xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define LV_NAME "loop-vectorize"
34 #define DEBUG_TYPE LV_NAME
35 
36 static cl::opt<bool>
37     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38                        cl::desc("Enable if-conversion during vectorization."));
39 
40 static cl::opt<bool>
41 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
42                        cl::desc("Enable recognition of non-constant strided "
43                                 "pointer induction variables."));
44 
45 namespace llvm {
46 cl::opt<bool>
47     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
48                          cl::desc("Allow enabling loop hints to reorder "
49                                   "FP operations during vectorization."));
50 }
51 
52 // TODO: Move size-based thresholds out of legality checking, make cost based
53 // decisions instead of hard thresholds.
54 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
55     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
56     cl::desc("The maximum number of SCEV checks allowed."));
57 
58 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
59     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
60     cl::desc("The maximum number of SCEV checks allowed with a "
61              "vectorize(enable) pragma"));
62 
63 static cl::opt<LoopVectorizeHints::ScalableForceKind>
64     ForceScalableVectorization(
65         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
66         cl::Hidden,
67         cl::desc("Control whether the compiler can use scalable vectors to "
68                  "vectorize a loop"),
69         cl::values(
70             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
71                        "Scalable vectorization is disabled."),
72             clEnumValN(
73                 LoopVectorizeHints::SK_PreferScalable, "preferred",
74                 "Scalable vectorization is available and favored when the "
75                 "cost is inconclusive."),
76             clEnumValN(
77                 LoopVectorizeHints::SK_PreferScalable, "on",
78                 "Scalable vectorization is available and favored when the "
79                 "cost is inconclusive.")));
80 
81 /// Maximum vectorization interleave count.
82 static const unsigned MaxInterleaveFactor = 16;
83 
84 namespace llvm {
85 
validate(unsigned Val)86 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
87   switch (Kind) {
88   case HK_WIDTH:
89     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
90   case HK_INTERLEAVE:
91     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
92   case HK_FORCE:
93     return (Val <= 1);
94   case HK_ISVECTORIZED:
95   case HK_PREDICATE:
96   case HK_SCALABLE:
97     return (Val == 0 || Val == 1);
98   }
99   return false;
100 }
101 
LoopVectorizeHints(const Loop * L,bool InterleaveOnlyWhenForced,OptimizationRemarkEmitter & ORE,const TargetTransformInfo * TTI)102 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
103                                        bool InterleaveOnlyWhenForced,
104                                        OptimizationRemarkEmitter &ORE,
105                                        const TargetTransformInfo *TTI)
106     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
107       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
108       Force("vectorize.enable", FK_Undefined, HK_FORCE),
109       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
110       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
111       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
112       TheLoop(L), ORE(ORE) {
113   // Populate values with existing loop metadata.
114   getHintsFromMetadata();
115 
116   // force-vector-interleave overrides DisableInterleaving.
117   if (VectorizerParams::isInterleaveForced())
118     Interleave.Value = VectorizerParams::VectorizationInterleave;
119 
120   // If the metadata doesn't explicitly specify whether to enable scalable
121   // vectorization, then decide based on the following criteria (increasing
122   // level of priority):
123   //  - Target default
124   //  - Metadata width
125   //  - Force option (always overrides)
126   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
127     if (TTI)
128       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
129                                                           : SK_FixedWidthOnly;
130 
131     if (Width.Value)
132       // If the width is set, but the metadata says nothing about the scalable
133       // property, then assume it concerns only a fixed-width UserVF.
134       // If width is not set, the flag takes precedence.
135       Scalable.Value = SK_FixedWidthOnly;
136   }
137 
138   // If the flag is set to force any use of scalable vectors, override the loop
139   // hints.
140   if (ForceScalableVectorization.getValue() !=
141       LoopVectorizeHints::SK_Unspecified)
142     Scalable.Value = ForceScalableVectorization.getValue();
143 
144   // Scalable vectorization is disabled if no preference is specified.
145   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
146     Scalable.Value = SK_FixedWidthOnly;
147 
148   if (IsVectorized.Value != 1)
149     // If the vectorization width and interleaving count are both 1 then
150     // consider the loop to have been already vectorized because there's
151     // nothing more that we can do.
152     IsVectorized.Value =
153         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
154   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
155              << "LV: Interleaving disabled by the pass manager\n");
156 }
157 
setAlreadyVectorized()158 void LoopVectorizeHints::setAlreadyVectorized() {
159   LLVMContext &Context = TheLoop->getHeader()->getContext();
160 
161   MDNode *IsVectorizedMD = MDNode::get(
162       Context,
163       {MDString::get(Context, "llvm.loop.isvectorized"),
164        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
165   MDNode *LoopID = TheLoop->getLoopID();
166   MDNode *NewLoopID =
167       makePostTransformationMetadata(Context, LoopID,
168                                      {Twine(Prefix(), "vectorize.").str(),
169                                       Twine(Prefix(), "interleave.").str()},
170                                      {IsVectorizedMD});
171   TheLoop->setLoopID(NewLoopID);
172 
173   // Update internal cache.
174   IsVectorized.Value = 1;
175 }
176 
allowVectorization(Function * F,Loop * L,bool VectorizeOnlyWhenForced) const177 bool LoopVectorizeHints::allowVectorization(
178     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
179   if (getForce() == LoopVectorizeHints::FK_Disabled) {
180     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
181     emitRemarkWithHints();
182     return false;
183   }
184 
185   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
186     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
187     emitRemarkWithHints();
188     return false;
189   }
190 
191   if (getIsVectorized() == 1) {
192     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
193     // FIXME: Add interleave.disable metadata. This will allow
194     // vectorize.disable to be used without disabling the pass and errors
195     // to differentiate between disabled vectorization and a width of 1.
196     ORE.emit([&]() {
197       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
198                                         "AllDisabled", L->getStartLoc(),
199                                         L->getHeader())
200              << "loop not vectorized: vectorization and interleaving are "
201                 "explicitly disabled, or the loop has already been "
202                 "vectorized";
203     });
204     return false;
205   }
206 
207   return true;
208 }
209 
emitRemarkWithHints() const210 void LoopVectorizeHints::emitRemarkWithHints() const {
211   using namespace ore;
212 
213   ORE.emit([&]() {
214     if (Force.Value == LoopVectorizeHints::FK_Disabled)
215       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
216                                       TheLoop->getStartLoc(),
217                                       TheLoop->getHeader())
218              << "loop not vectorized: vectorization is explicitly disabled";
219     else {
220       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
221                                  TheLoop->getStartLoc(), TheLoop->getHeader());
222       R << "loop not vectorized";
223       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
224         R << " (Force=" << NV("Force", true);
225         if (Width.Value != 0)
226           R << ", Vector Width=" << NV("VectorWidth", getWidth());
227         if (getInterleave() != 0)
228           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
229         R << ")";
230       }
231       return R;
232     }
233   });
234 }
235 
vectorizeAnalysisPassName() const236 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
237   if (getWidth() == ElementCount::getFixed(1))
238     return LV_NAME;
239   if (getForce() == LoopVectorizeHints::FK_Disabled)
240     return LV_NAME;
241   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
242     return LV_NAME;
243   return OptimizationRemarkAnalysis::AlwaysPrint;
244 }
245 
allowReordering() const246 bool LoopVectorizeHints::allowReordering() const {
247   // Allow the vectorizer to change the order of operations if enabling
248   // loop hints are provided
249   ElementCount EC = getWidth();
250   return HintsAllowReordering &&
251          (getForce() == LoopVectorizeHints::FK_Enabled ||
252           EC.getKnownMinValue() > 1);
253 }
254 
getHintsFromMetadata()255 void LoopVectorizeHints::getHintsFromMetadata() {
256   MDNode *LoopID = TheLoop->getLoopID();
257   if (!LoopID)
258     return;
259 
260   // First operand should refer to the loop id itself.
261   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
262   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
263 
264   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
265     const MDString *S = nullptr;
266     SmallVector<Metadata *, 4> Args;
267 
268     // The expected hint is either a MDString or a MDNode with the first
269     // operand a MDString.
270     if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
271       if (!MD || MD->getNumOperands() == 0)
272         continue;
273       S = dyn_cast<MDString>(MD->getOperand(0));
274       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
275         Args.push_back(MD->getOperand(i));
276     } else {
277       S = dyn_cast<MDString>(MDO);
278       assert(Args.size() == 0 && "too many arguments for MDString");
279     }
280 
281     if (!S)
282       continue;
283 
284     // Check if the hint starts with the loop metadata prefix.
285     StringRef Name = S->getString();
286     if (Args.size() == 1)
287       setHint(Name, Args[0]);
288   }
289 }
290 
setHint(StringRef Name,Metadata * Arg)291 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
292   if (!Name.starts_with(Prefix()))
293     return;
294   Name = Name.substr(Prefix().size(), StringRef::npos);
295 
296   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
297   if (!C)
298     return;
299   unsigned Val = C->getZExtValue();
300 
301   Hint *Hints[] = {&Width,        &Interleave, &Force,
302                    &IsVectorized, &Predicate,  &Scalable};
303   for (auto *H : Hints) {
304     if (Name == H->Name) {
305       if (H->validate(Val))
306         H->Value = Val;
307       else
308         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
309       break;
310     }
311   }
312 }
313 
314 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
315 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
316 // executing the inner loop will execute the same iterations). This check is
317 // very constrained for now but it will be relaxed in the future. \p Lp is
318 // considered uniform if it meets all the following conditions:
319 //   1) it has a canonical IV (starting from 0 and with stride 1),
320 //   2) its latch terminator is a conditional branch and,
321 //   3) its latch condition is a compare instruction whose operands are the
322 //      canonical IV and an OuterLp invariant.
323 // This check doesn't take into account the uniformity of other conditions not
324 // related to the loop latch because they don't affect the loop uniformity.
325 //
326 // NOTE: We decided to keep all these checks and its associated documentation
327 // together so that we can easily have a picture of the current supported loop
328 // nests. However, some of the current checks don't depend on \p OuterLp and
329 // would be redundantly executed for each \p Lp if we invoked this function for
330 // different candidate outer loops. This is not the case for now because we
331 // don't currently have the infrastructure to evaluate multiple candidate outer
332 // loops and \p OuterLp will be a fixed parameter while we only support explicit
333 // outer loop vectorization. It's also very likely that these checks go away
334 // before introducing the aforementioned infrastructure. However, if this is not
335 // the case, we should move the \p OuterLp independent checks to a separate
336 // function that is only executed once for each \p Lp.
isUniformLoop(Loop * Lp,Loop * OuterLp)337 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
338   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
339 
340   // If Lp is the outer loop, it's uniform by definition.
341   if (Lp == OuterLp)
342     return true;
343   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
344 
345   // 1.
346   PHINode *IV = Lp->getCanonicalInductionVariable();
347   if (!IV) {
348     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
349     return false;
350   }
351 
352   // 2.
353   BasicBlock *Latch = Lp->getLoopLatch();
354   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
355   if (!LatchBr || LatchBr->isUnconditional()) {
356     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
357     return false;
358   }
359 
360   // 3.
361   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
362   if (!LatchCmp) {
363     LLVM_DEBUG(
364         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
365     return false;
366   }
367 
368   Value *CondOp0 = LatchCmp->getOperand(0);
369   Value *CondOp1 = LatchCmp->getOperand(1);
370   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
371   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
372       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
373     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
374     return false;
375   }
376 
377   return true;
378 }
379 
380 // Return true if \p Lp and all its nested loops are uniform with regard to \p
381 // OuterLp.
isUniformLoopNest(Loop * Lp,Loop * OuterLp)382 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
383   if (!isUniformLoop(Lp, OuterLp))
384     return false;
385 
386   // Check if nested loops are uniform.
387   for (Loop *SubLp : *Lp)
388     if (!isUniformLoopNest(SubLp, OuterLp))
389       return false;
390 
391   return true;
392 }
393 
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)394 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
395   if (Ty->isPointerTy())
396     return DL.getIntPtrType(Ty);
397 
398   // It is possible that char's or short's overflow when we ask for the loop's
399   // trip count, work around this by changing the type size.
400   if (Ty->getScalarSizeInBits() < 32)
401     return Type::getInt32Ty(Ty->getContext());
402 
403   return Ty;
404 }
405 
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)406 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
407   Ty0 = convertPointerToIntegerType(DL, Ty0);
408   Ty1 = convertPointerToIntegerType(DL, Ty1);
409   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
410     return Ty0;
411   return Ty1;
412 }
413 
414 /// Check that the instruction has outside loop users and is not an
415 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & AllowedExit)416 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
417                                SmallPtrSetImpl<Value *> &AllowedExit) {
418   // Reductions, Inductions and non-header phis are allowed to have exit users. All
419   // other instructions must not have external users.
420   if (!AllowedExit.count(Inst))
421     // Check that all of the users of the loop are inside the BB.
422     for (User *U : Inst->users()) {
423       Instruction *UI = cast<Instruction>(U);
424       // This user may be a reduction exit value.
425       if (!TheLoop->contains(UI)) {
426         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
427         return true;
428       }
429     }
430   return false;
431 }
432 
433 /// Returns true if A and B have same pointer operands or same SCEVs addresses
storeToSameAddress(ScalarEvolution * SE,StoreInst * A,StoreInst * B)434 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
435                                StoreInst *B) {
436   // Compare store
437   if (A == B)
438     return true;
439 
440   // Otherwise Compare pointers
441   Value *APtr = A->getPointerOperand();
442   Value *BPtr = B->getPointerOperand();
443   if (APtr == BPtr)
444     return true;
445 
446   // Otherwise compare address SCEVs
447   if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
448     return true;
449 
450   return false;
451 }
452 
isConsecutivePtr(Type * AccessTy,Value * Ptr) const453 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
454                                                 Value *Ptr) const {
455   // FIXME: Currently, the set of symbolic strides is sometimes queried before
456   // it's collected.  This happens from canVectorizeWithIfConvert, when the
457   // pointer is checked to reference consecutive elements suitable for a
458   // masked access.
459   const auto &Strides =
460     LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
461 
462   Function *F = TheLoop->getHeader()->getParent();
463   bool OptForSize = F->hasOptSize() ||
464                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
465                                                 PGSOQueryType::IRPass);
466   bool CanAddPredicate = !OptForSize;
467   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
468                             CanAddPredicate, false).value_or(0);
469   if (Stride == 1 || Stride == -1)
470     return Stride;
471   return 0;
472 }
473 
isInvariant(Value * V) const474 bool LoopVectorizationLegality::isInvariant(Value *V) const {
475   return LAI->isInvariant(V);
476 }
477 
478 namespace {
479 /// A rewriter to build the SCEVs for each of the VF lanes in the expected
480 /// vectorized loop, which can then be compared to detect their uniformity. This
481 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
482 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
483 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
484 /// uniformity.
485 class SCEVAddRecForUniformityRewriter
486     : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
487   /// Multiplier to be applied to the step of AddRecs in TheLoop.
488   unsigned StepMultiplier;
489 
490   /// Offset to be added to the AddRecs in TheLoop.
491   unsigned Offset;
492 
493   /// Loop for which to rewrite AddRecsFor.
494   Loop *TheLoop;
495 
496   /// Is any sub-expressions not analyzable w.r.t. uniformity?
497   bool CannotAnalyze = false;
498 
canAnalyze() const499   bool canAnalyze() const { return !CannotAnalyze; }
500 
501 public:
SCEVAddRecForUniformityRewriter(ScalarEvolution & SE,unsigned StepMultiplier,unsigned Offset,Loop * TheLoop)502   SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
503                                   unsigned Offset, Loop *TheLoop)
504       : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
505         TheLoop(TheLoop) {}
506 
visitAddRecExpr(const SCEVAddRecExpr * Expr)507   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
508     assert(Expr->getLoop() == TheLoop &&
509            "addrec outside of TheLoop must be invariant and should have been "
510            "handled earlier");
511     // Build a new AddRec by multiplying the step by StepMultiplier and
512     // incrementing the start by Offset * step.
513     Type *Ty = Expr->getType();
514     auto *Step = Expr->getStepRecurrence(SE);
515     if (!SE.isLoopInvariant(Step, TheLoop)) {
516       CannotAnalyze = true;
517       return Expr;
518     }
519     auto *NewStep = SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
520     auto *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
521     auto *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
522     return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
523   }
524 
visit(const SCEV * S)525   const SCEV *visit(const SCEV *S) {
526     if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
527       return S;
528     return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
529   }
530 
visitUnknown(const SCEVUnknown * S)531   const SCEV *visitUnknown(const SCEVUnknown *S) {
532     if (SE.isLoopInvariant(S, TheLoop))
533       return S;
534     // The value could vary across iterations.
535     CannotAnalyze = true;
536     return S;
537   }
538 
visitCouldNotCompute(const SCEVCouldNotCompute * S)539   const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
540     // Could not analyze the expression.
541     CannotAnalyze = true;
542     return S;
543   }
544 
rewrite(const SCEV * S,ScalarEvolution & SE,unsigned StepMultiplier,unsigned Offset,Loop * TheLoop)545   static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
546                              unsigned StepMultiplier, unsigned Offset,
547                              Loop *TheLoop) {
548     /// Bail out if the expression does not contain an UDiv expression.
549     /// Uniform values which are not loop invariant require operations to strip
550     /// out the lowest bits. For now just look for UDivs and use it to avoid
551     /// re-writing UDIV-free expressions for other lanes to limit compile time.
552     if (!SCEVExprContains(S,
553                           [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
554       return SE.getCouldNotCompute();
555 
556     SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
557                                              TheLoop);
558     const SCEV *Result = Rewriter.visit(S);
559 
560     if (Rewriter.canAnalyze())
561       return Result;
562     return SE.getCouldNotCompute();
563   }
564 };
565 
566 } // namespace
567 
isUniform(Value * V,ElementCount VF) const568 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
569   if (isInvariant(V))
570     return true;
571   if (VF.isScalable())
572     return false;
573   if (VF.isScalar())
574     return true;
575 
576   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
577   // never considered uniform.
578   auto *SE = PSE.getSE();
579   if (!SE->isSCEVable(V->getType()))
580     return false;
581   const SCEV *S = SE->getSCEV(V);
582 
583   // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
584   // lane 0 matches the expressions for all other lanes.
585   unsigned FixedVF = VF.getKnownMinValue();
586   const SCEV *FirstLaneExpr =
587       SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
588   if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
589     return false;
590 
591   // Make sure the expressions for lanes FixedVF-1..1 match the expression for
592   // lane 0. We check lanes in reverse order for compile-time, as frequently
593   // checking the last lane is sufficient to rule out uniformity.
594   return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
595     const SCEV *IthLaneExpr =
596         SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
597     return FirstLaneExpr == IthLaneExpr;
598   });
599 }
600 
isUniformMemOp(Instruction & I,ElementCount VF) const601 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
602                                                ElementCount VF) const {
603   Value *Ptr = getLoadStorePointerOperand(&I);
604   if (!Ptr)
605     return false;
606   // Note: There's nothing inherent which prevents predicated loads and
607   // stores from being uniform.  The current lowering simply doesn't handle
608   // it; in particular, the cost model distinguishes scatter/gather from
609   // scalar w/predication, and we currently rely on the scalar path.
610   return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
611 }
612 
canVectorizeOuterLoop()613 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
614   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
615   // Store the result and return it at the end instead of exiting early, in case
616   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
617   bool Result = true;
618   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
619 
620   for (BasicBlock *BB : TheLoop->blocks()) {
621     // Check whether the BB terminator is a BranchInst. Any other terminator is
622     // not supported yet.
623     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
624     if (!Br) {
625       reportVectorizationFailure("Unsupported basic block terminator",
626           "loop control flow is not understood by vectorizer",
627           "CFGNotUnderstood", ORE, TheLoop);
628       if (DoExtraAnalysis)
629         Result = false;
630       else
631         return false;
632     }
633 
634     // Check whether the BranchInst is a supported one. Only unconditional
635     // branches, conditional branches with an outer loop invariant condition or
636     // backedges are supported.
637     // FIXME: We skip these checks when VPlan predication is enabled as we
638     // want to allow divergent branches. This whole check will be removed
639     // once VPlan predication is on by default.
640     if (Br && Br->isConditional() &&
641         !TheLoop->isLoopInvariant(Br->getCondition()) &&
642         !LI->isLoopHeader(Br->getSuccessor(0)) &&
643         !LI->isLoopHeader(Br->getSuccessor(1))) {
644       reportVectorizationFailure("Unsupported conditional branch",
645           "loop control flow is not understood by vectorizer",
646           "CFGNotUnderstood", ORE, TheLoop);
647       if (DoExtraAnalysis)
648         Result = false;
649       else
650         return false;
651     }
652   }
653 
654   // Check whether inner loops are uniform. At this point, we only support
655   // simple outer loops scenarios with uniform nested loops.
656   if (!isUniformLoopNest(TheLoop /*loop nest*/,
657                          TheLoop /*context outer loop*/)) {
658     reportVectorizationFailure("Outer loop contains divergent loops",
659         "loop control flow is not understood by vectorizer",
660         "CFGNotUnderstood", ORE, TheLoop);
661     if (DoExtraAnalysis)
662       Result = false;
663     else
664       return false;
665   }
666 
667   // Check whether we are able to set up outer loop induction.
668   if (!setupOuterLoopInductions()) {
669     reportVectorizationFailure("Unsupported outer loop Phi(s)",
670                                "Unsupported outer loop Phi(s)",
671                                "UnsupportedPhi", ORE, TheLoop);
672     if (DoExtraAnalysis)
673       Result = false;
674     else
675       return false;
676   }
677 
678   return Result;
679 }
680 
addInductionPhi(PHINode * Phi,const InductionDescriptor & ID,SmallPtrSetImpl<Value * > & AllowedExit)681 void LoopVectorizationLegality::addInductionPhi(
682     PHINode *Phi, const InductionDescriptor &ID,
683     SmallPtrSetImpl<Value *> &AllowedExit) {
684   Inductions[Phi] = ID;
685 
686   // In case this induction also comes with casts that we know we can ignore
687   // in the vectorized loop body, record them here. All casts could be recorded
688   // here for ignoring, but suffices to record only the first (as it is the
689   // only one that may bw used outside the cast sequence).
690   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
691   if (!Casts.empty())
692     InductionCastsToIgnore.insert(*Casts.begin());
693 
694   Type *PhiTy = Phi->getType();
695   const DataLayout &DL = Phi->getDataLayout();
696 
697   // Get the widest type.
698   if (!PhiTy->isFloatingPointTy()) {
699     if (!WidestIndTy)
700       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
701     else
702       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
703   }
704 
705   // Int inductions are special because we only allow one IV.
706   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
707       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
708       isa<Constant>(ID.getStartValue()) &&
709       cast<Constant>(ID.getStartValue())->isNullValue()) {
710 
711     // Use the phi node with the widest type as induction. Use the last
712     // one if there are multiple (no good reason for doing this other
713     // than it is expedient). We've checked that it begins at zero and
714     // steps by one, so this is a canonical induction variable.
715     if (!PrimaryInduction || PhiTy == WidestIndTy)
716       PrimaryInduction = Phi;
717   }
718 
719   // Both the PHI node itself, and the "post-increment" value feeding
720   // back into the PHI node may have external users.
721   // We can allow those uses, except if the SCEVs we have for them rely
722   // on predicates that only hold within the loop, since allowing the exit
723   // currently means re-using this SCEV outside the loop (see PR33706 for more
724   // details).
725   if (PSE.getPredicate().isAlwaysTrue()) {
726     AllowedExit.insert(Phi);
727     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
728   }
729 
730   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
731 }
732 
setupOuterLoopInductions()733 bool LoopVectorizationLegality::setupOuterLoopInductions() {
734   BasicBlock *Header = TheLoop->getHeader();
735 
736   // Returns true if a given Phi is a supported induction.
737   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
738     InductionDescriptor ID;
739     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
740         ID.getKind() == InductionDescriptor::IK_IntInduction) {
741       addInductionPhi(&Phi, ID, AllowedExit);
742       return true;
743     } else {
744       // Bail out for any Phi in the outer loop header that is not a supported
745       // induction.
746       LLVM_DEBUG(
747           dbgs()
748           << "LV: Found unsupported PHI for outer loop vectorization.\n");
749       return false;
750     }
751   };
752 
753   if (llvm::all_of(Header->phis(), isSupportedPhi))
754     return true;
755   else
756     return false;
757 }
758 
759 /// Checks if a function is scalarizable according to the TLI, in
760 /// the sense that it should be vectorized and then expanded in
761 /// multiple scalar calls. This is represented in the
762 /// TLI via mappings that do not specify a vector name, as in the
763 /// following example:
764 ///
765 ///    const VecDesc VecIntrinsics[] = {
766 ///      {"llvm.phx.abs.i32", "", 4}
767 ///    };
isTLIScalarize(const TargetLibraryInfo & TLI,const CallInst & CI)768 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
769   const StringRef ScalarName = CI.getCalledFunction()->getName();
770   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
771   // Check that all known VFs are not associated to a vector
772   // function, i.e. the vector name is emty.
773   if (Scalarize) {
774     ElementCount WidestFixedVF, WidestScalableVF;
775     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
776     for (ElementCount VF = ElementCount::getFixed(2);
777          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
778       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
779     for (ElementCount VF = ElementCount::getScalable(1);
780          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
781       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
782     assert((WidestScalableVF.isZero() || !Scalarize) &&
783            "Caller may decide to scalarize a variant using a scalable VF");
784   }
785   return Scalarize;
786 }
787 
canVectorizeInstrs()788 bool LoopVectorizationLegality::canVectorizeInstrs() {
789   BasicBlock *Header = TheLoop->getHeader();
790 
791   // For each block in the loop.
792   for (BasicBlock *BB : TheLoop->blocks()) {
793     // Scan the instructions in the block and look for hazards.
794     for (Instruction &I : *BB) {
795       if (auto *Phi = dyn_cast<PHINode>(&I)) {
796         Type *PhiTy = Phi->getType();
797         // Check that this PHI type is allowed.
798         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
799             !PhiTy->isPointerTy()) {
800           reportVectorizationFailure("Found a non-int non-pointer PHI",
801                                      "loop control flow is not understood by vectorizer",
802                                      "CFGNotUnderstood", ORE, TheLoop);
803           return false;
804         }
805 
806         // If this PHINode is not in the header block, then we know that we
807         // can convert it to select during if-conversion. No need to check if
808         // the PHIs in this block are induction or reduction variables.
809         if (BB != Header) {
810           // Non-header phi nodes that have outside uses can be vectorized. Add
811           // them to the list of allowed exits.
812           // Unsafe cyclic dependencies with header phis are identified during
813           // legalization for reduction, induction and fixed order
814           // recurrences.
815           AllowedExit.insert(&I);
816           continue;
817         }
818 
819         // We only allow if-converted PHIs with exactly two incoming values.
820         if (Phi->getNumIncomingValues() != 2) {
821           reportVectorizationFailure("Found an invalid PHI",
822               "loop control flow is not understood by vectorizer",
823               "CFGNotUnderstood", ORE, TheLoop, Phi);
824           return false;
825         }
826 
827         RecurrenceDescriptor RedDes;
828         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
829                                                  DT, PSE.getSE())) {
830           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
831           AllowedExit.insert(RedDes.getLoopExitInstr());
832           Reductions[Phi] = RedDes;
833           continue;
834         }
835 
836         // We prevent matching non-constant strided pointer IVS to preserve
837         // historical vectorizer behavior after a generalization of the
838         // IVDescriptor code.  The intent is to remove this check, but we
839         // have to fix issues around code quality for such loops first.
840         auto isDisallowedStridedPointerInduction =
841           [](const InductionDescriptor &ID) {
842           if (AllowStridedPointerIVs)
843             return false;
844           return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
845             ID.getConstIntStepValue() == nullptr;
846         };
847 
848         // TODO: Instead of recording the AllowedExit, it would be good to
849         // record the complementary set: NotAllowedExit. These include (but may
850         // not be limited to):
851         // 1. Reduction phis as they represent the one-before-last value, which
852         // is not available when vectorized
853         // 2. Induction phis and increment when SCEV predicates cannot be used
854         // outside the loop - see addInductionPhi
855         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
856         // outside the loop - see call to hasOutsideLoopUser in the non-phi
857         // handling below
858         // 4. FixedOrderRecurrence phis that can possibly be handled by
859         // extraction.
860         // By recording these, we can then reason about ways to vectorize each
861         // of these NotAllowedExit.
862         InductionDescriptor ID;
863         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
864             !isDisallowedStridedPointerInduction(ID)) {
865           addInductionPhi(Phi, ID, AllowedExit);
866           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
867           continue;
868         }
869 
870         if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
871           AllowedExit.insert(Phi);
872           FixedOrderRecurrences.insert(Phi);
873           continue;
874         }
875 
876         // As a last resort, coerce the PHI to a AddRec expression
877         // and re-try classifying it a an induction PHI.
878         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
879             !isDisallowedStridedPointerInduction(ID)) {
880           addInductionPhi(Phi, ID, AllowedExit);
881           continue;
882         }
883 
884         reportVectorizationFailure("Found an unidentified PHI",
885             "value that could not be identified as "
886             "reduction is used outside the loop",
887             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
888         return false;
889       } // end of PHI handling
890 
891       // We handle calls that:
892       //   * Are debug info intrinsics.
893       //   * Have a mapping to an IR intrinsic.
894       //   * Have a vector version available.
895       auto *CI = dyn_cast<CallInst>(&I);
896 
897       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
898           !isa<DbgInfoIntrinsic>(CI) &&
899           !(CI->getCalledFunction() && TLI &&
900             (!VFDatabase::getMappings(*CI).empty() ||
901              isTLIScalarize(*TLI, *CI)))) {
902         // If the call is a recognized math libary call, it is likely that
903         // we can vectorize it given loosened floating-point constraints.
904         LibFunc Func;
905         bool IsMathLibCall =
906             TLI && CI->getCalledFunction() &&
907             CI->getType()->isFloatingPointTy() &&
908             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
909             TLI->hasOptimizedCodeGen(Func);
910 
911         if (IsMathLibCall) {
912           // TODO: Ideally, we should not use clang-specific language here,
913           // but it's hard to provide meaningful yet generic advice.
914           // Also, should this be guarded by allowExtraAnalysis() and/or be part
915           // of the returned info from isFunctionVectorizable()?
916           reportVectorizationFailure(
917               "Found a non-intrinsic callsite",
918               "library call cannot be vectorized. "
919               "Try compiling with -fno-math-errno, -ffast-math, "
920               "or similar flags",
921               "CantVectorizeLibcall", ORE, TheLoop, CI);
922         } else {
923           reportVectorizationFailure("Found a non-intrinsic callsite",
924                                      "call instruction cannot be vectorized",
925                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
926         }
927         return false;
928       }
929 
930       // Some intrinsics have scalar arguments and should be same in order for
931       // them to be vectorized (i.e. loop invariant).
932       if (CI) {
933         auto *SE = PSE.getSE();
934         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
935         for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
936           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
937             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
938               reportVectorizationFailure("Found unvectorizable intrinsic",
939                   "intrinsic instruction cannot be vectorized",
940                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
941               return false;
942             }
943           }
944       }
945 
946       // If we found a vectorized variant of a function, note that so LV can
947       // make better decisions about maximum VF.
948       if (CI && !VFDatabase::getMappings(*CI).empty())
949         VecCallVariantsFound = true;
950 
951       // Check that the instruction return type is vectorizable.
952       // Also, we can't vectorize extractelement instructions.
953       if ((!VectorType::isValidElementType(I.getType()) &&
954            !I.getType()->isVoidTy()) ||
955           isa<ExtractElementInst>(I)) {
956         reportVectorizationFailure("Found unvectorizable type",
957             "instruction return type cannot be vectorized",
958             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
959         return false;
960       }
961 
962       // Check that the stored type is vectorizable.
963       if (auto *ST = dyn_cast<StoreInst>(&I)) {
964         Type *T = ST->getValueOperand()->getType();
965         if (!VectorType::isValidElementType(T)) {
966           reportVectorizationFailure("Store instruction cannot be vectorized",
967                                      "store instruction cannot be vectorized",
968                                      "CantVectorizeStore", ORE, TheLoop, ST);
969           return false;
970         }
971 
972         // For nontemporal stores, check that a nontemporal vector version is
973         // supported on the target.
974         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
975           // Arbitrarily try a vector of 2 elements.
976           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
977           assert(VecTy && "did not find vectorized version of stored type");
978           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
979             reportVectorizationFailure(
980                 "nontemporal store instruction cannot be vectorized",
981                 "nontemporal store instruction cannot be vectorized",
982                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
983             return false;
984           }
985         }
986 
987       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
988         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
989           // For nontemporal loads, check that a nontemporal vector version is
990           // supported on the target (arbitrarily try a vector of 2 elements).
991           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
992           assert(VecTy && "did not find vectorized version of load type");
993           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
994             reportVectorizationFailure(
995                 "nontemporal load instruction cannot be vectorized",
996                 "nontemporal load instruction cannot be vectorized",
997                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
998             return false;
999           }
1000         }
1001 
1002         // FP instructions can allow unsafe algebra, thus vectorizable by
1003         // non-IEEE-754 compliant SIMD units.
1004         // This applies to floating-point math operations and calls, not memory
1005         // operations, shuffles, or casts, as they don't change precision or
1006         // semantics.
1007       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1008                  !I.isFast()) {
1009         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1010         Hints->setPotentiallyUnsafe();
1011       }
1012 
1013       // Reduction instructions are allowed to have exit users.
1014       // All other instructions must not have external users.
1015       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1016         // We can safely vectorize loops where instructions within the loop are
1017         // used outside the loop only if the SCEV predicates within the loop is
1018         // same as outside the loop. Allowing the exit means reusing the SCEV
1019         // outside the loop.
1020         if (PSE.getPredicate().isAlwaysTrue()) {
1021           AllowedExit.insert(&I);
1022           continue;
1023         }
1024         reportVectorizationFailure("Value cannot be used outside the loop",
1025                                    "value cannot be used outside the loop",
1026                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1027         return false;
1028       }
1029     } // next instr.
1030   }
1031 
1032   if (!PrimaryInduction) {
1033     if (Inductions.empty()) {
1034       reportVectorizationFailure("Did not find one integer induction var",
1035           "loop induction variable could not be identified",
1036           "NoInductionVariable", ORE, TheLoop);
1037       return false;
1038     } else if (!WidestIndTy) {
1039       reportVectorizationFailure("Did not find one integer induction var",
1040           "integer loop induction variable could not be identified",
1041           "NoIntegerInductionVariable", ORE, TheLoop);
1042       return false;
1043     } else {
1044       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1045     }
1046   }
1047 
1048   // Now we know the widest induction type, check if our found induction
1049   // is the same size. If it's not, unset it here and InnerLoopVectorizer
1050   // will create another.
1051   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1052     PrimaryInduction = nullptr;
1053 
1054   return true;
1055 }
1056 
canVectorizeMemory()1057 bool LoopVectorizationLegality::canVectorizeMemory() {
1058   LAI = &LAIs.getInfo(*TheLoop);
1059   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1060   if (LAR) {
1061     ORE->emit([&]() {
1062       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1063                                         "loop not vectorized: ", *LAR);
1064     });
1065   }
1066 
1067   if (!LAI->canVectorizeMemory())
1068     return false;
1069 
1070   if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
1071     reportVectorizationFailure("We don't allow storing to uniform addresses",
1072                                "write to a loop invariant address could not "
1073                                "be vectorized",
1074                                "CantVectorizeStoreToLoopInvariantAddress", ORE,
1075                                TheLoop);
1076     return false;
1077   }
1078 
1079   // We can vectorize stores to invariant address when final reduction value is
1080   // guaranteed to be stored at the end of the loop. Also, if decision to
1081   // vectorize loop is made, runtime checks are added so as to make sure that
1082   // invariant address won't alias with any other objects.
1083   if (!LAI->getStoresToInvariantAddresses().empty()) {
1084     // For each invariant address, check if last stored value is unconditional
1085     // and the address is not calculated inside the loop.
1086     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1087       if (!isInvariantStoreOfReduction(SI))
1088         continue;
1089 
1090       if (blockNeedsPredication(SI->getParent())) {
1091         reportVectorizationFailure(
1092             "We don't allow storing to uniform addresses",
1093             "write of conditional recurring variant value to a loop "
1094             "invariant address could not be vectorized",
1095             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1096         return false;
1097       }
1098 
1099       // Invariant address should be defined outside of loop. LICM pass usually
1100       // makes sure it happens, but in rare cases it does not, we do not want
1101       // to overcomplicate vectorization to support this case.
1102       if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1103         if (TheLoop->contains(Ptr)) {
1104           reportVectorizationFailure(
1105               "Invariant address is calculated inside the loop",
1106               "write to a loop invariant address could not "
1107               "be vectorized",
1108               "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1109           return false;
1110         }
1111       }
1112     }
1113 
1114     if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
1115       // For each invariant address, check its last stored value is the result
1116       // of one of our reductions.
1117       //
1118       // We do not check if dependence with loads exists because that is already
1119       // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1120       ScalarEvolution *SE = PSE.getSE();
1121       SmallVector<StoreInst *, 4> UnhandledStores;
1122       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1123         if (isInvariantStoreOfReduction(SI)) {
1124           // Earlier stores to this address are effectively deadcode.
1125           // With opaque pointers it is possible for one pointer to be used with
1126           // different sizes of stored values:
1127           //    store i32 0, ptr %x
1128           //    store i8 0, ptr %x
1129           // The latest store doesn't complitely overwrite the first one in the
1130           // example. That is why we have to make sure that types of stored
1131           // values are same.
1132           // TODO: Check that bitwidth of unhandled store is smaller then the
1133           // one that overwrites it and add a test.
1134           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1135             return storeToSameAddress(SE, SI, I) &&
1136                    I->getValueOperand()->getType() ==
1137                        SI->getValueOperand()->getType();
1138           });
1139           continue;
1140         }
1141         UnhandledStores.push_back(SI);
1142       }
1143 
1144       bool IsOK = UnhandledStores.empty();
1145       // TODO: we should also validate against InvariantMemSets.
1146       if (!IsOK) {
1147         reportVectorizationFailure(
1148             "We don't allow storing to uniform addresses",
1149             "write to a loop invariant address could not "
1150             "be vectorized",
1151             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1152         return false;
1153       }
1154     }
1155   }
1156 
1157   PSE.addPredicate(LAI->getPSE().getPredicate());
1158   return true;
1159 }
1160 
canVectorizeFPMath(bool EnableStrictReductions)1161 bool LoopVectorizationLegality::canVectorizeFPMath(
1162     bool EnableStrictReductions) {
1163 
1164   // First check if there is any ExactFP math or if we allow reassociations
1165   if (!Requirements->getExactFPInst() || Hints->allowReordering())
1166     return true;
1167 
1168   // If the above is false, we have ExactFPMath & do not allow reordering.
1169   // If the EnableStrictReductions flag is set, first check if we have any
1170   // Exact FP induction vars, which we cannot vectorize.
1171   if (!EnableStrictReductions ||
1172       any_of(getInductionVars(), [&](auto &Induction) -> bool {
1173         InductionDescriptor IndDesc = Induction.second;
1174         return IndDesc.getExactFPMathInst();
1175       }))
1176     return false;
1177 
1178   // We can now only vectorize if all reductions with Exact FP math also
1179   // have the isOrdered flag set, which indicates that we can move the
1180   // reduction operations in-loop.
1181   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1182     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1183     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1184   }));
1185 }
1186 
isInvariantStoreOfReduction(StoreInst * SI)1187 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1188   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1189     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1190     return RdxDesc.IntermediateStore == SI;
1191   });
1192 }
1193 
isInvariantAddressOfReduction(Value * V)1194 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1195   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1196     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1197     if (!RdxDesc.IntermediateStore)
1198       return false;
1199 
1200     ScalarEvolution *SE = PSE.getSE();
1201     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1202     return V == InvariantAddress ||
1203            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1204   });
1205 }
1206 
isInductionPhi(const Value * V) const1207 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1208   Value *In0 = const_cast<Value *>(V);
1209   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1210   if (!PN)
1211     return false;
1212 
1213   return Inductions.count(PN);
1214 }
1215 
1216 const InductionDescriptor *
getIntOrFpInductionDescriptor(PHINode * Phi) const1217 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1218   if (!isInductionPhi(Phi))
1219     return nullptr;
1220   auto &ID = getInductionVars().find(Phi)->second;
1221   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1222       ID.getKind() == InductionDescriptor::IK_FpInduction)
1223     return &ID;
1224   return nullptr;
1225 }
1226 
1227 const InductionDescriptor *
getPointerInductionDescriptor(PHINode * Phi) const1228 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1229   if (!isInductionPhi(Phi))
1230     return nullptr;
1231   auto &ID = getInductionVars().find(Phi)->second;
1232   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1233     return &ID;
1234   return nullptr;
1235 }
1236 
isCastedInductionVariable(const Value * V) const1237 bool LoopVectorizationLegality::isCastedInductionVariable(
1238     const Value *V) const {
1239   auto *Inst = dyn_cast<Instruction>(V);
1240   return (Inst && InductionCastsToIgnore.count(Inst));
1241 }
1242 
isInductionVariable(const Value * V) const1243 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1244   return isInductionPhi(V) || isCastedInductionVariable(V);
1245 }
1246 
isFixedOrderRecurrence(const PHINode * Phi) const1247 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1248     const PHINode *Phi) const {
1249   return FixedOrderRecurrences.count(Phi);
1250 }
1251 
blockNeedsPredication(BasicBlock * BB) const1252 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1253   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1254 }
1255 
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs,SmallPtrSetImpl<const Instruction * > & MaskedOp) const1256 bool LoopVectorizationLegality::blockCanBePredicated(
1257     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1258     SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1259   for (Instruction &I : *BB) {
1260     // We can predicate blocks with calls to assume, as long as we drop them in
1261     // case we flatten the CFG via predication.
1262     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1263       MaskedOp.insert(&I);
1264       continue;
1265     }
1266 
1267     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1268     // TODO: there might be cases that it should block the vectorization. Let's
1269     // ignore those for now.
1270     if (isa<NoAliasScopeDeclInst>(&I))
1271       continue;
1272 
1273     // We can allow masked calls if there's at least one vector variant, even
1274     // if we end up scalarizing due to the cost model calculations.
1275     // TODO: Allow other calls if they have appropriate attributes... readonly
1276     // and argmemonly?
1277     if (CallInst *CI = dyn_cast<CallInst>(&I))
1278       if (VFDatabase::hasMaskedVariant(*CI)) {
1279         MaskedOp.insert(CI);
1280         continue;
1281       }
1282 
1283     // Loads are handled via masking (or speculated if safe to do so.)
1284     if (auto *LI = dyn_cast<LoadInst>(&I)) {
1285       if (!SafePtrs.count(LI->getPointerOperand()))
1286         MaskedOp.insert(LI);
1287       continue;
1288     }
1289 
1290     // Predicated store requires some form of masking:
1291     // 1) masked store HW instruction,
1292     // 2) emulation via load-blend-store (only if safe and legal to do so,
1293     //    be aware on the race conditions), or
1294     // 3) element-by-element predicate check and scalar store.
1295     if (auto *SI = dyn_cast<StoreInst>(&I)) {
1296       MaskedOp.insert(SI);
1297       continue;
1298     }
1299 
1300     if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1301       return false;
1302   }
1303 
1304   return true;
1305 }
1306 
canVectorizeWithIfConvert()1307 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1308   if (!EnableIfConversion) {
1309     reportVectorizationFailure("If-conversion is disabled",
1310                                "if-conversion is disabled",
1311                                "IfConversionDisabled",
1312                                ORE, TheLoop);
1313     return false;
1314   }
1315 
1316   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1317 
1318   // A list of pointers which are known to be dereferenceable within scope of
1319   // the loop body for each iteration of the loop which executes.  That is,
1320   // the memory pointed to can be dereferenced (with the access size implied by
1321   // the value's type) unconditionally within the loop header without
1322   // introducing a new fault.
1323   SmallPtrSet<Value *, 8> SafePointers;
1324 
1325   // Collect safe addresses.
1326   for (BasicBlock *BB : TheLoop->blocks()) {
1327     if (!blockNeedsPredication(BB)) {
1328       for (Instruction &I : *BB)
1329         if (auto *Ptr = getLoadStorePointerOperand(&I))
1330           SafePointers.insert(Ptr);
1331       continue;
1332     }
1333 
1334     // For a block which requires predication, a address may be safe to access
1335     // in the loop w/o predication if we can prove dereferenceability facts
1336     // sufficient to ensure it'll never fault within the loop. For the moment,
1337     // we restrict this to loads; stores are more complicated due to
1338     // concurrency restrictions.
1339     ScalarEvolution &SE = *PSE.getSE();
1340     for (Instruction &I : *BB) {
1341       LoadInst *LI = dyn_cast<LoadInst>(&I);
1342       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1343           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
1344         SafePointers.insert(LI->getPointerOperand());
1345     }
1346   }
1347 
1348   // Collect the blocks that need predication.
1349   for (BasicBlock *BB : TheLoop->blocks()) {
1350     // We don't support switch statements inside loops.
1351     if (!isa<BranchInst>(BB->getTerminator())) {
1352       reportVectorizationFailure("Loop contains a switch statement",
1353                                  "loop contains a switch statement",
1354                                  "LoopContainsSwitch", ORE, TheLoop,
1355                                  BB->getTerminator());
1356       return false;
1357     }
1358 
1359     // We must be able to predicate all blocks that need to be predicated.
1360     if (blockNeedsPredication(BB) &&
1361         !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1362       reportVectorizationFailure(
1363           "Control flow cannot be substituted for a select",
1364           "control flow cannot be substituted for a select", "NoCFGForSelect",
1365           ORE, TheLoop, BB->getTerminator());
1366       return false;
1367     }
1368   }
1369 
1370   // We can if-convert this loop.
1371   return true;
1372 }
1373 
1374 // Helper function to canVectorizeLoopNestCFG.
canVectorizeLoopCFG(Loop * Lp,bool UseVPlanNativePath)1375 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1376                                                     bool UseVPlanNativePath) {
1377   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1378          "VPlan-native path is not enabled.");
1379 
1380   // TODO: ORE should be improved to show more accurate information when an
1381   // outer loop can't be vectorized because a nested loop is not understood or
1382   // legal. Something like: "outer_loop_location: loop not vectorized:
1383   // (inner_loop_location) loop control flow is not understood by vectorizer".
1384 
1385   // Store the result and return it at the end instead of exiting early, in case
1386   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1387   bool Result = true;
1388   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1389 
1390   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1391   // be canonicalized.
1392   if (!Lp->getLoopPreheader()) {
1393     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1394         "loop control flow is not understood by vectorizer",
1395         "CFGNotUnderstood", ORE, TheLoop);
1396     if (DoExtraAnalysis)
1397       Result = false;
1398     else
1399       return false;
1400   }
1401 
1402   // We must have a single backedge.
1403   if (Lp->getNumBackEdges() != 1) {
1404     reportVectorizationFailure("The loop must have a single backedge",
1405         "loop control flow is not understood by vectorizer",
1406         "CFGNotUnderstood", ORE, TheLoop);
1407     if (DoExtraAnalysis)
1408       Result = false;
1409     else
1410       return false;
1411   }
1412 
1413   return Result;
1414 }
1415 
canVectorizeLoopNestCFG(Loop * Lp,bool UseVPlanNativePath)1416 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1417     Loop *Lp, bool UseVPlanNativePath) {
1418   // Store the result and return it at the end instead of exiting early, in case
1419   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1420   bool Result = true;
1421   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1422   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1423     if (DoExtraAnalysis)
1424       Result = false;
1425     else
1426       return false;
1427   }
1428 
1429   // Recursively check whether the loop control flow of nested loops is
1430   // understood.
1431   for (Loop *SubLp : *Lp)
1432     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1433       if (DoExtraAnalysis)
1434         Result = false;
1435       else
1436         return false;
1437     }
1438 
1439   return Result;
1440 }
1441 
canVectorize(bool UseVPlanNativePath)1442 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1443   // Store the result and return it at the end instead of exiting early, in case
1444   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1445   bool Result = true;
1446 
1447   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1448   // Check whether the loop-related control flow in the loop nest is expected by
1449   // vectorizer.
1450   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1451     if (DoExtraAnalysis)
1452       Result = false;
1453     else
1454       return false;
1455   }
1456 
1457   // We need to have a loop header.
1458   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1459                     << '\n');
1460 
1461   // Specific checks for outer loops. We skip the remaining legal checks at this
1462   // point because they don't support outer loops.
1463   if (!TheLoop->isInnermost()) {
1464     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1465 
1466     if (!canVectorizeOuterLoop()) {
1467       reportVectorizationFailure("Unsupported outer loop",
1468                                  "unsupported outer loop",
1469                                  "UnsupportedOuterLoop",
1470                                  ORE, TheLoop);
1471       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1472       // outer loops.
1473       return false;
1474     }
1475 
1476     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1477     return Result;
1478   }
1479 
1480   assert(TheLoop->isInnermost() && "Inner loop expected.");
1481   // Check if we can if-convert non-single-bb loops.
1482   unsigned NumBlocks = TheLoop->getNumBlocks();
1483   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1484     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1485     if (DoExtraAnalysis)
1486       Result = false;
1487     else
1488       return false;
1489   }
1490 
1491   // Check if we can vectorize the instructions and CFG in this loop.
1492   if (!canVectorizeInstrs()) {
1493     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1494     if (DoExtraAnalysis)
1495       Result = false;
1496     else
1497       return false;
1498   }
1499 
1500   // Go over each instruction and look at memory deps.
1501   if (!canVectorizeMemory()) {
1502     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1503     if (DoExtraAnalysis)
1504       Result = false;
1505     else
1506       return false;
1507   }
1508 
1509   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
1510     reportVectorizationFailure("could not determine number of loop iterations",
1511                                "could not determine number of loop iterations",
1512                                "CantComputeNumberOfIterations", ORE, TheLoop);
1513     if (DoExtraAnalysis)
1514       Result = false;
1515     else
1516       return false;
1517   }
1518 
1519   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1520                     << (LAI->getRuntimePointerChecking()->Need
1521                             ? " (with a runtime bound check)"
1522                             : "")
1523                     << "!\n");
1524 
1525   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1526   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1527     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1528 
1529   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1530     reportVectorizationFailure("Too many SCEV checks needed",
1531         "Too many SCEV assumptions need to be made and checked at runtime",
1532         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1533     if (DoExtraAnalysis)
1534       Result = false;
1535     else
1536       return false;
1537   }
1538 
1539   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1540   // we can vectorize, and at this point we don't have any other mem analysis
1541   // which may limit our maximum vectorization factor, so just return true with
1542   // no restrictions.
1543   return Result;
1544 }
1545 
canFoldTailByMasking() const1546 bool LoopVectorizationLegality::canFoldTailByMasking() const {
1547 
1548   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1549 
1550   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1551 
1552   for (const auto &Reduction : getReductionVars())
1553     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1554 
1555   // TODO: handle non-reduction outside users when tail is folded by masking.
1556   for (auto *AE : AllowedExit) {
1557     // Check that all users of allowed exit values are inside the loop or
1558     // are the live-out of a reduction.
1559     if (ReductionLiveOuts.count(AE))
1560       continue;
1561     for (User *U : AE->users()) {
1562       Instruction *UI = cast<Instruction>(U);
1563       if (TheLoop->contains(UI))
1564         continue;
1565       LLVM_DEBUG(
1566           dbgs()
1567           << "LV: Cannot fold tail by masking, loop has an outside user for "
1568           << *UI << "\n");
1569       return false;
1570     }
1571   }
1572 
1573   for (const auto &Entry : getInductionVars()) {
1574     PHINode *OrigPhi = Entry.first;
1575     for (User *U : OrigPhi->users()) {
1576       auto *UI = cast<Instruction>(U);
1577       if (!TheLoop->contains(UI)) {
1578         LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
1579                              "outside user for "
1580                           << *UI << "\n");
1581         return false;
1582       }
1583     }
1584   }
1585 
1586   // The list of pointers that we can safely read and write to remains empty.
1587   SmallPtrSet<Value *, 8> SafePointers;
1588 
1589   // Check all blocks for predication, including those that ordinarily do not
1590   // need predication such as the header block.
1591   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1592   for (BasicBlock *BB : TheLoop->blocks()) {
1593     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
1594       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
1595       return false;
1596     }
1597   }
1598 
1599   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1600 
1601   return true;
1602 }
1603 
prepareToFoldTailByMasking()1604 void LoopVectorizationLegality::prepareToFoldTailByMasking() {
1605   // The list of pointers that we can safely read and write to remains empty.
1606   SmallPtrSet<Value *, 8> SafePointers;
1607 
1608   // Mark all blocks for predication, including those that ordinarily do not
1609   // need predication such as the header block.
1610   for (BasicBlock *BB : TheLoop->blocks()) {
1611     [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
1612     assert(R && "Must be able to predicate block when tail-folding.");
1613   }
1614 }
1615 
1616 } // namespace llvm
1617