xref: /freebsd/sys/dev/cxgbe/tom/t4_cpl_io.c (revision 721033a7d96f24e80ec18ec9cc17712be55a52b7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2015 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 
36 #ifdef TCP_OFFLOAD
37 #include <sys/param.h>
38 #include <sys/aio.h>
39 #include <sys/file.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/module.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/domain.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sglist.h>
49 #include <sys/taskqueue.h>
50 #include <netinet/in.h>
51 #include <netinet/in_pcb.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip6.h>
54 #define TCPSTATES
55 #include <netinet/tcp_fsm.h>
56 #include <netinet/tcp_seq.h>
57 #include <netinet/tcp_var.h>
58 #include <netinet/toecore.h>
59 
60 #include <security/mac/mac_framework.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_page.h>
67 
68 #include <dev/iscsi/iscsi_proto.h>
69 
70 #include "common/common.h"
71 #include "common/t4_msg.h"
72 #include "common/t4_regs.h"
73 #include "common/t4_tcb.h"
74 #include "tom/t4_tom_l2t.h"
75 #include "tom/t4_tom.h"
76 
77 static void	t4_aiotx_cancel(struct kaiocb *job);
78 static void	t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep);
79 
80 void
81 send_flowc_wr(struct toepcb *toep, struct tcpcb *tp)
82 {
83 	struct wrqe *wr;
84 	struct fw_flowc_wr *flowc;
85 	unsigned int nparams, flowclen, paramidx;
86 	struct vi_info *vi = toep->vi;
87 	struct port_info *pi = vi->pi;
88 	struct adapter *sc = pi->adapter;
89 	unsigned int pfvf = sc->pf << S_FW_VIID_PFN;
90 	struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
91 
92 	KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT),
93 	    ("%s: flowc for tid %u sent already", __func__, toep->tid));
94 
95 	if (tp != NULL)
96 		nparams = 8;
97 	else
98 		nparams = 6;
99 	if (toep->params.tc_idx != -1) {
100 		MPASS(toep->params.tc_idx >= 0 &&
101 		    toep->params.tc_idx < sc->params.nsched_cls);
102 		nparams++;
103 	}
104 
105 	flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval);
106 
107 	wr = alloc_wrqe(roundup2(flowclen, 16), &toep->ofld_txq->wrq);
108 	if (wr == NULL) {
109 		/* XXX */
110 		panic("%s: allocation failure.", __func__);
111 	}
112 	flowc = wrtod(wr);
113 	memset(flowc, 0, wr->wr_len);
114 
115 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
116 	    V_FW_FLOWC_WR_NPARAMS(nparams));
117 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) |
118 	    V_FW_WR_FLOWID(toep->tid));
119 
120 #define FLOWC_PARAM(__m, __v) \
121 	do { \
122 		flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \
123 		flowc->mnemval[paramidx].val = htobe32(__v); \
124 		paramidx++; \
125 	} while (0)
126 
127 	paramidx = 0;
128 
129 	FLOWC_PARAM(PFNVFN, pfvf);
130 	/* Firmware expects hw port and will translate to channel itself. */
131 	FLOWC_PARAM(CH, pi->hw_port);
132 	FLOWC_PARAM(PORT, pi->hw_port);
133 	FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id);
134 	FLOWC_PARAM(SNDBUF, toep->params.sndbuf);
135 	if (tp) {
136 		FLOWC_PARAM(MSS, toep->params.emss);
137 		FLOWC_PARAM(SNDNXT, tp->snd_nxt);
138 		FLOWC_PARAM(RCVNXT, tp->rcv_nxt);
139 	} else
140 		FLOWC_PARAM(MSS, 512);
141 	CTR6(KTR_CXGBE,
142 	    "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x",
143 	    __func__, toep->tid, toep->params.emss, toep->params.sndbuf,
144 	    tp ? tp->snd_nxt : 0, tp ? tp->rcv_nxt : 0);
145 
146 	if (toep->params.tc_idx != -1)
147 		FLOWC_PARAM(SCHEDCLASS, toep->params.tc_idx);
148 #undef FLOWC_PARAM
149 
150 	KASSERT(paramidx == nparams, ("nparams mismatch"));
151 
152 	KASSERT(howmany(flowclen, 16) <= MAX_OFLD_TX_SDESC_CREDITS,
153 	    ("%s: tx_credits %u too large", __func__, howmany(flowclen, 16)));
154 	txsd->tx_credits = howmany(flowclen, 16);
155 	txsd->plen = 0;
156 	KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0,
157 	    ("%s: not enough credits (%d)", __func__, toep->tx_credits));
158 	toep->tx_credits -= txsd->tx_credits;
159 	if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
160 		toep->txsd_pidx = 0;
161 	toep->txsd_avail--;
162 
163 	toep->flags |= TPF_FLOWC_WR_SENT;
164         t4_wrq_tx(sc, wr);
165 }
166 
167 #ifdef RATELIMIT
168 /*
169  * Input is Bytes/second (so_max_pacing_rate), chip counts in Kilobits/second.
170  */
171 static int
172 update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps)
173 {
174 	int tc_idx, rc;
175 	const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000;
176 	const int port_id = toep->vi->pi->port_id;
177 
178 	CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps);
179 
180 	if (kbps == 0) {
181 		/* unbind */
182 		tc_idx = -1;
183 	} else {
184 		rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx);
185 		if (rc != 0)
186 			return (rc);
187 		MPASS(tc_idx >= 0 && tc_idx < sc->params.nsched_cls);
188 	}
189 
190 	if (toep->params.tc_idx != tc_idx) {
191 		struct wrqe *wr;
192 		struct fw_flowc_wr *flowc;
193 		int nparams = 1, flowclen, flowclen16;
194 		struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
195 
196 		flowclen = sizeof(*flowc) + nparams * sizeof(struct
197 		    fw_flowc_mnemval);
198 		flowclen16 = howmany(flowclen, 16);
199 		if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 ||
200 		    (wr = alloc_wrqe(roundup2(flowclen, 16),
201 		    &toep->ofld_txq->wrq)) == NULL) {
202 			if (tc_idx >= 0)
203 				t4_release_cl_rl(sc, port_id, tc_idx);
204 			return (ENOMEM);
205 		}
206 
207 		flowc = wrtod(wr);
208 		memset(flowc, 0, wr->wr_len);
209 
210 		flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
211 		    V_FW_FLOWC_WR_NPARAMS(nparams));
212 		flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) |
213 		    V_FW_WR_FLOWID(toep->tid));
214 
215 		flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
216 		if (tc_idx == -1)
217 			flowc->mnemval[0].val = htobe32(0xff);
218 		else
219 			flowc->mnemval[0].val = htobe32(tc_idx);
220 
221 		KASSERT(flowclen16 <= MAX_OFLD_TX_SDESC_CREDITS,
222 		    ("%s: tx_credits %u too large", __func__, flowclen16));
223 		txsd->tx_credits = flowclen16;
224 		txsd->plen = 0;
225 		toep->tx_credits -= txsd->tx_credits;
226 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
227 			toep->txsd_pidx = 0;
228 		toep->txsd_avail--;
229 		t4_wrq_tx(sc, wr);
230 	}
231 
232 	if (toep->params.tc_idx >= 0)
233 		t4_release_cl_rl(sc, port_id, toep->params.tc_idx);
234 	toep->params.tc_idx = tc_idx;
235 
236 	return (0);
237 }
238 #endif
239 
240 void
241 send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt)
242 {
243 	struct wrqe *wr;
244 	struct cpl_abort_req *req;
245 	int tid = toep->tid;
246 	struct inpcb *inp = toep->inp;
247 	struct tcpcb *tp = intotcpcb(inp);	/* don't use if INP_DROPPED */
248 
249 	INP_WLOCK_ASSERT(inp);
250 
251 	CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s",
252 	    __func__, toep->tid,
253 	    inp->inp_flags & INP_DROPPED ? "inp dropped" :
254 	    tcpstates[tp->t_state],
255 	    toep->flags, inp->inp_flags,
256 	    toep->flags & TPF_ABORT_SHUTDOWN ?
257 	    " (abort already in progress)" : "");
258 
259 	if (toep->flags & TPF_ABORT_SHUTDOWN)
260 		return;	/* abort already in progress */
261 
262 	toep->flags |= TPF_ABORT_SHUTDOWN;
263 
264 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
265 	    ("%s: flowc_wr not sent for tid %d.", __func__, tid));
266 
267 	wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq);
268 	if (wr == NULL) {
269 		/* XXX */
270 		panic("%s: allocation failure.", __func__);
271 	}
272 	req = wrtod(wr);
273 
274 	INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid);
275 	if (inp->inp_flags & INP_DROPPED)
276 		req->rsvd0 = htobe32(snd_nxt);
277 	else
278 		req->rsvd0 = htobe32(tp->snd_nxt);
279 	req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT);
280 	req->cmd = CPL_ABORT_SEND_RST;
281 
282 	/*
283 	 * XXX: What's the correct way to tell that the inp hasn't been detached
284 	 * from its socket?  Should I even be flushing the snd buffer here?
285 	 */
286 	if ((inp->inp_flags & INP_DROPPED) == 0) {
287 		struct socket *so = inp->inp_socket;
288 
289 		if (so != NULL)	/* because I'm not sure.  See comment above */
290 			sbflush(&so->so_snd);
291 	}
292 
293 	t4_l2t_send(sc, wr, toep->l2te);
294 }
295 
296 /*
297  * Called when a connection is established to translate the TCP options
298  * reported by HW to FreeBSD's native format.
299  */
300 static void
301 assign_rxopt(struct tcpcb *tp, uint16_t opt)
302 {
303 	struct toepcb *toep = tp->t_toe;
304 	struct inpcb *inp = tptoinpcb(tp);
305 	struct adapter *sc = td_adapter(toep->td);
306 
307 	INP_LOCK_ASSERT(inp);
308 
309 	toep->params.mtu_idx = G_TCPOPT_MSS(opt);
310 	tp->t_maxseg = sc->params.mtus[toep->params.mtu_idx];
311 	if (inp->inp_inc.inc_flags & INC_ISIPV6)
312 		tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
313 	else
314 		tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr);
315 
316 	toep->params.emss = tp->t_maxseg;
317 	if (G_TCPOPT_TSTAMP(opt)) {
318 		toep->params.tstamp = 1;
319 		toep->params.emss -= TCPOLEN_TSTAMP_APPA;
320 		tp->t_flags |= TF_RCVD_TSTMP;	/* timestamps ok */
321 		tp->ts_recent = 0;		/* hmmm */
322 		tp->ts_recent_age = tcp_ts_getticks();
323 	} else
324 		toep->params.tstamp = 0;
325 
326 	if (G_TCPOPT_SACK(opt)) {
327 		toep->params.sack = 1;
328 		tp->t_flags |= TF_SACK_PERMIT;	/* should already be set */
329 	} else {
330 		toep->params.sack = 0;
331 		tp->t_flags &= ~TF_SACK_PERMIT;	/* sack disallowed by peer */
332 	}
333 
334 	if (G_TCPOPT_WSCALE_OK(opt))
335 		tp->t_flags |= TF_RCVD_SCALE;
336 
337 	/* Doing window scaling? */
338 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
339 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
340 		tp->rcv_scale = tp->request_r_scale;
341 		tp->snd_scale = G_TCPOPT_SND_WSCALE(opt);
342 	} else
343 		toep->params.wscale = 0;
344 
345 	CTR6(KTR_CXGBE,
346 	    "assign_rxopt: tid %d, mtu_idx %u, emss %u, ts %u, sack %u, wscale %u",
347 	    toep->tid, toep->params.mtu_idx, toep->params.emss,
348 	    toep->params.tstamp, toep->params.sack, toep->params.wscale);
349 }
350 
351 /*
352  * Completes some final bits of initialization for just established connections
353  * and changes their state to TCPS_ESTABLISHED.
354  *
355  * The ISNs are from the exchange of SYNs.
356  */
357 void
358 make_established(struct toepcb *toep, uint32_t iss, uint32_t irs, uint16_t opt)
359 {
360 	struct inpcb *inp = toep->inp;
361 	struct socket *so = inp->inp_socket;
362 	struct tcpcb *tp = intotcpcb(inp);
363 	uint16_t tcpopt = be16toh(opt);
364 
365 	INP_WLOCK_ASSERT(inp);
366 	KASSERT(tp->t_state == TCPS_SYN_SENT ||
367 	    tp->t_state == TCPS_SYN_RECEIVED,
368 	    ("%s: TCP state %s", __func__, tcpstates[tp->t_state]));
369 
370 	CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p",
371 	    __func__, toep->tid, so, inp, tp, toep);
372 
373 	tcp_state_change(tp, TCPS_ESTABLISHED);
374 	tp->t_starttime = ticks;
375 	TCPSTAT_INC(tcps_connects);
376 
377 	tp->irs = irs;
378 	tcp_rcvseqinit(tp);
379 	tp->rcv_wnd = (u_int)toep->params.opt0_bufsize << 10;
380 	tp->rcv_adv += tp->rcv_wnd;
381 	tp->last_ack_sent = tp->rcv_nxt;
382 
383 	tp->iss = iss;
384 	tcp_sendseqinit(tp);
385 	tp->snd_una = iss + 1;
386 	tp->snd_nxt = iss + 1;
387 	tp->snd_max = iss + 1;
388 
389 	assign_rxopt(tp, tcpopt);
390 	send_flowc_wr(toep, tp);
391 
392 	soisconnected(so);
393 }
394 
395 int
396 send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits)
397 {
398 	struct wrqe *wr;
399 	struct cpl_rx_data_ack *req;
400 	uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1);
401 
402 	KASSERT(credits >= 0, ("%s: %d credits", __func__, credits));
403 
404 	wr = alloc_wrqe(sizeof(*req), toep->ctrlq);
405 	if (wr == NULL)
406 		return (0);
407 	req = wrtod(wr);
408 
409 	INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid);
410 	req->credit_dack = htobe32(dack | V_RX_CREDITS(credits));
411 
412 	t4_wrq_tx(sc, wr);
413 	return (credits);
414 }
415 
416 void
417 t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp)
418 {
419 	struct adapter *sc = tod->tod_softc;
420 	struct inpcb *inp = tptoinpcb(tp);
421 	struct socket *so = inp->inp_socket;
422 	struct sockbuf *sb = &so->so_rcv;
423 	struct toepcb *toep = tp->t_toe;
424 	int rx_credits;
425 
426 	INP_WLOCK_ASSERT(inp);
427 	SOCKBUF_LOCK_ASSERT(sb);
428 
429 	rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0;
430 	if (rx_credits > 0 &&
431 	    (tp->rcv_wnd <= 32 * 1024 || rx_credits >= 64 * 1024 ||
432 	    (rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) ||
433 	    sbused(sb) + tp->rcv_wnd < sb->sb_lowat)) {
434 		rx_credits = send_rx_credits(sc, toep, rx_credits);
435 		tp->rcv_wnd += rx_credits;
436 		tp->rcv_adv += rx_credits;
437 	}
438 }
439 
440 void
441 t4_rcvd(struct toedev *tod, struct tcpcb *tp)
442 {
443 	struct inpcb *inp = tptoinpcb(tp);
444 	struct socket *so = inp->inp_socket;
445 	struct sockbuf *sb = &so->so_rcv;
446 
447 	SOCKBUF_LOCK(sb);
448 	t4_rcvd_locked(tod, tp);
449 	SOCKBUF_UNLOCK(sb);
450 }
451 
452 /*
453  * Close a connection by sending a CPL_CLOSE_CON_REQ message.
454  */
455 int
456 t4_close_conn(struct adapter *sc, struct toepcb *toep)
457 {
458 	struct wrqe *wr;
459 	struct cpl_close_con_req *req;
460 	unsigned int tid = toep->tid;
461 
462 	CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid,
463 	    toep->flags & TPF_FIN_SENT ? ", IGNORED" : "");
464 
465 	if (toep->flags & TPF_FIN_SENT)
466 		return (0);
467 
468 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
469 	    ("%s: flowc_wr not sent for tid %u.", __func__, tid));
470 
471 	wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq);
472 	if (wr == NULL) {
473 		/* XXX */
474 		panic("%s: allocation failure.", __func__);
475 	}
476 	req = wrtod(wr);
477 
478         req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) |
479 	    V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr)));
480 	req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) |
481 	    V_FW_WR_FLOWID(tid));
482         req->wr.wr_lo = cpu_to_be64(0);
483         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid));
484 	req->rsvd = 0;
485 
486 	toep->flags |= TPF_FIN_SENT;
487 	toep->flags &= ~TPF_SEND_FIN;
488 	t4_l2t_send(sc, wr, toep->l2te);
489 
490 	return (0);
491 }
492 
493 #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16)
494 #define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16))
495 #define MIN_ISO_TX_CREDITS  (howmany(sizeof(struct cpl_tx_data_iso), 16))
496 #define MIN_TX_CREDITS(iso)						\
497 	(MIN_OFLD_TX_CREDITS + ((iso) ? MIN_ISO_TX_CREDITS : 0))
498 
499 _Static_assert(MAX_OFLD_TX_CREDITS <= MAX_OFLD_TX_SDESC_CREDITS,
500     "MAX_OFLD_TX_SDESC_CREDITS too small");
501 
502 /* Maximum amount of immediate data we could stuff in a WR */
503 static inline int
504 max_imm_payload(int tx_credits, int iso)
505 {
506 	const int iso_cpl_size = iso ? sizeof(struct cpl_tx_data_iso) : 0;
507 	const int n = 1;	/* Use no more than one desc for imm. data WR */
508 
509 	KASSERT(tx_credits >= 0 &&
510 		tx_credits <= MAX_OFLD_TX_CREDITS,
511 		("%s: %d credits", __func__, tx_credits));
512 
513 	if (tx_credits < MIN_TX_CREDITS(iso))
514 		return (0);
515 
516 	if (tx_credits >= (n * EQ_ESIZE) / 16)
517 		return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr) -
518 		    iso_cpl_size);
519 	else
520 		return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr) -
521 		    iso_cpl_size);
522 }
523 
524 /* Maximum number of SGL entries we could stuff in a WR */
525 static inline int
526 max_dsgl_nsegs(int tx_credits, int iso)
527 {
528 	int nseg = 1;	/* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */
529 	int sge_pair_credits = tx_credits - MIN_TX_CREDITS(iso);
530 
531 	KASSERT(tx_credits >= 0 &&
532 		tx_credits <= MAX_OFLD_TX_CREDITS,
533 		("%s: %d credits", __func__, tx_credits));
534 
535 	if (tx_credits < MIN_TX_CREDITS(iso))
536 		return (0);
537 
538 	nseg += 2 * (sge_pair_credits * 16 / 24);
539 	if ((sge_pair_credits * 16) % 24 == 16)
540 		nseg++;
541 
542 	return (nseg);
543 }
544 
545 static inline void
546 write_tx_wr(void *dst, struct toepcb *toep, int fw_wr_opcode,
547     unsigned int immdlen, unsigned int plen, uint8_t credits, int shove,
548     int ulp_submode)
549 {
550 	struct fw_ofld_tx_data_wr *txwr = dst;
551 
552 	txwr->op_to_immdlen = htobe32(V_WR_OP(fw_wr_opcode) |
553 	    V_FW_WR_IMMDLEN(immdlen));
554 	txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) |
555 	    V_FW_WR_LEN16(credits));
556 	txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ulp_mode(toep)) |
557 	    V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove));
558 	txwr->plen = htobe32(plen);
559 
560 	if (toep->params.tx_align > 0) {
561 		if (plen < 2 * toep->params.emss)
562 			txwr->lsodisable_to_flags |=
563 			    htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE);
564 		else
565 			txwr->lsodisable_to_flags |=
566 			    htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD |
567 				(toep->params.nagle == 0 ? 0 :
568 				F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE));
569 	}
570 }
571 
572 /*
573  * Generate a DSGL from a starting mbuf.  The total number of segments and the
574  * maximum segments in any one mbuf are provided.
575  */
576 static void
577 write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n)
578 {
579 	struct mbuf *m;
580 	struct ulptx_sgl *usgl = dst;
581 	int i, j, rc;
582 	struct sglist sg;
583 	struct sglist_seg segs[n];
584 
585 	KASSERT(nsegs > 0, ("%s: nsegs 0", __func__));
586 
587 	sglist_init(&sg, n, segs);
588 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
589 	    V_ULPTX_NSGE(nsegs));
590 
591 	i = -1;
592 	for (m = start; m != stop; m = m->m_next) {
593 		if (m->m_flags & M_EXTPG)
594 			rc = sglist_append_mbuf_epg(&sg, m,
595 			    mtod(m, vm_offset_t), m->m_len);
596 		else
597 			rc = sglist_append(&sg, mtod(m, void *), m->m_len);
598 		if (__predict_false(rc != 0))
599 			panic("%s: sglist_append %d", __func__, rc);
600 
601 		for (j = 0; j < sg.sg_nseg; i++, j++) {
602 			if (i < 0) {
603 				usgl->len0 = htobe32(segs[j].ss_len);
604 				usgl->addr0 = htobe64(segs[j].ss_paddr);
605 			} else {
606 				usgl->sge[i / 2].len[i & 1] =
607 				    htobe32(segs[j].ss_len);
608 				usgl->sge[i / 2].addr[i & 1] =
609 				    htobe64(segs[j].ss_paddr);
610 			}
611 #ifdef INVARIANTS
612 			nsegs--;
613 #endif
614 		}
615 		sglist_reset(&sg);
616 	}
617 	if (i & 1)
618 		usgl->sge[i / 2].len[1] = htobe32(0);
619 	KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p",
620 	    __func__, nsegs, start, stop));
621 }
622 
623 bool
624 t4_push_raw_wr(struct adapter *sc, struct toepcb *toep, struct mbuf *m)
625 {
626 #ifdef INVARIANTS
627 	struct inpcb *inp = toep->inp;
628 #endif
629 	struct wrqe *wr;
630 	struct ofld_tx_sdesc *txsd;
631 	u_int credits, plen;
632 
633 	INP_WLOCK_ASSERT(inp);
634 	MPASS(mbuf_raw_wr(m));
635 	plen = m->m_pkthdr.len;
636 	credits = howmany(plen, 16);
637 	if (credits > toep->tx_credits)
638 		return (false);
639 
640 	wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq);
641 	if (wr == NULL)
642 		return (false);
643 
644 	m_copydata(m, 0, plen, wrtod(wr));
645 	m_freem(m);
646 
647 	toep->tx_credits -= credits;
648 	if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
649 		toep->flags |= TPF_TX_SUSPENDED;
650 
651 	KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
652 	KASSERT(credits <= MAX_OFLD_TX_SDESC_CREDITS,
653 	    ("%s: tx_credits %u too large", __func__, credits));
654 	txsd = &toep->txsd[toep->txsd_pidx];
655 	txsd->plen = 0;
656 	txsd->tx_credits = credits;
657 	if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
658 		toep->txsd_pidx = 0;
659 	toep->txsd_avail--;
660 
661 	t4_wrq_tx(sc, wr);
662 	return (true);
663 }
664 
665 /*
666  * Max number of SGL entries an offload tx work request can have.  This is 41
667  * (1 + 40) for a full 512B work request.
668  * fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40)
669  */
670 #define OFLD_SGL_LEN (41)
671 
672 /*
673  * Send data and/or a FIN to the peer.
674  *
675  * The socket's so_snd buffer consists of a stream of data starting with sb_mb
676  * and linked together with m_next.  sb_sndptr, if set, is the last mbuf that
677  * was transmitted.
678  *
679  * drop indicates the number of bytes that should be dropped from the head of
680  * the send buffer.  It is an optimization that lets do_fw4_ack avoid creating
681  * contention on the send buffer lock (before this change it used to do
682  * sowwakeup and then t4_push_frames right after that when recovering from tx
683  * stalls).  When drop is set this function MUST drop the bytes and wake up any
684  * writers.
685  */
686 static void
687 t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop)
688 {
689 	struct mbuf *sndptr, *m, *sb_sndptr;
690 	struct fw_ofld_tx_data_wr *txwr;
691 	struct wrqe *wr;
692 	u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
693 	struct inpcb *inp = toep->inp;
694 	struct tcpcb *tp = intotcpcb(inp);
695 	struct socket *so = inp->inp_socket;
696 	struct sockbuf *sb = &so->so_snd;
697 	struct mbufq *pduq = &toep->ulp_pduq;
698 	int tx_credits, shove, compl, sowwakeup;
699 	struct ofld_tx_sdesc *txsd;
700 	bool nomap_mbuf_seen;
701 
702 	INP_WLOCK_ASSERT(inp);
703 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
704 	    ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
705 
706 	KASSERT(ulp_mode(toep) == ULP_MODE_NONE ||
707 	    ulp_mode(toep) == ULP_MODE_TCPDDP ||
708 	    ulp_mode(toep) == ULP_MODE_TLS ||
709 	    ulp_mode(toep) == ULP_MODE_RDMA,
710 	    ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
711 
712 #ifdef VERBOSE_TRACES
713 	CTR5(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d",
714 	    __func__, toep->tid, toep->flags, tp->t_flags, drop);
715 #endif
716 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
717 		return;
718 
719 #ifdef RATELIMIT
720 	if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) &&
721 	    (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) {
722 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
723 	}
724 #endif
725 
726 	/*
727 	 * This function doesn't resume by itself.  Someone else must clear the
728 	 * flag and call this function.
729 	 */
730 	if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
731 		KASSERT(drop == 0,
732 		    ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
733 		return;
734 	}
735 
736 	txsd = &toep->txsd[toep->txsd_pidx];
737 	do {
738 		tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
739 		max_imm = max_imm_payload(tx_credits, 0);
740 		max_nsegs = max_dsgl_nsegs(tx_credits, 0);
741 
742 		if (__predict_false((sndptr = mbufq_first(pduq)) != NULL)) {
743 			if (!t4_push_raw_wr(sc, toep, sndptr)) {
744 				toep->flags |= TPF_TX_SUSPENDED;
745 				return;
746 			}
747 
748 			m = mbufq_dequeue(pduq);
749 			MPASS(m == sndptr);
750 
751 			txsd = &toep->txsd[toep->txsd_pidx];
752 			continue;
753 		}
754 
755 		SOCKBUF_LOCK(sb);
756 		sowwakeup = drop;
757 		if (drop) {
758 			sbdrop_locked(sb, drop);
759 			drop = 0;
760 		}
761 		sb_sndptr = sb->sb_sndptr;
762 		sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb;
763 		plen = 0;
764 		nsegs = 0;
765 		max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
766 		nomap_mbuf_seen = false;
767 		for (m = sndptr; m != NULL; m = m->m_next) {
768 			int n;
769 
770 			if ((m->m_flags & M_NOTREADY) != 0)
771 				break;
772 			if (plen + m->m_len > MAX_OFLD_TX_SDESC_PLEN)
773 				break;
774 			if (m->m_flags & M_EXTPG) {
775 #ifdef KERN_TLS
776 				if (m->m_epg_tls != NULL) {
777 					toep->flags |= TPF_KTLS;
778 					if (plen == 0) {
779 						SOCKBUF_UNLOCK(sb);
780 						t4_push_ktls(sc, toep, 0);
781 						return;
782 					}
783 					break;
784 				}
785 #endif
786 				n = sglist_count_mbuf_epg(m,
787 				    mtod(m, vm_offset_t), m->m_len);
788 			} else
789 				n = sglist_count(mtod(m, void *), m->m_len);
790 
791 			nsegs += n;
792 			plen += m->m_len;
793 
794 			/* This mbuf sent us _over_ the nsegs limit, back out */
795 			if (plen > max_imm && nsegs > max_nsegs) {
796 				nsegs -= n;
797 				plen -= m->m_len;
798 				if (plen == 0) {
799 					/* Too few credits */
800 					toep->flags |= TPF_TX_SUSPENDED;
801 					if (sowwakeup) {
802 						if (!TAILQ_EMPTY(
803 						    &toep->aiotx_jobq))
804 							t4_aiotx_queue_toep(so,
805 							    toep);
806 						sowwakeup_locked(so);
807 					} else
808 						SOCKBUF_UNLOCK(sb);
809 					SOCKBUF_UNLOCK_ASSERT(sb);
810 					return;
811 				}
812 				break;
813 			}
814 
815 			if (m->m_flags & M_EXTPG)
816 				nomap_mbuf_seen = true;
817 			if (max_nsegs_1mbuf < n)
818 				max_nsegs_1mbuf = n;
819 			sb_sndptr = m;	/* new sb->sb_sndptr if all goes well */
820 
821 			/* This mbuf put us right at the max_nsegs limit */
822 			if (plen > max_imm && nsegs == max_nsegs) {
823 				m = m->m_next;
824 				break;
825 			}
826 		}
827 
828 		if (sbused(sb) > sb->sb_hiwat * 5 / 8 &&
829 		    toep->plen_nocompl + plen >= sb->sb_hiwat / 4)
830 			compl = 1;
831 		else
832 			compl = 0;
833 
834 		if (sb->sb_flags & SB_AUTOSIZE &&
835 		    V_tcp_do_autosndbuf &&
836 		    sb->sb_hiwat < V_tcp_autosndbuf_max &&
837 		    sbused(sb) >= sb->sb_hiwat * 7 / 8) {
838 			int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc,
839 			    V_tcp_autosndbuf_max);
840 
841 			if (!sbreserve_locked(so, SO_SND, newsize, NULL))
842 				sb->sb_flags &= ~SB_AUTOSIZE;
843 			else
844 				sowwakeup = 1;	/* room available */
845 		}
846 		if (sowwakeup) {
847 			if (!TAILQ_EMPTY(&toep->aiotx_jobq))
848 				t4_aiotx_queue_toep(so, toep);
849 			sowwakeup_locked(so);
850 		} else
851 			SOCKBUF_UNLOCK(sb);
852 		SOCKBUF_UNLOCK_ASSERT(sb);
853 
854 		/* nothing to send */
855 		if (plen == 0) {
856 			KASSERT(m == NULL || (m->m_flags & M_NOTREADY) != 0,
857 			    ("%s: nothing to send, but m != NULL is ready",
858 			    __func__));
859 			break;
860 		}
861 
862 		if (__predict_false(toep->flags & TPF_FIN_SENT))
863 			panic("%s: excess tx.", __func__);
864 
865 		shove = m == NULL && !(tp->t_flags & TF_MORETOCOME);
866 		if (plen <= max_imm && !nomap_mbuf_seen) {
867 
868 			/* Immediate data tx */
869 
870 			wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
871 					&toep->ofld_txq->wrq);
872 			if (wr == NULL) {
873 				/* XXX: how will we recover from this? */
874 				toep->flags |= TPF_TX_SUSPENDED;
875 				return;
876 			}
877 			txwr = wrtod(wr);
878 			credits = howmany(wr->wr_len, 16);
879 			write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, plen, plen,
880 			    credits, shove, 0);
881 			m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
882 			nsegs = 0;
883 		} else {
884 			int wr_len;
885 
886 			/* DSGL tx */
887 
888 			wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
889 			    ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
890 			wr = alloc_wrqe(roundup2(wr_len, 16),
891 			    &toep->ofld_txq->wrq);
892 			if (wr == NULL) {
893 				/* XXX: how will we recover from this? */
894 				toep->flags |= TPF_TX_SUSPENDED;
895 				return;
896 			}
897 			txwr = wrtod(wr);
898 			credits = howmany(wr_len, 16);
899 			write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, 0, plen,
900 			    credits, shove, 0);
901 			write_tx_sgl(txwr + 1, sndptr, m, nsegs,
902 			    max_nsegs_1mbuf);
903 			if (wr_len & 0xf) {
904 				uint64_t *pad = (uint64_t *)
905 				    ((uintptr_t)txwr + wr_len);
906 				*pad = 0;
907 			}
908 		}
909 
910 		KASSERT(toep->tx_credits >= credits,
911 			("%s: not enough credits", __func__));
912 
913 		toep->tx_credits -= credits;
914 		toep->tx_nocompl += credits;
915 		toep->plen_nocompl += plen;
916 		if (toep->tx_credits <= toep->tx_total * 3 / 8 &&
917 		    toep->tx_nocompl >= toep->tx_total / 4)
918 			compl = 1;
919 
920 		if (compl || ulp_mode(toep) == ULP_MODE_RDMA) {
921 			txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL);
922 			toep->tx_nocompl = 0;
923 			toep->plen_nocompl = 0;
924 		}
925 
926 		tp->snd_nxt += plen;
927 		tp->snd_max += plen;
928 
929 		SOCKBUF_LOCK(sb);
930 		KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__));
931 		sb->sb_sndptr = sb_sndptr;
932 		SOCKBUF_UNLOCK(sb);
933 
934 		toep->flags |= TPF_TX_DATA_SENT;
935 		if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
936 			toep->flags |= TPF_TX_SUSPENDED;
937 
938 		KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
939 		KASSERT(plen <= MAX_OFLD_TX_SDESC_PLEN,
940 		    ("%s: plen %u too large", __func__, plen));
941 		txsd->plen = plen;
942 		txsd->tx_credits = credits;
943 		txsd++;
944 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
945 			toep->txsd_pidx = 0;
946 			txsd = &toep->txsd[0];
947 		}
948 		toep->txsd_avail--;
949 
950 		t4_l2t_send(sc, wr, toep->l2te);
951 	} while (m != NULL && (m->m_flags & M_NOTREADY) == 0);
952 
953 	/* Send a FIN if requested, but only if there's no more data to send */
954 	if (m == NULL && toep->flags & TPF_SEND_FIN)
955 		t4_close_conn(sc, toep);
956 }
957 
958 static inline void
959 rqdrop_locked(struct mbufq *q, int plen)
960 {
961 	struct mbuf *m;
962 
963 	while (plen > 0) {
964 		m = mbufq_dequeue(q);
965 
966 		/* Too many credits. */
967 		MPASS(m != NULL);
968 		M_ASSERTPKTHDR(m);
969 
970 		/* Partial credits. */
971 		MPASS(plen >= m->m_pkthdr.len);
972 
973 		plen -= m->m_pkthdr.len;
974 		m_freem(m);
975 	}
976 }
977 
978 /*
979  * Not a bit in the TCB, but is a bit in the ulp_submode field of the
980  * CPL_TX_DATA flags field in FW_ISCSI_TX_DATA_WR.
981  */
982 #define	ULP_ISO		G_TX_ULP_SUBMODE(F_FW_ISCSI_TX_DATA_WR_ULPSUBMODE_ISO)
983 
984 static void
985 write_tx_data_iso(void *dst, u_int ulp_submode, uint8_t flags, uint16_t mss,
986     int len, int npdu)
987 {
988 	struct cpl_tx_data_iso *cpl;
989 	unsigned int burst_size;
990 	unsigned int last;
991 
992 	/*
993 	 * The firmware will set the 'F' bit on the last PDU when
994 	 * either condition is true:
995 	 *
996 	 * - this large PDU is marked as the "last" slice
997 	 *
998 	 * - the amount of data payload bytes equals the burst_size
999 	 *
1000 	 * The strategy used here is to always set the burst_size
1001 	 * artificially high (len includes the size of the template
1002 	 * BHS) and only set the "last" flag if the original PDU had
1003 	 * 'F' set.
1004 	 */
1005 	burst_size = len;
1006 	last = !!(flags & CXGBE_ISO_F);
1007 
1008 	cpl = (struct cpl_tx_data_iso *)dst;
1009 	cpl->op_to_scsi = htonl(V_CPL_TX_DATA_ISO_OP(CPL_TX_DATA_ISO) |
1010 	    V_CPL_TX_DATA_ISO_FIRST(1) | V_CPL_TX_DATA_ISO_LAST(last) |
1011 	    V_CPL_TX_DATA_ISO_CPLHDRLEN(0) |
1012 	    V_CPL_TX_DATA_ISO_HDRCRC(!!(ulp_submode & ULP_CRC_HEADER)) |
1013 	    V_CPL_TX_DATA_ISO_PLDCRC(!!(ulp_submode & ULP_CRC_DATA)) |
1014 	    V_CPL_TX_DATA_ISO_IMMEDIATE(0) |
1015 	    V_CPL_TX_DATA_ISO_SCSI(CXGBE_ISO_TYPE(flags)));
1016 
1017 	cpl->ahs_len = 0;
1018 	cpl->mpdu = htons(DIV_ROUND_UP(mss, 4));
1019 	cpl->burst_size = htonl(DIV_ROUND_UP(burst_size, 4));
1020 	cpl->len = htonl(len);
1021 	cpl->reserved2_seglen_offset = htonl(0);
1022 	cpl->datasn_offset = htonl(0);
1023 	cpl->buffer_offset = htonl(0);
1024 	cpl->reserved3 = 0;
1025 }
1026 
1027 static struct wrqe *
1028 write_iscsi_mbuf_wr(struct toepcb *toep, struct mbuf *sndptr)
1029 {
1030 	struct mbuf *m;
1031 	struct fw_ofld_tx_data_wr *txwr;
1032 	struct cpl_tx_data_iso *cpl_iso;
1033 	void *p;
1034 	struct wrqe *wr;
1035 	u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
1036 	u_int adjusted_plen, imm_data, ulp_submode;
1037 	struct inpcb *inp = toep->inp;
1038 	struct tcpcb *tp = intotcpcb(inp);
1039 	int tx_credits, shove, npdu, wr_len;
1040 	uint16_t iso_mss;
1041 	static const u_int ulp_extra_len[] = {0, 4, 4, 8};
1042 	bool iso, nomap_mbuf_seen;
1043 
1044 	M_ASSERTPKTHDR(sndptr);
1045 
1046 	tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
1047 	if (mbuf_raw_wr(sndptr)) {
1048 		plen = sndptr->m_pkthdr.len;
1049 		KASSERT(plen <= SGE_MAX_WR_LEN,
1050 		    ("raw WR len %u is greater than max WR len", plen));
1051 		if (plen > tx_credits * 16)
1052 			return (NULL);
1053 
1054 		wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq);
1055 		if (__predict_false(wr == NULL))
1056 			return (NULL);
1057 
1058 		m_copydata(sndptr, 0, plen, wrtod(wr));
1059 		return (wr);
1060 	}
1061 
1062 	iso = mbuf_iscsi_iso(sndptr);
1063 	max_imm = max_imm_payload(tx_credits, iso);
1064 	max_nsegs = max_dsgl_nsegs(tx_credits, iso);
1065 	iso_mss = mbuf_iscsi_iso_mss(sndptr);
1066 
1067 	plen = 0;
1068 	nsegs = 0;
1069 	max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
1070 	nomap_mbuf_seen = false;
1071 	for (m = sndptr; m != NULL; m = m->m_next) {
1072 		int n;
1073 
1074 		if (m->m_flags & M_EXTPG)
1075 			n = sglist_count_mbuf_epg(m, mtod(m, vm_offset_t),
1076 			    m->m_len);
1077 		else
1078 			n = sglist_count(mtod(m, void *), m->m_len);
1079 
1080 		nsegs += n;
1081 		plen += m->m_len;
1082 
1083 		/*
1084 		 * This mbuf would send us _over_ the nsegs limit.
1085 		 * Suspend tx because the PDU can't be sent out.
1086 		 */
1087 		if ((nomap_mbuf_seen || plen > max_imm) && nsegs > max_nsegs)
1088 			return (NULL);
1089 
1090 		if (m->m_flags & M_EXTPG)
1091 			nomap_mbuf_seen = true;
1092 		if (max_nsegs_1mbuf < n)
1093 			max_nsegs_1mbuf = n;
1094 	}
1095 
1096 	if (__predict_false(toep->flags & TPF_FIN_SENT))
1097 		panic("%s: excess tx.", __func__);
1098 
1099 	/*
1100 	 * We have a PDU to send.  All of it goes out in one WR so 'm'
1101 	 * is NULL.  A PDU's length is always a multiple of 4.
1102 	 */
1103 	MPASS(m == NULL);
1104 	MPASS((plen & 3) == 0);
1105 	MPASS(sndptr->m_pkthdr.len == plen);
1106 
1107 	shove = !(tp->t_flags & TF_MORETOCOME);
1108 
1109 	/*
1110 	 * plen doesn't include header and data digests, which are
1111 	 * generated and inserted in the right places by the TOE, but
1112 	 * they do occupy TCP sequence space and need to be accounted
1113 	 * for.
1114 	 */
1115 	ulp_submode = mbuf_ulp_submode(sndptr);
1116 	MPASS(ulp_submode < nitems(ulp_extra_len));
1117 	npdu = iso ? howmany(plen - ISCSI_BHS_SIZE, iso_mss) : 1;
1118 	adjusted_plen = plen + ulp_extra_len[ulp_submode] * npdu;
1119 	if (iso)
1120 		adjusted_plen += ISCSI_BHS_SIZE * (npdu - 1);
1121 	wr_len = sizeof(*txwr);
1122 	if (iso)
1123 		wr_len += sizeof(struct cpl_tx_data_iso);
1124 	if (plen <= max_imm && !nomap_mbuf_seen) {
1125 		/* Immediate data tx */
1126 		imm_data = plen;
1127 		wr_len += plen;
1128 		nsegs = 0;
1129 	} else {
1130 		/* DSGL tx */
1131 		imm_data = 0;
1132 		wr_len += sizeof(struct ulptx_sgl) +
1133 		    ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
1134 	}
1135 
1136 	wr = alloc_wrqe(roundup2(wr_len, 16), &toep->ofld_txq->wrq);
1137 	if (wr == NULL) {
1138 		/* XXX: how will we recover from this? */
1139 		return (NULL);
1140 	}
1141 	txwr = wrtod(wr);
1142 	credits = howmany(wr->wr_len, 16);
1143 
1144 	if (iso) {
1145 		write_tx_wr(txwr, toep, FW_ISCSI_TX_DATA_WR,
1146 		    imm_data + sizeof(struct cpl_tx_data_iso),
1147 		    adjusted_plen, credits, shove, ulp_submode | ULP_ISO);
1148 		cpl_iso = (struct cpl_tx_data_iso *)(txwr + 1);
1149 		MPASS(plen == sndptr->m_pkthdr.len);
1150 		write_tx_data_iso(cpl_iso, ulp_submode,
1151 		    mbuf_iscsi_iso_flags(sndptr), iso_mss, plen, npdu);
1152 		p = cpl_iso + 1;
1153 	} else {
1154 		write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, imm_data,
1155 		    adjusted_plen, credits, shove, ulp_submode);
1156 		p = txwr + 1;
1157 	}
1158 
1159 	if (imm_data != 0) {
1160 		m_copydata(sndptr, 0, plen, p);
1161 	} else {
1162 		write_tx_sgl(p, sndptr, m, nsegs, max_nsegs_1mbuf);
1163 		if (wr_len & 0xf) {
1164 			uint64_t *pad = (uint64_t *)((uintptr_t)txwr + wr_len);
1165 			*pad = 0;
1166 		}
1167 	}
1168 
1169 	KASSERT(toep->tx_credits >= credits,
1170 	    ("%s: not enough credits: credits %u "
1171 		"toep->tx_credits %u tx_credits %u nsegs %u "
1172 		"max_nsegs %u iso %d", __func__, credits,
1173 		toep->tx_credits, tx_credits, nsegs, max_nsegs, iso));
1174 
1175 	tp->snd_nxt += adjusted_plen;
1176 	tp->snd_max += adjusted_plen;
1177 
1178 	counter_u64_add(toep->ofld_txq->tx_iscsi_pdus, npdu);
1179 	counter_u64_add(toep->ofld_txq->tx_iscsi_octets, plen);
1180 	if (iso)
1181 		counter_u64_add(toep->ofld_txq->tx_iscsi_iso_wrs, 1);
1182 
1183 	return (wr);
1184 }
1185 
1186 void
1187 t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop)
1188 {
1189 	struct mbuf *sndptr, *m;
1190 	struct fw_wr_hdr *wrhdr;
1191 	struct wrqe *wr;
1192 	u_int plen, credits;
1193 	struct inpcb *inp = toep->inp;
1194 	struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
1195 	struct mbufq *pduq = &toep->ulp_pduq;
1196 
1197 	INP_WLOCK_ASSERT(inp);
1198 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
1199 	    ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
1200 	KASSERT(ulp_mode(toep) == ULP_MODE_ISCSI,
1201 	    ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
1202 
1203 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
1204 		return;
1205 
1206 	/*
1207 	 * This function doesn't resume by itself.  Someone else must clear the
1208 	 * flag and call this function.
1209 	 */
1210 	if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
1211 		KASSERT(drop == 0,
1212 		    ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
1213 		return;
1214 	}
1215 
1216 	if (drop) {
1217 		struct socket *so = inp->inp_socket;
1218 		struct sockbuf *sb = &so->so_snd;
1219 		int sbu;
1220 
1221 		/*
1222 		 * An unlocked read is ok here as the data should only
1223 		 * transition from a non-zero value to either another
1224 		 * non-zero value or zero.  Once it is zero it should
1225 		 * stay zero.
1226 		 */
1227 		if (__predict_false(sbused(sb)) > 0) {
1228 			SOCKBUF_LOCK(sb);
1229 			sbu = sbused(sb);
1230 			if (sbu > 0) {
1231 				/*
1232 				 * The data transmitted before the
1233 				 * tid's ULP mode changed to ISCSI is
1234 				 * still in so_snd.  Incoming credits
1235 				 * should account for so_snd first.
1236 				 */
1237 				sbdrop_locked(sb, min(sbu, drop));
1238 				drop -= min(sbu, drop);
1239 			}
1240 			sowwakeup_locked(so);	/* unlocks so_snd */
1241 		}
1242 		rqdrop_locked(&toep->ulp_pdu_reclaimq, drop);
1243 	}
1244 
1245 	while ((sndptr = mbufq_first(pduq)) != NULL) {
1246 		wr = write_iscsi_mbuf_wr(toep, sndptr);
1247 		if (wr == NULL) {
1248 			toep->flags |= TPF_TX_SUSPENDED;
1249 			return;
1250 		}
1251 
1252 		plen = sndptr->m_pkthdr.len;
1253 		credits = howmany(wr->wr_len, 16);
1254 		KASSERT(toep->tx_credits >= credits,
1255 			("%s: not enough credits", __func__));
1256 
1257 		m = mbufq_dequeue(pduq);
1258 		MPASS(m == sndptr);
1259 		mbufq_enqueue(&toep->ulp_pdu_reclaimq, m);
1260 
1261 		toep->tx_credits -= credits;
1262 		toep->tx_nocompl += credits;
1263 		toep->plen_nocompl += plen;
1264 
1265 		/*
1266 		 * Ensure there are enough credits for a full-sized WR
1267 		 * as page pod WRs can be full-sized.
1268 		 */
1269 		if (toep->tx_credits <= SGE_MAX_WR_LEN * 5 / 4 &&
1270 		    toep->tx_nocompl >= toep->tx_total / 4) {
1271 			wrhdr = wrtod(wr);
1272 			wrhdr->hi |= htobe32(F_FW_WR_COMPL);
1273 			toep->tx_nocompl = 0;
1274 			toep->plen_nocompl = 0;
1275 		}
1276 
1277 		toep->flags |= TPF_TX_DATA_SENT;
1278 		if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
1279 			toep->flags |= TPF_TX_SUSPENDED;
1280 
1281 		KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
1282 		KASSERT(plen <= MAX_OFLD_TX_SDESC_PLEN,
1283 		    ("%s: plen %u too large", __func__, plen));
1284 		txsd->plen = plen;
1285 		txsd->tx_credits = credits;
1286 		txsd++;
1287 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
1288 			toep->txsd_pidx = 0;
1289 			txsd = &toep->txsd[0];
1290 		}
1291 		toep->txsd_avail--;
1292 
1293 		t4_l2t_send(sc, wr, toep->l2te);
1294 	}
1295 
1296 	/* Send a FIN if requested, but only if there are no more PDUs to send */
1297 	if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN)
1298 		t4_close_conn(sc, toep);
1299 }
1300 
1301 static inline void
1302 t4_push_data(struct adapter *sc, struct toepcb *toep, int drop)
1303 {
1304 
1305 	if (ulp_mode(toep) == ULP_MODE_ISCSI)
1306 		t4_push_pdus(sc, toep, drop);
1307 	else if (toep->flags & TPF_KTLS)
1308 		t4_push_ktls(sc, toep, drop);
1309 	else
1310 		t4_push_frames(sc, toep, drop);
1311 }
1312 
1313 void
1314 t4_raw_wr_tx(struct adapter *sc, struct toepcb *toep, struct mbuf *m)
1315 {
1316 #ifdef INVARIANTS
1317 	struct inpcb *inp = toep->inp;
1318 #endif
1319 
1320 	INP_WLOCK_ASSERT(inp);
1321 
1322 	/*
1323 	 * If there are other raw WRs enqueued, enqueue to preserve
1324 	 * FIFO ordering.
1325 	 */
1326 	if (!mbufq_empty(&toep->ulp_pduq)) {
1327 		mbufq_enqueue(&toep->ulp_pduq, m);
1328 		return;
1329 	}
1330 
1331 	/*
1332 	 * Cannot call t4_push_data here as that will lock so_snd and
1333 	 * some callers of this run in rx handlers with so_rcv locked.
1334 	 * Instead, just try to transmit this WR.
1335 	 */
1336 	if (!t4_push_raw_wr(sc, toep, m)) {
1337 		mbufq_enqueue(&toep->ulp_pduq, m);
1338 		toep->flags |= TPF_TX_SUSPENDED;
1339 	}
1340 }
1341 
1342 int
1343 t4_tod_output(struct toedev *tod, struct tcpcb *tp)
1344 {
1345 	struct adapter *sc = tod->tod_softc;
1346 #ifdef INVARIANTS
1347 	struct inpcb *inp = tptoinpcb(tp);
1348 #endif
1349 	struct toepcb *toep = tp->t_toe;
1350 
1351 	INP_WLOCK_ASSERT(inp);
1352 	KASSERT((inp->inp_flags & INP_DROPPED) == 0,
1353 	    ("%s: inp %p dropped.", __func__, inp));
1354 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
1355 
1356 	t4_push_data(sc, toep, 0);
1357 
1358 	return (0);
1359 }
1360 
1361 int
1362 t4_send_fin(struct toedev *tod, struct tcpcb *tp)
1363 {
1364 	struct adapter *sc = tod->tod_softc;
1365 #ifdef INVARIANTS
1366 	struct inpcb *inp = tptoinpcb(tp);
1367 #endif
1368 	struct toepcb *toep = tp->t_toe;
1369 
1370 	INP_WLOCK_ASSERT(inp);
1371 	KASSERT((inp->inp_flags & INP_DROPPED) == 0,
1372 	    ("%s: inp %p dropped.", __func__, inp));
1373 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
1374 
1375 	toep->flags |= TPF_SEND_FIN;
1376 	if (tp->t_state >= TCPS_ESTABLISHED)
1377 		t4_push_data(sc, toep, 0);
1378 
1379 	return (0);
1380 }
1381 
1382 int
1383 t4_send_rst(struct toedev *tod, struct tcpcb *tp)
1384 {
1385 	struct adapter *sc = tod->tod_softc;
1386 #if defined(INVARIANTS)
1387 	struct inpcb *inp = tptoinpcb(tp);
1388 #endif
1389 	struct toepcb *toep = tp->t_toe;
1390 
1391 	INP_WLOCK_ASSERT(inp);
1392 	KASSERT((inp->inp_flags & INP_DROPPED) == 0,
1393 	    ("%s: inp %p dropped.", __func__, inp));
1394 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
1395 
1396 	/* hmmmm */
1397 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
1398 	    ("%s: flowc for tid %u [%s] not sent already",
1399 	    __func__, toep->tid, tcpstates[tp->t_state]));
1400 
1401 	send_reset(sc, toep, 0);
1402 	return (0);
1403 }
1404 
1405 /*
1406  * Peer has sent us a FIN.
1407  */
1408 static int
1409 do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1410 {
1411 	struct adapter *sc = iq->adapter;
1412 	const struct cpl_peer_close *cpl = (const void *)(rss + 1);
1413 	unsigned int tid = GET_TID(cpl);
1414 	struct toepcb *toep = lookup_tid(sc, tid);
1415 	struct inpcb *inp = toep->inp;
1416 	struct tcpcb *tp = NULL;
1417 	struct socket *so;
1418 	struct epoch_tracker et;
1419 #ifdef INVARIANTS
1420 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
1421 #endif
1422 
1423 	KASSERT(opcode == CPL_PEER_CLOSE,
1424 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
1425 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1426 
1427 	if (__predict_false(toep->flags & TPF_SYNQE)) {
1428 		/*
1429 		 * do_pass_establish must have run before do_peer_close and if
1430 		 * this is still a synqe instead of a toepcb then the connection
1431 		 * must be getting aborted.
1432 		 */
1433 		MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
1434 		CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
1435 		    toep, toep->flags);
1436 		return (0);
1437 	}
1438 
1439 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1440 
1441 	CURVNET_SET(toep->vnet);
1442 	NET_EPOCH_ENTER(et);
1443 	INP_WLOCK(inp);
1444 	tp = intotcpcb(inp);
1445 
1446 	CTR6(KTR_CXGBE,
1447 	    "%s: tid %u (%s), toep_flags 0x%x, ddp_flags 0x%x, inp %p",
1448 	    __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
1449 	    toep->ddp.flags, inp);
1450 
1451 	if (toep->flags & TPF_ABORT_SHUTDOWN)
1452 		goto done;
1453 
1454 	if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
1455 		DDP_LOCK(toep);
1456 		if (__predict_false(toep->ddp.flags &
1457 		    (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)))
1458 			handle_ddp_close(toep, tp, cpl->rcv_nxt);
1459 		DDP_UNLOCK(toep);
1460 	}
1461 	so = inp->inp_socket;
1462 	socantrcvmore(so);
1463 
1464 	if (ulp_mode(toep) == ULP_MODE_RDMA ||
1465 	    (ulp_mode(toep) == ULP_MODE_ISCSI && chip_id(sc) >= CHELSIO_T6)) {
1466 		/*
1467 		 * There might be data received via DDP before the FIN
1468 		 * not reported to the driver.  Just assume the
1469 		 * sequence number in the CPL is correct as the
1470 		 * sequence number of the FIN.
1471 		 */
1472 	} else {
1473 		KASSERT(tp->rcv_nxt + 1 == be32toh(cpl->rcv_nxt),
1474 		    ("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt,
1475 		    be32toh(cpl->rcv_nxt)));
1476 	}
1477 
1478 	tp->rcv_nxt = be32toh(cpl->rcv_nxt);
1479 
1480 	switch (tp->t_state) {
1481 	case TCPS_SYN_RECEIVED:
1482 		tp->t_starttime = ticks;
1483 		/* FALLTHROUGH */
1484 
1485 	case TCPS_ESTABLISHED:
1486 		tcp_state_change(tp, TCPS_CLOSE_WAIT);
1487 		break;
1488 
1489 	case TCPS_FIN_WAIT_1:
1490 		tcp_state_change(tp, TCPS_CLOSING);
1491 		break;
1492 
1493 	case TCPS_FIN_WAIT_2:
1494 		restore_so_proto(so, inp->inp_vflag & INP_IPV6);
1495 		t4_pcb_detach(NULL, tp);
1496 		tcp_twstart(tp);
1497 		INP_UNLOCK_ASSERT(inp);	 /* safe, we have a ref on the inp */
1498 		NET_EPOCH_EXIT(et);
1499 		CURVNET_RESTORE();
1500 
1501 		INP_WLOCK(inp);
1502 		final_cpl_received(toep);
1503 		return (0);
1504 
1505 	default:
1506 		log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n",
1507 		    __func__, tid, tp->t_state);
1508 	}
1509 done:
1510 	INP_WUNLOCK(inp);
1511 	NET_EPOCH_EXIT(et);
1512 	CURVNET_RESTORE();
1513 	return (0);
1514 }
1515 
1516 /*
1517  * Peer has ACK'd our FIN.
1518  */
1519 static int
1520 do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss,
1521     struct mbuf *m)
1522 {
1523 	struct adapter *sc = iq->adapter;
1524 	const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1);
1525 	unsigned int tid = GET_TID(cpl);
1526 	struct toepcb *toep = lookup_tid(sc, tid);
1527 	struct inpcb *inp = toep->inp;
1528 	struct tcpcb *tp = NULL;
1529 	struct socket *so = NULL;
1530 	struct epoch_tracker et;
1531 #ifdef INVARIANTS
1532 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
1533 #endif
1534 
1535 	KASSERT(opcode == CPL_CLOSE_CON_RPL,
1536 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
1537 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1538 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1539 
1540 	CURVNET_SET(toep->vnet);
1541 	NET_EPOCH_ENTER(et);
1542 	INP_WLOCK(inp);
1543 	tp = intotcpcb(inp);
1544 
1545 	CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x",
1546 	    __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags);
1547 
1548 	if (toep->flags & TPF_ABORT_SHUTDOWN)
1549 		goto done;
1550 
1551 	so = inp->inp_socket;
1552 	tp->snd_una = be32toh(cpl->snd_nxt) - 1;	/* exclude FIN */
1553 
1554 	switch (tp->t_state) {
1555 	case TCPS_CLOSING:	/* see TCPS_FIN_WAIT_2 in do_peer_close too */
1556 		restore_so_proto(so, inp->inp_vflag & INP_IPV6);
1557 		t4_pcb_detach(NULL, tp);
1558 		tcp_twstart(tp);
1559 release:
1560 		INP_UNLOCK_ASSERT(inp);	/* safe, we have a ref on the  inp */
1561 		NET_EPOCH_EXIT(et);
1562 		CURVNET_RESTORE();
1563 
1564 		INP_WLOCK(inp);
1565 		final_cpl_received(toep);	/* no more CPLs expected */
1566 
1567 		return (0);
1568 	case TCPS_LAST_ACK:
1569 		if (tcp_close(tp))
1570 			INP_WUNLOCK(inp);
1571 		goto release;
1572 
1573 	case TCPS_FIN_WAIT_1:
1574 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1575 			soisdisconnected(so);
1576 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
1577 		break;
1578 
1579 	default:
1580 		log(LOG_ERR,
1581 		    "%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n",
1582 		    __func__, tid, tcpstates[tp->t_state]);
1583 	}
1584 done:
1585 	INP_WUNLOCK(inp);
1586 	NET_EPOCH_EXIT(et);
1587 	CURVNET_RESTORE();
1588 	return (0);
1589 }
1590 
1591 void
1592 send_abort_rpl(struct adapter *sc, struct sge_ofld_txq *ofld_txq, int tid,
1593     int rst_status)
1594 {
1595 	struct wrqe *wr;
1596 	struct cpl_abort_rpl *cpl;
1597 
1598 	wr = alloc_wrqe(sizeof(*cpl), &ofld_txq->wrq);
1599 	if (wr == NULL) {
1600 		/* XXX */
1601 		panic("%s: allocation failure.", __func__);
1602 	}
1603 	cpl = wrtod(wr);
1604 
1605 	INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid);
1606 	cpl->cmd = rst_status;
1607 
1608 	t4_wrq_tx(sc, wr);
1609 }
1610 
1611 static int
1612 abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason)
1613 {
1614 	switch (abort_reason) {
1615 	case CPL_ERR_BAD_SYN:
1616 	case CPL_ERR_CONN_RESET:
1617 		return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET);
1618 	case CPL_ERR_XMIT_TIMEDOUT:
1619 	case CPL_ERR_PERSIST_TIMEDOUT:
1620 	case CPL_ERR_FINWAIT2_TIMEDOUT:
1621 	case CPL_ERR_KEEPALIVE_TIMEDOUT:
1622 		return (ETIMEDOUT);
1623 	default:
1624 		return (EIO);
1625 	}
1626 }
1627 
1628 /*
1629  * TCP RST from the peer, timeout, or some other such critical error.
1630  */
1631 static int
1632 do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1633 {
1634 	struct adapter *sc = iq->adapter;
1635 	const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1);
1636 	unsigned int tid = GET_TID(cpl);
1637 	struct toepcb *toep = lookup_tid(sc, tid);
1638 	struct sge_ofld_txq *ofld_txq = toep->ofld_txq;
1639 	struct inpcb *inp;
1640 	struct tcpcb *tp;
1641 	struct epoch_tracker et;
1642 #ifdef INVARIANTS
1643 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
1644 #endif
1645 
1646 	KASSERT(opcode == CPL_ABORT_REQ_RSS,
1647 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
1648 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1649 
1650 	if (toep->flags & TPF_SYNQE)
1651 		return (do_abort_req_synqe(iq, rss, m));
1652 
1653 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1654 
1655 	if (negative_advice(cpl->status)) {
1656 		CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)",
1657 		    __func__, cpl->status, tid, toep->flags);
1658 		return (0);	/* Ignore negative advice */
1659 	}
1660 
1661 	inp = toep->inp;
1662 	CURVNET_SET(toep->vnet);
1663 	NET_EPOCH_ENTER(et);	/* for tcp_close */
1664 	INP_WLOCK(inp);
1665 
1666 	tp = intotcpcb(inp);
1667 
1668 	CTR6(KTR_CXGBE,
1669 	    "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d",
1670 	    __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
1671 	    inp->inp_flags, cpl->status);
1672 
1673 	/*
1674 	 * If we'd initiated an abort earlier the reply to it is responsible for
1675 	 * cleaning up resources.  Otherwise we tear everything down right here
1676 	 * right now.  We owe the T4 a CPL_ABORT_RPL no matter what.
1677 	 */
1678 	if (toep->flags & TPF_ABORT_SHUTDOWN) {
1679 		INP_WUNLOCK(inp);
1680 		goto done;
1681 	}
1682 	toep->flags |= TPF_ABORT_SHUTDOWN;
1683 
1684 	if ((inp->inp_flags & INP_DROPPED) == 0) {
1685 		struct socket *so = inp->inp_socket;
1686 
1687 		if (so != NULL)
1688 			so_error_set(so, abort_status_to_errno(tp,
1689 			    cpl->status));
1690 		tp = tcp_close(tp);
1691 		if (tp == NULL)
1692 			INP_WLOCK(inp);	/* re-acquire */
1693 	}
1694 
1695 	final_cpl_received(toep);
1696 done:
1697 	NET_EPOCH_EXIT(et);
1698 	CURVNET_RESTORE();
1699 	send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST);
1700 	return (0);
1701 }
1702 
1703 /*
1704  * Reply to the CPL_ABORT_REQ (send_reset)
1705  */
1706 static int
1707 do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1708 {
1709 	struct adapter *sc = iq->adapter;
1710 	const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1);
1711 	unsigned int tid = GET_TID(cpl);
1712 	struct toepcb *toep = lookup_tid(sc, tid);
1713 	struct inpcb *inp = toep->inp;
1714 #ifdef INVARIANTS
1715 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
1716 #endif
1717 
1718 	KASSERT(opcode == CPL_ABORT_RPL_RSS,
1719 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
1720 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1721 
1722 	if (toep->flags & TPF_SYNQE)
1723 		return (do_abort_rpl_synqe(iq, rss, m));
1724 
1725 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1726 
1727 	CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d",
1728 	    __func__, tid, toep, inp, cpl->status);
1729 
1730 	KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
1731 	    ("%s: wasn't expecting abort reply", __func__));
1732 
1733 	INP_WLOCK(inp);
1734 	final_cpl_received(toep);
1735 
1736 	return (0);
1737 }
1738 
1739 static int
1740 do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1741 {
1742 	struct adapter *sc = iq->adapter;
1743 	const struct cpl_rx_data *cpl = mtod(m, const void *);
1744 	unsigned int tid = GET_TID(cpl);
1745 	struct toepcb *toep = lookup_tid(sc, tid);
1746 	struct inpcb *inp = toep->inp;
1747 	struct tcpcb *tp;
1748 	struct socket *so;
1749 	struct sockbuf *sb;
1750 	struct epoch_tracker et;
1751 	int len;
1752 	uint32_t ddp_placed = 0;
1753 
1754 	if (__predict_false(toep->flags & TPF_SYNQE)) {
1755 		/*
1756 		 * do_pass_establish must have run before do_rx_data and if this
1757 		 * is still a synqe instead of a toepcb then the connection must
1758 		 * be getting aborted.
1759 		 */
1760 		MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
1761 		CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
1762 		    toep, toep->flags);
1763 		m_freem(m);
1764 		return (0);
1765 	}
1766 
1767 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1768 
1769 	/* strip off CPL header */
1770 	m_adj(m, sizeof(*cpl));
1771 	len = m->m_pkthdr.len;
1772 
1773 	INP_WLOCK(inp);
1774 	if (inp->inp_flags & INP_DROPPED) {
1775 		CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x",
1776 		    __func__, tid, len, inp->inp_flags);
1777 		INP_WUNLOCK(inp);
1778 		m_freem(m);
1779 		return (0);
1780 	}
1781 
1782 	tp = intotcpcb(inp);
1783 
1784 	if (__predict_false(ulp_mode(toep) == ULP_MODE_TLS &&
1785 	   toep->flags & TPF_TLS_RECEIVE)) {
1786 		/* Received "raw" data on a TLS socket. */
1787 		CTR3(KTR_CXGBE, "%s: tid %u, raw TLS data (%d bytes)",
1788 		    __func__, tid, len);
1789 		do_rx_data_tls(cpl, toep, m);
1790 		return (0);
1791 	}
1792 
1793 	if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq)))
1794 		ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt;
1795 
1796 	tp->rcv_nxt += len;
1797 	if (tp->rcv_wnd < len) {
1798 		KASSERT(ulp_mode(toep) == ULP_MODE_RDMA,
1799 				("%s: negative window size", __func__));
1800 	}
1801 
1802 	tp->rcv_wnd -= len;
1803 	tp->t_rcvtime = ticks;
1804 
1805 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
1806 		DDP_LOCK(toep);
1807 	so = inp_inpcbtosocket(inp);
1808 	sb = &so->so_rcv;
1809 	SOCKBUF_LOCK(sb);
1810 
1811 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
1812 		CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)",
1813 		    __func__, tid, len);
1814 		m_freem(m);
1815 		SOCKBUF_UNLOCK(sb);
1816 		if (ulp_mode(toep) == ULP_MODE_TCPDDP)
1817 			DDP_UNLOCK(toep);
1818 		INP_WUNLOCK(inp);
1819 
1820 		CURVNET_SET(toep->vnet);
1821 		NET_EPOCH_ENTER(et);
1822 		INP_WLOCK(inp);
1823 		tp = tcp_drop(tp, ECONNRESET);
1824 		if (tp)
1825 			INP_WUNLOCK(inp);
1826 		NET_EPOCH_EXIT(et);
1827 		CURVNET_RESTORE();
1828 
1829 		return (0);
1830 	}
1831 
1832 	/* receive buffer autosize */
1833 	MPASS(toep->vnet == so->so_vnet);
1834 	CURVNET_SET(toep->vnet);
1835 	if (sb->sb_flags & SB_AUTOSIZE &&
1836 	    V_tcp_do_autorcvbuf &&
1837 	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
1838 	    len > (sbspace(sb) / 8 * 7)) {
1839 		unsigned int hiwat = sb->sb_hiwat;
1840 		unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
1841 		    V_tcp_autorcvbuf_max);
1842 
1843 		if (!sbreserve_locked(so, SO_RCV, newsize, NULL))
1844 			sb->sb_flags &= ~SB_AUTOSIZE;
1845 	}
1846 
1847 	if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
1848 		int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off;
1849 
1850 		if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0)
1851 			CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)",
1852 			    __func__, tid, len);
1853 
1854 		if (changed) {
1855 			if (toep->ddp.flags & DDP_SC_REQ)
1856 				toep->ddp.flags ^= DDP_ON | DDP_SC_REQ;
1857 			else if (cpl->ddp_off == 1) {
1858 				/* Fell out of DDP mode */
1859 				toep->ddp.flags &= ~DDP_ON;
1860 				CTR1(KTR_CXGBE, "%s: fell out of DDP mode",
1861 				    __func__);
1862 
1863 				insert_ddp_data(toep, ddp_placed);
1864 			} else {
1865 				/*
1866 				 * Data was received while still
1867 				 * ULP_MODE_NONE, just fall through.
1868 				 */
1869 			}
1870 		}
1871 
1872 		if (toep->ddp.flags & DDP_ON) {
1873 			/*
1874 			 * CPL_RX_DATA with DDP on can only be an indicate.
1875 			 * Start posting queued AIO requests via DDP.  The
1876 			 * payload that arrived in this indicate is appended
1877 			 * to the socket buffer as usual.
1878 			 */
1879 			handle_ddp_indicate(toep);
1880 		}
1881 	}
1882 
1883 	sbappendstream_locked(sb, m, 0);
1884 	t4_rcvd_locked(&toep->td->tod, tp);
1885 
1886 	if (ulp_mode(toep) == ULP_MODE_TCPDDP &&
1887 	    (toep->ddp.flags & DDP_AIO) != 0 && toep->ddp.waiting_count > 0 &&
1888 	    sbavail(sb) != 0) {
1889 		CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__,
1890 		    tid);
1891 		ddp_queue_toep(toep);
1892 	}
1893 	if (toep->flags & TPF_TLS_STARTING)
1894 		tls_received_starting_data(sc, toep, sb, len);
1895 	sorwakeup_locked(so);
1896 	SOCKBUF_UNLOCK_ASSERT(sb);
1897 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
1898 		DDP_UNLOCK(toep);
1899 
1900 	INP_WUNLOCK(inp);
1901 	CURVNET_RESTORE();
1902 	return (0);
1903 }
1904 
1905 static int
1906 do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1907 {
1908 	struct adapter *sc = iq->adapter;
1909 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
1910 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
1911 	struct toepcb *toep = lookup_tid(sc, tid);
1912 	struct inpcb *inp;
1913 	struct tcpcb *tp;
1914 	struct socket *so;
1915 	uint8_t credits = cpl->credits;
1916 	struct ofld_tx_sdesc *txsd;
1917 	int plen;
1918 #ifdef INVARIANTS
1919 	unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl)));
1920 #endif
1921 
1922 	/*
1923 	 * Very unusual case: we'd sent a flowc + abort_req for a synq entry and
1924 	 * now this comes back carrying the credits for the flowc.
1925 	 */
1926 	if (__predict_false(toep->flags & TPF_SYNQE)) {
1927 		KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
1928 		    ("%s: credits for a synq entry %p", __func__, toep));
1929 		return (0);
1930 	}
1931 
1932 	inp = toep->inp;
1933 
1934 	KASSERT(opcode == CPL_FW4_ACK,
1935 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
1936 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1937 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1938 
1939 	INP_WLOCK(inp);
1940 
1941 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) {
1942 		INP_WUNLOCK(inp);
1943 		return (0);
1944 	}
1945 
1946 	KASSERT((inp->inp_flags & INP_DROPPED) == 0,
1947 	    ("%s: inp_flags 0x%x", __func__, inp->inp_flags));
1948 
1949 	tp = intotcpcb(inp);
1950 
1951 	if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) {
1952 		tcp_seq snd_una = be32toh(cpl->snd_una);
1953 
1954 #ifdef INVARIANTS
1955 		if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) {
1956 			log(LOG_ERR,
1957 			    "%s: unexpected seq# %x for TID %u, snd_una %x\n",
1958 			    __func__, snd_una, toep->tid, tp->snd_una);
1959 		}
1960 #endif
1961 
1962 		if (tp->snd_una != snd_una) {
1963 			tp->snd_una = snd_una;
1964 			tp->ts_recent_age = tcp_ts_getticks();
1965 		}
1966 	}
1967 
1968 #ifdef VERBOSE_TRACES
1969 	CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits);
1970 #endif
1971 	so = inp->inp_socket;
1972 	txsd = &toep->txsd[toep->txsd_cidx];
1973 	plen = 0;
1974 	while (credits) {
1975 		KASSERT(credits >= txsd->tx_credits,
1976 		    ("%s: too many (or partial) credits", __func__));
1977 		credits -= txsd->tx_credits;
1978 		toep->tx_credits += txsd->tx_credits;
1979 		plen += txsd->plen;
1980 		txsd++;
1981 		toep->txsd_avail++;
1982 		KASSERT(toep->txsd_avail <= toep->txsd_total,
1983 		    ("%s: txsd avail > total", __func__));
1984 		if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) {
1985 			txsd = &toep->txsd[0];
1986 			toep->txsd_cidx = 0;
1987 		}
1988 	}
1989 
1990 	if (toep->tx_credits == toep->tx_total) {
1991 		toep->tx_nocompl = 0;
1992 		toep->plen_nocompl = 0;
1993 	}
1994 
1995 	if (toep->flags & TPF_TX_SUSPENDED &&
1996 	    toep->tx_credits >= toep->tx_total / 4) {
1997 #ifdef VERBOSE_TRACES
1998 		CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__,
1999 		    tid);
2000 #endif
2001 		toep->flags &= ~TPF_TX_SUSPENDED;
2002 		CURVNET_SET(toep->vnet);
2003 		t4_push_data(sc, toep, plen);
2004 		CURVNET_RESTORE();
2005 	} else if (plen > 0) {
2006 		struct sockbuf *sb = &so->so_snd;
2007 		int sbu;
2008 
2009 		SOCKBUF_LOCK(sb);
2010 		sbu = sbused(sb);
2011 		if (ulp_mode(toep) == ULP_MODE_ISCSI) {
2012 			if (__predict_false(sbu > 0)) {
2013 				/*
2014 				 * The data transmitted before the
2015 				 * tid's ULP mode changed to ISCSI is
2016 				 * still in so_snd.  Incoming credits
2017 				 * should account for so_snd first.
2018 				 */
2019 				sbdrop_locked(sb, min(sbu, plen));
2020 				plen -= min(sbu, plen);
2021 			}
2022 			sowwakeup_locked(so);	/* unlocks so_snd */
2023 			rqdrop_locked(&toep->ulp_pdu_reclaimq, plen);
2024 		} else {
2025 #ifdef VERBOSE_TRACES
2026 			CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__,
2027 			    tid, plen);
2028 #endif
2029 			sbdrop_locked(sb, plen);
2030 			if (!TAILQ_EMPTY(&toep->aiotx_jobq))
2031 				t4_aiotx_queue_toep(so, toep);
2032 			sowwakeup_locked(so);	/* unlocks so_snd */
2033 		}
2034 		SOCKBUF_UNLOCK_ASSERT(sb);
2035 	}
2036 
2037 	INP_WUNLOCK(inp);
2038 
2039 	return (0);
2040 }
2041 
2042 void
2043 write_set_tcb_field(struct adapter *sc, void *dst, struct toepcb *toep,
2044     uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie)
2045 {
2046 	struct cpl_set_tcb_field *req = dst;
2047 
2048 	MPASS((cookie & ~M_COOKIE) == 0);
2049 	if (reply) {
2050 		MPASS(cookie != CPL_COOKIE_RESERVED);
2051 	}
2052 
2053 	INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid);
2054 	if (reply == 0) {
2055 		req->reply_ctrl = htobe16(F_NO_REPLY);
2056 	} else {
2057 		const int qid = toep->ofld_rxq->iq.abs_id;
2058 		if (chip_id(sc) >= CHELSIO_T7) {
2059 			req->reply_ctrl = htobe16(V_T7_QUEUENO(qid) |
2060 			    V_T7_REPLY_CHAN(0) | V_NO_REPLY(0));
2061 		} else {
2062 			req->reply_ctrl = htobe16(V_QUEUENO(qid) |
2063 			    V_REPLY_CHAN(0) | V_NO_REPLY(0));
2064 		}
2065 	}
2066 	req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie));
2067 	req->mask = htobe64(mask);
2068 	req->val = htobe64(val);
2069 }
2070 
2071 void
2072 t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep,
2073     uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie)
2074 {
2075 	struct wrqe *wr;
2076 	struct ofld_tx_sdesc *txsd;
2077 	const u_int len = sizeof(struct cpl_set_tcb_field);
2078 
2079 	wr = alloc_wrqe(len, wrq);
2080 	if (wr == NULL) {
2081 		/* XXX */
2082 		panic("%s: allocation failure.", __func__);
2083 	}
2084 	write_set_tcb_field(sc, wrtod(wr), toep, word, mask, val, reply,
2085 	    cookie);
2086 
2087 	if (wrq->eq.type == EQ_OFLD) {
2088 		txsd = &toep->txsd[toep->txsd_pidx];
2089 		_Static_assert(howmany(len, 16) <= MAX_OFLD_TX_SDESC_CREDITS,
2090 		    "MAX_OFLD_TX_SDESC_CREDITS too small");
2091 		txsd->tx_credits = howmany(len, 16);
2092 		txsd->plen = 0;
2093 		KASSERT(toep->tx_credits >= txsd->tx_credits &&
2094 		    toep->txsd_avail > 0,
2095 		    ("%s: not enough credits (%d)", __func__,
2096 		    toep->tx_credits));
2097 		toep->tx_credits -= txsd->tx_credits;
2098 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
2099 			toep->txsd_pidx = 0;
2100 		toep->txsd_avail--;
2101 	}
2102 
2103 	t4_wrq_tx(sc, wr);
2104 }
2105 
2106 void
2107 t4_init_cpl_io_handlers(void)
2108 {
2109 
2110 	t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close);
2111 	t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl);
2112 	t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req);
2113 	t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl,
2114 	    CPL_COOKIE_TOM);
2115 	t4_register_cpl_handler(CPL_RX_DATA, do_rx_data);
2116 	t4_register_shared_cpl_handler(CPL_FW4_ACK, do_fw4_ack, CPL_COOKIE_TOM);
2117 }
2118 
2119 void
2120 t4_uninit_cpl_io_handlers(void)
2121 {
2122 
2123 	t4_register_cpl_handler(CPL_PEER_CLOSE, NULL);
2124 	t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL);
2125 	t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL);
2126 	t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, NULL, CPL_COOKIE_TOM);
2127 	t4_register_cpl_handler(CPL_RX_DATA, NULL);
2128 	t4_register_shared_cpl_handler(CPL_FW4_ACK, NULL, CPL_COOKIE_TOM);
2129 }
2130 
2131 /*
2132  * Use the 'backend1' field in AIO jobs to hold an error that should
2133  * be reported when the job is completed, the 'backend3' field to
2134  * store the amount of data sent by the AIO job so far, and the
2135  * 'backend4' field to hold a reference count on the job.
2136  *
2137  * Each unmapped mbuf holds a reference on the job as does the queue
2138  * so long as the job is queued.
2139  */
2140 #define	aio_error	backend1
2141 #define	aio_sent	backend3
2142 #define	aio_refs	backend4
2143 
2144 #ifdef VERBOSE_TRACES
2145 static int
2146 jobtotid(struct kaiocb *job)
2147 {
2148 	struct socket *so;
2149 	struct tcpcb *tp;
2150 	struct toepcb *toep;
2151 
2152 	so = job->fd_file->f_data;
2153 	tp = sototcpcb(so);
2154 	toep = tp->t_toe;
2155 	return (toep->tid);
2156 }
2157 #endif
2158 
2159 static void
2160 aiotx_free_job(struct kaiocb *job)
2161 {
2162 	long status;
2163 	int error;
2164 
2165 	if (refcount_release(&job->aio_refs) == 0)
2166 		return;
2167 
2168 	error = (intptr_t)job->aio_error;
2169 	status = job->aio_sent;
2170 #ifdef VERBOSE_TRACES
2171 	CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__,
2172 	    jobtotid(job), job, status, error);
2173 #endif
2174 	if (error != 0 && status != 0)
2175 		error = 0;
2176 	if (error == ECANCELED)
2177 		aio_cancel(job);
2178 	else if (error)
2179 		aio_complete(job, -1, error);
2180 	else {
2181 		job->msgsnd = 1;
2182 		aio_complete(job, status, 0);
2183 	}
2184 }
2185 
2186 static void
2187 aiotx_free_pgs(struct mbuf *m)
2188 {
2189 	struct kaiocb *job;
2190 	vm_page_t pg;
2191 
2192 	M_ASSERTEXTPG(m);
2193 	job = m->m_ext.ext_arg1;
2194 #ifdef VERBOSE_TRACES
2195 	CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__,
2196 	    m->m_len, jobtotid(job));
2197 #endif
2198 
2199 	for (int i = 0; i < m->m_epg_npgs; i++) {
2200 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
2201 		vm_page_unwire(pg, PQ_ACTIVE);
2202 	}
2203 
2204 	aiotx_free_job(job);
2205 }
2206 
2207 /*
2208  * Allocate a chain of unmapped mbufs describing the next 'len' bytes
2209  * of an AIO job.
2210  */
2211 static struct mbuf *
2212 alloc_aiotx_mbuf(struct kaiocb *job, int len)
2213 {
2214 	struct vmspace *vm;
2215 	vm_page_t pgs[MBUF_PEXT_MAX_PGS];
2216 	struct mbuf *m, *top, *last;
2217 	vm_map_t map;
2218 	vm_offset_t start;
2219 	int i, mlen, npages, pgoff;
2220 
2221 	KASSERT(job->aio_sent + len <= job->uaiocb.aio_nbytes,
2222 	    ("%s(%p, %d): request to send beyond end of buffer", __func__,
2223 	    job, len));
2224 
2225 	/*
2226 	 * The AIO subsystem will cancel and drain all requests before
2227 	 * permitting a process to exit or exec, so p_vmspace should
2228 	 * be stable here.
2229 	 */
2230 	vm = job->userproc->p_vmspace;
2231 	map = &vm->vm_map;
2232 	start = (uintptr_t)job->uaiocb.aio_buf + job->aio_sent;
2233 	pgoff = start & PAGE_MASK;
2234 
2235 	top = NULL;
2236 	last = NULL;
2237 	while (len > 0) {
2238 		mlen = imin(len, MBUF_PEXT_MAX_PGS * PAGE_SIZE - pgoff);
2239 		KASSERT(mlen == len || ((start + mlen) & PAGE_MASK) == 0,
2240 		    ("%s: next start (%#jx + %#x) is not page aligned",
2241 		    __func__, (uintmax_t)start, mlen));
2242 
2243 		npages = vm_fault_quick_hold_pages(map, start, mlen,
2244 		    VM_PROT_WRITE, pgs, nitems(pgs));
2245 		if (npages < 0)
2246 			break;
2247 
2248 		m = mb_alloc_ext_pgs(M_WAITOK, aiotx_free_pgs, M_RDONLY);
2249 		m->m_epg_1st_off = pgoff;
2250 		m->m_epg_npgs = npages;
2251 		if (npages == 1) {
2252 			KASSERT(mlen + pgoff <= PAGE_SIZE,
2253 			    ("%s: single page is too large (off %d len %d)",
2254 			    __func__, pgoff, mlen));
2255 			m->m_epg_last_len = mlen;
2256 		} else {
2257 			m->m_epg_last_len = mlen - (PAGE_SIZE - pgoff) -
2258 			    (npages - 2) * PAGE_SIZE;
2259 		}
2260 		for (i = 0; i < npages; i++)
2261 			m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pgs[i]);
2262 
2263 		m->m_len = mlen;
2264 		m->m_ext.ext_size = npages * PAGE_SIZE;
2265 		m->m_ext.ext_arg1 = job;
2266 		refcount_acquire(&job->aio_refs);
2267 
2268 #ifdef VERBOSE_TRACES
2269 		CTR5(KTR_CXGBE, "%s: tid %d, new mbuf %p for job %p, npages %d",
2270 		    __func__, jobtotid(job), m, job, npages);
2271 #endif
2272 
2273 		if (top == NULL)
2274 			top = m;
2275 		else
2276 			last->m_next = m;
2277 		last = m;
2278 
2279 		len -= mlen;
2280 		start += mlen;
2281 		pgoff = 0;
2282 	}
2283 
2284 	return (top);
2285 }
2286 
2287 static void
2288 t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job)
2289 {
2290 	struct sockbuf *sb;
2291 	struct inpcb *inp;
2292 	struct tcpcb *tp;
2293 	struct mbuf *m;
2294 	u_int sent;
2295 	int error, len;
2296 	bool moretocome, sendmore;
2297 
2298 	sb = &so->so_snd;
2299 	SOCKBUF_UNLOCK(sb);
2300 	m = NULL;
2301 
2302 #ifdef MAC
2303 	error = mac_socket_check_send(job->fd_file->f_cred, so);
2304 	if (error != 0)
2305 		goto out;
2306 #endif
2307 
2308 	/* Inline sosend_generic(). */
2309 
2310 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
2311 	MPASS(error == 0);
2312 
2313 sendanother:
2314 	SOCKBUF_LOCK(sb);
2315 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2316 		SOCKBUF_UNLOCK(sb);
2317 		SOCK_IO_SEND_UNLOCK(so);
2318 		if ((so->so_options & SO_NOSIGPIPE) == 0) {
2319 			PROC_LOCK(job->userproc);
2320 			kern_psignal(job->userproc, SIGPIPE);
2321 			PROC_UNLOCK(job->userproc);
2322 		}
2323 		error = EPIPE;
2324 		goto out;
2325 	}
2326 	if (so->so_error) {
2327 		error = so->so_error;
2328 		so->so_error = 0;
2329 		SOCKBUF_UNLOCK(sb);
2330 		SOCK_IO_SEND_UNLOCK(so);
2331 		goto out;
2332 	}
2333 	if ((so->so_state & SS_ISCONNECTED) == 0) {
2334 		SOCKBUF_UNLOCK(sb);
2335 		SOCK_IO_SEND_UNLOCK(so);
2336 		error = ENOTCONN;
2337 		goto out;
2338 	}
2339 	if (sbspace(sb) < sb->sb_lowat) {
2340 		MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO));
2341 
2342 		/*
2343 		 * Don't block if there is too little room in the socket
2344 		 * buffer.  Instead, requeue the request.
2345 		 */
2346 		if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
2347 			SOCKBUF_UNLOCK(sb);
2348 			SOCK_IO_SEND_UNLOCK(so);
2349 			error = ECANCELED;
2350 			goto out;
2351 		}
2352 		TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
2353 		SOCKBUF_UNLOCK(sb);
2354 		SOCK_IO_SEND_UNLOCK(so);
2355 		goto out;
2356 	}
2357 
2358 	/*
2359 	 * Write as much data as the socket permits, but no more than a
2360 	 * a single sndbuf at a time.
2361 	 */
2362 	len = sbspace(sb);
2363 	if (len > job->uaiocb.aio_nbytes - job->aio_sent) {
2364 		len = job->uaiocb.aio_nbytes - job->aio_sent;
2365 		moretocome = false;
2366 	} else
2367 		moretocome = true;
2368 	if (len > toep->params.sndbuf) {
2369 		len = toep->params.sndbuf;
2370 		sendmore = true;
2371 	} else
2372 		sendmore = false;
2373 
2374 	if (!TAILQ_EMPTY(&toep->aiotx_jobq))
2375 		moretocome = true;
2376 	SOCKBUF_UNLOCK(sb);
2377 	MPASS(len != 0);
2378 
2379 	m = alloc_aiotx_mbuf(job, len);
2380 	if (m == NULL) {
2381 		SOCK_IO_SEND_UNLOCK(so);
2382 		error = EFAULT;
2383 		goto out;
2384 	}
2385 
2386 	/* Inlined tcp_usr_send(). */
2387 
2388 	inp = toep->inp;
2389 	INP_WLOCK(inp);
2390 	if (inp->inp_flags & INP_DROPPED) {
2391 		INP_WUNLOCK(inp);
2392 		SOCK_IO_SEND_UNLOCK(so);
2393 		error = ECONNRESET;
2394 		goto out;
2395 	}
2396 
2397 	sent = m_length(m, NULL);
2398 	job->aio_sent += sent;
2399 	counter_u64_add(toep->ofld_txq->tx_aio_octets, sent);
2400 
2401 	sbappendstream(sb, m, 0);
2402 	m = NULL;
2403 
2404 	if (!(inp->inp_flags & INP_DROPPED)) {
2405 		tp = intotcpcb(inp);
2406 		if (moretocome)
2407 			tp->t_flags |= TF_MORETOCOME;
2408 		error = tcp_output(tp);
2409 		if (error < 0) {
2410 			INP_UNLOCK_ASSERT(inp);
2411 			SOCK_IO_SEND_UNLOCK(so);
2412 			error = -error;
2413 			goto out;
2414 		}
2415 		if (moretocome)
2416 			tp->t_flags &= ~TF_MORETOCOME;
2417 	}
2418 
2419 	INP_WUNLOCK(inp);
2420 	if (sendmore)
2421 		goto sendanother;
2422 	SOCK_IO_SEND_UNLOCK(so);
2423 
2424 	if (error)
2425 		goto out;
2426 
2427 	/*
2428 	 * If this is a blocking socket and the request has not been
2429 	 * fully completed, requeue it until the socket is ready
2430 	 * again.
2431 	 */
2432 	if (job->aio_sent < job->uaiocb.aio_nbytes &&
2433 	    !(so->so_state & SS_NBIO)) {
2434 		SOCKBUF_LOCK(sb);
2435 		if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
2436 			SOCKBUF_UNLOCK(sb);
2437 			error = ECANCELED;
2438 			goto out;
2439 		}
2440 		TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
2441 		return;
2442 	}
2443 
2444 	/*
2445 	 * If the request will not be requeued, drop the queue's
2446 	 * reference to the job.  Any mbufs in flight should still
2447 	 * hold a reference, but this drops the reference that the
2448 	 * queue owns while it is waiting to queue mbufs to the
2449 	 * socket.
2450 	 */
2451 	aiotx_free_job(job);
2452 	counter_u64_add(toep->ofld_txq->tx_aio_jobs, 1);
2453 
2454 out:
2455 	if (error) {
2456 		job->aio_error = (void *)(intptr_t)error;
2457 		aiotx_free_job(job);
2458 	}
2459 	m_freem(m);
2460 	SOCKBUF_LOCK(sb);
2461 }
2462 
2463 static void
2464 t4_aiotx_task(void *context, int pending)
2465 {
2466 	struct toepcb *toep = context;
2467 	struct socket *so;
2468 	struct kaiocb *job;
2469 	struct epoch_tracker et;
2470 
2471 	so = toep->aiotx_so;
2472 	CURVNET_SET(toep->vnet);
2473 	NET_EPOCH_ENTER(et);
2474 	SOCKBUF_LOCK(&so->so_snd);
2475 	while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) {
2476 		job = TAILQ_FIRST(&toep->aiotx_jobq);
2477 		TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
2478 		if (!aio_clear_cancel_function(job))
2479 			continue;
2480 
2481 		t4_aiotx_process_job(toep, so, job);
2482 	}
2483 	toep->aiotx_so = NULL;
2484 	SOCKBUF_UNLOCK(&so->so_snd);
2485 	NET_EPOCH_EXIT(et);
2486 
2487 	free_toepcb(toep);
2488 	sorele(so);
2489 	CURVNET_RESTORE();
2490 }
2491 
2492 static void
2493 t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep)
2494 {
2495 
2496 	SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd);
2497 #ifdef VERBOSE_TRACES
2498 	CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s",
2499 	    __func__, toep->tid, toep->aiotx_so != NULL ? "true" : "false");
2500 #endif
2501 	if (toep->aiotx_so != NULL)
2502 		return;
2503 	soref(so);
2504 	toep->aiotx_so = so;
2505 	hold_toepcb(toep);
2506 	soaio_enqueue(&toep->aiotx_task);
2507 }
2508 
2509 static void
2510 t4_aiotx_cancel(struct kaiocb *job)
2511 {
2512 	struct socket *so;
2513 	struct sockbuf *sb;
2514 	struct tcpcb *tp;
2515 	struct toepcb *toep;
2516 
2517 	so = job->fd_file->f_data;
2518 	tp = sototcpcb(so);
2519 	toep = tp->t_toe;
2520 	MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE);
2521 	sb = &so->so_snd;
2522 
2523 	SOCKBUF_LOCK(sb);
2524 	if (!aio_cancel_cleared(job))
2525 		TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
2526 	SOCKBUF_UNLOCK(sb);
2527 
2528 	job->aio_error = (void *)(intptr_t)ECANCELED;
2529 	aiotx_free_job(job);
2530 }
2531 
2532 int
2533 t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job)
2534 {
2535 	struct tcpcb *tp = sototcpcb(so);
2536 	struct toepcb *toep = tp->t_toe;
2537 	struct adapter *sc = td_adapter(toep->td);
2538 
2539 	/* This only handles writes. */
2540 	if (job->uaiocb.aio_lio_opcode != LIO_WRITE)
2541 		return (EOPNOTSUPP);
2542 
2543 	if (!sc->tt.tx_zcopy)
2544 		return (EOPNOTSUPP);
2545 
2546 	if (tls_tx_key(toep))
2547 		return (EOPNOTSUPP);
2548 
2549 	SOCKBUF_LOCK(&so->so_snd);
2550 #ifdef VERBOSE_TRACES
2551 	CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
2552 #endif
2553 	if (!aio_set_cancel_function(job, t4_aiotx_cancel))
2554 		panic("new job was cancelled");
2555 	refcount_init(&job->aio_refs, 1);
2556 	TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list);
2557 	if (sowriteable(so))
2558 		t4_aiotx_queue_toep(so, toep);
2559 	SOCKBUF_UNLOCK(&so->so_snd);
2560 	return (0);
2561 }
2562 
2563 void
2564 aiotx_init_toep(struct toepcb *toep)
2565 {
2566 
2567 	TAILQ_INIT(&toep->aiotx_jobq);
2568 	TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep);
2569 }
2570 #endif
2571