xref: /linux/tools/lib/bpf/btf_dump.c (revision ee88bddf7f2f5d1f1da87dd7bedc734048b70e88)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <limits.h>
17 #include <linux/err.h>
18 #include <linux/btf.h>
19 #include <linux/kernel.h>
20 #include "btf.h"
21 #include "hashmap.h"
22 #include "libbpf.h"
23 #include "libbpf_internal.h"
24 #include "str_error.h"
25 
26 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
27 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
28 
pfx(int lvl)29 static const char *pfx(int lvl)
30 {
31 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
32 }
33 
34 enum btf_dump_type_order_state {
35 	NOT_ORDERED,
36 	ORDERING,
37 	ORDERED,
38 };
39 
40 enum btf_dump_type_emit_state {
41 	NOT_EMITTED,
42 	EMITTING,
43 	EMITTED,
44 };
45 
46 /* per-type auxiliary state */
47 struct btf_dump_type_aux_state {
48 	/* topological sorting state */
49 	enum btf_dump_type_order_state order_state: 2;
50 	/* emitting state used to determine the need for forward declaration */
51 	enum btf_dump_type_emit_state emit_state: 2;
52 	/* whether forward declaration was already emitted */
53 	__u8 fwd_emitted: 1;
54 	/* whether unique non-duplicate name was already assigned */
55 	__u8 name_resolved: 1;
56 	/* whether type is referenced from any other type */
57 	__u8 referenced: 1;
58 };
59 
60 /* indent string length; one indent string is added for each indent level */
61 #define BTF_DATA_INDENT_STR_LEN			32
62 
63 /*
64  * Common internal data for BTF type data dump operations.
65  */
66 struct btf_dump_data {
67 	const void *data_end;		/* end of valid data to show */
68 	bool compact;
69 	bool skip_names;
70 	bool emit_zeroes;
71 	__u8 indent_lvl;	/* base indent level */
72 	char indent_str[BTF_DATA_INDENT_STR_LEN];
73 	/* below are used during iteration */
74 	int depth;
75 	bool is_array_member;
76 	bool is_array_terminated;
77 	bool is_array_char;
78 };
79 
80 struct btf_dump {
81 	const struct btf *btf;
82 	btf_dump_printf_fn_t printf_fn;
83 	void *cb_ctx;
84 	int ptr_sz;
85 	bool strip_mods;
86 	bool skip_anon_defs;
87 	int last_id;
88 
89 	/* per-type auxiliary state */
90 	struct btf_dump_type_aux_state *type_states;
91 	size_t type_states_cap;
92 	/* per-type optional cached unique name, must be freed, if present */
93 	const char **cached_names;
94 	size_t cached_names_cap;
95 
96 	/* topo-sorted list of dependent type definitions */
97 	__u32 *emit_queue;
98 	int emit_queue_cap;
99 	int emit_queue_cnt;
100 
101 	/*
102 	 * stack of type declarations (e.g., chain of modifiers, arrays,
103 	 * funcs, etc)
104 	 */
105 	__u32 *decl_stack;
106 	int decl_stack_cap;
107 	int decl_stack_cnt;
108 
109 	/* maps struct/union/enum name to a number of name occurrences */
110 	struct hashmap *type_names;
111 	/*
112 	 * maps typedef identifiers and enum value names to a number of such
113 	 * name occurrences
114 	 */
115 	struct hashmap *ident_names;
116 	/*
117 	 * data for typed display; allocated if needed.
118 	 */
119 	struct btf_dump_data *typed_dump;
120 };
121 
str_hash_fn(long key,void * ctx)122 static size_t str_hash_fn(long key, void *ctx)
123 {
124 	return str_hash((void *)key);
125 }
126 
str_equal_fn(long a,long b,void * ctx)127 static bool str_equal_fn(long a, long b, void *ctx)
128 {
129 	return strcmp((void *)a, (void *)b) == 0;
130 }
131 
btf_name_of(const struct btf_dump * d,__u32 name_off)132 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
133 {
134 	return btf__name_by_offset(d->btf, name_off);
135 }
136 
btf_dump_printf(const struct btf_dump * d,const char * fmt,...)137 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
138 {
139 	va_list args;
140 
141 	va_start(args, fmt);
142 	d->printf_fn(d->cb_ctx, fmt, args);
143 	va_end(args);
144 }
145 
146 static int btf_dump_mark_referenced(struct btf_dump *d);
147 static int btf_dump_resize(struct btf_dump *d);
148 
btf_dump__new(const struct btf * btf,btf_dump_printf_fn_t printf_fn,void * ctx,const struct btf_dump_opts * opts)149 struct btf_dump *btf_dump__new(const struct btf *btf,
150 			       btf_dump_printf_fn_t printf_fn,
151 			       void *ctx,
152 			       const struct btf_dump_opts *opts)
153 {
154 	struct btf_dump *d;
155 	int err;
156 
157 	if (!OPTS_VALID(opts, btf_dump_opts))
158 		return libbpf_err_ptr(-EINVAL);
159 
160 	if (!printf_fn)
161 		return libbpf_err_ptr(-EINVAL);
162 
163 	d = calloc(1, sizeof(struct btf_dump));
164 	if (!d)
165 		return libbpf_err_ptr(-ENOMEM);
166 
167 	d->btf = btf;
168 	d->printf_fn = printf_fn;
169 	d->cb_ctx = ctx;
170 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
171 
172 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
173 	if (IS_ERR(d->type_names)) {
174 		err = PTR_ERR(d->type_names);
175 		d->type_names = NULL;
176 		goto err;
177 	}
178 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
179 	if (IS_ERR(d->ident_names)) {
180 		err = PTR_ERR(d->ident_names);
181 		d->ident_names = NULL;
182 		goto err;
183 	}
184 
185 	err = btf_dump_resize(d);
186 	if (err)
187 		goto err;
188 
189 	return d;
190 err:
191 	btf_dump__free(d);
192 	return libbpf_err_ptr(err);
193 }
194 
btf_dump_resize(struct btf_dump * d)195 static int btf_dump_resize(struct btf_dump *d)
196 {
197 	int err, last_id = btf__type_cnt(d->btf) - 1;
198 
199 	if (last_id <= d->last_id)
200 		return 0;
201 
202 	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
203 			      sizeof(*d->type_states), last_id + 1))
204 		return -ENOMEM;
205 	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
206 			      sizeof(*d->cached_names), last_id + 1))
207 		return -ENOMEM;
208 
209 	if (d->last_id == 0) {
210 		/* VOID is special */
211 		d->type_states[0].order_state = ORDERED;
212 		d->type_states[0].emit_state = EMITTED;
213 	}
214 
215 	/* eagerly determine referenced types for anon enums */
216 	err = btf_dump_mark_referenced(d);
217 	if (err)
218 		return err;
219 
220 	d->last_id = last_id;
221 	return 0;
222 }
223 
btf_dump_free_names(struct hashmap * map)224 static void btf_dump_free_names(struct hashmap *map)
225 {
226 	size_t bkt;
227 	struct hashmap_entry *cur;
228 
229 	if (!map)
230 		return;
231 
232 	hashmap__for_each_entry(map, cur, bkt)
233 		free((void *)cur->pkey);
234 
235 	hashmap__free(map);
236 }
237 
btf_dump__free(struct btf_dump * d)238 void btf_dump__free(struct btf_dump *d)
239 {
240 	int i;
241 
242 	if (IS_ERR_OR_NULL(d))
243 		return;
244 
245 	free(d->type_states);
246 	if (d->cached_names) {
247 		/* any set cached name is owned by us and should be freed */
248 		for (i = 0; i <= d->last_id; i++) {
249 			if (d->cached_names[i])
250 				free((void *)d->cached_names[i]);
251 		}
252 	}
253 	free(d->cached_names);
254 	free(d->emit_queue);
255 	free(d->decl_stack);
256 	btf_dump_free_names(d->type_names);
257 	btf_dump_free_names(d->ident_names);
258 
259 	free(d);
260 }
261 
262 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
263 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
264 
265 /*
266  * Dump BTF type in a compilable C syntax, including all the necessary
267  * dependent types, necessary for compilation. If some of the dependent types
268  * were already emitted as part of previous btf_dump__dump_type() invocation
269  * for another type, they won't be emitted again. This API allows callers to
270  * filter out BTF types according to user-defined criterias and emitted only
271  * minimal subset of types, necessary to compile everything. Full struct/union
272  * definitions will still be emitted, even if the only usage is through
273  * pointer and could be satisfied with just a forward declaration.
274  *
275  * Dumping is done in two high-level passes:
276  *   1. Topologically sort type definitions to satisfy C rules of compilation.
277  *   2. Emit type definitions in C syntax.
278  *
279  * Returns 0 on success; <0, otherwise.
280  */
btf_dump__dump_type(struct btf_dump * d,__u32 id)281 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
282 {
283 	int err, i;
284 
285 	if (id >= btf__type_cnt(d->btf))
286 		return libbpf_err(-EINVAL);
287 
288 	err = btf_dump_resize(d);
289 	if (err)
290 		return libbpf_err(err);
291 
292 	d->emit_queue_cnt = 0;
293 	err = btf_dump_order_type(d, id, false);
294 	if (err < 0)
295 		return libbpf_err(err);
296 
297 	for (i = 0; i < d->emit_queue_cnt; i++)
298 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
299 
300 	return 0;
301 }
302 
303 /*
304  * Mark all types that are referenced from any other type. This is used to
305  * determine top-level anonymous enums that need to be emitted as an
306  * independent type declarations.
307  * Anonymous enums come in two flavors: either embedded in a struct's field
308  * definition, in which case they have to be declared inline as part of field
309  * type declaration; or as a top-level anonymous enum, typically used for
310  * declaring global constants. It's impossible to distinguish between two
311  * without knowing whether given enum type was referenced from other type:
312  * top-level anonymous enum won't be referenced by anything, while embedded
313  * one will.
314  */
btf_dump_mark_referenced(struct btf_dump * d)315 static int btf_dump_mark_referenced(struct btf_dump *d)
316 {
317 	int i, j, n = btf__type_cnt(d->btf);
318 	const struct btf_type *t;
319 	__u16 vlen;
320 
321 	for (i = d->last_id + 1; i < n; i++) {
322 		t = btf__type_by_id(d->btf, i);
323 		vlen = btf_vlen(t);
324 
325 		switch (btf_kind(t)) {
326 		case BTF_KIND_INT:
327 		case BTF_KIND_ENUM:
328 		case BTF_KIND_ENUM64:
329 		case BTF_KIND_FWD:
330 		case BTF_KIND_FLOAT:
331 			break;
332 
333 		case BTF_KIND_VOLATILE:
334 		case BTF_KIND_CONST:
335 		case BTF_KIND_RESTRICT:
336 		case BTF_KIND_PTR:
337 		case BTF_KIND_TYPEDEF:
338 		case BTF_KIND_FUNC:
339 		case BTF_KIND_VAR:
340 		case BTF_KIND_DECL_TAG:
341 		case BTF_KIND_TYPE_TAG:
342 			d->type_states[t->type].referenced = 1;
343 			break;
344 
345 		case BTF_KIND_ARRAY: {
346 			const struct btf_array *a = btf_array(t);
347 
348 			d->type_states[a->index_type].referenced = 1;
349 			d->type_states[a->type].referenced = 1;
350 			break;
351 		}
352 		case BTF_KIND_STRUCT:
353 		case BTF_KIND_UNION: {
354 			const struct btf_member *m = btf_members(t);
355 
356 			for (j = 0; j < vlen; j++, m++)
357 				d->type_states[m->type].referenced = 1;
358 			break;
359 		}
360 		case BTF_KIND_FUNC_PROTO: {
361 			const struct btf_param *p = btf_params(t);
362 
363 			for (j = 0; j < vlen; j++, p++)
364 				d->type_states[p->type].referenced = 1;
365 			break;
366 		}
367 		case BTF_KIND_DATASEC: {
368 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
369 
370 			for (j = 0; j < vlen; j++, v++)
371 				d->type_states[v->type].referenced = 1;
372 			break;
373 		}
374 		default:
375 			return -EINVAL;
376 		}
377 	}
378 	return 0;
379 }
380 
btf_dump_add_emit_queue_id(struct btf_dump * d,__u32 id)381 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
382 {
383 	__u32 *new_queue;
384 	size_t new_cap;
385 
386 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
387 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
388 		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
389 		if (!new_queue)
390 			return -ENOMEM;
391 		d->emit_queue = new_queue;
392 		d->emit_queue_cap = new_cap;
393 	}
394 
395 	d->emit_queue[d->emit_queue_cnt++] = id;
396 	return 0;
397 }
398 
399 /*
400  * Determine order of emitting dependent types and specified type to satisfy
401  * C compilation rules.  This is done through topological sorting with an
402  * additional complication which comes from C rules. The main idea for C is
403  * that if some type is "embedded" into a struct/union, it's size needs to be
404  * known at the time of definition of containing type. E.g., for:
405  *
406  *	struct A {};
407  *	struct B { struct A x; }
408  *
409  * struct A *HAS* to be defined before struct B, because it's "embedded",
410  * i.e., it is part of struct B layout. But in the following case:
411  *
412  *	struct A;
413  *	struct B { struct A *x; }
414  *	struct A {};
415  *
416  * it's enough to just have a forward declaration of struct A at the time of
417  * struct B definition, as struct B has a pointer to struct A, so the size of
418  * field x is known without knowing struct A size: it's sizeof(void *).
419  *
420  * Unfortunately, there are some trickier cases we need to handle, e.g.:
421  *
422  *	struct A {}; // if this was forward-declaration: compilation error
423  *	struct B {
424  *		struct { // anonymous struct
425  *			struct A y;
426  *		} *x;
427  *	};
428  *
429  * In this case, struct B's field x is a pointer, so it's size is known
430  * regardless of the size of (anonymous) struct it points to. But because this
431  * struct is anonymous and thus defined inline inside struct B, *and* it
432  * embeds struct A, compiler requires full definition of struct A to be known
433  * before struct B can be defined. This creates a transitive dependency
434  * between struct A and struct B. If struct A was forward-declared before
435  * struct B definition and fully defined after struct B definition, that would
436  * trigger compilation error.
437  *
438  * All this means that while we are doing topological sorting on BTF type
439  * graph, we need to determine relationships between different types (graph
440  * nodes):
441  *   - weak link (relationship) between X and Y, if Y *CAN* be
442  *   forward-declared at the point of X definition;
443  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
444  *
445  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
446  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
447  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
448  * Weak/strong relationship is determined recursively during DFS traversal and
449  * is returned as a result from btf_dump_order_type().
450  *
451  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
452  * but it is not guaranteeing that no extraneous forward declarations will be
453  * emitted.
454  *
455  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
456  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
457  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
458  * entire graph path, so depending where from one came to that BTF type, it
459  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
460  * once they are processed, there is no need to do it again, so they are
461  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
462  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
463  * in any case, once those are processed, no need to do it again, as the
464  * result won't change.
465  *
466  * Returns:
467  *   - 1, if type is part of strong link (so there is strong topological
468  *   ordering requirements);
469  *   - 0, if type is part of weak link (so can be satisfied through forward
470  *   declaration);
471  *   - <0, on error (e.g., unsatisfiable type loop detected).
472  */
btf_dump_order_type(struct btf_dump * d,__u32 id,bool through_ptr)473 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
474 {
475 	/*
476 	 * Order state is used to detect strong link cycles, but only for BTF
477 	 * kinds that are or could be an independent definition (i.e.,
478 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
479 	 * func_protos, modifiers are just means to get to these definitions.
480 	 * Int/void don't need definitions, they are assumed to be always
481 	 * properly defined.  We also ignore datasec, var, and funcs for now.
482 	 * So for all non-defining kinds, we never even set ordering state,
483 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
484 	 * forms a strong link.
485 	 */
486 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
487 	const struct btf_type *t;
488 	__u16 vlen;
489 	int err, i;
490 
491 	/* return true, letting typedefs know that it's ok to be emitted */
492 	if (tstate->order_state == ORDERED)
493 		return 1;
494 
495 	t = btf__type_by_id(d->btf, id);
496 
497 	if (tstate->order_state == ORDERING) {
498 		/* type loop, but resolvable through fwd declaration */
499 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
500 			return 0;
501 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
502 		return -ELOOP;
503 	}
504 
505 	switch (btf_kind(t)) {
506 	case BTF_KIND_INT:
507 	case BTF_KIND_FLOAT:
508 		tstate->order_state = ORDERED;
509 		return 0;
510 
511 	case BTF_KIND_PTR:
512 		err = btf_dump_order_type(d, t->type, true);
513 		tstate->order_state = ORDERED;
514 		return err;
515 
516 	case BTF_KIND_ARRAY:
517 		return btf_dump_order_type(d, btf_array(t)->type, false);
518 
519 	case BTF_KIND_STRUCT:
520 	case BTF_KIND_UNION: {
521 		const struct btf_member *m = btf_members(t);
522 		/*
523 		 * struct/union is part of strong link, only if it's embedded
524 		 * (so no ptr in a path) or it's anonymous (so has to be
525 		 * defined inline, even if declared through ptr)
526 		 */
527 		if (through_ptr && t->name_off != 0)
528 			return 0;
529 
530 		tstate->order_state = ORDERING;
531 
532 		vlen = btf_vlen(t);
533 		for (i = 0; i < vlen; i++, m++) {
534 			err = btf_dump_order_type(d, m->type, false);
535 			if (err < 0)
536 				return err;
537 		}
538 
539 		if (t->name_off != 0) {
540 			err = btf_dump_add_emit_queue_id(d, id);
541 			if (err < 0)
542 				return err;
543 		}
544 
545 		tstate->order_state = ORDERED;
546 		return 1;
547 	}
548 	case BTF_KIND_ENUM:
549 	case BTF_KIND_ENUM64:
550 	case BTF_KIND_FWD:
551 		/*
552 		 * non-anonymous or non-referenced enums are top-level
553 		 * declarations and should be emitted. Same logic can be
554 		 * applied to FWDs, it won't hurt anyways.
555 		 */
556 		if (t->name_off != 0 || !tstate->referenced) {
557 			err = btf_dump_add_emit_queue_id(d, id);
558 			if (err)
559 				return err;
560 		}
561 		tstate->order_state = ORDERED;
562 		return 1;
563 
564 	case BTF_KIND_TYPEDEF: {
565 		int is_strong;
566 
567 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
568 		if (is_strong < 0)
569 			return is_strong;
570 
571 		/* typedef is similar to struct/union w.r.t. fwd-decls */
572 		if (through_ptr && !is_strong)
573 			return 0;
574 
575 		/* typedef is always a named definition */
576 		err = btf_dump_add_emit_queue_id(d, id);
577 		if (err)
578 			return err;
579 
580 		d->type_states[id].order_state = ORDERED;
581 		return 1;
582 	}
583 	case BTF_KIND_VOLATILE:
584 	case BTF_KIND_CONST:
585 	case BTF_KIND_RESTRICT:
586 	case BTF_KIND_TYPE_TAG:
587 		return btf_dump_order_type(d, t->type, through_ptr);
588 
589 	case BTF_KIND_FUNC_PROTO: {
590 		const struct btf_param *p = btf_params(t);
591 		bool is_strong;
592 
593 		err = btf_dump_order_type(d, t->type, through_ptr);
594 		if (err < 0)
595 			return err;
596 		is_strong = err > 0;
597 
598 		vlen = btf_vlen(t);
599 		for (i = 0; i < vlen; i++, p++) {
600 			err = btf_dump_order_type(d, p->type, through_ptr);
601 			if (err < 0)
602 				return err;
603 			if (err > 0)
604 				is_strong = true;
605 		}
606 		return is_strong;
607 	}
608 	case BTF_KIND_FUNC:
609 	case BTF_KIND_VAR:
610 	case BTF_KIND_DATASEC:
611 	case BTF_KIND_DECL_TAG:
612 		d->type_states[id].order_state = ORDERED;
613 		return 0;
614 
615 	default:
616 		return -EINVAL;
617 	}
618 }
619 
620 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
621 					  const struct btf_type *t);
622 
623 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
624 				     const struct btf_type *t);
625 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
626 				     const struct btf_type *t, int lvl);
627 
628 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
629 				   const struct btf_type *t);
630 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
631 				   const struct btf_type *t, int lvl);
632 
633 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
634 				  const struct btf_type *t);
635 
636 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
637 				      const struct btf_type *t, int lvl);
638 
639 /* a local view into a shared stack */
640 struct id_stack {
641 	const __u32 *ids;
642 	int cnt;
643 };
644 
645 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
646 				    const char *fname, int lvl);
647 static void btf_dump_emit_type_chain(struct btf_dump *d,
648 				     struct id_stack *decl_stack,
649 				     const char *fname, int lvl);
650 
651 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
652 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
653 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
654 				 const char *orig_name);
655 
btf_dump_is_blacklisted(struct btf_dump * d,__u32 id)656 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
657 {
658 	const struct btf_type *t = btf__type_by_id(d->btf, id);
659 
660 	/* __builtin_va_list is a compiler built-in, which causes compilation
661 	 * errors, when compiling w/ different compiler, then used to compile
662 	 * original code (e.g., GCC to compile kernel, Clang to use generated
663 	 * C header from BTF). As it is built-in, it should be already defined
664 	 * properly internally in compiler.
665 	 */
666 	if (t->name_off == 0)
667 		return false;
668 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
669 }
670 
671 /*
672  * Emit C-syntax definitions of types from chains of BTF types.
673  *
674  * High-level handling of determining necessary forward declarations are handled
675  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
676  * declarations/definitions in C syntax  are handled by a combo of
677  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
678  * corresponding btf_dump_emit_*_{def,fwd}() functions.
679  *
680  * We also keep track of "containing struct/union type ID" to determine when
681  * we reference it from inside and thus can avoid emitting unnecessary forward
682  * declaration.
683  *
684  * This algorithm is designed in such a way, that even if some error occurs
685  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
686  * that doesn't comply to C rules completely), algorithm will try to proceed
687  * and produce as much meaningful output as possible.
688  */
btf_dump_emit_type(struct btf_dump * d,__u32 id,__u32 cont_id)689 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
690 {
691 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
692 	bool top_level_def = cont_id == 0;
693 	const struct btf_type *t;
694 	__u16 kind;
695 
696 	if (tstate->emit_state == EMITTED)
697 		return;
698 
699 	t = btf__type_by_id(d->btf, id);
700 	kind = btf_kind(t);
701 
702 	if (tstate->emit_state == EMITTING) {
703 		if (tstate->fwd_emitted)
704 			return;
705 
706 		switch (kind) {
707 		case BTF_KIND_STRUCT:
708 		case BTF_KIND_UNION:
709 			/*
710 			 * if we are referencing a struct/union that we are
711 			 * part of - then no need for fwd declaration
712 			 */
713 			if (id == cont_id)
714 				return;
715 			if (t->name_off == 0) {
716 				pr_warn("anonymous struct/union loop, id:[%u]\n",
717 					id);
718 				return;
719 			}
720 			btf_dump_emit_struct_fwd(d, id, t);
721 			btf_dump_printf(d, ";\n\n");
722 			tstate->fwd_emitted = 1;
723 			break;
724 		case BTF_KIND_TYPEDEF:
725 			/*
726 			 * for typedef fwd_emitted means typedef definition
727 			 * was emitted, but it can be used only for "weak"
728 			 * references through pointer only, not for embedding
729 			 */
730 			if (!btf_dump_is_blacklisted(d, id)) {
731 				btf_dump_emit_typedef_def(d, id, t, 0);
732 				btf_dump_printf(d, ";\n\n");
733 			}
734 			tstate->fwd_emitted = 1;
735 			break;
736 		default:
737 			break;
738 		}
739 
740 		return;
741 	}
742 
743 	switch (kind) {
744 	case BTF_KIND_INT:
745 		/* Emit type alias definitions if necessary */
746 		btf_dump_emit_missing_aliases(d, id, t);
747 
748 		tstate->emit_state = EMITTED;
749 		break;
750 	case BTF_KIND_ENUM:
751 	case BTF_KIND_ENUM64:
752 		if (top_level_def) {
753 			btf_dump_emit_enum_def(d, id, t, 0);
754 			btf_dump_printf(d, ";\n\n");
755 		}
756 		tstate->emit_state = EMITTED;
757 		break;
758 	case BTF_KIND_PTR:
759 	case BTF_KIND_VOLATILE:
760 	case BTF_KIND_CONST:
761 	case BTF_KIND_RESTRICT:
762 	case BTF_KIND_TYPE_TAG:
763 		btf_dump_emit_type(d, t->type, cont_id);
764 		break;
765 	case BTF_KIND_ARRAY:
766 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
767 		break;
768 	case BTF_KIND_FWD:
769 		btf_dump_emit_fwd_def(d, id, t);
770 		btf_dump_printf(d, ";\n\n");
771 		tstate->emit_state = EMITTED;
772 		break;
773 	case BTF_KIND_TYPEDEF:
774 		tstate->emit_state = EMITTING;
775 		btf_dump_emit_type(d, t->type, id);
776 		/*
777 		 * typedef can server as both definition and forward
778 		 * declaration; at this stage someone depends on
779 		 * typedef as a forward declaration (refers to it
780 		 * through pointer), so unless we already did it,
781 		 * emit typedef as a forward declaration
782 		 */
783 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
784 			btf_dump_emit_typedef_def(d, id, t, 0);
785 			btf_dump_printf(d, ";\n\n");
786 		}
787 		tstate->emit_state = EMITTED;
788 		break;
789 	case BTF_KIND_STRUCT:
790 	case BTF_KIND_UNION:
791 		tstate->emit_state = EMITTING;
792 		/* if it's a top-level struct/union definition or struct/union
793 		 * is anonymous, then in C we'll be emitting all fields and
794 		 * their types (as opposed to just `struct X`), so we need to
795 		 * make sure that all types, referenced from struct/union
796 		 * members have necessary forward-declarations, where
797 		 * applicable
798 		 */
799 		if (top_level_def || t->name_off == 0) {
800 			const struct btf_member *m = btf_members(t);
801 			__u16 vlen = btf_vlen(t);
802 			int i, new_cont_id;
803 
804 			new_cont_id = t->name_off == 0 ? cont_id : id;
805 			for (i = 0; i < vlen; i++, m++)
806 				btf_dump_emit_type(d, m->type, new_cont_id);
807 		} else if (!tstate->fwd_emitted && id != cont_id) {
808 			btf_dump_emit_struct_fwd(d, id, t);
809 			btf_dump_printf(d, ";\n\n");
810 			tstate->fwd_emitted = 1;
811 		}
812 
813 		if (top_level_def) {
814 			btf_dump_emit_struct_def(d, id, t, 0);
815 			btf_dump_printf(d, ";\n\n");
816 			tstate->emit_state = EMITTED;
817 		} else {
818 			tstate->emit_state = NOT_EMITTED;
819 		}
820 		break;
821 	case BTF_KIND_FUNC_PROTO: {
822 		const struct btf_param *p = btf_params(t);
823 		__u16 n = btf_vlen(t);
824 		int i;
825 
826 		btf_dump_emit_type(d, t->type, cont_id);
827 		for (i = 0; i < n; i++, p++)
828 			btf_dump_emit_type(d, p->type, cont_id);
829 
830 		break;
831 	}
832 	default:
833 		break;
834 	}
835 }
836 
btf_is_struct_packed(const struct btf * btf,__u32 id,const struct btf_type * t)837 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
838 				 const struct btf_type *t)
839 {
840 	const struct btf_member *m;
841 	int max_align = 1, align, i, bit_sz;
842 	__u16 vlen;
843 
844 	m = btf_members(t);
845 	vlen = btf_vlen(t);
846 	/* all non-bitfield fields have to be naturally aligned */
847 	for (i = 0; i < vlen; i++, m++) {
848 		align = btf__align_of(btf, m->type);
849 		bit_sz = btf_member_bitfield_size(t, i);
850 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
851 			return true;
852 		max_align = max(align, max_align);
853 	}
854 	/* size of a non-packed struct has to be a multiple of its alignment */
855 	if (t->size % max_align != 0)
856 		return true;
857 	/*
858 	 * if original struct was marked as packed, but its layout is
859 	 * naturally aligned, we'll detect that it's not packed
860 	 */
861 	return false;
862 }
863 
btf_dump_emit_bit_padding(const struct btf_dump * d,int cur_off,int next_off,int next_align,bool in_bitfield,int lvl)864 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
865 				      int cur_off, int next_off, int next_align,
866 				      bool in_bitfield, int lvl)
867 {
868 	const struct {
869 		const char *name;
870 		int bits;
871 	} pads[] = {
872 		{"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8}
873 	};
874 	int new_off = 0, pad_bits = 0, bits, i;
875 	const char *pad_type = NULL;
876 
877 	if (cur_off >= next_off)
878 		return; /* no gap */
879 
880 	/* For filling out padding we want to take advantage of
881 	 * natural alignment rules to minimize unnecessary explicit
882 	 * padding. First, we find the largest type (among long, int,
883 	 * short, or char) that can be used to force naturally aligned
884 	 * boundary. Once determined, we'll use such type to fill in
885 	 * the remaining padding gap. In some cases we can rely on
886 	 * compiler filling some gaps, but sometimes we need to force
887 	 * alignment to close natural alignment with markers like
888 	 * `long: 0` (this is always the case for bitfields).  Note
889 	 * that even if struct itself has, let's say 4-byte alignment
890 	 * (i.e., it only uses up to int-aligned types), using `long:
891 	 * X;` explicit padding doesn't actually change struct's
892 	 * overall alignment requirements, but compiler does take into
893 	 * account that type's (long, in this example) natural
894 	 * alignment requirements when adding implicit padding. We use
895 	 * this fact heavily and don't worry about ruining correct
896 	 * struct alignment requirement.
897 	 */
898 	for (i = 0; i < ARRAY_SIZE(pads); i++) {
899 		pad_bits = pads[i].bits;
900 		pad_type = pads[i].name;
901 
902 		new_off = roundup(cur_off, pad_bits);
903 		if (new_off <= next_off)
904 			break;
905 	}
906 
907 	if (new_off > cur_off && new_off <= next_off) {
908 		/* We need explicit `<type>: 0` aligning mark if next
909 		 * field is right on alignment offset and its
910 		 * alignment requirement is less strict than <type>'s
911 		 * alignment (so compiler won't naturally align to the
912 		 * offset we expect), or if subsequent `<type>: X`,
913 		 * will actually completely fit in the remaining hole,
914 		 * making compiler basically ignore `<type>: X`
915 		 * completely.
916 		 */
917 		if (in_bitfield ||
918 		    (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) ||
919 		    (new_off != next_off && next_off - new_off <= new_off - cur_off))
920 			/* but for bitfields we'll emit explicit bit count */
921 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type,
922 					in_bitfield ? new_off - cur_off : 0);
923 		cur_off = new_off;
924 	}
925 
926 	/* Now we know we start at naturally aligned offset for a chosen
927 	 * padding type (long, int, short, or char), and so the rest is just
928 	 * a straightforward filling of remaining padding gap with full
929 	 * `<type>: sizeof(<type>);` markers, except for the last one, which
930 	 * might need smaller than sizeof(<type>) padding.
931 	 */
932 	while (cur_off != next_off) {
933 		bits = min(next_off - cur_off, pad_bits);
934 		if (bits == pad_bits) {
935 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
936 			cur_off += bits;
937 			continue;
938 		}
939 		/* For the remainder padding that doesn't cover entire
940 		 * pad_type bit length, we pick the smallest necessary type.
941 		 * This is pure aesthetics, we could have just used `long`,
942 		 * but having smallest necessary one communicates better the
943 		 * scale of the padding gap.
944 		 */
945 		for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) {
946 			pad_type = pads[i].name;
947 			pad_bits = pads[i].bits;
948 			if (pad_bits < bits)
949 				continue;
950 
951 			btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits);
952 			cur_off += bits;
953 			break;
954 		}
955 	}
956 }
957 
btf_dump_emit_struct_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)958 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
959 				     const struct btf_type *t)
960 {
961 	btf_dump_printf(d, "%s%s%s",
962 			btf_is_struct(t) ? "struct" : "union",
963 			t->name_off ? " " : "",
964 			btf_dump_type_name(d, id));
965 }
966 
btf_dump_emit_struct_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)967 static void btf_dump_emit_struct_def(struct btf_dump *d,
968 				     __u32 id,
969 				     const struct btf_type *t,
970 				     int lvl)
971 {
972 	const struct btf_member *m = btf_members(t);
973 	bool is_struct = btf_is_struct(t);
974 	bool packed, prev_bitfield = false;
975 	int align, i, off = 0;
976 	__u16 vlen = btf_vlen(t);
977 
978 	align = btf__align_of(d->btf, id);
979 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
980 
981 	btf_dump_printf(d, "%s%s%s {",
982 			is_struct ? "struct" : "union",
983 			t->name_off ? " " : "",
984 			btf_dump_type_name(d, id));
985 
986 	for (i = 0; i < vlen; i++, m++) {
987 		const char *fname;
988 		int m_off, m_sz, m_align;
989 		bool in_bitfield;
990 
991 		fname = btf_name_of(d, m->name_off);
992 		m_sz = btf_member_bitfield_size(t, i);
993 		m_off = btf_member_bit_offset(t, i);
994 		m_align = packed ? 1 : btf__align_of(d->btf, m->type);
995 
996 		in_bitfield = prev_bitfield && m_sz != 0;
997 
998 		btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1);
999 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
1000 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
1001 
1002 		if (m_sz) {
1003 			btf_dump_printf(d, ": %d", m_sz);
1004 			off = m_off + m_sz;
1005 			prev_bitfield = true;
1006 		} else {
1007 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
1008 			off = m_off + m_sz * 8;
1009 			prev_bitfield = false;
1010 		}
1011 
1012 		btf_dump_printf(d, ";");
1013 	}
1014 
1015 	/* pad at the end, if necessary */
1016 	if (is_struct)
1017 		btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1);
1018 
1019 	/*
1020 	 * Keep `struct empty {}` on a single line,
1021 	 * only print newline when there are regular or padding fields.
1022 	 */
1023 	if (vlen || t->size) {
1024 		btf_dump_printf(d, "\n");
1025 		btf_dump_printf(d, "%s}", pfx(lvl));
1026 	} else {
1027 		btf_dump_printf(d, "}");
1028 	}
1029 	if (packed)
1030 		btf_dump_printf(d, " __attribute__((packed))");
1031 }
1032 
1033 static const char *missing_base_types[][2] = {
1034 	/*
1035 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
1036 	 * SIMD intrinsics. Alias them to standard base types.
1037 	 */
1038 	{ "__Poly8_t",		"unsigned char" },
1039 	{ "__Poly16_t",		"unsigned short" },
1040 	{ "__Poly64_t",		"unsigned long long" },
1041 	{ "__Poly128_t",	"unsigned __int128" },
1042 };
1043 
btf_dump_emit_missing_aliases(struct btf_dump * d,__u32 id,const struct btf_type * t)1044 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
1045 					  const struct btf_type *t)
1046 {
1047 	const char *name = btf_dump_type_name(d, id);
1048 	int i;
1049 
1050 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
1051 		if (strcmp(name, missing_base_types[i][0]) == 0) {
1052 			btf_dump_printf(d, "typedef %s %s;\n\n",
1053 					missing_base_types[i][1], name);
1054 			break;
1055 		}
1056 	}
1057 }
1058 
btf_dump_emit_enum_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)1059 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
1060 				   const struct btf_type *t)
1061 {
1062 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
1063 }
1064 
btf_dump_emit_enum32_val(struct btf_dump * d,const struct btf_type * t,int lvl,__u16 vlen)1065 static void btf_dump_emit_enum32_val(struct btf_dump *d,
1066 				     const struct btf_type *t,
1067 				     int lvl, __u16 vlen)
1068 {
1069 	const struct btf_enum *v = btf_enum(t);
1070 	bool is_signed = btf_kflag(t);
1071 	const char *fmt_str;
1072 	const char *name;
1073 	size_t dup_cnt;
1074 	int i;
1075 
1076 	for (i = 0; i < vlen; i++, v++) {
1077 		name = btf_name_of(d, v->name_off);
1078 		/* enumerators share namespace with typedef idents */
1079 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1080 		if (dup_cnt > 1) {
1081 			fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1082 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1083 		} else {
1084 			fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1085 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1086 		}
1087 	}
1088 }
1089 
btf_dump_emit_enum64_val(struct btf_dump * d,const struct btf_type * t,int lvl,__u16 vlen)1090 static void btf_dump_emit_enum64_val(struct btf_dump *d,
1091 				     const struct btf_type *t,
1092 				     int lvl, __u16 vlen)
1093 {
1094 	const struct btf_enum64 *v = btf_enum64(t);
1095 	bool is_signed = btf_kflag(t);
1096 	const char *fmt_str;
1097 	const char *name;
1098 	size_t dup_cnt;
1099 	__u64 val;
1100 	int i;
1101 
1102 	for (i = 0; i < vlen; i++, v++) {
1103 		name = btf_name_of(d, v->name_off);
1104 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1105 		val = btf_enum64_value(v);
1106 		if (dup_cnt > 1) {
1107 			fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1108 					    : "\n%s%s___%zd = %lluULL,";
1109 			btf_dump_printf(d, fmt_str,
1110 					pfx(lvl + 1), name, dup_cnt,
1111 					(unsigned long long)val);
1112 		} else {
1113 			fmt_str = is_signed ? "\n%s%s = %lldLL,"
1114 					    : "\n%s%s = %lluULL,";
1115 			btf_dump_printf(d, fmt_str,
1116 					pfx(lvl + 1), name,
1117 					(unsigned long long)val);
1118 		}
1119 	}
1120 }
btf_dump_emit_enum_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)1121 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1122 				   const struct btf_type *t,
1123 				   int lvl)
1124 {
1125 	__u16 vlen = btf_vlen(t);
1126 
1127 	btf_dump_printf(d, "enum%s%s",
1128 			t->name_off ? " " : "",
1129 			btf_dump_type_name(d, id));
1130 
1131 	if (!vlen)
1132 		return;
1133 
1134 	btf_dump_printf(d, " {");
1135 	if (btf_is_enum(t))
1136 		btf_dump_emit_enum32_val(d, t, lvl, vlen);
1137 	else
1138 		btf_dump_emit_enum64_val(d, t, lvl, vlen);
1139 	btf_dump_printf(d, "\n%s}", pfx(lvl));
1140 
1141 	/* special case enums with special sizes */
1142 	if (t->size == 1) {
1143 		/* one-byte enums can be forced with mode(byte) attribute */
1144 		btf_dump_printf(d, " __attribute__((mode(byte)))");
1145 	} else if (t->size == 8 && d->ptr_sz == 8) {
1146 		/* enum can be 8-byte sized if one of the enumerator values
1147 		 * doesn't fit in 32-bit integer, or by adding mode(word)
1148 		 * attribute (but probably only on 64-bit architectures); do
1149 		 * our best here to try to satisfy the contract without adding
1150 		 * unnecessary attributes
1151 		 */
1152 		bool needs_word_mode;
1153 
1154 		if (btf_is_enum(t)) {
1155 			/* enum can't represent 64-bit values, so we need word mode */
1156 			needs_word_mode = true;
1157 		} else {
1158 			/* enum64 needs mode(word) if none of its values has
1159 			 * non-zero upper 32-bits (which means that all values
1160 			 * fit in 32-bit integers and won't cause compiler to
1161 			 * bump enum to be 64-bit naturally
1162 			 */
1163 			int i;
1164 
1165 			needs_word_mode = true;
1166 			for (i = 0; i < vlen; i++) {
1167 				if (btf_enum64(t)[i].val_hi32 != 0) {
1168 					needs_word_mode = false;
1169 					break;
1170 				}
1171 			}
1172 		}
1173 		if (needs_word_mode)
1174 			btf_dump_printf(d, " __attribute__((mode(word)))");
1175 	}
1176 
1177 }
1178 
btf_dump_emit_fwd_def(struct btf_dump * d,__u32 id,const struct btf_type * t)1179 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1180 				  const struct btf_type *t)
1181 {
1182 	const char *name = btf_dump_type_name(d, id);
1183 
1184 	if (btf_kflag(t))
1185 		btf_dump_printf(d, "union %s", name);
1186 	else
1187 		btf_dump_printf(d, "struct %s", name);
1188 }
1189 
btf_dump_emit_typedef_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)1190 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1191 				     const struct btf_type *t, int lvl)
1192 {
1193 	const char *name = btf_dump_ident_name(d, id);
1194 
1195 	/*
1196 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1197 	 * pointing to VOID. This generates warnings from btf_dump() and
1198 	 * results in uncompilable header file, so we are fixing it up here
1199 	 * with valid typedef into __builtin_va_list.
1200 	 */
1201 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1202 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1203 		return;
1204 	}
1205 
1206 	btf_dump_printf(d, "typedef ");
1207 	btf_dump_emit_type_decl(d, t->type, name, lvl);
1208 }
1209 
btf_dump_push_decl_stack_id(struct btf_dump * d,__u32 id)1210 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1211 {
1212 	__u32 *new_stack;
1213 	size_t new_cap;
1214 
1215 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
1216 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
1217 		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1218 		if (!new_stack)
1219 			return -ENOMEM;
1220 		d->decl_stack = new_stack;
1221 		d->decl_stack_cap = new_cap;
1222 	}
1223 
1224 	d->decl_stack[d->decl_stack_cnt++] = id;
1225 
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Emit type declaration (e.g., field type declaration in a struct or argument
1231  * declaration in function prototype) in correct C syntax.
1232  *
1233  * For most types it's trivial, but there are few quirky type declaration
1234  * cases worth mentioning:
1235  *   - function prototypes (especially nesting of function prototypes);
1236  *   - arrays;
1237  *   - const/volatile/restrict for pointers vs other types.
1238  *
1239  * For a good discussion of *PARSING* C syntax (as a human), see
1240  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1241  * Ch.3 "Unscrambling Declarations in C".
1242  *
1243  * It won't help with BTF to C conversion much, though, as it's an opposite
1244  * problem. So we came up with this algorithm in reverse to van der Linden's
1245  * parsing algorithm. It goes from structured BTF representation of type
1246  * declaration to a valid compilable C syntax.
1247  *
1248  * For instance, consider this C typedef:
1249  *	typedef const int * const * arr[10] arr_t;
1250  * It will be represented in BTF with this chain of BTF types:
1251  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1252  *
1253  * Notice how [const] modifier always goes before type it modifies in BTF type
1254  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1255  * the right of pointers, but to the left of other types. There are also other
1256  * quirks, like function pointers, arrays of them, functions returning other
1257  * functions, etc.
1258  *
1259  * We handle that by pushing all the types to a stack, until we hit "terminal"
1260  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1261  * top of a stack, modifiers are handled differently. Array/function pointers
1262  * have also wildly different syntax and how nesting of them are done. See
1263  * code for authoritative definition.
1264  *
1265  * To avoid allocating new stack for each independent chain of BTF types, we
1266  * share one bigger stack, with each chain working only on its own local view
1267  * of a stack frame. Some care is required to "pop" stack frames after
1268  * processing type declaration chain.
1269  */
btf_dump__emit_type_decl(struct btf_dump * d,__u32 id,const struct btf_dump_emit_type_decl_opts * opts)1270 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1271 			     const struct btf_dump_emit_type_decl_opts *opts)
1272 {
1273 	const char *fname;
1274 	int lvl, err;
1275 
1276 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1277 		return libbpf_err(-EINVAL);
1278 
1279 	err = btf_dump_resize(d);
1280 	if (err)
1281 		return libbpf_err(err);
1282 
1283 	fname = OPTS_GET(opts, field_name, "");
1284 	lvl = OPTS_GET(opts, indent_level, 0);
1285 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1286 	btf_dump_emit_type_decl(d, id, fname, lvl);
1287 	d->strip_mods = false;
1288 	return 0;
1289 }
1290 
btf_dump_emit_type_decl(struct btf_dump * d,__u32 id,const char * fname,int lvl)1291 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1292 				    const char *fname, int lvl)
1293 {
1294 	struct id_stack decl_stack;
1295 	const struct btf_type *t;
1296 	int err, stack_start;
1297 
1298 	stack_start = d->decl_stack_cnt;
1299 	for (;;) {
1300 		t = btf__type_by_id(d->btf, id);
1301 		if (d->strip_mods && btf_is_mod(t))
1302 			goto skip_mod;
1303 
1304 		err = btf_dump_push_decl_stack_id(d, id);
1305 		if (err < 0) {
1306 			/*
1307 			 * if we don't have enough memory for entire type decl
1308 			 * chain, restore stack, emit warning, and try to
1309 			 * proceed nevertheless
1310 			 */
1311 			pr_warn("not enough memory for decl stack: %s\n", errstr(err));
1312 			d->decl_stack_cnt = stack_start;
1313 			return;
1314 		}
1315 skip_mod:
1316 		/* VOID */
1317 		if (id == 0)
1318 			break;
1319 
1320 		switch (btf_kind(t)) {
1321 		case BTF_KIND_PTR:
1322 		case BTF_KIND_VOLATILE:
1323 		case BTF_KIND_CONST:
1324 		case BTF_KIND_RESTRICT:
1325 		case BTF_KIND_FUNC_PROTO:
1326 		case BTF_KIND_TYPE_TAG:
1327 			id = t->type;
1328 			break;
1329 		case BTF_KIND_ARRAY:
1330 			id = btf_array(t)->type;
1331 			break;
1332 		case BTF_KIND_INT:
1333 		case BTF_KIND_ENUM:
1334 		case BTF_KIND_ENUM64:
1335 		case BTF_KIND_FWD:
1336 		case BTF_KIND_STRUCT:
1337 		case BTF_KIND_UNION:
1338 		case BTF_KIND_TYPEDEF:
1339 		case BTF_KIND_FLOAT:
1340 			goto done;
1341 		default:
1342 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1343 				btf_kind(t), id);
1344 			goto done;
1345 		}
1346 	}
1347 done:
1348 	/*
1349 	 * We might be inside a chain of declarations (e.g., array of function
1350 	 * pointers returning anonymous (so inlined) structs, having another
1351 	 * array field). Each of those needs its own "stack frame" to handle
1352 	 * emitting of declarations. Those stack frames are non-overlapping
1353 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1354 	 * handle this set of nested stacks, we create a view corresponding to
1355 	 * our own "stack frame" and work with it as an independent stack.
1356 	 * We'll need to clean up after emit_type_chain() returns, though.
1357 	 */
1358 	decl_stack.ids = d->decl_stack + stack_start;
1359 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1360 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1361 	/*
1362 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1363 	 * frame before returning. But it works with a read-only view into
1364 	 * decl_stack, so it doesn't actually pop anything from the
1365 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1366 	 * reset decl_stack state to how it was before us to avoid it growing
1367 	 * all the time.
1368 	 */
1369 	d->decl_stack_cnt = stack_start;
1370 }
1371 
btf_dump_emit_mods(struct btf_dump * d,struct id_stack * decl_stack)1372 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1373 {
1374 	const struct btf_type *t;
1375 	__u32 id;
1376 
1377 	while (decl_stack->cnt) {
1378 		id = decl_stack->ids[decl_stack->cnt - 1];
1379 		t = btf__type_by_id(d->btf, id);
1380 
1381 		switch (btf_kind(t)) {
1382 		case BTF_KIND_VOLATILE:
1383 			btf_dump_printf(d, "volatile ");
1384 			break;
1385 		case BTF_KIND_CONST:
1386 			btf_dump_printf(d, "const ");
1387 			break;
1388 		case BTF_KIND_RESTRICT:
1389 			btf_dump_printf(d, "restrict ");
1390 			break;
1391 		default:
1392 			return;
1393 		}
1394 		decl_stack->cnt--;
1395 	}
1396 }
1397 
btf_dump_drop_mods(struct btf_dump * d,struct id_stack * decl_stack)1398 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1399 {
1400 	const struct btf_type *t;
1401 	__u32 id;
1402 
1403 	while (decl_stack->cnt) {
1404 		id = decl_stack->ids[decl_stack->cnt - 1];
1405 		t = btf__type_by_id(d->btf, id);
1406 		if (!btf_is_mod(t))
1407 			return;
1408 		decl_stack->cnt--;
1409 	}
1410 }
1411 
btf_dump_emit_name(const struct btf_dump * d,const char * name,bool last_was_ptr)1412 static void btf_dump_emit_name(const struct btf_dump *d,
1413 			       const char *name, bool last_was_ptr)
1414 {
1415 	bool separate = name[0] && !last_was_ptr;
1416 
1417 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1418 }
1419 
btf_dump_emit_type_chain(struct btf_dump * d,struct id_stack * decls,const char * fname,int lvl)1420 static void btf_dump_emit_type_chain(struct btf_dump *d,
1421 				     struct id_stack *decls,
1422 				     const char *fname, int lvl)
1423 {
1424 	/*
1425 	 * last_was_ptr is used to determine if we need to separate pointer
1426 	 * asterisk (*) from previous part of type signature with space, so
1427 	 * that we get `int ***`, instead of `int * * *`. We default to true
1428 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1429 	 * func_proto case. func_proto will start a new emit_type_chain call
1430 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1431 	 * don't want to prepend space for that last pointer.
1432 	 */
1433 	bool last_was_ptr = true;
1434 	const struct btf_type *t;
1435 	const char *name;
1436 	__u16 kind;
1437 	__u32 id;
1438 
1439 	while (decls->cnt) {
1440 		id = decls->ids[--decls->cnt];
1441 		if (id == 0) {
1442 			/* VOID is a special snowflake */
1443 			btf_dump_emit_mods(d, decls);
1444 			btf_dump_printf(d, "void");
1445 			last_was_ptr = false;
1446 			continue;
1447 		}
1448 
1449 		t = btf__type_by_id(d->btf, id);
1450 		kind = btf_kind(t);
1451 
1452 		switch (kind) {
1453 		case BTF_KIND_INT:
1454 		case BTF_KIND_FLOAT:
1455 			btf_dump_emit_mods(d, decls);
1456 			name = btf_name_of(d, t->name_off);
1457 			btf_dump_printf(d, "%s", name);
1458 			break;
1459 		case BTF_KIND_STRUCT:
1460 		case BTF_KIND_UNION:
1461 			btf_dump_emit_mods(d, decls);
1462 			/* inline anonymous struct/union */
1463 			if (t->name_off == 0 && !d->skip_anon_defs)
1464 				btf_dump_emit_struct_def(d, id, t, lvl);
1465 			else
1466 				btf_dump_emit_struct_fwd(d, id, t);
1467 			break;
1468 		case BTF_KIND_ENUM:
1469 		case BTF_KIND_ENUM64:
1470 			btf_dump_emit_mods(d, decls);
1471 			/* inline anonymous enum */
1472 			if (t->name_off == 0 && !d->skip_anon_defs)
1473 				btf_dump_emit_enum_def(d, id, t, lvl);
1474 			else
1475 				btf_dump_emit_enum_fwd(d, id, t);
1476 			break;
1477 		case BTF_KIND_FWD:
1478 			btf_dump_emit_mods(d, decls);
1479 			btf_dump_emit_fwd_def(d, id, t);
1480 			break;
1481 		case BTF_KIND_TYPEDEF:
1482 			btf_dump_emit_mods(d, decls);
1483 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1484 			break;
1485 		case BTF_KIND_PTR:
1486 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1487 			break;
1488 		case BTF_KIND_VOLATILE:
1489 			btf_dump_printf(d, " volatile");
1490 			break;
1491 		case BTF_KIND_CONST:
1492 			btf_dump_printf(d, " const");
1493 			break;
1494 		case BTF_KIND_RESTRICT:
1495 			btf_dump_printf(d, " restrict");
1496 			break;
1497 		case BTF_KIND_TYPE_TAG:
1498 			btf_dump_emit_mods(d, decls);
1499 			name = btf_name_of(d, t->name_off);
1500 			if (btf_kflag(t))
1501 				btf_dump_printf(d, " __attribute__((%s))", name);
1502 			else
1503 				btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1504 			break;
1505 		case BTF_KIND_ARRAY: {
1506 			const struct btf_array *a = btf_array(t);
1507 			const struct btf_type *next_t;
1508 			__u32 next_id;
1509 			bool multidim;
1510 			/*
1511 			 * GCC has a bug
1512 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1513 			 * which causes it to emit extra const/volatile
1514 			 * modifiers for an array, if array's element type has
1515 			 * const/volatile modifiers. Clang doesn't do that.
1516 			 * In general, it doesn't seem very meaningful to have
1517 			 * a const/volatile modifier for array, so we are
1518 			 * going to silently skip them here.
1519 			 */
1520 			btf_dump_drop_mods(d, decls);
1521 
1522 			if (decls->cnt == 0) {
1523 				btf_dump_emit_name(d, fname, last_was_ptr);
1524 				btf_dump_printf(d, "[%u]", a->nelems);
1525 				return;
1526 			}
1527 
1528 			next_id = decls->ids[decls->cnt - 1];
1529 			next_t = btf__type_by_id(d->btf, next_id);
1530 			multidim = btf_is_array(next_t);
1531 			/* we need space if we have named non-pointer */
1532 			if (fname[0] && !last_was_ptr)
1533 				btf_dump_printf(d, " ");
1534 			/* no parentheses for multi-dimensional array */
1535 			if (!multidim)
1536 				btf_dump_printf(d, "(");
1537 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1538 			if (!multidim)
1539 				btf_dump_printf(d, ")");
1540 			btf_dump_printf(d, "[%u]", a->nelems);
1541 			return;
1542 		}
1543 		case BTF_KIND_FUNC_PROTO: {
1544 			const struct btf_param *p = btf_params(t);
1545 			__u16 vlen = btf_vlen(t);
1546 			int i;
1547 
1548 			/*
1549 			 * GCC emits extra volatile qualifier for
1550 			 * __attribute__((noreturn)) function pointers. Clang
1551 			 * doesn't do it. It's a GCC quirk for backwards
1552 			 * compatibility with code written for GCC <2.5. So,
1553 			 * similarly to extra qualifiers for array, just drop
1554 			 * them, instead of handling them.
1555 			 */
1556 			btf_dump_drop_mods(d, decls);
1557 			if (decls->cnt) {
1558 				btf_dump_printf(d, " (");
1559 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1560 				btf_dump_printf(d, ")");
1561 			} else {
1562 				btf_dump_emit_name(d, fname, last_was_ptr);
1563 			}
1564 			btf_dump_printf(d, "(");
1565 			/*
1566 			 * Clang for BPF target generates func_proto with no
1567 			 * args as a func_proto with a single void arg (e.g.,
1568 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1569 			 * going to emit valid empty args (void) syntax for
1570 			 * such case. Similarly and conveniently, valid
1571 			 * no args case can be special-cased here as well.
1572 			 */
1573 			if (vlen == 0 || (vlen == 1 && p->type == 0)) {
1574 				btf_dump_printf(d, "void)");
1575 				return;
1576 			}
1577 
1578 			for (i = 0; i < vlen; i++, p++) {
1579 				if (i > 0)
1580 					btf_dump_printf(d, ", ");
1581 
1582 				/* last arg of type void is vararg */
1583 				if (i == vlen - 1 && p->type == 0) {
1584 					btf_dump_printf(d, "...");
1585 					break;
1586 				}
1587 
1588 				name = btf_name_of(d, p->name_off);
1589 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1590 			}
1591 
1592 			btf_dump_printf(d, ")");
1593 			return;
1594 		}
1595 		default:
1596 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1597 				kind, id);
1598 			return;
1599 		}
1600 
1601 		last_was_ptr = kind == BTF_KIND_PTR;
1602 	}
1603 
1604 	btf_dump_emit_name(d, fname, last_was_ptr);
1605 }
1606 
1607 /* show type name as (type_name) */
btf_dump_emit_type_cast(struct btf_dump * d,__u32 id,bool top_level)1608 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1609 				    bool top_level)
1610 {
1611 	const struct btf_type *t;
1612 
1613 	/* for array members, we don't bother emitting type name for each
1614 	 * member to avoid the redundancy of
1615 	 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1616 	 */
1617 	if (d->typed_dump->is_array_member)
1618 		return;
1619 
1620 	/* avoid type name specification for variable/section; it will be done
1621 	 * for the associated variable value(s).
1622 	 */
1623 	t = btf__type_by_id(d->btf, id);
1624 	if (btf_is_var(t) || btf_is_datasec(t))
1625 		return;
1626 
1627 	if (top_level)
1628 		btf_dump_printf(d, "(");
1629 
1630 	d->skip_anon_defs = true;
1631 	d->strip_mods = true;
1632 	btf_dump_emit_type_decl(d, id, "", 0);
1633 	d->strip_mods = false;
1634 	d->skip_anon_defs = false;
1635 
1636 	if (top_level)
1637 		btf_dump_printf(d, ")");
1638 }
1639 
1640 /* return number of duplicates (occurrences) of a given name */
btf_dump_name_dups(struct btf_dump * d,struct hashmap * name_map,const char * orig_name)1641 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1642 				 const char *orig_name)
1643 {
1644 	char *old_name, *new_name;
1645 	size_t dup_cnt = 0;
1646 	int err;
1647 
1648 	new_name = strdup(orig_name);
1649 	if (!new_name)
1650 		return 1;
1651 
1652 	(void)hashmap__find(name_map, orig_name, &dup_cnt);
1653 	dup_cnt++;
1654 
1655 	err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
1656 	if (err)
1657 		free(new_name);
1658 
1659 	free(old_name);
1660 
1661 	return dup_cnt;
1662 }
1663 
btf_dump_resolve_name(struct btf_dump * d,__u32 id,struct hashmap * name_map)1664 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1665 					 struct hashmap *name_map)
1666 {
1667 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1668 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1669 	const char *orig_name = btf_name_of(d, t->name_off);
1670 	const char **cached_name = &d->cached_names[id];
1671 	size_t dup_cnt;
1672 
1673 	if (t->name_off == 0)
1674 		return "";
1675 
1676 	if (s->name_resolved)
1677 		return *cached_name ? *cached_name : orig_name;
1678 
1679 	if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1680 		s->name_resolved = 1;
1681 		return orig_name;
1682 	}
1683 
1684 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1685 	if (dup_cnt > 1) {
1686 		const size_t max_len = 256;
1687 		char new_name[max_len];
1688 
1689 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1690 		*cached_name = strdup(new_name);
1691 	}
1692 
1693 	s->name_resolved = 1;
1694 	return *cached_name ? *cached_name : orig_name;
1695 }
1696 
btf_dump_type_name(struct btf_dump * d,__u32 id)1697 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1698 {
1699 	return btf_dump_resolve_name(d, id, d->type_names);
1700 }
1701 
btf_dump_ident_name(struct btf_dump * d,__u32 id)1702 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1703 {
1704 	return btf_dump_resolve_name(d, id, d->ident_names);
1705 }
1706 
1707 static int btf_dump_dump_type_data(struct btf_dump *d,
1708 				   const char *fname,
1709 				   const struct btf_type *t,
1710 				   __u32 id,
1711 				   const void *data,
1712 				   __u8 bits_offset,
1713 				   __u8 bit_sz);
1714 
btf_dump_data_newline(struct btf_dump * d)1715 static const char *btf_dump_data_newline(struct btf_dump *d)
1716 {
1717 	return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1718 }
1719 
btf_dump_data_delim(struct btf_dump * d)1720 static const char *btf_dump_data_delim(struct btf_dump *d)
1721 {
1722 	return d->typed_dump->depth == 0 ? "" : ",";
1723 }
1724 
btf_dump_data_pfx(struct btf_dump * d)1725 static void btf_dump_data_pfx(struct btf_dump *d)
1726 {
1727 	int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1728 
1729 	if (d->typed_dump->compact)
1730 		return;
1731 
1732 	for (i = 0; i < lvl; i++)
1733 		btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1734 }
1735 
1736 /* A macro is used here as btf_type_value[s]() appends format specifiers
1737  * to the format specifier passed in; these do the work of appending
1738  * delimiters etc while the caller simply has to specify the type values
1739  * in the format specifier + value(s).
1740  */
1741 #define btf_dump_type_values(d, fmt, ...)				\
1742 	btf_dump_printf(d, fmt "%s%s",					\
1743 			##__VA_ARGS__,					\
1744 			btf_dump_data_delim(d),				\
1745 			btf_dump_data_newline(d))
1746 
btf_dump_unsupported_data(struct btf_dump * d,const struct btf_type * t,__u32 id)1747 static int btf_dump_unsupported_data(struct btf_dump *d,
1748 				     const struct btf_type *t,
1749 				     __u32 id)
1750 {
1751 	btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1752 	return -ENOTSUP;
1753 }
1754 
btf_dump_get_bitfield_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz,__u64 * value)1755 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1756 				       const struct btf_type *t,
1757 				       const void *data,
1758 				       __u8 bits_offset,
1759 				       __u8 bit_sz,
1760 				       __u64 *value)
1761 {
1762 	__u16 left_shift_bits, right_shift_bits;
1763 	const __u8 *bytes = data;
1764 	__u8 nr_copy_bits;
1765 	__u64 num = 0;
1766 	int i;
1767 
1768 	/* Maximum supported bitfield size is 64 bits */
1769 	if (t->size > 8) {
1770 		pr_warn("unexpected bitfield size %d\n", t->size);
1771 		return -EINVAL;
1772 	}
1773 
1774 	/* Bitfield value retrieval is done in two steps; first relevant bytes are
1775 	 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1776 	 */
1777 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1778 	for (i = t->size - 1; i >= 0; i--)
1779 		num = num * 256 + bytes[i];
1780 	nr_copy_bits = bit_sz + bits_offset;
1781 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1782 	for (i = 0; i < t->size; i++)
1783 		num = num * 256 + bytes[i];
1784 	nr_copy_bits = t->size * 8 - bits_offset;
1785 #else
1786 # error "Unrecognized __BYTE_ORDER__"
1787 #endif
1788 	left_shift_bits = 64 - nr_copy_bits;
1789 	right_shift_bits = 64 - bit_sz;
1790 
1791 	*value = (num << left_shift_bits) >> right_shift_bits;
1792 
1793 	return 0;
1794 }
1795 
btf_dump_bitfield_check_zero(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1796 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1797 					const struct btf_type *t,
1798 					const void *data,
1799 					__u8 bits_offset,
1800 					__u8 bit_sz)
1801 {
1802 	__u64 check_num;
1803 	int err;
1804 
1805 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1806 	if (err)
1807 		return err;
1808 	if (check_num == 0)
1809 		return -ENODATA;
1810 	return 0;
1811 }
1812 
btf_dump_bitfield_data(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1813 static int btf_dump_bitfield_data(struct btf_dump *d,
1814 				  const struct btf_type *t,
1815 				  const void *data,
1816 				  __u8 bits_offset,
1817 				  __u8 bit_sz)
1818 {
1819 	__u64 print_num;
1820 	int err;
1821 
1822 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1823 	if (err)
1824 		return err;
1825 
1826 	btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1827 
1828 	return 0;
1829 }
1830 
1831 /* ints, floats and ptrs */
btf_dump_base_type_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1832 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1833 					 const struct btf_type *t,
1834 					 __u32 id,
1835 					 const void *data)
1836 {
1837 	static __u8 bytecmp[16] = {};
1838 	int nr_bytes;
1839 
1840 	/* For pointer types, pointer size is not defined on a per-type basis.
1841 	 * On dump creation however, we store the pointer size.
1842 	 */
1843 	if (btf_kind(t) == BTF_KIND_PTR)
1844 		nr_bytes = d->ptr_sz;
1845 	else
1846 		nr_bytes = t->size;
1847 
1848 	if (nr_bytes < 1 || nr_bytes > 16) {
1849 		pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1850 		return -EINVAL;
1851 	}
1852 
1853 	if (memcmp(data, bytecmp, nr_bytes) == 0)
1854 		return -ENODATA;
1855 	return 0;
1856 }
1857 
ptr_is_aligned(const struct btf * btf,__u32 type_id,const void * data)1858 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1859 			   const void *data)
1860 {
1861 	int alignment = btf__align_of(btf, type_id);
1862 
1863 	if (alignment == 0)
1864 		return false;
1865 
1866 	return ((uintptr_t)data) % alignment == 0;
1867 }
1868 
btf_dump_int_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data,__u8 bits_offset)1869 static int btf_dump_int_data(struct btf_dump *d,
1870 			     const struct btf_type *t,
1871 			     __u32 type_id,
1872 			     const void *data,
1873 			     __u8 bits_offset)
1874 {
1875 	__u8 encoding = btf_int_encoding(t);
1876 	bool sign = encoding & BTF_INT_SIGNED;
1877 	char buf[16] __attribute__((aligned(16)));
1878 	int sz = t->size;
1879 
1880 	if (sz == 0 || sz > sizeof(buf)) {
1881 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1882 		return -EINVAL;
1883 	}
1884 
1885 	/* handle packed int data - accesses of integers not aligned on
1886 	 * int boundaries can cause problems on some platforms.
1887 	 */
1888 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1889 		memcpy(buf, data, sz);
1890 		data = buf;
1891 	}
1892 
1893 	switch (sz) {
1894 	case 16: {
1895 		const __u64 *ints = data;
1896 		__u64 lsi, msi;
1897 
1898 		/* avoid use of __int128 as some 32-bit platforms do not
1899 		 * support it.
1900 		 */
1901 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1902 		lsi = ints[0];
1903 		msi = ints[1];
1904 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1905 		lsi = ints[1];
1906 		msi = ints[0];
1907 #else
1908 # error "Unrecognized __BYTE_ORDER__"
1909 #endif
1910 		if (msi == 0)
1911 			btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1912 		else
1913 			btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1914 					     (unsigned long long)lsi);
1915 		break;
1916 	}
1917 	case 8:
1918 		if (sign)
1919 			btf_dump_type_values(d, "%lld", *(long long *)data);
1920 		else
1921 			btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1922 		break;
1923 	case 4:
1924 		if (sign)
1925 			btf_dump_type_values(d, "%d", *(__s32 *)data);
1926 		else
1927 			btf_dump_type_values(d, "%u", *(__u32 *)data);
1928 		break;
1929 	case 2:
1930 		if (sign)
1931 			btf_dump_type_values(d, "%d", *(__s16 *)data);
1932 		else
1933 			btf_dump_type_values(d, "%u", *(__u16 *)data);
1934 		break;
1935 	case 1:
1936 		if (d->typed_dump->is_array_char) {
1937 			/* check for null terminator */
1938 			if (d->typed_dump->is_array_terminated)
1939 				break;
1940 			if (*(char *)data == '\0') {
1941 				btf_dump_type_values(d, "'\\0'");
1942 				d->typed_dump->is_array_terminated = true;
1943 				break;
1944 			}
1945 			if (isprint(*(char *)data)) {
1946 				btf_dump_type_values(d, "'%c'", *(char *)data);
1947 				break;
1948 			}
1949 		}
1950 		if (sign)
1951 			btf_dump_type_values(d, "%d", *(__s8 *)data);
1952 		else
1953 			btf_dump_type_values(d, "%u", *(__u8 *)data);
1954 		break;
1955 	default:
1956 		pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1957 		return -EINVAL;
1958 	}
1959 	return 0;
1960 }
1961 
1962 union float_data {
1963 	long double ld;
1964 	double d;
1965 	float f;
1966 };
1967 
btf_dump_float_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data)1968 static int btf_dump_float_data(struct btf_dump *d,
1969 			       const struct btf_type *t,
1970 			       __u32 type_id,
1971 			       const void *data)
1972 {
1973 	const union float_data *flp = data;
1974 	union float_data fl;
1975 	int sz = t->size;
1976 
1977 	/* handle unaligned data; copy to local union */
1978 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1979 		memcpy(&fl, data, sz);
1980 		flp = &fl;
1981 	}
1982 
1983 	switch (sz) {
1984 	case 16:
1985 		btf_dump_type_values(d, "%Lf", flp->ld);
1986 		break;
1987 	case 8:
1988 		btf_dump_type_values(d, "%lf", flp->d);
1989 		break;
1990 	case 4:
1991 		btf_dump_type_values(d, "%f", flp->f);
1992 		break;
1993 	default:
1994 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1995 		return -EINVAL;
1996 	}
1997 	return 0;
1998 }
1999 
btf_dump_var_data(struct btf_dump * d,const struct btf_type * v,__u32 id,const void * data)2000 static int btf_dump_var_data(struct btf_dump *d,
2001 			     const struct btf_type *v,
2002 			     __u32 id,
2003 			     const void *data)
2004 {
2005 	enum btf_func_linkage linkage = btf_var(v)->linkage;
2006 	const struct btf_type *t;
2007 	const char *l;
2008 	__u32 type_id;
2009 
2010 	switch (linkage) {
2011 	case BTF_FUNC_STATIC:
2012 		l = "static ";
2013 		break;
2014 	case BTF_FUNC_EXTERN:
2015 		l = "extern ";
2016 		break;
2017 	case BTF_FUNC_GLOBAL:
2018 	default:
2019 		l = "";
2020 		break;
2021 	}
2022 
2023 	/* format of output here is [linkage] [type] [varname] = (type)value,
2024 	 * for example "static int cpu_profile_flip = (int)1"
2025 	 */
2026 	btf_dump_printf(d, "%s", l);
2027 	type_id = v->type;
2028 	t = btf__type_by_id(d->btf, type_id);
2029 	btf_dump_emit_type_cast(d, type_id, false);
2030 	btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
2031 	return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
2032 }
2033 
btf_dump_array_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2034 static int btf_dump_array_data(struct btf_dump *d,
2035 			       const struct btf_type *t,
2036 			       __u32 id,
2037 			       const void *data)
2038 {
2039 	const struct btf_array *array = btf_array(t);
2040 	const struct btf_type *elem_type;
2041 	__u32 i, elem_type_id;
2042 	__s64 elem_size;
2043 	bool is_array_member;
2044 	bool is_array_terminated;
2045 
2046 	elem_type_id = array->type;
2047 	elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2048 	elem_size = btf__resolve_size(d->btf, elem_type_id);
2049 	if (elem_size <= 0) {
2050 		pr_warn("unexpected elem size %zd for array type [%u]\n",
2051 			(ssize_t)elem_size, id);
2052 		return -EINVAL;
2053 	}
2054 
2055 	if (btf_is_int(elem_type)) {
2056 		/*
2057 		 * BTF_INT_CHAR encoding never seems to be set for
2058 		 * char arrays, so if size is 1 and element is
2059 		 * printable as a char, we'll do that.
2060 		 */
2061 		if (elem_size == 1)
2062 			d->typed_dump->is_array_char = true;
2063 	}
2064 
2065 	/* note that we increment depth before calling btf_dump_print() below;
2066 	 * this is intentional.  btf_dump_data_newline() will not print a
2067 	 * newline for depth 0 (since this leaves us with trailing newlines
2068 	 * at the end of typed display), so depth is incremented first.
2069 	 * For similar reasons, we decrement depth before showing the closing
2070 	 * parenthesis.
2071 	 */
2072 	d->typed_dump->depth++;
2073 	btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
2074 
2075 	/* may be a multidimensional array, so store current "is array member"
2076 	 * status so we can restore it correctly later.
2077 	 */
2078 	is_array_member = d->typed_dump->is_array_member;
2079 	d->typed_dump->is_array_member = true;
2080 	is_array_terminated = d->typed_dump->is_array_terminated;
2081 	d->typed_dump->is_array_terminated = false;
2082 	for (i = 0; i < array->nelems; i++, data += elem_size) {
2083 		if (d->typed_dump->is_array_terminated)
2084 			break;
2085 		btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
2086 	}
2087 	d->typed_dump->is_array_member = is_array_member;
2088 	d->typed_dump->is_array_terminated = is_array_terminated;
2089 	d->typed_dump->depth--;
2090 	btf_dump_data_pfx(d);
2091 	btf_dump_type_values(d, "]");
2092 
2093 	return 0;
2094 }
2095 
btf_dump_struct_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2096 static int btf_dump_struct_data(struct btf_dump *d,
2097 				const struct btf_type *t,
2098 				__u32 id,
2099 				const void *data)
2100 {
2101 	const struct btf_member *m = btf_members(t);
2102 	__u16 n = btf_vlen(t);
2103 	int i, err = 0;
2104 
2105 	/* note that we increment depth before calling btf_dump_print() below;
2106 	 * this is intentional.  btf_dump_data_newline() will not print a
2107 	 * newline for depth 0 (since this leaves us with trailing newlines
2108 	 * at the end of typed display), so depth is incremented first.
2109 	 * For similar reasons, we decrement depth before showing the closing
2110 	 * parenthesis.
2111 	 */
2112 	d->typed_dump->depth++;
2113 	btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
2114 
2115 	for (i = 0; i < n; i++, m++) {
2116 		const struct btf_type *mtype;
2117 		const char *mname;
2118 		__u32 moffset;
2119 		__u8 bit_sz;
2120 
2121 		mtype = btf__type_by_id(d->btf, m->type);
2122 		mname = btf_name_of(d, m->name_off);
2123 		moffset = btf_member_bit_offset(t, i);
2124 
2125 		bit_sz = btf_member_bitfield_size(t, i);
2126 		err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
2127 					      moffset % 8, bit_sz);
2128 		if (err < 0)
2129 			return err;
2130 	}
2131 	d->typed_dump->depth--;
2132 	btf_dump_data_pfx(d);
2133 	btf_dump_type_values(d, "}");
2134 	return err;
2135 }
2136 
2137 union ptr_data {
2138 	unsigned int p;
2139 	unsigned long long lp;
2140 };
2141 
btf_dump_ptr_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2142 static int btf_dump_ptr_data(struct btf_dump *d,
2143 			      const struct btf_type *t,
2144 			      __u32 id,
2145 			      const void *data)
2146 {
2147 	if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2148 		btf_dump_type_values(d, "%p", *(void **)data);
2149 	} else {
2150 		union ptr_data pt;
2151 
2152 		memcpy(&pt, data, d->ptr_sz);
2153 		if (d->ptr_sz == 4)
2154 			btf_dump_type_values(d, "0x%x", pt.p);
2155 		else
2156 			btf_dump_type_values(d, "0x%llx", pt.lp);
2157 	}
2158 	return 0;
2159 }
2160 
btf_dump_get_enum_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u32 id,__s64 * value)2161 static int btf_dump_get_enum_value(struct btf_dump *d,
2162 				   const struct btf_type *t,
2163 				   const void *data,
2164 				   __u32 id,
2165 				   __s64 *value)
2166 {
2167 	bool is_signed = btf_kflag(t);
2168 
2169 	if (!ptr_is_aligned(d->btf, id, data)) {
2170 		__u64 val;
2171 		int err;
2172 
2173 		err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2174 		if (err)
2175 			return err;
2176 		*value = (__s64)val;
2177 		return 0;
2178 	}
2179 
2180 	switch (t->size) {
2181 	case 8:
2182 		*value = *(__s64 *)data;
2183 		return 0;
2184 	case 4:
2185 		*value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2186 		return 0;
2187 	case 2:
2188 		*value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2189 		return 0;
2190 	case 1:
2191 		*value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2192 		return 0;
2193 	default:
2194 		pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2195 		return -EINVAL;
2196 	}
2197 }
2198 
btf_dump_enum_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2199 static int btf_dump_enum_data(struct btf_dump *d,
2200 			      const struct btf_type *t,
2201 			      __u32 id,
2202 			      const void *data)
2203 {
2204 	bool is_signed;
2205 	__s64 value;
2206 	int i, err;
2207 
2208 	err = btf_dump_get_enum_value(d, t, data, id, &value);
2209 	if (err)
2210 		return err;
2211 
2212 	is_signed = btf_kflag(t);
2213 	if (btf_is_enum(t)) {
2214 		const struct btf_enum *e;
2215 
2216 		for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2217 			if (value != e->val)
2218 				continue;
2219 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2220 			return 0;
2221 		}
2222 
2223 		btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2224 	} else {
2225 		const struct btf_enum64 *e;
2226 
2227 		for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2228 			if (value != btf_enum64_value(e))
2229 				continue;
2230 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2231 			return 0;
2232 		}
2233 
2234 		btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2235 				     (unsigned long long)value);
2236 	}
2237 	return 0;
2238 }
2239 
btf_dump_datasec_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2240 static int btf_dump_datasec_data(struct btf_dump *d,
2241 				 const struct btf_type *t,
2242 				 __u32 id,
2243 				 const void *data)
2244 {
2245 	const struct btf_var_secinfo *vsi;
2246 	const struct btf_type *var;
2247 	__u32 i;
2248 	int err;
2249 
2250 	btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2251 
2252 	for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2253 		var = btf__type_by_id(d->btf, vsi->type);
2254 		err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2255 		if (err < 0)
2256 			return err;
2257 		btf_dump_printf(d, ";");
2258 	}
2259 	return 0;
2260 }
2261 
2262 /* return size of type, or if base type overflows, return -E2BIG. */
btf_dump_type_data_check_overflow(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2263 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2264 					     const struct btf_type *t,
2265 					     __u32 id,
2266 					     const void *data,
2267 					     __u8 bits_offset,
2268 					     __u8 bit_sz)
2269 {
2270 	__s64 size;
2271 
2272 	if (bit_sz) {
2273 		/* bits_offset is at most 7. bit_sz is at most 128. */
2274 		__u8 nr_bytes = (bits_offset + bit_sz + 7) / 8;
2275 
2276 		/* When bit_sz is non zero, it is called from
2277 		 * btf_dump_struct_data() where it only cares about
2278 		 * negative error value.
2279 		 * Return nr_bytes in success case to make it
2280 		 * consistent as the regular integer case below.
2281 		 */
2282 		return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes;
2283 	}
2284 
2285 	size = btf__resolve_size(d->btf, id);
2286 
2287 	if (size < 0 || size >= INT_MAX) {
2288 		pr_warn("unexpected size [%zu] for id [%u]\n",
2289 			(size_t)size, id);
2290 		return -EINVAL;
2291 	}
2292 
2293 	/* Only do overflow checking for base types; we do not want to
2294 	 * avoid showing part of a struct, union or array, even if we
2295 	 * do not have enough data to show the full object.  By
2296 	 * restricting overflow checking to base types we can ensure
2297 	 * that partial display succeeds, while avoiding overflowing
2298 	 * and using bogus data for display.
2299 	 */
2300 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2301 	if (!t) {
2302 		pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2303 			id);
2304 		return -EINVAL;
2305 	}
2306 
2307 	switch (btf_kind(t)) {
2308 	case BTF_KIND_INT:
2309 	case BTF_KIND_FLOAT:
2310 	case BTF_KIND_PTR:
2311 	case BTF_KIND_ENUM:
2312 	case BTF_KIND_ENUM64:
2313 		if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2314 			return -E2BIG;
2315 		break;
2316 	default:
2317 		break;
2318 	}
2319 	return (int)size;
2320 }
2321 
btf_dump_type_data_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2322 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2323 					 const struct btf_type *t,
2324 					 __u32 id,
2325 					 const void *data,
2326 					 __u8 bits_offset,
2327 					 __u8 bit_sz)
2328 {
2329 	__s64 value;
2330 	int i, err;
2331 
2332 	/* toplevel exceptions; we show zero values if
2333 	 * - we ask for them (emit_zeros)
2334 	 * - if we are at top-level so we see "struct empty { }"
2335 	 * - or if we are an array member and the array is non-empty and
2336 	 *   not a char array; we don't want to be in a situation where we
2337 	 *   have an integer array 0, 1, 0, 1 and only show non-zero values.
2338 	 *   If the array contains zeroes only, or is a char array starting
2339 	 *   with a '\0', the array-level check_zero() will prevent showing it;
2340 	 *   we are concerned with determining zero value at the array member
2341 	 *   level here.
2342 	 */
2343 	if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2344 	    (d->typed_dump->is_array_member &&
2345 	     !d->typed_dump->is_array_char))
2346 		return 0;
2347 
2348 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2349 
2350 	switch (btf_kind(t)) {
2351 	case BTF_KIND_INT:
2352 		if (bit_sz)
2353 			return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2354 		return btf_dump_base_type_check_zero(d, t, id, data);
2355 	case BTF_KIND_FLOAT:
2356 	case BTF_KIND_PTR:
2357 		return btf_dump_base_type_check_zero(d, t, id, data);
2358 	case BTF_KIND_ARRAY: {
2359 		const struct btf_array *array = btf_array(t);
2360 		const struct btf_type *elem_type;
2361 		__u32 elem_type_id, elem_size;
2362 		bool ischar;
2363 
2364 		elem_type_id = array->type;
2365 		elem_size = btf__resolve_size(d->btf, elem_type_id);
2366 		elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2367 
2368 		ischar = btf_is_int(elem_type) && elem_size == 1;
2369 
2370 		/* check all elements; if _any_ element is nonzero, all
2371 		 * of array is displayed.  We make an exception however
2372 		 * for char arrays where the first element is 0; these
2373 		 * are considered zeroed also, even if later elements are
2374 		 * non-zero because the string is terminated.
2375 		 */
2376 		for (i = 0; i < array->nelems; i++) {
2377 			if (i == 0 && ischar && *(char *)data == 0)
2378 				return -ENODATA;
2379 			err = btf_dump_type_data_check_zero(d, elem_type,
2380 							    elem_type_id,
2381 							    data +
2382 							    (i * elem_size),
2383 							    bits_offset, 0);
2384 			if (err != -ENODATA)
2385 				return err;
2386 		}
2387 		return -ENODATA;
2388 	}
2389 	case BTF_KIND_STRUCT:
2390 	case BTF_KIND_UNION: {
2391 		const struct btf_member *m = btf_members(t);
2392 		__u16 n = btf_vlen(t);
2393 
2394 		/* if any struct/union member is non-zero, the struct/union
2395 		 * is considered non-zero and dumped.
2396 		 */
2397 		for (i = 0; i < n; i++, m++) {
2398 			const struct btf_type *mtype;
2399 			__u32 moffset;
2400 
2401 			mtype = btf__type_by_id(d->btf, m->type);
2402 			moffset = btf_member_bit_offset(t, i);
2403 
2404 			/* btf_int_bits() does not store member bitfield size;
2405 			 * bitfield size needs to be stored here so int display
2406 			 * of member can retrieve it.
2407 			 */
2408 			bit_sz = btf_member_bitfield_size(t, i);
2409 			err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2410 							    moffset % 8, bit_sz);
2411 			if (err != ENODATA)
2412 				return err;
2413 		}
2414 		return -ENODATA;
2415 	}
2416 	case BTF_KIND_ENUM:
2417 	case BTF_KIND_ENUM64:
2418 		err = btf_dump_get_enum_value(d, t, data, id, &value);
2419 		if (err)
2420 			return err;
2421 		if (value == 0)
2422 			return -ENODATA;
2423 		return 0;
2424 	default:
2425 		return 0;
2426 	}
2427 }
2428 
2429 /* returns size of data dumped, or error. */
btf_dump_dump_type_data(struct btf_dump * d,const char * fname,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2430 static int btf_dump_dump_type_data(struct btf_dump *d,
2431 				   const char *fname,
2432 				   const struct btf_type *t,
2433 				   __u32 id,
2434 				   const void *data,
2435 				   __u8 bits_offset,
2436 				   __u8 bit_sz)
2437 {
2438 	int size, err = 0;
2439 
2440 	size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz);
2441 	if (size < 0)
2442 		return size;
2443 	err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2444 	if (err) {
2445 		/* zeroed data is expected and not an error, so simply skip
2446 		 * dumping such data.  Record other errors however.
2447 		 */
2448 		if (err == -ENODATA)
2449 			return size;
2450 		return err;
2451 	}
2452 	btf_dump_data_pfx(d);
2453 
2454 	if (!d->typed_dump->skip_names) {
2455 		if (fname && strlen(fname) > 0)
2456 			btf_dump_printf(d, ".%s = ", fname);
2457 		btf_dump_emit_type_cast(d, id, true);
2458 	}
2459 
2460 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2461 
2462 	switch (btf_kind(t)) {
2463 	case BTF_KIND_UNKN:
2464 	case BTF_KIND_FWD:
2465 	case BTF_KIND_FUNC:
2466 	case BTF_KIND_FUNC_PROTO:
2467 	case BTF_KIND_DECL_TAG:
2468 		err = btf_dump_unsupported_data(d, t, id);
2469 		break;
2470 	case BTF_KIND_INT:
2471 		if (bit_sz)
2472 			err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2473 		else
2474 			err = btf_dump_int_data(d, t, id, data, bits_offset);
2475 		break;
2476 	case BTF_KIND_FLOAT:
2477 		err = btf_dump_float_data(d, t, id, data);
2478 		break;
2479 	case BTF_KIND_PTR:
2480 		err = btf_dump_ptr_data(d, t, id, data);
2481 		break;
2482 	case BTF_KIND_ARRAY:
2483 		err = btf_dump_array_data(d, t, id, data);
2484 		break;
2485 	case BTF_KIND_STRUCT:
2486 	case BTF_KIND_UNION:
2487 		err = btf_dump_struct_data(d, t, id, data);
2488 		break;
2489 	case BTF_KIND_ENUM:
2490 	case BTF_KIND_ENUM64:
2491 		/* handle bitfield and int enum values */
2492 		if (bit_sz) {
2493 			__u64 print_num;
2494 			__s64 enum_val;
2495 
2496 			err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2497 							  &print_num);
2498 			if (err)
2499 				break;
2500 			enum_val = (__s64)print_num;
2501 			err = btf_dump_enum_data(d, t, id, &enum_val);
2502 		} else
2503 			err = btf_dump_enum_data(d, t, id, data);
2504 		break;
2505 	case BTF_KIND_VAR:
2506 		err = btf_dump_var_data(d, t, id, data);
2507 		break;
2508 	case BTF_KIND_DATASEC:
2509 		err = btf_dump_datasec_data(d, t, id, data);
2510 		break;
2511 	default:
2512 		pr_warn("unexpected kind [%u] for id [%u]\n",
2513 			BTF_INFO_KIND(t->info), id);
2514 		return -EINVAL;
2515 	}
2516 	if (err < 0)
2517 		return err;
2518 	return size;
2519 }
2520 
btf_dump__dump_type_data(struct btf_dump * d,__u32 id,const void * data,size_t data_sz,const struct btf_dump_type_data_opts * opts)2521 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2522 			     const void *data, size_t data_sz,
2523 			     const struct btf_dump_type_data_opts *opts)
2524 {
2525 	struct btf_dump_data typed_dump = {};
2526 	const struct btf_type *t;
2527 	int ret;
2528 
2529 	if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2530 		return libbpf_err(-EINVAL);
2531 
2532 	t = btf__type_by_id(d->btf, id);
2533 	if (!t)
2534 		return libbpf_err(-ENOENT);
2535 
2536 	d->typed_dump = &typed_dump;
2537 	d->typed_dump->data_end = data + data_sz;
2538 	d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2539 
2540 	/* default indent string is a tab */
2541 	if (!OPTS_GET(opts, indent_str, NULL))
2542 		d->typed_dump->indent_str[0] = '\t';
2543 	else
2544 		libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2545 			       sizeof(d->typed_dump->indent_str));
2546 
2547 	d->typed_dump->compact = OPTS_GET(opts, compact, false);
2548 	d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2549 	d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2550 
2551 	ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2552 
2553 	d->typed_dump = NULL;
2554 
2555 	return libbpf_err(ret);
2556 }
2557