1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The file defines the MachineFrameInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H 14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H 15 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/CodeGen/Register.h" 18 #include "llvm/CodeGen/TargetFrameLowering.h" 19 #include "llvm/Support/Alignment.h" 20 #include <cassert> 21 #include <vector> 22 23 namespace llvm { 24 class raw_ostream; 25 class MachineFunction; 26 class MachineBasicBlock; 27 class BitVector; 28 class AllocaInst; 29 30 /// The CalleeSavedInfo class tracks the information need to locate where a 31 /// callee saved register is in the current frame. 32 /// Callee saved reg can also be saved to a different register rather than 33 /// on the stack by setting DstReg instead of FrameIdx. 34 class CalleeSavedInfo { 35 Register Reg; 36 union { 37 int FrameIdx; 38 unsigned DstReg; 39 }; 40 /// Flag indicating whether the register is actually restored in the epilog. 41 /// In most cases, if a register is saved, it is also restored. There are 42 /// some situations, though, when this is not the case. For example, the 43 /// LR register on ARM is usually saved, but on exit from the function its 44 /// saved value may be loaded directly into PC. Since liveness tracking of 45 /// physical registers treats callee-saved registers are live outside of 46 /// the function, LR would be treated as live-on-exit, even though in these 47 /// scenarios it is not. This flag is added to indicate that the saved 48 /// register described by this object is not restored in the epilog. 49 /// The long-term solution is to model the liveness of callee-saved registers 50 /// by implicit uses on the return instructions, however, the required 51 /// changes in the ARM backend would be quite extensive. 52 bool Restored = true; 53 /// Flag indicating whether the register is spilled to stack or another 54 /// register. 55 bool SpilledToReg = false; 56 57 public: Reg(R)58 explicit CalleeSavedInfo(unsigned R, int FI = 0) : Reg(R), FrameIdx(FI) {} 59 60 // Accessors. getReg()61 Register getReg() const { return Reg; } getFrameIdx()62 int getFrameIdx() const { return FrameIdx; } getDstReg()63 unsigned getDstReg() const { return DstReg; } setFrameIdx(int FI)64 void setFrameIdx(int FI) { 65 FrameIdx = FI; 66 SpilledToReg = false; 67 } setDstReg(Register SpillReg)68 void setDstReg(Register SpillReg) { 69 DstReg = SpillReg; 70 SpilledToReg = true; 71 } isRestored()72 bool isRestored() const { return Restored; } setRestored(bool R)73 void setRestored(bool R) { Restored = R; } isSpilledToReg()74 bool isSpilledToReg() const { return SpilledToReg; } 75 }; 76 77 /// The MachineFrameInfo class represents an abstract stack frame until 78 /// prolog/epilog code is inserted. This class is key to allowing stack frame 79 /// representation optimizations, such as frame pointer elimination. It also 80 /// allows more mundane (but still important) optimizations, such as reordering 81 /// of abstract objects on the stack frame. 82 /// 83 /// To support this, the class assigns unique integer identifiers to stack 84 /// objects requested clients. These identifiers are negative integers for 85 /// fixed stack objects (such as arguments passed on the stack) or nonnegative 86 /// for objects that may be reordered. Instructions which refer to stack 87 /// objects use a special MO_FrameIndex operand to represent these frame 88 /// indexes. 89 /// 90 /// Because this class keeps track of all references to the stack frame, it 91 /// knows when a variable sized object is allocated on the stack. This is the 92 /// sole condition which prevents frame pointer elimination, which is an 93 /// important optimization on register-poor architectures. Because original 94 /// variable sized alloca's in the source program are the only source of 95 /// variable sized stack objects, it is safe to decide whether there will be 96 /// any variable sized objects before all stack objects are known (for 97 /// example, register allocator spill code never needs variable sized 98 /// objects). 99 /// 100 /// When prolog/epilog code emission is performed, the final stack frame is 101 /// built and the machine instructions are modified to refer to the actual 102 /// stack offsets of the object, eliminating all MO_FrameIndex operands from 103 /// the program. 104 /// 105 /// Abstract Stack Frame Information 106 class MachineFrameInfo { 107 public: 108 /// Stack Smashing Protection (SSP) rules require that vulnerable stack 109 /// allocations are located close the stack protector. 110 enum SSPLayoutKind { 111 SSPLK_None, ///< Did not trigger a stack protector. No effect on data 112 ///< layout. 113 SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size. Closest 114 ///< to the stack protector. 115 SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest 116 ///< to the stack protector. 117 SSPLK_AddrOf ///< The address of this allocation is exposed and 118 ///< triggered protection. 3rd closest to the protector. 119 }; 120 121 private: 122 // Represent a single object allocated on the stack. 123 struct StackObject { 124 // The offset of this object from the stack pointer on entry to 125 // the function. This field has no meaning for a variable sized element. 126 int64_t SPOffset; 127 128 // The size of this object on the stack. 0 means a variable sized object, 129 // ~0ULL means a dead object. 130 uint64_t Size; 131 132 // The required alignment of this stack slot. 133 Align Alignment; 134 135 // If true, the value of the stack object is set before 136 // entering the function and is not modified inside the function. By 137 // default, fixed objects are immutable unless marked otherwise. 138 bool isImmutable; 139 140 // If true the stack object is used as spill slot. It 141 // cannot alias any other memory objects. 142 bool isSpillSlot; 143 144 /// If true, this stack slot is used to spill a value (could be deopt 145 /// and/or GC related) over a statepoint. We know that the address of the 146 /// slot can't alias any LLVM IR value. This is very similar to a Spill 147 /// Slot, but is created by statepoint lowering is SelectionDAG, not the 148 /// register allocator. 149 bool isStatepointSpillSlot = false; 150 151 /// Identifier for stack memory type analagous to address space. If this is 152 /// non-0, the meaning is target defined. Offsets cannot be directly 153 /// compared between objects with different stack IDs. The object may not 154 /// necessarily reside in the same contiguous memory block as other stack 155 /// objects. Objects with differing stack IDs should not be merged or 156 /// replaced substituted for each other. 157 // 158 /// It is assumed a target uses consecutive, increasing stack IDs starting 159 /// from 1. 160 uint8_t StackID; 161 162 /// If this stack object is originated from an Alloca instruction 163 /// this value saves the original IR allocation. Can be NULL. 164 const AllocaInst *Alloca; 165 166 // If true, the object was mapped into the local frame 167 // block and doesn't need additional handling for allocation beyond that. 168 bool PreAllocated = false; 169 170 // If true, an LLVM IR value might point to this object. 171 // Normally, spill slots and fixed-offset objects don't alias IR-accessible 172 // objects, but there are exceptions (on PowerPC, for example, some byval 173 // arguments have ABI-prescribed offsets). 174 bool isAliased; 175 176 /// If true, the object has been zero-extended. 177 bool isZExt = false; 178 179 /// If true, the object has been sign-extended. 180 bool isSExt = false; 181 182 uint8_t SSPLayout = SSPLK_None; 183 184 StackObject(uint64_t Size, Align Alignment, int64_t SPOffset, 185 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca, 186 bool IsAliased, uint8_t StackID = 0) SPOffsetStackObject187 : SPOffset(SPOffset), Size(Size), Alignment(Alignment), 188 isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID), 189 Alloca(Alloca), isAliased(IsAliased) {} 190 }; 191 192 /// The alignment of the stack. 193 Align StackAlignment; 194 195 /// Can the stack be realigned. This can be false if the target does not 196 /// support stack realignment, or if the user asks us not to realign the 197 /// stack. In this situation, overaligned allocas are all treated as dynamic 198 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC 199 /// lowering. All non-alloca stack objects have their alignment clamped to the 200 /// base ABI stack alignment. 201 /// FIXME: There is room for improvement in this case, in terms of 202 /// grouping overaligned allocas into a "secondary stack frame" and 203 /// then only use a single alloca to allocate this frame and only a 204 /// single virtual register to access it. Currently, without such an 205 /// optimization, each such alloca gets its own dynamic realignment. 206 bool StackRealignable; 207 208 /// Whether the function has the \c alignstack attribute. 209 bool ForcedRealign; 210 211 /// The list of stack objects allocated. 212 std::vector<StackObject> Objects; 213 214 /// This contains the number of fixed objects contained on 215 /// the stack. Because fixed objects are stored at a negative index in the 216 /// Objects list, this is also the index to the 0th object in the list. 217 unsigned NumFixedObjects = 0; 218 219 /// This boolean keeps track of whether any variable 220 /// sized objects have been allocated yet. 221 bool HasVarSizedObjects = false; 222 223 /// This boolean keeps track of whether there is a call 224 /// to builtin \@llvm.frameaddress. 225 bool FrameAddressTaken = false; 226 227 /// This boolean keeps track of whether there is a call 228 /// to builtin \@llvm.returnaddress. 229 bool ReturnAddressTaken = false; 230 231 /// This boolean keeps track of whether there is a call 232 /// to builtin \@llvm.experimental.stackmap. 233 bool HasStackMap = false; 234 235 /// This boolean keeps track of whether there is a call 236 /// to builtin \@llvm.experimental.patchpoint. 237 bool HasPatchPoint = false; 238 239 /// The prolog/epilog code inserter calculates the final stack 240 /// offsets for all of the fixed size objects, updating the Objects list 241 /// above. It then updates StackSize to contain the number of bytes that need 242 /// to be allocated on entry to the function. 243 uint64_t StackSize = 0; 244 245 /// The amount that a frame offset needs to be adjusted to 246 /// have the actual offset from the stack/frame pointer. The exact usage of 247 /// this is target-dependent, but it is typically used to adjust between 248 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via 249 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set 250 /// to the distance between the initial SP and the value in FP. For many 251 /// targets, this value is only used when generating debug info (via 252 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the 253 /// corresponding adjustments are performed directly. 254 int64_t OffsetAdjustment = 0; 255 256 /// The prolog/epilog code inserter may process objects that require greater 257 /// alignment than the default alignment the target provides. 258 /// To handle this, MaxAlignment is set to the maximum alignment 259 /// needed by the objects on the current frame. If this is greater than the 260 /// native alignment maintained by the compiler, dynamic alignment code will 261 /// be needed. 262 /// 263 Align MaxAlignment; 264 265 /// Set to true if this function adjusts the stack -- e.g., 266 /// when calling another function. This is only valid during and after 267 /// prolog/epilog code insertion. 268 bool AdjustsStack = false; 269 270 /// Set to true if this function has any function calls. 271 bool HasCalls = false; 272 273 /// The frame index for the stack protector. 274 int StackProtectorIdx = -1; 275 276 /// The frame index for the function context. Used for SjLj exceptions. 277 int FunctionContextIdx = -1; 278 279 /// This contains the size of the largest call frame if the target uses frame 280 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo 281 /// class). This information is important for frame pointer elimination. 282 /// It is only valid during and after prolog/epilog code insertion. 283 uint64_t MaxCallFrameSize = ~UINT64_C(0); 284 285 /// The number of bytes of callee saved registers that the target wants to 286 /// report for the current function in the CodeView S_FRAMEPROC record. 287 unsigned CVBytesOfCalleeSavedRegisters = 0; 288 289 /// The prolog/epilog code inserter fills in this vector with each 290 /// callee saved register saved in either the frame or a different 291 /// register. Beyond its use by the prolog/ epilog code inserter, 292 /// this data is used for debug info and exception handling. 293 std::vector<CalleeSavedInfo> CSInfo; 294 295 /// Has CSInfo been set yet? 296 bool CSIValid = false; 297 298 /// References to frame indices which are mapped 299 /// into the local frame allocation block. <FrameIdx, LocalOffset> 300 SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects; 301 302 /// Size of the pre-allocated local frame block. 303 int64_t LocalFrameSize = 0; 304 305 /// Required alignment of the local object blob, which is the strictest 306 /// alignment of any object in it. 307 Align LocalFrameMaxAlign; 308 309 /// Whether the local object blob needs to be allocated together. If not, 310 /// PEI should ignore the isPreAllocated flags on the stack objects and 311 /// just allocate them normally. 312 bool UseLocalStackAllocationBlock = false; 313 314 /// True if the function dynamically adjusts the stack pointer through some 315 /// opaque mechanism like inline assembly or Win32 EH. 316 bool HasOpaqueSPAdjustment = false; 317 318 /// True if the function contains operations which will lower down to 319 /// instructions which manipulate the stack pointer. 320 bool HasCopyImplyingStackAdjustment = false; 321 322 /// True if the function contains a call to the llvm.vastart intrinsic. 323 bool HasVAStart = false; 324 325 /// True if this is a varargs function that contains a musttail call. 326 bool HasMustTailInVarArgFunc = false; 327 328 /// True if this function contains a tail call. If so immutable objects like 329 /// function arguments are no longer so. A tail call *can* override fixed 330 /// stack objects like arguments so we can't treat them as immutable. 331 bool HasTailCall = false; 332 333 /// Not null, if shrink-wrapping found a better place for the prologue. 334 MachineBasicBlock *Save = nullptr; 335 /// Not null, if shrink-wrapping found a better place for the epilogue. 336 MachineBasicBlock *Restore = nullptr; 337 338 /// Size of the UnsafeStack Frame 339 uint64_t UnsafeStackSize = 0; 340 341 public: MachineFrameInfo(Align StackAlignment,bool StackRealignable,bool ForcedRealign)342 explicit MachineFrameInfo(Align StackAlignment, bool StackRealignable, 343 bool ForcedRealign) 344 : StackAlignment(StackAlignment), 345 StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {} 346 347 MachineFrameInfo(const MachineFrameInfo &) = delete; 348 isStackRealignable()349 bool isStackRealignable() const { return StackRealignable; } 350 351 /// Return true if there are any stack objects in this function. hasStackObjects()352 bool hasStackObjects() const { return !Objects.empty(); } 353 354 /// This method may be called any time after instruction 355 /// selection is complete to determine if the stack frame for this function 356 /// contains any variable sized objects. hasVarSizedObjects()357 bool hasVarSizedObjects() const { return HasVarSizedObjects; } 358 359 /// Return the index for the stack protector object. getStackProtectorIndex()360 int getStackProtectorIndex() const { return StackProtectorIdx; } setStackProtectorIndex(int I)361 void setStackProtectorIndex(int I) { StackProtectorIdx = I; } hasStackProtectorIndex()362 bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; } 363 364 /// Return the index for the function context object. 365 /// This object is used for SjLj exceptions. getFunctionContextIndex()366 int getFunctionContextIndex() const { return FunctionContextIdx; } setFunctionContextIndex(int I)367 void setFunctionContextIndex(int I) { FunctionContextIdx = I; } hasFunctionContextIndex()368 bool hasFunctionContextIndex() const { return FunctionContextIdx != -1; } 369 370 /// This method may be called any time after instruction 371 /// selection is complete to determine if there is a call to 372 /// \@llvm.frameaddress in this function. isFrameAddressTaken()373 bool isFrameAddressTaken() const { return FrameAddressTaken; } setFrameAddressIsTaken(bool T)374 void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; } 375 376 /// This method may be called any time after 377 /// instruction selection is complete to determine if there is a call to 378 /// \@llvm.returnaddress in this function. isReturnAddressTaken()379 bool isReturnAddressTaken() const { return ReturnAddressTaken; } setReturnAddressIsTaken(bool s)380 void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; } 381 382 /// This method may be called any time after instruction 383 /// selection is complete to determine if there is a call to builtin 384 /// \@llvm.experimental.stackmap. hasStackMap()385 bool hasStackMap() const { return HasStackMap; } 386 void setHasStackMap(bool s = true) { HasStackMap = s; } 387 388 /// This method may be called any time after instruction 389 /// selection is complete to determine if there is a call to builtin 390 /// \@llvm.experimental.patchpoint. hasPatchPoint()391 bool hasPatchPoint() const { return HasPatchPoint; } 392 void setHasPatchPoint(bool s = true) { HasPatchPoint = s; } 393 394 /// Return true if this function requires a split stack prolog, even if it 395 /// uses no stack space. This is only meaningful for functions where 396 /// MachineFunction::shouldSplitStack() returns true. 397 // 398 // For non-leaf functions we have to allow for the possibility that the call 399 // is to a non-split function, as in PR37807. This function could also take 400 // the address of a non-split function. When the linker tries to adjust its 401 // non-existent prologue, it would fail with an error. Mark the object file so 402 // that such failures are not errors. See this Go language bug-report 403 // https://go-review.googlesource.com/c/go/+/148819/ needsSplitStackProlog()404 bool needsSplitStackProlog() const { 405 return getStackSize() != 0 || hasTailCall(); 406 } 407 408 /// Return the minimum frame object index. getObjectIndexBegin()409 int getObjectIndexBegin() const { return -NumFixedObjects; } 410 411 /// Return one past the maximum frame object index. getObjectIndexEnd()412 int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; } 413 414 /// Return the number of fixed objects. getNumFixedObjects()415 unsigned getNumFixedObjects() const { return NumFixedObjects; } 416 417 /// Return the number of objects. getNumObjects()418 unsigned getNumObjects() const { return Objects.size(); } 419 420 /// Map a frame index into the local object block mapLocalFrameObject(int ObjectIndex,int64_t Offset)421 void mapLocalFrameObject(int ObjectIndex, int64_t Offset) { 422 LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset)); 423 Objects[ObjectIndex + NumFixedObjects].PreAllocated = true; 424 } 425 426 /// Get the local offset mapping for a for an object. getLocalFrameObjectMap(int i)427 std::pair<int, int64_t> getLocalFrameObjectMap(int i) const { 428 assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() && 429 "Invalid local object reference!"); 430 return LocalFrameObjects[i]; 431 } 432 433 /// Return the number of objects allocated into the local object block. getLocalFrameObjectCount()434 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); } 435 436 /// Set the size of the local object blob. setLocalFrameSize(int64_t sz)437 void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; } 438 439 /// Get the size of the local object blob. getLocalFrameSize()440 int64_t getLocalFrameSize() const { return LocalFrameSize; } 441 442 /// Required alignment of the local object blob, 443 /// which is the strictest alignment of any object in it. setLocalFrameMaxAlign(Align Alignment)444 void setLocalFrameMaxAlign(Align Alignment) { 445 LocalFrameMaxAlign = Alignment; 446 } 447 448 /// Return the required alignment of the local object blob. getLocalFrameMaxAlign()449 Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; } 450 451 /// Get whether the local allocation blob should be allocated together or 452 /// let PEI allocate the locals in it directly. getUseLocalStackAllocationBlock()453 bool getUseLocalStackAllocationBlock() const { 454 return UseLocalStackAllocationBlock; 455 } 456 457 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob 458 /// should be allocated together or let PEI allocate the locals in it 459 /// directly. setUseLocalStackAllocationBlock(bool v)460 void setUseLocalStackAllocationBlock(bool v) { 461 UseLocalStackAllocationBlock = v; 462 } 463 464 /// Return true if the object was pre-allocated into the local block. isObjectPreAllocated(int ObjectIdx)465 bool isObjectPreAllocated(int ObjectIdx) const { 466 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 467 "Invalid Object Idx!"); 468 return Objects[ObjectIdx+NumFixedObjects].PreAllocated; 469 } 470 471 /// Return the size of the specified object. getObjectSize(int ObjectIdx)472 int64_t getObjectSize(int ObjectIdx) const { 473 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 474 "Invalid Object Idx!"); 475 return Objects[ObjectIdx+NumFixedObjects].Size; 476 } 477 478 /// Change the size of the specified stack object. setObjectSize(int ObjectIdx,int64_t Size)479 void setObjectSize(int ObjectIdx, int64_t Size) { 480 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 481 "Invalid Object Idx!"); 482 Objects[ObjectIdx+NumFixedObjects].Size = Size; 483 } 484 485 /// Return the alignment of the specified stack object. getObjectAlign(int ObjectIdx)486 Align getObjectAlign(int ObjectIdx) const { 487 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 488 "Invalid Object Idx!"); 489 return Objects[ObjectIdx + NumFixedObjects].Alignment; 490 } 491 492 /// Should this stack ID be considered in MaxAlignment. contributesToMaxAlignment(uint8_t StackID)493 bool contributesToMaxAlignment(uint8_t StackID) { 494 return StackID == TargetStackID::Default || 495 StackID == TargetStackID::ScalableVector; 496 } 497 498 /// setObjectAlignment - Change the alignment of the specified stack object. setObjectAlignment(int ObjectIdx,Align Alignment)499 void setObjectAlignment(int ObjectIdx, Align Alignment) { 500 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 501 "Invalid Object Idx!"); 502 Objects[ObjectIdx + NumFixedObjects].Alignment = Alignment; 503 504 // Only ensure max alignment for the default and scalable vector stack. 505 uint8_t StackID = getStackID(ObjectIdx); 506 if (contributesToMaxAlignment(StackID)) 507 ensureMaxAlignment(Alignment); 508 } 509 510 /// Return the underlying Alloca of the specified 511 /// stack object if it exists. Returns 0 if none exists. getObjectAllocation(int ObjectIdx)512 const AllocaInst* getObjectAllocation(int ObjectIdx) const { 513 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 514 "Invalid Object Idx!"); 515 return Objects[ObjectIdx+NumFixedObjects].Alloca; 516 } 517 518 /// Remove the underlying Alloca of the specified stack object if it 519 /// exists. This generally should not be used and is for reduction tooling. clearObjectAllocation(int ObjectIdx)520 void clearObjectAllocation(int ObjectIdx) { 521 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 522 "Invalid Object Idx!"); 523 Objects[ObjectIdx + NumFixedObjects].Alloca = nullptr; 524 } 525 526 /// Return the assigned stack offset of the specified object 527 /// from the incoming stack pointer. getObjectOffset(int ObjectIdx)528 int64_t getObjectOffset(int ObjectIdx) const { 529 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 530 "Invalid Object Idx!"); 531 assert(!isDeadObjectIndex(ObjectIdx) && 532 "Getting frame offset for a dead object?"); 533 return Objects[ObjectIdx+NumFixedObjects].SPOffset; 534 } 535 isObjectZExt(int ObjectIdx)536 bool isObjectZExt(int ObjectIdx) const { 537 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 538 "Invalid Object Idx!"); 539 return Objects[ObjectIdx+NumFixedObjects].isZExt; 540 } 541 setObjectZExt(int ObjectIdx,bool IsZExt)542 void setObjectZExt(int ObjectIdx, bool IsZExt) { 543 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 544 "Invalid Object Idx!"); 545 Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt; 546 } 547 isObjectSExt(int ObjectIdx)548 bool isObjectSExt(int ObjectIdx) const { 549 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 550 "Invalid Object Idx!"); 551 return Objects[ObjectIdx+NumFixedObjects].isSExt; 552 } 553 setObjectSExt(int ObjectIdx,bool IsSExt)554 void setObjectSExt(int ObjectIdx, bool IsSExt) { 555 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 556 "Invalid Object Idx!"); 557 Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt; 558 } 559 560 /// Set the stack frame offset of the specified object. The 561 /// offset is relative to the stack pointer on entry to the function. setObjectOffset(int ObjectIdx,int64_t SPOffset)562 void setObjectOffset(int ObjectIdx, int64_t SPOffset) { 563 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 564 "Invalid Object Idx!"); 565 assert(!isDeadObjectIndex(ObjectIdx) && 566 "Setting frame offset for a dead object?"); 567 Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; 568 } 569 getObjectSSPLayout(int ObjectIdx)570 SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const { 571 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 572 "Invalid Object Idx!"); 573 return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout; 574 } 575 setObjectSSPLayout(int ObjectIdx,SSPLayoutKind Kind)576 void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) { 577 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 578 "Invalid Object Idx!"); 579 assert(!isDeadObjectIndex(ObjectIdx) && 580 "Setting SSP layout for a dead object?"); 581 Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind; 582 } 583 584 /// Return the number of bytes that must be allocated to hold 585 /// all of the fixed size frame objects. This is only valid after 586 /// Prolog/Epilog code insertion has finalized the stack frame layout. getStackSize()587 uint64_t getStackSize() const { return StackSize; } 588 589 /// Set the size of the stack. setStackSize(uint64_t Size)590 void setStackSize(uint64_t Size) { StackSize = Size; } 591 592 /// Estimate and return the size of the stack frame. 593 uint64_t estimateStackSize(const MachineFunction &MF) const; 594 595 /// Return the correction for frame offsets. getOffsetAdjustment()596 int64_t getOffsetAdjustment() const { return OffsetAdjustment; } 597 598 /// Set the correction for frame offsets. setOffsetAdjustment(int64_t Adj)599 void setOffsetAdjustment(int64_t Adj) { OffsetAdjustment = Adj; } 600 601 /// Return the alignment in bytes that this function must be aligned to, 602 /// which is greater than the default stack alignment provided by the target. getMaxAlign()603 Align getMaxAlign() const { return MaxAlignment; } 604 605 /// Make sure the function is at least Align bytes aligned. 606 void ensureMaxAlignment(Align Alignment); 607 608 /// Return true if stack realignment is forced by function attributes or if 609 /// the stack alignment. shouldRealignStack()610 bool shouldRealignStack() const { 611 return ForcedRealign || MaxAlignment > StackAlignment; 612 } 613 614 /// Return true if this function adjusts the stack -- e.g., 615 /// when calling another function. This is only valid during and after 616 /// prolog/epilog code insertion. adjustsStack()617 bool adjustsStack() const { return AdjustsStack; } setAdjustsStack(bool V)618 void setAdjustsStack(bool V) { AdjustsStack = V; } 619 620 /// Return true if the current function has any function calls. hasCalls()621 bool hasCalls() const { return HasCalls; } setHasCalls(bool V)622 void setHasCalls(bool V) { HasCalls = V; } 623 624 /// Returns true if the function contains opaque dynamic stack adjustments. hasOpaqueSPAdjustment()625 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; } setHasOpaqueSPAdjustment(bool B)626 void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; } 627 628 /// Returns true if the function contains operations which will lower down to 629 /// instructions which manipulate the stack pointer. hasCopyImplyingStackAdjustment()630 bool hasCopyImplyingStackAdjustment() const { 631 return HasCopyImplyingStackAdjustment; 632 } setHasCopyImplyingStackAdjustment(bool B)633 void setHasCopyImplyingStackAdjustment(bool B) { 634 HasCopyImplyingStackAdjustment = B; 635 } 636 637 /// Returns true if the function calls the llvm.va_start intrinsic. hasVAStart()638 bool hasVAStart() const { return HasVAStart; } setHasVAStart(bool B)639 void setHasVAStart(bool B) { HasVAStart = B; } 640 641 /// Returns true if the function is variadic and contains a musttail call. hasMustTailInVarArgFunc()642 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; } setHasMustTailInVarArgFunc(bool B)643 void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; } 644 645 /// Returns true if the function contains a tail call. hasTailCall()646 bool hasTailCall() const { return HasTailCall; } 647 void setHasTailCall(bool V = true) { HasTailCall = V; } 648 649 /// Computes the maximum size of a callframe. 650 /// This only works for targets defining 651 /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(), 652 /// and getFrameSize(). 653 /// This is usually computed by the prologue epilogue inserter but some 654 /// targets may call this to compute it earlier. 655 /// If FrameSDOps is passed, the frame instructions in the MF will be 656 /// inserted into it. 657 void computeMaxCallFrameSize( 658 MachineFunction &MF, 659 std::vector<MachineBasicBlock::iterator> *FrameSDOps = nullptr); 660 661 /// Return the maximum size of a call frame that must be 662 /// allocated for an outgoing function call. This is only available if 663 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and 664 /// then only during or after prolog/epilog code insertion. 665 /// getMaxCallFrameSize()666 uint64_t getMaxCallFrameSize() const { 667 // TODO: Enable this assert when targets are fixed. 668 //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet"); 669 if (!isMaxCallFrameSizeComputed()) 670 return 0; 671 return MaxCallFrameSize; 672 } isMaxCallFrameSizeComputed()673 bool isMaxCallFrameSizeComputed() const { 674 return MaxCallFrameSize != ~UINT64_C(0); 675 } setMaxCallFrameSize(uint64_t S)676 void setMaxCallFrameSize(uint64_t S) { MaxCallFrameSize = S; } 677 678 /// Returns how many bytes of callee-saved registers the target pushed in the 679 /// prologue. Only used for debug info. getCVBytesOfCalleeSavedRegisters()680 unsigned getCVBytesOfCalleeSavedRegisters() const { 681 return CVBytesOfCalleeSavedRegisters; 682 } setCVBytesOfCalleeSavedRegisters(unsigned S)683 void setCVBytesOfCalleeSavedRegisters(unsigned S) { 684 CVBytesOfCalleeSavedRegisters = S; 685 } 686 687 /// Create a new object at a fixed location on the stack. 688 /// All fixed objects should be created before other objects are created for 689 /// efficiency. By default, fixed objects are not pointed to by LLVM IR 690 /// values. This returns an index with a negative value. 691 int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, 692 bool isAliased = false); 693 694 /// Create a spill slot at a fixed location on the stack. 695 /// Returns an index with a negative value. 696 int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset, 697 bool IsImmutable = false); 698 699 /// Returns true if the specified index corresponds to a fixed stack object. isFixedObjectIndex(int ObjectIdx)700 bool isFixedObjectIndex(int ObjectIdx) const { 701 return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects); 702 } 703 704 /// Returns true if the specified index corresponds 705 /// to an object that might be pointed to by an LLVM IR value. isAliasedObjectIndex(int ObjectIdx)706 bool isAliasedObjectIndex(int ObjectIdx) const { 707 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 708 "Invalid Object Idx!"); 709 return Objects[ObjectIdx+NumFixedObjects].isAliased; 710 } 711 712 /// Set "maybe pointed to by an LLVM IR value" for an object. setIsAliasedObjectIndex(int ObjectIdx,bool IsAliased)713 void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased) { 714 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 715 "Invalid Object Idx!"); 716 Objects[ObjectIdx+NumFixedObjects].isAliased = IsAliased; 717 } 718 719 /// Returns true if the specified index corresponds to an immutable object. isImmutableObjectIndex(int ObjectIdx)720 bool isImmutableObjectIndex(int ObjectIdx) const { 721 // Tail calling functions can clobber their function arguments. 722 if (HasTailCall) 723 return false; 724 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 725 "Invalid Object Idx!"); 726 return Objects[ObjectIdx+NumFixedObjects].isImmutable; 727 } 728 729 /// Marks the immutability of an object. setIsImmutableObjectIndex(int ObjectIdx,bool IsImmutable)730 void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) { 731 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 732 "Invalid Object Idx!"); 733 Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable; 734 } 735 736 /// Returns true if the specified index corresponds to a spill slot. isSpillSlotObjectIndex(int ObjectIdx)737 bool isSpillSlotObjectIndex(int ObjectIdx) const { 738 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 739 "Invalid Object Idx!"); 740 return Objects[ObjectIdx+NumFixedObjects].isSpillSlot; 741 } 742 isStatepointSpillSlotObjectIndex(int ObjectIdx)743 bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const { 744 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 745 "Invalid Object Idx!"); 746 return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot; 747 } 748 749 /// \see StackID getStackID(int ObjectIdx)750 uint8_t getStackID(int ObjectIdx) const { 751 return Objects[ObjectIdx+NumFixedObjects].StackID; 752 } 753 754 /// \see StackID setStackID(int ObjectIdx,uint8_t ID)755 void setStackID(int ObjectIdx, uint8_t ID) { 756 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 757 "Invalid Object Idx!"); 758 Objects[ObjectIdx+NumFixedObjects].StackID = ID; 759 // If ID > 0, MaxAlignment may now be overly conservative. 760 // If ID == 0, MaxAlignment will need to be updated separately. 761 } 762 763 /// Returns true if the specified index corresponds to a dead object. isDeadObjectIndex(int ObjectIdx)764 bool isDeadObjectIndex(int ObjectIdx) const { 765 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 766 "Invalid Object Idx!"); 767 return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL; 768 } 769 770 /// Returns true if the specified index corresponds to a variable sized 771 /// object. isVariableSizedObjectIndex(int ObjectIdx)772 bool isVariableSizedObjectIndex(int ObjectIdx) const { 773 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 774 "Invalid Object Idx!"); 775 return Objects[ObjectIdx + NumFixedObjects].Size == 0; 776 } 777 markAsStatepointSpillSlotObjectIndex(int ObjectIdx)778 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) { 779 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 780 "Invalid Object Idx!"); 781 Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true; 782 assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent"); 783 } 784 785 /// Create a new statically sized stack object, returning 786 /// a nonnegative identifier to represent it. 787 int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, 788 const AllocaInst *Alloca = nullptr, uint8_t ID = 0); 789 790 /// Create a new statically sized stack object that represents a spill slot, 791 /// returning a nonnegative identifier to represent it. 792 int CreateSpillStackObject(uint64_t Size, Align Alignment); 793 794 /// Remove or mark dead a statically sized stack object. RemoveStackObject(int ObjectIdx)795 void RemoveStackObject(int ObjectIdx) { 796 // Mark it dead. 797 Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL; 798 } 799 800 /// Notify the MachineFrameInfo object that a variable sized object has been 801 /// created. This must be created whenever a variable sized object is 802 /// created, whether or not the index returned is actually used. 803 int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca); 804 805 /// Returns a reference to call saved info vector for the current function. getCalleeSavedInfo()806 const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const { 807 return CSInfo; 808 } 809 /// \copydoc getCalleeSavedInfo() getCalleeSavedInfo()810 std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; } 811 812 /// Used by prolog/epilog inserter to set the function's callee saved 813 /// information. setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI)814 void setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI) { 815 CSInfo = std::move(CSI); 816 } 817 818 /// Has the callee saved info been calculated yet? isCalleeSavedInfoValid()819 bool isCalleeSavedInfoValid() const { return CSIValid; } 820 setCalleeSavedInfoValid(bool v)821 void setCalleeSavedInfoValid(bool v) { CSIValid = v; } 822 getSavePoint()823 MachineBasicBlock *getSavePoint() const { return Save; } setSavePoint(MachineBasicBlock * NewSave)824 void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; } getRestorePoint()825 MachineBasicBlock *getRestorePoint() const { return Restore; } setRestorePoint(MachineBasicBlock * NewRestore)826 void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; } 827 getUnsafeStackSize()828 uint64_t getUnsafeStackSize() const { return UnsafeStackSize; } setUnsafeStackSize(uint64_t Size)829 void setUnsafeStackSize(uint64_t Size) { UnsafeStackSize = Size; } 830 831 /// Return a set of physical registers that are pristine. 832 /// 833 /// Pristine registers hold a value that is useless to the current function, 834 /// but that must be preserved - they are callee saved registers that are not 835 /// saved. 836 /// 837 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this 838 /// method always returns an empty set. 839 BitVector getPristineRegs(const MachineFunction &MF) const; 840 841 /// Used by the MachineFunction printer to print information about 842 /// stack objects. Implemented in MachineFunction.cpp. 843 void print(const MachineFunction &MF, raw_ostream &OS) const; 844 845 /// dump - Print the function to stderr. 846 void dump(const MachineFunction &MF) const; 847 }; 848 849 } // End llvm namespace 850 851 #endif 852