xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision 7ee983c850b40043ac4751836fbd9a2b4d0c5937)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/intel/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_hdcp_shim.h"
29 #include "intel_pcode.h"
30 
31 #define KEY_LOAD_TRIES	5
32 #define HDCP2_LC_RETRY_CNT			3
33 
34 static void
intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder * encoder,struct intel_hdcp * hdcp,bool enable)35 intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder *encoder,
36 				     struct intel_hdcp *hdcp,
37 				     bool enable)
38 {
39 	struct intel_display *display = to_intel_display(encoder);
40 	i915_reg_t rekey_reg;
41 	u32 rekey_bit = 0;
42 
43 	/* Here we assume HDMI is in TMDS mode of operation */
44 	if (!intel_encoder_is_hdmi(encoder))
45 		return;
46 
47 	if (DISPLAY_VER(display) >= 30) {
48 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
49 		rekey_bit = XE3_TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
50 	} else if (IS_DISPLAY_VERx100_STEP(display, 1401, STEP_B0, STEP_FOREVER) ||
51 		   IS_DISPLAY_VERx100_STEP(display, 2000, STEP_B0, STEP_FOREVER)) {
52 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
53 		rekey_bit = TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
54 	} else if (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_D0, STEP_FOREVER)) {
55 		rekey_reg = CHICKEN_TRANS(display, hdcp->cpu_transcoder);
56 		rekey_bit = HDCP_LINE_REKEY_DISABLE;
57 	}
58 
59 	if (rekey_bit)
60 		intel_de_rmw(display, rekey_reg, rekey_bit, enable ? 0 : rekey_bit);
61 }
62 
intel_conn_to_vcpi(struct intel_atomic_state * state,struct intel_connector * connector)63 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
64 			      struct intel_connector *connector)
65 {
66 	struct drm_dp_mst_topology_mgr *mgr;
67 	struct drm_dp_mst_atomic_payload *payload;
68 	struct drm_dp_mst_topology_state *mst_state;
69 	int vcpi = 0;
70 
71 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
72 	if (!connector->port)
73 		return 0;
74 	mgr = connector->port->mgr;
75 
76 	drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
77 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
78 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
79 	if (drm_WARN_ON(mgr->dev, !payload))
80 		goto out;
81 
82 	vcpi = payload->vcpi;
83 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
84 		vcpi = 0;
85 		goto out;
86 	}
87 out:
88 	return vcpi;
89 }
90 
91 /*
92  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
93  * content_type for all streams in DP MST topology because security f/w doesn't
94  * have any provision to mark content_type for each stream separately, it marks
95  * all available streams with the content_type proivided at the time of port
96  * authentication. This may prohibit the userspace to use type1 content on
97  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
98  * DP MST topology. Though it is not compulsory, security fw should change its
99  * policy to mark different content_types for different streams.
100  */
101 static int
intel_hdcp_required_content_stream(struct intel_atomic_state * state,struct intel_digital_port * dig_port)102 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
103 				   struct intel_digital_port *dig_port)
104 {
105 	struct intel_display *display = to_intel_display(state);
106 	struct drm_connector_list_iter conn_iter;
107 	struct intel_digital_port *conn_dig_port;
108 	struct intel_connector *connector;
109 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
110 	bool enforce_type0 = false;
111 	int k;
112 
113 	if (dig_port->hdcp_auth_status)
114 		return 0;
115 
116 	data->k = 0;
117 
118 	if (!dig_port->hdcp_mst_type1_capable)
119 		enforce_type0 = true;
120 
121 	drm_connector_list_iter_begin(display->drm, &conn_iter);
122 	for_each_intel_connector_iter(connector, &conn_iter) {
123 		if (connector->base.status == connector_status_disconnected)
124 			continue;
125 
126 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
127 			continue;
128 
129 		conn_dig_port = intel_attached_dig_port(connector);
130 		if (conn_dig_port != dig_port)
131 			continue;
132 
133 		data->streams[data->k].stream_id =
134 			intel_conn_to_vcpi(state, connector);
135 		data->k++;
136 
137 		/* if there is only one active stream */
138 		if (dig_port->dp.active_mst_links <= 1)
139 			break;
140 	}
141 	drm_connector_list_iter_end(&conn_iter);
142 
143 	if (drm_WARN_ON(display->drm, data->k > INTEL_NUM_PIPES(display) || data->k == 0))
144 		return -EINVAL;
145 
146 	/*
147 	 * Apply common protection level across all streams in DP MST Topology.
148 	 * Use highest supported content type for all streams in DP MST Topology.
149 	 */
150 	for (k = 0; k < data->k; k++)
151 		data->streams[k].stream_type =
152 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
153 
154 	return 0;
155 }
156 
intel_hdcp_prepare_streams(struct intel_atomic_state * state,struct intel_connector * connector)157 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
158 				      struct intel_connector *connector)
159 {
160 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
161 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
162 	struct intel_hdcp *hdcp = &connector->hdcp;
163 
164 	if (intel_encoder_is_mst(intel_attached_encoder(connector)))
165 		return intel_hdcp_required_content_stream(state, dig_port);
166 
167 	data->k = 1;
168 	data->streams[0].stream_id = 0;
169 	data->streams[0].stream_type = hdcp->content_type;
170 
171 	return 0;
172 }
173 
174 static
intel_hdcp_is_ksv_valid(u8 * ksv)175 bool intel_hdcp_is_ksv_valid(u8 *ksv)
176 {
177 	int i, ones = 0;
178 	/* KSV has 20 1's and 20 0's */
179 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
180 		ones += hweight8(ksv[i]);
181 	if (ones != 20)
182 		return false;
183 
184 	return true;
185 }
186 
187 static
intel_hdcp_read_valid_bksv(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim,u8 * bksv)188 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
189 			       const struct intel_hdcp_shim *shim, u8 *bksv)
190 {
191 	struct intel_display *display = to_intel_display(dig_port);
192 	int ret, i, tries = 2;
193 
194 	/* HDCP spec states that we must retry the bksv if it is invalid */
195 	for (i = 0; i < tries; i++) {
196 		ret = shim->read_bksv(dig_port, bksv);
197 		if (ret)
198 			return ret;
199 		if (intel_hdcp_is_ksv_valid(bksv))
200 			break;
201 	}
202 	if (i == tries) {
203 		drm_dbg_kms(display->drm, "Bksv is invalid\n");
204 		return -ENODEV;
205 	}
206 
207 	return 0;
208 }
209 
210 /* Is HDCP1.4 capable on Platform and Sink */
intel_hdcp_get_capability(struct intel_connector * connector)211 bool intel_hdcp_get_capability(struct intel_connector *connector)
212 {
213 	struct intel_digital_port *dig_port;
214 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
215 	bool capable = false;
216 	u8 bksv[5];
217 
218 	if (!intel_attached_encoder(connector))
219 		return capable;
220 
221 	dig_port = intel_attached_dig_port(connector);
222 
223 	if (!shim)
224 		return capable;
225 
226 	if (shim->hdcp_get_capability) {
227 		shim->hdcp_get_capability(dig_port, &capable);
228 	} else {
229 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
230 			capable = true;
231 	}
232 
233 	return capable;
234 }
235 
236 /*
237  * Check if the source has all the building blocks ready to make
238  * HDCP 2.2 work
239  */
intel_hdcp2_prerequisite(struct intel_connector * connector)240 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
241 {
242 	struct intel_display *display = to_intel_display(connector);
243 	struct intel_hdcp *hdcp = &connector->hdcp;
244 
245 	/* I915 support for HDCP2.2 */
246 	if (!hdcp->hdcp2_supported)
247 		return false;
248 
249 	/* If MTL+ make sure gsc is loaded and proxy is setup */
250 	if (intel_hdcp_gsc_cs_required(display)) {
251 		if (!intel_hdcp_gsc_check_status(display))
252 			return false;
253 	}
254 
255 	/* MEI/GSC interface is solid depending on which is used */
256 	mutex_lock(&display->hdcp.hdcp_mutex);
257 	if (!display->hdcp.comp_added || !display->hdcp.arbiter) {
258 		mutex_unlock(&display->hdcp.hdcp_mutex);
259 		return false;
260 	}
261 	mutex_unlock(&display->hdcp.hdcp_mutex);
262 
263 	return true;
264 }
265 
266 /* Is HDCP2.2 capable on Platform and Sink */
intel_hdcp2_get_capability(struct intel_connector * connector)267 bool intel_hdcp2_get_capability(struct intel_connector *connector)
268 {
269 	struct intel_hdcp *hdcp = &connector->hdcp;
270 	bool capable = false;
271 
272 	if (!intel_hdcp2_prerequisite(connector))
273 		return false;
274 
275 	/* Sink's capability for HDCP2.2 */
276 	hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
277 
278 	return capable;
279 }
280 
intel_hdcp_get_remote_capability(struct intel_connector * connector,bool * hdcp_capable,bool * hdcp2_capable)281 void intel_hdcp_get_remote_capability(struct intel_connector *connector,
282 				      bool *hdcp_capable,
283 				      bool *hdcp2_capable)
284 {
285 	struct intel_hdcp *hdcp = &connector->hdcp;
286 
287 	if (!hdcp->shim->get_remote_hdcp_capability)
288 		return;
289 
290 	hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
291 					       hdcp2_capable);
292 
293 	if (!intel_hdcp2_prerequisite(connector))
294 		*hdcp2_capable = false;
295 }
296 
intel_hdcp_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)297 static bool intel_hdcp_in_use(struct intel_display *display,
298 			      enum transcoder cpu_transcoder, enum port port)
299 {
300 	return intel_de_read(display,
301 			     HDCP_STATUS(display, cpu_transcoder, port)) &
302 		HDCP_STATUS_ENC;
303 }
304 
intel_hdcp2_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)305 static bool intel_hdcp2_in_use(struct intel_display *display,
306 			       enum transcoder cpu_transcoder, enum port port)
307 {
308 	return intel_de_read(display,
309 			     HDCP2_STATUS(display, cpu_transcoder, port)) &
310 		LINK_ENCRYPTION_STATUS;
311 }
312 
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)313 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
314 				    const struct intel_hdcp_shim *shim)
315 {
316 	int ret, read_ret;
317 	bool ksv_ready;
318 
319 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
320 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
321 							 &ksv_ready),
322 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
323 			 100 * 1000);
324 	if (ret)
325 		return ret;
326 	if (read_ret)
327 		return read_ret;
328 	if (!ksv_ready)
329 		return -ETIMEDOUT;
330 
331 	return 0;
332 }
333 
hdcp_key_loadable(struct intel_display * display)334 static bool hdcp_key_loadable(struct intel_display *display)
335 {
336 	struct drm_i915_private *i915 = to_i915(display->drm);
337 	enum i915_power_well_id id;
338 	intel_wakeref_t wakeref;
339 	bool enabled = false;
340 
341 	/*
342 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
343 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
344 	 */
345 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
346 		id = HSW_DISP_PW_GLOBAL;
347 	else
348 		id = SKL_DISP_PW_1;
349 
350 	/* PG1 (power well #1) needs to be enabled */
351 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
352 		enabled = intel_display_power_well_is_enabled(display, id);
353 
354 	/*
355 	 * Another req for hdcp key loadability is enabled state of pll for
356 	 * cdclk. Without active crtc we wont land here. So we are assuming that
357 	 * cdclk is already on.
358 	 */
359 
360 	return enabled;
361 }
362 
intel_hdcp_clear_keys(struct intel_display * display)363 static void intel_hdcp_clear_keys(struct intel_display *display)
364 {
365 	intel_de_write(display, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
366 	intel_de_write(display, HDCP_KEY_STATUS,
367 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
368 }
369 
intel_hdcp_load_keys(struct intel_display * display)370 static int intel_hdcp_load_keys(struct intel_display *display)
371 {
372 	struct drm_i915_private *i915 = to_i915(display->drm);
373 	int ret;
374 	u32 val;
375 
376 	val = intel_de_read(display, HDCP_KEY_STATUS);
377 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
378 		return 0;
379 
380 	/*
381 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
382 	 * out of reset. So if Key is not already loaded, its an error state.
383 	 */
384 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
385 		if (!(intel_de_read(display, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
386 			return -ENXIO;
387 
388 	/*
389 	 * Initiate loading the HDCP key from fuses.
390 	 *
391 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
392 	 * version 9 platforms (minus BXT) differ in the key load trigger
393 	 * process from other platforms. These platforms use the GT Driver
394 	 * Mailbox interface.
395 	 */
396 	if (DISPLAY_VER(display) == 9 && !IS_BROXTON(i915)) {
397 		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
398 		if (ret) {
399 			drm_err(display->drm,
400 				"Failed to initiate HDCP key load (%d)\n",
401 				ret);
402 			return ret;
403 		}
404 	} else {
405 		intel_de_write(display, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
406 	}
407 
408 	/* Wait for the keys to load (500us) */
409 	ret = intel_de_wait_custom(display, HDCP_KEY_STATUS,
410 				   HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
411 				   10, 1, &val);
412 	if (ret)
413 		return ret;
414 	else if (!(val & HDCP_KEY_LOAD_STATUS))
415 		return -ENXIO;
416 
417 	/* Send Aksv over to PCH display for use in authentication */
418 	intel_de_write(display, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
419 
420 	return 0;
421 }
422 
423 /* Returns updated SHA-1 index */
intel_write_sha_text(struct intel_display * display,u32 sha_text)424 static int intel_write_sha_text(struct intel_display *display, u32 sha_text)
425 {
426 	intel_de_write(display, HDCP_SHA_TEXT, sha_text);
427 	if (intel_de_wait_for_set(display, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
428 		drm_err(display->drm, "Timed out waiting for SHA1 ready\n");
429 		return -ETIMEDOUT;
430 	}
431 	return 0;
432 }
433 
434 static
intel_hdcp_get_repeater_ctl(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)435 u32 intel_hdcp_get_repeater_ctl(struct intel_display *display,
436 				enum transcoder cpu_transcoder, enum port port)
437 {
438 	if (DISPLAY_VER(display) >= 12) {
439 		switch (cpu_transcoder) {
440 		case TRANSCODER_A:
441 			return HDCP_TRANSA_REP_PRESENT |
442 			       HDCP_TRANSA_SHA1_M0;
443 		case TRANSCODER_B:
444 			return HDCP_TRANSB_REP_PRESENT |
445 			       HDCP_TRANSB_SHA1_M0;
446 		case TRANSCODER_C:
447 			return HDCP_TRANSC_REP_PRESENT |
448 			       HDCP_TRANSC_SHA1_M0;
449 		case TRANSCODER_D:
450 			return HDCP_TRANSD_REP_PRESENT |
451 			       HDCP_TRANSD_SHA1_M0;
452 		default:
453 			drm_err(display->drm, "Unknown transcoder %d\n",
454 				cpu_transcoder);
455 			return 0;
456 		}
457 	}
458 
459 	switch (port) {
460 	case PORT_A:
461 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
462 	case PORT_B:
463 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
464 	case PORT_C:
465 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
466 	case PORT_D:
467 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
468 	case PORT_E:
469 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
470 	default:
471 		drm_err(display->drm, "Unknown port %d\n", port);
472 		return 0;
473 	}
474 }
475 
476 static
intel_hdcp_validate_v_prime(struct intel_connector * connector,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)477 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
478 				const struct intel_hdcp_shim *shim,
479 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
480 {
481 	struct intel_display *display = to_intel_display(connector);
482 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
483 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
484 	enum port port = dig_port->base.port;
485 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
486 	int ret, i, j, sha_idx;
487 
488 	/* Process V' values from the receiver */
489 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
490 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
491 		if (ret)
492 			return ret;
493 		intel_de_write(display, HDCP_SHA_V_PRIME(i), vprime);
494 	}
495 
496 	/*
497 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
498 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
499 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
500 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
501 	 * index will keep track of our progress through the 64 bytes as well as
502 	 * helping us work the 40-bit KSVs through our 32-bit register.
503 	 *
504 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
505 	 */
506 	sha_idx = 0;
507 	sha_text = 0;
508 	sha_leftovers = 0;
509 	rep_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port);
510 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
511 	for (i = 0; i < num_downstream; i++) {
512 		unsigned int sha_empty;
513 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
514 
515 		/* Fill up the empty slots in sha_text and write it out */
516 		sha_empty = sizeof(sha_text) - sha_leftovers;
517 		for (j = 0; j < sha_empty; j++) {
518 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
519 			sha_text |= ksv[j] << off;
520 		}
521 
522 		ret = intel_write_sha_text(display, sha_text);
523 		if (ret < 0)
524 			return ret;
525 
526 		/* Programming guide writes this every 64 bytes */
527 		sha_idx += sizeof(sha_text);
528 		if (!(sha_idx % 64))
529 			intel_de_write(display, HDCP_REP_CTL,
530 				       rep_ctl | HDCP_SHA1_TEXT_32);
531 
532 		/* Store the leftover bytes from the ksv in sha_text */
533 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
534 		sha_text = 0;
535 		for (j = 0; j < sha_leftovers; j++)
536 			sha_text |= ksv[sha_empty + j] <<
537 					((sizeof(sha_text) - j - 1) * 8);
538 
539 		/*
540 		 * If we still have room in sha_text for more data, continue.
541 		 * Otherwise, write it out immediately.
542 		 */
543 		if (sizeof(sha_text) > sha_leftovers)
544 			continue;
545 
546 		ret = intel_write_sha_text(display, sha_text);
547 		if (ret < 0)
548 			return ret;
549 		sha_leftovers = 0;
550 		sha_text = 0;
551 		sha_idx += sizeof(sha_text);
552 	}
553 
554 	/*
555 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
556 	 * bytes are leftover from the last ksv, we might be able to fit them
557 	 * all in sha_text (first 2 cases), or we might need to split them up
558 	 * into 2 writes (last 2 cases).
559 	 */
560 	if (sha_leftovers == 0) {
561 		/* Write 16 bits of text, 16 bits of M0 */
562 		intel_de_write(display, HDCP_REP_CTL,
563 			       rep_ctl | HDCP_SHA1_TEXT_16);
564 		ret = intel_write_sha_text(display,
565 					   bstatus[0] << 8 | bstatus[1]);
566 		if (ret < 0)
567 			return ret;
568 		sha_idx += sizeof(sha_text);
569 
570 		/* Write 32 bits of M0 */
571 		intel_de_write(display, HDCP_REP_CTL,
572 			       rep_ctl | HDCP_SHA1_TEXT_0);
573 		ret = intel_write_sha_text(display, 0);
574 		if (ret < 0)
575 			return ret;
576 		sha_idx += sizeof(sha_text);
577 
578 		/* Write 16 bits of M0 */
579 		intel_de_write(display, HDCP_REP_CTL,
580 			       rep_ctl | HDCP_SHA1_TEXT_16);
581 		ret = intel_write_sha_text(display, 0);
582 		if (ret < 0)
583 			return ret;
584 		sha_idx += sizeof(sha_text);
585 
586 	} else if (sha_leftovers == 1) {
587 		/* Write 24 bits of text, 8 bits of M0 */
588 		intel_de_write(display, HDCP_REP_CTL,
589 			       rep_ctl | HDCP_SHA1_TEXT_24);
590 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
591 		/* Only 24-bits of data, must be in the LSB */
592 		sha_text = (sha_text & 0xffffff00) >> 8;
593 		ret = intel_write_sha_text(display, sha_text);
594 		if (ret < 0)
595 			return ret;
596 		sha_idx += sizeof(sha_text);
597 
598 		/* Write 32 bits of M0 */
599 		intel_de_write(display, HDCP_REP_CTL,
600 			       rep_ctl | HDCP_SHA1_TEXT_0);
601 		ret = intel_write_sha_text(display, 0);
602 		if (ret < 0)
603 			return ret;
604 		sha_idx += sizeof(sha_text);
605 
606 		/* Write 24 bits of M0 */
607 		intel_de_write(display, HDCP_REP_CTL,
608 			       rep_ctl | HDCP_SHA1_TEXT_8);
609 		ret = intel_write_sha_text(display, 0);
610 		if (ret < 0)
611 			return ret;
612 		sha_idx += sizeof(sha_text);
613 
614 	} else if (sha_leftovers == 2) {
615 		/* Write 32 bits of text */
616 		intel_de_write(display, HDCP_REP_CTL,
617 			       rep_ctl | HDCP_SHA1_TEXT_32);
618 		sha_text |= bstatus[0] << 8 | bstatus[1];
619 		ret = intel_write_sha_text(display, sha_text);
620 		if (ret < 0)
621 			return ret;
622 		sha_idx += sizeof(sha_text);
623 
624 		/* Write 64 bits of M0 */
625 		intel_de_write(display, HDCP_REP_CTL,
626 			       rep_ctl | HDCP_SHA1_TEXT_0);
627 		for (i = 0; i < 2; i++) {
628 			ret = intel_write_sha_text(display, 0);
629 			if (ret < 0)
630 				return ret;
631 			sha_idx += sizeof(sha_text);
632 		}
633 
634 		/*
635 		 * Terminate the SHA-1 stream by hand. For the other leftover
636 		 * cases this is appended by the hardware.
637 		 */
638 		intel_de_write(display, HDCP_REP_CTL,
639 			       rep_ctl | HDCP_SHA1_TEXT_32);
640 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
641 		ret = intel_write_sha_text(display, sha_text);
642 		if (ret < 0)
643 			return ret;
644 		sha_idx += sizeof(sha_text);
645 	} else if (sha_leftovers == 3) {
646 		/* Write 32 bits of text (filled from LSB) */
647 		intel_de_write(display, HDCP_REP_CTL,
648 			       rep_ctl | HDCP_SHA1_TEXT_32);
649 		sha_text |= bstatus[0];
650 		ret = intel_write_sha_text(display, sha_text);
651 		if (ret < 0)
652 			return ret;
653 		sha_idx += sizeof(sha_text);
654 
655 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
656 		intel_de_write(display, HDCP_REP_CTL,
657 			       rep_ctl | HDCP_SHA1_TEXT_8);
658 		ret = intel_write_sha_text(display, bstatus[1]);
659 		if (ret < 0)
660 			return ret;
661 		sha_idx += sizeof(sha_text);
662 
663 		/* Write 32 bits of M0 */
664 		intel_de_write(display, HDCP_REP_CTL,
665 			       rep_ctl | HDCP_SHA1_TEXT_0);
666 		ret = intel_write_sha_text(display, 0);
667 		if (ret < 0)
668 			return ret;
669 		sha_idx += sizeof(sha_text);
670 
671 		/* Write 8 bits of M0 */
672 		intel_de_write(display, HDCP_REP_CTL,
673 			       rep_ctl | HDCP_SHA1_TEXT_24);
674 		ret = intel_write_sha_text(display, 0);
675 		if (ret < 0)
676 			return ret;
677 		sha_idx += sizeof(sha_text);
678 	} else {
679 		drm_dbg_kms(display->drm, "Invalid number of leftovers %d\n",
680 			    sha_leftovers);
681 		return -EINVAL;
682 	}
683 
684 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
685 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
686 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
687 		ret = intel_write_sha_text(display, 0);
688 		if (ret < 0)
689 			return ret;
690 		sha_idx += sizeof(sha_text);
691 	}
692 
693 	/*
694 	 * Last write gets the length of the concatenation in bits. That is:
695 	 *  - 5 bytes per device
696 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
697 	 */
698 	sha_text = (num_downstream * 5 + 10) * 8;
699 	ret = intel_write_sha_text(display, sha_text);
700 	if (ret < 0)
701 		return ret;
702 
703 	/* Tell the HW we're done with the hash and wait for it to ACK */
704 	intel_de_write(display, HDCP_REP_CTL,
705 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
706 	if (intel_de_wait_for_set(display, HDCP_REP_CTL,
707 				  HDCP_SHA1_COMPLETE, 1)) {
708 		drm_err(display->drm, "Timed out waiting for SHA1 complete\n");
709 		return -ETIMEDOUT;
710 	}
711 	if (!(intel_de_read(display, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
712 		drm_dbg_kms(display->drm, "SHA-1 mismatch, HDCP failed\n");
713 		return -ENXIO;
714 	}
715 
716 	return 0;
717 }
718 
719 /* Implements Part 2 of the HDCP authorization procedure */
720 static
intel_hdcp_auth_downstream(struct intel_connector * connector)721 int intel_hdcp_auth_downstream(struct intel_connector *connector)
722 {
723 	struct intel_display *display = to_intel_display(connector);
724 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
725 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
726 	u8 bstatus[2], num_downstream, *ksv_fifo;
727 	int ret, i, tries = 3;
728 
729 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
730 	if (ret) {
731 		drm_dbg_kms(display->drm,
732 			    "KSV list failed to become ready (%d)\n", ret);
733 		return ret;
734 	}
735 
736 	ret = shim->read_bstatus(dig_port, bstatus);
737 	if (ret)
738 		return ret;
739 
740 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
741 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
742 		drm_dbg_kms(display->drm, "Max Topology Limit Exceeded\n");
743 		return -EPERM;
744 	}
745 
746 	/*
747 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
748 	 * the HDCP encryption. That implies that repeater can't have its own
749 	 * display. As there is no consumption of encrypted content in the
750 	 * repeater with 0 downstream devices, we are failing the
751 	 * authentication.
752 	 */
753 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
754 	if (num_downstream == 0) {
755 		drm_dbg_kms(display->drm,
756 			    "Repeater with zero downstream devices\n");
757 		return -EINVAL;
758 	}
759 
760 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
761 	if (!ksv_fifo) {
762 		drm_dbg_kms(display->drm, "Out of mem: ksv_fifo\n");
763 		return -ENOMEM;
764 	}
765 
766 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
767 	if (ret)
768 		goto err;
769 
770 	if (drm_hdcp_check_ksvs_revoked(display->drm, ksv_fifo,
771 					num_downstream) > 0) {
772 		drm_err(display->drm, "Revoked Ksv(s) in ksv_fifo\n");
773 		ret = -EPERM;
774 		goto err;
775 	}
776 
777 	/*
778 	 * When V prime mismatches, DP Spec mandates re-read of
779 	 * V prime atleast twice.
780 	 */
781 	for (i = 0; i < tries; i++) {
782 		ret = intel_hdcp_validate_v_prime(connector, shim,
783 						  ksv_fifo, num_downstream,
784 						  bstatus);
785 		if (!ret)
786 			break;
787 	}
788 
789 	if (i == tries) {
790 		drm_dbg_kms(display->drm,
791 			    "V Prime validation failed.(%d)\n", ret);
792 		goto err;
793 	}
794 
795 	drm_dbg_kms(display->drm, "HDCP is enabled (%d downstream devices)\n",
796 		    num_downstream);
797 	ret = 0;
798 err:
799 	kfree(ksv_fifo);
800 	return ret;
801 }
802 
803 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_connector * connector)804 static int intel_hdcp_auth(struct intel_connector *connector)
805 {
806 	struct intel_display *display = to_intel_display(connector);
807 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
808 	struct intel_hdcp *hdcp = &connector->hdcp;
809 	const struct intel_hdcp_shim *shim = hdcp->shim;
810 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
811 	enum port port = dig_port->base.port;
812 	unsigned long r0_prime_gen_start;
813 	int ret, i, tries = 2;
814 	union {
815 		u32 reg[2];
816 		u8 shim[DRM_HDCP_AN_LEN];
817 	} an;
818 	union {
819 		u32 reg[2];
820 		u8 shim[DRM_HDCP_KSV_LEN];
821 	} bksv;
822 	union {
823 		u32 reg;
824 		u8 shim[DRM_HDCP_RI_LEN];
825 	} ri;
826 	bool repeater_present, hdcp_capable;
827 
828 	/*
829 	 * Detects whether the display is HDCP capable. Although we check for
830 	 * valid Bksv below, the HDCP over DP spec requires that we check
831 	 * whether the display supports HDCP before we write An. For HDMI
832 	 * displays, this is not necessary.
833 	 */
834 	if (shim->hdcp_get_capability) {
835 		ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
836 		if (ret)
837 			return ret;
838 		if (!hdcp_capable) {
839 			drm_dbg_kms(display->drm,
840 				    "Panel is not HDCP capable\n");
841 			return -EINVAL;
842 		}
843 	}
844 
845 	/* Initialize An with 2 random values and acquire it */
846 	for (i = 0; i < 2; i++)
847 		intel_de_write(display,
848 			       HDCP_ANINIT(display, cpu_transcoder, port),
849 			       get_random_u32());
850 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
851 		       HDCP_CONF_CAPTURE_AN);
852 
853 	/* Wait for An to be acquired */
854 	if (intel_de_wait_for_set(display,
855 				  HDCP_STATUS(display, cpu_transcoder, port),
856 				  HDCP_STATUS_AN_READY, 1)) {
857 		drm_err(display->drm, "Timed out waiting for An\n");
858 		return -ETIMEDOUT;
859 	}
860 
861 	an.reg[0] = intel_de_read(display,
862 				  HDCP_ANLO(display, cpu_transcoder, port));
863 	an.reg[1] = intel_de_read(display,
864 				  HDCP_ANHI(display, cpu_transcoder, port));
865 	ret = shim->write_an_aksv(dig_port, an.shim);
866 	if (ret)
867 		return ret;
868 
869 	r0_prime_gen_start = jiffies;
870 
871 	memset(&bksv, 0, sizeof(bksv));
872 
873 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
874 	if (ret < 0)
875 		return ret;
876 
877 	if (drm_hdcp_check_ksvs_revoked(display->drm, bksv.shim, 1) > 0) {
878 		drm_err(display->drm, "BKSV is revoked\n");
879 		return -EPERM;
880 	}
881 
882 	intel_de_write(display, HDCP_BKSVLO(display, cpu_transcoder, port),
883 		       bksv.reg[0]);
884 	intel_de_write(display, HDCP_BKSVHI(display, cpu_transcoder, port),
885 		       bksv.reg[1]);
886 
887 	ret = shim->repeater_present(dig_port, &repeater_present);
888 	if (ret)
889 		return ret;
890 	if (repeater_present)
891 		intel_de_write(display, HDCP_REP_CTL,
892 			       intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port));
893 
894 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
895 	if (ret)
896 		return ret;
897 
898 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
899 		       HDCP_CONF_AUTH_AND_ENC);
900 
901 	/* Wait for R0 ready */
902 	if (wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
903 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
904 		drm_err(display->drm, "Timed out waiting for R0 ready\n");
905 		return -ETIMEDOUT;
906 	}
907 
908 	/*
909 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
910 	 * some monitors can take longer than this. We'll set the timeout at
911 	 * 300ms just to be sure.
912 	 *
913 	 * On DP, there's an R0_READY bit available but no such bit
914 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
915 	 * the stupid thing instead of polling on one and not the other.
916 	 */
917 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
918 
919 	tries = 3;
920 
921 	/*
922 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
923 	 * of R0 mismatch.
924 	 */
925 	for (i = 0; i < tries; i++) {
926 		ri.reg = 0;
927 		ret = shim->read_ri_prime(dig_port, ri.shim);
928 		if (ret)
929 			return ret;
930 		intel_de_write(display,
931 			       HDCP_RPRIME(display, cpu_transcoder, port),
932 			       ri.reg);
933 
934 		/* Wait for Ri prime match */
935 		if (!wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
936 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
937 			break;
938 	}
939 
940 	if (i == tries) {
941 		drm_dbg_kms(display->drm,
942 			    "Timed out waiting for Ri prime match (%x)\n",
943 			    intel_de_read(display,
944 					  HDCP_STATUS(display, cpu_transcoder, port)));
945 		return -ETIMEDOUT;
946 	}
947 
948 	/* Wait for encryption confirmation */
949 	if (intel_de_wait_for_set(display,
950 				  HDCP_STATUS(display, cpu_transcoder, port),
951 				  HDCP_STATUS_ENC,
952 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
953 		drm_err(display->drm, "Timed out waiting for encryption\n");
954 		return -ETIMEDOUT;
955 	}
956 
957 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
958 	if (shim->stream_encryption) {
959 		ret = shim->stream_encryption(connector, true);
960 		if (ret) {
961 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
962 				connector->base.base.id, connector->base.name);
963 			return ret;
964 		}
965 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
966 			    transcoder_name(hdcp->stream_transcoder));
967 	}
968 
969 	if (repeater_present)
970 		return intel_hdcp_auth_downstream(connector);
971 
972 	drm_dbg_kms(display->drm, "HDCP is enabled (no repeater present)\n");
973 	return 0;
974 }
975 
_intel_hdcp_disable(struct intel_connector * connector)976 static int _intel_hdcp_disable(struct intel_connector *connector)
977 {
978 	struct intel_display *display = to_intel_display(connector);
979 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
980 	struct intel_hdcp *hdcp = &connector->hdcp;
981 	enum port port = dig_port->base.port;
982 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
983 	u32 repeater_ctl;
984 	int ret;
985 
986 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
987 		    connector->base.base.id, connector->base.name);
988 
989 	if (hdcp->shim->stream_encryption) {
990 		ret = hdcp->shim->stream_encryption(connector, false);
991 		if (ret) {
992 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
993 				connector->base.base.id, connector->base.name);
994 			return ret;
995 		}
996 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
997 			    transcoder_name(hdcp->stream_transcoder));
998 		/*
999 		 * If there are other connectors on this port using HDCP,
1000 		 * don't disable it until it disabled HDCP encryption for
1001 		 * all connectors in MST topology.
1002 		 */
1003 		if (dig_port->num_hdcp_streams > 0)
1004 			return 0;
1005 	}
1006 
1007 	hdcp->hdcp_encrypted = false;
1008 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port), 0);
1009 	if (intel_de_wait_for_clear(display,
1010 				    HDCP_STATUS(display, cpu_transcoder, port),
1011 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
1012 		drm_err(display->drm,
1013 			"Failed to disable HDCP, timeout clearing status\n");
1014 		return -ETIMEDOUT;
1015 	}
1016 
1017 	repeater_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder,
1018 						   port);
1019 	intel_de_rmw(display, HDCP_REP_CTL, repeater_ctl, 0);
1020 
1021 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
1022 	if (ret) {
1023 		drm_err(display->drm, "Failed to disable HDCP signalling\n");
1024 		return ret;
1025 	}
1026 
1027 	drm_dbg_kms(display->drm, "HDCP is disabled\n");
1028 	return 0;
1029 }
1030 
intel_hdcp1_enable(struct intel_connector * connector)1031 static int intel_hdcp1_enable(struct intel_connector *connector)
1032 {
1033 	struct intel_display *display = to_intel_display(connector);
1034 	struct intel_hdcp *hdcp = &connector->hdcp;
1035 	int i, ret, tries = 3;
1036 
1037 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1038 		    connector->base.base.id, connector->base.name);
1039 
1040 	if (!hdcp_key_loadable(display)) {
1041 		drm_err(display->drm, "HDCP key Load is not possible\n");
1042 		return -ENXIO;
1043 	}
1044 
1045 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
1046 		ret = intel_hdcp_load_keys(display);
1047 		if (!ret)
1048 			break;
1049 		intel_hdcp_clear_keys(display);
1050 	}
1051 	if (ret) {
1052 		drm_err(display->drm, "Could not load HDCP keys, (%d)\n",
1053 			ret);
1054 		return ret;
1055 	}
1056 
1057 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, true);
1058 
1059 	/* Incase of authentication failures, HDCP spec expects reauth. */
1060 	for (i = 0; i < tries; i++) {
1061 		ret = intel_hdcp_auth(connector);
1062 		if (!ret) {
1063 			hdcp->hdcp_encrypted = true;
1064 			return 0;
1065 		}
1066 
1067 		drm_dbg_kms(display->drm, "HDCP Auth failure (%d)\n", ret);
1068 
1069 		/* Ensuring HDCP encryption and signalling are stopped. */
1070 		_intel_hdcp_disable(connector);
1071 	}
1072 
1073 	drm_dbg_kms(display->drm,
1074 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1075 	return ret;
1076 }
1077 
intel_hdcp_to_connector(struct intel_hdcp * hdcp)1078 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1079 {
1080 	return container_of(hdcp, struct intel_connector, hdcp);
1081 }
1082 
intel_hdcp_update_value(struct intel_connector * connector,u64 value,bool update_property)1083 static void intel_hdcp_update_value(struct intel_connector *connector,
1084 				    u64 value, bool update_property)
1085 {
1086 	struct intel_display *display = to_intel_display(connector);
1087 	struct drm_i915_private *i915 = to_i915(display->drm);
1088 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1089 	struct intel_hdcp *hdcp = &connector->hdcp;
1090 
1091 	drm_WARN_ON(display->drm, !mutex_is_locked(&hdcp->mutex));
1092 
1093 	if (hdcp->value == value)
1094 		return;
1095 
1096 	drm_WARN_ON(display->drm, !mutex_is_locked(&dig_port->hdcp_mutex));
1097 
1098 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1099 		if (!drm_WARN_ON(display->drm, dig_port->num_hdcp_streams == 0))
1100 			dig_port->num_hdcp_streams--;
1101 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1102 		dig_port->num_hdcp_streams++;
1103 	}
1104 
1105 	hdcp->value = value;
1106 	if (update_property) {
1107 		drm_connector_get(&connector->base);
1108 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
1109 			drm_connector_put(&connector->base);
1110 	}
1111 }
1112 
1113 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)1114 static int intel_hdcp_check_link(struct intel_connector *connector)
1115 {
1116 	struct intel_display *display = to_intel_display(connector);
1117 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1118 	struct intel_hdcp *hdcp = &connector->hdcp;
1119 	enum port port = dig_port->base.port;
1120 	enum transcoder cpu_transcoder;
1121 	int ret = 0;
1122 
1123 	mutex_lock(&hdcp->mutex);
1124 	mutex_lock(&dig_port->hdcp_mutex);
1125 
1126 	cpu_transcoder = hdcp->cpu_transcoder;
1127 
1128 	/* Check_link valid only when HDCP1.4 is enabled */
1129 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1130 	    !hdcp->hdcp_encrypted) {
1131 		ret = -EINVAL;
1132 		goto out;
1133 	}
1134 
1135 	if (drm_WARN_ON(display->drm,
1136 			!intel_hdcp_in_use(display, cpu_transcoder, port))) {
1137 		drm_err(display->drm,
1138 			"[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1139 			connector->base.base.id, connector->base.name,
1140 			intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)));
1141 		ret = -ENXIO;
1142 		intel_hdcp_update_value(connector,
1143 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1144 					true);
1145 		goto out;
1146 	}
1147 
1148 	if (hdcp->shim->check_link(dig_port, connector)) {
1149 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1150 			intel_hdcp_update_value(connector,
1151 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1152 		}
1153 		goto out;
1154 	}
1155 
1156 	drm_dbg_kms(display->drm,
1157 		    "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1158 		    connector->base.base.id, connector->base.name);
1159 
1160 	ret = _intel_hdcp_disable(connector);
1161 	if (ret) {
1162 		drm_err(display->drm, "Failed to disable hdcp (%d)\n", ret);
1163 		intel_hdcp_update_value(connector,
1164 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1165 					true);
1166 		goto out;
1167 	}
1168 
1169 	ret = intel_hdcp1_enable(connector);
1170 	if (ret) {
1171 		drm_err(display->drm, "Failed to enable hdcp (%d)\n", ret);
1172 		intel_hdcp_update_value(connector,
1173 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1174 					true);
1175 		goto out;
1176 	}
1177 
1178 out:
1179 	mutex_unlock(&dig_port->hdcp_mutex);
1180 	mutex_unlock(&hdcp->mutex);
1181 	return ret;
1182 }
1183 
intel_hdcp_prop_work(struct work_struct * work)1184 static void intel_hdcp_prop_work(struct work_struct *work)
1185 {
1186 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1187 					       prop_work);
1188 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1189 	struct intel_display *display = to_intel_display(connector);
1190 
1191 	drm_modeset_lock(&display->drm->mode_config.connection_mutex, NULL);
1192 	mutex_lock(&hdcp->mutex);
1193 
1194 	/*
1195 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1196 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1197 	 * we're running just after hdcp has been disabled, so just exit
1198 	 */
1199 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1200 		drm_hdcp_update_content_protection(&connector->base,
1201 						   hdcp->value);
1202 
1203 	mutex_unlock(&hdcp->mutex);
1204 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
1205 
1206 	drm_connector_put(&connector->base);
1207 }
1208 
is_hdcp_supported(struct intel_display * display,enum port port)1209 bool is_hdcp_supported(struct intel_display *display, enum port port)
1210 {
1211 	return DISPLAY_RUNTIME_INFO(display)->has_hdcp &&
1212 		(DISPLAY_VER(display) >= 12 || port < PORT_E);
1213 }
1214 
1215 static int
hdcp2_prepare_ake_init(struct intel_connector * connector,struct hdcp2_ake_init * ake_data)1216 hdcp2_prepare_ake_init(struct intel_connector *connector,
1217 		       struct hdcp2_ake_init *ake_data)
1218 {
1219 	struct intel_display *display = to_intel_display(connector);
1220 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1221 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1222 	struct i915_hdcp_arbiter *arbiter;
1223 	int ret;
1224 
1225 	mutex_lock(&display->hdcp.hdcp_mutex);
1226 	arbiter = display->hdcp.arbiter;
1227 
1228 	if (!arbiter || !arbiter->ops) {
1229 		mutex_unlock(&display->hdcp.hdcp_mutex);
1230 		return -EINVAL;
1231 	}
1232 
1233 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1234 	if (ret)
1235 		drm_dbg_kms(display->drm, "Prepare_ake_init failed. %d\n",
1236 			    ret);
1237 	mutex_unlock(&display->hdcp.hdcp_mutex);
1238 
1239 	return ret;
1240 }
1241 
1242 static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector * connector,struct hdcp2_ake_send_cert * rx_cert,bool * paired,struct hdcp2_ake_no_stored_km * ek_pub_km,size_t * msg_sz)1243 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1244 				struct hdcp2_ake_send_cert *rx_cert,
1245 				bool *paired,
1246 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1247 				size_t *msg_sz)
1248 {
1249 	struct intel_display *display = to_intel_display(connector);
1250 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1251 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1252 	struct i915_hdcp_arbiter *arbiter;
1253 	int ret;
1254 
1255 	mutex_lock(&display->hdcp.hdcp_mutex);
1256 	arbiter = display->hdcp.arbiter;
1257 
1258 	if (!arbiter || !arbiter->ops) {
1259 		mutex_unlock(&display->hdcp.hdcp_mutex);
1260 		return -EINVAL;
1261 	}
1262 
1263 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1264 							 rx_cert, paired,
1265 							 ek_pub_km, msg_sz);
1266 	if (ret < 0)
1267 		drm_dbg_kms(display->drm, "Verify rx_cert failed. %d\n",
1268 			    ret);
1269 	mutex_unlock(&display->hdcp.hdcp_mutex);
1270 
1271 	return ret;
1272 }
1273 
hdcp2_verify_hprime(struct intel_connector * connector,struct hdcp2_ake_send_hprime * rx_hprime)1274 static int hdcp2_verify_hprime(struct intel_connector *connector,
1275 			       struct hdcp2_ake_send_hprime *rx_hprime)
1276 {
1277 	struct intel_display *display = to_intel_display(connector);
1278 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1279 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1280 	struct i915_hdcp_arbiter *arbiter;
1281 	int ret;
1282 
1283 	mutex_lock(&display->hdcp.hdcp_mutex);
1284 	arbiter = display->hdcp.arbiter;
1285 
1286 	if (!arbiter || !arbiter->ops) {
1287 		mutex_unlock(&display->hdcp.hdcp_mutex);
1288 		return -EINVAL;
1289 	}
1290 
1291 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1292 	if (ret < 0)
1293 		drm_dbg_kms(display->drm, "Verify hprime failed. %d\n", ret);
1294 	mutex_unlock(&display->hdcp.hdcp_mutex);
1295 
1296 	return ret;
1297 }
1298 
1299 static int
hdcp2_store_pairing_info(struct intel_connector * connector,struct hdcp2_ake_send_pairing_info * pairing_info)1300 hdcp2_store_pairing_info(struct intel_connector *connector,
1301 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1302 {
1303 	struct intel_display *display = to_intel_display(connector);
1304 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1305 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1306 	struct i915_hdcp_arbiter *arbiter;
1307 	int ret;
1308 
1309 	mutex_lock(&display->hdcp.hdcp_mutex);
1310 	arbiter = display->hdcp.arbiter;
1311 
1312 	if (!arbiter || !arbiter->ops) {
1313 		mutex_unlock(&display->hdcp.hdcp_mutex);
1314 		return -EINVAL;
1315 	}
1316 
1317 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1318 	if (ret < 0)
1319 		drm_dbg_kms(display->drm, "Store pairing info failed. %d\n",
1320 			    ret);
1321 	mutex_unlock(&display->hdcp.hdcp_mutex);
1322 
1323 	return ret;
1324 }
1325 
1326 static int
hdcp2_prepare_lc_init(struct intel_connector * connector,struct hdcp2_lc_init * lc_init)1327 hdcp2_prepare_lc_init(struct intel_connector *connector,
1328 		      struct hdcp2_lc_init *lc_init)
1329 {
1330 	struct intel_display *display = to_intel_display(connector);
1331 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1332 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1333 	struct i915_hdcp_arbiter *arbiter;
1334 	int ret;
1335 
1336 	mutex_lock(&display->hdcp.hdcp_mutex);
1337 	arbiter = display->hdcp.arbiter;
1338 
1339 	if (!arbiter || !arbiter->ops) {
1340 		mutex_unlock(&display->hdcp.hdcp_mutex);
1341 		return -EINVAL;
1342 	}
1343 
1344 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1345 	if (ret < 0)
1346 		drm_dbg_kms(display->drm, "Prepare lc_init failed. %d\n",
1347 			    ret);
1348 	mutex_unlock(&display->hdcp.hdcp_mutex);
1349 
1350 	return ret;
1351 }
1352 
1353 static int
hdcp2_verify_lprime(struct intel_connector * connector,struct hdcp2_lc_send_lprime * rx_lprime)1354 hdcp2_verify_lprime(struct intel_connector *connector,
1355 		    struct hdcp2_lc_send_lprime *rx_lprime)
1356 {
1357 	struct intel_display *display = to_intel_display(connector);
1358 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1359 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1360 	struct i915_hdcp_arbiter *arbiter;
1361 	int ret;
1362 
1363 	mutex_lock(&display->hdcp.hdcp_mutex);
1364 	arbiter = display->hdcp.arbiter;
1365 
1366 	if (!arbiter || !arbiter->ops) {
1367 		mutex_unlock(&display->hdcp.hdcp_mutex);
1368 		return -EINVAL;
1369 	}
1370 
1371 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1372 	if (ret < 0)
1373 		drm_dbg_kms(display->drm, "Verify L_Prime failed. %d\n",
1374 			    ret);
1375 	mutex_unlock(&display->hdcp.hdcp_mutex);
1376 
1377 	return ret;
1378 }
1379 
hdcp2_prepare_skey(struct intel_connector * connector,struct hdcp2_ske_send_eks * ske_data)1380 static int hdcp2_prepare_skey(struct intel_connector *connector,
1381 			      struct hdcp2_ske_send_eks *ske_data)
1382 {
1383 	struct intel_display *display = to_intel_display(connector);
1384 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1385 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1386 	struct i915_hdcp_arbiter *arbiter;
1387 	int ret;
1388 
1389 	mutex_lock(&display->hdcp.hdcp_mutex);
1390 	arbiter = display->hdcp.arbiter;
1391 
1392 	if (!arbiter || !arbiter->ops) {
1393 		mutex_unlock(&display->hdcp.hdcp_mutex);
1394 		return -EINVAL;
1395 	}
1396 
1397 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1398 	if (ret < 0)
1399 		drm_dbg_kms(display->drm, "Get session key failed. %d\n",
1400 			    ret);
1401 	mutex_unlock(&display->hdcp.hdcp_mutex);
1402 
1403 	return ret;
1404 }
1405 
1406 static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector * connector,struct hdcp2_rep_send_receiverid_list * rep_topology,struct hdcp2_rep_send_ack * rep_send_ack)1407 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1408 				      struct hdcp2_rep_send_receiverid_list
1409 								*rep_topology,
1410 				      struct hdcp2_rep_send_ack *rep_send_ack)
1411 {
1412 	struct intel_display *display = to_intel_display(connector);
1413 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1414 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1415 	struct i915_hdcp_arbiter *arbiter;
1416 	int ret;
1417 
1418 	mutex_lock(&display->hdcp.hdcp_mutex);
1419 	arbiter = display->hdcp.arbiter;
1420 
1421 	if (!arbiter || !arbiter->ops) {
1422 		mutex_unlock(&display->hdcp.hdcp_mutex);
1423 		return -EINVAL;
1424 	}
1425 
1426 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1427 							    data,
1428 							    rep_topology,
1429 							    rep_send_ack);
1430 	if (ret < 0)
1431 		drm_dbg_kms(display->drm,
1432 			    "Verify rep topology failed. %d\n", ret);
1433 	mutex_unlock(&display->hdcp.hdcp_mutex);
1434 
1435 	return ret;
1436 }
1437 
1438 static int
hdcp2_verify_mprime(struct intel_connector * connector,struct hdcp2_rep_stream_ready * stream_ready)1439 hdcp2_verify_mprime(struct intel_connector *connector,
1440 		    struct hdcp2_rep_stream_ready *stream_ready)
1441 {
1442 	struct intel_display *display = to_intel_display(connector);
1443 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1444 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1445 	struct i915_hdcp_arbiter *arbiter;
1446 	int ret;
1447 
1448 	mutex_lock(&display->hdcp.hdcp_mutex);
1449 	arbiter = display->hdcp.arbiter;
1450 
1451 	if (!arbiter || !arbiter->ops) {
1452 		mutex_unlock(&display->hdcp.hdcp_mutex);
1453 		return -EINVAL;
1454 	}
1455 
1456 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1457 	if (ret < 0)
1458 		drm_dbg_kms(display->drm, "Verify mprime failed. %d\n", ret);
1459 	mutex_unlock(&display->hdcp.hdcp_mutex);
1460 
1461 	return ret;
1462 }
1463 
hdcp2_authenticate_port(struct intel_connector * connector)1464 static int hdcp2_authenticate_port(struct intel_connector *connector)
1465 {
1466 	struct intel_display *display = to_intel_display(connector);
1467 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1469 	struct i915_hdcp_arbiter *arbiter;
1470 	int ret;
1471 
1472 	mutex_lock(&display->hdcp.hdcp_mutex);
1473 	arbiter = display->hdcp.arbiter;
1474 
1475 	if (!arbiter || !arbiter->ops) {
1476 		mutex_unlock(&display->hdcp.hdcp_mutex);
1477 		return -EINVAL;
1478 	}
1479 
1480 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1481 	if (ret < 0)
1482 		drm_dbg_kms(display->drm, "Enable hdcp auth failed. %d\n",
1483 			    ret);
1484 	mutex_unlock(&display->hdcp.hdcp_mutex);
1485 
1486 	return ret;
1487 }
1488 
hdcp2_close_session(struct intel_connector * connector)1489 static int hdcp2_close_session(struct intel_connector *connector)
1490 {
1491 	struct intel_display *display = to_intel_display(connector);
1492 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1493 	struct i915_hdcp_arbiter *arbiter;
1494 	int ret;
1495 
1496 	mutex_lock(&display->hdcp.hdcp_mutex);
1497 	arbiter = display->hdcp.arbiter;
1498 
1499 	if (!arbiter || !arbiter->ops) {
1500 		mutex_unlock(&display->hdcp.hdcp_mutex);
1501 		return -EINVAL;
1502 	}
1503 
1504 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1505 					     &dig_port->hdcp_port_data);
1506 	mutex_unlock(&display->hdcp.hdcp_mutex);
1507 
1508 	return ret;
1509 }
1510 
hdcp2_deauthenticate_port(struct intel_connector * connector)1511 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1512 {
1513 	return hdcp2_close_session(connector);
1514 }
1515 
1516 /* Authentication flow starts from here */
hdcp2_authentication_key_exchange(struct intel_connector * connector)1517 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1518 {
1519 	struct intel_display *display = to_intel_display(connector);
1520 	struct intel_digital_port *dig_port =
1521 		intel_attached_dig_port(connector);
1522 	struct intel_hdcp *hdcp = &connector->hdcp;
1523 	union {
1524 		struct hdcp2_ake_init ake_init;
1525 		struct hdcp2_ake_send_cert send_cert;
1526 		struct hdcp2_ake_no_stored_km no_stored_km;
1527 		struct hdcp2_ake_send_hprime send_hprime;
1528 		struct hdcp2_ake_send_pairing_info pairing_info;
1529 	} msgs;
1530 	const struct intel_hdcp_shim *shim = hdcp->shim;
1531 	size_t size;
1532 	int ret, i, max_retries;
1533 
1534 	/* Init for seq_num */
1535 	hdcp->seq_num_v = 0;
1536 	hdcp->seq_num_m = 0;
1537 
1538 	if (intel_encoder_is_dp(&dig_port->base) ||
1539 	    intel_encoder_is_mst(&dig_port->base))
1540 		max_retries = 10;
1541 	else
1542 		max_retries = 1;
1543 
1544 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1545 	if (ret < 0)
1546 		return ret;
1547 
1548 	/*
1549 	 * Retry the first read and write to downstream at least 10 times
1550 	 * with a 50ms delay if not hdcp2 capable for DP/DPMST encoders
1551 	 * (dock decides to stop advertising hdcp2 capability for some reason).
1552 	 * The reason being that during suspend resume dock usually keeps the
1553 	 * HDCP2 registers inaccesible causing AUX error. This wouldn't be a
1554 	 * big problem if the userspace just kept retrying with some delay while
1555 	 * it continues to play low value content but most userpace applications
1556 	 * end up throwing an error when it receives one from KMD. This makes
1557 	 * sure we give the dock and the sink devices to complete its power cycle
1558 	 * and then try HDCP authentication. The values of 10 and delay of 50ms
1559 	 * was decided based on multiple trial and errors.
1560 	 */
1561 	for (i = 0; i < max_retries; i++) {
1562 		if (!intel_hdcp2_get_capability(connector)) {
1563 			msleep(50);
1564 			continue;
1565 		}
1566 
1567 		ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1568 					  sizeof(msgs.ake_init));
1569 		if (ret < 0)
1570 			continue;
1571 
1572 		ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1573 					 &msgs.send_cert, sizeof(msgs.send_cert));
1574 		if (ret > 0)
1575 			break;
1576 	}
1577 
1578 	if (ret < 0)
1579 		return ret;
1580 
1581 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1582 		drm_dbg_kms(display->drm, "cert.rx_caps dont claim HDCP2.2\n");
1583 		return -EINVAL;
1584 	}
1585 
1586 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1587 
1588 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1589 					msgs.send_cert.cert_rx.receiver_id,
1590 					1) > 0) {
1591 		drm_err(display->drm, "Receiver ID is revoked\n");
1592 		return -EPERM;
1593 	}
1594 
1595 	/*
1596 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1597 	 * stored also.
1598 	 */
1599 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1600 					      &hdcp->is_paired,
1601 					      &msgs.no_stored_km, &size);
1602 	if (ret < 0)
1603 		return ret;
1604 
1605 	ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1606 	if (ret < 0)
1607 		return ret;
1608 
1609 	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1610 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1611 	if (ret < 0)
1612 		return ret;
1613 
1614 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1615 	if (ret < 0)
1616 		return ret;
1617 
1618 	if (!hdcp->is_paired) {
1619 		/* Pairing is required */
1620 		ret = shim->read_2_2_msg(connector,
1621 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1622 					 &msgs.pairing_info,
1623 					 sizeof(msgs.pairing_info));
1624 		if (ret < 0)
1625 			return ret;
1626 
1627 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1628 		if (ret < 0)
1629 			return ret;
1630 		hdcp->is_paired = true;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
hdcp2_locality_check(struct intel_connector * connector)1636 static int hdcp2_locality_check(struct intel_connector *connector)
1637 {
1638 	struct intel_hdcp *hdcp = &connector->hdcp;
1639 	union {
1640 		struct hdcp2_lc_init lc_init;
1641 		struct hdcp2_lc_send_lprime send_lprime;
1642 	} msgs;
1643 	const struct intel_hdcp_shim *shim = hdcp->shim;
1644 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1645 
1646 	for (i = 0; i < tries; i++) {
1647 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1648 		if (ret < 0)
1649 			continue;
1650 
1651 		ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1652 				      sizeof(msgs.lc_init));
1653 		if (ret < 0)
1654 			continue;
1655 
1656 		ret = shim->read_2_2_msg(connector,
1657 					 HDCP_2_2_LC_SEND_LPRIME,
1658 					 &msgs.send_lprime,
1659 					 sizeof(msgs.send_lprime));
1660 		if (ret < 0)
1661 			continue;
1662 
1663 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1664 		if (!ret)
1665 			break;
1666 	}
1667 
1668 	return ret;
1669 }
1670 
hdcp2_session_key_exchange(struct intel_connector * connector)1671 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1672 {
1673 	struct intel_hdcp *hdcp = &connector->hdcp;
1674 	struct hdcp2_ske_send_eks send_eks;
1675 	int ret;
1676 
1677 	ret = hdcp2_prepare_skey(connector, &send_eks);
1678 	if (ret < 0)
1679 		return ret;
1680 
1681 	ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1682 					sizeof(send_eks));
1683 	if (ret < 0)
1684 		return ret;
1685 
1686 	return 0;
1687 }
1688 
1689 static
_hdcp2_propagate_stream_management_info(struct intel_connector * connector)1690 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1691 {
1692 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1693 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1694 	struct intel_hdcp *hdcp = &connector->hdcp;
1695 	union {
1696 		struct hdcp2_rep_stream_manage stream_manage;
1697 		struct hdcp2_rep_stream_ready stream_ready;
1698 	} msgs;
1699 	const struct intel_hdcp_shim *shim = hdcp->shim;
1700 	int ret, streams_size_delta, i;
1701 
1702 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1703 		return -ERANGE;
1704 
1705 	/* Prepare RepeaterAuth_Stream_Manage msg */
1706 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1707 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1708 
1709 	msgs.stream_manage.k = cpu_to_be16(data->k);
1710 
1711 	for (i = 0; i < data->k; i++) {
1712 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1713 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1714 	}
1715 
1716 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1717 				sizeof(struct hdcp2_streamid_type);
1718 	/* Send it to Repeater */
1719 	ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1720 				  sizeof(msgs.stream_manage) - streams_size_delta);
1721 	if (ret < 0)
1722 		goto out;
1723 
1724 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1725 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1726 	if (ret < 0)
1727 		goto out;
1728 
1729 	data->seq_num_m = hdcp->seq_num_m;
1730 
1731 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1732 
1733 out:
1734 	hdcp->seq_num_m++;
1735 
1736 	return ret;
1737 }
1738 
1739 static
hdcp2_authenticate_repeater_topology(struct intel_connector * connector)1740 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1741 {
1742 	struct intel_display *display = to_intel_display(connector);
1743 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1744 	struct intel_hdcp *hdcp = &connector->hdcp;
1745 	union {
1746 		struct hdcp2_rep_send_receiverid_list recvid_list;
1747 		struct hdcp2_rep_send_ack rep_ack;
1748 	} msgs;
1749 	const struct intel_hdcp_shim *shim = hdcp->shim;
1750 	u32 seq_num_v, device_cnt;
1751 	u8 *rx_info;
1752 	int ret;
1753 
1754 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1755 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1756 	if (ret < 0)
1757 		return ret;
1758 
1759 	rx_info = msgs.recvid_list.rx_info;
1760 
1761 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1762 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1763 		drm_dbg_kms(display->drm, "Topology Max Size Exceeded\n");
1764 		return -EINVAL;
1765 	}
1766 
1767 	/*
1768 	 * MST topology is not Type 1 capable if it contains a downstream
1769 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1770 	 */
1771 	dig_port->hdcp_mst_type1_capable =
1772 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1773 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1774 
1775 	if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) {
1776 		drm_dbg_kms(display->drm,
1777 			    "HDCP1.x or 2.0 Legacy Device Downstream\n");
1778 		return -EINVAL;
1779 	}
1780 
1781 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1782 	seq_num_v =
1783 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1784 
1785 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1786 		drm_dbg_kms(display->drm,
1787 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1788 		return -EINVAL;
1789 	}
1790 
1791 	if (seq_num_v < hdcp->seq_num_v) {
1792 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1793 		drm_dbg_kms(display->drm, "Seq_num_v roll over.\n");
1794 		return -EINVAL;
1795 	}
1796 
1797 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1798 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1799 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1800 					msgs.recvid_list.receiver_ids,
1801 					device_cnt) > 0) {
1802 		drm_err(display->drm, "Revoked receiver ID(s) is in list\n");
1803 		return -EPERM;
1804 	}
1805 
1806 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1807 						    &msgs.recvid_list,
1808 						    &msgs.rep_ack);
1809 	if (ret < 0)
1810 		return ret;
1811 
1812 	hdcp->seq_num_v = seq_num_v;
1813 	ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1814 				  sizeof(msgs.rep_ack));
1815 	if (ret < 0)
1816 		return ret;
1817 
1818 	return 0;
1819 }
1820 
hdcp2_authenticate_sink(struct intel_connector * connector)1821 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1822 {
1823 	struct intel_display *display = to_intel_display(connector);
1824 	struct intel_hdcp *hdcp = &connector->hdcp;
1825 	const struct intel_hdcp_shim *shim = hdcp->shim;
1826 	int ret;
1827 
1828 	ret = hdcp2_authentication_key_exchange(connector);
1829 	if (ret < 0) {
1830 		drm_dbg_kms(display->drm, "AKE Failed. Err : %d\n", ret);
1831 		return ret;
1832 	}
1833 
1834 	ret = hdcp2_locality_check(connector);
1835 	if (ret < 0) {
1836 		drm_dbg_kms(display->drm,
1837 			    "Locality Check failed. Err : %d\n", ret);
1838 		return ret;
1839 	}
1840 
1841 	ret = hdcp2_session_key_exchange(connector);
1842 	if (ret < 0) {
1843 		drm_dbg_kms(display->drm, "SKE Failed. Err : %d\n", ret);
1844 		return ret;
1845 	}
1846 
1847 	if (shim->config_stream_type) {
1848 		ret = shim->config_stream_type(connector,
1849 					       hdcp->is_repeater,
1850 					       hdcp->content_type);
1851 		if (ret < 0)
1852 			return ret;
1853 	}
1854 
1855 	if (hdcp->is_repeater) {
1856 		ret = hdcp2_authenticate_repeater_topology(connector);
1857 		if (ret < 0) {
1858 			drm_dbg_kms(display->drm,
1859 				    "Repeater Auth Failed. Err: %d\n", ret);
1860 			return ret;
1861 		}
1862 	}
1863 
1864 	return ret;
1865 }
1866 
hdcp2_enable_stream_encryption(struct intel_connector * connector)1867 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1868 {
1869 	struct intel_display *display = to_intel_display(connector);
1870 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1871 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1872 	struct intel_hdcp *hdcp = &connector->hdcp;
1873 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1874 	enum port port = dig_port->base.port;
1875 	int ret = 0;
1876 
1877 	if (!(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1878 			    LINK_ENCRYPTION_STATUS)) {
1879 		drm_err(display->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1880 			connector->base.base.id, connector->base.name);
1881 		ret = -EPERM;
1882 		goto link_recover;
1883 	}
1884 
1885 	if (hdcp->shim->stream_2_2_encryption) {
1886 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1887 		if (ret) {
1888 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1889 				connector->base.base.id, connector->base.name);
1890 			return ret;
1891 		}
1892 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1893 			    transcoder_name(hdcp->stream_transcoder));
1894 	}
1895 
1896 	return 0;
1897 
1898 link_recover:
1899 	if (hdcp2_deauthenticate_port(connector) < 0)
1900 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
1901 
1902 	dig_port->hdcp_auth_status = false;
1903 	data->k = 0;
1904 
1905 	return ret;
1906 }
1907 
hdcp2_enable_encryption(struct intel_connector * connector)1908 static int hdcp2_enable_encryption(struct intel_connector *connector)
1909 {
1910 	struct intel_display *display = to_intel_display(connector);
1911 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1912 	struct intel_hdcp *hdcp = &connector->hdcp;
1913 	enum port port = dig_port->base.port;
1914 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1915 	int ret;
1916 
1917 	drm_WARN_ON(display->drm,
1918 		    intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1919 		    LINK_ENCRYPTION_STATUS);
1920 	if (hdcp->shim->toggle_signalling) {
1921 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1922 						    true);
1923 		if (ret) {
1924 			drm_err(display->drm,
1925 				"Failed to enable HDCP signalling. %d\n",
1926 				ret);
1927 			return ret;
1928 		}
1929 	}
1930 
1931 	if (intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1932 	    LINK_AUTH_STATUS)
1933 		/* Link is Authenticated. Now set for Encryption */
1934 		intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1935 			     0, CTL_LINK_ENCRYPTION_REQ);
1936 
1937 	ret = intel_de_wait_for_set(display,
1938 				    HDCP2_STATUS(display, cpu_transcoder,
1939 						 port),
1940 				    LINK_ENCRYPTION_STATUS,
1941 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1942 	dig_port->hdcp_auth_status = true;
1943 
1944 	return ret;
1945 }
1946 
hdcp2_disable_encryption(struct intel_connector * connector)1947 static int hdcp2_disable_encryption(struct intel_connector *connector)
1948 {
1949 	struct intel_display *display = to_intel_display(connector);
1950 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1951 	struct intel_hdcp *hdcp = &connector->hdcp;
1952 	enum port port = dig_port->base.port;
1953 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1954 	int ret;
1955 
1956 	drm_WARN_ON(display->drm,
1957 		    !(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1958 				    LINK_ENCRYPTION_STATUS));
1959 
1960 	intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1961 		     CTL_LINK_ENCRYPTION_REQ, 0);
1962 
1963 	ret = intel_de_wait_for_clear(display,
1964 				      HDCP2_STATUS(display, cpu_transcoder,
1965 						   port),
1966 				      LINK_ENCRYPTION_STATUS,
1967 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1968 	if (ret == -ETIMEDOUT)
1969 		drm_dbg_kms(display->drm, "Disable Encryption Timedout");
1970 
1971 	if (hdcp->shim->toggle_signalling) {
1972 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1973 						    false);
1974 		if (ret) {
1975 			drm_err(display->drm,
1976 				"Failed to disable HDCP signalling. %d\n",
1977 				ret);
1978 			return ret;
1979 		}
1980 	}
1981 
1982 	return ret;
1983 }
1984 
1985 static int
hdcp2_propagate_stream_management_info(struct intel_connector * connector)1986 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1987 {
1988 	struct intel_display *display = to_intel_display(connector);
1989 	int i, tries = 3, ret;
1990 
1991 	if (!connector->hdcp.is_repeater)
1992 		return 0;
1993 
1994 	for (i = 0; i < tries; i++) {
1995 		ret = _hdcp2_propagate_stream_management_info(connector);
1996 		if (!ret)
1997 			break;
1998 
1999 		/* Lets restart the auth incase of seq_num_m roll over */
2000 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
2001 			drm_dbg_kms(display->drm,
2002 				    "seq_num_m roll over.(%d)\n", ret);
2003 			break;
2004 		}
2005 
2006 		drm_dbg_kms(display->drm,
2007 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
2008 			    i + 1, tries, ret);
2009 	}
2010 
2011 	return ret;
2012 }
2013 
hdcp2_authenticate_and_encrypt(struct intel_atomic_state * state,struct intel_connector * connector)2014 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
2015 					  struct intel_connector *connector)
2016 {
2017 	struct intel_display *display = to_intel_display(connector);
2018 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2019 	int ret = 0, i, tries = 3;
2020 
2021 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
2022 		ret = hdcp2_authenticate_sink(connector);
2023 		if (!ret) {
2024 			ret = intel_hdcp_prepare_streams(state, connector);
2025 			if (ret) {
2026 				drm_dbg_kms(display->drm,
2027 					    "Prepare stream failed.(%d)\n",
2028 					    ret);
2029 				break;
2030 			}
2031 
2032 			ret = hdcp2_propagate_stream_management_info(connector);
2033 			if (ret) {
2034 				drm_dbg_kms(display->drm,
2035 					    "Stream management failed.(%d)\n",
2036 					    ret);
2037 				break;
2038 			}
2039 
2040 			ret = hdcp2_authenticate_port(connector);
2041 			if (!ret)
2042 				break;
2043 			drm_dbg_kms(display->drm, "HDCP2 port auth failed.(%d)\n",
2044 				    ret);
2045 		}
2046 
2047 		/* Clearing the mei hdcp session */
2048 		drm_dbg_kms(display->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
2049 			    i + 1, tries, ret);
2050 		if (hdcp2_deauthenticate_port(connector) < 0)
2051 			drm_dbg_kms(display->drm, "Port deauth failed.\n");
2052 	}
2053 
2054 	if (!ret && !dig_port->hdcp_auth_status) {
2055 		/*
2056 		 * Ensuring the required 200mSec min time interval between
2057 		 * Session Key Exchange and encryption.
2058 		 */
2059 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
2060 		ret = hdcp2_enable_encryption(connector);
2061 		if (ret < 0) {
2062 			drm_dbg_kms(display->drm,
2063 				    "Encryption Enable Failed.(%d)\n", ret);
2064 			if (hdcp2_deauthenticate_port(connector) < 0)
2065 				drm_dbg_kms(display->drm, "Port deauth failed.\n");
2066 		}
2067 	}
2068 
2069 	if (!ret)
2070 		ret = hdcp2_enable_stream_encryption(connector);
2071 
2072 	return ret;
2073 }
2074 
_intel_hdcp2_enable(struct intel_atomic_state * state,struct intel_connector * connector)2075 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
2076 			       struct intel_connector *connector)
2077 {
2078 	struct intel_display *display = to_intel_display(connector);
2079 	struct intel_hdcp *hdcp = &connector->hdcp;
2080 	int ret;
2081 
2082 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2083 		    connector->base.base.id, connector->base.name,
2084 		    hdcp->content_type);
2085 
2086 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, false);
2087 
2088 	ret = hdcp2_authenticate_and_encrypt(state, connector);
2089 	if (ret) {
2090 		drm_dbg_kms(display->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2091 			    hdcp->content_type, ret);
2092 		return ret;
2093 	}
2094 
2095 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2096 		    connector->base.base.id, connector->base.name,
2097 		    hdcp->content_type);
2098 
2099 	hdcp->hdcp2_encrypted = true;
2100 	return 0;
2101 }
2102 
2103 static int
_intel_hdcp2_disable(struct intel_connector * connector,bool hdcp2_link_recovery)2104 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2105 {
2106 	struct intel_display *display = to_intel_display(connector);
2107 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2108 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2109 	struct intel_hdcp *hdcp = &connector->hdcp;
2110 	int ret;
2111 
2112 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2113 		    connector->base.base.id, connector->base.name);
2114 
2115 	if (hdcp->shim->stream_2_2_encryption) {
2116 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2117 		if (ret) {
2118 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2119 				connector->base.base.id, connector->base.name);
2120 			return ret;
2121 		}
2122 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2123 			    transcoder_name(hdcp->stream_transcoder));
2124 
2125 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2126 			return 0;
2127 	}
2128 
2129 	ret = hdcp2_disable_encryption(connector);
2130 
2131 	if (hdcp2_deauthenticate_port(connector) < 0)
2132 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
2133 
2134 	connector->hdcp.hdcp2_encrypted = false;
2135 	dig_port->hdcp_auth_status = false;
2136 	data->k = 0;
2137 
2138 	return ret;
2139 }
2140 
2141 /* Implements the Link Integrity Check for HDCP2.2 */
intel_hdcp2_check_link(struct intel_connector * connector)2142 static int intel_hdcp2_check_link(struct intel_connector *connector)
2143 {
2144 	struct intel_display *display = to_intel_display(connector);
2145 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2146 	struct intel_hdcp *hdcp = &connector->hdcp;
2147 	enum port port = dig_port->base.port;
2148 	enum transcoder cpu_transcoder;
2149 	int ret = 0;
2150 
2151 	mutex_lock(&hdcp->mutex);
2152 	mutex_lock(&dig_port->hdcp_mutex);
2153 	cpu_transcoder = hdcp->cpu_transcoder;
2154 
2155 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2156 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2157 	    !hdcp->hdcp2_encrypted) {
2158 		ret = -EINVAL;
2159 		goto out;
2160 	}
2161 
2162 	if (drm_WARN_ON(display->drm,
2163 			!intel_hdcp2_in_use(display, cpu_transcoder, port))) {
2164 		drm_err(display->drm,
2165 			"HDCP2.2 link stopped the encryption, %x\n",
2166 			intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)));
2167 		ret = -ENXIO;
2168 		_intel_hdcp2_disable(connector, true);
2169 		intel_hdcp_update_value(connector,
2170 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2171 					true);
2172 		goto out;
2173 	}
2174 
2175 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2176 	if (ret == HDCP_LINK_PROTECTED) {
2177 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2178 			intel_hdcp_update_value(connector,
2179 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2180 					true);
2181 		}
2182 		goto out;
2183 	}
2184 
2185 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2186 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2187 			goto out;
2188 
2189 		drm_dbg_kms(display->drm,
2190 			    "HDCP2.2 Downstream topology change\n");
2191 
2192 		ret = hdcp2_authenticate_repeater_topology(connector);
2193 		if (!ret) {
2194 			intel_hdcp_update_value(connector,
2195 						DRM_MODE_CONTENT_PROTECTION_ENABLED,
2196 						true);
2197 			goto out;
2198 		}
2199 
2200 		drm_dbg_kms(display->drm,
2201 			    "[CONNECTOR:%d:%s] Repeater topology auth failed.(%d)\n",
2202 			    connector->base.base.id, connector->base.name,
2203 			    ret);
2204 	} else {
2205 		drm_dbg_kms(display->drm,
2206 			    "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2207 			    connector->base.base.id, connector->base.name);
2208 	}
2209 
2210 	ret = _intel_hdcp2_disable(connector, true);
2211 	if (ret) {
2212 		drm_err(display->drm,
2213 			"[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2214 			connector->base.base.id, connector->base.name, ret);
2215 		intel_hdcp_update_value(connector,
2216 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2217 		goto out;
2218 	}
2219 
2220 	intel_hdcp_update_value(connector,
2221 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2222 out:
2223 	mutex_unlock(&dig_port->hdcp_mutex);
2224 	mutex_unlock(&hdcp->mutex);
2225 	return ret;
2226 }
2227 
intel_hdcp_check_work(struct work_struct * work)2228 static void intel_hdcp_check_work(struct work_struct *work)
2229 {
2230 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2231 					       struct intel_hdcp,
2232 					       check_work);
2233 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2234 	struct intel_display *display = to_intel_display(connector);
2235 	struct drm_i915_private *i915 = to_i915(display->drm);
2236 
2237 	if (drm_connector_is_unregistered(&connector->base))
2238 		return;
2239 
2240 	if (!intel_hdcp2_check_link(connector))
2241 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2242 				   DRM_HDCP2_CHECK_PERIOD_MS);
2243 	else if (!intel_hdcp_check_link(connector))
2244 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2245 				   DRM_HDCP_CHECK_PERIOD_MS);
2246 }
2247 
i915_hdcp_component_bind(struct device * drv_kdev,struct device * mei_kdev,void * data)2248 static int i915_hdcp_component_bind(struct device *drv_kdev,
2249 				    struct device *mei_kdev, void *data)
2250 {
2251 	struct intel_display *display = to_intel_display(drv_kdev);
2252 
2253 	drm_dbg(display->drm, "I915 HDCP comp bind\n");
2254 	mutex_lock(&display->hdcp.hdcp_mutex);
2255 	display->hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2256 	display->hdcp.arbiter->hdcp_dev = mei_kdev;
2257 	mutex_unlock(&display->hdcp.hdcp_mutex);
2258 
2259 	return 0;
2260 }
2261 
i915_hdcp_component_unbind(struct device * drv_kdev,struct device * mei_kdev,void * data)2262 static void i915_hdcp_component_unbind(struct device *drv_kdev,
2263 				       struct device *mei_kdev, void *data)
2264 {
2265 	struct intel_display *display = to_intel_display(drv_kdev);
2266 
2267 	drm_dbg(display->drm, "I915 HDCP comp unbind\n");
2268 	mutex_lock(&display->hdcp.hdcp_mutex);
2269 	display->hdcp.arbiter = NULL;
2270 	mutex_unlock(&display->hdcp.hdcp_mutex);
2271 }
2272 
2273 static const struct component_ops i915_hdcp_ops = {
2274 	.bind   = i915_hdcp_component_bind,
2275 	.unbind = i915_hdcp_component_unbind,
2276 };
2277 
intel_get_hdcp_ddi_index(enum port port)2278 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2279 {
2280 	switch (port) {
2281 	case PORT_A:
2282 		return HDCP_DDI_A;
2283 	case PORT_B ... PORT_F:
2284 		return (enum hdcp_ddi)port;
2285 	default:
2286 		return HDCP_DDI_INVALID_PORT;
2287 	}
2288 }
2289 
intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)2290 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2291 {
2292 	switch (cpu_transcoder) {
2293 	case TRANSCODER_A ... TRANSCODER_D:
2294 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2295 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2296 		return HDCP_INVALID_TRANSCODER;
2297 	}
2298 }
2299 
initialize_hdcp_port_data(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2300 static int initialize_hdcp_port_data(struct intel_connector *connector,
2301 				     struct intel_digital_port *dig_port,
2302 				     const struct intel_hdcp_shim *shim)
2303 {
2304 	struct intel_display *display = to_intel_display(connector);
2305 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2306 	enum port port = dig_port->base.port;
2307 
2308 	if (DISPLAY_VER(display) < 12)
2309 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2310 	else
2311 		/*
2312 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2313 		 * with zero(INVALID PORT index).
2314 		 */
2315 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2316 
2317 	/*
2318 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2319 	 * is initialized to zero (invalid transcoder index). This will be
2320 	 * retained for <Gen12 forever.
2321 	 */
2322 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2323 
2324 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2325 	data->protocol = (u8)shim->protocol;
2326 
2327 	if (!data->streams)
2328 		data->streams = kcalloc(INTEL_NUM_PIPES(display),
2329 					sizeof(struct hdcp2_streamid_type),
2330 					GFP_KERNEL);
2331 	if (!data->streams) {
2332 		drm_err(display->drm, "Out of Memory\n");
2333 		return -ENOMEM;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
is_hdcp2_supported(struct intel_display * display)2339 static bool is_hdcp2_supported(struct intel_display *display)
2340 {
2341 	struct drm_i915_private *i915 = to_i915(display->drm);
2342 
2343 	if (intel_hdcp_gsc_cs_required(display))
2344 		return true;
2345 
2346 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2347 		return false;
2348 
2349 	return (DISPLAY_VER(display) >= 10 ||
2350 		IS_KABYLAKE(i915) ||
2351 		IS_COFFEELAKE(i915) ||
2352 		IS_COMETLAKE(i915));
2353 }
2354 
intel_hdcp_component_init(struct intel_display * display)2355 void intel_hdcp_component_init(struct intel_display *display)
2356 {
2357 	int ret;
2358 
2359 	if (!is_hdcp2_supported(display))
2360 		return;
2361 
2362 	mutex_lock(&display->hdcp.hdcp_mutex);
2363 	drm_WARN_ON(display->drm, display->hdcp.comp_added);
2364 
2365 	display->hdcp.comp_added = true;
2366 	mutex_unlock(&display->hdcp.hdcp_mutex);
2367 	if (intel_hdcp_gsc_cs_required(display))
2368 		ret = intel_hdcp_gsc_init(display);
2369 	else
2370 		ret = component_add_typed(display->drm->dev, &i915_hdcp_ops,
2371 					  I915_COMPONENT_HDCP);
2372 
2373 	if (ret < 0) {
2374 		drm_dbg_kms(display->drm, "Failed at fw component add(%d)\n",
2375 			    ret);
2376 		mutex_lock(&display->hdcp.hdcp_mutex);
2377 		display->hdcp.comp_added = false;
2378 		mutex_unlock(&display->hdcp.hdcp_mutex);
2379 		return;
2380 	}
2381 }
2382 
intel_hdcp2_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2383 static void intel_hdcp2_init(struct intel_connector *connector,
2384 			     struct intel_digital_port *dig_port,
2385 			     const struct intel_hdcp_shim *shim)
2386 {
2387 	struct intel_display *display = to_intel_display(connector);
2388 	struct intel_hdcp *hdcp = &connector->hdcp;
2389 	int ret;
2390 
2391 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2392 	if (ret) {
2393 		drm_dbg_kms(display->drm, "Mei hdcp data init failed\n");
2394 		return;
2395 	}
2396 
2397 	hdcp->hdcp2_supported = true;
2398 }
2399 
intel_hdcp_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2400 int intel_hdcp_init(struct intel_connector *connector,
2401 		    struct intel_digital_port *dig_port,
2402 		    const struct intel_hdcp_shim *shim)
2403 {
2404 	struct intel_display *display = to_intel_display(connector);
2405 	struct intel_hdcp *hdcp = &connector->hdcp;
2406 	int ret;
2407 
2408 	if (!shim)
2409 		return -EINVAL;
2410 
2411 	if (is_hdcp2_supported(display))
2412 		intel_hdcp2_init(connector, dig_port, shim);
2413 
2414 	ret = drm_connector_attach_content_protection_property(&connector->base,
2415 							       hdcp->hdcp2_supported);
2416 	if (ret) {
2417 		hdcp->hdcp2_supported = false;
2418 		kfree(dig_port->hdcp_port_data.streams);
2419 		return ret;
2420 	}
2421 
2422 	hdcp->shim = shim;
2423 	mutex_init(&hdcp->mutex);
2424 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2425 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2426 	init_waitqueue_head(&hdcp->cp_irq_queue);
2427 
2428 	return 0;
2429 }
2430 
_intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)2431 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2432 			      struct intel_encoder *encoder,
2433 			      const struct intel_crtc_state *pipe_config,
2434 			      const struct drm_connector_state *conn_state)
2435 {
2436 	struct intel_display *display = to_intel_display(encoder);
2437 	struct drm_i915_private *i915 = to_i915(display->drm);
2438 	struct intel_connector *connector =
2439 		to_intel_connector(conn_state->connector);
2440 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2441 	struct intel_hdcp *hdcp = &connector->hdcp;
2442 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2443 	int ret = -EINVAL;
2444 
2445 	if (!hdcp->shim)
2446 		return -ENOENT;
2447 
2448 	if (!connector->encoder) {
2449 		drm_err(display->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2450 			connector->base.base.id, connector->base.name);
2451 		return -ENODEV;
2452 	}
2453 
2454 	mutex_lock(&hdcp->mutex);
2455 	mutex_lock(&dig_port->hdcp_mutex);
2456 	drm_WARN_ON(display->drm,
2457 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2458 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2459 
2460 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2461 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2462 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2463 	} else {
2464 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2465 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2466 	}
2467 
2468 	if (DISPLAY_VER(display) >= 12)
2469 		dig_port->hdcp_port_data.hdcp_transcoder =
2470 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2471 
2472 	/*
2473 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2474 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2475 	 */
2476 	if (intel_hdcp2_get_capability(connector)) {
2477 		ret = _intel_hdcp2_enable(state, connector);
2478 		if (!ret)
2479 			check_link_interval =
2480 				DRM_HDCP2_CHECK_PERIOD_MS;
2481 	}
2482 
2483 	/*
2484 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2485 	 * be attempted.
2486 	 */
2487 	if (ret && intel_hdcp_get_capability(connector) &&
2488 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2489 		ret = intel_hdcp1_enable(connector);
2490 	}
2491 
2492 	if (!ret) {
2493 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2494 				   check_link_interval);
2495 		intel_hdcp_update_value(connector,
2496 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2497 					true);
2498 	}
2499 
2500 	mutex_unlock(&dig_port->hdcp_mutex);
2501 	mutex_unlock(&hdcp->mutex);
2502 	return ret;
2503 }
2504 
intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2505 void intel_hdcp_enable(struct intel_atomic_state *state,
2506 		       struct intel_encoder *encoder,
2507 		       const struct intel_crtc_state *crtc_state,
2508 		       const struct drm_connector_state *conn_state)
2509 {
2510 	struct intel_connector *connector =
2511 		to_intel_connector(conn_state->connector);
2512 	struct intel_hdcp *hdcp = &connector->hdcp;
2513 
2514 	/*
2515 	 * Enable hdcp if it's desired or if userspace is enabled and
2516 	 * driver set its state to undesired
2517 	 */
2518 	if (conn_state->content_protection ==
2519 	    DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2520 	    (conn_state->content_protection ==
2521 	    DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2522 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2523 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2524 }
2525 
intel_hdcp_disable(struct intel_connector * connector)2526 int intel_hdcp_disable(struct intel_connector *connector)
2527 {
2528 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2529 	struct intel_hdcp *hdcp = &connector->hdcp;
2530 	int ret = 0;
2531 
2532 	if (!hdcp->shim)
2533 		return -ENOENT;
2534 
2535 	mutex_lock(&hdcp->mutex);
2536 	mutex_lock(&dig_port->hdcp_mutex);
2537 
2538 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2539 		goto out;
2540 
2541 	intel_hdcp_update_value(connector,
2542 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2543 	if (hdcp->hdcp2_encrypted)
2544 		ret = _intel_hdcp2_disable(connector, false);
2545 	else if (hdcp->hdcp_encrypted)
2546 		ret = _intel_hdcp_disable(connector);
2547 
2548 out:
2549 	mutex_unlock(&dig_port->hdcp_mutex);
2550 	mutex_unlock(&hdcp->mutex);
2551 	cancel_delayed_work_sync(&hdcp->check_work);
2552 	return ret;
2553 }
2554 
intel_hdcp_update_pipe(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2555 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2556 			    struct intel_encoder *encoder,
2557 			    const struct intel_crtc_state *crtc_state,
2558 			    const struct drm_connector_state *conn_state)
2559 {
2560 	struct intel_connector *connector =
2561 				to_intel_connector(conn_state->connector);
2562 	struct intel_hdcp *hdcp = &connector->hdcp;
2563 	bool content_protection_type_changed, desired_and_not_enabled = false;
2564 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2565 
2566 	if (!connector->hdcp.shim)
2567 		return;
2568 
2569 	content_protection_type_changed =
2570 		(conn_state->hdcp_content_type != hdcp->content_type &&
2571 		 conn_state->content_protection !=
2572 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2573 
2574 	/*
2575 	 * During the HDCP encryption session if Type change is requested,
2576 	 * disable the HDCP and reenable it with new TYPE value.
2577 	 */
2578 	if (conn_state->content_protection ==
2579 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2580 	    content_protection_type_changed)
2581 		intel_hdcp_disable(connector);
2582 
2583 	/*
2584 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2585 	 * change procedure.
2586 	 */
2587 	if (content_protection_type_changed) {
2588 		mutex_lock(&hdcp->mutex);
2589 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2590 		drm_connector_get(&connector->base);
2591 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2592 			drm_connector_put(&connector->base);
2593 		mutex_unlock(&hdcp->mutex);
2594 	}
2595 
2596 	if (conn_state->content_protection ==
2597 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2598 		mutex_lock(&hdcp->mutex);
2599 		/* Avoid enabling hdcp, if it already ENABLED */
2600 		desired_and_not_enabled =
2601 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2602 		mutex_unlock(&hdcp->mutex);
2603 		/*
2604 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2605 		 * prop_work to update correct CP property to user space.
2606 		 */
2607 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2608 			drm_connector_get(&connector->base);
2609 			if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2610 				drm_connector_put(&connector->base);
2611 
2612 		}
2613 	}
2614 
2615 	if (desired_and_not_enabled || content_protection_type_changed)
2616 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2617 }
2618 
intel_hdcp_component_fini(struct intel_display * display)2619 void intel_hdcp_component_fini(struct intel_display *display)
2620 {
2621 	mutex_lock(&display->hdcp.hdcp_mutex);
2622 	if (!display->hdcp.comp_added) {
2623 		mutex_unlock(&display->hdcp.hdcp_mutex);
2624 		return;
2625 	}
2626 
2627 	display->hdcp.comp_added = false;
2628 	mutex_unlock(&display->hdcp.hdcp_mutex);
2629 
2630 	if (intel_hdcp_gsc_cs_required(display))
2631 		intel_hdcp_gsc_fini(display);
2632 	else
2633 		component_del(display->drm->dev, &i915_hdcp_ops);
2634 }
2635 
intel_hdcp_cleanup(struct intel_connector * connector)2636 void intel_hdcp_cleanup(struct intel_connector *connector)
2637 {
2638 	struct intel_hdcp *hdcp = &connector->hdcp;
2639 
2640 	if (!hdcp->shim)
2641 		return;
2642 
2643 	/*
2644 	 * If the connector is registered, it's possible userspace could kick
2645 	 * off another HDCP enable, which would re-spawn the workers.
2646 	 */
2647 	drm_WARN_ON(connector->base.dev,
2648 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2649 
2650 	/*
2651 	 * Now that the connector is not registered, check_work won't be run,
2652 	 * but cancel any outstanding instances of it
2653 	 */
2654 	cancel_delayed_work_sync(&hdcp->check_work);
2655 
2656 	/*
2657 	 * We don't cancel prop_work in the same way as check_work since it
2658 	 * requires connection_mutex which could be held while calling this
2659 	 * function. Instead, we rely on the connector references grabbed before
2660 	 * scheduling prop_work to ensure the connector is alive when prop_work
2661 	 * is run. So if we're in the destroy path (which is where this
2662 	 * function should be called), we're "guaranteed" that prop_work is not
2663 	 * active (tl;dr This Should Never Happen).
2664 	 */
2665 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2666 
2667 	mutex_lock(&hdcp->mutex);
2668 	hdcp->shim = NULL;
2669 	mutex_unlock(&hdcp->mutex);
2670 }
2671 
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)2672 void intel_hdcp_atomic_check(struct drm_connector *connector,
2673 			     struct drm_connector_state *old_state,
2674 			     struct drm_connector_state *new_state)
2675 {
2676 	u64 old_cp = old_state->content_protection;
2677 	u64 new_cp = new_state->content_protection;
2678 	struct drm_crtc_state *crtc_state;
2679 
2680 	if (!new_state->crtc) {
2681 		/*
2682 		 * If the connector is being disabled with CP enabled, mark it
2683 		 * desired so it's re-enabled when the connector is brought back
2684 		 */
2685 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2686 			new_state->content_protection =
2687 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2688 		return;
2689 	}
2690 
2691 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2692 						   new_state->crtc);
2693 	/*
2694 	 * Fix the HDCP uapi content protection state in case of modeset.
2695 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2696 	 * need to be sent if there is transition from ENABLED->DESIRED.
2697 	 */
2698 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2699 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2700 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2701 		new_state->content_protection =
2702 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2703 
2704 	/*
2705 	 * Nothing to do if the state didn't change, or HDCP was activated since
2706 	 * the last commit. And also no change in hdcp content type.
2707 	 */
2708 	if (old_cp == new_cp ||
2709 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2710 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2711 		if (old_state->hdcp_content_type ==
2712 				new_state->hdcp_content_type)
2713 			return;
2714 	}
2715 
2716 	crtc_state->mode_changed = true;
2717 }
2718 
2719 /* Handles the CP_IRQ raised from the DP HDCP sink */
intel_hdcp_handle_cp_irq(struct intel_connector * connector)2720 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2721 {
2722 	struct intel_hdcp *hdcp = &connector->hdcp;
2723 	struct intel_display *display = to_intel_display(connector);
2724 	struct drm_i915_private *i915 = to_i915(display->drm);
2725 
2726 	if (!hdcp->shim)
2727 		return;
2728 
2729 	atomic_inc(&connector->hdcp.cp_irq_count);
2730 	wake_up_all(&connector->hdcp.cp_irq_queue);
2731 
2732 	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2733 }
2734