateSpecializationKind TSK);
2071 
2072   void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
2073 
2074   // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
2075   // need to access this bit but we want to avoid making ASTDeclWriter
2076   // a friend of FunctionDeclBitfields just for this.
isDeletedBit()2077   bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
2078 
2079   /// Whether an ODRHash has been stored.
hasODRHash()2080   bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
2081 
2082   /// State that an ODRHash has been stored.
2083   void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
2084 
2085 protected:
2086   FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2087                const DeclarationNameInfo &NameInfo, QualType T,
2088                TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
2089                bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
2090                Expr *TrailingRequiresClause = nullptr);
2091 
2092   using redeclarable_base = Redeclarable<FunctionDecl>;
2093 
getNextRedeclarationImpl()2094   FunctionDecl *getNextRedeclarationImpl() override {
2095     return getNextRedeclaration();
2096   }
2097 
getPreviousDeclImpl()2098   FunctionDecl *getPreviousDeclImpl() override {
2099     return getPreviousDecl();
2100   }
2101 
getMostRecentDeclImpl()2102   FunctionDecl *getMostRecentDeclImpl() override {
2103     return getMostRecentDecl();
2104   }
2105 
2106 public:
2107   friend class ASTDeclReader;
2108   friend class ASTDeclWriter;
2109 
2110   using redecl_range = redeclarable_base::redecl_range;
2111   using redecl_iterator = redeclarable_base::redecl_iterator;
2112 
2113   using redeclarable_base::redecls_begin;
2114   using redeclarable_base::redecls_end;
2115   using redeclarable_base::redecls;
2116   using redeclarable_base::getPreviousDecl;
2117   using redeclarable_base::getMostRecentDecl;
2118   using redeclarable_base::isFirstDecl;
2119 
2120   static FunctionDecl *
2121   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2122          SourceLocation NLoc, DeclarationName N, QualType T,
2123          TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
2124          bool isInlineSpecified = false, bool hasWrittenPrototype = true,
2125          ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2126          Expr *TrailingRequiresClause = nullptr) {
2127     DeclarationNameInfo NameInfo(N, NLoc);
2128     return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2129                                 UsesFPIntrin, isInlineSpecified,
2130                                 hasWrittenPrototype, ConstexprKind,
2131                                 TrailingRequiresClause);
2132   }
2133 
2134   static FunctionDecl *
2135   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2136          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2137          StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified,
2138          bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
2139          Expr *TrailingRequiresClause);
2140 
2141   static FunctionDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
2142 
getNameInfo()2143   DeclarationNameInfo getNameInfo() const {
2144     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2145   }
2146 
2147   void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2148                             bool Qualified) const override;
2149 
setRangeEnd(SourceLocation E)2150   void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2151 
setDeclarationNameLoc(DeclarationNameLoc L)2152   void setDeclarationNameLoc(DeclarationNameLoc L) { DNLoc = L; }
2153 
2154   /// Returns the location of the ellipsis of a variadic function.
getEllipsisLoc()2155   SourceLocation getEllipsisLoc() const {
2156     const auto *FPT = getType()->getAs<FunctionProtoType>();
2157     if (FPT && FPT->isVariadic())
2158       return FPT->getEllipsisLoc();
2159     return SourceLocation();
2160   }
2161 
2162   SourceRange getSourceRange() const override LLVM_READONLY;
2163 
2164   // Function definitions.
2165   //
2166   // A function declaration may be:
2167   // - a non defining declaration,
2168   // - a definition. A function may be defined because:
2169   //   - it has a body, or will have it in the case of late parsing.
2170   //   - it has an uninstantiated body. The body does not exist because the
2171   //     function is not used yet, but the declaration is considered a
2172   //     definition and does not allow other definition of this function.
2173   //   - it does not have a user specified body, but it does not allow
2174   //     redefinition, because it is deleted/defaulted or is defined through
2175   //     some other mechanism (alias, ifunc).
2176 
2177   /// Returns true if the function has a body.
2178   ///
2179   /// The function body might be in any of the (re-)declarations of this
2180   /// function. The variant that accepts a FunctionDecl pointer will set that
2181   /// function declaration to the actual declaration containing the body (if
2182   /// there is one).
2183   bool hasBody(const FunctionDecl *&Definition) const;
2184 
hasBody()2185   bool hasBody() const override {
2186     const FunctionDecl* Definition;
2187     return hasBody(Definition);
2188   }
2189 
2190   /// Returns whether the function has a trivial body that does not require any
2191   /// specific codegen.
2192   bool hasTrivialBody() const;
2193 
2194   /// Returns true if the function has a definition that does not need to be
2195   /// instantiated.
2196   ///
2197   /// The variant that accepts a FunctionDecl pointer will set that function
2198   /// declaration to the declaration that is a definition (if there is one).
2199   ///
2200   /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2201   ///        declarations that were instantiated from function definitions.
2202   ///        Such a declaration behaves as if it is a definition for the
2203   ///        purpose of redefinition checking, but isn't actually a "real"
2204   ///        definition until its body is instantiated.
2205   bool isDefined(const FunctionDecl *&Definition,
2206                  bool CheckForPendingFriendDefinition = false) const;
2207 
isDefined()2208   bool isDefined() const {
2209     const FunctionDecl* Definition;
2210     return isDefined(Definition);
2211   }
2212 
2213   /// Get the definition for this declaration.
getDefinition()2214   FunctionDecl *getDefinition() {
2215     const FunctionDecl *Definition;
2216     if (isDefined(Definition))
2217       return const_cast<FunctionDecl *>(Definition);
2218     return nullptr;
2219   }
getDefinition()2220   const FunctionDecl *getDefinition() const {
2221     return const_cast<FunctionDecl *>(this)->getDefinition();
2222   }
2223 
2224   /// Retrieve the body (definition) of the function. The function body might be
2225   /// in any of the (re-)declarations of this function. The variant that accepts
2226   /// a FunctionDecl pointer will set that function declaration to the actual
2227   /// declaration containing the body (if there is one).
2228   /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2229   /// unnecessary AST de-serialization of the body.
2230   Stmt *getBody(const FunctionDecl *&Definition) const;
2231 
getBody()2232   Stmt *getBody() const override {
2233     const FunctionDecl* Definition;
2234     return getBody(Definition);
2235   }
2236 
2237   /// Returns whether this specific declaration of the function is also a
2238   /// definition that does not contain uninstantiated body.
2239   ///
2240   /// This does not determine whether the function has been defined (e.g., in a
2241   /// previous definition); for that information, use isDefined.
2242   ///
2243   /// Note: the function declaration does not become a definition until the
2244   /// parser reaches the definition, if called before, this function will return
2245   /// `false`.
isThisDeclarationADefinition()2246   bool isThisDeclarationADefinition() const {
2247     return isDeletedAsWritten() || isDefaulted() ||
2248            doesThisDeclarationHaveABody() || hasSkippedBody() ||
2249            willHaveBody() || hasDefiningAttr();
2250   }
2251 
2252   /// Determine whether this specific declaration of the function is a friend
2253   /// declaration that was instantiated from a function definition. Such
2254   /// declarations behave like definitions in some contexts.
2255   bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2256 
2257   /// Returns whether this specific declaration of the function has a body.
doesThisDeclarationHaveABody()2258   bool doesThisDeclarationHaveABody() const {
2259     return (!FunctionDeclBits.HasDefaultedOrDeletedInfo && Body) ||
2260            isLateTemplateParsed();
2261   }
2262 
2263   void setBody(Stmt *B);
setLazyBody(uint64_t Offset)2264   void setLazyBody(uint64_t Offset) {
2265     FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
2266     Body = LazyDeclStmtPtr(Offset);
2267   }
2268 
2269   void setDefaultedOrDeletedInfo(DefaultedOrDeletedFunctionInfo *Info);
2270   DefaultedOrDeletedFunctionInfo *getDefalutedOrDeletedInfo() const;
2271 
2272   /// Whether this function is variadic.
2273   bool isVariadic() const;
2274 
2275   /// Whether this function is marked as virtual explicitly.
isVirtualAsWritten()2276   bool isVirtualAsWritten() const {
2277     return FunctionDeclBits.IsVirtualAsWritten;
2278   }
2279 
2280   /// State that this function is marked as virtual explicitly.
setVirtualAsWritten(bool V)2281   void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2282 
2283   /// Whether this virtual function is pure, i.e. makes the containing class
2284   /// abstract.
isPureVirtual()2285   bool isPureVirtual() const { return FunctionDeclBits.IsPureVirtual; }
2286   void setIsPureVirtual(bool P = true);
2287 
2288   /// Whether this templated function will be late parsed.
isLateTemplateParsed()2289   bool isLateTemplateParsed() const {
2290     return FunctionDeclBits.IsLateTemplateParsed;
2291   }
2292 
2293   /// State that this templated function will be late parsed.
2294   void setLateTemplateParsed(bool ILT = true) {
2295     FunctionDeclBits.IsLateTemplateParsed = ILT;
2296   }
2297 
2298   /// Whether this function is "trivial" in some specialized C++ senses.
2299   /// Can only be true for default constructors, copy constructors,
2300   /// copy assignment operators, and destructors.  Not meaningful until
2301   /// the class has been fully built by Sema.
isTrivial()2302   bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
setTrivial(bool IT)2303   void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2304 
isTrivialForCall()2305   bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
setTrivialForCall(bool IT)2306   void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2307 
2308   /// Whether this function is defaulted. Valid for e.g.
2309   /// special member functions, defaulted comparisions (not methods!).
isDefaulted()2310   bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2311   void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2312 
2313   /// Whether this function is explicitly defaulted.
isExplicitlyDefaulted()2314   bool isExplicitlyDefaulted() const {
2315     return FunctionDeclBits.IsExplicitlyDefaulted;
2316   }
2317 
2318   /// State that this function is explicitly defaulted.
2319   void setExplicitlyDefaulted(bool ED = true) {
2320     FunctionDeclBits.IsExplicitlyDefaulted = ED;
2321   }
2322 
getDefaultLoc()2323   SourceLocation getDefaultLoc() const {
2324     return isExplicitlyDefaulted() ? DefaultKWLoc : SourceLocation();
2325   }
2326 
setDefaultLoc(SourceLocation NewLoc)2327   void setDefaultLoc(SourceLocation NewLoc) {
2328     assert((NewLoc.isInvalid() || isExplicitlyDefaulted()) &&
2329            "Can't set default loc is function isn't explicitly defaulted");
2330     DefaultKWLoc = NewLoc;
2331   }
2332 
2333   /// True if this method is user-declared and was not
2334   /// deleted or defaulted on its first declaration.
isUserProvided()2335   bool isUserProvided() const {
2336     auto *DeclAsWritten = this;
2337     if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2338       DeclAsWritten = Pattern;
2339     return !(DeclAsWritten->isDeleted() ||
2340              DeclAsWritten->getCanonicalDecl()->isDefaulted());
2341   }
2342 
isIneligibleOrNotSelected()2343   bool isIneligibleOrNotSelected() const {
2344     return FunctionDeclBits.IsIneligibleOrNotSelected;
2345   }
setIneligibleOrNotSelected(bool II)2346   void setIneligibleOrNotSelected(bool II) {
2347     FunctionDeclBits.IsIneligibleOrNotSelected = II;
2348   }
2349 
2350   /// Whether falling off this function implicitly returns null/zero.
2351   /// If a more specific implicit return value is required, front-ends
2352   /// should synthesize the appropriate return statements.
hasImplicitReturnZero()2353   bool hasImplicitReturnZero() const {
2354     return FunctionDeclBits.HasImplicitReturnZero;
2355   }
2356 
2357   /// State that falling off this function implicitly returns null/zero.
2358   /// If a more specific implicit return value is required, front-ends
2359   /// should synthesize the appropriate return statements.
setHasImplicitReturnZero(bool IRZ)2360   void setHasImplicitReturnZero(bool IRZ) {
2361     FunctionDeclBits.HasImplicitReturnZero = IRZ;
2362   }
2363 
2364   /// Whether this function has a prototype, either because one
2365   /// was explicitly written or because it was "inherited" by merging
2366   /// a declaration without a prototype with a declaration that has a
2367   /// prototype.
hasPrototype()2368   bool hasPrototype() const {
2369     return hasWrittenPrototype() || hasInheritedPrototype();
2370   }
2371 
2372   /// Whether this function has a written prototype.
hasWrittenPrototype()2373   bool hasWrittenPrototype() const {
2374     return FunctionDeclBits.HasWrittenPrototype;
2375   }
2376 
2377   /// State that this function has a written prototype.
2378   void setHasWrittenPrototype(bool P = true) {
2379     FunctionDeclBits.HasWrittenPrototype = P;
2380   }
2381 
2382   /// Whether this function inherited its prototype from a
2383   /// previous declaration.
hasInheritedPrototype()2384   bool hasInheritedPrototype() const {
2385     return FunctionDeclBits.HasInheritedPrototype;
2386   }
2387 
2388   /// State that this function inherited its prototype from a
2389   /// previous declaration.
2390   void setHasInheritedPrototype(bool P = true) {
2391     FunctionDeclBits.HasInheritedPrototype = P;
2392   }
2393 
2394   /// Whether this is a (C++11) constexpr function or constexpr constructor.
isConstexpr()2395   bool isConstexpr() const {
2396     return getConstexprKind() != ConstexprSpecKind::Unspecified;
2397   }
setConstexprKind(ConstexprSpecKind CSK)2398   void setConstexprKind(ConstexprSpecKind CSK) {
2399     FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2400   }
getConstexprKind()2401   ConstexprSpecKind getConstexprKind() const {
2402     return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2403   }
isConstexprSpecified()2404   bool isConstexprSpecified() const {
2405     return getConstexprKind() == ConstexprSpecKind::Constexpr;
2406   }
isConsteval()2407   bool isConsteval() const {
2408     return getConstexprKind() == ConstexprSpecKind::Consteval;
2409   }
2410 
setBodyContainsImmediateEscalatingExpressions(bool Set)2411   void setBodyContainsImmediateEscalatingExpressions(bool Set) {
2412     FunctionDeclBits.BodyContainsImmediateEscalatingExpression = Set;
2413   }
2414 
BodyContainsImmediateEscalatingExpressions()2415   bool BodyContainsImmediateEscalatingExpressions() const {
2416     return FunctionDeclBits.BodyContainsImmediateEscalatingExpression;
2417   }
2418 
2419   bool isImmediateEscalating() const;
2420 
2421   // The function is a C++ immediate function.
2422   // This can be either a consteval function, or an immediate escalating
2423   // function containing an immediate escalating expression.
2424   bool isImmediateFunction() const;
2425 
2426   /// Whether the instantiation of this function is pending.
2427   /// This bit is set when the decision to instantiate this function is made
2428   /// and unset if and when the function body is created. That leaves out
2429   /// cases where instantiation did not happen because the template definition
2430   /// was not seen in this TU. This bit remains set in those cases, under the
2431   /// assumption that the instantiation will happen in some other TU.
instantiationIsPending()2432   bool instantiationIsPending() const {
2433     return FunctionDeclBits.InstantiationIsPending;
2434   }
2435 
2436   /// State that the instantiation of this function is pending.
2437   /// (see instantiationIsPending)
setInstantiationIsPending(bool IC)2438   void setInstantiationIsPending(bool IC) {
2439     FunctionDeclBits.InstantiationIsPending = IC;
2440   }
2441 
2442   /// Indicates the function uses __try.
usesSEHTry()2443   bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
setUsesSEHTry(bool UST)2444   void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2445 
2446   /// Whether this function has been deleted.
2447   ///
2448   /// A function that is "deleted" (via the C++0x "= delete" syntax)
2449   /// acts like a normal function, except that it cannot actually be
2450   /// called or have its address taken. Deleted functions are
2451   /// typically used in C++ overload resolution to attract arguments
2452   /// whose type or lvalue/rvalue-ness would permit the use of a
2453   /// different overload that would behave incorrectly. For example,
2454   /// one might use deleted functions to ban implicit conversion from
2455   /// a floating-point number to an Integer type:
2456   ///
2457   /// @code
2458   /// struct Integer {
2459   ///   Integer(long); // construct from a long
2460   ///   Integer(double) = delete; // no construction from float or double
2461   ///   Integer(long double) = delete; // no construction from long double
2462   /// };
2463   /// @endcode
2464   // If a function is deleted, its first declaration must be.
isDeleted()2465   bool isDeleted() const {
2466     return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2467   }
2468 
isDeletedAsWritten()2469   bool isDeletedAsWritten() const {
2470     return FunctionDeclBits.IsDeleted && !isDefaulted();
2471   }
2472 
2473   void setDeletedAsWritten(bool D = true, StringLiteral *Message = nullptr);
2474 
2475   /// Determines whether this function is "main", which is the
2476   /// entry point into an executable program.
2477   bool isMain() const;
2478 
2479   /// Determines whether this function is a MSVCRT user defined entry
2480   /// point.
2481   bool isMSVCRTEntryPoint() const;
2482 
2483   /// Determines whether this operator new or delete is one
2484   /// of the reserved global placement operators:
2485   ///    void *operator new(size_t, void *);
2486   ///    void *operator new[](size_t, void *);
2487   ///    void operator delete(void *, void *);
2488   ///    void operator delete[](void *, void *);
2489   /// These functions have special behavior under [new.delete.placement]:
2490   ///    These functions are reserved, a C++ program may not define
2491   ///    functions that displace the versions in the Standard C++ library.
2492   ///    The provisions of [basic.stc.dynamic] do not apply to these
2493   ///    reserved placement forms of operator new and operator delete.
2494   ///
2495   /// This function must be an allocation or deallocation function.
2496   bool isReservedGlobalPlacementOperator() const;
2497 
2498   /// Determines whether this function is one of the replaceable
2499   /// global allocation functions:
2500   ///    void *operator new(size_t);
2501   ///    void *operator new(size_t, const std::nothrow_t &) noexcept;
2502   ///    void *operator new[](size_t);
2503   ///    void *operator new[](size_t, const std::nothrow_t &) noexcept;
2504   ///    void operator delete(void *) noexcept;
2505   ///    void operator delete(void *, std::size_t) noexcept;      [C++1y]
2506   ///    void operator delete(void *, const std::nothrow_t &) noexcept;
2507   ///    void operator delete[](void *) noexcept;
2508   ///    void operator delete[](void *, std::size_t) noexcept;    [C++1y]
2509   ///    void operator delete[](void *, const std::nothrow_t &) noexcept;
2510   /// These functions have special behavior under C++1y [expr.new]:
2511   ///    An implementation is allowed to omit a call to a replaceable global
2512   ///    allocation function. [...]
2513   ///
2514   /// If this function is an aligned allocation/deallocation function, return
2515   /// the parameter number of the requested alignment through AlignmentParam.
2516   ///
2517   /// If this function is an allocation/deallocation function that takes
2518   /// the `std::nothrow_t` tag, return true through IsNothrow,
2519   bool isReplaceableGlobalAllocationFunction(
2520       std::optional<unsigned> *AlignmentParam = nullptr,
2521       bool *IsNothrow = nullptr) const;
2522 
2523   /// Determine if this function provides an inline implementation of a builtin.
2524   bool isInlineBuiltinDeclaration() const;
2525 
2526   /// Determine whether this is a destroying operator delete.
2527   bool isDestroyingOperatorDelete() const;
2528 
2529   /// Compute the language linkage.
2530   LanguageLinkage getLanguageLinkage() const;
2531 
2532   /// Determines whether this function is a function with
2533   /// external, C linkage.
2534   bool isExternC() const;
2535 
2536   /// Determines whether this function's context is, or is nested within,
2537   /// a C++ extern "C" linkage spec.
2538   bool isInExternCContext() const;
2539 
2540   /// Determines whether this function's context is, or is nested within,
2541   /// a C++ extern "C++" linkage spec.
2542   bool isInExternCXXContext() const;
2543 
2544   /// Determines whether this is a global function.
2545   bool isGlobal() const;
2546 
2547   /// Determines whether this function is known to be 'noreturn', through
2548   /// an attribute on its declaration or its type.
2549   bool isNoReturn() const;
2550 
2551   /// True if the function was a definition but its body was skipped.
hasSkippedBody()2552   bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2553   void setHasSkippedBody(bool Skipped = true) {
2554     FunctionDeclBits.HasSkippedBody = Skipped;
2555   }
2556 
2557   /// True if this function will eventually have a body, once it's fully parsed.
willHaveBody()2558   bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2559   void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2560 
2561   /// True if this function is considered a multiversioned function.
isMultiVersion()2562   bool isMultiVersion() const {
2563     return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2564   }
2565 
2566   /// Sets the multiversion state for this declaration and all of its
2567   /// redeclarations.
2568   void setIsMultiVersion(bool V = true) {
2569     getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2570   }
2571 
2572   // Sets that this is a constrained friend where the constraint refers to an
2573   // enclosing template.
2574   void setFriendConstraintRefersToEnclosingTemplate(bool V = true) {
2575     getCanonicalDecl()
2576         ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = V;
2577   }
2578   // Indicates this function is a constrained friend, where the constraint
2579   // refers to an enclosing template for hte purposes of [temp.friend]p9.
FriendConstraintRefersToEnclosingTemplate()2580   bool FriendConstraintRefersToEnclosingTemplate() const {
2581     return getCanonicalDecl()
2582         ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate;
2583   }
2584 
2585   /// Determine whether a function is a friend function that cannot be
2586   /// redeclared outside of its class, per C++ [temp.friend]p9.
2587   bool isMemberLikeConstrainedFriend() const;
2588 
2589   /// Gets the kind of multiversioning attribute this declaration has. Note that
2590   /// this can return a value even if the function is not multiversion, such as
2591   /// the case of 'target'.
2592   MultiVersionKind getMultiVersionKind() const;
2593 
2594 
2595   /// True if this function is a multiversioned dispatch function as a part of
2596   /// the cpu_specific/cpu_dispatch functionality.
2597   bool isCPUDispatchMultiVersion() const;
2598   /// True if this function is a multiversioned processor specific function as a
2599   /// part of the cpu_specific/cpu_dispatch functionality.
2600   bool isCPUSpecificMultiVersion() const;
2601 
2602   /// True if this function is a multiversioned dispatch function as a part of
2603   /// the target functionality.
2604   bool isTargetMultiVersion() const;
2605 
2606   /// True if this function is the default version of a multiversioned dispatch
2607   /// function as a part of the target functionality.
2608   bool isTargetMultiVersionDefault() const;
2609 
2610   /// True if this function is a multiversioned dispatch function as a part of
2611   /// the target-clones functionality.
2612   bool isTargetClonesMultiVersion() const;
2613 
2614   /// True if this function is a multiversioned dispatch function as a part of
2615   /// the target-version functionality.
2616   bool isTargetVersionMultiVersion() const;
2617 
2618   /// \brief Get the associated-constraints of this function declaration.
2619   /// Currently, this will either be a vector of size 1 containing the
2620   /// trailing-requires-clause or an empty vector.
2621   ///
2622   /// Use this instead of getTrailingRequiresClause for concepts APIs that
2623   /// accept an ArrayRef of constraint expressions.
getAssociatedConstraints(SmallVectorImpl<const Expr * > & AC)2624   void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2625     if (auto *TRC = getTrailingRequiresClause())
2626       AC.push_back(TRC);
2627   }
2628 
2629   /// Get the message that indicates why this function was deleted.
getDeletedMessage()2630   StringLiteral *getDeletedMessage() const {
2631     return FunctionDeclBits.HasDefaultedOrDeletedInfo
2632                ? DefaultedOrDeletedInfo->getDeletedMessage()
2633                : nullptr;
2634   }
2635 
2636   void setPreviousDeclaration(FunctionDecl * PrevDecl);
2637 
2638   FunctionDecl *getCanonicalDecl() override;
getCanonicalDecl()2639   const FunctionDecl *getCanonicalDecl() const {
2640     return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2641   }
2642 
2643   unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2644 
2645   // ArrayRef interface to parameters.
parameters()2646   ArrayRef<ParmVarDecl *> parameters() const {
2647     return {ParamInfo, getNumParams()};
2648   }
parameters()2649   MutableArrayRef<ParmVarDecl *> parameters() {
2650     return {ParamInfo, getNumParams()};
2651   }
2652 
2653   // Iterator access to formal parameters.
2654   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2655   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2656 
param_empty()2657   bool param_empty() const { return parameters().empty(); }
param_begin()2658   param_iterator param_begin() { return parameters().begin(); }
param_end()2659   param_iterator param_end() { return parameters().end(); }
param_begin()2660   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()2661   param_const_iterator param_end() const { return parameters().end(); }
param_size()2662   size_t param_size() const { return parameters().size(); }
2663 
2664   /// Return the number of parameters this function must have based on its
2665   /// FunctionType.  This is the length of the ParamInfo array after it has been
2666   /// created.
2667   unsigned getNumParams() const;
2668 
getParamDecl(unsigned i)2669   const ParmVarDecl *getParamDecl(unsigned i) const {
2670     assert(i < getNumParams() && "Illegal param #");
2671     return ParamInfo[i];
2672   }
getParamDecl(unsigned i)2673   ParmVarDecl *getParamDecl(unsigned i) {
2674     assert(i < getNumParams() && "Illegal param #");
2675     return ParamInfo[i];
2676   }
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)2677   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2678     setParams(getASTContext(), NewParamInfo);
2679   }
2680 
2681   /// Returns the minimum number of arguments needed to call this function. This
2682   /// may be fewer than the number of function parameters, if some of the
2683   /// parameters have default arguments (in C++).
2684   unsigned getMinRequiredArguments() const;
2685 
2686   /// Returns the minimum number of non-object arguments needed to call this
2687   /// function. This produces the same value as getMinRequiredArguments except
2688   /// it does not count the explicit object argument, if any.
2689   unsigned getMinRequiredExplicitArguments() const;
2690 
2691   bool hasCXXExplicitFunctionObjectParameter() const;
2692 
2693   unsigned getNumNonObjectParams() const;
2694 
getNonObjectParameter(unsigned I)2695   const ParmVarDecl *getNonObjectParameter(unsigned I) const {
2696     return getParamDecl(hasCXXExplicitFunctionObjectParameter() ? I + 1 : I);
2697   }
2698 
getNonObjectParameter(unsigned I)2699   ParmVarDecl *getNonObjectParameter(unsigned I) {
2700     return getParamDecl(hasCXXExplicitFunctionObjectParameter() ? I + 1 : I);
2701   }
2702 
2703   /// Determine whether this function has a single parameter, or multiple
2704   /// parameters where all but the first have default arguments.
2705   ///
2706   /// This notion is used in the definition of copy/move constructors and
2707   /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2708   /// parameter packs are not treated specially here.
2709   bool hasOneParamOrDefaultArgs() const;
2710 
2711   /// Find the source location information for how the type of this function
2712   /// was written. May be absent (for example if the function was declared via
2713   /// a typedef) and may contain a different type from that of the function
2714   /// (for example if the function type was adjusted by an attribute).
2715   FunctionTypeLoc getFunctionTypeLoc() const;
2716 
getReturnType()2717   QualType getReturnType() const {
2718     return getType()->castAs<FunctionType>()->getReturnType();
2719   }
2720 
2721   /// Attempt to compute an informative source range covering the
2722   /// function return type. This may omit qualifiers and other information with
2723   /// limited representation in the AST.
2724   SourceRange getReturnTypeSourceRange() const;
2725 
2726   /// Attempt to compute an informative source range covering the
2727   /// function parameters, including the ellipsis of a variadic function.
2728   /// The source range excludes the parentheses, and is invalid if there are
2729   /// no parameters and no ellipsis.
2730   SourceRange getParametersSourceRange() const;
2731 
2732   /// Get the declared return type, which may differ from the actual return
2733   /// type if the return type is deduced.
getDeclaredReturnType()2734   QualType getDeclaredReturnType() const {
2735     auto *TSI = getTypeSourceInfo();
2736     QualType T = TSI ? TSI->getType() : getType();
2737     return T->castAs<FunctionType>()->getReturnType();
2738   }
2739 
2740   /// Gets the ExceptionSpecificationType as declared.
getExceptionSpecType()2741   ExceptionSpecificationType getExceptionSpecType() const {
2742     auto *TSI = getTypeSourceInfo();
2743     QualType T = TSI ? TSI->getType() : getType();
2744     const auto *FPT = T->getAs<FunctionProtoType>();
2745     return FPT ? FPT->getExceptionSpecType() : EST_None;
2746   }
2747 
2748   /// Attempt to compute an informative source range covering the
2749   /// function exception specification, if any.
2750   SourceRange getExceptionSpecSourceRange() const;
2751 
2752   /// Determine the type of an expression that calls this function.
getCallResultType()2753   QualType getCallResultType() const {
2754     return getType()->castAs<FunctionType>()->getCallResultType(
2755         getASTContext());
2756   }
2757 
2758   /// Returns the storage class as written in the source. For the
2759   /// computed linkage of symbol, see getLinkage.
getStorageClass()2760   StorageClass getStorageClass() const {
2761     return static_cast<StorageClass>(FunctionDeclBits.SClass);
2762   }
2763 
2764   /// Sets the storage class as written in the source.
setStorageClass(StorageClass SClass)2765   void setStorageClass(StorageClass SClass) {
2766     FunctionDeclBits.SClass = SClass;
2767   }
2768 
2769   /// Determine whether the "inline" keyword was specified for this
2770   /// function.
isInlineSpecified()2771   bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2772 
2773   /// Set whether the "inline" keyword was specified for this function.
setInlineSpecified(bool I)2774   void setInlineSpecified(bool I) {
2775     FunctionDeclBits.IsInlineSpecified = I;
2776     FunctionDeclBits.IsInline = I;
2777   }
2778 
2779   /// Determine whether the function was declared in source context
2780   /// that requires constrained FP intrinsics
UsesFPIntrin()2781   bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
2782 
2783   /// Set whether the function was declared in source context
2784   /// that requires constrained FP intrinsics
setUsesFPIntrin(bool I)2785   void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
2786 
2787   /// Flag that this function is implicitly inline.
2788   void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2789 
2790   /// Determine whether this function should be inlined, because it is
2791   /// either marked "inline" or "constexpr" or is a member function of a class
2792   /// that was defined in the class body.
isInlined()2793   bool isInlined() const { return FunctionDeclBits.IsInline; }
2794 
2795   bool isInlineDefinitionExternallyVisible() const;
2796 
2797   bool isMSExternInline() const;
2798 
2799   bool doesDeclarationForceExternallyVisibleDefinition() const;
2800 
isStatic()2801   bool isStatic() const { return getStorageClass() == SC_Static; }
2802 
2803   /// Whether this function declaration represents an C++ overloaded
2804   /// operator, e.g., "operator+".
isOverloadedOperator()2805   bool isOverloadedOperator() const {
2806     return getOverloadedOperator() != OO_None;
2807   }
2808 
2809   OverloadedOperatorKind getOverloadedOperator() const;
2810 
2811   const IdentifierInfo *getLiteralIdentifier() const;
2812 
2813   /// If this function is an instantiation of a member function
2814   /// of a class template specialization, retrieves the function from
2815   /// which it was instantiated.
2816   ///
2817   /// This routine will return non-NULL for (non-templated) member
2818   /// functions of class templates and for instantiations of function
2819   /// templates. For example, given:
2820   ///
2821   /// \code
2822   /// template<typename T>
2823   /// struct X {
2824   ///   void f(T);
2825   /// };
2826   /// \endcode
2827   ///
2828   /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2829   /// whose parent is the class template specialization X<int>. For
2830   /// this declaration, getInstantiatedFromFunction() will return
2831   /// the FunctionDecl X<T>::A. When a complete definition of
2832   /// X<int>::A is required, it will be instantiated from the
2833   /// declaration returned by getInstantiatedFromMemberFunction().
2834   FunctionDecl *getInstantiatedFromMemberFunction() const;
2835 
2836   /// What kind of templated function this is.
2837   TemplatedKind getTemplatedKind() const;
2838 
2839   /// If this function is an instantiation of a member function of a
2840   /// class template specialization, retrieves the member specialization
2841   /// information.
2842   MemberSpecializationInfo *getMemberSpecializationInfo() const;
2843 
2844   /// Specify that this record is an instantiation of the
2845   /// member function FD.
setInstantiationOfMemberFunction(FunctionDecl * FD,TemplateSpecializationKind TSK)2846   void setInstantiationOfMemberFunction(FunctionDecl *FD,
2847                                         TemplateSpecializationKind TSK) {
2848     setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2849   }
2850 
2851   /// Specify that this function declaration was instantiated from a
2852   /// FunctionDecl FD. This is only used if this is a function declaration
2853   /// declared locally inside of a function template.
2854   void setInstantiatedFromDecl(FunctionDecl *FD);
2855 
2856   FunctionDecl *getInstantiatedFromDecl() const;
2857 
2858   /// Retrieves the function template that is described by this
2859   /// function declaration.
2860   ///
2861   /// Every function template is represented as a FunctionTemplateDecl
2862   /// and a FunctionDecl (or something derived from FunctionDecl). The
2863   /// former contains template properties (such as the template
2864   /// parameter lists) while the latter contains the actual
2865   /// description of the template's
2866   /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2867   /// FunctionDecl that describes the function template,
2868   /// getDescribedFunctionTemplate() retrieves the
2869   /// FunctionTemplateDecl from a FunctionDecl.
2870   FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2871 
2872   void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2873 
2874   /// Determine whether this function is a function template
2875   /// specialization.
2876   bool isFunctionTemplateSpecialization() const;
2877 
2878   /// If this function is actually a function template specialization,
2879   /// retrieve information about this function template specialization.
2880   /// Otherwise, returns NULL.
2881   FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2882 
2883   /// Determines whether this function is a function template
2884   /// specialization or a member of a class template specialization that can
2885   /// be implicitly instantiated.
2886   bool isImplicitlyInstantiable() const;
2887 
2888   /// Determines if the given function was instantiated from a
2889   /// function template.
2890   bool isTemplateInstantiation() const;
2891 
2892   /// Retrieve the function declaration from which this function could
2893   /// be instantiated, if it is an instantiation (rather than a non-template
2894   /// or a specialization, for example).
2895   ///
2896   /// If \p ForDefinition is \c false, explicit specializations will be treated
2897   /// as if they were implicit instantiations. This will then find the pattern
2898   /// corresponding to non-definition portions of the declaration, such as
2899   /// default arguments and the exception specification.
2900   FunctionDecl *
2901   getTemplateInstantiationPattern(bool ForDefinition = true) const;
2902 
2903   /// Retrieve the primary template that this function template
2904   /// specialization either specializes or was instantiated from.
2905   ///
2906   /// If this function declaration is not a function template specialization,
2907   /// returns NULL.
2908   FunctionTemplateDecl *getPrimaryTemplate() const;
2909 
2910   /// Retrieve the template arguments used to produce this function
2911   /// template specialization from the primary template.
2912   ///
2913   /// If this function declaration is not a function template specialization,
2914   /// returns NULL.
2915   const TemplateArgumentList *getTemplateSpecializationArgs() const;
2916 
2917   /// Retrieve the template argument list as written in the sources,
2918   /// if any.
2919   ///
2920   /// If this function declaration is not a function template specialization
2921   /// or if it had no explicit template argument list, returns NULL.
2922   /// Note that it an explicit template argument list may be written empty,
2923   /// e.g., template<> void foo<>(char* s);
2924   const ASTTemplateArgumentListInfo*
2925   getTemplateSpecializationArgsAsWritten() const;
2926 
2927   /// Specify that this function declaration is actually a function
2928   /// template specialization.
2929   ///
2930   /// \param Template the function template that this function template
2931   /// specialization specializes.
2932   ///
2933   /// \param TemplateArgs the template arguments that produced this
2934   /// function template specialization from the template.
2935   ///
2936   /// \param InsertPos If non-NULL, the position in the function template
2937   /// specialization set where the function template specialization data will
2938   /// be inserted.
2939   ///
2940   /// \param TSK the kind of template specialization this is.
2941   ///
2942   /// \param TemplateArgsAsWritten location info of template arguments.
2943   ///
2944   /// \param PointOfInstantiation point at which the function template
2945   /// specialization was first instantiated.
2946   void setFunctionTemplateSpecialization(
2947       FunctionTemplateDecl *Template, TemplateArgumentList *TemplateArgs,
2948       void *InsertPos,
2949       TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2950       TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2951       SourceLocation PointOfInstantiation = SourceLocation()) {
2952     setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2953                                       InsertPos, TSK, TemplateArgsAsWritten,
2954                                       PointOfInstantiation);
2955   }
2956 
2957   /// Specifies that this function declaration is actually a
2958   /// dependent function template specialization.
2959   void setDependentTemplateSpecialization(
2960       ASTContext &Context, const UnresolvedSetImpl &Templates,
2961       const TemplateArgumentListInfo *TemplateArgs);
2962 
2963   DependentFunctionTemplateSpecializationInfo *
2964   getDependentSpecializationInfo() const;
2965 
2966   /// Determine what kind of template instantiation this function
2967   /// represents.
2968   TemplateSpecializationKind getTemplateSpecializationKind() const;
2969 
2970   /// Determine the kind of template specialization this function represents
2971   /// for the purpose of template instantiation.
2972   TemplateSpecializationKind
2973   getTemplateSpecializationKindForInstantiation() const;
2974 
2975   /// Determine what kind of template instantiation this function
2976   /// represents.
2977   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2978                         SourceLocation PointOfInstantiation = SourceLocation());
2979 
2980   /// Retrieve the (first) point of instantiation of a function template
2981   /// specialization or a member of a class template specialization.
2982   ///
2983   /// \returns the first point of instantiation, if this function was
2984   /// instantiated from a template; otherwise, returns an invalid source
2985   /// location.
2986   SourceLocation getPointOfInstantiation() const;
2987 
2988   /// Determine whether this is or was instantiated from an out-of-line
2989   /// definition of a member function.
2990   bool isOutOfLine() const override;
2991 
2992   /// Identify a memory copying or setting function.
2993   /// If the given function is a memory copy or setting function, returns
2994   /// the corresponding Builtin ID. If the function is not a memory function,
2995   /// returns 0.
2996   unsigned getMemoryFunctionKind() const;
2997 
2998   /// Returns ODRHash of the function.  This value is calculated and
2999   /// stored on first call, then the stored value returned on the other calls.
3000   unsigned getODRHash();
3001 
3002   /// Returns cached ODRHash of the function.  This must have been previously
3003   /// computed and stored.
3004   unsigned getODRHash() const;
3005 
getFunctionEffects()3006   FunctionEffectsRef getFunctionEffects() const {
3007     // Effects may differ between declarations, but they should be propagated
3008     // from old to new on any redeclaration, so it suffices to look at
3009     // getMostRecentDecl().
3010     if (const auto *FPT =
3011             getMostRecentDecl()->getType()->getAs<FunctionProtoType>())
3012       return FPT->getFunctionEffects();
3013     return {};
3014   }
3015 
3016   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3017   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3018   static bool classofKind(Kind K) {
3019     return K >= firstFunction && K <= lastFunction;
3020   }
castToDeclContext(const FunctionDecl * D)3021   static DeclContext *castToDeclContext(const FunctionDecl *D) {
3022     return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
3023   }
castFromDeclContext(const DeclContext * DC)3024   static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
3025     return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
3026   }
3027 };
3028 
3029 /// Represents a member of a struct/union/class.
3030 class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
3031   /// The kinds of value we can store in StorageKind.
3032   ///
3033   /// Note that this is compatible with InClassInitStyle except for
3034   /// ISK_CapturedVLAType.
3035   enum InitStorageKind {
3036     /// If the pointer is null, there's nothing special.  Otherwise,
3037     /// this is a bitfield and the pointer is the Expr* storing the
3038     /// bit-width.
3039     ISK_NoInit = (unsigned) ICIS_NoInit,
3040 
3041     /// The pointer is an (optional due to delayed parsing) Expr*
3042     /// holding the copy-initializer.
3043     ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
3044 
3045     /// The pointer is an (optional due to delayed parsing) Expr*
3046     /// holding the list-initializer.
3047     ISK_InClassListInit = (unsigned) ICIS_ListInit,
3048 
3049     /// The pointer is a VariableArrayType* that's been captured;
3050     /// the enclosing context is a lambda or captured statement.
3051     ISK_CapturedVLAType,
3052   };
3053 
3054   LLVM_PREFERRED_TYPE(bool)
3055   unsigned BitField : 1;
3056   LLVM_PREFERRED_TYPE(bool)
3057   unsigned Mutable : 1;
3058   LLVM_PREFERRED_TYPE(InitStorageKind)
3059   unsigned StorageKind : 2;
3060   mutable unsigned CachedFieldIndex : 28;
3061 
3062   /// If this is a bitfield with a default member initializer, this
3063   /// structure is used to represent the two expressions.
3064   struct InitAndBitWidthStorage {
3065     LazyDeclStmtPtr Init;
3066     Expr *BitWidth;
3067   };
3068 
3069   /// Storage for either the bit-width, the in-class initializer, or
3070   /// both (via InitAndBitWidth), or the captured variable length array bound.
3071   ///
3072   /// If the storage kind is ISK_InClassCopyInit or
3073   /// ISK_InClassListInit, but the initializer is null, then this
3074   /// field has an in-class initializer that has not yet been parsed
3075   /// and attached.
3076   // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
3077   // overwhelmingly common case that we have none of these things.
3078   union {
3079     // Active member if ISK is not ISK_CapturedVLAType and BitField is false.
3080     LazyDeclStmtPtr Init;
3081     // Active member if ISK is ISK_NoInit and BitField is true.
3082     Expr *BitWidth;
3083     // Active member if ISK is ISK_InClass*Init and BitField is true.
3084     InitAndBitWidthStorage *InitAndBitWidth;
3085     // Active member if ISK is ISK_CapturedVLAType.
3086     const VariableArrayType *CapturedVLAType;
3087   };
3088 
3089 protected:
FieldDecl(Kind DK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)3090   FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
3091             SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
3092             TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3093             InClassInitStyle InitStyle)
3094       : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), BitField(false),
3095         Mutable(Mutable), StorageKind((InitStorageKind)InitStyle),
3096         CachedFieldIndex(0), Init() {
3097     if (BW)
3098       setBitWidth(BW);
3099   }
3100 
3101 public:
3102   friend class ASTDeclReader;
3103   friend class ASTDeclWriter;
3104 
3105   static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
3106                            SourceLocation StartLoc, SourceLocation IdLoc,
3107                            const IdentifierInfo *Id, QualType T,
3108                            TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3109                            InClassInitStyle InitStyle);
3110 
3111   static FieldDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
3112 
3113   /// Returns the index of this field within its record,
3114   /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
3115   unsigned getFieldIndex() const;
3116 
3117   /// Determines whether this field is mutable (C++ only).
isMutable()3118   bool isMutable() const { return Mutable; }
3119 
3120   /// Determines whether this field is a bitfield.
isBitField()3121   bool isBitField() const { return BitField; }
3122 
3123   /// Determines whether this is an unnamed bitfield.
isUnnamedBitField()3124   bool isUnnamedBitField() const { return isBitField() && !getDeclName(); }
3125 
3126   /// Determines whether this field is a
3127   /// representative for an anonymous struct or union. Such fields are
3128   /// unnamed and are implicitly generated by the implementation to
3129   /// store the data for the anonymous union or struct.
3130   bool isAnonymousStructOrUnion() const;
3131 
3132   /// Returns the expression that represents the bit width, if this field
3133   /// is a bit field. For non-bitfields, this returns \c nullptr.
getBitWidth()3134   Expr *getBitWidth() const {
3135     if (!BitField)
3136       return nullptr;
3137     return hasInClassInitializer() ? InitAndBitWidth->BitWidth : BitWidth;
3138   }
3139 
3140   /// Computes the bit width of this field, if this is a bit field.
3141   /// May not be called on non-bitfields.
3142   unsigned getBitWidthValue(const ASTContext &Ctx) const;
3143 
3144   /// Set the bit-field width for this member.
3145   // Note: used by some clients (i.e., do not remove it).
setBitWidth(Expr * Width)3146   void setBitWidth(Expr *Width) {
3147     assert(!hasCapturedVLAType() && !BitField &&
3148            "bit width or captured type already set");
3149     assert(Width && "no bit width specified");
3150     if (hasInClassInitializer())
3151       InitAndBitWidth =
3152           new (getASTContext()) InitAndBitWidthStorage{Init, Width};
3153     else
3154       BitWidth = Width;
3155     BitField = true;
3156   }
3157 
3158   /// Remove the bit-field width from this member.
3159   // Note: used by some clients (i.e., do not remove it).
removeBitWidth()3160   void removeBitWidth() {
3161     assert(isBitField() && "no bitfield width to remove");
3162     if (hasInClassInitializer()) {
3163       // Read the old initializer before we change the active union member.
3164       auto ExistingInit = InitAndBitWidth->Init;
3165       Init = ExistingInit;
3166     }
3167     BitField = false;
3168   }
3169 
3170   /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
3171   /// at all and instead act as a separator between contiguous runs of other
3172   /// bit-fields.
3173   bool isZeroLengthBitField(const ASTContext &Ctx) const;
3174 
3175   /// Determine if this field is a subobject of zero size, that is, either a
3176   /// zero-length bit-field or a field of empty class type with the
3177   /// [[no_unique_address]] attribute.
3178   bool isZeroSize(const ASTContext &Ctx) const;
3179 
3180   /// Determine if this field is of potentially-overlapping class type, that
3181   /// is, subobject with the [[no_unique_address]] attribute
3182   bool isPotentiallyOverlapping() const;
3183 
3184   /// Get the kind of (C++11) default member initializer that this field has.
getInClassInitStyle()3185   InClassInitStyle getInClassInitStyle() const {
3186     return (StorageKind == ISK_CapturedVLAType ? ICIS_NoInit
3187                                                : (InClassInitStyle)StorageKind);
3188   }
3189 
3190   /// Determine whether this member has a C++11 default member initializer.
hasInClassInitializer()3191   bool hasInClassInitializer() const {
3192     return getInClassInitStyle() != ICIS_NoInit;
3193   }
3194 
3195   /// Determine whether getInClassInitializer() would return a non-null pointer
3196   /// without deserializing the initializer.
hasNonNullInClassInitializer()3197   bool hasNonNullInClassInitializer() const {
3198     return hasInClassInitializer() && (BitField ? InitAndBitWidth->Init : Init);
3199   }
3200 
3201   /// Get the C++11 default member initializer for this member, or null if one
3202   /// has not been set. If a valid declaration has a default member initializer,
3203   /// but this returns null, then we have not parsed and attached it yet.
3204   Expr *getInClassInitializer() const;
3205 
3206   /// Set the C++11 in-class initializer for this member.
3207   void setInClassInitializer(Expr *NewInit);
3208 
3209 private:
3210   void setLazyInClassInitializer(LazyDeclStmtPtr NewInit);
3211 
3212 public:
3213   /// Remove the C++11 in-class initializer from this member.
removeInClassInitializer()3214   void removeInClassInitializer() {
3215     assert(hasInClassInitializer() && "no initializer to remove");
3216     StorageKind = ISK_NoInit;
3217     if (BitField) {
3218       // Read the bit width before we change the active union member.
3219       Expr *ExistingBitWidth = InitAndBitWidth->BitWidth;
3220       BitWidth = ExistingBitWidth;
3221     }
3222   }
3223 
3224   /// Determine whether this member captures the variable length array
3225   /// type.
hasCapturedVLAType()3226   bool hasCapturedVLAType() const {
3227     return StorageKind == ISK_CapturedVLAType;
3228   }
3229 
3230   /// Get the captured variable length array type.
getCapturedVLAType()3231   const VariableArrayType *getCapturedVLAType() const {
3232     return hasCapturedVLAType() ? CapturedVLAType : nullptr;
3233   }
3234 
3235   /// Set the captured variable length array type for this field.
3236   void setCapturedVLAType(const VariableArrayType *VLAType);
3237 
3238   /// Returns the parent of this field declaration, which
3239   /// is the struct in which this field is defined.
3240   ///
3241   /// Returns null if this is not a normal class/struct field declaration, e.g.
3242   /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
getParent()3243   const RecordDecl *getParent() const {
3244     return dyn_cast<RecordDecl>(getDeclContext());
3245   }
3246 
getParent()3247   RecordDecl *getParent() {
3248     return dyn_cast<RecordDecl>(getDeclContext());
3249   }
3250 
3251   SourceRange getSourceRange() const override LLVM_READONLY;
3252 
3253   /// Retrieves the canonical declaration of this field.
getCanonicalDecl()3254   FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3255   const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3256 
3257   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3258   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3259   static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3260 
3261   void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
3262 };
3263 
3264 /// An instance of this object exists for each enum constant
3265 /// that is defined.  For example, in "enum X {a,b}", each of a/b are
3266 /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3267 /// TagType for the X EnumDecl.
3268 class EnumConstantDecl : public ValueDecl,
3269                          public Mergeable<EnumConstantDecl>,
3270                          public APIntStorage {
3271   Stmt *Init; // an integer constant expression
3272   bool IsUnsigned;
3273 
3274 protected:
3275   EnumConstantDecl(const ASTContext &C, DeclContext *DC, SourceLocation L,
3276                    IdentifierInfo *Id, QualType T, Expr *E,
3277                    const llvm::APSInt &V);
3278 
3279 public:
3280   friend class StmtIteratorBase;
3281 
3282   static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3283                                   SourceLocation L, IdentifierInfo *Id,
3284                                   QualType T, Expr *E,
3285                                   const llvm::APSInt &V);
3286   static EnumConstantDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
3287 
getInitExpr()3288   const Expr *getInitExpr() const { return (const Expr*) Init; }
getInitExpr()3289   Expr *getInitExpr() { return (Expr*) Init; }
getInitVal()3290   llvm::APSInt getInitVal() const {
3291     return llvm::APSInt(getValue(), IsUnsigned);
3292   }
3293 
setInitExpr(Expr * E)3294   void setInitExpr(Expr *E) { Init = (Stmt*) E; }
setInitVal(const ASTContext & C,const llvm::APSInt & V)3295   void setInitVal(const ASTContext &C, const llvm::APSInt &V) {
3296     setValue(C, V);
3297     IsUnsigned = V.isUnsigned();
3298   }
3299 
3300   SourceRange getSourceRange() const override LLVM_READONLY;
3301 
3302   /// Retrieves the canonical declaration of this enumerator.
getCanonicalDecl()3303   EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3304   const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3305 
3306   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3307   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3308   static bool classofKind(Kind K) { return K == EnumConstant; }
3309 };
3310 
3311 /// Represents a field injected from an anonymous union/struct into the parent
3312 /// scope. These are always implicit.
3313 class IndirectFieldDecl : public ValueDecl,
3314                           public Mergeable<IndirectFieldDecl> {
3315   NamedDecl **Chaining;
3316   unsigned ChainingSize;
3317 
3318   IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3319                     DeclarationName N, QualType T,
3320                     MutableArrayRef<NamedDecl *> CH);
3321 
3322   void anchor() override;
3323 
3324 public:
3325   friend class ASTDeclReader;
3326 
3327   static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3328                                    SourceLocation L, const IdentifierInfo *Id,
3329                                    QualType T,
3330                                    llvm::MutableArrayRef<NamedDecl *> CH);
3331 
3332   static IndirectFieldDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
3333 
3334   using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3335 
chain()3336   ArrayRef<NamedDecl *> chain() const {
3337     return llvm::ArrayRef(Chaining, ChainingSize);
3338   }
chain_begin()3339   chain_iterator chain_begin() const { return chain().begin(); }
chain_end()3340   chain_iterator chain_end() const { return chain().end(); }
3341 
getChainingSize()3342   unsigned getChainingSize() const { return ChainingSize; }
3343 
getAnonField()3344   FieldDecl *getAnonField() const {
3345     assert(chain().size() >= 2);
3346     return cast<FieldDecl>(chain().back());
3347   }
3348 
getVarDecl()3349   VarDecl *getVarDecl() const {
3350     assert(chain().size() >= 2);
3351     return dyn_cast<VarDecl>(chain().front());
3352   }
3353 
getCanonicalDecl()3354   IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3355   const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3356 
3357   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3358   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3359   static bool classofKind(Kind K) { return K == IndirectField; }
3360 };
3361 
3362 /// Represents a declaration of a type.
3363 class TypeDecl : public NamedDecl {
3364   friend class ASTContext;
3365 
3366   /// This indicates the Type object that represents
3367   /// this TypeDecl.  It is a cache maintained by
3368   /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3369   /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3370   mutable const Type *TypeForDecl = nullptr;
3371 
3372   /// The start of the source range for this declaration.
3373   SourceLocation LocStart;
3374 
3375   void anchor() override;
3376 
3377 protected:
3378   TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, const IdentifierInfo *Id,
3379            SourceLocation StartL = SourceLocation())
NamedDecl(DK,DC,L,Id)3380       : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3381 
3382 public:
3383   // Low-level accessor. If you just want the type defined by this node,
3384   // check out ASTContext::getTypeDeclType or one of
3385   // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3386   // already know the specific kind of node this is.
getTypeForDecl()3387   const Type *getTypeForDecl() const { return TypeForDecl; }
setTypeForDecl(const Type * TD)3388   void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3389 
getBeginLoc()3390   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
setLocStart(SourceLocation L)3391   void setLocStart(SourceLocation L) { LocStart = L; }
getSourceRange()3392   SourceRange getSourceRange() const override LLVM_READONLY {
3393     if (LocStart.isValid())
3394       return SourceRange(LocStart, getLocation());
3395     else
3396       return SourceRange(getLocation());
3397   }
3398 
3399   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3400   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3401   static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3402 };
3403 
3404 /// Base class for declarations which introduce a typedef-name.
3405 class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3406   struct alignas(8) ModedTInfo {
3407     TypeSourceInfo *first;
3408     QualType second;
3409   };
3410 
3411   /// If int part is 0, we have not computed IsTransparentTag.
3412   /// Otherwise, IsTransparentTag is (getInt() >> 1).
3413   mutable llvm::PointerIntPair<
3414       llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3415       MaybeModedTInfo;
3416 
3417   void anchor() override;
3418 
3419 protected:
TypedefNameDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,TypeSourceInfo * TInfo)3420   TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3421                   SourceLocation StartLoc, SourceLocation IdLoc,
3422                   const IdentifierInfo *Id, TypeSourceInfo *TInfo)
3423       : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3424         MaybeModedTInfo(TInfo, 0) {}
3425 
3426   using redeclarable_base = Redeclarable<TypedefNameDecl>;
3427 
getNextRedeclarationImpl()3428   TypedefNameDecl *getNextRedeclarationImpl() override {
3429     return getNextRedeclaration();
3430   }
3431 
getPreviousDeclImpl()3432   TypedefNameDecl *getPreviousDeclImpl() override {
3433     return getPreviousDecl();
3434   }
3435 
getMostRecentDeclImpl()3436   TypedefNameDecl *getMostRecentDeclImpl() override {
3437     return getMostRecentDecl();
3438   }
3439 
3440 public:
3441   using redecl_range = redeclarable_base::redecl_range;
3442   using redecl_iterator = redeclarable_base::redecl_iterator;
3443 
3444   using redeclarable_base::redecls_begin;
3445   using redeclarable_base::redecls_end;
3446   using redeclarable_base::redecls;
3447   using redeclarable_base::getPreviousDecl;
3448   using redeclarable_base::getMostRecentDecl;
3449   using redeclarable_base::isFirstDecl;
3450 
isModed()3451   bool isModed() const {
3452     return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3453   }
3454 
getTypeSourceInfo()3455   TypeSourceInfo *getTypeSourceInfo() const {
3456     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3457                      : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3458   }
3459 
getUnderlyingType()3460   QualType getUnderlyingType() const {
3461     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3462                      : MaybeModedTInfo.getPointer()
3463                            .get<TypeSourceInfo *>()
3464                            ->getType();
3465   }
3466 
setTypeSourceInfo(TypeSourceInfo * newType)3467   void setTypeSourceInfo(TypeSourceInfo *newType) {
3468     MaybeModedTInfo.setPointer(newType);
3469   }
3470 
setModedTypeSourceInfo(TypeSourceInfo * unmodedTSI,QualType modedTy)3471   void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3472     MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3473                                    ModedTInfo({unmodedTSI, modedTy}));
3474   }
3475 
3476   /// Retrieves the canonical declaration of this typedef-name.
getCanonicalDecl()3477   TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3478   const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3479 
3480   /// Retrieves the tag declaration for which this is the typedef name for
3481   /// linkage purposes, if any.
3482   ///
3483   /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3484   /// this typedef declaration.
3485   TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3486 
3487   /// Determines if this typedef shares a name and spelling location with its
3488   /// underlying tag type, as is the case with the NS_ENUM macro.
isTransparentTag()3489   bool isTransparentTag() const {
3490     if (MaybeModedTInfo.getInt())
3491       return MaybeModedTInfo.getInt() & 0x2;
3492     return isTransparentTagSlow();
3493   }
3494 
3495   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3496   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3497   static bool classofKind(Kind K) {
3498     return K >= firstTypedefName && K <= lastTypedefName;
3499   }
3500 
3501 private:
3502   bool isTransparentTagSlow() const;
3503 };
3504 
3505 /// Represents the declaration of a typedef-name via the 'typedef'
3506 /// type specifier.
3507 class TypedefDecl : public TypedefNameDecl {
TypedefDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,TypeSourceInfo * TInfo)3508   TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3509               SourceLocation IdLoc, const IdentifierInfo *Id,
3510               TypeSourceInfo *TInfo)
3511       : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3512 
3513 public:
3514   static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3515                              SourceLocation StartLoc, SourceLocation IdLoc,
3516                              const IdentifierInfo *Id, TypeSourceInfo *TInfo);
3517   static TypedefDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
3518 
3519   SourceRange getSourceRange() const override LLVM_READONLY;
3520 
3521   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3522   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3523   static bool classofKind(Kind K) { return K == Typedef; }
3524 };
3525 
3526 /// Represents the declaration of a typedef-name via a C++11
3527 /// alias-declaration.
3528 class TypeAliasDecl : public TypedefNameDecl {
3529   /// The template for which this is the pattern, if any.
3530   TypeAliasTemplateDecl *Template;
3531 
TypeAliasDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,TypeSourceInfo * TInfo)3532   TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3533                 SourceLocation IdLoc, const IdentifierInfo *Id,
3534                 TypeSourceInfo *TInfo)
3535       : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3536         Template(nullptr) {}
3537 
3538 public:
3539   static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3540                                SourceLocation StartLoc, SourceLocation IdLoc,
3541                                const IdentifierInfo *Id, TypeSourceInfo *TInfo);
3542   static TypeAliasDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
3543 
3544   SourceRange getSourceRange() const override LLVM_READONLY;
3545 
getDescribedAliasTemplate()3546   TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
setDescribedAliasTemplate(TypeAliasTemplateDecl * TAT)3547   void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3548 
3549   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3550   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3551   static bool classofKind(Kind K) { return K == TypeAlias; }
3552 };
3553 
3554 /// Represents the declaration of a struct/union/class/enum.
3555 class TagDecl : public TypeDecl,
3556                 public DeclContext,
3557                 public Redeclarable<TagDecl> {
3558   // This class stores some data in DeclContext::TagDeclBits
3559   // to save some space. Use the provided accessors to access it.
3560 public:
3561   // This is really ugly.
3562   using TagKind = TagTypeKind;
3563 
3564 private:
3565   SourceRange BraceRange;
3566 
3567   // A struct representing syntactic qualifier info,
3568   // to be used for the (uncommon) case of out-of-line declarations.
3569   using ExtInfo = QualifierInfo;
3570 
3571   /// If the (out-of-line) tag declaration name
3572   /// is qualified, it points to the qualifier info (nns and range);
3573   /// otherwise, if the tag declaration is anonymous and it is part of
3574   /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3575   /// otherwise, if the tag declaration is anonymous and it is used as a
3576   /// declaration specifier for variables, it points to the first VarDecl (used
3577   /// for mangling);
3578   /// otherwise, it is a null (TypedefNameDecl) pointer.
3579   llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3580 
hasExtInfo()3581   bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
getExtInfo()3582   ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
getExtInfo()3583   const ExtInfo *getExtInfo() const {
3584     return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3585   }
3586 
3587 protected:
3588   TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3589           SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3590           SourceLocation StartL);
3591 
3592   using redeclarable_base = Redeclarable<TagDecl>;
3593 
getNextRedeclarationImpl()3594   TagDecl *getNextRedeclarationImpl() override {
3595     return getNextRedeclaration();
3596   }
3597 
getPreviousDeclImpl()3598   TagDecl *getPreviousDeclImpl() override {
3599     return getPreviousDecl();
3600   }
3601 
getMostRecentDeclImpl()3602   TagDecl *getMostRecentDeclImpl() override {
3603     return getMostRecentDecl();
3604   }
3605 
3606   /// Completes the definition of this tag declaration.
3607   ///
3608   /// This is a helper function for derived classes.
3609   void completeDefinition();
3610 
3611   /// True if this decl is currently being defined.
3612   void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3613 
3614   /// Indicates whether it is possible for declarations of this kind
3615   /// to have an out-of-date definition.
3616   ///
3617   /// This option is only enabled when modules are enabled.
3618   void setMayHaveOutOfDateDef(bool V = true) {
3619     TagDeclBits.MayHaveOutOfDateDef = V;
3620   }
3621 
3622 public:
3623   friend class ASTDeclReader;
3624   friend class ASTDeclWriter;
3625 
3626   using redecl_range = redeclarable_base::redecl_range;
3627   using redecl_iterator = redeclarable_base::redecl_iterator;
3628 
3629   using redeclarable_base::redecls_begin;
3630   using redeclarable_base::redecls_end;
3631   using redeclarable_base::redecls;
3632   using redeclarable_base::getPreviousDecl;
3633   using redeclarable_base::getMostRecentDecl;
3634   using redeclarable_base::isFirstDecl;
3635 
getBraceRange()3636   SourceRange getBraceRange() const { return BraceRange; }
setBraceRange(SourceRange R)3637   void setBraceRange(SourceRange R) { BraceRange = R; }
3638 
3639   /// Return SourceLocation representing start of source
3640   /// range ignoring outer template declarations.
getInnerLocStart()3641   SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3642 
3643   /// Return SourceLocation representing start of source
3644   /// range taking into account any outer template declarations.
3645   SourceLocation getOuterLocStart() const;
3646   SourceRange getSourceRange() const override LLVM_READONLY;
3647 
3648   TagDecl *getCanonicalDecl() override;
getCanonicalDecl()3649   const TagDecl *getCanonicalDecl() const {
3650     return const_cast<TagDecl*>(this)->getCanonicalDecl();
3651   }
3652 
3653   /// Return true if this declaration is a completion definition of the type.
3654   /// Provided for consistency.
isThisDeclarationADefinition()3655   bool isThisDeclarationADefinition() const {
3656     return isCompleteDefinition();
3657   }
3658 
3659   /// Return true if this decl has its body fully specified.
isCompleteDefinition()3660   bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3661 
3662   /// True if this decl has its body fully specified.
3663   void setCompleteDefinition(bool V = true) {
3664     TagDeclBits.IsCompleteDefinition = V;
3665   }
3666 
3667   /// Return true if this complete decl is
3668   /// required to be complete for some existing use.
isCompleteDefinitionRequired()3669   bool isCompleteDefinitionRequired() const {
3670     return TagDeclBits.IsCompleteDefinitionRequired;
3671   }
3672 
3673   /// True if this complete decl is
3674   /// required to be complete for some existing use.
3675   void setCompleteDefinitionRequired(bool V = true) {
3676     TagDeclBits.IsCompleteDefinitionRequired = V;
3677   }
3678 
3679   /// Return true if this decl is currently being defined.
isBeingDefined()3680   bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3681 
3682   /// True if this tag declaration is "embedded" (i.e., defined or declared
3683   /// for the very first time) in the syntax of a declarator.
isEmbeddedInDeclarator()3684   bool isEmbeddedInDeclarator() const {
3685     return TagDeclBits.IsEmbeddedInDeclarator;
3686   }
3687 
3688   /// True if this tag declaration is "embedded" (i.e., defined or declared
3689   /// for the very first time) in the syntax of a declarator.
setEmbeddedInDeclarator(bool isInDeclarator)3690   void setEmbeddedInDeclarator(bool isInDeclarator) {
3691     TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3692   }
3693 
3694   /// True if this tag is free standing, e.g. "struct foo;".
isFreeStanding()3695   bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3696 
3697   /// True if this tag is free standing, e.g. "struct foo;".
3698   void setFreeStanding(bool isFreeStanding = true) {
3699     TagDeclBits.IsFreeStanding = isFreeStanding;
3700   }
3701 
3702   /// Indicates whether it is possible for declarations of this kind
3703   /// to have an out-of-date definition.
3704   ///
3705   /// This option is only enabled when modules are enabled.
mayHaveOutOfDateDef()3706   bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3707 
3708   /// Whether this declaration declares a type that is
3709   /// dependent, i.e., a type that somehow depends on template
3710   /// parameters.
isDependentType()3711   bool isDependentType() const { return isDependentContext(); }
3712 
3713   /// Whether this declaration was a definition in some module but was forced
3714   /// to be a declaration.
3715   ///
3716   /// Useful for clients checking if a module has a definition of a specific
3717   /// symbol and not interested in the final AST with deduplicated definitions.
isThisDeclarationADemotedDefinition()3718   bool isThisDeclarationADemotedDefinition() const {
3719     return TagDeclBits.IsThisDeclarationADemotedDefinition;
3720   }
3721 
3722   /// Mark a definition as a declaration and maintain information it _was_
3723   /// a definition.
demoteThisDefinitionToDeclaration()3724   void demoteThisDefinitionToDeclaration() {
3725     assert(isCompleteDefinition() &&
3726            "Should demote definitions only, not forward declarations");
3727     setCompleteDefinition(false);
3728     TagDeclBits.IsThisDeclarationADemotedDefinition = true;
3729   }
3730 
3731   /// Starts the definition of this tag declaration.
3732   ///
3733   /// This method should be invoked at the beginning of the definition
3734   /// of this tag declaration. It will set the tag type into a state
3735   /// where it is in the process of being defined.
3736   void startDefinition();
3737 
3738   /// Returns the TagDecl that actually defines this
3739   ///  struct/union/class/enum.  When determining whether or not a
3740   ///  struct/union/class/enum has a definition, one should use this
3741   ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
3742   ///  whether or not a specific TagDecl is defining declaration, not
3743   ///  whether or not the struct/union/class/enum type is defined.
3744   ///  This method returns NULL if there is no TagDecl that defines
3745   ///  the struct/union/class/enum.
3746   TagDecl *getDefinition() const;
3747 
getKindName()3748   StringRef getKindName() const {
3749     return TypeWithKeyword::getTagTypeKindName(getTagKind());
3750   }
3751 
getTagKind()3752   TagKind getTagKind() const {
3753     return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3754   }
3755 
setTagKind(TagKind TK)3756   void setTagKind(TagKind TK) {
3757     TagDeclBits.TagDeclKind = llvm::to_underlying(TK);
3758   }
3759 
isStruct()3760   bool isStruct() const { return getTagKind() == TagTypeKind::Struct; }
isInterface()3761   bool isInterface() const { return getTagKind() == TagTypeKind::Interface; }
isClass()3762   bool isClass() const { return getTagKind() == TagTypeKind::Class; }
isUnion()3763   bool isUnion() const { return getTagKind() == TagTypeKind::Union; }
isEnum()3764   bool isEnum() const { return getTagKind() == TagTypeKind::Enum; }
3765 
3766   /// Is this tag type named, either directly or via being defined in
3767   /// a typedef of this type?
3768   ///
3769   /// C++11 [basic.link]p8:
3770   ///   A type is said to have linkage if and only if:
3771   ///     - it is a class or enumeration type that is named (or has a
3772   ///       name for linkage purposes) and the name has linkage; ...
3773   /// C++11 [dcl.typedef]p9:
3774   ///   If the typedef declaration defines an unnamed class (or enum),
3775   ///   the first typedef-name declared by the declaration to be that
3776   ///   class type (or enum type) is used to denote the class type (or
3777   ///   enum type) for linkage purposes only.
3778   ///
3779   /// C does not have an analogous rule, but the same concept is
3780   /// nonetheless useful in some places.
hasNameForLinkage()3781   bool hasNameForLinkage() const {
3782     return (getDeclName() || getTypedefNameForAnonDecl());
3783   }
3784 
getTypedefNameForAnonDecl()3785   TypedefNameDecl *getTypedefNameForAnonDecl() const {
3786     return hasExtInfo() ? nullptr
3787                         : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3788   }
3789 
3790   void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3791 
3792   /// Retrieve the nested-name-specifier that qualifies the name of this
3793   /// declaration, if it was present in the source.
getQualifier()3794   NestedNameSpecifier *getQualifier() const {
3795     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3796                         : nullptr;
3797   }
3798 
3799   /// Retrieve the nested-name-specifier (with source-location
3800   /// information) that qualifies the name of this declaration, if it was
3801   /// present in the source.
getQualifierLoc()3802   NestedNameSpecifierLoc getQualifierLoc() const {
3803     return hasExtInfo() ? getExtInfo()->QualifierLoc
3804                         : NestedNameSpecifierLoc();
3805   }
3806 
3807   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3808 
getNumTemplateParameterLists()3809   unsigned getNumTemplateParameterLists() const {
3810     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3811   }
3812 
getTemplateParameterList(unsigned i)3813   TemplateParameterList *getTemplateParameterList(unsigned i) const {
3814     assert(i < getNumTemplateParameterLists());
3815     return getExtInfo()->TemplParamLists[i];
3816   }
3817 
3818   using TypeDecl::printName;
3819   void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
3820 
3821   void setTemplateParameterListsInfo(ASTContext &Context,
3822                                      ArrayRef<TemplateParameterList *> TPLists);
3823 
3824   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)3825   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3826   static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3827 
castToDeclContext(const TagDecl * D)3828   static DeclContext *castToDeclContext(const TagDecl *D) {
3829     return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3830   }
3831 
castFromDeclContext(const DeclContext * DC)3832   static TagDecl *castFromDeclContext(const DeclContext *DC) {
3833     return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3834   }
3835 };
3836 
3837 /// Represents an enum.  In C++11, enums can be forward-declared
3838 /// with a fixed underlying type, and in C we allow them to be forward-declared
3839 /// with no underlying type as an extension.
3840 class EnumDecl : public TagDecl {
3841   // This class stores some data in DeclContext::EnumDeclBits
3842   // to save some space. Use the provided accessors to access it.
3843 
3844   /// This represent the integer type that the enum corresponds
3845   /// to for code generation purposes.  Note that the enumerator constants may
3846   /// have a different type than this does.
3847   ///
3848   /// If the underlying integer type was explicitly stated in the source
3849   /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3850   /// was automatically deduced somehow, and this is a Type*.
3851   ///
3852   /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3853   /// some cases it won't.
3854   ///
3855   /// The underlying type of an enumeration never has any qualifiers, so
3856   /// we can get away with just storing a raw Type*, and thus save an
3857   /// extra pointer when TypeSourceInfo is needed.
3858   llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3859 
3860   /// The integer type that values of this type should
3861   /// promote to.  In C, enumerators are generally of an integer type
3862   /// directly, but gcc-style large enumerators (and all enumerators
3863   /// in C++) are of the enum type instead.
3864   QualType PromotionType;
3865 
3866   /// If this enumeration is an instantiation of a member enumeration
3867   /// of a class template specialization, this is the member specialization
3868   /// information.
3869   MemberSpecializationInfo *SpecializationInfo = nullptr;
3870 
3871   /// Store the ODRHash after first calculation.
3872   /// The corresponding flag HasODRHash is in EnumDeclBits
3873   /// and can be accessed with the provided accessors.
3874   unsigned ODRHash;
3875 
3876   EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3877            SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3878            bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3879 
3880   void anchor() override;
3881 
3882   void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3883                                     TemplateSpecializationKind TSK);
3884 
3885   /// Sets the width in bits required to store all the
3886   /// non-negative enumerators of this enum.
setNumPositiveBits(unsigned Num)3887   void setNumPositiveBits(unsigned Num) {
3888     EnumDeclBits.NumPositiveBits = Num;
3889     assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
3890   }
3891 
3892   /// Returns the width in bits required to store all the
3893   /// negative enumerators of this enum. (see getNumNegativeBits)
setNumNegativeBits(unsigned Num)3894   void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3895 
3896 public:
3897   /// True if this tag declaration is a scoped enumeration. Only
3898   /// possible in C++11 mode.
3899   void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3900 
3901   /// If this tag declaration is a scoped enum,
3902   /// then this is true if the scoped enum was declared using the class
3903   /// tag, false if it was declared with the struct tag. No meaning is
3904   /// associated if this tag declaration is not a scoped enum.
3905   void setScopedUsingClassTag(bool ScopedUCT = true) {
3906     EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3907   }
3908 
3909   /// True if this is an Objective-C, C++11, or
3910   /// Microsoft-style enumeration with a fixed underlying type.
3911   void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3912 
3913 private:
3914   /// True if a valid hash is stored in ODRHash.
hasODRHash()3915   bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3916   void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3917 
3918 public:
3919   friend class ASTDeclReader;
3920 
getCanonicalDecl()3921   EnumDecl *getCanonicalDecl() override {
3922     return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3923   }
getCanonicalDecl()3924   const EnumDecl *getCanonicalDecl() const {
3925     return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3926   }
3927 
getPreviousDecl()3928   EnumDecl *getPreviousDecl() {
3929     return cast_or_null<EnumDecl>(
3930             static_cast<TagDecl *>(this)->getPreviousDecl());
3931   }
getPreviousDecl()3932   const EnumDecl *getPreviousDecl() const {
3933     return const_cast<EnumDecl*>(this)->getPreviousDecl();
3934   }
3935 
getMostRecentDecl()3936   EnumDecl *getMostRecentDecl() {
3937     return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3938   }
getMostRecentDecl()3939   const EnumDecl *getMostRecentDecl() const {
3940     return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3941   }
3942 
getDefinition()3943   EnumDecl *getDefinition() const {
3944     return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3945   }
3946 
3947   static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3948                           SourceLocation StartLoc, SourceLocation IdLoc,
3949                           IdentifierInfo *Id, EnumDecl *PrevDecl,
3950                           bool IsScoped, bool IsScopedUsingClassTag,
3951                           bool IsFixed);
3952   static EnumDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
3953 
3954   /// Overrides to provide correct range when there's an enum-base specifier
3955   /// with forward declarations.
3956   SourceRange getSourceRange() const override LLVM_READONLY;
3957 
3958   /// When created, the EnumDecl corresponds to a
3959   /// forward-declared enum. This method is used to mark the
3960   /// declaration as being defined; its enumerators have already been
3961   /// added (via DeclContext::addDecl). NewType is the new underlying
3962   /// type of the enumeration type.
3963   void completeDefinition(QualType NewType,
3964                           QualType PromotionType,
3965                           unsigned NumPositiveBits,
3966                           unsigned NumNegativeBits);
3967 
3968   // Iterates through the enumerators of this enumeration.
3969   using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3970   using enumerator_range =
3971       llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3972 
enumerators()3973   enumerator_range enumerators() const {
3974     return enumerator_range(enumerator_begin(), enumerator_end());
3975   }
3976 
enumerator_begin()3977   enumerator_iterator enumerator_begin() const {
3978     const EnumDecl *E = getDefinition();
3979     if (!E)
3980       E = this;
3981     return enumerator_iterator(E->decls_begin());
3982   }
3983 
enumerator_end()3984   enumerator_iterator enumerator_end() const {
3985     const EnumDecl *E = getDefinition();
3986     if (!E)
3987       E = this;
3988     return enumerator_iterator(E->decls_end());
3989   }
3990 
3991   /// Return the integer type that enumerators should promote to.
getPromotionType()3992   QualType getPromotionType() const { return PromotionType; }
3993 
3994   /// Set the promotion type.
setPromotionType(QualType T)3995   void setPromotionType(QualType T) { PromotionType = T; }
3996 
3997   /// Return the integer type this enum decl corresponds to.
3998   /// This returns a null QualType for an enum forward definition with no fixed
3999   /// underlying type.
getIntegerType()4000   QualType getIntegerType() const {
4001     if (!IntegerType)
4002       return QualType();
4003     if (const Type *T = IntegerType.dyn_cast<const Type*>())
4004       return QualType(T, 0);
4005     return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
4006   }
4007 
4008   /// Set the underlying integer type.
setIntegerType(QualType T)4009   void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
4010 
4011   /// Set the underlying integer type source info.
setIntegerTypeSourceInfo(TypeSourceInfo * TInfo)4012   void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
4013 
4014   /// Return the type source info for the underlying integer type,
4015   /// if no type source info exists, return 0.
getIntegerTypeSourceInfo()4016   TypeSourceInfo *getIntegerTypeSourceInfo() const {
4017     return IntegerType.dyn_cast<TypeSourceInfo*>();
4018   }
4019 
4020   /// Retrieve the source range that covers the underlying type if
4021   /// specified.
4022   SourceRange getIntegerTypeRange() const LLVM_READONLY;
4023 
4024   /// Returns the width in bits required to store all the
4025   /// non-negative enumerators of this enum.
getNumPositiveBits()4026   unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
4027 
4028   /// Returns the width in bits required to store all the
4029   /// negative enumerators of this enum.  These widths include
4030   /// the rightmost leading 1;  that is:
4031   ///
4032   /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
4033   /// ------------------------     -------     -----------------
4034   ///                       -1     1111111                     1
4035   ///                      -10     1110110                     5
4036   ///                     -101     1001011                     8
getNumNegativeBits()4037   unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
4038 
4039   /// Calculates the [Min,Max) values the enum can store based on the
4040   /// NumPositiveBits and NumNegativeBits. This matters for enums that do not
4041   /// have a fixed underlying type.
4042   void getValueRange(llvm::APInt &Max, llvm::APInt &Min) const;
4043 
4044   /// Returns true if this is a C++11 scoped enumeration.
isScoped()4045   bool isScoped() const { return EnumDeclBits.IsScoped; }
4046 
4047   /// Returns true if this is a C++11 scoped enumeration.
isScopedUsingClassTag()4048   bool isScopedUsingClassTag() const {
4049     return EnumDeclBits.IsScopedUsingClassTag;
4050   }
4051 
4052   /// Returns true if this is an Objective-C, C++11, or
4053   /// Microsoft-style enumeration with a fixed underlying type.
isFixed()4054   bool isFixed() const { return EnumDeclBits.IsFixed; }
4055 
4056   unsigned getODRHash();
4057 
4058   /// Returns true if this can be considered a complete type.
isComplete()4059   bool isComplete() const {
4060     // IntegerType is set for fixed type enums and non-fixed but implicitly
4061     // int-sized Microsoft enums.
4062     return isCompleteDefinition() || IntegerType;
4063   }
4064 
4065   /// Returns true if this enum is either annotated with
4066   /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
4067   bool isClosed() const;
4068 
4069   /// Returns true if this enum is annotated with flag_enum and isn't annotated
4070   /// with enum_extensibility(open).
4071   bool isClosedFlag() const;
4072 
4073   /// Returns true if this enum is annotated with neither flag_enum nor
4074   /// enum_extensibility(open).
4075   bool isClosedNonFlag() const;
4076 
4077   /// Retrieve the enum definition from which this enumeration could
4078   /// be instantiated, if it is an instantiation (rather than a non-template).
4079   EnumDecl *getTemplateInstantiationPattern() const;
4080 
4081   /// Returns the enumeration (declared within the template)
4082   /// from which this enumeration type was instantiated, or NULL if
4083   /// this enumeration was not instantiated from any template.
4084   EnumDecl *getInstantiatedFromMemberEnum() const;
4085 
4086   /// If this enumeration is a member of a specialization of a
4087   /// templated class, determine what kind of template specialization
4088   /// or instantiation this is.
4089   TemplateSpecializationKind getTemplateSpecializationKind() const;
4090 
4091   /// For an enumeration member that was instantiated from a member
4092   /// enumeration of a templated class, set the template specialiation kind.
4093   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4094                         SourceLocation PointOfInstantiation = SourceLocation());
4095 
4096   /// If this enumeration is an instantiation of a member enumeration of
4097   /// a class template specialization, retrieves the member specialization
4098   /// information.
getMemberSpecializationInfo()4099   MemberSpecializationInfo *getMemberSpecializationInfo() const {
4100     return SpecializationInfo;
4101   }
4102 
4103   /// Specify that this enumeration is an instantiation of the
4104   /// member enumeration ED.
setInstantiationOfMemberEnum(EnumDecl * ED,TemplateSpecializationKind TSK)4105   void setInstantiationOfMemberEnum(EnumDecl *ED,
4106                                     TemplateSpecializationKind TSK) {
4107     setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
4108   }
4109 
classof(const Decl * D)4110   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4111   static bool classofKind(Kind K) { return K == Enum; }
4112 };
4113 
4114 /// Enum that represents the different ways arguments are passed to and
4115 /// returned from function calls. This takes into account the target-specific
4116 /// and version-specific rules along with the rules determined by the
4117 /// language.
4118 enum class RecordArgPassingKind {
4119   /// The argument of this type can be passed directly in registers.
4120   CanPassInRegs,
4121 
4122   /// The argument of this type cannot be passed directly in registers.
4123   /// Records containing this type as a subobject are not forced to be passed
4124   /// indirectly. This value is used only in C++. This value is required by
4125   /// C++ because, in uncommon situations, it is possible for a class to have
4126   /// only trivial copy/move constructors even when one of its subobjects has
4127   /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
4128   /// constructor in the derived class is deleted).
4129   CannotPassInRegs,
4130 
4131   /// The argument of this type cannot be passed directly in registers.
4132   /// Records containing this type as a subobject are forced to be passed
4133   /// indirectly.
4134   CanNeverPassInRegs
4135 };
4136 
4137 /// Represents a struct/union/class.  For example:
4138 ///   struct X;                  // Forward declaration, no "body".
4139 ///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
4140 /// This decl will be marked invalid if *any* members are invalid.
4141 class RecordDecl : public TagDecl {
4142   // This class stores some data in DeclContext::RecordDeclBits
4143   // to save some space. Use the provided accessors to access it.
4144 public:
4145   friend class DeclContext;
4146   friend class ASTDeclReader;
4147 
4148 protected:
4149   RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4150              SourceLocation StartLoc, SourceLocation IdLoc,
4151              IdentifierInfo *Id, RecordDecl *PrevDecl);
4152 
4153 public:
4154   static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4155                             SourceLocation StartLoc, SourceLocation IdLoc,
4156                             IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
4157   static RecordDecl *CreateDeserialized(const ASTContext &C, GlobalDeclID ID);
4158 
getPreviousDecl()4159   RecordDecl *getPreviousDecl() {
4160     return cast_or_null<RecordDecl>(
4161             static_cast<TagDecl *>(this)->getPreviousDecl());
4162   }
getPreviousDecl()4163   const RecordDecl *getPreviousDecl() const {
4164     return const_cast<RecordDecl*>(this)->getPreviousDecl();
4165   }
4166 
getMostRecentDecl()4167   RecordDecl *getMostRecentDecl() {
4168     return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
4169   }
getMostRecentDecl()4170   const RecordDecl *getMostRecentDecl() const {
4171     return const_cast<RecordDecl*>(this)->getMostRecentDecl();
4172   }
4173 
hasFlexibleArrayMember()4174   bool hasFlexibleArrayMember() const {
4175     return RecordDeclBits.HasFlexibleArrayMember;
4176   }
4177 
setHasFlexibleArrayMember(bool V)4178   void setHasFlexibleArrayMember(bool V) {
4179     RecordDeclBits.HasFlexibleArrayMember = V;
4180   }
4181 
4182   /// Whether this is an anonymous struct or union. To be an anonymous
4183   /// struct or union, it must have been declared without a name and
4184   /// there must be no objects of this type declared, e.g.,
4185   /// @code
4186   ///   union { int i; float f; };
4187   /// @endcode
4188   /// is an anonymous union but neither of the following are:
4189   /// @code
4190   ///  union X { int i; float f; };
4191   ///  union { int i; float f; } obj;
4192   /// @endcode
isAnonymousStructOrUnion()4193   bool isAnonymousStructOrUnion() const {
4194     return RecordDeclBits.AnonymousStructOrUnion;
4195   }
4196 
setAnonymousStructOrUnion(bool Anon)4197   void setAnonymousStructOrUnion(bool Anon) {
4198     RecordDeclBits.AnonymousStructOrUnion = Anon;
4199   }
4200 
hasObjectMember()4201   bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
setHasObjectMember(bool val)4202   void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
4203 
hasVolatileMember()4204   bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
4205 
setHasVolatileMember(bool val)4206   void setHasVolatileMember(bool val) {
4207     RecordDeclBits.HasVolatileMember = val;
4208   }
4209 
hasLoadedFieldsFromExternalStorage()4210   bool hasLoadedFieldsFromExternalStorage() const {
4211     return RecordDeclBits.LoadedFieldsFromExternalStorage;
4212   }
4213 
setHasLoadedFieldsFromExternalStorage(bool val)4214   void setHasLoadedFieldsFromExternalStorage(bool val) const {
4215     RecordDeclBits.LoadedFieldsFromExternalStorage = val;
4216   }
4217 
4218   /// Functions to query basic properties of non-trivial C structs.
isNonTrivialToPrimitiveDefaultInitialize()4219   bool isNonTrivialToPrimitiveDefaultInitialize() const {
4220     return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
4221   }
4222 
setNonTrivialToPrimitiveDefaultInitialize(bool V)4223   void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
4224     RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
4225   }
4226 
isNonTrivialToPrimitiveCopy()4227   bool isNonTrivialToPrimitiveCopy() const {
4228     return RecordDeclBits.NonTrivialToPrimitiveCopy;
4229   }
4230 
setNonTrivialToPrimitiveCopy(bool V)4231   void setNonTrivialToPrimitiveCopy(bool V) {
4232     RecordDeclBits.NonTrivialToPrimitiveCopy = V;
4233   }
4234 
isNonTrivialToPrimitiveDestroy()4235   bool isNonTrivialToPrimitiveDestroy() const {
4236     return RecordDeclBits.NonTrivialToPrimitiveDestroy;
4237   }
4238 
setNonTrivialToPrimitiveDestroy(bool V)4239   void setNonTrivialToPrimitiveDestroy(bool V) {
4240     RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
4241   }
4242 
hasNonTrivialToPrimitiveDefaultInitializeCUnion()4243   bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
4244     return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
4245   }
4246 
setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V)4247   void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
4248     RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
4249   }
4250 
hasNonTrivialToPrimitiveDestructCUnion()4251   bool hasNonTrivialToPrimitiveDestructCUnion() const {
4252     return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
4253   }
4254 
setHasNonTrivialToPrimitiveDestructCUnion(bool V)4255   void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
4256     RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
4257   }
4258 
hasNonTrivialToPrimitiveCopyCUnion()4259   bool hasNonTrivialToPrimitiveCopyCUnion() const {
4260     return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
4261   }
4262 
setHasNonTrivialToPrimitiveCopyCUnion(bool V)4263   void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
4264     RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
4265   }
4266 
4267   /// Determine whether this class can be passed in registers. In C++ mode,
4268   /// it must have at least one trivial, non-deleted copy or move constructor.
4269   /// FIXME: This should be set as part of completeDefinition.
canPassInRegisters()4270   bool canPassInRegisters() const {
4271     return getArgPassingRestrictions() == RecordArgPassingKind::CanPassInRegs;
4272   }
4273 
getArgPassingRestrictions()4274   RecordArgPassingKind getArgPassingRestrictions() const {
4275     return static_cast<RecordArgPassingKind>(
4276         RecordDeclBits.ArgPassingRestrictions);
4277   }
4278 
setArgPassingRestrictions(RecordArgPassingKind Kind)4279   void setArgPassingRestrictions(RecordArgPassingKind Kind) {
4280     RecordDeclBits.ArgPassingRestrictions = llvm::to_underlying(Kind);
4281   }
4282 
isParamDestroyedInCallee()4283   bool isParamDestroyedInCallee() const {
4284     return RecordDeclBits.ParamDestroyedInCallee;
4285   }
4286 
setParamDestroyedInCallee(bool V)4287   void setParamDestroyedInCallee(bool V) {
4288     RecordDeclBits.ParamDestroyedInCallee = V;
4289   }
4290 
isRandomized()4291   bool isRandomized() const { return RecordDeclBits.IsRandomized; }
4292 
setIsRandomized(bool V)4293   void setIsRandomized(bool V) { RecordDeclBits.IsRandomized = V; }
4294 
4295   void reorderDecls(const SmallVectorImpl<Decl *> &Decls);
4296 
4297   /// Determines whether this declaration represents the
4298   /// injected class name.
4299   ///
4300   /// The injected class name in C++ is the name of the class that
4301   /// appears inside the class itself. For example:
4302   ///
4303   /// \code
4304   /// struct C {
4305   ///   // C is implicitly declared here as a synonym for the class name.
4306   /// };
4307   ///
4308   /// C::C c; // same as "C c;"
4309   /// \endcode
4310   bool isInjectedClassName() const;
4311 
4312   /// Determine whether this record is a class describing a lambda
4313   /// function object.
4314   bool isLambda() const;
4315 
4316   /// Determine whether this record is a record for captured variables in
4317   /// CapturedStmt construct.
4318   bool isCapturedRecord() const;
4319 
4320   /// Mark the record as a record for captured variables in CapturedStmt
4321   /// construct.
4322   void setCapturedRecord();
4323 
4324   /// Returns the RecordDecl that actually defines
4325   ///  this struct/union/class.  When determining whether or not a
4326   ///  struct/union/class is completely defined, one should use this
4327   ///  method as opposed to 'isCompleteDefinition'.
4328   ///  'isCompleteDefinition' indicates whether or not a specific
4329   ///  RecordDecl is a completed definition, not whether or not the
4330   ///  record type is defined.  This method returns NULL if there is
4331   ///  no RecordDecl that defines the struct/union/tag.
getDefinition()4332   RecordDecl *getDefinition() const {
4333     return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4334   }
4335 
4336   /// Returns whether this record is a union, or contains (at any nesting level)
4337   /// a union member. This is used by CMSE to warn about possible information
4338   /// leaks.
4339   bool isOrContainsUnion() const;
4340 
4341   // Iterator access to field members. The field iterator only visits
4342   // the non-static data members of this class, ignoring any static
4343   // data members, functions, constructors, destructors, etc.
4344   using field_iterator = specific_decl_iterator<FieldDecl>;
4345   using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4346 
fields()4347   field_range fields() const { return field_range(field_begin(), field_end()); }
4348   field_iterator field_begin() const;
4349 
field_end()4350   field_iterator field_end() const {
4351     return field_iterator(decl_iterator());
4352   }
4353 
4354   // Whether there are any fields (non-static data members) in this record.
field_empty()4355   bool field_empty() const {
4356     return field_begin() == field_end();
4357   }
4358 
4359   /// Note that the definition of this type is now complete.
4360   virtual void completeDefinition();
4361 
classof(const Decl * D)4362   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4363   static bool classofKind(Kind K) {
4364     return K >= firstRecord && K <= lastRecord;
4365   }
4366 
4367   /// Get whether or not this is an ms_struct which can
4368   /// be turned on with an attribute, pragma, or -mms-bitfields
4369   /// commandline option.
4370   bool isMsStruct(const ASTContext &C) const;
4371 
4372   /// Whether we are allowed to insert extra padding between fields.
4373   /// These padding are added to help AddressSanitizer detect
4374   /// intra-object-overflow bugs.
4375   bool mayInsertExtraPadding(bool EmitRemark = false) const;
4376 
4377   /// Finds the first data member which has a name.
4378   /// nullptr is returned if no named data member exists.
4379   const FieldDecl *findFirstNamedDataMember() const;
4380 
4381   /// Get precomputed ODRHash or add a new one.
4382   unsigned getODRHash();
4383 
4384 private:
4385   /// Deserialize just the fields.
4386   void LoadFieldsFromExternalStorage() const;
4387 
4388   /// True if a valid hash is stored in ODRHash.
hasODRHash()4389   bool hasODRHash() const { return RecordDeclBits.ODRHash; }
setODRHash(unsigned Hash)4390   void setODRHash(unsigned Hash) { RecordDeclBits.ODRHash = Hash; }
4391 };
4392 
4393 class FileScopeAsmDecl : public Decl {
4394   StringLiteral *AsmString;
4395   SourceLocation RParenLoc;
4396 
FileScopeAsmDecl(DeclContext * DC,StringLiteral * asmstring,SourceLocation StartL,SourceLocation EndL)4397   FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4398                    SourceLocation StartL, SourceLocation EndL)
4399     : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4400 
4401   virtual void anchor();
4402 
4403 public:
4404   static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4405                                   StringLiteral *Str, SourceLocation AsmLoc,
4406                                   SourceLocation RParenLoc);
4407 
4408   static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
4409 
getAsmLoc()4410   SourceLocation getAsmLoc() const { return getLocation(); }
getRParenLoc()4411   SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)4412   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
getSourceRange()4413   SourceRange getSourceRange() const override LLVM_READONLY {
4414     return SourceRange(getAsmLoc(), getRParenLoc());
4415   }
4416 
getAsmString()4417   const StringLiteral *getAsmString() const { return AsmString; }
getAsmString()4418   StringLiteral *getAsmString() { return AsmString; }
setAsmString(StringLiteral * Asm)4419   void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4420 
classof(const Decl * D)4421   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4422   static bool classofKind(Kind K) { return K == FileScopeAsm; }
4423 };
4424 
4425 /// A declaration that models statements at global scope. This declaration
4426 /// supports incremental and interactive C/C++.
4427 ///
4428 /// \note This is used in libInterpreter, clang -cc1 -fincremental-extensions
4429 /// and in tools such as clang-repl.
4430 class TopLevelStmtDecl : public Decl, public DeclContext {
4431   friend class ASTDeclReader;
4432   friend class ASTDeclWriter;
4433 
4434   Stmt *Statement = nullptr;
4435   bool IsSemiMissing = false;
4436 
TopLevelStmtDecl(DeclContext * DC,SourceLocation L,Stmt * S)4437   TopLevelStmtDecl(DeclContext *DC, SourceLocation L, Stmt *S)
4438       : Decl(TopLevelStmt, DC, L), DeclContext(TopLevelStmt), Statement(S) {}
4439 
4440   virtual void anchor();
4441 
4442 public:
4443   static TopLevelStmtDecl *Create(ASTContext &C, Stmt *Statement);
4444   static TopLevelStmtDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
4445 
4446   SourceRange getSourceRange() const override LLVM_READONLY;
getStmt()4447   Stmt *getStmt() { return Statement; }
getStmt()4448   const Stmt *getStmt() const { return Statement; }
4449   void setStmt(Stmt *S);
isSemiMissing()4450   bool isSemiMissing() const { return IsSemiMissing; }
4451   void setSemiMissing(bool Missing = true) { IsSemiMissing = Missing; }
4452 
classof(const Decl * D)4453   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4454   static bool classofKind(Kind K) { return K == TopLevelStmt; }
4455 
castToDeclContext(const TopLevelStmtDecl * D)4456   static DeclContext *castToDeclContext(const TopLevelStmtDecl *D) {
4457     return static_cast<DeclContext *>(const_cast<TopLevelStmtDecl *>(D));
4458   }
castFromDeclContext(const DeclContext * DC)4459   static TopLevelStmtDecl *castFromDeclContext(const DeclContext *DC) {
4460     return static_cast<TopLevelStmtDecl *>(const_cast<DeclContext *>(DC));
4461   }
4462 };
4463 
4464 /// Represents a block literal declaration, which is like an
4465 /// unnamed FunctionDecl.  For example:
4466 /// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4467 class BlockDecl : public Decl, public DeclContext {
4468   // This class stores some data in DeclContext::BlockDeclBits
4469   // to save some space. Use the provided accessors to access it.
4470 public:
4471   /// A class which contains all the information about a particular
4472   /// captured value.
4473   class Capture {
4474     enum {
4475       flag_isByRef = 0x1,
4476       flag_isNested = 0x2
4477     };
4478 
4479     /// The variable being captured.
4480     llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4481 
4482     /// The copy expression, expressed in terms of a DeclRef (or
4483     /// BlockDeclRef) to the captured variable.  Only required if the
4484     /// variable has a C++ class type.
4485     Expr *CopyExpr;
4486 
4487   public:
Capture(VarDecl * variable,bool byRef,bool nested,Expr * copy)4488     Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4489       : VariableAndFlags(variable,
4490                   (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4491         CopyExpr(copy) {}
4492 
4493     /// The variable being captured.
getVariable()4494     VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4495 
4496     /// Whether this is a "by ref" capture, i.e. a capture of a __block
4497     /// variable.
isByRef()4498     bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4499 
isEscapingByref()4500     bool isEscapingByref() const {
4501       return getVariable()->isEscapingByref();
4502     }
4503 
isNonEscapingByref()4504     bool isNonEscapingByref() const {
4505       return getVariable()->isNonEscapingByref();
4506     }
4507 
4508     /// Whether this is a nested capture, i.e. the variable captured
4509     /// is not from outside the immediately enclosing function/block.
isNested()4510     bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4511 
hasCopyExpr()4512     bool hasCopyExpr() const { return CopyExpr != nullptr; }
getCopyExpr()4513     Expr *getCopyExpr() const { return CopyExpr; }
setCopyExpr(Expr * e)4514     void setCopyExpr(Expr *e) { CopyExpr = e; }
4515   };
4516 
4517 private:
4518   /// A new[]'d array of pointers to ParmVarDecls for the formal
4519   /// parameters of this function.  This is null if a prototype or if there are
4520   /// no formals.
4521   ParmVarDecl **ParamInfo = nullptr;
4522   unsigned NumParams = 0;
4523 
4524   Stmt *Body = nullptr;
4525   TypeSourceInfo *SignatureAsWritten = nullptr;
4526 
4527   const Capture *Captures = nullptr;
4528   unsigned NumCaptures = 0;
4529 
4530   unsigned ManglingNumber = 0;
4531   Decl *ManglingContextDecl = nullptr;
4532 
4533 protected:
4534   BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4535 
4536 public:
4537   static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4538   static BlockDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
4539 
getCaretLocation()4540   SourceLocation getCaretLocation() const { return getLocation(); }
4541 
isVariadic()4542   bool isVariadic() const { return BlockDeclBits.IsVariadic; }
setIsVariadic(bool value)4543   void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4544 
getCompoundBody()4545   CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
getBody()4546   Stmt *getBody() const override { return (Stmt*) Body; }
setBody(CompoundStmt * B)4547   void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4548 
setSignatureAsWritten(TypeSourceInfo * Sig)4549   void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
getSignatureAsWritten()4550   TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4551 
4552   // ArrayRef access to formal parameters.
parameters()4553   ArrayRef<ParmVarDecl *> parameters() const {
4554     return {ParamInfo, getNumParams()};
4555   }
parameters()4556   MutableArrayRef<ParmVarDecl *> parameters() {
4557     return {ParamInfo, getNumParams()};
4558   }
4559 
4560   // Iterator access to formal parameters.
4561   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4562   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4563 
param_empty()4564   bool param_empty() const { return parameters().empty(); }
param_begin()4565   param_iterator param_begin() { return parameters().begin(); }
param_end()4566   param_iterator param_end() { return parameters().end(); }
param_begin()4567   param_const_iterator param_begin() const { return parameters().begin(); }
param_end()4568   param_const_iterator param_end() const { return parameters().end(); }
param_size()4569   size_t param_size() const { return parameters().size(); }
4570 
getNumParams()4571   unsigned getNumParams() const { return NumParams; }
4572 
getParamDecl(unsigned i)4573   const ParmVarDecl *getParamDecl(unsigned i) const {
4574     assert(i < getNumParams() && "Illegal param #");
4575     return ParamInfo[i];
4576   }
getParamDecl(unsigned i)4577   ParmVarDecl *getParamDecl(unsigned i) {
4578     assert(i < getNumParams() && "Illegal param #");
4579     return ParamInfo[i];
4580   }
4581 
4582   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4583 
4584   /// True if this block (or its nested blocks) captures
4585   /// anything of local storage from its enclosing scopes.
hasCaptures()4586   bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4587 
4588   /// Returns the number of captured variables.
4589   /// Does not include an entry for 'this'.
getNumCaptures()4590   unsigned getNumCaptures() const { return NumCaptures; }
4591 
4592   using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4593 
captures()4594   ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4595 
capture_begin()4596   capture_const_iterator capture_begin() const { return captures().begin(); }
capture_end()4597   capture_const_iterator capture_end() const { return captures().end(); }
4598 
capturesCXXThis()4599   bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4600   void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4601 
blockMissingReturnType()4602   bool blockMissingReturnType() const {
4603     return BlockDeclBits.BlockMissingReturnType;
4604   }
4605 
4606   void setBlockMissingReturnType(bool val = true) {
4607     BlockDeclBits.BlockMissingReturnType = val;
4608   }
4609 
isConversionFromLambda()4610   bool isConversionFromLambda() const {
4611     return BlockDeclBits.IsConversionFromLambda;
4612   }
4613 
4614   void setIsConversionFromLambda(bool val = true) {
4615     BlockDeclBits.IsConversionFromLambda = val;
4616   }
4617 
doesNotEscape()4618   bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4619   void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4620 
canAvoidCopyToHeap()4621   bool canAvoidCopyToHeap() const {
4622     return BlockDeclBits.CanAvoidCopyToHeap;
4623   }
4624   void setCanAvoidCopyToHeap(bool B = true) {
4625     BlockDeclBits.CanAvoidCopyToHeap = B;
4626   }
4627 
4628   bool capturesVariable(const VarDecl *var) const;
4629 
4630   void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4631                    bool CapturesCXXThis);
4632 
getBlockManglingNumber()4633   unsigned getBlockManglingNumber() const { return ManglingNumber; }
4634 
getBlockManglingContextDecl()4635   Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4636 
setBlockMangling(unsigned Number,Decl * Ctx)4637   void setBlockMangling(unsigned Number, Decl *Ctx) {
4638     ManglingNumber = Number;
4639     ManglingContextDecl = Ctx;
4640   }
4641 
4642   SourceRange getSourceRange() const override LLVM_READONLY;
4643 
getFunctionEffects()4644   FunctionEffectsRef getFunctionEffects() const {
4645     if (const TypeSourceInfo *TSI = getSignatureAsWritten())
4646       if (const auto *FPT = TSI->getType()->getAs<FunctionProtoType>())
4647         return FPT->getFunctionEffects();
4648     return {};
4649   }
4650 
4651   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4652   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4653   static bool classofKind(Kind K) { return K == Block; }
castToDeclContext(const BlockDecl * D)4654   static DeclContext *castToDeclContext(const BlockDecl *D) {
4655     return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4656   }
castFromDeclContext(const DeclContext * DC)4657   static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4658     return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4659   }
4660 };
4661 
4662 /// Represents the body of a CapturedStmt, and serves as its DeclContext.
4663 class CapturedDecl final
4664     : public Decl,
4665       public DeclContext,
4666       private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4667 protected:
numTrailingObjects(OverloadToken<ImplicitParamDecl>)4668   size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4669     return NumParams;
4670   }
4671 
4672 private:
4673   /// The number of parameters to the outlined function.
4674   unsigned NumParams;
4675 
4676   /// The position of context parameter in list of parameters.
4677   unsigned ContextParam;
4678 
4679   /// The body of the outlined function.
4680   llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4681 
4682   explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4683 
getParams()4684   ImplicitParamDecl *const *getParams() const {
4685     return getTrailingObjects<ImplicitParamDecl *>();
4686   }
4687 
getParams()4688   ImplicitParamDecl **getParams() {
4689     return getTrailingObjects<ImplicitParamDecl *>();
4690   }
4691 
4692 public:
4693   friend class ASTDeclReader;
4694   friend class ASTDeclWriter;
4695   friend TrailingObjects;
4696 
4697   static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4698                               unsigned NumParams);
4699   static CapturedDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID,
4700                                           unsigned NumParams);
4701 
4702   Stmt *getBody() const override;
4703   void setBody(Stmt *B);
4704 
4705   bool isNothrow() const;
4706   void setNothrow(bool Nothrow = true);
4707 
getNumParams()4708   unsigned getNumParams() const { return NumParams; }
4709 
getParam(unsigned i)4710   ImplicitParamDecl *getParam(unsigned i) const {
4711     assert(i < NumParams);
4712     return getParams()[i];
4713   }
setParam(unsigned i,ImplicitParamDecl * P)4714   void setParam(unsigned i, ImplicitParamDecl *P) {
4715     assert(i < NumParams);
4716     getParams()[i] = P;
4717   }
4718 
4719   // ArrayRef interface to parameters.
parameters()4720   ArrayRef<ImplicitParamDecl *> parameters() const {
4721     return {getParams(), getNumParams()};
4722   }
parameters()4723   MutableArrayRef<ImplicitParamDecl *> parameters() {
4724     return {getParams(), getNumParams()};
4725   }
4726 
4727   /// Retrieve the parameter containing captured variables.
getContextParam()4728   ImplicitParamDecl *getContextParam() const {
4729     assert(ContextParam < NumParams);
4730     return getParam(ContextParam);
4731   }
setContextParam(unsigned i,ImplicitParamDecl * P)4732   void setContextParam(unsigned i, ImplicitParamDecl *P) {
4733     assert(i < NumParams);
4734     ContextParam = i;
4735     setParam(i, P);
4736   }
getContextParamPosition()4737   unsigned getContextParamPosition() const { return ContextParam; }
4738 
4739   using param_iterator = ImplicitParamDecl *const *;
4740   using param_range = llvm::iterator_range<param_iterator>;
4741 
4742   /// Retrieve an iterator pointing to the first parameter decl.
param_begin()4743   param_iterator param_begin() const { return getParams(); }
4744   /// Retrieve an iterator one past the last parameter decl.
param_end()4745   param_iterator param_end() const { return getParams() + NumParams; }
4746 
4747   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4748   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4749   static bool classofKind(Kind K) { return K == Captured; }
castToDeclContext(const CapturedDecl * D)4750   static DeclContext *castToDeclContext(const CapturedDecl *D) {
4751     return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4752   }
castFromDeclContext(const DeclContext * DC)4753   static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4754     return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4755   }
4756 };
4757 
4758 /// Describes a module import declaration, which makes the contents
4759 /// of the named module visible in the current translation unit.
4760 ///
4761 /// An import declaration imports the named module (or submodule). For example:
4762 /// \code
4763 ///   @import std.vector;
4764 /// \endcode
4765 ///
4766 /// A C++20 module import declaration imports the named module or partition.
4767 /// Periods are permitted in C++20 module names, but have no semantic meaning.
4768 /// For example:
4769 /// \code
4770 ///   import NamedModule;
4771 ///   import :SomePartition; // Must be a partition of the current module.
4772 ///   import Names.Like.this; // Allowed.
4773 ///   import :and.Also.Partition.names;
4774 /// \endcode
4775 ///
4776 /// Import declarations can also be implicitly generated from
4777 /// \#include/\#import directives.
4778 class ImportDecl final : public Decl,
4779                          llvm::TrailingObjects<ImportDecl, SourceLocation> {
4780   friend class ASTContext;
4781   friend class ASTDeclReader;
4782   friend class ASTReader;
4783   friend TrailingObjects;
4784 
4785   /// The imported module.
4786   Module *ImportedModule = nullptr;
4787 
4788   /// The next import in the list of imports local to the translation
4789   /// unit being parsed (not loaded from an AST file).
4790   ///
4791   /// Includes a bit that indicates whether we have source-location information
4792   /// for each identifier in the module name.
4793   ///
4794   /// When the bit is false, we only have a single source location for the
4795   /// end of the import declaration.
4796   llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4797 
4798   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4799              ArrayRef<SourceLocation> IdentifierLocs);
4800 
4801   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4802              SourceLocation EndLoc);
4803 
ImportDecl(EmptyShell Empty)4804   ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4805 
isImportComplete()4806   bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4807 
setImportComplete(bool C)4808   void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4809 
4810   /// The next import in the list of imports local to the translation
4811   /// unit being parsed (not loaded from an AST file).
getNextLocalImport()4812   ImportDecl *getNextLocalImport() const {
4813     return NextLocalImportAndComplete.getPointer();
4814   }
4815 
setNextLocalImport(ImportDecl * Import)4816   void setNextLocalImport(ImportDecl *Import) {
4817     NextLocalImportAndComplete.setPointer(Import);
4818   }
4819 
4820 public:
4821   /// Create a new module import declaration.
4822   static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4823                             SourceLocation StartLoc, Module *Imported,
4824                             ArrayRef<SourceLocation> IdentifierLocs);
4825 
4826   /// Create a new module import declaration for an implicitly-generated
4827   /// import.
4828   static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4829                                     SourceLocation StartLoc, Module *Imported,
4830                                     SourceLocation EndLoc);
4831 
4832   /// Create a new, deserialized module import declaration.
4833   static ImportDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID,
4834                                         unsigned NumLocations);
4835 
4836   /// Retrieve the module that was imported by the import declaration.
getImportedModule()4837   Module *getImportedModule() const { return ImportedModule; }
4838 
4839   /// Retrieves the locations of each of the identifiers that make up
4840   /// the complete module name in the import declaration.
4841   ///
4842   /// This will return an empty array if the locations of the individual
4843   /// identifiers aren't available.
4844   ArrayRef<SourceLocation> getIdentifierLocs() const;
4845 
4846   SourceRange getSourceRange() const override LLVM_READONLY;
4847 
classof(const Decl * D)4848   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4849   static bool classofKind(Kind K) { return K == Import; }
4850 };
4851 
4852 /// Represents a standard C++ module export declaration.
4853 ///
4854 /// For example:
4855 /// \code
4856 ///   export void foo();
4857 /// \endcode
4858 class ExportDecl final : public Decl, public DeclContext {
4859   virtual void anchor();
4860 
4861 private:
4862   friend class ASTDeclReader;
4863 
4864   /// The source location for the right brace (if valid).
4865   SourceLocation RBraceLoc;
4866 
ExportDecl(DeclContext * DC,SourceLocation ExportLoc)4867   ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4868       : Decl(Export, DC, ExportLoc), DeclContext(Export),
4869         RBraceLoc(SourceLocation()) {}
4870 
4871 public:
4872   static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4873                             SourceLocation ExportLoc);
4874   static ExportDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
4875 
getExportLoc()4876   SourceLocation getExportLoc() const { return getLocation(); }
getRBraceLoc()4877   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setRBraceLoc(SourceLocation L)4878   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4879 
hasBraces()4880   bool hasBraces() const { return RBraceLoc.isValid(); }
4881 
getEndLoc()4882   SourceLocation getEndLoc() const LLVM_READONLY {
4883     if (hasBraces())
4884       return RBraceLoc;
4885     // No braces: get the end location of the (only) declaration in context
4886     // (if present).
4887     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4888   }
4889 
getSourceRange()4890   SourceRange getSourceRange() const override LLVM_READONLY {
4891     return SourceRange(getLocation(), getEndLoc());
4892   }
4893 
classof(const Decl * D)4894   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4895   static bool classofKind(Kind K) { return K == Export; }
castToDeclContext(const ExportDecl * D)4896   static DeclContext *castToDeclContext(const ExportDecl *D) {
4897     return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4898   }
castFromDeclContext(const DeclContext * DC)4899   static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4900     return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4901   }
4902 };
4903 
4904 /// Represents an empty-declaration.
4905 class EmptyDecl : public Decl {
EmptyDecl(DeclContext * DC,SourceLocation L)4906   EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4907 
4908   virtual void anchor();
4909 
4910 public:
4911   static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4912                            SourceLocation L);
4913   static EmptyDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
4914 
classof(const Decl * D)4915   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4916   static bool classofKind(Kind K) { return K == Empty; }
4917 };
4918 
4919 /// HLSLBufferDecl - Represent a cbuffer or tbuffer declaration.
4920 class HLSLBufferDecl final : public NamedDecl, public DeclContext {
4921   /// LBraceLoc - The ending location of the source range.
4922   SourceLocation LBraceLoc;
4923   /// RBraceLoc - The ending location of the source range.
4924   SourceLocation RBraceLoc;
4925   /// KwLoc - The location of the cbuffer or tbuffer keyword.
4926   SourceLocation KwLoc;
4927   /// IsCBuffer - Whether the buffer is a cbuffer (and not a tbuffer).
4928   bool IsCBuffer;
4929 
4930   HLSLBufferDecl(DeclContext *DC, bool CBuffer, SourceLocation KwLoc,
4931                  IdentifierInfo *ID, SourceLocation IDLoc,
4932                  SourceLocation LBrace);
4933 
4934 public:
4935   static HLSLBufferDecl *Create(ASTContext &C, DeclContext *LexicalParent,
4936                                 bool CBuffer, SourceLocation KwLoc,
4937                                 IdentifierInfo *ID, SourceLocation IDLoc,
4938                                 SourceLocation LBrace);
4939   static HLSLBufferDecl *CreateDeserialized(ASTContext &C, GlobalDeclID ID);
4940 
getSourceRange()4941   SourceRange getSourceRange() const override LLVM_READONLY {
4942     return SourceRange(getLocStart(), RBraceLoc);
4943   }
getLocStart()4944   SourceLocation getLocStart() const LLVM_READONLY { return KwLoc; }
getLBraceLoc()4945   SourceLocation getLBraceLoc() const { return LBraceLoc; }
getRBraceLoc()4946   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setRBraceLoc(SourceLocation L)4947   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
isCBuffer()4948   bool isCBuffer() const { return IsCBuffer; }
4949 
4950   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)4951   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4952   static bool classofKind(Kind K) { return K == HLSLBuffer; }
castToDeclContext(const HLSLBufferDecl * D)4953   static DeclContext *castToDeclContext(const HLSLBufferDecl *D) {
4954     return static_cast<DeclContext *>(const_cast<HLSLBufferDecl *>(D));
4955   }
castFromDeclContext(const DeclContext * DC)4956   static HLSLBufferDecl *castFromDeclContext(const DeclContext *DC) {
4957     return static_cast<HLSLBufferDecl *>(const_cast<DeclContext *>(DC));
4958   }
4959 
4960   friend class ASTDeclReader;
4961   friend class ASTDeclWriter;
4962 };
4963 
4964 /// Insertion operator for diagnostics.  This allows sending NamedDecl's
4965 /// into a diagnostic with <<.
4966 inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
4967                                              const NamedDecl *ND) {
4968   PD.AddTaggedVal(reinterpret_cast<uint64_t>(ND),
4969                   DiagnosticsEngine::ak_nameddecl);
4970   return PD;
4971 }
4972 
4973 template<typename decl_type>
setPreviousDecl(decl_type * PrevDecl)4974 void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4975   // Note: This routine is implemented here because we need both NamedDecl
4976   // and Redeclarable to be defined.
4977   assert(RedeclLink.isFirst() &&
4978          "setPreviousDecl on a decl already in a redeclaration chain");
4979 
4980   if (PrevDecl) {
4981     // Point to previous. Make sure that this is actually the most recent
4982     // redeclaration, or we can build invalid chains. If the most recent
4983     // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4984     First = PrevDecl->getFirstDecl();
4985     assert(First->RedeclLink.isFirst() && "Expected first");
4986     decl_type *MostRecent = First->getNextRedeclaration();
4987     RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4988 
4989     // If the declaration was previously visible, a redeclaration of it remains
4990     // visible even if it wouldn't be visible by itself.
4991     static_cast<decl_type*>(this)->IdentifierNamespace |=
4992       MostRecent->getIdentifierNamespace() &
4993       (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4994   } else {
4995     // Make this first.
4996     First = static_cast<decl_type*>(this);
4997   }
4998 
4999   // First one will point to this one as latest.
5000   First->RedeclLink.setLatest(static_cast<decl_type*>(this));
5001 
5002   assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
5003          cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
5004 }
5005 
5006 // Inline function definitions.
5007 
5008 /// Check if the given decl is complete.
5009 ///
5010 /// We use this function to break a cycle between the inline definitions in
5011 /// Type.h and Decl.h.
IsEnumDeclComplete(EnumDecl * ED)5012 inline bool IsEnumDeclComplete(EnumDecl *ED) {
5013   return ED->isComplete();
5014 }
5015 
5016 /// Check if the given decl is scoped.
5017 ///
5018 /// We use this function to break a cycle between the inline definitions in
5019 /// Type.h and Decl.h.
IsEnumDeclScoped(EnumDecl * ED)5020 inline bool IsEnumDeclScoped(EnumDecl *ED) {
5021   return ED->isScoped();
5022 }
5023 
5024 /// OpenMP variants are mangled early based on their OpenMP context selector.
5025 /// The new name looks likes this:
5026 ///  <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
getOpenMPVariantManglingSeparatorStr()5027 static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
5028   return "$ompvariant";
5029 }
5030 
5031 /// Returns whether the given FunctionDecl has an __arm[_locally]_streaming
5032 /// attribute.
5033 bool IsArmStreamingFunction(const FunctionDecl *FD,
5034                             bool IncludeLocallyStreaming);
5035 
5036 } // namespace clang
5037 
5038 #endif // LLVM_CLANG_AST_DECL_H
5039