1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 START, LAST, static inline, raid1_rb);
56
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 struct serial_info *si, int idx)
59 {
60 unsigned long flags;
61 int ret = 0;
62 sector_t lo = r1_bio->sector;
63 sector_t hi = lo + r1_bio->sectors;
64 struct serial_in_rdev *serial = &rdev->serial[idx];
65
66 spin_lock_irqsave(&serial->serial_lock, flags);
67 /* collision happened */
68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 ret = -EBUSY;
70 else {
71 si->start = lo;
72 si->last = hi;
73 raid1_rb_insert(si, &serial->serial_rb);
74 }
75 spin_unlock_irqrestore(&serial->serial_lock, flags);
76
77 return ret;
78 }
79
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82 struct mddev *mddev = rdev->mddev;
83 struct serial_info *si;
84 int idx = sector_to_idx(r1_bio->sector);
85 struct serial_in_rdev *serial = &rdev->serial[idx];
86
87 if (WARN_ON(!mddev->serial_info_pool))
88 return;
89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 wait_event(serial->serial_io_wait,
91 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96 struct serial_info *si;
97 unsigned long flags;
98 int found = 0;
99 struct mddev *mddev = rdev->mddev;
100 int idx = sector_to_idx(lo);
101 struct serial_in_rdev *serial = &rdev->serial[idx];
102
103 spin_lock_irqsave(&serial->serial_lock, flags);
104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 si; si = raid1_rb_iter_next(si, lo, hi)) {
106 if (si->start == lo && si->last == hi) {
107 raid1_rb_remove(si, &serial->serial_rb);
108 mempool_free(si, mddev->serial_info_pool);
109 found = 1;
110 break;
111 }
112 }
113 if (!found)
114 WARN(1, "The write IO is not recorded for serialization\n");
115 spin_unlock_irqrestore(&serial->serial_lock, flags);
116 wake_up(&serial->serial_io_wait);
117 }
118
119 /*
120 * for resync bio, r1bio pointer can be retrieved from the per-bio
121 * 'struct resync_pages'.
122 */
get_resync_r1bio(struct bio * bio)123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125 return get_resync_pages(bio)->raid_bio;
126 }
127
r1bio_pool_alloc(gfp_t gfp_flags,void * data)128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130 struct pool_info *pi = data;
131 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132
133 /* allocate a r1bio with room for raid_disks entries in the bios array */
134 return kzalloc(size, gfp_flags);
135 }
136
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143
r1buf_pool_alloc(gfp_t gfp_flags,void * data)144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146 struct pool_info *pi = data;
147 struct r1bio *r1_bio;
148 struct bio *bio;
149 int need_pages;
150 int j;
151 struct resync_pages *rps;
152
153 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 if (!r1_bio)
155 return NULL;
156
157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 gfp_flags);
159 if (!rps)
160 goto out_free_r1bio;
161
162 /*
163 * Allocate bios : 1 for reading, n-1 for writing
164 */
165 for (j = pi->raid_disks ; j-- ; ) {
166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 if (!bio)
168 goto out_free_bio;
169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 r1_bio->bios[j] = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them to
174 * the first bio.
175 * If this is a user-requested check/repair, allocate
176 * RESYNC_PAGES for each bio.
177 */
178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 need_pages = pi->raid_disks;
180 else
181 need_pages = 1;
182 for (j = 0; j < pi->raid_disks; j++) {
183 struct resync_pages *rp = &rps[j];
184
185 bio = r1_bio->bios[j];
186
187 if (j < need_pages) {
188 if (resync_alloc_pages(rp, gfp_flags))
189 goto out_free_pages;
190 } else {
191 memcpy(rp, &rps[0], sizeof(*rp));
192 resync_get_all_pages(rp);
193 }
194
195 rp->raid_bio = r1_bio;
196 bio->bi_private = rp;
197 }
198
199 r1_bio->master_bio = NULL;
200
201 return r1_bio;
202
203 out_free_pages:
204 while (--j >= 0)
205 resync_free_pages(&rps[j]);
206
207 out_free_bio:
208 while (++j < pi->raid_disks) {
209 bio_uninit(r1_bio->bios[j]);
210 kfree(r1_bio->bios[j]);
211 }
212 kfree(rps);
213
214 out_free_r1bio:
215 rbio_pool_free(r1_bio, data);
216 return NULL;
217 }
218
r1buf_pool_free(void * __r1_bio,void * data)219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221 struct pool_info *pi = data;
222 int i;
223 struct r1bio *r1bio = __r1_bio;
224 struct resync_pages *rp = NULL;
225
226 for (i = pi->raid_disks; i--; ) {
227 rp = get_resync_pages(r1bio->bios[i]);
228 resync_free_pages(rp);
229 bio_uninit(r1bio->bios[i]);
230 kfree(r1bio->bios[i]);
231 }
232
233 /* resync pages array stored in the 1st bio's .bi_private */
234 kfree(rp);
235
236 rbio_pool_free(r1bio, data);
237 }
238
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241 int i;
242
243 for (i = 0; i < conf->raid_disks * 2; i++) {
244 struct bio **bio = r1_bio->bios + i;
245 if (!BIO_SPECIAL(*bio))
246 bio_put(*bio);
247 *bio = NULL;
248 }
249 }
250
free_r1bio(struct r1bio * r1_bio)251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253 struct r1conf *conf = r1_bio->mddev->private;
254
255 put_all_bios(conf, r1_bio);
256 mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258
put_buf(struct r1bio * r1_bio)259 static void put_buf(struct r1bio *r1_bio)
260 {
261 struct r1conf *conf = r1_bio->mddev->private;
262 sector_t sect = r1_bio->sector;
263 int i;
264
265 for (i = 0; i < conf->raid_disks * 2; i++) {
266 struct bio *bio = r1_bio->bios[i];
267 if (bio->bi_end_io)
268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 }
270
271 mempool_free(r1_bio, &conf->r1buf_pool);
272
273 lower_barrier(conf, sect);
274 }
275
reschedule_retry(struct r1bio * r1_bio)276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278 unsigned long flags;
279 struct mddev *mddev = r1_bio->mddev;
280 struct r1conf *conf = mddev->private;
281 int idx;
282
283 idx = sector_to_idx(r1_bio->sector);
284 spin_lock_irqsave(&conf->device_lock, flags);
285 list_add(&r1_bio->retry_list, &conf->retry_list);
286 atomic_inc(&conf->nr_queued[idx]);
287 spin_unlock_irqrestore(&conf->device_lock, flags);
288
289 wake_up(&conf->wait_barrier);
290 md_wakeup_thread(mddev->thread);
291 }
292
293 /*
294 * raid_end_bio_io() is called when we have finished servicing a mirrored
295 * operation and are ready to return a success/failure code to the buffer
296 * cache layer.
297 */
call_bio_endio(struct r1bio * r1_bio)298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300 struct bio *bio = r1_bio->master_bio;
301
302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 bio->bi_status = BLK_STS_IOERR;
304
305 bio_endio(bio);
306 }
307
raid_end_bio_io(struct r1bio * r1_bio)308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312 sector_t sector = r1_bio->sector;
313
314 /* if nobody has done the final endio yet, do it now */
315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 (unsigned long long) bio->bi_iter.bi_sector,
319 (unsigned long long) bio_end_sector(bio) - 1);
320
321 call_bio_endio(r1_bio);
322 }
323
324 free_r1bio(r1_bio);
325 /*
326 * Wake up any possible resync thread that waits for the device
327 * to go idle. All I/Os, even write-behind writes, are done.
328 */
329 allow_barrier(conf, sector);
330 }
331
332 /*
333 * Update disk head position estimator based on IRQ completion info.
334 */
update_head_pos(int disk,struct r1bio * r1_bio)335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337 struct r1conf *conf = r1_bio->mddev->private;
338
339 conf->mirrors[disk].head_position =
340 r1_bio->sector + (r1_bio->sectors);
341 }
342
343 /*
344 * Find the disk number which triggered given bio
345 */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348 int mirror;
349 struct r1conf *conf = r1_bio->mddev->private;
350 int raid_disks = conf->raid_disks;
351
352 for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 if (r1_bio->bios[mirror] == bio)
354 break;
355
356 BUG_ON(mirror == raid_disks * 2);
357 update_head_pos(mirror, r1_bio);
358
359 return mirror;
360 }
361
raid1_end_read_request(struct bio * bio)362 static void raid1_end_read_request(struct bio *bio)
363 {
364 int uptodate = !bio->bi_status;
365 struct r1bio *r1_bio = bio->bi_private;
366 struct r1conf *conf = r1_bio->mddev->private;
367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368
369 /*
370 * this branch is our 'one mirror IO has finished' event handler:
371 */
372 update_head_pos(r1_bio->read_disk, r1_bio);
373
374 if (uptodate)
375 set_bit(R1BIO_Uptodate, &r1_bio->state);
376 else if (test_bit(FailFast, &rdev->flags) &&
377 test_bit(R1BIO_FailFast, &r1_bio->state))
378 /* This was a fail-fast read so we definitely
379 * want to retry */
380 ;
381 else {
382 /* If all other devices have failed, we want to return
383 * the error upwards rather than fail the last device.
384 * Here we redefine "uptodate" to mean "Don't want to retry"
385 */
386 unsigned long flags;
387 spin_lock_irqsave(&conf->device_lock, flags);
388 if (r1_bio->mddev->degraded == conf->raid_disks ||
389 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 test_bit(In_sync, &rdev->flags)))
391 uptodate = 1;
392 spin_unlock_irqrestore(&conf->device_lock, flags);
393 }
394
395 if (uptodate) {
396 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(rdev, conf->mddev);
398 } else {
399 /*
400 * oops, read error:
401 */
402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 rdev->bdev,
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
409 }
410 }
411
close_write(struct r1bio * r1_bio)412 static void close_write(struct r1bio *r1_bio)
413 {
414 struct mddev *mddev = r1_bio->mddev;
415
416 /* it really is the end of this request */
417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 bio_free_pages(r1_bio->behind_master_bio);
419 bio_put(r1_bio->behind_master_bio);
420 r1_bio->behind_master_bio = NULL;
421 }
422
423 /* clear the bitmap if all writes complete successfully */
424 mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors,
425 !test_bit(R1BIO_Degraded, &r1_bio->state),
426 test_bit(R1BIO_BehindIO, &r1_bio->state));
427 md_write_end(mddev);
428 }
429
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 if (!atomic_dec_and_test(&r1_bio->remaining))
433 return;
434
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
443 }
444 }
445
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 struct r1bio *r1_bio = bio->bi_private;
449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 struct r1conf *conf = r1_bio->mddev->private;
451 struct bio *to_put = NULL;
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 bool discard_error;
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
457
458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459
460 /*
461 * 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_status && !discard_error) {
464 set_bit(WriteErrorSeen, &rdev->flags);
465 if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 set_bit(MD_RECOVERY_NEEDED, &
467 conf->mddev->recovery);
468
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(r1_bio->mddev, rdev);
474 }
475
476 /*
477 * When the device is faulty, it is not necessary to
478 * handle write error.
479 */
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(R1BIO_WriteError, &r1_bio->state);
482 else {
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
488 }
489 } else {
490 /*
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
495 *
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
499 */
500 r1_bio->bios[mirror] = NULL;
501 to_put = bio;
502 /*
503 * Do not set R1BIO_Uptodate if the current device is
504 * rebuilding or Faulty. This is because we cannot use
505 * such device for properly reading the data back (we could
506 * potentially use it, if the current write would have felt
507 * before rdev->recovery_offset, but for simplicity we don't
508 * check this here.
509 */
510 if (test_bit(In_sync, &rdev->flags) &&
511 !test_bit(Faulty, &rdev->flags))
512 set_bit(R1BIO_Uptodate, &r1_bio->state);
513
514 /* Maybe we can clear some bad blocks. */
515 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
516 !discard_error) {
517 r1_bio->bios[mirror] = IO_MADE_GOOD;
518 set_bit(R1BIO_MadeGood, &r1_bio->state);
519 }
520 }
521
522 if (behind) {
523 if (test_bit(CollisionCheck, &rdev->flags))
524 remove_serial(rdev, lo, hi);
525 if (test_bit(WriteMostly, &rdev->flags))
526 atomic_dec(&r1_bio->behind_remaining);
527
528 /*
529 * In behind mode, we ACK the master bio once the I/O
530 * has safely reached all non-writemostly
531 * disks. Setting the Returned bit ensures that this
532 * gets done only once -- we don't ever want to return
533 * -EIO here, instead we'll wait
534 */
535 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
536 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
537 /* Maybe we can return now */
538 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
539 struct bio *mbio = r1_bio->master_bio;
540 pr_debug("raid1: behind end write sectors"
541 " %llu-%llu\n",
542 (unsigned long long) mbio->bi_iter.bi_sector,
543 (unsigned long long) bio_end_sector(mbio) - 1);
544 call_bio_endio(r1_bio);
545 }
546 }
547 } else if (rdev->mddev->serialize_policy)
548 remove_serial(rdev, lo, hi);
549 if (r1_bio->bios[mirror] == NULL)
550 rdev_dec_pending(rdev, conf->mddev);
551
552 /*
553 * Let's see if all mirrored write operations have finished
554 * already.
555 */
556 r1_bio_write_done(r1_bio);
557
558 if (to_put)
559 bio_put(to_put);
560 }
561
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)562 static sector_t align_to_barrier_unit_end(sector_t start_sector,
563 sector_t sectors)
564 {
565 sector_t len;
566
567 WARN_ON(sectors == 0);
568 /*
569 * len is the number of sectors from start_sector to end of the
570 * barrier unit which start_sector belongs to.
571 */
572 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
573 start_sector;
574
575 if (len > sectors)
576 len = sectors;
577
578 return len;
579 }
580
update_read_sectors(struct r1conf * conf,int disk,sector_t this_sector,int len)581 static void update_read_sectors(struct r1conf *conf, int disk,
582 sector_t this_sector, int len)
583 {
584 struct raid1_info *info = &conf->mirrors[disk];
585
586 atomic_inc(&info->rdev->nr_pending);
587 if (info->next_seq_sect != this_sector)
588 info->seq_start = this_sector;
589 info->next_seq_sect = this_sector + len;
590 }
591
choose_first_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 int *max_sectors)
594 {
595 sector_t this_sector = r1_bio->sector;
596 int len = r1_bio->sectors;
597 int disk;
598
599 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
600 struct md_rdev *rdev;
601 int read_len;
602
603 if (r1_bio->bios[disk] == IO_BLOCKED)
604 continue;
605
606 rdev = conf->mirrors[disk].rdev;
607 if (!rdev || test_bit(Faulty, &rdev->flags))
608 continue;
609
610 /* choose the first disk even if it has some bad blocks. */
611 read_len = raid1_check_read_range(rdev, this_sector, &len);
612 if (read_len > 0) {
613 update_read_sectors(conf, disk, this_sector, read_len);
614 *max_sectors = read_len;
615 return disk;
616 }
617 }
618
619 return -1;
620 }
621
rdev_in_recovery(struct md_rdev * rdev,struct r1bio * r1_bio)622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
623 {
624 return !test_bit(In_sync, &rdev->flags) &&
625 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
626 }
627
choose_bb_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
629 int *max_sectors)
630 {
631 sector_t this_sector = r1_bio->sector;
632 int best_disk = -1;
633 int best_len = 0;
634 int disk;
635
636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 struct md_rdev *rdev;
638 int len;
639 int read_len;
640
641 if (r1_bio->bios[disk] == IO_BLOCKED)
642 continue;
643
644 rdev = conf->mirrors[disk].rdev;
645 if (!rdev || test_bit(Faulty, &rdev->flags) ||
646 rdev_in_recovery(rdev, r1_bio) ||
647 test_bit(WriteMostly, &rdev->flags))
648 continue;
649
650 /* keep track of the disk with the most readable sectors. */
651 len = r1_bio->sectors;
652 read_len = raid1_check_read_range(rdev, this_sector, &len);
653 if (read_len > best_len) {
654 best_disk = disk;
655 best_len = read_len;
656 }
657 }
658
659 if (best_disk != -1) {
660 *max_sectors = best_len;
661 update_read_sectors(conf, best_disk, this_sector, best_len);
662 }
663
664 return best_disk;
665 }
666
choose_slow_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
668 int *max_sectors)
669 {
670 sector_t this_sector = r1_bio->sector;
671 int bb_disk = -1;
672 int bb_read_len = 0;
673 int disk;
674
675 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
676 struct md_rdev *rdev;
677 int len;
678 int read_len;
679
680 if (r1_bio->bios[disk] == IO_BLOCKED)
681 continue;
682
683 rdev = conf->mirrors[disk].rdev;
684 if (!rdev || test_bit(Faulty, &rdev->flags) ||
685 !test_bit(WriteMostly, &rdev->flags) ||
686 rdev_in_recovery(rdev, r1_bio))
687 continue;
688
689 /* there are no bad blocks, we can use this disk */
690 len = r1_bio->sectors;
691 read_len = raid1_check_read_range(rdev, this_sector, &len);
692 if (read_len == r1_bio->sectors) {
693 *max_sectors = read_len;
694 update_read_sectors(conf, disk, this_sector, read_len);
695 return disk;
696 }
697
698 /*
699 * there are partial bad blocks, choose the rdev with largest
700 * read length.
701 */
702 if (read_len > bb_read_len) {
703 bb_disk = disk;
704 bb_read_len = read_len;
705 }
706 }
707
708 if (bb_disk != -1) {
709 *max_sectors = bb_read_len;
710 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
711 }
712
713 return bb_disk;
714 }
715
is_sequential(struct r1conf * conf,int disk,struct r1bio * r1_bio)716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
717 {
718 /* TODO: address issues with this check and concurrency. */
719 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
720 conf->mirrors[disk].head_position == r1_bio->sector;
721 }
722
723 /*
724 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
725 * disk. If yes, choose the idle disk.
726 */
should_choose_next(struct r1conf * conf,int disk)727 static bool should_choose_next(struct r1conf *conf, int disk)
728 {
729 struct raid1_info *mirror = &conf->mirrors[disk];
730 int opt_iosize;
731
732 if (!test_bit(Nonrot, &mirror->rdev->flags))
733 return false;
734
735 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
736 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
737 mirror->next_seq_sect > opt_iosize &&
738 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
739 }
740
rdev_readable(struct md_rdev * rdev,struct r1bio * r1_bio)741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
742 {
743 if (!rdev || test_bit(Faulty, &rdev->flags))
744 return false;
745
746 if (rdev_in_recovery(rdev, r1_bio))
747 return false;
748
749 /* don't read from slow disk unless have to */
750 if (test_bit(WriteMostly, &rdev->flags))
751 return false;
752
753 /* don't split IO for bad blocks unless have to */
754 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
755 return false;
756
757 return true;
758 }
759
760 struct read_balance_ctl {
761 sector_t closest_dist;
762 int closest_dist_disk;
763 int min_pending;
764 int min_pending_disk;
765 int sequential_disk;
766 int readable_disks;
767 };
768
choose_best_rdev(struct r1conf * conf,struct r1bio * r1_bio)769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
770 {
771 int disk;
772 struct read_balance_ctl ctl = {
773 .closest_dist_disk = -1,
774 .closest_dist = MaxSector,
775 .min_pending_disk = -1,
776 .min_pending = UINT_MAX,
777 .sequential_disk = -1,
778 };
779
780 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
781 struct md_rdev *rdev;
782 sector_t dist;
783 unsigned int pending;
784
785 if (r1_bio->bios[disk] == IO_BLOCKED)
786 continue;
787
788 rdev = conf->mirrors[disk].rdev;
789 if (!rdev_readable(rdev, r1_bio))
790 continue;
791
792 /* At least two disks to choose from so failfast is OK */
793 if (ctl.readable_disks++ == 1)
794 set_bit(R1BIO_FailFast, &r1_bio->state);
795
796 pending = atomic_read(&rdev->nr_pending);
797 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
798
799 /* Don't change to another disk for sequential reads */
800 if (is_sequential(conf, disk, r1_bio)) {
801 if (!should_choose_next(conf, disk))
802 return disk;
803
804 /*
805 * Add 'pending' to avoid choosing this disk if
806 * there is other idle disk.
807 */
808 pending++;
809 /*
810 * If there is no other idle disk, this disk
811 * will be chosen.
812 */
813 ctl.sequential_disk = disk;
814 }
815
816 if (ctl.min_pending > pending) {
817 ctl.min_pending = pending;
818 ctl.min_pending_disk = disk;
819 }
820
821 if (ctl.closest_dist > dist) {
822 ctl.closest_dist = dist;
823 ctl.closest_dist_disk = disk;
824 }
825 }
826
827 /*
828 * sequential IO size exceeds optimal iosize, however, there is no other
829 * idle disk, so choose the sequential disk.
830 */
831 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
832 return ctl.sequential_disk;
833
834 /*
835 * If all disks are rotational, choose the closest disk. If any disk is
836 * non-rotational, choose the disk with less pending request even the
837 * disk is rotational, which might/might not be optimal for raids with
838 * mixed ratation/non-rotational disks depending on workload.
839 */
840 if (ctl.min_pending_disk != -1 &&
841 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
842 return ctl.min_pending_disk;
843 else
844 return ctl.closest_dist_disk;
845 }
846
847 /*
848 * This routine returns the disk from which the requested read should be done.
849 *
850 * 1) If resync is in progress, find the first usable disk and use it even if it
851 * has some bad blocks.
852 *
853 * 2) Now that there is no resync, loop through all disks and skipping slow
854 * disks and disks with bad blocks for now. Only pay attention to key disk
855 * choice.
856 *
857 * 3) If we've made it this far, now look for disks with bad blocks and choose
858 * the one with most number of sectors.
859 *
860 * 4) If we are all the way at the end, we have no choice but to use a disk even
861 * if it is write mostly.
862 *
863 * The rdev for the device selected will have nr_pending incremented.
864 */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
866 int *max_sectors)
867 {
868 int disk;
869
870 clear_bit(R1BIO_FailFast, &r1_bio->state);
871
872 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
873 r1_bio->sectors))
874 return choose_first_rdev(conf, r1_bio, max_sectors);
875
876 disk = choose_best_rdev(conf, r1_bio);
877 if (disk >= 0) {
878 *max_sectors = r1_bio->sectors;
879 update_read_sectors(conf, disk, r1_bio->sector,
880 r1_bio->sectors);
881 return disk;
882 }
883
884 /*
885 * If we are here it means we didn't find a perfectly good disk so
886 * now spend a bit more time trying to find one with the most good
887 * sectors.
888 */
889 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
890 if (disk >= 0)
891 return disk;
892
893 return choose_slow_rdev(conf, r1_bio, max_sectors);
894 }
895
wake_up_barrier(struct r1conf * conf)896 static void wake_up_barrier(struct r1conf *conf)
897 {
898 if (wq_has_sleeper(&conf->wait_barrier))
899 wake_up(&conf->wait_barrier);
900 }
901
flush_bio_list(struct r1conf * conf,struct bio * bio)902 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
903 {
904 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
905 raid1_prepare_flush_writes(conf->mddev);
906 wake_up_barrier(conf);
907
908 while (bio) { /* submit pending writes */
909 struct bio *next = bio->bi_next;
910
911 raid1_submit_write(bio);
912 bio = next;
913 cond_resched();
914 }
915 }
916
flush_pending_writes(struct r1conf * conf)917 static void flush_pending_writes(struct r1conf *conf)
918 {
919 /* Any writes that have been queued but are awaiting
920 * bitmap updates get flushed here.
921 */
922 spin_lock_irq(&conf->device_lock);
923
924 if (conf->pending_bio_list.head) {
925 struct blk_plug plug;
926 struct bio *bio;
927
928 bio = bio_list_get(&conf->pending_bio_list);
929 spin_unlock_irq(&conf->device_lock);
930
931 /*
932 * As this is called in a wait_event() loop (see freeze_array),
933 * current->state might be TASK_UNINTERRUPTIBLE which will
934 * cause a warning when we prepare to wait again. As it is
935 * rare that this path is taken, it is perfectly safe to force
936 * us to go around the wait_event() loop again, so the warning
937 * is a false-positive. Silence the warning by resetting
938 * thread state
939 */
940 __set_current_state(TASK_RUNNING);
941 blk_start_plug(&plug);
942 flush_bio_list(conf, bio);
943 blk_finish_plug(&plug);
944 } else
945 spin_unlock_irq(&conf->device_lock);
946 }
947
948 /* Barriers....
949 * Sometimes we need to suspend IO while we do something else,
950 * either some resync/recovery, or reconfigure the array.
951 * To do this we raise a 'barrier'.
952 * The 'barrier' is a counter that can be raised multiple times
953 * to count how many activities are happening which preclude
954 * normal IO.
955 * We can only raise the barrier if there is no pending IO.
956 * i.e. if nr_pending == 0.
957 * We choose only to raise the barrier if no-one is waiting for the
958 * barrier to go down. This means that as soon as an IO request
959 * is ready, no other operations which require a barrier will start
960 * until the IO request has had a chance.
961 *
962 * So: regular IO calls 'wait_barrier'. When that returns there
963 * is no backgroup IO happening, It must arrange to call
964 * allow_barrier when it has finished its IO.
965 * backgroup IO calls must call raise_barrier. Once that returns
966 * there is no normal IO happeing. It must arrange to call
967 * lower_barrier when the particular background IO completes.
968 *
969 * If resync/recovery is interrupted, returns -EINTR;
970 * Otherwise, returns 0.
971 */
raise_barrier(struct r1conf * conf,sector_t sector_nr)972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
973 {
974 int idx = sector_to_idx(sector_nr);
975
976 spin_lock_irq(&conf->resync_lock);
977
978 /* Wait until no block IO is waiting */
979 wait_event_lock_irq(conf->wait_barrier,
980 !atomic_read(&conf->nr_waiting[idx]),
981 conf->resync_lock);
982
983 /* block any new IO from starting */
984 atomic_inc(&conf->barrier[idx]);
985 /*
986 * In raise_barrier() we firstly increase conf->barrier[idx] then
987 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
988 * increase conf->nr_pending[idx] then check conf->barrier[idx].
989 * A memory barrier here to make sure conf->nr_pending[idx] won't
990 * be fetched before conf->barrier[idx] is increased. Otherwise
991 * there will be a race between raise_barrier() and _wait_barrier().
992 */
993 smp_mb__after_atomic();
994
995 /* For these conditions we must wait:
996 * A: while the array is in frozen state
997 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
998 * existing in corresponding I/O barrier bucket.
999 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
1000 * max resync count which allowed on current I/O barrier bucket.
1001 */
1002 wait_event_lock_irq(conf->wait_barrier,
1003 (!conf->array_frozen &&
1004 !atomic_read(&conf->nr_pending[idx]) &&
1005 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1006 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1007 conf->resync_lock);
1008
1009 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1010 atomic_dec(&conf->barrier[idx]);
1011 spin_unlock_irq(&conf->resync_lock);
1012 wake_up(&conf->wait_barrier);
1013 return -EINTR;
1014 }
1015
1016 atomic_inc(&conf->nr_sync_pending);
1017 spin_unlock_irq(&conf->resync_lock);
1018
1019 return 0;
1020 }
1021
lower_barrier(struct r1conf * conf,sector_t sector_nr)1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 int idx = sector_to_idx(sector_nr);
1025
1026 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1027
1028 atomic_dec(&conf->barrier[idx]);
1029 atomic_dec(&conf->nr_sync_pending);
1030 wake_up(&conf->wait_barrier);
1031 }
1032
_wait_barrier(struct r1conf * conf,int idx,bool nowait)1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1034 {
1035 bool ret = true;
1036
1037 /*
1038 * We need to increase conf->nr_pending[idx] very early here,
1039 * then raise_barrier() can be blocked when it waits for
1040 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1041 * conf->resync_lock when there is no barrier raised in same
1042 * barrier unit bucket. Also if the array is frozen, I/O
1043 * should be blocked until array is unfrozen.
1044 */
1045 atomic_inc(&conf->nr_pending[idx]);
1046 /*
1047 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1048 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1049 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1050 * barrier is necessary here to make sure conf->barrier[idx] won't be
1051 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1052 * will be a race between _wait_barrier() and raise_barrier().
1053 */
1054 smp_mb__after_atomic();
1055
1056 /*
1057 * Don't worry about checking two atomic_t variables at same time
1058 * here. If during we check conf->barrier[idx], the array is
1059 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1060 * 0, it is safe to return and make the I/O continue. Because the
1061 * array is frozen, all I/O returned here will eventually complete
1062 * or be queued, no race will happen. See code comment in
1063 * frozen_array().
1064 */
1065 if (!READ_ONCE(conf->array_frozen) &&
1066 !atomic_read(&conf->barrier[idx]))
1067 return ret;
1068
1069 /*
1070 * After holding conf->resync_lock, conf->nr_pending[idx]
1071 * should be decreased before waiting for barrier to drop.
1072 * Otherwise, we may encounter a race condition because
1073 * raise_barrer() might be waiting for conf->nr_pending[idx]
1074 * to be 0 at same time.
1075 */
1076 spin_lock_irq(&conf->resync_lock);
1077 atomic_inc(&conf->nr_waiting[idx]);
1078 atomic_dec(&conf->nr_pending[idx]);
1079 /*
1080 * In case freeze_array() is waiting for
1081 * get_unqueued_pending() == extra
1082 */
1083 wake_up_barrier(conf);
1084 /* Wait for the barrier in same barrier unit bucket to drop. */
1085
1086 /* Return false when nowait flag is set */
1087 if (nowait) {
1088 ret = false;
1089 } else {
1090 wait_event_lock_irq(conf->wait_barrier,
1091 !conf->array_frozen &&
1092 !atomic_read(&conf->barrier[idx]),
1093 conf->resync_lock);
1094 atomic_inc(&conf->nr_pending[idx]);
1095 }
1096
1097 atomic_dec(&conf->nr_waiting[idx]);
1098 spin_unlock_irq(&conf->resync_lock);
1099 return ret;
1100 }
1101
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1103 {
1104 int idx = sector_to_idx(sector_nr);
1105 bool ret = true;
1106
1107 /*
1108 * Very similar to _wait_barrier(). The difference is, for read
1109 * I/O we don't need wait for sync I/O, but if the whole array
1110 * is frozen, the read I/O still has to wait until the array is
1111 * unfrozen. Since there is no ordering requirement with
1112 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1113 */
1114 atomic_inc(&conf->nr_pending[idx]);
1115
1116 if (!READ_ONCE(conf->array_frozen))
1117 return ret;
1118
1119 spin_lock_irq(&conf->resync_lock);
1120 atomic_inc(&conf->nr_waiting[idx]);
1121 atomic_dec(&conf->nr_pending[idx]);
1122 /*
1123 * In case freeze_array() is waiting for
1124 * get_unqueued_pending() == extra
1125 */
1126 wake_up_barrier(conf);
1127 /* Wait for array to be unfrozen */
1128
1129 /* Return false when nowait flag is set */
1130 if (nowait) {
1131 /* Return false when nowait flag is set */
1132 ret = false;
1133 } else {
1134 wait_event_lock_irq(conf->wait_barrier,
1135 !conf->array_frozen,
1136 conf->resync_lock);
1137 atomic_inc(&conf->nr_pending[idx]);
1138 }
1139
1140 atomic_dec(&conf->nr_waiting[idx]);
1141 spin_unlock_irq(&conf->resync_lock);
1142 return ret;
1143 }
1144
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1146 {
1147 int idx = sector_to_idx(sector_nr);
1148
1149 return _wait_barrier(conf, idx, nowait);
1150 }
1151
_allow_barrier(struct r1conf * conf,int idx)1152 static void _allow_barrier(struct r1conf *conf, int idx)
1153 {
1154 atomic_dec(&conf->nr_pending[idx]);
1155 wake_up_barrier(conf);
1156 }
1157
allow_barrier(struct r1conf * conf,sector_t sector_nr)1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1159 {
1160 int idx = sector_to_idx(sector_nr);
1161
1162 _allow_barrier(conf, idx);
1163 }
1164
1165 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1166 static int get_unqueued_pending(struct r1conf *conf)
1167 {
1168 int idx, ret;
1169
1170 ret = atomic_read(&conf->nr_sync_pending);
1171 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1172 ret += atomic_read(&conf->nr_pending[idx]) -
1173 atomic_read(&conf->nr_queued[idx]);
1174
1175 return ret;
1176 }
1177
freeze_array(struct r1conf * conf,int extra)1178 static void freeze_array(struct r1conf *conf, int extra)
1179 {
1180 /* Stop sync I/O and normal I/O and wait for everything to
1181 * go quiet.
1182 * This is called in two situations:
1183 * 1) management command handlers (reshape, remove disk, quiesce).
1184 * 2) one normal I/O request failed.
1185
1186 * After array_frozen is set to 1, new sync IO will be blocked at
1187 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1188 * or wait_read_barrier(). The flying I/Os will either complete or be
1189 * queued. When everything goes quite, there are only queued I/Os left.
1190
1191 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1192 * barrier bucket index which this I/O request hits. When all sync and
1193 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1194 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1195 * in handle_read_error(), we may call freeze_array() before trying to
1196 * fix the read error. In this case, the error read I/O is not queued,
1197 * so get_unqueued_pending() == 1.
1198 *
1199 * Therefore before this function returns, we need to wait until
1200 * get_unqueued_pendings(conf) gets equal to extra. For
1201 * normal I/O context, extra is 1, in rested situations extra is 0.
1202 */
1203 spin_lock_irq(&conf->resync_lock);
1204 conf->array_frozen = 1;
1205 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1206 wait_event_lock_irq_cmd(
1207 conf->wait_barrier,
1208 get_unqueued_pending(conf) == extra,
1209 conf->resync_lock,
1210 flush_pending_writes(conf));
1211 spin_unlock_irq(&conf->resync_lock);
1212 }
unfreeze_array(struct r1conf * conf)1213 static void unfreeze_array(struct r1conf *conf)
1214 {
1215 /* reverse the effect of the freeze */
1216 spin_lock_irq(&conf->resync_lock);
1217 conf->array_frozen = 0;
1218 spin_unlock_irq(&conf->resync_lock);
1219 wake_up(&conf->wait_barrier);
1220 }
1221
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1222 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1223 struct bio *bio)
1224 {
1225 int size = bio->bi_iter.bi_size;
1226 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 int i = 0;
1228 struct bio *behind_bio = NULL;
1229
1230 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1231 &r1_bio->mddev->bio_set);
1232
1233 /* discard op, we don't support writezero/writesame yet */
1234 if (!bio_has_data(bio)) {
1235 behind_bio->bi_iter.bi_size = size;
1236 goto skip_copy;
1237 }
1238
1239 while (i < vcnt && size) {
1240 struct page *page;
1241 int len = min_t(int, PAGE_SIZE, size);
1242
1243 page = alloc_page(GFP_NOIO);
1244 if (unlikely(!page))
1245 goto free_pages;
1246
1247 if (!bio_add_page(behind_bio, page, len, 0)) {
1248 put_page(page);
1249 goto free_pages;
1250 }
1251
1252 size -= len;
1253 i++;
1254 }
1255
1256 bio_copy_data(behind_bio, bio);
1257 skip_copy:
1258 r1_bio->behind_master_bio = behind_bio;
1259 set_bit(R1BIO_BehindIO, &r1_bio->state);
1260
1261 return;
1262
1263 free_pages:
1264 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1265 bio->bi_iter.bi_size);
1266 bio_free_pages(behind_bio);
1267 bio_put(behind_bio);
1268 }
1269
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1271 {
1272 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1273 cb);
1274 struct mddev *mddev = plug->cb.data;
1275 struct r1conf *conf = mddev->private;
1276 struct bio *bio;
1277
1278 if (from_schedule) {
1279 spin_lock_irq(&conf->device_lock);
1280 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1281 spin_unlock_irq(&conf->device_lock);
1282 wake_up_barrier(conf);
1283 md_wakeup_thread(mddev->thread);
1284 kfree(plug);
1285 return;
1286 }
1287
1288 /* we aren't scheduling, so we can do the write-out directly. */
1289 bio = bio_list_get(&plug->pending);
1290 flush_bio_list(conf, bio);
1291 kfree(plug);
1292 }
1293
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1295 {
1296 r1_bio->master_bio = bio;
1297 r1_bio->sectors = bio_sectors(bio);
1298 r1_bio->state = 0;
1299 r1_bio->mddev = mddev;
1300 r1_bio->sector = bio->bi_iter.bi_sector;
1301 }
1302
1303 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1304 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1305 {
1306 struct r1conf *conf = mddev->private;
1307 struct r1bio *r1_bio;
1308
1309 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1310 /* Ensure no bio records IO_BLOCKED */
1311 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1312 init_r1bio(r1_bio, mddev, bio);
1313 return r1_bio;
1314 }
1315
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1317 int max_read_sectors, struct r1bio *r1_bio)
1318 {
1319 struct r1conf *conf = mddev->private;
1320 struct raid1_info *mirror;
1321 struct bio *read_bio;
1322 const enum req_op op = bio_op(bio);
1323 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1324 int max_sectors;
1325 int rdisk;
1326 bool r1bio_existed = !!r1_bio;
1327
1328 /*
1329 * If r1_bio is set, we are blocking the raid1d thread
1330 * so there is a tiny risk of deadlock. So ask for
1331 * emergency memory if needed.
1332 */
1333 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1334
1335 /*
1336 * Still need barrier for READ in case that whole
1337 * array is frozen.
1338 */
1339 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1340 bio->bi_opf & REQ_NOWAIT)) {
1341 bio_wouldblock_error(bio);
1342 return;
1343 }
1344
1345 if (!r1_bio)
1346 r1_bio = alloc_r1bio(mddev, bio);
1347 else
1348 init_r1bio(r1_bio, mddev, bio);
1349 r1_bio->sectors = max_read_sectors;
1350
1351 /*
1352 * make_request() can abort the operation when read-ahead is being
1353 * used and no empty request is available.
1354 */
1355 rdisk = read_balance(conf, r1_bio, &max_sectors);
1356 if (rdisk < 0) {
1357 /* couldn't find anywhere to read from */
1358 if (r1bio_existed)
1359 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1360 mdname(mddev),
1361 conf->mirrors[r1_bio->read_disk].rdev->bdev,
1362 r1_bio->sector);
1363 raid_end_bio_io(r1_bio);
1364 return;
1365 }
1366 mirror = conf->mirrors + rdisk;
1367
1368 if (r1bio_existed)
1369 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1370 mdname(mddev),
1371 (unsigned long long)r1_bio->sector,
1372 mirror->rdev->bdev);
1373
1374 if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1375 /*
1376 * Reading from a write-mostly device must take care not to
1377 * over-take any writes that are 'behind'
1378 */
1379 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1380 mddev->bitmap_ops->wait_behind_writes(mddev);
1381 }
1382
1383 if (max_sectors < bio_sectors(bio)) {
1384 struct bio *split = bio_split(bio, max_sectors,
1385 gfp, &conf->bio_split);
1386 bio_chain(split, bio);
1387 submit_bio_noacct(bio);
1388 bio = split;
1389 r1_bio->master_bio = bio;
1390 r1_bio->sectors = max_sectors;
1391 }
1392
1393 r1_bio->read_disk = rdisk;
1394 if (!r1bio_existed) {
1395 md_account_bio(mddev, &bio);
1396 r1_bio->master_bio = bio;
1397 }
1398 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1399 &mddev->bio_set);
1400
1401 r1_bio->bios[rdisk] = read_bio;
1402
1403 read_bio->bi_iter.bi_sector = r1_bio->sector +
1404 mirror->rdev->data_offset;
1405 read_bio->bi_end_io = raid1_end_read_request;
1406 read_bio->bi_opf = op | do_sync;
1407 if (test_bit(FailFast, &mirror->rdev->flags) &&
1408 test_bit(R1BIO_FailFast, &r1_bio->state))
1409 read_bio->bi_opf |= MD_FAILFAST;
1410 read_bio->bi_private = r1_bio;
1411 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1412 submit_bio_noacct(read_bio);
1413 }
1414
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1415 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1416 int max_write_sectors)
1417 {
1418 struct r1conf *conf = mddev->private;
1419 struct r1bio *r1_bio;
1420 int i, disks;
1421 unsigned long flags;
1422 struct md_rdev *blocked_rdev;
1423 int first_clone;
1424 int max_sectors;
1425 bool write_behind = false;
1426 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1427
1428 if (mddev_is_clustered(mddev) &&
1429 md_cluster_ops->area_resyncing(mddev, WRITE,
1430 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1431
1432 DEFINE_WAIT(w);
1433 if (bio->bi_opf & REQ_NOWAIT) {
1434 bio_wouldblock_error(bio);
1435 return;
1436 }
1437 for (;;) {
1438 prepare_to_wait(&conf->wait_barrier,
1439 &w, TASK_IDLE);
1440 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1441 bio->bi_iter.bi_sector,
1442 bio_end_sector(bio)))
1443 break;
1444 schedule();
1445 }
1446 finish_wait(&conf->wait_barrier, &w);
1447 }
1448
1449 /*
1450 * Register the new request and wait if the reconstruction
1451 * thread has put up a bar for new requests.
1452 * Continue immediately if no resync is active currently.
1453 */
1454 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1455 bio->bi_opf & REQ_NOWAIT)) {
1456 bio_wouldblock_error(bio);
1457 return;
1458 }
1459
1460 retry_write:
1461 r1_bio = alloc_r1bio(mddev, bio);
1462 r1_bio->sectors = max_write_sectors;
1463
1464 /* first select target devices under rcu_lock and
1465 * inc refcount on their rdev. Record them by setting
1466 * bios[x] to bio
1467 * If there are known/acknowledged bad blocks on any device on
1468 * which we have seen a write error, we want to avoid writing those
1469 * blocks.
1470 * This potentially requires several writes to write around
1471 * the bad blocks. Each set of writes gets it's own r1bio
1472 * with a set of bios attached.
1473 */
1474
1475 disks = conf->raid_disks * 2;
1476 blocked_rdev = NULL;
1477 max_sectors = r1_bio->sectors;
1478 for (i = 0; i < disks; i++) {
1479 struct md_rdev *rdev = conf->mirrors[i].rdev;
1480
1481 /*
1482 * The write-behind io is only attempted on drives marked as
1483 * write-mostly, which means we could allocate write behind
1484 * bio later.
1485 */
1486 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1487 write_behind = true;
1488
1489 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1490 atomic_inc(&rdev->nr_pending);
1491 blocked_rdev = rdev;
1492 break;
1493 }
1494 r1_bio->bios[i] = NULL;
1495 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1496 if (i < conf->raid_disks)
1497 set_bit(R1BIO_Degraded, &r1_bio->state);
1498 continue;
1499 }
1500
1501 atomic_inc(&rdev->nr_pending);
1502 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1503 sector_t first_bad;
1504 int bad_sectors;
1505 int is_bad;
1506
1507 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1508 &first_bad, &bad_sectors);
1509 if (is_bad < 0) {
1510 /* mustn't write here until the bad block is
1511 * acknowledged*/
1512 set_bit(BlockedBadBlocks, &rdev->flags);
1513 blocked_rdev = rdev;
1514 break;
1515 }
1516 if (is_bad && first_bad <= r1_bio->sector) {
1517 /* Cannot write here at all */
1518 bad_sectors -= (r1_bio->sector - first_bad);
1519 if (bad_sectors < max_sectors)
1520 /* mustn't write more than bad_sectors
1521 * to other devices yet
1522 */
1523 max_sectors = bad_sectors;
1524 rdev_dec_pending(rdev, mddev);
1525 /* We don't set R1BIO_Degraded as that
1526 * only applies if the disk is
1527 * missing, so it might be re-added,
1528 * and we want to know to recover this
1529 * chunk.
1530 * In this case the device is here,
1531 * and the fact that this chunk is not
1532 * in-sync is recorded in the bad
1533 * block log
1534 */
1535 continue;
1536 }
1537 if (is_bad) {
1538 int good_sectors = first_bad - r1_bio->sector;
1539 if (good_sectors < max_sectors)
1540 max_sectors = good_sectors;
1541 }
1542 }
1543 r1_bio->bios[i] = bio;
1544 }
1545
1546 if (unlikely(blocked_rdev)) {
1547 /* Wait for this device to become unblocked */
1548 int j;
1549
1550 for (j = 0; j < i; j++)
1551 if (r1_bio->bios[j])
1552 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1553 mempool_free(r1_bio, &conf->r1bio_pool);
1554 allow_barrier(conf, bio->bi_iter.bi_sector);
1555
1556 if (bio->bi_opf & REQ_NOWAIT) {
1557 bio_wouldblock_error(bio);
1558 return;
1559 }
1560 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1561 blocked_rdev->raid_disk);
1562 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1563 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1564 goto retry_write;
1565 }
1566
1567 /*
1568 * When using a bitmap, we may call alloc_behind_master_bio below.
1569 * alloc_behind_master_bio allocates a copy of the data payload a page
1570 * at a time and thus needs a new bio that can fit the whole payload
1571 * this bio in page sized chunks.
1572 */
1573 if (write_behind && mddev->bitmap)
1574 max_sectors = min_t(int, max_sectors,
1575 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1576 if (max_sectors < bio_sectors(bio)) {
1577 struct bio *split = bio_split(bio, max_sectors,
1578 GFP_NOIO, &conf->bio_split);
1579 bio_chain(split, bio);
1580 submit_bio_noacct(bio);
1581 bio = split;
1582 r1_bio->master_bio = bio;
1583 r1_bio->sectors = max_sectors;
1584 }
1585
1586 md_account_bio(mddev, &bio);
1587 r1_bio->master_bio = bio;
1588 atomic_set(&r1_bio->remaining, 1);
1589 atomic_set(&r1_bio->behind_remaining, 0);
1590
1591 first_clone = 1;
1592
1593 for (i = 0; i < disks; i++) {
1594 struct bio *mbio = NULL;
1595 struct md_rdev *rdev = conf->mirrors[i].rdev;
1596 if (!r1_bio->bios[i])
1597 continue;
1598
1599 if (first_clone) {
1600 unsigned long max_write_behind =
1601 mddev->bitmap_info.max_write_behind;
1602 struct md_bitmap_stats stats;
1603 int err;
1604
1605 /* do behind I/O ?
1606 * Not if there are too many, or cannot
1607 * allocate memory, or a reader on WriteMostly
1608 * is waiting for behind writes to flush */
1609 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1610 if (!err && write_behind && !stats.behind_wait &&
1611 stats.behind_writes < max_write_behind)
1612 alloc_behind_master_bio(r1_bio, bio);
1613
1614 mddev->bitmap_ops->startwrite(
1615 mddev, r1_bio->sector, r1_bio->sectors,
1616 test_bit(R1BIO_BehindIO, &r1_bio->state));
1617 first_clone = 0;
1618 }
1619
1620 if (r1_bio->behind_master_bio) {
1621 mbio = bio_alloc_clone(rdev->bdev,
1622 r1_bio->behind_master_bio,
1623 GFP_NOIO, &mddev->bio_set);
1624 if (test_bit(CollisionCheck, &rdev->flags))
1625 wait_for_serialization(rdev, r1_bio);
1626 if (test_bit(WriteMostly, &rdev->flags))
1627 atomic_inc(&r1_bio->behind_remaining);
1628 } else {
1629 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1630 &mddev->bio_set);
1631
1632 if (mddev->serialize_policy)
1633 wait_for_serialization(rdev, r1_bio);
1634 }
1635
1636 r1_bio->bios[i] = mbio;
1637
1638 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1639 mbio->bi_end_io = raid1_end_write_request;
1640 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1641 if (test_bit(FailFast, &rdev->flags) &&
1642 !test_bit(WriteMostly, &rdev->flags) &&
1643 conf->raid_disks - mddev->degraded > 1)
1644 mbio->bi_opf |= MD_FAILFAST;
1645 mbio->bi_private = r1_bio;
1646
1647 atomic_inc(&r1_bio->remaining);
1648 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1649 /* flush_pending_writes() needs access to the rdev so...*/
1650 mbio->bi_bdev = (void *)rdev;
1651 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1652 spin_lock_irqsave(&conf->device_lock, flags);
1653 bio_list_add(&conf->pending_bio_list, mbio);
1654 spin_unlock_irqrestore(&conf->device_lock, flags);
1655 md_wakeup_thread(mddev->thread);
1656 }
1657 }
1658
1659 r1_bio_write_done(r1_bio);
1660
1661 /* In case raid1d snuck in to freeze_array */
1662 wake_up_barrier(conf);
1663 }
1664
raid1_make_request(struct mddev * mddev,struct bio * bio)1665 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1666 {
1667 sector_t sectors;
1668
1669 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1670 && md_flush_request(mddev, bio))
1671 return true;
1672
1673 /*
1674 * There is a limit to the maximum size, but
1675 * the read/write handler might find a lower limit
1676 * due to bad blocks. To avoid multiple splits,
1677 * we pass the maximum number of sectors down
1678 * and let the lower level perform the split.
1679 */
1680 sectors = align_to_barrier_unit_end(
1681 bio->bi_iter.bi_sector, bio_sectors(bio));
1682
1683 if (bio_data_dir(bio) == READ)
1684 raid1_read_request(mddev, bio, sectors, NULL);
1685 else {
1686 md_write_start(mddev,bio);
1687 raid1_write_request(mddev, bio, sectors);
1688 }
1689 return true;
1690 }
1691
raid1_status(struct seq_file * seq,struct mddev * mddev)1692 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1693 {
1694 struct r1conf *conf = mddev->private;
1695 int i;
1696
1697 lockdep_assert_held(&mddev->lock);
1698
1699 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1700 conf->raid_disks - mddev->degraded);
1701 for (i = 0; i < conf->raid_disks; i++) {
1702 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1703
1704 seq_printf(seq, "%s",
1705 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1706 }
1707 seq_printf(seq, "]");
1708 }
1709
1710 /**
1711 * raid1_error() - RAID1 error handler.
1712 * @mddev: affected md device.
1713 * @rdev: member device to fail.
1714 *
1715 * The routine acknowledges &rdev failure and determines new @mddev state.
1716 * If it failed, then:
1717 * - &MD_BROKEN flag is set in &mddev->flags.
1718 * - recovery is disabled.
1719 * Otherwise, it must be degraded:
1720 * - recovery is interrupted.
1721 * - &mddev->degraded is bumped.
1722 *
1723 * @rdev is marked as &Faulty excluding case when array is failed and
1724 * &mddev->fail_last_dev is off.
1725 */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1726 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728 struct r1conf *conf = mddev->private;
1729 unsigned long flags;
1730
1731 spin_lock_irqsave(&conf->device_lock, flags);
1732
1733 if (test_bit(In_sync, &rdev->flags) &&
1734 (conf->raid_disks - mddev->degraded) == 1) {
1735 set_bit(MD_BROKEN, &mddev->flags);
1736
1737 if (!mddev->fail_last_dev) {
1738 conf->recovery_disabled = mddev->recovery_disabled;
1739 spin_unlock_irqrestore(&conf->device_lock, flags);
1740 return;
1741 }
1742 }
1743 set_bit(Blocked, &rdev->flags);
1744 if (test_and_clear_bit(In_sync, &rdev->flags))
1745 mddev->degraded++;
1746 set_bit(Faulty, &rdev->flags);
1747 spin_unlock_irqrestore(&conf->device_lock, flags);
1748 /*
1749 * if recovery is running, make sure it aborts.
1750 */
1751 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1752 set_mask_bits(&mddev->sb_flags, 0,
1753 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1754 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1755 "md/raid1:%s: Operation continuing on %d devices.\n",
1756 mdname(mddev), rdev->bdev,
1757 mdname(mddev), conf->raid_disks - mddev->degraded);
1758 }
1759
print_conf(struct r1conf * conf)1760 static void print_conf(struct r1conf *conf)
1761 {
1762 int i;
1763
1764 pr_debug("RAID1 conf printout:\n");
1765 if (!conf) {
1766 pr_debug("(!conf)\n");
1767 return;
1768 }
1769 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1770 conf->raid_disks);
1771
1772 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1773 for (i = 0; i < conf->raid_disks; i++) {
1774 struct md_rdev *rdev = conf->mirrors[i].rdev;
1775 if (rdev)
1776 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1777 i, !test_bit(In_sync, &rdev->flags),
1778 !test_bit(Faulty, &rdev->flags),
1779 rdev->bdev);
1780 }
1781 }
1782
close_sync(struct r1conf * conf)1783 static void close_sync(struct r1conf *conf)
1784 {
1785 int idx;
1786
1787 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1788 _wait_barrier(conf, idx, false);
1789 _allow_barrier(conf, idx);
1790 }
1791
1792 mempool_exit(&conf->r1buf_pool);
1793 }
1794
raid1_spare_active(struct mddev * mddev)1795 static int raid1_spare_active(struct mddev *mddev)
1796 {
1797 int i;
1798 struct r1conf *conf = mddev->private;
1799 int count = 0;
1800 unsigned long flags;
1801
1802 /*
1803 * Find all failed disks within the RAID1 configuration
1804 * and mark them readable.
1805 * Called under mddev lock, so rcu protection not needed.
1806 * device_lock used to avoid races with raid1_end_read_request
1807 * which expects 'In_sync' flags and ->degraded to be consistent.
1808 */
1809 spin_lock_irqsave(&conf->device_lock, flags);
1810 for (i = 0; i < conf->raid_disks; i++) {
1811 struct md_rdev *rdev = conf->mirrors[i].rdev;
1812 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1813 if (repl
1814 && !test_bit(Candidate, &repl->flags)
1815 && repl->recovery_offset == MaxSector
1816 && !test_bit(Faulty, &repl->flags)
1817 && !test_and_set_bit(In_sync, &repl->flags)) {
1818 /* replacement has just become active */
1819 if (!rdev ||
1820 !test_and_clear_bit(In_sync, &rdev->flags))
1821 count++;
1822 if (rdev) {
1823 /* Replaced device not technically
1824 * faulty, but we need to be sure
1825 * it gets removed and never re-added
1826 */
1827 set_bit(Faulty, &rdev->flags);
1828 sysfs_notify_dirent_safe(
1829 rdev->sysfs_state);
1830 }
1831 }
1832 if (rdev
1833 && rdev->recovery_offset == MaxSector
1834 && !test_bit(Faulty, &rdev->flags)
1835 && !test_and_set_bit(In_sync, &rdev->flags)) {
1836 count++;
1837 sysfs_notify_dirent_safe(rdev->sysfs_state);
1838 }
1839 }
1840 mddev->degraded -= count;
1841 spin_unlock_irqrestore(&conf->device_lock, flags);
1842
1843 print_conf(conf);
1844 return count;
1845 }
1846
raid1_add_conf(struct r1conf * conf,struct md_rdev * rdev,int disk,bool replacement)1847 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1848 bool replacement)
1849 {
1850 struct raid1_info *info = conf->mirrors + disk;
1851
1852 if (replacement)
1853 info += conf->raid_disks;
1854
1855 if (info->rdev)
1856 return false;
1857
1858 if (bdev_nonrot(rdev->bdev)) {
1859 set_bit(Nonrot, &rdev->flags);
1860 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1861 }
1862
1863 rdev->raid_disk = disk;
1864 info->head_position = 0;
1865 info->seq_start = MaxSector;
1866 WRITE_ONCE(info->rdev, rdev);
1867
1868 return true;
1869 }
1870
raid1_remove_conf(struct r1conf * conf,int disk)1871 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1872 {
1873 struct raid1_info *info = conf->mirrors + disk;
1874 struct md_rdev *rdev = info->rdev;
1875
1876 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1877 atomic_read(&rdev->nr_pending))
1878 return false;
1879
1880 /* Only remove non-faulty devices if recovery is not possible. */
1881 if (!test_bit(Faulty, &rdev->flags) &&
1882 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1883 rdev->mddev->degraded < conf->raid_disks)
1884 return false;
1885
1886 if (test_and_clear_bit(Nonrot, &rdev->flags))
1887 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1888
1889 WRITE_ONCE(info->rdev, NULL);
1890 return true;
1891 }
1892
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1893 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1894 {
1895 struct r1conf *conf = mddev->private;
1896 int err = -EEXIST;
1897 int mirror = 0, repl_slot = -1;
1898 struct raid1_info *p;
1899 int first = 0;
1900 int last = conf->raid_disks - 1;
1901
1902 if (mddev->recovery_disabled == conf->recovery_disabled)
1903 return -EBUSY;
1904
1905 if (rdev->raid_disk >= 0)
1906 first = last = rdev->raid_disk;
1907
1908 /*
1909 * find the disk ... but prefer rdev->saved_raid_disk
1910 * if possible.
1911 */
1912 if (rdev->saved_raid_disk >= 0 &&
1913 rdev->saved_raid_disk >= first &&
1914 rdev->saved_raid_disk < conf->raid_disks &&
1915 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1916 first = last = rdev->saved_raid_disk;
1917
1918 for (mirror = first; mirror <= last; mirror++) {
1919 p = conf->mirrors + mirror;
1920 if (!p->rdev) {
1921 err = mddev_stack_new_rdev(mddev, rdev);
1922 if (err)
1923 return err;
1924
1925 raid1_add_conf(conf, rdev, mirror, false);
1926 /* As all devices are equivalent, we don't need a full recovery
1927 * if this was recently any drive of the array
1928 */
1929 if (rdev->saved_raid_disk < 0)
1930 conf->fullsync = 1;
1931 break;
1932 }
1933 if (test_bit(WantReplacement, &p->rdev->flags) &&
1934 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1935 repl_slot = mirror;
1936 }
1937
1938 if (err && repl_slot >= 0) {
1939 /* Add this device as a replacement */
1940 clear_bit(In_sync, &rdev->flags);
1941 set_bit(Replacement, &rdev->flags);
1942 raid1_add_conf(conf, rdev, repl_slot, true);
1943 err = 0;
1944 conf->fullsync = 1;
1945 }
1946
1947 print_conf(conf);
1948 return err;
1949 }
1950
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1951 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953 struct r1conf *conf = mddev->private;
1954 int err = 0;
1955 int number = rdev->raid_disk;
1956 struct raid1_info *p = conf->mirrors + number;
1957
1958 if (unlikely(number >= conf->raid_disks))
1959 goto abort;
1960
1961 if (rdev != p->rdev) {
1962 number += conf->raid_disks;
1963 p = conf->mirrors + number;
1964 }
1965
1966 print_conf(conf);
1967 if (rdev == p->rdev) {
1968 if (!raid1_remove_conf(conf, number)) {
1969 err = -EBUSY;
1970 goto abort;
1971 }
1972
1973 if (number < conf->raid_disks &&
1974 conf->mirrors[conf->raid_disks + number].rdev) {
1975 /* We just removed a device that is being replaced.
1976 * Move down the replacement. We drain all IO before
1977 * doing this to avoid confusion.
1978 */
1979 struct md_rdev *repl =
1980 conf->mirrors[conf->raid_disks + number].rdev;
1981 freeze_array(conf, 0);
1982 if (atomic_read(&repl->nr_pending)) {
1983 /* It means that some queued IO of retry_list
1984 * hold repl. Thus, we cannot set replacement
1985 * as NULL, avoiding rdev NULL pointer
1986 * dereference in sync_request_write and
1987 * handle_write_finished.
1988 */
1989 err = -EBUSY;
1990 unfreeze_array(conf);
1991 goto abort;
1992 }
1993 clear_bit(Replacement, &repl->flags);
1994 WRITE_ONCE(p->rdev, repl);
1995 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1996 unfreeze_array(conf);
1997 }
1998
1999 clear_bit(WantReplacement, &rdev->flags);
2000 err = md_integrity_register(mddev);
2001 }
2002 abort:
2003
2004 print_conf(conf);
2005 return err;
2006 }
2007
end_sync_read(struct bio * bio)2008 static void end_sync_read(struct bio *bio)
2009 {
2010 struct r1bio *r1_bio = get_resync_r1bio(bio);
2011
2012 update_head_pos(r1_bio->read_disk, r1_bio);
2013
2014 /*
2015 * we have read a block, now it needs to be re-written,
2016 * or re-read if the read failed.
2017 * We don't do much here, just schedule handling by raid1d
2018 */
2019 if (!bio->bi_status)
2020 set_bit(R1BIO_Uptodate, &r1_bio->state);
2021
2022 if (atomic_dec_and_test(&r1_bio->remaining))
2023 reschedule_retry(r1_bio);
2024 }
2025
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)2026 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2027 {
2028 sector_t sync_blocks = 0;
2029 sector_t s = r1_bio->sector;
2030 long sectors_to_go = r1_bio->sectors;
2031
2032 /* make sure these bits don't get cleared. */
2033 do {
2034 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2035 s += sync_blocks;
2036 sectors_to_go -= sync_blocks;
2037 } while (sectors_to_go > 0);
2038 }
2039
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)2040 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2041 {
2042 if (atomic_dec_and_test(&r1_bio->remaining)) {
2043 struct mddev *mddev = r1_bio->mddev;
2044 int s = r1_bio->sectors;
2045
2046 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2047 test_bit(R1BIO_WriteError, &r1_bio->state))
2048 reschedule_retry(r1_bio);
2049 else {
2050 put_buf(r1_bio);
2051 md_done_sync(mddev, s, uptodate);
2052 }
2053 }
2054 }
2055
end_sync_write(struct bio * bio)2056 static void end_sync_write(struct bio *bio)
2057 {
2058 int uptodate = !bio->bi_status;
2059 struct r1bio *r1_bio = get_resync_r1bio(bio);
2060 struct mddev *mddev = r1_bio->mddev;
2061 struct r1conf *conf = mddev->private;
2062 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2063
2064 if (!uptodate) {
2065 abort_sync_write(mddev, r1_bio);
2066 set_bit(WriteErrorSeen, &rdev->flags);
2067 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2068 set_bit(MD_RECOVERY_NEEDED, &
2069 mddev->recovery);
2070 set_bit(R1BIO_WriteError, &r1_bio->state);
2071 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2072 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2073 r1_bio->sector, r1_bio->sectors)) {
2074 set_bit(R1BIO_MadeGood, &r1_bio->state);
2075 }
2076
2077 put_sync_write_buf(r1_bio, uptodate);
2078 }
2079
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)2080 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2081 int sectors, struct page *page, blk_opf_t rw)
2082 {
2083 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2084 /* success */
2085 return 1;
2086 if (rw == REQ_OP_WRITE) {
2087 set_bit(WriteErrorSeen, &rdev->flags);
2088 if (!test_and_set_bit(WantReplacement,
2089 &rdev->flags))
2090 set_bit(MD_RECOVERY_NEEDED, &
2091 rdev->mddev->recovery);
2092 }
2093 /* need to record an error - either for the block or the device */
2094 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2095 md_error(rdev->mddev, rdev);
2096 return 0;
2097 }
2098
fix_sync_read_error(struct r1bio * r1_bio)2099 static int fix_sync_read_error(struct r1bio *r1_bio)
2100 {
2101 /* Try some synchronous reads of other devices to get
2102 * good data, much like with normal read errors. Only
2103 * read into the pages we already have so we don't
2104 * need to re-issue the read request.
2105 * We don't need to freeze the array, because being in an
2106 * active sync request, there is no normal IO, and
2107 * no overlapping syncs.
2108 * We don't need to check is_badblock() again as we
2109 * made sure that anything with a bad block in range
2110 * will have bi_end_io clear.
2111 */
2112 struct mddev *mddev = r1_bio->mddev;
2113 struct r1conf *conf = mddev->private;
2114 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2115 struct page **pages = get_resync_pages(bio)->pages;
2116 sector_t sect = r1_bio->sector;
2117 int sectors = r1_bio->sectors;
2118 int idx = 0;
2119 struct md_rdev *rdev;
2120
2121 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2122 if (test_bit(FailFast, &rdev->flags)) {
2123 /* Don't try recovering from here - just fail it
2124 * ... unless it is the last working device of course */
2125 md_error(mddev, rdev);
2126 if (test_bit(Faulty, &rdev->flags))
2127 /* Don't try to read from here, but make sure
2128 * put_buf does it's thing
2129 */
2130 bio->bi_end_io = end_sync_write;
2131 }
2132
2133 while(sectors) {
2134 int s = sectors;
2135 int d = r1_bio->read_disk;
2136 int success = 0;
2137 int start;
2138
2139 if (s > (PAGE_SIZE>>9))
2140 s = PAGE_SIZE >> 9;
2141 do {
2142 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2143 /* No rcu protection needed here devices
2144 * can only be removed when no resync is
2145 * active, and resync is currently active
2146 */
2147 rdev = conf->mirrors[d].rdev;
2148 if (sync_page_io(rdev, sect, s<<9,
2149 pages[idx],
2150 REQ_OP_READ, false)) {
2151 success = 1;
2152 break;
2153 }
2154 }
2155 d++;
2156 if (d == conf->raid_disks * 2)
2157 d = 0;
2158 } while (!success && d != r1_bio->read_disk);
2159
2160 if (!success) {
2161 int abort = 0;
2162 /* Cannot read from anywhere, this block is lost.
2163 * Record a bad block on each device. If that doesn't
2164 * work just disable and interrupt the recovery.
2165 * Don't fail devices as that won't really help.
2166 */
2167 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2168 mdname(mddev), bio->bi_bdev,
2169 (unsigned long long)r1_bio->sector);
2170 for (d = 0; d < conf->raid_disks * 2; d++) {
2171 rdev = conf->mirrors[d].rdev;
2172 if (!rdev || test_bit(Faulty, &rdev->flags))
2173 continue;
2174 if (!rdev_set_badblocks(rdev, sect, s, 0))
2175 abort = 1;
2176 }
2177 if (abort) {
2178 conf->recovery_disabled =
2179 mddev->recovery_disabled;
2180 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2181 md_done_sync(mddev, r1_bio->sectors, 0);
2182 put_buf(r1_bio);
2183 return 0;
2184 }
2185 /* Try next page */
2186 sectors -= s;
2187 sect += s;
2188 idx++;
2189 continue;
2190 }
2191
2192 start = d;
2193 /* write it back and re-read */
2194 while (d != r1_bio->read_disk) {
2195 if (d == 0)
2196 d = conf->raid_disks * 2;
2197 d--;
2198 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2199 continue;
2200 rdev = conf->mirrors[d].rdev;
2201 if (r1_sync_page_io(rdev, sect, s,
2202 pages[idx],
2203 REQ_OP_WRITE) == 0) {
2204 r1_bio->bios[d]->bi_end_io = NULL;
2205 rdev_dec_pending(rdev, mddev);
2206 }
2207 }
2208 d = start;
2209 while (d != r1_bio->read_disk) {
2210 if (d == 0)
2211 d = conf->raid_disks * 2;
2212 d--;
2213 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2214 continue;
2215 rdev = conf->mirrors[d].rdev;
2216 if (r1_sync_page_io(rdev, sect, s,
2217 pages[idx],
2218 REQ_OP_READ) != 0)
2219 atomic_add(s, &rdev->corrected_errors);
2220 }
2221 sectors -= s;
2222 sect += s;
2223 idx ++;
2224 }
2225 set_bit(R1BIO_Uptodate, &r1_bio->state);
2226 bio->bi_status = 0;
2227 return 1;
2228 }
2229
process_checks(struct r1bio * r1_bio)2230 static void process_checks(struct r1bio *r1_bio)
2231 {
2232 /* We have read all readable devices. If we haven't
2233 * got the block, then there is no hope left.
2234 * If we have, then we want to do a comparison
2235 * and skip the write if everything is the same.
2236 * If any blocks failed to read, then we need to
2237 * attempt an over-write
2238 */
2239 struct mddev *mddev = r1_bio->mddev;
2240 struct r1conf *conf = mddev->private;
2241 int primary;
2242 int i;
2243 int vcnt;
2244
2245 /* Fix variable parts of all bios */
2246 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2247 for (i = 0; i < conf->raid_disks * 2; i++) {
2248 blk_status_t status;
2249 struct bio *b = r1_bio->bios[i];
2250 struct resync_pages *rp = get_resync_pages(b);
2251 if (b->bi_end_io != end_sync_read)
2252 continue;
2253 /* fixup the bio for reuse, but preserve errno */
2254 status = b->bi_status;
2255 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2256 b->bi_status = status;
2257 b->bi_iter.bi_sector = r1_bio->sector +
2258 conf->mirrors[i].rdev->data_offset;
2259 b->bi_end_io = end_sync_read;
2260 rp->raid_bio = r1_bio;
2261 b->bi_private = rp;
2262
2263 /* initialize bvec table again */
2264 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2265 }
2266 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2267 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2268 !r1_bio->bios[primary]->bi_status) {
2269 r1_bio->bios[primary]->bi_end_io = NULL;
2270 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2271 break;
2272 }
2273 r1_bio->read_disk = primary;
2274 for (i = 0; i < conf->raid_disks * 2; i++) {
2275 int j = 0;
2276 struct bio *pbio = r1_bio->bios[primary];
2277 struct bio *sbio = r1_bio->bios[i];
2278 blk_status_t status = sbio->bi_status;
2279 struct page **ppages = get_resync_pages(pbio)->pages;
2280 struct page **spages = get_resync_pages(sbio)->pages;
2281 struct bio_vec *bi;
2282 int page_len[RESYNC_PAGES] = { 0 };
2283 struct bvec_iter_all iter_all;
2284
2285 if (sbio->bi_end_io != end_sync_read)
2286 continue;
2287 /* Now we can 'fixup' the error value */
2288 sbio->bi_status = 0;
2289
2290 bio_for_each_segment_all(bi, sbio, iter_all)
2291 page_len[j++] = bi->bv_len;
2292
2293 if (!status) {
2294 for (j = vcnt; j-- ; ) {
2295 if (memcmp(page_address(ppages[j]),
2296 page_address(spages[j]),
2297 page_len[j]))
2298 break;
2299 }
2300 } else
2301 j = 0;
2302 if (j >= 0)
2303 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2304 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2305 && !status)) {
2306 /* No need to write to this device. */
2307 sbio->bi_end_io = NULL;
2308 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2309 continue;
2310 }
2311
2312 bio_copy_data(sbio, pbio);
2313 }
2314 }
2315
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2316 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2317 {
2318 struct r1conf *conf = mddev->private;
2319 int i;
2320 int disks = conf->raid_disks * 2;
2321 struct bio *wbio;
2322
2323 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2324 /* ouch - failed to read all of that. */
2325 if (!fix_sync_read_error(r1_bio))
2326 return;
2327
2328 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2329 process_checks(r1_bio);
2330
2331 /*
2332 * schedule writes
2333 */
2334 atomic_set(&r1_bio->remaining, 1);
2335 for (i = 0; i < disks ; i++) {
2336 wbio = r1_bio->bios[i];
2337 if (wbio->bi_end_io == NULL ||
2338 (wbio->bi_end_io == end_sync_read &&
2339 (i == r1_bio->read_disk ||
2340 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2341 continue;
2342 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2343 abort_sync_write(mddev, r1_bio);
2344 continue;
2345 }
2346
2347 wbio->bi_opf = REQ_OP_WRITE;
2348 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2349 wbio->bi_opf |= MD_FAILFAST;
2350
2351 wbio->bi_end_io = end_sync_write;
2352 atomic_inc(&r1_bio->remaining);
2353 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2354
2355 submit_bio_noacct(wbio);
2356 }
2357
2358 put_sync_write_buf(r1_bio, 1);
2359 }
2360
2361 /*
2362 * This is a kernel thread which:
2363 *
2364 * 1. Retries failed read operations on working mirrors.
2365 * 2. Updates the raid superblock when problems encounter.
2366 * 3. Performs writes following reads for array synchronising.
2367 */
2368
fix_read_error(struct r1conf * conf,struct r1bio * r1_bio)2369 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2370 {
2371 sector_t sect = r1_bio->sector;
2372 int sectors = r1_bio->sectors;
2373 int read_disk = r1_bio->read_disk;
2374 struct mddev *mddev = conf->mddev;
2375 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2376
2377 if (exceed_read_errors(mddev, rdev)) {
2378 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2379 return;
2380 }
2381
2382 while(sectors) {
2383 int s = sectors;
2384 int d = read_disk;
2385 int success = 0;
2386 int start;
2387
2388 if (s > (PAGE_SIZE>>9))
2389 s = PAGE_SIZE >> 9;
2390
2391 do {
2392 rdev = conf->mirrors[d].rdev;
2393 if (rdev &&
2394 (test_bit(In_sync, &rdev->flags) ||
2395 (!test_bit(Faulty, &rdev->flags) &&
2396 rdev->recovery_offset >= sect + s)) &&
2397 rdev_has_badblock(rdev, sect, s) == 0) {
2398 atomic_inc(&rdev->nr_pending);
2399 if (sync_page_io(rdev, sect, s<<9,
2400 conf->tmppage, REQ_OP_READ, false))
2401 success = 1;
2402 rdev_dec_pending(rdev, mddev);
2403 if (success)
2404 break;
2405 }
2406
2407 d++;
2408 if (d == conf->raid_disks * 2)
2409 d = 0;
2410 } while (d != read_disk);
2411
2412 if (!success) {
2413 /* Cannot read from anywhere - mark it bad */
2414 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2415 if (!rdev_set_badblocks(rdev, sect, s, 0))
2416 md_error(mddev, rdev);
2417 break;
2418 }
2419 /* write it back and re-read */
2420 start = d;
2421 while (d != read_disk) {
2422 if (d==0)
2423 d = conf->raid_disks * 2;
2424 d--;
2425 rdev = conf->mirrors[d].rdev;
2426 if (rdev &&
2427 !test_bit(Faulty, &rdev->flags)) {
2428 atomic_inc(&rdev->nr_pending);
2429 r1_sync_page_io(rdev, sect, s,
2430 conf->tmppage, REQ_OP_WRITE);
2431 rdev_dec_pending(rdev, mddev);
2432 }
2433 }
2434 d = start;
2435 while (d != read_disk) {
2436 if (d==0)
2437 d = conf->raid_disks * 2;
2438 d--;
2439 rdev = conf->mirrors[d].rdev;
2440 if (rdev &&
2441 !test_bit(Faulty, &rdev->flags)) {
2442 atomic_inc(&rdev->nr_pending);
2443 if (r1_sync_page_io(rdev, sect, s,
2444 conf->tmppage, REQ_OP_READ)) {
2445 atomic_add(s, &rdev->corrected_errors);
2446 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2447 mdname(mddev), s,
2448 (unsigned long long)(sect +
2449 rdev->data_offset),
2450 rdev->bdev);
2451 }
2452 rdev_dec_pending(rdev, mddev);
2453 }
2454 }
2455 sectors -= s;
2456 sect += s;
2457 }
2458 }
2459
narrow_write_error(struct r1bio * r1_bio,int i)2460 static int narrow_write_error(struct r1bio *r1_bio, int i)
2461 {
2462 struct mddev *mddev = r1_bio->mddev;
2463 struct r1conf *conf = mddev->private;
2464 struct md_rdev *rdev = conf->mirrors[i].rdev;
2465
2466 /* bio has the data to be written to device 'i' where
2467 * we just recently had a write error.
2468 * We repeatedly clone the bio and trim down to one block,
2469 * then try the write. Where the write fails we record
2470 * a bad block.
2471 * It is conceivable that the bio doesn't exactly align with
2472 * blocks. We must handle this somehow.
2473 *
2474 * We currently own a reference on the rdev.
2475 */
2476
2477 int block_sectors;
2478 sector_t sector;
2479 int sectors;
2480 int sect_to_write = r1_bio->sectors;
2481 int ok = 1;
2482
2483 if (rdev->badblocks.shift < 0)
2484 return 0;
2485
2486 block_sectors = roundup(1 << rdev->badblocks.shift,
2487 bdev_logical_block_size(rdev->bdev) >> 9);
2488 sector = r1_bio->sector;
2489 sectors = ((sector + block_sectors)
2490 & ~(sector_t)(block_sectors - 1))
2491 - sector;
2492
2493 while (sect_to_write) {
2494 struct bio *wbio;
2495 if (sectors > sect_to_write)
2496 sectors = sect_to_write;
2497 /* Write at 'sector' for 'sectors'*/
2498
2499 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2500 wbio = bio_alloc_clone(rdev->bdev,
2501 r1_bio->behind_master_bio,
2502 GFP_NOIO, &mddev->bio_set);
2503 } else {
2504 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2505 GFP_NOIO, &mddev->bio_set);
2506 }
2507
2508 wbio->bi_opf = REQ_OP_WRITE;
2509 wbio->bi_iter.bi_sector = r1_bio->sector;
2510 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2511
2512 bio_trim(wbio, sector - r1_bio->sector, sectors);
2513 wbio->bi_iter.bi_sector += rdev->data_offset;
2514
2515 if (submit_bio_wait(wbio) < 0)
2516 /* failure! */
2517 ok = rdev_set_badblocks(rdev, sector,
2518 sectors, 0)
2519 && ok;
2520
2521 bio_put(wbio);
2522 sect_to_write -= sectors;
2523 sector += sectors;
2524 sectors = block_sectors;
2525 }
2526 return ok;
2527 }
2528
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2529 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2530 {
2531 int m;
2532 int s = r1_bio->sectors;
2533 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2534 struct md_rdev *rdev = conf->mirrors[m].rdev;
2535 struct bio *bio = r1_bio->bios[m];
2536 if (bio->bi_end_io == NULL)
2537 continue;
2538 if (!bio->bi_status &&
2539 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2540 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2541 }
2542 if (bio->bi_status &&
2543 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2544 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2545 md_error(conf->mddev, rdev);
2546 }
2547 }
2548 put_buf(r1_bio);
2549 md_done_sync(conf->mddev, s, 1);
2550 }
2551
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2552 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2553 {
2554 int m, idx;
2555 bool fail = false;
2556
2557 for (m = 0; m < conf->raid_disks * 2 ; m++)
2558 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2559 struct md_rdev *rdev = conf->mirrors[m].rdev;
2560 rdev_clear_badblocks(rdev,
2561 r1_bio->sector,
2562 r1_bio->sectors, 0);
2563 rdev_dec_pending(rdev, conf->mddev);
2564 } else if (r1_bio->bios[m] != NULL) {
2565 /* This drive got a write error. We need to
2566 * narrow down and record precise write
2567 * errors.
2568 */
2569 fail = true;
2570 if (!narrow_write_error(r1_bio, m)) {
2571 md_error(conf->mddev,
2572 conf->mirrors[m].rdev);
2573 /* an I/O failed, we can't clear the bitmap */
2574 set_bit(R1BIO_Degraded, &r1_bio->state);
2575 }
2576 rdev_dec_pending(conf->mirrors[m].rdev,
2577 conf->mddev);
2578 }
2579 if (fail) {
2580 spin_lock_irq(&conf->device_lock);
2581 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2582 idx = sector_to_idx(r1_bio->sector);
2583 atomic_inc(&conf->nr_queued[idx]);
2584 spin_unlock_irq(&conf->device_lock);
2585 /*
2586 * In case freeze_array() is waiting for condition
2587 * get_unqueued_pending() == extra to be true.
2588 */
2589 wake_up(&conf->wait_barrier);
2590 md_wakeup_thread(conf->mddev->thread);
2591 } else {
2592 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2593 close_write(r1_bio);
2594 raid_end_bio_io(r1_bio);
2595 }
2596 }
2597
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2598 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2599 {
2600 struct mddev *mddev = conf->mddev;
2601 struct bio *bio;
2602 struct md_rdev *rdev;
2603 sector_t sector;
2604
2605 clear_bit(R1BIO_ReadError, &r1_bio->state);
2606 /* we got a read error. Maybe the drive is bad. Maybe just
2607 * the block and we can fix it.
2608 * We freeze all other IO, and try reading the block from
2609 * other devices. When we find one, we re-write
2610 * and check it that fixes the read error.
2611 * This is all done synchronously while the array is
2612 * frozen
2613 */
2614
2615 bio = r1_bio->bios[r1_bio->read_disk];
2616 bio_put(bio);
2617 r1_bio->bios[r1_bio->read_disk] = NULL;
2618
2619 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2620 if (mddev->ro == 0
2621 && !test_bit(FailFast, &rdev->flags)) {
2622 freeze_array(conf, 1);
2623 fix_read_error(conf, r1_bio);
2624 unfreeze_array(conf);
2625 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2626 md_error(mddev, rdev);
2627 } else {
2628 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2629 }
2630
2631 rdev_dec_pending(rdev, conf->mddev);
2632 sector = r1_bio->sector;
2633 bio = r1_bio->master_bio;
2634
2635 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2636 r1_bio->state = 0;
2637 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2638 allow_barrier(conf, sector);
2639 }
2640
raid1d(struct md_thread * thread)2641 static void raid1d(struct md_thread *thread)
2642 {
2643 struct mddev *mddev = thread->mddev;
2644 struct r1bio *r1_bio;
2645 unsigned long flags;
2646 struct r1conf *conf = mddev->private;
2647 struct list_head *head = &conf->retry_list;
2648 struct blk_plug plug;
2649 int idx;
2650
2651 md_check_recovery(mddev);
2652
2653 if (!list_empty_careful(&conf->bio_end_io_list) &&
2654 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2655 LIST_HEAD(tmp);
2656 spin_lock_irqsave(&conf->device_lock, flags);
2657 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2658 list_splice_init(&conf->bio_end_io_list, &tmp);
2659 spin_unlock_irqrestore(&conf->device_lock, flags);
2660 while (!list_empty(&tmp)) {
2661 r1_bio = list_first_entry(&tmp, struct r1bio,
2662 retry_list);
2663 list_del(&r1_bio->retry_list);
2664 idx = sector_to_idx(r1_bio->sector);
2665 atomic_dec(&conf->nr_queued[idx]);
2666 if (mddev->degraded)
2667 set_bit(R1BIO_Degraded, &r1_bio->state);
2668 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2669 close_write(r1_bio);
2670 raid_end_bio_io(r1_bio);
2671 }
2672 }
2673
2674 blk_start_plug(&plug);
2675 for (;;) {
2676
2677 flush_pending_writes(conf);
2678
2679 spin_lock_irqsave(&conf->device_lock, flags);
2680 if (list_empty(head)) {
2681 spin_unlock_irqrestore(&conf->device_lock, flags);
2682 break;
2683 }
2684 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2685 list_del(head->prev);
2686 idx = sector_to_idx(r1_bio->sector);
2687 atomic_dec(&conf->nr_queued[idx]);
2688 spin_unlock_irqrestore(&conf->device_lock, flags);
2689
2690 mddev = r1_bio->mddev;
2691 conf = mddev->private;
2692 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2693 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2694 test_bit(R1BIO_WriteError, &r1_bio->state))
2695 handle_sync_write_finished(conf, r1_bio);
2696 else
2697 sync_request_write(mddev, r1_bio);
2698 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2699 test_bit(R1BIO_WriteError, &r1_bio->state))
2700 handle_write_finished(conf, r1_bio);
2701 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2702 handle_read_error(conf, r1_bio);
2703 else
2704 WARN_ON_ONCE(1);
2705
2706 cond_resched();
2707 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2708 md_check_recovery(mddev);
2709 }
2710 blk_finish_plug(&plug);
2711 }
2712
init_resync(struct r1conf * conf)2713 static int init_resync(struct r1conf *conf)
2714 {
2715 int buffs;
2716
2717 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2718 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2719
2720 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2721 r1buf_pool_free, conf->poolinfo);
2722 }
2723
raid1_alloc_init_r1buf(struct r1conf * conf)2724 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2725 {
2726 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2727 struct resync_pages *rps;
2728 struct bio *bio;
2729 int i;
2730
2731 for (i = conf->poolinfo->raid_disks; i--; ) {
2732 bio = r1bio->bios[i];
2733 rps = bio->bi_private;
2734 bio_reset(bio, NULL, 0);
2735 bio->bi_private = rps;
2736 }
2737 r1bio->master_bio = NULL;
2738 return r1bio;
2739 }
2740
2741 /*
2742 * perform a "sync" on one "block"
2743 *
2744 * We need to make sure that no normal I/O request - particularly write
2745 * requests - conflict with active sync requests.
2746 *
2747 * This is achieved by tracking pending requests and a 'barrier' concept
2748 * that can be installed to exclude normal IO requests.
2749 */
2750
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)2751 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2752 sector_t max_sector, int *skipped)
2753 {
2754 struct r1conf *conf = mddev->private;
2755 struct r1bio *r1_bio;
2756 struct bio *bio;
2757 sector_t nr_sectors;
2758 int disk = -1;
2759 int i;
2760 int wonly = -1;
2761 int write_targets = 0, read_targets = 0;
2762 sector_t sync_blocks;
2763 bool still_degraded = false;
2764 int good_sectors = RESYNC_SECTORS;
2765 int min_bad = 0; /* number of sectors that are bad in all devices */
2766 int idx = sector_to_idx(sector_nr);
2767 int page_idx = 0;
2768
2769 if (!mempool_initialized(&conf->r1buf_pool))
2770 if (init_resync(conf))
2771 return 0;
2772
2773 if (sector_nr >= max_sector) {
2774 /* If we aborted, we need to abort the
2775 * sync on the 'current' bitmap chunk (there will
2776 * only be one in raid1 resync.
2777 * We can find the current addess in mddev->curr_resync
2778 */
2779 if (mddev->curr_resync < max_sector) /* aborted */
2780 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2781 &sync_blocks);
2782 else /* completed sync */
2783 conf->fullsync = 0;
2784
2785 mddev->bitmap_ops->close_sync(mddev);
2786 close_sync(conf);
2787
2788 if (mddev_is_clustered(mddev)) {
2789 conf->cluster_sync_low = 0;
2790 conf->cluster_sync_high = 0;
2791 }
2792 return 0;
2793 }
2794
2795 if (mddev->bitmap == NULL &&
2796 mddev->recovery_cp == MaxSector &&
2797 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2798 conf->fullsync == 0) {
2799 *skipped = 1;
2800 return max_sector - sector_nr;
2801 }
2802 /* before building a request, check if we can skip these blocks..
2803 * This call the bitmap_start_sync doesn't actually record anything
2804 */
2805 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2806 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2807 /* We can skip this block, and probably several more */
2808 *skipped = 1;
2809 return sync_blocks;
2810 }
2811
2812 /*
2813 * If there is non-resync activity waiting for a turn, then let it
2814 * though before starting on this new sync request.
2815 */
2816 if (atomic_read(&conf->nr_waiting[idx]))
2817 schedule_timeout_uninterruptible(1);
2818
2819 /* we are incrementing sector_nr below. To be safe, we check against
2820 * sector_nr + two times RESYNC_SECTORS
2821 */
2822
2823 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2824 mddev_is_clustered(mddev) &&
2825 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2826
2827 if (raise_barrier(conf, sector_nr))
2828 return 0;
2829
2830 r1_bio = raid1_alloc_init_r1buf(conf);
2831
2832 /*
2833 * If we get a correctably read error during resync or recovery,
2834 * we might want to read from a different device. So we
2835 * flag all drives that could conceivably be read from for READ,
2836 * and any others (which will be non-In_sync devices) for WRITE.
2837 * If a read fails, we try reading from something else for which READ
2838 * is OK.
2839 */
2840
2841 r1_bio->mddev = mddev;
2842 r1_bio->sector = sector_nr;
2843 r1_bio->state = 0;
2844 set_bit(R1BIO_IsSync, &r1_bio->state);
2845 /* make sure good_sectors won't go across barrier unit boundary */
2846 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2847
2848 for (i = 0; i < conf->raid_disks * 2; i++) {
2849 struct md_rdev *rdev;
2850 bio = r1_bio->bios[i];
2851
2852 rdev = conf->mirrors[i].rdev;
2853 if (rdev == NULL ||
2854 test_bit(Faulty, &rdev->flags)) {
2855 if (i < conf->raid_disks)
2856 still_degraded = true;
2857 } else if (!test_bit(In_sync, &rdev->flags)) {
2858 bio->bi_opf = REQ_OP_WRITE;
2859 bio->bi_end_io = end_sync_write;
2860 write_targets ++;
2861 } else {
2862 /* may need to read from here */
2863 sector_t first_bad = MaxSector;
2864 int bad_sectors;
2865
2866 if (is_badblock(rdev, sector_nr, good_sectors,
2867 &first_bad, &bad_sectors)) {
2868 if (first_bad > sector_nr)
2869 good_sectors = first_bad - sector_nr;
2870 else {
2871 bad_sectors -= (sector_nr - first_bad);
2872 if (min_bad == 0 ||
2873 min_bad > bad_sectors)
2874 min_bad = bad_sectors;
2875 }
2876 }
2877 if (sector_nr < first_bad) {
2878 if (test_bit(WriteMostly, &rdev->flags)) {
2879 if (wonly < 0)
2880 wonly = i;
2881 } else {
2882 if (disk < 0)
2883 disk = i;
2884 }
2885 bio->bi_opf = REQ_OP_READ;
2886 bio->bi_end_io = end_sync_read;
2887 read_targets++;
2888 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2889 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2890 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2891 /*
2892 * The device is suitable for reading (InSync),
2893 * but has bad block(s) here. Let's try to correct them,
2894 * if we are doing resync or repair. Otherwise, leave
2895 * this device alone for this sync request.
2896 */
2897 bio->bi_opf = REQ_OP_WRITE;
2898 bio->bi_end_io = end_sync_write;
2899 write_targets++;
2900 }
2901 }
2902 if (rdev && bio->bi_end_io) {
2903 atomic_inc(&rdev->nr_pending);
2904 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2905 bio_set_dev(bio, rdev->bdev);
2906 if (test_bit(FailFast, &rdev->flags))
2907 bio->bi_opf |= MD_FAILFAST;
2908 }
2909 }
2910 if (disk < 0)
2911 disk = wonly;
2912 r1_bio->read_disk = disk;
2913
2914 if (read_targets == 0 && min_bad > 0) {
2915 /* These sectors are bad on all InSync devices, so we
2916 * need to mark them bad on all write targets
2917 */
2918 int ok = 1;
2919 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2920 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2921 struct md_rdev *rdev = conf->mirrors[i].rdev;
2922 ok = rdev_set_badblocks(rdev, sector_nr,
2923 min_bad, 0
2924 ) && ok;
2925 }
2926 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2927 *skipped = 1;
2928 put_buf(r1_bio);
2929
2930 if (!ok) {
2931 /* Cannot record the badblocks, so need to
2932 * abort the resync.
2933 * If there are multiple read targets, could just
2934 * fail the really bad ones ???
2935 */
2936 conf->recovery_disabled = mddev->recovery_disabled;
2937 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2938 return 0;
2939 } else
2940 return min_bad;
2941
2942 }
2943 if (min_bad > 0 && min_bad < good_sectors) {
2944 /* only resync enough to reach the next bad->good
2945 * transition */
2946 good_sectors = min_bad;
2947 }
2948
2949 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2950 /* extra read targets are also write targets */
2951 write_targets += read_targets-1;
2952
2953 if (write_targets == 0 || read_targets == 0) {
2954 /* There is nowhere to write, so all non-sync
2955 * drives must be failed - so we are finished
2956 */
2957 sector_t rv;
2958 if (min_bad > 0)
2959 max_sector = sector_nr + min_bad;
2960 rv = max_sector - sector_nr;
2961 *skipped = 1;
2962 put_buf(r1_bio);
2963 return rv;
2964 }
2965
2966 if (max_sector > mddev->resync_max)
2967 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2968 if (max_sector > sector_nr + good_sectors)
2969 max_sector = sector_nr + good_sectors;
2970 nr_sectors = 0;
2971 sync_blocks = 0;
2972 do {
2973 struct page *page;
2974 int len = PAGE_SIZE;
2975 if (sector_nr + (len>>9) > max_sector)
2976 len = (max_sector - sector_nr) << 9;
2977 if (len == 0)
2978 break;
2979 if (sync_blocks == 0) {
2980 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
2981 &sync_blocks, still_degraded) &&
2982 !conf->fullsync &&
2983 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2984 break;
2985 if ((len >> 9) > sync_blocks)
2986 len = sync_blocks<<9;
2987 }
2988
2989 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2990 struct resync_pages *rp;
2991
2992 bio = r1_bio->bios[i];
2993 rp = get_resync_pages(bio);
2994 if (bio->bi_end_io) {
2995 page = resync_fetch_page(rp, page_idx);
2996
2997 /*
2998 * won't fail because the vec table is big
2999 * enough to hold all these pages
3000 */
3001 __bio_add_page(bio, page, len, 0);
3002 }
3003 }
3004 nr_sectors += len>>9;
3005 sector_nr += len>>9;
3006 sync_blocks -= (len>>9);
3007 } while (++page_idx < RESYNC_PAGES);
3008
3009 r1_bio->sectors = nr_sectors;
3010
3011 if (mddev_is_clustered(mddev) &&
3012 conf->cluster_sync_high < sector_nr + nr_sectors) {
3013 conf->cluster_sync_low = mddev->curr_resync_completed;
3014 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3015 /* Send resync message */
3016 md_cluster_ops->resync_info_update(mddev,
3017 conf->cluster_sync_low,
3018 conf->cluster_sync_high);
3019 }
3020
3021 /* For a user-requested sync, we read all readable devices and do a
3022 * compare
3023 */
3024 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3025 atomic_set(&r1_bio->remaining, read_targets);
3026 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3027 bio = r1_bio->bios[i];
3028 if (bio->bi_end_io == end_sync_read) {
3029 read_targets--;
3030 md_sync_acct_bio(bio, nr_sectors);
3031 if (read_targets == 1)
3032 bio->bi_opf &= ~MD_FAILFAST;
3033 submit_bio_noacct(bio);
3034 }
3035 }
3036 } else {
3037 atomic_set(&r1_bio->remaining, 1);
3038 bio = r1_bio->bios[r1_bio->read_disk];
3039 md_sync_acct_bio(bio, nr_sectors);
3040 if (read_targets == 1)
3041 bio->bi_opf &= ~MD_FAILFAST;
3042 submit_bio_noacct(bio);
3043 }
3044 return nr_sectors;
3045 }
3046
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)3047 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3048 {
3049 if (sectors)
3050 return sectors;
3051
3052 return mddev->dev_sectors;
3053 }
3054
setup_conf(struct mddev * mddev)3055 static struct r1conf *setup_conf(struct mddev *mddev)
3056 {
3057 struct r1conf *conf;
3058 int i;
3059 struct raid1_info *disk;
3060 struct md_rdev *rdev;
3061 int err = -ENOMEM;
3062
3063 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3064 if (!conf)
3065 goto abort;
3066
3067 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3068 sizeof(atomic_t), GFP_KERNEL);
3069 if (!conf->nr_pending)
3070 goto abort;
3071
3072 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3073 sizeof(atomic_t), GFP_KERNEL);
3074 if (!conf->nr_waiting)
3075 goto abort;
3076
3077 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3078 sizeof(atomic_t), GFP_KERNEL);
3079 if (!conf->nr_queued)
3080 goto abort;
3081
3082 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3083 sizeof(atomic_t), GFP_KERNEL);
3084 if (!conf->barrier)
3085 goto abort;
3086
3087 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3088 mddev->raid_disks, 2),
3089 GFP_KERNEL);
3090 if (!conf->mirrors)
3091 goto abort;
3092
3093 conf->tmppage = alloc_page(GFP_KERNEL);
3094 if (!conf->tmppage)
3095 goto abort;
3096
3097 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3098 if (!conf->poolinfo)
3099 goto abort;
3100 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3101 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3102 rbio_pool_free, conf->poolinfo);
3103 if (err)
3104 goto abort;
3105
3106 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3107 if (err)
3108 goto abort;
3109
3110 conf->poolinfo->mddev = mddev;
3111
3112 err = -EINVAL;
3113 spin_lock_init(&conf->device_lock);
3114 conf->raid_disks = mddev->raid_disks;
3115 rdev_for_each(rdev, mddev) {
3116 int disk_idx = rdev->raid_disk;
3117
3118 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3119 continue;
3120
3121 if (!raid1_add_conf(conf, rdev, disk_idx,
3122 test_bit(Replacement, &rdev->flags)))
3123 goto abort;
3124 }
3125 conf->mddev = mddev;
3126 INIT_LIST_HEAD(&conf->retry_list);
3127 INIT_LIST_HEAD(&conf->bio_end_io_list);
3128
3129 spin_lock_init(&conf->resync_lock);
3130 init_waitqueue_head(&conf->wait_barrier);
3131
3132 bio_list_init(&conf->pending_bio_list);
3133 conf->recovery_disabled = mddev->recovery_disabled - 1;
3134
3135 err = -EIO;
3136 for (i = 0; i < conf->raid_disks * 2; i++) {
3137
3138 disk = conf->mirrors + i;
3139
3140 if (i < conf->raid_disks &&
3141 disk[conf->raid_disks].rdev) {
3142 /* This slot has a replacement. */
3143 if (!disk->rdev) {
3144 /* No original, just make the replacement
3145 * a recovering spare
3146 */
3147 disk->rdev =
3148 disk[conf->raid_disks].rdev;
3149 disk[conf->raid_disks].rdev = NULL;
3150 } else if (!test_bit(In_sync, &disk->rdev->flags))
3151 /* Original is not in_sync - bad */
3152 goto abort;
3153 }
3154
3155 if (!disk->rdev ||
3156 !test_bit(In_sync, &disk->rdev->flags)) {
3157 disk->head_position = 0;
3158 if (disk->rdev &&
3159 (disk->rdev->saved_raid_disk < 0))
3160 conf->fullsync = 1;
3161 }
3162 }
3163
3164 err = -ENOMEM;
3165 rcu_assign_pointer(conf->thread,
3166 md_register_thread(raid1d, mddev, "raid1"));
3167 if (!conf->thread)
3168 goto abort;
3169
3170 return conf;
3171
3172 abort:
3173 if (conf) {
3174 mempool_exit(&conf->r1bio_pool);
3175 kfree(conf->mirrors);
3176 safe_put_page(conf->tmppage);
3177 kfree(conf->poolinfo);
3178 kfree(conf->nr_pending);
3179 kfree(conf->nr_waiting);
3180 kfree(conf->nr_queued);
3181 kfree(conf->barrier);
3182 bioset_exit(&conf->bio_split);
3183 kfree(conf);
3184 }
3185 return ERR_PTR(err);
3186 }
3187
raid1_set_limits(struct mddev * mddev)3188 static int raid1_set_limits(struct mddev *mddev)
3189 {
3190 struct queue_limits lim;
3191 int err;
3192
3193 md_init_stacking_limits(&lim);
3194 lim.max_write_zeroes_sectors = 0;
3195 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3196 if (err) {
3197 queue_limits_cancel_update(mddev->gendisk->queue);
3198 return err;
3199 }
3200 return queue_limits_set(mddev->gendisk->queue, &lim);
3201 }
3202
raid1_run(struct mddev * mddev)3203 static int raid1_run(struct mddev *mddev)
3204 {
3205 struct r1conf *conf;
3206 int i;
3207 int ret;
3208
3209 if (mddev->level != 1) {
3210 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3211 mdname(mddev), mddev->level);
3212 return -EIO;
3213 }
3214 if (mddev->reshape_position != MaxSector) {
3215 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3216 mdname(mddev));
3217 return -EIO;
3218 }
3219
3220 /*
3221 * copy the already verified devices into our private RAID1
3222 * bookkeeping area. [whatever we allocate in run(),
3223 * should be freed in raid1_free()]
3224 */
3225 if (mddev->private == NULL)
3226 conf = setup_conf(mddev);
3227 else
3228 conf = mddev->private;
3229
3230 if (IS_ERR(conf))
3231 return PTR_ERR(conf);
3232
3233 if (!mddev_is_dm(mddev)) {
3234 ret = raid1_set_limits(mddev);
3235 if (ret)
3236 return ret;
3237 }
3238
3239 mddev->degraded = 0;
3240 for (i = 0; i < conf->raid_disks; i++)
3241 if (conf->mirrors[i].rdev == NULL ||
3242 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3243 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3244 mddev->degraded++;
3245 /*
3246 * RAID1 needs at least one disk in active
3247 */
3248 if (conf->raid_disks - mddev->degraded < 1) {
3249 md_unregister_thread(mddev, &conf->thread);
3250 return -EINVAL;
3251 }
3252
3253 if (conf->raid_disks - mddev->degraded == 1)
3254 mddev->recovery_cp = MaxSector;
3255
3256 if (mddev->recovery_cp != MaxSector)
3257 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3258 mdname(mddev));
3259 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3260 mdname(mddev), mddev->raid_disks - mddev->degraded,
3261 mddev->raid_disks);
3262
3263 /*
3264 * Ok, everything is just fine now
3265 */
3266 rcu_assign_pointer(mddev->thread, conf->thread);
3267 rcu_assign_pointer(conf->thread, NULL);
3268 mddev->private = conf;
3269 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3270
3271 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3272
3273 ret = md_integrity_register(mddev);
3274 if (ret)
3275 md_unregister_thread(mddev, &mddev->thread);
3276 return ret;
3277 }
3278
raid1_free(struct mddev * mddev,void * priv)3279 static void raid1_free(struct mddev *mddev, void *priv)
3280 {
3281 struct r1conf *conf = priv;
3282
3283 mempool_exit(&conf->r1bio_pool);
3284 kfree(conf->mirrors);
3285 safe_put_page(conf->tmppage);
3286 kfree(conf->poolinfo);
3287 kfree(conf->nr_pending);
3288 kfree(conf->nr_waiting);
3289 kfree(conf->nr_queued);
3290 kfree(conf->barrier);
3291 bioset_exit(&conf->bio_split);
3292 kfree(conf);
3293 }
3294
raid1_resize(struct mddev * mddev,sector_t sectors)3295 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3296 {
3297 /* no resync is happening, and there is enough space
3298 * on all devices, so we can resize.
3299 * We need to make sure resync covers any new space.
3300 * If the array is shrinking we should possibly wait until
3301 * any io in the removed space completes, but it hardly seems
3302 * worth it.
3303 */
3304 sector_t newsize = raid1_size(mddev, sectors, 0);
3305 int ret;
3306
3307 if (mddev->external_size &&
3308 mddev->array_sectors > newsize)
3309 return -EINVAL;
3310
3311 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3312 if (ret)
3313 return ret;
3314
3315 md_set_array_sectors(mddev, newsize);
3316 if (sectors > mddev->dev_sectors &&
3317 mddev->recovery_cp > mddev->dev_sectors) {
3318 mddev->recovery_cp = mddev->dev_sectors;
3319 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3320 }
3321 mddev->dev_sectors = sectors;
3322 mddev->resync_max_sectors = sectors;
3323 return 0;
3324 }
3325
raid1_reshape(struct mddev * mddev)3326 static int raid1_reshape(struct mddev *mddev)
3327 {
3328 /* We need to:
3329 * 1/ resize the r1bio_pool
3330 * 2/ resize conf->mirrors
3331 *
3332 * We allocate a new r1bio_pool if we can.
3333 * Then raise a device barrier and wait until all IO stops.
3334 * Then resize conf->mirrors and swap in the new r1bio pool.
3335 *
3336 * At the same time, we "pack" the devices so that all the missing
3337 * devices have the higher raid_disk numbers.
3338 */
3339 mempool_t newpool, oldpool;
3340 struct pool_info *newpoolinfo;
3341 struct raid1_info *newmirrors;
3342 struct r1conf *conf = mddev->private;
3343 int cnt, raid_disks;
3344 unsigned long flags;
3345 int d, d2;
3346 int ret;
3347
3348 memset(&newpool, 0, sizeof(newpool));
3349 memset(&oldpool, 0, sizeof(oldpool));
3350
3351 /* Cannot change chunk_size, layout, or level */
3352 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3353 mddev->layout != mddev->new_layout ||
3354 mddev->level != mddev->new_level) {
3355 mddev->new_chunk_sectors = mddev->chunk_sectors;
3356 mddev->new_layout = mddev->layout;
3357 mddev->new_level = mddev->level;
3358 return -EINVAL;
3359 }
3360
3361 if (!mddev_is_clustered(mddev))
3362 md_allow_write(mddev);
3363
3364 raid_disks = mddev->raid_disks + mddev->delta_disks;
3365
3366 if (raid_disks < conf->raid_disks) {
3367 cnt=0;
3368 for (d= 0; d < conf->raid_disks; d++)
3369 if (conf->mirrors[d].rdev)
3370 cnt++;
3371 if (cnt > raid_disks)
3372 return -EBUSY;
3373 }
3374
3375 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3376 if (!newpoolinfo)
3377 return -ENOMEM;
3378 newpoolinfo->mddev = mddev;
3379 newpoolinfo->raid_disks = raid_disks * 2;
3380
3381 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3382 rbio_pool_free, newpoolinfo);
3383 if (ret) {
3384 kfree(newpoolinfo);
3385 return ret;
3386 }
3387 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3388 raid_disks, 2),
3389 GFP_KERNEL);
3390 if (!newmirrors) {
3391 kfree(newpoolinfo);
3392 mempool_exit(&newpool);
3393 return -ENOMEM;
3394 }
3395
3396 freeze_array(conf, 0);
3397
3398 /* ok, everything is stopped */
3399 oldpool = conf->r1bio_pool;
3400 conf->r1bio_pool = newpool;
3401
3402 for (d = d2 = 0; d < conf->raid_disks; d++) {
3403 struct md_rdev *rdev = conf->mirrors[d].rdev;
3404 if (rdev && rdev->raid_disk != d2) {
3405 sysfs_unlink_rdev(mddev, rdev);
3406 rdev->raid_disk = d2;
3407 sysfs_unlink_rdev(mddev, rdev);
3408 if (sysfs_link_rdev(mddev, rdev))
3409 pr_warn("md/raid1:%s: cannot register rd%d\n",
3410 mdname(mddev), rdev->raid_disk);
3411 }
3412 if (rdev)
3413 newmirrors[d2++].rdev = rdev;
3414 }
3415 kfree(conf->mirrors);
3416 conf->mirrors = newmirrors;
3417 kfree(conf->poolinfo);
3418 conf->poolinfo = newpoolinfo;
3419
3420 spin_lock_irqsave(&conf->device_lock, flags);
3421 mddev->degraded += (raid_disks - conf->raid_disks);
3422 spin_unlock_irqrestore(&conf->device_lock, flags);
3423 conf->raid_disks = mddev->raid_disks = raid_disks;
3424 mddev->delta_disks = 0;
3425
3426 unfreeze_array(conf);
3427
3428 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3429 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3430 md_wakeup_thread(mddev->thread);
3431
3432 mempool_exit(&oldpool);
3433 return 0;
3434 }
3435
raid1_quiesce(struct mddev * mddev,int quiesce)3436 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3437 {
3438 struct r1conf *conf = mddev->private;
3439
3440 if (quiesce)
3441 freeze_array(conf, 0);
3442 else
3443 unfreeze_array(conf);
3444 }
3445
raid1_takeover(struct mddev * mddev)3446 static void *raid1_takeover(struct mddev *mddev)
3447 {
3448 /* raid1 can take over:
3449 * raid5 with 2 devices, any layout or chunk size
3450 */
3451 if (mddev->level == 5 && mddev->raid_disks == 2) {
3452 struct r1conf *conf;
3453 mddev->new_level = 1;
3454 mddev->new_layout = 0;
3455 mddev->new_chunk_sectors = 0;
3456 conf = setup_conf(mddev);
3457 if (!IS_ERR(conf)) {
3458 /* Array must appear to be quiesced */
3459 conf->array_frozen = 1;
3460 mddev_clear_unsupported_flags(mddev,
3461 UNSUPPORTED_MDDEV_FLAGS);
3462 }
3463 return conf;
3464 }
3465 return ERR_PTR(-EINVAL);
3466 }
3467
3468 static struct md_personality raid1_personality =
3469 {
3470 .name = "raid1",
3471 .level = 1,
3472 .owner = THIS_MODULE,
3473 .make_request = raid1_make_request,
3474 .run = raid1_run,
3475 .free = raid1_free,
3476 .status = raid1_status,
3477 .error_handler = raid1_error,
3478 .hot_add_disk = raid1_add_disk,
3479 .hot_remove_disk= raid1_remove_disk,
3480 .spare_active = raid1_spare_active,
3481 .sync_request = raid1_sync_request,
3482 .resize = raid1_resize,
3483 .size = raid1_size,
3484 .check_reshape = raid1_reshape,
3485 .quiesce = raid1_quiesce,
3486 .takeover = raid1_takeover,
3487 };
3488
raid_init(void)3489 static int __init raid_init(void)
3490 {
3491 return register_md_personality(&raid1_personality);
3492 }
3493
raid_exit(void)3494 static void raid_exit(void)
3495 {
3496 unregister_md_personality(&raid1_personality);
3497 }
3498
3499 module_init(raid_init);
3500 module_exit(raid_exit);
3501 MODULE_LICENSE("GPL");
3502 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3503 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3504 MODULE_ALIAS("md-raid1");
3505 MODULE_ALIAS("md-level-1");
3506