1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
28
29 /*
30 * Portions of this source code were derived from Berkeley 4.3 BSD
31 * under license from the Regents of the University of California.
32 */
33
34 /*
35 * VM - generic vnode mapping segment.
36 *
37 * The segmap driver is used only by the kernel to get faster (than seg_vn)
38 * mappings [lower routine overhead; more persistent cache] to random
39 * vnode/offsets. Note than the kernel may (and does) use seg_vn as well.
40 */
41
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/sysmacros.h>
46 #include <sys/buf.h>
47 #include <sys/systm.h>
48 #include <sys/vnode.h>
49 #include <sys/mman.h>
50 #include <sys/errno.h>
51 #include <sys/cred.h>
52 #include <sys/kmem.h>
53 #include <sys/vtrace.h>
54 #include <sys/cmn_err.h>
55 #include <sys/debug.h>
56 #include <sys/thread.h>
57 #include <sys/dumphdr.h>
58 #include <sys/bitmap.h>
59 #include <sys/lgrp.h>
60
61 #include <vm/seg_kmem.h>
62 #include <vm/hat.h>
63 #include <vm/as.h>
64 #include <vm/seg.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/seg_map.h>
67 #include <vm/page.h>
68 #include <vm/pvn.h>
69 #include <vm/rm.h>
70
71 /*
72 * Private seg op routines.
73 */
74 static void segmap_free(struct seg *seg);
75 faultcode_t segmap_fault(struct hat *hat, struct seg *seg, caddr_t addr,
76 size_t len, enum fault_type type, enum seg_rw rw);
77 static faultcode_t segmap_faulta(struct seg *seg, caddr_t addr);
78 static int segmap_checkprot(struct seg *seg, caddr_t addr, size_t len,
79 uint_t prot);
80 static int segmap_kluster(struct seg *seg, caddr_t addr, ssize_t);
81 static int segmap_getprot(struct seg *seg, caddr_t addr, size_t len,
82 uint_t *protv);
83 static u_offset_t segmap_getoffset(struct seg *seg, caddr_t addr);
84 static int segmap_gettype(struct seg *seg, caddr_t addr);
85 static int segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
86 static void segmap_dump(struct seg *seg);
87 static int segmap_pagelock(struct seg *seg, caddr_t addr, size_t len,
88 struct page ***ppp, enum lock_type type,
89 enum seg_rw rw);
90 static void segmap_badop(void);
91 static int segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
92 static lgrp_mem_policy_info_t *segmap_getpolicy(struct seg *seg,
93 caddr_t addr);
94 static int segmap_capable(struct seg *seg, segcapability_t capability);
95
96 /* segkpm support */
97 static caddr_t segmap_pagecreate_kpm(struct seg *, vnode_t *, u_offset_t,
98 struct smap *, enum seg_rw);
99 struct smap *get_smap_kpm(caddr_t, page_t **);
100
101 #define SEGMAP_BADOP(t) (t(*)())segmap_badop
102
103 static struct seg_ops segmap_ops = {
104 SEGMAP_BADOP(int), /* dup */
105 SEGMAP_BADOP(int), /* unmap */
106 segmap_free,
107 segmap_fault,
108 segmap_faulta,
109 SEGMAP_BADOP(int), /* setprot */
110 segmap_checkprot,
111 segmap_kluster,
112 SEGMAP_BADOP(size_t), /* swapout */
113 SEGMAP_BADOP(int), /* sync */
114 SEGMAP_BADOP(size_t), /* incore */
115 SEGMAP_BADOP(int), /* lockop */
116 segmap_getprot,
117 segmap_getoffset,
118 segmap_gettype,
119 segmap_getvp,
120 SEGMAP_BADOP(int), /* advise */
121 segmap_dump,
122 segmap_pagelock, /* pagelock */
123 SEGMAP_BADOP(int), /* setpgsz */
124 segmap_getmemid, /* getmemid */
125 segmap_getpolicy, /* getpolicy */
126 segmap_capable, /* capable */
127 seg_inherit_notsup /* inherit */
128 };
129
130 /*
131 * Private segmap routines.
132 */
133 static void segmap_unlock(struct hat *hat, struct seg *seg, caddr_t addr,
134 size_t len, enum seg_rw rw, struct smap *smp);
135 static void segmap_smapadd(struct smap *smp);
136 static struct smap *segmap_hashin(struct smap *smp, struct vnode *vp,
137 u_offset_t off, int hashid);
138 static void segmap_hashout(struct smap *smp);
139
140
141 /*
142 * Statistics for segmap operations.
143 *
144 * No explicit locking to protect these stats.
145 */
146 struct segmapcnt segmapcnt = {
147 { "fault", KSTAT_DATA_ULONG },
148 { "faulta", KSTAT_DATA_ULONG },
149 { "getmap", KSTAT_DATA_ULONG },
150 { "get_use", KSTAT_DATA_ULONG },
151 { "get_reclaim", KSTAT_DATA_ULONG },
152 { "get_reuse", KSTAT_DATA_ULONG },
153 { "get_unused", KSTAT_DATA_ULONG },
154 { "get_nofree", KSTAT_DATA_ULONG },
155 { "rel_async", KSTAT_DATA_ULONG },
156 { "rel_write", KSTAT_DATA_ULONG },
157 { "rel_free", KSTAT_DATA_ULONG },
158 { "rel_abort", KSTAT_DATA_ULONG },
159 { "rel_dontneed", KSTAT_DATA_ULONG },
160 { "release", KSTAT_DATA_ULONG },
161 { "pagecreate", KSTAT_DATA_ULONG },
162 { "free_notfree", KSTAT_DATA_ULONG },
163 { "free_dirty", KSTAT_DATA_ULONG },
164 { "free", KSTAT_DATA_ULONG },
165 { "stolen", KSTAT_DATA_ULONG },
166 { "get_nomtx", KSTAT_DATA_ULONG }
167 };
168
169 kstat_named_t *segmapcnt_ptr = (kstat_named_t *)&segmapcnt;
170 uint_t segmapcnt_ndata = sizeof (segmapcnt) / sizeof (kstat_named_t);
171
172 /*
173 * Return number of map pages in segment.
174 */
175 #define MAP_PAGES(seg) ((seg)->s_size >> MAXBSHIFT)
176
177 /*
178 * Translate addr into smap number within segment.
179 */
180 #define MAP_PAGE(seg, addr) (((addr) - (seg)->s_base) >> MAXBSHIFT)
181
182 /*
183 * Translate addr in seg into struct smap pointer.
184 */
185 #define GET_SMAP(seg, addr) \
186 &(((struct segmap_data *)((seg)->s_data))->smd_sm[MAP_PAGE(seg, addr)])
187
188 /*
189 * Bit in map (16 bit bitmap).
190 */
191 #define SMAP_BIT_MASK(bitindex) (1 << ((bitindex) & 0xf))
192
193 static int smd_colormsk = 0;
194 static int smd_ncolor = 0;
195 static int smd_nfree = 0;
196 static int smd_freemsk = 0;
197 #ifdef DEBUG
198 static int *colors_used;
199 #endif
200 static struct smap *smd_smap;
201 static struct smaphash *smd_hash;
202 #ifdef SEGMAP_HASHSTATS
203 static unsigned int *smd_hash_len;
204 #endif
205 static struct smfree *smd_free;
206 static ulong_t smd_hashmsk = 0;
207
208 #define SEGMAP_MAXCOLOR 2
209 #define SEGMAP_CACHE_PAD 64
210
211 union segmap_cpu {
212 struct {
213 uint32_t scpu_free_ndx[SEGMAP_MAXCOLOR];
214 struct smap *scpu_last_smap;
215 ulong_t scpu_getmap;
216 ulong_t scpu_release;
217 ulong_t scpu_get_reclaim;
218 ulong_t scpu_fault;
219 ulong_t scpu_pagecreate;
220 ulong_t scpu_get_reuse;
221 } scpu;
222 char scpu_pad[SEGMAP_CACHE_PAD];
223 };
224 static union segmap_cpu *smd_cpu;
225
226 /*
227 * There are three locks in seg_map:
228 * - per freelist mutexes
229 * - per hashchain mutexes
230 * - per smap mutexes
231 *
232 * The lock ordering is to get the smap mutex to lock down the slot
233 * first then the hash lock (for hash in/out (vp, off) list) or the
234 * freelist lock to put the slot back on the free list.
235 *
236 * The hash search is done by only holding the hashchain lock, when a wanted
237 * slot is found, we drop the hashchain lock then lock the slot so there
238 * is no overlapping of hashchain and smap locks. After the slot is
239 * locked, we verify again if the slot is still what we are looking
240 * for.
241 *
242 * Allocation of a free slot is done by holding the freelist lock,
243 * then locking the smap slot at the head of the freelist. This is
244 * in reversed lock order so mutex_tryenter() is used.
245 *
246 * The smap lock protects all fields in smap structure except for
247 * the link fields for hash/free lists which are protected by
248 * hashchain and freelist locks.
249 */
250
251 #define SHASHMTX(hashid) (&smd_hash[hashid].sh_mtx)
252
253 #define SMP2SMF(smp) (&smd_free[(smp - smd_smap) & smd_freemsk])
254 #define SMP2SMF_NDX(smp) (ushort_t)((smp - smd_smap) & smd_freemsk)
255
256 #define SMAPMTX(smp) (&smp->sm_mtx)
257
258 #define SMAP_HASHFUNC(vp, off, hashid) \
259 { \
260 hashid = ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
261 ((off) >> MAXBSHIFT)) & smd_hashmsk); \
262 }
263
264 /*
265 * The most frequently updated kstat counters are kept in the
266 * per cpu array to avoid hot cache blocks. The update function
267 * sums the cpu local counters to update the global counters.
268 */
269
270 /* ARGSUSED */
271 int
segmap_kstat_update(kstat_t * ksp,int rw)272 segmap_kstat_update(kstat_t *ksp, int rw)
273 {
274 int i;
275 ulong_t getmap, release, get_reclaim;
276 ulong_t fault, pagecreate, get_reuse;
277
278 if (rw == KSTAT_WRITE)
279 return (EACCES);
280 getmap = release = get_reclaim = (ulong_t)0;
281 fault = pagecreate = get_reuse = (ulong_t)0;
282 for (i = 0; i < max_ncpus; i++) {
283 getmap += smd_cpu[i].scpu.scpu_getmap;
284 release += smd_cpu[i].scpu.scpu_release;
285 get_reclaim += smd_cpu[i].scpu.scpu_get_reclaim;
286 fault += smd_cpu[i].scpu.scpu_fault;
287 pagecreate += smd_cpu[i].scpu.scpu_pagecreate;
288 get_reuse += smd_cpu[i].scpu.scpu_get_reuse;
289 }
290 segmapcnt.smp_getmap.value.ul = getmap;
291 segmapcnt.smp_release.value.ul = release;
292 segmapcnt.smp_get_reclaim.value.ul = get_reclaim;
293 segmapcnt.smp_fault.value.ul = fault;
294 segmapcnt.smp_pagecreate.value.ul = pagecreate;
295 segmapcnt.smp_get_reuse.value.ul = get_reuse;
296 return (0);
297 }
298
299 int
segmap_create(struct seg * seg,void * argsp)300 segmap_create(struct seg *seg, void *argsp)
301 {
302 struct segmap_data *smd;
303 struct smap *smp;
304 struct smfree *sm;
305 struct segmap_crargs *a = (struct segmap_crargs *)argsp;
306 struct smaphash *shashp;
307 union segmap_cpu *scpu;
308 long i, npages;
309 size_t hashsz;
310 uint_t nfreelist;
311 extern void prefetch_smap_w(void *);
312 extern int max_ncpus;
313
314 ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
315
316 if (((uintptr_t)seg->s_base | seg->s_size) & MAXBOFFSET) {
317 panic("segkmap not MAXBSIZE aligned");
318 /*NOTREACHED*/
319 }
320
321 smd = kmem_zalloc(sizeof (struct segmap_data), KM_SLEEP);
322
323 seg->s_data = (void *)smd;
324 seg->s_ops = &segmap_ops;
325 smd->smd_prot = a->prot;
326
327 /*
328 * Scale the number of smap freelists to be
329 * proportional to max_ncpus * number of virtual colors.
330 * The caller can over-ride this scaling by providing
331 * a non-zero a->nfreelist argument.
332 */
333 nfreelist = a->nfreelist;
334 if (nfreelist == 0)
335 nfreelist = max_ncpus;
336 else if (nfreelist < 0 || nfreelist > 4 * max_ncpus) {
337 cmn_err(CE_WARN, "segmap_create: nfreelist out of range "
338 "%d, using %d", nfreelist, max_ncpus);
339 nfreelist = max_ncpus;
340 }
341 if (!ISP2(nfreelist)) {
342 /* round up nfreelist to the next power of two. */
343 nfreelist = 1 << (highbit(nfreelist));
344 }
345
346 /*
347 * Get the number of virtual colors - must be a power of 2.
348 */
349 if (a->shmsize)
350 smd_ncolor = a->shmsize >> MAXBSHIFT;
351 else
352 smd_ncolor = 1;
353 ASSERT((smd_ncolor & (smd_ncolor - 1)) == 0);
354 ASSERT(smd_ncolor <= SEGMAP_MAXCOLOR);
355 smd_colormsk = smd_ncolor - 1;
356 smd->smd_nfree = smd_nfree = smd_ncolor * nfreelist;
357 smd_freemsk = smd_nfree - 1;
358
359 /*
360 * Allocate and initialize the freelist headers.
361 * Note that sm_freeq[1] starts out as the release queue. This
362 * is known when the smap structures are initialized below.
363 */
364 smd_free = smd->smd_free =
365 kmem_zalloc(smd_nfree * sizeof (struct smfree), KM_SLEEP);
366 for (i = 0; i < smd_nfree; i++) {
367 sm = &smd->smd_free[i];
368 mutex_init(&sm->sm_freeq[0].smq_mtx, NULL, MUTEX_DEFAULT, NULL);
369 mutex_init(&sm->sm_freeq[1].smq_mtx, NULL, MUTEX_DEFAULT, NULL);
370 sm->sm_allocq = &sm->sm_freeq[0];
371 sm->sm_releq = &sm->sm_freeq[1];
372 }
373
374 /*
375 * Allocate and initialize the smap hash chain headers.
376 * Compute hash size rounding down to the next power of two.
377 */
378 npages = MAP_PAGES(seg);
379 smd->smd_npages = npages;
380 hashsz = npages / SMAP_HASHAVELEN;
381 hashsz = 1 << (highbit(hashsz)-1);
382 smd_hashmsk = hashsz - 1;
383 smd_hash = smd->smd_hash =
384 kmem_alloc(hashsz * sizeof (struct smaphash), KM_SLEEP);
385 #ifdef SEGMAP_HASHSTATS
386 smd_hash_len =
387 kmem_zalloc(hashsz * sizeof (unsigned int), KM_SLEEP);
388 #endif
389 for (i = 0, shashp = smd_hash; i < hashsz; i++, shashp++) {
390 shashp->sh_hash_list = NULL;
391 mutex_init(&shashp->sh_mtx, NULL, MUTEX_DEFAULT, NULL);
392 }
393
394 /*
395 * Allocate and initialize the smap structures.
396 * Link all slots onto the appropriate freelist.
397 * The smap array is large enough to affect boot time
398 * on large systems, so use memory prefetching and only
399 * go through the array 1 time. Inline a optimized version
400 * of segmap_smapadd to add structures to freelists with
401 * knowledge that no locks are needed here.
402 */
403 smd_smap = smd->smd_sm =
404 kmem_alloc(sizeof (struct smap) * npages, KM_SLEEP);
405
406 for (smp = &smd->smd_sm[MAP_PAGES(seg) - 1];
407 smp >= smd->smd_sm; smp--) {
408 struct smap *smpfreelist;
409 struct sm_freeq *releq;
410
411 prefetch_smap_w((char *)smp);
412
413 smp->sm_vp = NULL;
414 smp->sm_hash = NULL;
415 smp->sm_off = 0;
416 smp->sm_bitmap = 0;
417 smp->sm_refcnt = 0;
418 mutex_init(&smp->sm_mtx, NULL, MUTEX_DEFAULT, NULL);
419 smp->sm_free_ndx = SMP2SMF_NDX(smp);
420
421 sm = SMP2SMF(smp);
422 releq = sm->sm_releq;
423
424 smpfreelist = releq->smq_free;
425 if (smpfreelist == 0) {
426 releq->smq_free = smp->sm_next = smp->sm_prev = smp;
427 } else {
428 smp->sm_next = smpfreelist;
429 smp->sm_prev = smpfreelist->sm_prev;
430 smpfreelist->sm_prev = smp;
431 smp->sm_prev->sm_next = smp;
432 releq->smq_free = smp->sm_next;
433 }
434
435 /*
436 * sm_flag = 0 (no SM_QNDX_ZERO) implies smap on sm_freeq[1]
437 */
438 smp->sm_flags = 0;
439
440 #ifdef SEGKPM_SUPPORT
441 /*
442 * Due to the fragile prefetch loop no
443 * separate function is used here.
444 */
445 smp->sm_kpme_next = NULL;
446 smp->sm_kpme_prev = NULL;
447 smp->sm_kpme_page = NULL;
448 #endif
449 }
450
451 /*
452 * Allocate the per color indices that distribute allocation
453 * requests over the free lists. Each cpu will have a private
454 * rotor index to spread the allocations even across the available
455 * smap freelists. Init the scpu_last_smap field to the first
456 * smap element so there is no need to check for NULL.
457 */
458 smd_cpu =
459 kmem_zalloc(sizeof (union segmap_cpu) * max_ncpus, KM_SLEEP);
460 for (i = 0, scpu = smd_cpu; i < max_ncpus; i++, scpu++) {
461 int j;
462 for (j = 0; j < smd_ncolor; j++)
463 scpu->scpu.scpu_free_ndx[j] = j;
464 scpu->scpu.scpu_last_smap = smd_smap;
465 }
466
467 vpm_init();
468
469 #ifdef DEBUG
470 /*
471 * Keep track of which colors are used more often.
472 */
473 colors_used = kmem_zalloc(smd_nfree * sizeof (int), KM_SLEEP);
474 #endif /* DEBUG */
475
476 return (0);
477 }
478
479 static void
segmap_free(seg)480 segmap_free(seg)
481 struct seg *seg;
482 {
483 ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
484 }
485
486 /*
487 * Do a F_SOFTUNLOCK call over the range requested.
488 * The range must have already been F_SOFTLOCK'ed.
489 */
490 static void
segmap_unlock(struct hat * hat,struct seg * seg,caddr_t addr,size_t len,enum seg_rw rw,struct smap * smp)491 segmap_unlock(
492 struct hat *hat,
493 struct seg *seg,
494 caddr_t addr,
495 size_t len,
496 enum seg_rw rw,
497 struct smap *smp)
498 {
499 page_t *pp;
500 caddr_t adr;
501 u_offset_t off;
502 struct vnode *vp;
503 kmutex_t *smtx;
504
505 ASSERT(smp->sm_refcnt > 0);
506
507 #ifdef lint
508 seg = seg;
509 #endif
510
511 if (segmap_kpm && IS_KPM_ADDR(addr)) {
512
513 /*
514 * We're called only from segmap_fault and this was a
515 * NOP in case of a kpm based smap, so dangerous things
516 * must have happened in the meantime. Pages are prefaulted
517 * and locked in segmap_getmapflt and they will not be
518 * unlocked until segmap_release.
519 */
520 panic("segmap_unlock: called with kpm addr %p", (void *)addr);
521 /*NOTREACHED*/
522 }
523
524 vp = smp->sm_vp;
525 off = smp->sm_off + (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
526
527 hat_unlock(hat, addr, P2ROUNDUP(len, PAGESIZE));
528 for (adr = addr; adr < addr + len; adr += PAGESIZE, off += PAGESIZE) {
529 ushort_t bitmask;
530
531 /*
532 * Use page_find() instead of page_lookup() to
533 * find the page since we know that it has
534 * "shared" lock.
535 */
536 pp = page_find(vp, off);
537 if (pp == NULL) {
538 panic("segmap_unlock: page not found");
539 /*NOTREACHED*/
540 }
541
542 if (rw == S_WRITE) {
543 hat_setrefmod(pp);
544 } else if (rw != S_OTHER) {
545 TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
546 "segmap_fault:pp %p vp %p offset %llx", pp, vp, off);
547 hat_setref(pp);
548 }
549
550 /*
551 * Clear bitmap, if the bit corresponding to "off" is set,
552 * since the page and translation are being unlocked.
553 */
554 bitmask = SMAP_BIT_MASK((off - smp->sm_off) >> PAGESHIFT);
555
556 /*
557 * Large Files: Following assertion is to verify
558 * the correctness of the cast to (int) above.
559 */
560 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
561 smtx = SMAPMTX(smp);
562 mutex_enter(smtx);
563 if (smp->sm_bitmap & bitmask) {
564 smp->sm_bitmap &= ~bitmask;
565 }
566 mutex_exit(smtx);
567
568 page_unlock(pp);
569 }
570 }
571
572 #define MAXPPB (MAXBSIZE/4096) /* assumes minimum page size of 4k */
573
574 /*
575 * This routine is called via a machine specific fault handling
576 * routine. It is also called by software routines wishing to
577 * lock or unlock a range of addresses.
578 *
579 * Note that this routine expects a page-aligned "addr".
580 */
581 faultcode_t
segmap_fault(struct hat * hat,struct seg * seg,caddr_t addr,size_t len,enum fault_type type,enum seg_rw rw)582 segmap_fault(
583 struct hat *hat,
584 struct seg *seg,
585 caddr_t addr,
586 size_t len,
587 enum fault_type type,
588 enum seg_rw rw)
589 {
590 struct segmap_data *smd = (struct segmap_data *)seg->s_data;
591 struct smap *smp;
592 page_t *pp, **ppp;
593 struct vnode *vp;
594 u_offset_t off;
595 page_t *pl[MAXPPB + 1];
596 uint_t prot;
597 u_offset_t addroff;
598 caddr_t adr;
599 int err;
600 u_offset_t sm_off;
601 int hat_flag;
602
603 if (segmap_kpm && IS_KPM_ADDR(addr)) {
604 int newpage;
605 kmutex_t *smtx;
606
607 /*
608 * Pages are successfully prefaulted and locked in
609 * segmap_getmapflt and can't be unlocked until
610 * segmap_release. No hat mappings have to be locked
611 * and they also can't be unlocked as long as the
612 * caller owns an active kpm addr.
613 */
614 #ifndef DEBUG
615 if (type != F_SOFTUNLOCK)
616 return (0);
617 #endif
618
619 if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
620 panic("segmap_fault: smap not found "
621 "for addr %p", (void *)addr);
622 /*NOTREACHED*/
623 }
624
625 smtx = SMAPMTX(smp);
626 #ifdef DEBUG
627 newpage = smp->sm_flags & SM_KPM_NEWPAGE;
628 if (newpage) {
629 cmn_err(CE_WARN, "segmap_fault: newpage? smp %p",
630 (void *)smp);
631 }
632
633 if (type != F_SOFTUNLOCK) {
634 mutex_exit(smtx);
635 return (0);
636 }
637 #endif
638 mutex_exit(smtx);
639 vp = smp->sm_vp;
640 sm_off = smp->sm_off;
641
642 if (vp == NULL)
643 return (FC_MAKE_ERR(EIO));
644
645 ASSERT(smp->sm_refcnt > 0);
646
647 addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
648 if (addroff + len > MAXBSIZE)
649 panic("segmap_fault: endaddr %p exceeds MAXBSIZE chunk",
650 (void *)(addr + len));
651
652 off = sm_off + addroff;
653
654 pp = page_find(vp, off);
655
656 if (pp == NULL)
657 panic("segmap_fault: softunlock page not found");
658
659 /*
660 * Set ref bit also here in case of S_OTHER to avoid the
661 * overhead of supporting other cases than F_SOFTUNLOCK
662 * with segkpm. We can do this because the underlying
663 * pages are locked anyway.
664 */
665 if (rw == S_WRITE) {
666 hat_setrefmod(pp);
667 } else {
668 TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
669 "segmap_fault:pp %p vp %p offset %llx",
670 pp, vp, off);
671 hat_setref(pp);
672 }
673
674 return (0);
675 }
676
677 smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++;
678 smp = GET_SMAP(seg, addr);
679 vp = smp->sm_vp;
680 sm_off = smp->sm_off;
681
682 if (vp == NULL)
683 return (FC_MAKE_ERR(EIO));
684
685 ASSERT(smp->sm_refcnt > 0);
686
687 addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
688 if (addroff + len > MAXBSIZE) {
689 panic("segmap_fault: endaddr %p "
690 "exceeds MAXBSIZE chunk", (void *)(addr + len));
691 /*NOTREACHED*/
692 }
693 off = sm_off + addroff;
694
695 /*
696 * First handle the easy stuff
697 */
698 if (type == F_SOFTUNLOCK) {
699 segmap_unlock(hat, seg, addr, len, rw, smp);
700 return (0);
701 }
702
703 TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE,
704 "segmap_getpage:seg %p addr %p vp %p", seg, addr, vp);
705 err = VOP_GETPAGE(vp, (offset_t)off, len, &prot, pl, MAXBSIZE,
706 seg, addr, rw, CRED(), NULL);
707
708 if (err)
709 return (FC_MAKE_ERR(err));
710
711 prot &= smd->smd_prot;
712
713 /*
714 * Handle all pages returned in the pl[] array.
715 * This loop is coded on the assumption that if
716 * there was no error from the VOP_GETPAGE routine,
717 * that the page list returned will contain all the
718 * needed pages for the vp from [off..off + len].
719 */
720 ppp = pl;
721 while ((pp = *ppp++) != NULL) {
722 u_offset_t poff;
723 ASSERT(pp->p_vnode == vp);
724 hat_flag = HAT_LOAD;
725
726 /*
727 * Verify that the pages returned are within the range
728 * of this segmap region. Note that it is theoretically
729 * possible for pages outside this range to be returned,
730 * but it is not very likely. If we cannot use the
731 * page here, just release it and go on to the next one.
732 */
733 if (pp->p_offset < sm_off ||
734 pp->p_offset >= sm_off + MAXBSIZE) {
735 (void) page_release(pp, 1);
736 continue;
737 }
738
739 ASSERT(hat == kas.a_hat);
740 poff = pp->p_offset;
741 adr = addr + (poff - off);
742 if (adr >= addr && adr < addr + len) {
743 hat_setref(pp);
744 TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
745 "segmap_fault:pp %p vp %p offset %llx",
746 pp, vp, poff);
747 if (type == F_SOFTLOCK)
748 hat_flag = HAT_LOAD_LOCK;
749 }
750
751 /*
752 * Deal with VMODSORT pages here. If we know this is a write
753 * do the setmod now and allow write protection.
754 * As long as it's modified or not S_OTHER, remove write
755 * protection. With S_OTHER it's up to the FS to deal with this.
756 */
757 if (IS_VMODSORT(vp)) {
758 if (rw == S_WRITE)
759 hat_setmod(pp);
760 else if (rw != S_OTHER && !hat_ismod(pp))
761 prot &= ~PROT_WRITE;
762 }
763
764 hat_memload(hat, adr, pp, prot, hat_flag);
765 if (hat_flag != HAT_LOAD_LOCK)
766 page_unlock(pp);
767 }
768 return (0);
769 }
770
771 /*
772 * This routine is used to start I/O on pages asynchronously.
773 */
774 static faultcode_t
segmap_faulta(struct seg * seg,caddr_t addr)775 segmap_faulta(struct seg *seg, caddr_t addr)
776 {
777 struct smap *smp;
778 struct vnode *vp;
779 u_offset_t off;
780 int err;
781
782 if (segmap_kpm && IS_KPM_ADDR(addr)) {
783 int newpage;
784 kmutex_t *smtx;
785
786 /*
787 * Pages are successfully prefaulted and locked in
788 * segmap_getmapflt and can't be unlocked until
789 * segmap_release. No hat mappings have to be locked
790 * and they also can't be unlocked as long as the
791 * caller owns an active kpm addr.
792 */
793 #ifdef DEBUG
794 if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
795 panic("segmap_faulta: smap not found "
796 "for addr %p", (void *)addr);
797 /*NOTREACHED*/
798 }
799
800 smtx = SMAPMTX(smp);
801 newpage = smp->sm_flags & SM_KPM_NEWPAGE;
802 mutex_exit(smtx);
803 if (newpage)
804 cmn_err(CE_WARN, "segmap_faulta: newpage? smp %p",
805 (void *)smp);
806 #endif
807 return (0);
808 }
809
810 segmapcnt.smp_faulta.value.ul++;
811 smp = GET_SMAP(seg, addr);
812
813 ASSERT(smp->sm_refcnt > 0);
814
815 vp = smp->sm_vp;
816 off = smp->sm_off;
817
818 if (vp == NULL) {
819 cmn_err(CE_WARN, "segmap_faulta - no vp");
820 return (FC_MAKE_ERR(EIO));
821 }
822
823 TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE,
824 "segmap_getpage:seg %p addr %p vp %p", seg, addr, vp);
825
826 err = VOP_GETPAGE(vp, (offset_t)(off + ((offset_t)((uintptr_t)addr
827 & MAXBOFFSET))), PAGESIZE, (uint_t *)NULL, (page_t **)NULL, 0,
828 seg, addr, S_READ, CRED(), NULL);
829
830 if (err)
831 return (FC_MAKE_ERR(err));
832 return (0);
833 }
834
835 /*ARGSUSED*/
836 static int
segmap_checkprot(struct seg * seg,caddr_t addr,size_t len,uint_t prot)837 segmap_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
838 {
839 struct segmap_data *smd = (struct segmap_data *)seg->s_data;
840
841 ASSERT(seg->s_as && RW_LOCK_HELD(&seg->s_as->a_lock));
842
843 /*
844 * Need not acquire the segment lock since
845 * "smd_prot" is a read-only field.
846 */
847 return (((smd->smd_prot & prot) != prot) ? EACCES : 0);
848 }
849
850 static int
segmap_getprot(struct seg * seg,caddr_t addr,size_t len,uint_t * protv)851 segmap_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
852 {
853 struct segmap_data *smd = (struct segmap_data *)seg->s_data;
854 size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
855
856 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
857
858 if (pgno != 0) {
859 do {
860 protv[--pgno] = smd->smd_prot;
861 } while (pgno != 0);
862 }
863 return (0);
864 }
865
866 static u_offset_t
segmap_getoffset(struct seg * seg,caddr_t addr)867 segmap_getoffset(struct seg *seg, caddr_t addr)
868 {
869 struct segmap_data *smd = (struct segmap_data *)seg->s_data;
870
871 ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
872
873 return ((u_offset_t)smd->smd_sm->sm_off + (addr - seg->s_base));
874 }
875
876 /*ARGSUSED*/
877 static int
segmap_gettype(struct seg * seg,caddr_t addr)878 segmap_gettype(struct seg *seg, caddr_t addr)
879 {
880 ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
881
882 return (MAP_SHARED);
883 }
884
885 /*ARGSUSED*/
886 static int
segmap_getvp(struct seg * seg,caddr_t addr,struct vnode ** vpp)887 segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
888 {
889 struct segmap_data *smd = (struct segmap_data *)seg->s_data;
890
891 ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
892
893 /* XXX - This doesn't make any sense */
894 *vpp = smd->smd_sm->sm_vp;
895 return (0);
896 }
897
898 /*
899 * Check to see if it makes sense to do kluster/read ahead to
900 * addr + delta relative to the mapping at addr. We assume here
901 * that delta is a signed PAGESIZE'd multiple (which can be negative).
902 *
903 * For segmap we always "approve" of this action from our standpoint.
904 */
905 /*ARGSUSED*/
906 static int
segmap_kluster(struct seg * seg,caddr_t addr,ssize_t delta)907 segmap_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
908 {
909 return (0);
910 }
911
912 static void
segmap_badop()913 segmap_badop()
914 {
915 panic("segmap_badop");
916 /*NOTREACHED*/
917 }
918
919 /*
920 * Special private segmap operations
921 */
922
923 /*
924 * Add smap to the appropriate free list.
925 */
926 static void
segmap_smapadd(struct smap * smp)927 segmap_smapadd(struct smap *smp)
928 {
929 struct smfree *sm;
930 struct smap *smpfreelist;
931 struct sm_freeq *releq;
932
933 ASSERT(MUTEX_HELD(SMAPMTX(smp)));
934
935 if (smp->sm_refcnt != 0) {
936 panic("segmap_smapadd");
937 /*NOTREACHED*/
938 }
939
940 sm = &smd_free[smp->sm_free_ndx];
941 /*
942 * Add to the tail of the release queue
943 * Note that sm_releq and sm_allocq could toggle
944 * before we get the lock. This does not affect
945 * correctness as the 2 queues are only maintained
946 * to reduce lock pressure.
947 */
948 releq = sm->sm_releq;
949 if (releq == &sm->sm_freeq[0])
950 smp->sm_flags |= SM_QNDX_ZERO;
951 else
952 smp->sm_flags &= ~SM_QNDX_ZERO;
953 mutex_enter(&releq->smq_mtx);
954 smpfreelist = releq->smq_free;
955 if (smpfreelist == 0) {
956 int want;
957
958 releq->smq_free = smp->sm_next = smp->sm_prev = smp;
959 /*
960 * Both queue mutexes held to set sm_want;
961 * snapshot the value before dropping releq mutex.
962 * If sm_want appears after the releq mutex is dropped,
963 * then the smap just freed is already gone.
964 */
965 want = sm->sm_want;
966 mutex_exit(&releq->smq_mtx);
967 /*
968 * See if there was a waiter before dropping the releq mutex
969 * then recheck after obtaining sm_freeq[0] mutex as
970 * the another thread may have already signaled.
971 */
972 if (want) {
973 mutex_enter(&sm->sm_freeq[0].smq_mtx);
974 if (sm->sm_want)
975 cv_signal(&sm->sm_free_cv);
976 mutex_exit(&sm->sm_freeq[0].smq_mtx);
977 }
978 } else {
979 smp->sm_next = smpfreelist;
980 smp->sm_prev = smpfreelist->sm_prev;
981 smpfreelist->sm_prev = smp;
982 smp->sm_prev->sm_next = smp;
983 mutex_exit(&releq->smq_mtx);
984 }
985 }
986
987
988 static struct smap *
segmap_hashin(struct smap * smp,struct vnode * vp,u_offset_t off,int hashid)989 segmap_hashin(struct smap *smp, struct vnode *vp, u_offset_t off, int hashid)
990 {
991 struct smap **hpp;
992 struct smap *tmp;
993 kmutex_t *hmtx;
994
995 ASSERT(MUTEX_HELD(SMAPMTX(smp)));
996 ASSERT(smp->sm_vp == NULL);
997 ASSERT(smp->sm_hash == NULL);
998 ASSERT(smp->sm_prev == NULL);
999 ASSERT(smp->sm_next == NULL);
1000 ASSERT(hashid >= 0 && hashid <= smd_hashmsk);
1001
1002 hmtx = SHASHMTX(hashid);
1003
1004 mutex_enter(hmtx);
1005 /*
1006 * First we need to verify that no one has created a smp
1007 * with (vp,off) as its tag before we us.
1008 */
1009 for (tmp = smd_hash[hashid].sh_hash_list;
1010 tmp != NULL; tmp = tmp->sm_hash)
1011 if (tmp->sm_vp == vp && tmp->sm_off == off)
1012 break;
1013
1014 if (tmp == NULL) {
1015 /*
1016 * No one created one yet.
1017 *
1018 * Funniness here - we don't increment the ref count on the
1019 * vnode * even though we have another pointer to it here.
1020 * The reason for this is that we don't want the fact that
1021 * a seg_map entry somewhere refers to a vnode to prevent the
1022 * vnode * itself from going away. This is because this
1023 * reference to the vnode is a "soft one". In the case where
1024 * a mapping is being used by a rdwr [or directory routine?]
1025 * there already has to be a non-zero ref count on the vnode.
1026 * In the case where the vp has been freed and the the smap
1027 * structure is on the free list, there are no pages in memory
1028 * that can refer to the vnode. Thus even if we reuse the same
1029 * vnode/smap structure for a vnode which has the same
1030 * address but represents a different object, we are ok.
1031 */
1032 smp->sm_vp = vp;
1033 smp->sm_off = off;
1034
1035 hpp = &smd_hash[hashid].sh_hash_list;
1036 smp->sm_hash = *hpp;
1037 *hpp = smp;
1038 #ifdef SEGMAP_HASHSTATS
1039 smd_hash_len[hashid]++;
1040 #endif
1041 }
1042 mutex_exit(hmtx);
1043
1044 return (tmp);
1045 }
1046
1047 static void
segmap_hashout(struct smap * smp)1048 segmap_hashout(struct smap *smp)
1049 {
1050 struct smap **hpp, *hp;
1051 struct vnode *vp;
1052 kmutex_t *mtx;
1053 int hashid;
1054 u_offset_t off;
1055
1056 ASSERT(MUTEX_HELD(SMAPMTX(smp)));
1057
1058 vp = smp->sm_vp;
1059 off = smp->sm_off;
1060
1061 SMAP_HASHFUNC(vp, off, hashid); /* macro assigns hashid */
1062 mtx = SHASHMTX(hashid);
1063 mutex_enter(mtx);
1064
1065 hpp = &smd_hash[hashid].sh_hash_list;
1066 for (;;) {
1067 hp = *hpp;
1068 if (hp == NULL) {
1069 panic("segmap_hashout");
1070 /*NOTREACHED*/
1071 }
1072 if (hp == smp)
1073 break;
1074 hpp = &hp->sm_hash;
1075 }
1076
1077 *hpp = smp->sm_hash;
1078 smp->sm_hash = NULL;
1079 #ifdef SEGMAP_HASHSTATS
1080 smd_hash_len[hashid]--;
1081 #endif
1082 mutex_exit(mtx);
1083
1084 smp->sm_vp = NULL;
1085 smp->sm_off = (u_offset_t)0;
1086
1087 }
1088
1089 /*
1090 * Attempt to free unmodified, unmapped, and non locked segmap
1091 * pages.
1092 */
1093 void
segmap_pagefree(struct vnode * vp,u_offset_t off)1094 segmap_pagefree(struct vnode *vp, u_offset_t off)
1095 {
1096 u_offset_t pgoff;
1097 page_t *pp;
1098
1099 for (pgoff = off; pgoff < off + MAXBSIZE; pgoff += PAGESIZE) {
1100
1101 if ((pp = page_lookup_nowait(vp, pgoff, SE_EXCL)) == NULL)
1102 continue;
1103
1104 switch (page_release(pp, 1)) {
1105 case PGREL_NOTREL:
1106 segmapcnt.smp_free_notfree.value.ul++;
1107 break;
1108 case PGREL_MOD:
1109 segmapcnt.smp_free_dirty.value.ul++;
1110 break;
1111 case PGREL_CLEAN:
1112 segmapcnt.smp_free.value.ul++;
1113 break;
1114 }
1115 }
1116 }
1117
1118 /*
1119 * Locks held on entry: smap lock
1120 * Locks held on exit : smap lock.
1121 */
1122
1123 static void
grab_smp(struct smap * smp,page_t * pp)1124 grab_smp(struct smap *smp, page_t *pp)
1125 {
1126 ASSERT(MUTEX_HELD(SMAPMTX(smp)));
1127 ASSERT(smp->sm_refcnt == 0);
1128
1129 if (smp->sm_vp != (struct vnode *)NULL) {
1130 struct vnode *vp = smp->sm_vp;
1131 u_offset_t off = smp->sm_off;
1132 /*
1133 * Destroy old vnode association and
1134 * unload any hardware translations to
1135 * the old object.
1136 */
1137 smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reuse++;
1138 segmap_hashout(smp);
1139
1140 /*
1141 * This node is off freelist and hashlist,
1142 * so there is no reason to drop/reacquire sm_mtx
1143 * across calls to hat_unload.
1144 */
1145 if (segmap_kpm) {
1146 caddr_t vaddr;
1147 int hat_unload_needed = 0;
1148
1149 /*
1150 * unload kpm mapping
1151 */
1152 if (pp != NULL) {
1153 vaddr = hat_kpm_page2va(pp, 1);
1154 hat_kpm_mapout(pp, GET_KPME(smp), vaddr);
1155 page_unlock(pp);
1156 }
1157
1158 /*
1159 * Check if we have (also) the rare case of a
1160 * non kpm mapping.
1161 */
1162 if (smp->sm_flags & SM_NOTKPM_RELEASED) {
1163 hat_unload_needed = 1;
1164 smp->sm_flags &= ~SM_NOTKPM_RELEASED;
1165 }
1166
1167 if (hat_unload_needed) {
1168 hat_unload(kas.a_hat, segkmap->s_base +
1169 ((smp - smd_smap) * MAXBSIZE),
1170 MAXBSIZE, HAT_UNLOAD);
1171 }
1172
1173 } else {
1174 ASSERT(smp->sm_flags & SM_NOTKPM_RELEASED);
1175 smp->sm_flags &= ~SM_NOTKPM_RELEASED;
1176 hat_unload(kas.a_hat, segkmap->s_base +
1177 ((smp - smd_smap) * MAXBSIZE),
1178 MAXBSIZE, HAT_UNLOAD);
1179 }
1180 segmap_pagefree(vp, off);
1181 }
1182 }
1183
1184 static struct smap *
get_free_smp(int free_ndx)1185 get_free_smp(int free_ndx)
1186 {
1187 struct smfree *sm;
1188 kmutex_t *smtx;
1189 struct smap *smp, *first;
1190 struct sm_freeq *allocq, *releq;
1191 struct kpme *kpme;
1192 page_t *pp = NULL;
1193 int end_ndx, page_locked = 0;
1194
1195 end_ndx = free_ndx;
1196 sm = &smd_free[free_ndx];
1197
1198 retry_queue:
1199 allocq = sm->sm_allocq;
1200 mutex_enter(&allocq->smq_mtx);
1201
1202 if ((smp = allocq->smq_free) == NULL) {
1203
1204 skip_queue:
1205 /*
1206 * The alloc list is empty or this queue is being skipped;
1207 * first see if the allocq toggled.
1208 */
1209 if (sm->sm_allocq != allocq) {
1210 /* queue changed */
1211 mutex_exit(&allocq->smq_mtx);
1212 goto retry_queue;
1213 }
1214 releq = sm->sm_releq;
1215 if (!mutex_tryenter(&releq->smq_mtx)) {
1216 /* cannot get releq; a free smp may be there now */
1217 mutex_exit(&allocq->smq_mtx);
1218
1219 /*
1220 * This loop could spin forever if this thread has
1221 * higher priority than the thread that is holding
1222 * releq->smq_mtx. In order to force the other thread
1223 * to run, we'll lock/unlock the mutex which is safe
1224 * since we just unlocked the allocq mutex.
1225 */
1226 mutex_enter(&releq->smq_mtx);
1227 mutex_exit(&releq->smq_mtx);
1228 goto retry_queue;
1229 }
1230 if (releq->smq_free == NULL) {
1231 /*
1232 * This freelist is empty.
1233 * This should not happen unless clients
1234 * are failing to release the segmap
1235 * window after accessing the data.
1236 * Before resorting to sleeping, try
1237 * the next list of the same color.
1238 */
1239 free_ndx = (free_ndx + smd_ncolor) & smd_freemsk;
1240 if (free_ndx != end_ndx) {
1241 mutex_exit(&releq->smq_mtx);
1242 mutex_exit(&allocq->smq_mtx);
1243 sm = &smd_free[free_ndx];
1244 goto retry_queue;
1245 }
1246 /*
1247 * Tried all freelists of the same color once,
1248 * wait on this list and hope something gets freed.
1249 */
1250 segmapcnt.smp_get_nofree.value.ul++;
1251 sm->sm_want++;
1252 mutex_exit(&sm->sm_freeq[1].smq_mtx);
1253 cv_wait(&sm->sm_free_cv,
1254 &sm->sm_freeq[0].smq_mtx);
1255 sm->sm_want--;
1256 mutex_exit(&sm->sm_freeq[0].smq_mtx);
1257 sm = &smd_free[free_ndx];
1258 goto retry_queue;
1259 } else {
1260 /*
1261 * Something on the rele queue; flip the alloc
1262 * and rele queues and retry.
1263 */
1264 sm->sm_allocq = releq;
1265 sm->sm_releq = allocq;
1266 mutex_exit(&allocq->smq_mtx);
1267 mutex_exit(&releq->smq_mtx);
1268 if (page_locked) {
1269 delay(hz >> 2);
1270 page_locked = 0;
1271 }
1272 goto retry_queue;
1273 }
1274 } else {
1275 /*
1276 * Fastpath the case we get the smap mutex
1277 * on the first try.
1278 */
1279 first = smp;
1280 next_smap:
1281 smtx = SMAPMTX(smp);
1282 if (!mutex_tryenter(smtx)) {
1283 /*
1284 * Another thread is trying to reclaim this slot.
1285 * Skip to the next queue or smap.
1286 */
1287 if ((smp = smp->sm_next) == first) {
1288 goto skip_queue;
1289 } else {
1290 goto next_smap;
1291 }
1292 } else {
1293 /*
1294 * if kpme exists, get shared lock on the page
1295 */
1296 if (segmap_kpm && smp->sm_vp != NULL) {
1297
1298 kpme = GET_KPME(smp);
1299 pp = kpme->kpe_page;
1300
1301 if (pp != NULL) {
1302 if (!page_trylock(pp, SE_SHARED)) {
1303 smp = smp->sm_next;
1304 mutex_exit(smtx);
1305 page_locked = 1;
1306
1307 pp = NULL;
1308
1309 if (smp == first) {
1310 goto skip_queue;
1311 } else {
1312 goto next_smap;
1313 }
1314 } else {
1315 if (kpme->kpe_page == NULL) {
1316 page_unlock(pp);
1317 pp = NULL;
1318 }
1319 }
1320 }
1321 }
1322
1323 /*
1324 * At this point, we've selected smp. Remove smp
1325 * from its freelist. If smp is the first one in
1326 * the freelist, update the head of the freelist.
1327 */
1328 if (first == smp) {
1329 ASSERT(first == allocq->smq_free);
1330 allocq->smq_free = smp->sm_next;
1331 }
1332
1333 /*
1334 * if the head of the freelist still points to smp,
1335 * then there are no more free smaps in that list.
1336 */
1337 if (allocq->smq_free == smp)
1338 /*
1339 * Took the last one
1340 */
1341 allocq->smq_free = NULL;
1342 else {
1343 smp->sm_prev->sm_next = smp->sm_next;
1344 smp->sm_next->sm_prev = smp->sm_prev;
1345 }
1346 mutex_exit(&allocq->smq_mtx);
1347 smp->sm_prev = smp->sm_next = NULL;
1348
1349 /*
1350 * if pp != NULL, pp must have been locked;
1351 * grab_smp() unlocks pp.
1352 */
1353 ASSERT((pp == NULL) || PAGE_LOCKED(pp));
1354 grab_smp(smp, pp);
1355 /* return smp locked. */
1356 ASSERT(SMAPMTX(smp) == smtx);
1357 ASSERT(MUTEX_HELD(smtx));
1358 return (smp);
1359 }
1360 }
1361 }
1362
1363 /*
1364 * Special public segmap operations
1365 */
1366
1367 /*
1368 * Create pages (without using VOP_GETPAGE) and load up translations to them.
1369 * If softlock is TRUE, then set things up so that it looks like a call
1370 * to segmap_fault with F_SOFTLOCK.
1371 *
1372 * Returns 1, if a page is created by calling page_create_va(), or 0 otherwise.
1373 *
1374 * All fields in the generic segment (struct seg) are considered to be
1375 * read-only for "segmap" even though the kernel address space (kas) may
1376 * not be locked, hence no lock is needed to access them.
1377 */
1378 int
segmap_pagecreate(struct seg * seg,caddr_t addr,size_t len,int softlock)1379 segmap_pagecreate(struct seg *seg, caddr_t addr, size_t len, int softlock)
1380 {
1381 struct segmap_data *smd = (struct segmap_data *)seg->s_data;
1382 page_t *pp;
1383 u_offset_t off;
1384 struct smap *smp;
1385 struct vnode *vp;
1386 caddr_t eaddr;
1387 int newpage = 0;
1388 uint_t prot;
1389 kmutex_t *smtx;
1390 int hat_flag;
1391
1392 ASSERT(seg->s_as == &kas);
1393
1394 if (segmap_kpm && IS_KPM_ADDR(addr)) {
1395 /*
1396 * Pages are successfully prefaulted and locked in
1397 * segmap_getmapflt and can't be unlocked until
1398 * segmap_release. The SM_KPM_NEWPAGE flag is set
1399 * in segmap_pagecreate_kpm when new pages are created.
1400 * and it is returned as "newpage" indication here.
1401 */
1402 if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
1403 panic("segmap_pagecreate: smap not found "
1404 "for addr %p", (void *)addr);
1405 /*NOTREACHED*/
1406 }
1407
1408 smtx = SMAPMTX(smp);
1409 newpage = smp->sm_flags & SM_KPM_NEWPAGE;
1410 smp->sm_flags &= ~SM_KPM_NEWPAGE;
1411 mutex_exit(smtx);
1412
1413 return (newpage);
1414 }
1415
1416 smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++;
1417
1418 eaddr = addr + len;
1419 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1420
1421 smp = GET_SMAP(seg, addr);
1422
1423 /*
1424 * We don't grab smp mutex here since we assume the smp
1425 * has a refcnt set already which prevents the slot from
1426 * changing its id.
1427 */
1428 ASSERT(smp->sm_refcnt > 0);
1429
1430 vp = smp->sm_vp;
1431 off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET));
1432 prot = smd->smd_prot;
1433
1434 for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) {
1435 hat_flag = HAT_LOAD;
1436 pp = page_lookup(vp, off, SE_SHARED);
1437 if (pp == NULL) {
1438 ushort_t bitindex;
1439
1440 if ((pp = page_create_va(vp, off,
1441 PAGESIZE, PG_WAIT, seg, addr)) == NULL) {
1442 panic("segmap_pagecreate: page_create failed");
1443 /*NOTREACHED*/
1444 }
1445 newpage = 1;
1446 page_io_unlock(pp);
1447
1448 /*
1449 * Since pages created here do not contain valid
1450 * data until the caller writes into them, the
1451 * "exclusive" lock will not be dropped to prevent
1452 * other users from accessing the page. We also
1453 * have to lock the translation to prevent a fault
1454 * from occurring when the virtual address mapped by
1455 * this page is written into. This is necessary to
1456 * avoid a deadlock since we haven't dropped the
1457 * "exclusive" lock.
1458 */
1459 bitindex = (ushort_t)((off - smp->sm_off) >> PAGESHIFT);
1460
1461 /*
1462 * Large Files: The following assertion is to
1463 * verify the cast above.
1464 */
1465 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
1466 smtx = SMAPMTX(smp);
1467 mutex_enter(smtx);
1468 smp->sm_bitmap |= SMAP_BIT_MASK(bitindex);
1469 mutex_exit(smtx);
1470
1471 hat_flag = HAT_LOAD_LOCK;
1472 } else if (softlock) {
1473 hat_flag = HAT_LOAD_LOCK;
1474 }
1475
1476 if (IS_VMODSORT(pp->p_vnode) && (prot & PROT_WRITE))
1477 hat_setmod(pp);
1478
1479 hat_memload(kas.a_hat, addr, pp, prot, hat_flag);
1480
1481 if (hat_flag != HAT_LOAD_LOCK)
1482 page_unlock(pp);
1483
1484 TRACE_5(TR_FAC_VM, TR_SEGMAP_PAGECREATE,
1485 "segmap_pagecreate:seg %p addr %p pp %p vp %p offset %llx",
1486 seg, addr, pp, vp, off);
1487 }
1488
1489 return (newpage);
1490 }
1491
1492 void
segmap_pageunlock(struct seg * seg,caddr_t addr,size_t len,enum seg_rw rw)1493 segmap_pageunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
1494 {
1495 struct smap *smp;
1496 ushort_t bitmask;
1497 page_t *pp;
1498 struct vnode *vp;
1499 u_offset_t off;
1500 caddr_t eaddr;
1501 kmutex_t *smtx;
1502
1503 ASSERT(seg->s_as == &kas);
1504
1505 eaddr = addr + len;
1506 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1507
1508 if (segmap_kpm && IS_KPM_ADDR(addr)) {
1509 /*
1510 * Pages are successfully prefaulted and locked in
1511 * segmap_getmapflt and can't be unlocked until
1512 * segmap_release, so no pages or hat mappings have
1513 * to be unlocked at this point.
1514 */
1515 #ifdef DEBUG
1516 if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
1517 panic("segmap_pageunlock: smap not found "
1518 "for addr %p", (void *)addr);
1519 /*NOTREACHED*/
1520 }
1521
1522 ASSERT(smp->sm_refcnt > 0);
1523 mutex_exit(SMAPMTX(smp));
1524 #endif
1525 return;
1526 }
1527
1528 smp = GET_SMAP(seg, addr);
1529 smtx = SMAPMTX(smp);
1530
1531 ASSERT(smp->sm_refcnt > 0);
1532
1533 vp = smp->sm_vp;
1534 off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET));
1535
1536 for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) {
1537 bitmask = SMAP_BIT_MASK((int)(off - smp->sm_off) >> PAGESHIFT);
1538
1539 /*
1540 * Large Files: Following assertion is to verify
1541 * the correctness of the cast to (int) above.
1542 */
1543 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
1544
1545 /*
1546 * If the bit corresponding to "off" is set,
1547 * clear this bit in the bitmap, unlock translations,
1548 * and release the "exclusive" lock on the page.
1549 */
1550 if (smp->sm_bitmap & bitmask) {
1551 mutex_enter(smtx);
1552 smp->sm_bitmap &= ~bitmask;
1553 mutex_exit(smtx);
1554
1555 hat_unlock(kas.a_hat, addr, PAGESIZE);
1556
1557 /*
1558 * Use page_find() instead of page_lookup() to
1559 * find the page since we know that it has
1560 * "exclusive" lock.
1561 */
1562 pp = page_find(vp, off);
1563 if (pp == NULL) {
1564 panic("segmap_pageunlock: page not found");
1565 /*NOTREACHED*/
1566 }
1567 if (rw == S_WRITE) {
1568 hat_setrefmod(pp);
1569 } else if (rw != S_OTHER) {
1570 hat_setref(pp);
1571 }
1572
1573 page_unlock(pp);
1574 }
1575 }
1576 }
1577
1578 caddr_t
segmap_getmap(struct seg * seg,struct vnode * vp,u_offset_t off)1579 segmap_getmap(struct seg *seg, struct vnode *vp, u_offset_t off)
1580 {
1581 return (segmap_getmapflt(seg, vp, off, MAXBSIZE, 0, S_OTHER));
1582 }
1583
1584 /*
1585 * This is the magic virtual address that offset 0 of an ELF
1586 * file gets mapped to in user space. This is used to pick
1587 * the vac color on the freelist.
1588 */
1589 #define ELF_OFFZERO_VA (0x10000)
1590 /*
1591 * segmap_getmap allocates a MAXBSIZE big slot to map the vnode vp
1592 * in the range <off, off + len). off doesn't need to be MAXBSIZE aligned.
1593 * The return address is always MAXBSIZE aligned.
1594 *
1595 * If forcefault is nonzero and the MMU translations haven't yet been created,
1596 * segmap_getmap will call segmap_fault(..., F_INVAL, rw) to create them.
1597 */
1598 caddr_t
segmap_getmapflt(struct seg * seg,struct vnode * vp,u_offset_t off,size_t len,int forcefault,enum seg_rw rw)1599 segmap_getmapflt(
1600 struct seg *seg,
1601 struct vnode *vp,
1602 u_offset_t off,
1603 size_t len,
1604 int forcefault,
1605 enum seg_rw rw)
1606 {
1607 struct smap *smp, *nsmp;
1608 extern struct vnode *common_specvp();
1609 caddr_t baseaddr; /* MAXBSIZE aligned */
1610 u_offset_t baseoff;
1611 int newslot;
1612 caddr_t vaddr;
1613 int color, hashid;
1614 kmutex_t *hashmtx, *smapmtx;
1615 struct smfree *sm;
1616 page_t *pp;
1617 struct kpme *kpme;
1618 uint_t prot;
1619 caddr_t base;
1620 page_t *pl[MAXPPB + 1];
1621 int error;
1622 int is_kpm = 1;
1623
1624 ASSERT(seg->s_as == &kas);
1625 ASSERT(seg == segkmap);
1626
1627 baseoff = off & (offset_t)MAXBMASK;
1628 if (off + len > baseoff + MAXBSIZE) {
1629 panic("segmap_getmap bad len");
1630 /*NOTREACHED*/
1631 }
1632
1633 /*
1634 * If this is a block device we have to be sure to use the
1635 * "common" block device vnode for the mapping.
1636 */
1637 if (vp->v_type == VBLK)
1638 vp = common_specvp(vp);
1639
1640 smd_cpu[CPU->cpu_seqid].scpu.scpu_getmap++;
1641
1642 if (segmap_kpm == 0 ||
1643 (forcefault == SM_PAGECREATE && rw != S_WRITE)) {
1644 is_kpm = 0;
1645 }
1646
1647 SMAP_HASHFUNC(vp, off, hashid); /* macro assigns hashid */
1648 hashmtx = SHASHMTX(hashid);
1649
1650 retry_hash:
1651 mutex_enter(hashmtx);
1652 for (smp = smd_hash[hashid].sh_hash_list;
1653 smp != NULL; smp = smp->sm_hash)
1654 if (smp->sm_vp == vp && smp->sm_off == baseoff)
1655 break;
1656 mutex_exit(hashmtx);
1657
1658 vrfy_smp:
1659 if (smp != NULL) {
1660
1661 ASSERT(vp->v_count != 0);
1662
1663 /*
1664 * Get smap lock and recheck its tag. The hash lock
1665 * is dropped since the hash is based on (vp, off)
1666 * and (vp, off) won't change when we have smap mtx.
1667 */
1668 smapmtx = SMAPMTX(smp);
1669 mutex_enter(smapmtx);
1670 if (smp->sm_vp != vp || smp->sm_off != baseoff) {
1671 mutex_exit(smapmtx);
1672 goto retry_hash;
1673 }
1674
1675 if (smp->sm_refcnt == 0) {
1676
1677 smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reclaim++;
1678
1679 /*
1680 * Could still be on the free list. However, this
1681 * could also be an smp that is transitioning from
1682 * the free list when we have too much contention
1683 * for the smapmtx's. In this case, we have an
1684 * unlocked smp that is not on the free list any
1685 * longer, but still has a 0 refcnt. The only way
1686 * to be sure is to check the freelist pointers.
1687 * Since we now have the smapmtx, we are guaranteed
1688 * that the (vp, off) won't change, so we are safe
1689 * to reclaim it. get_free_smp() knows that this
1690 * can happen, and it will check the refcnt.
1691 */
1692
1693 if ((smp->sm_next != NULL)) {
1694 struct sm_freeq *freeq;
1695
1696 ASSERT(smp->sm_prev != NULL);
1697 sm = &smd_free[smp->sm_free_ndx];
1698
1699 if (smp->sm_flags & SM_QNDX_ZERO)
1700 freeq = &sm->sm_freeq[0];
1701 else
1702 freeq = &sm->sm_freeq[1];
1703
1704 mutex_enter(&freeq->smq_mtx);
1705 if (freeq->smq_free != smp) {
1706 /*
1707 * fastpath normal case
1708 */
1709 smp->sm_prev->sm_next = smp->sm_next;
1710 smp->sm_next->sm_prev = smp->sm_prev;
1711 } else if (smp == smp->sm_next) {
1712 /*
1713 * Taking the last smap on freelist
1714 */
1715 freeq->smq_free = NULL;
1716 } else {
1717 /*
1718 * Reclaiming 1st smap on list
1719 */
1720 freeq->smq_free = smp->sm_next;
1721 smp->sm_prev->sm_next = smp->sm_next;
1722 smp->sm_next->sm_prev = smp->sm_prev;
1723 }
1724 mutex_exit(&freeq->smq_mtx);
1725 smp->sm_prev = smp->sm_next = NULL;
1726 } else {
1727 ASSERT(smp->sm_prev == NULL);
1728 segmapcnt.smp_stolen.value.ul++;
1729 }
1730
1731 } else {
1732 segmapcnt.smp_get_use.value.ul++;
1733 }
1734 smp->sm_refcnt++; /* another user */
1735
1736 /*
1737 * We don't invoke segmap_fault via TLB miss, so we set ref
1738 * and mod bits in advance. For S_OTHER we set them in
1739 * segmap_fault F_SOFTUNLOCK.
1740 */
1741 if (is_kpm) {
1742 if (rw == S_WRITE) {
1743 smp->sm_flags |= SM_WRITE_DATA;
1744 } else if (rw == S_READ) {
1745 smp->sm_flags |= SM_READ_DATA;
1746 }
1747 }
1748 mutex_exit(smapmtx);
1749
1750 newslot = 0;
1751 } else {
1752
1753 uint32_t free_ndx, *free_ndxp;
1754 union segmap_cpu *scpu;
1755
1756 /*
1757 * On a PAC machine or a machine with anti-alias
1758 * hardware, smd_colormsk will be zero.
1759 *
1760 * On a VAC machine- pick color by offset in the file
1761 * so we won't get VAC conflicts on elf files.
1762 * On data files, color does not matter but we
1763 * don't know what kind of file it is so we always
1764 * pick color by offset. This causes color
1765 * corresponding to file offset zero to be used more
1766 * heavily.
1767 */
1768 color = (baseoff >> MAXBSHIFT) & smd_colormsk;
1769 scpu = smd_cpu+CPU->cpu_seqid;
1770 free_ndxp = &scpu->scpu.scpu_free_ndx[color];
1771 free_ndx = (*free_ndxp += smd_ncolor) & smd_freemsk;
1772 #ifdef DEBUG
1773 colors_used[free_ndx]++;
1774 #endif /* DEBUG */
1775
1776 /*
1777 * Get a locked smp slot from the free list.
1778 */
1779 smp = get_free_smp(free_ndx);
1780 smapmtx = SMAPMTX(smp);
1781
1782 ASSERT(smp->sm_vp == NULL);
1783
1784 if ((nsmp = segmap_hashin(smp, vp, baseoff, hashid)) != NULL) {
1785 /*
1786 * Failed to hashin, there exists one now.
1787 * Return the smp we just allocated.
1788 */
1789 segmap_smapadd(smp);
1790 mutex_exit(smapmtx);
1791
1792 smp = nsmp;
1793 goto vrfy_smp;
1794 }
1795 smp->sm_refcnt++; /* another user */
1796
1797 /*
1798 * We don't invoke segmap_fault via TLB miss, so we set ref
1799 * and mod bits in advance. For S_OTHER we set them in
1800 * segmap_fault F_SOFTUNLOCK.
1801 */
1802 if (is_kpm) {
1803 if (rw == S_WRITE) {
1804 smp->sm_flags |= SM_WRITE_DATA;
1805 } else if (rw == S_READ) {
1806 smp->sm_flags |= SM_READ_DATA;
1807 }
1808 }
1809 mutex_exit(smapmtx);
1810
1811 newslot = 1;
1812 }
1813
1814 if (!is_kpm)
1815 goto use_segmap_range;
1816
1817 /*
1818 * Use segkpm
1819 */
1820 /* Lint directive required until 6746211 is fixed */
1821 /*CONSTCOND*/
1822 ASSERT(PAGESIZE == MAXBSIZE);
1823
1824 /*
1825 * remember the last smp faulted on this cpu.
1826 */
1827 (smd_cpu+CPU->cpu_seqid)->scpu.scpu_last_smap = smp;
1828
1829 if (forcefault == SM_PAGECREATE) {
1830 baseaddr = segmap_pagecreate_kpm(seg, vp, baseoff, smp, rw);
1831 return (baseaddr);
1832 }
1833
1834 if (newslot == 0 &&
1835 (pp = GET_KPME(smp)->kpe_page) != NULL) {
1836
1837 /* fastpath */
1838 switch (rw) {
1839 case S_READ:
1840 case S_WRITE:
1841 if (page_trylock(pp, SE_SHARED)) {
1842 if (PP_ISFREE(pp) ||
1843 !(pp->p_vnode == vp &&
1844 pp->p_offset == baseoff)) {
1845 page_unlock(pp);
1846 pp = page_lookup(vp, baseoff,
1847 SE_SHARED);
1848 }
1849 } else {
1850 pp = page_lookup(vp, baseoff, SE_SHARED);
1851 }
1852
1853 if (pp == NULL) {
1854 ASSERT(GET_KPME(smp)->kpe_page == NULL);
1855 break;
1856 }
1857
1858 if (rw == S_WRITE &&
1859 hat_page_getattr(pp, P_MOD | P_REF) !=
1860 (P_MOD | P_REF)) {
1861 page_unlock(pp);
1862 break;
1863 }
1864
1865 /*
1866 * We have the p_selock as reader, grab_smp
1867 * can't hit us, we have bumped the smap
1868 * refcnt and hat_pageunload needs the
1869 * p_selock exclusive.
1870 */
1871 kpme = GET_KPME(smp);
1872 if (kpme->kpe_page == pp) {
1873 baseaddr = hat_kpm_page2va(pp, 0);
1874 } else if (kpme->kpe_page == NULL) {
1875 baseaddr = hat_kpm_mapin(pp, kpme);
1876 } else {
1877 panic("segmap_getmapflt: stale "
1878 "kpme page, kpme %p", (void *)kpme);
1879 /*NOTREACHED*/
1880 }
1881
1882 /*
1883 * We don't invoke segmap_fault via TLB miss,
1884 * so we set ref and mod bits in advance.
1885 * For S_OTHER and we set them in segmap_fault
1886 * F_SOFTUNLOCK.
1887 */
1888 if (rw == S_READ && !hat_isref(pp))
1889 hat_setref(pp);
1890
1891 return (baseaddr);
1892 default:
1893 break;
1894 }
1895 }
1896
1897 base = segkpm_create_va(baseoff);
1898 error = VOP_GETPAGE(vp, (offset_t)baseoff, len, &prot, pl, MAXBSIZE,
1899 seg, base, rw, CRED(), NULL);
1900
1901 pp = pl[0];
1902 if (error || pp == NULL) {
1903 /*
1904 * Use segmap address slot and let segmap_fault deal
1905 * with the error cases. There is no error return
1906 * possible here.
1907 */
1908 goto use_segmap_range;
1909 }
1910
1911 ASSERT(pl[1] == NULL);
1912
1913 /*
1914 * When prot is not returned w/ PROT_ALL the returned pages
1915 * are not backed by fs blocks. For most of the segmap users
1916 * this is no problem, they don't write to the pages in the
1917 * same request and therefore don't rely on a following
1918 * trap driven segmap_fault. With SM_LOCKPROTO users it
1919 * is more secure to use segkmap adresses to allow
1920 * protection segmap_fault's.
1921 */
1922 if (prot != PROT_ALL && forcefault == SM_LOCKPROTO) {
1923 /*
1924 * Use segmap address slot and let segmap_fault
1925 * do the error return.
1926 */
1927 ASSERT(rw != S_WRITE);
1928 ASSERT(PAGE_LOCKED(pp));
1929 page_unlock(pp);
1930 forcefault = 0;
1931 goto use_segmap_range;
1932 }
1933
1934 /*
1935 * We have the p_selock as reader, grab_smp can't hit us, we
1936 * have bumped the smap refcnt and hat_pageunload needs the
1937 * p_selock exclusive.
1938 */
1939 kpme = GET_KPME(smp);
1940 if (kpme->kpe_page == pp) {
1941 baseaddr = hat_kpm_page2va(pp, 0);
1942 } else if (kpme->kpe_page == NULL) {
1943 baseaddr = hat_kpm_mapin(pp, kpme);
1944 } else {
1945 panic("segmap_getmapflt: stale kpme page after "
1946 "VOP_GETPAGE, kpme %p", (void *)kpme);
1947 /*NOTREACHED*/
1948 }
1949
1950 smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++;
1951
1952 return (baseaddr);
1953
1954
1955 use_segmap_range:
1956 baseaddr = seg->s_base + ((smp - smd_smap) * MAXBSIZE);
1957 TRACE_4(TR_FAC_VM, TR_SEGMAP_GETMAP,
1958 "segmap_getmap:seg %p addr %p vp %p offset %llx",
1959 seg, baseaddr, vp, baseoff);
1960
1961 /*
1962 * Prefault the translations
1963 */
1964 vaddr = baseaddr + (off - baseoff);
1965 if (forcefault && (newslot || !hat_probe(kas.a_hat, vaddr))) {
1966
1967 caddr_t pgaddr = (caddr_t)((uintptr_t)vaddr &
1968 (uintptr_t)PAGEMASK);
1969
1970 (void) segmap_fault(kas.a_hat, seg, pgaddr,
1971 (vaddr + len - pgaddr + PAGESIZE - 1) & (uintptr_t)PAGEMASK,
1972 F_INVAL, rw);
1973 }
1974
1975 return (baseaddr);
1976 }
1977
1978 int
segmap_release(struct seg * seg,caddr_t addr,uint_t flags)1979 segmap_release(struct seg *seg, caddr_t addr, uint_t flags)
1980 {
1981 struct smap *smp;
1982 int error;
1983 int bflags = 0;
1984 struct vnode *vp;
1985 u_offset_t offset;
1986 kmutex_t *smtx;
1987 int is_kpm = 0;
1988 page_t *pp;
1989
1990 if (segmap_kpm && IS_KPM_ADDR(addr)) {
1991
1992 if (((uintptr_t)addr & MAXBOFFSET) != 0) {
1993 panic("segmap_release: addr %p not "
1994 "MAXBSIZE aligned", (void *)addr);
1995 /*NOTREACHED*/
1996 }
1997
1998 if ((smp = get_smap_kpm(addr, &pp)) == NULL) {
1999 panic("segmap_release: smap not found "
2000 "for addr %p", (void *)addr);
2001 /*NOTREACHED*/
2002 }
2003
2004 TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP,
2005 "segmap_relmap:seg %p addr %p smp %p",
2006 seg, addr, smp);
2007
2008 smtx = SMAPMTX(smp);
2009
2010 /*
2011 * For compatibility reasons segmap_pagecreate_kpm sets this
2012 * flag to allow a following segmap_pagecreate to return
2013 * this as "newpage" flag. When segmap_pagecreate is not
2014 * called at all we clear it now.
2015 */
2016 smp->sm_flags &= ~SM_KPM_NEWPAGE;
2017 is_kpm = 1;
2018 if (smp->sm_flags & SM_WRITE_DATA) {
2019 hat_setrefmod(pp);
2020 } else if (smp->sm_flags & SM_READ_DATA) {
2021 hat_setref(pp);
2022 }
2023 } else {
2024 if (addr < seg->s_base || addr >= seg->s_base + seg->s_size ||
2025 ((uintptr_t)addr & MAXBOFFSET) != 0) {
2026 panic("segmap_release: bad addr %p", (void *)addr);
2027 /*NOTREACHED*/
2028 }
2029 smp = GET_SMAP(seg, addr);
2030
2031 TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP,
2032 "segmap_relmap:seg %p addr %p smp %p",
2033 seg, addr, smp);
2034
2035 smtx = SMAPMTX(smp);
2036 mutex_enter(smtx);
2037 smp->sm_flags |= SM_NOTKPM_RELEASED;
2038 }
2039
2040 ASSERT(smp->sm_refcnt > 0);
2041
2042 /*
2043 * Need to call VOP_PUTPAGE() if any flags (except SM_DONTNEED)
2044 * are set.
2045 */
2046 if ((flags & ~SM_DONTNEED) != 0) {
2047 if (flags & SM_WRITE)
2048 segmapcnt.smp_rel_write.value.ul++;
2049 if (flags & SM_ASYNC) {
2050 bflags |= B_ASYNC;
2051 segmapcnt.smp_rel_async.value.ul++;
2052 }
2053 if (flags & SM_INVAL) {
2054 bflags |= B_INVAL;
2055 segmapcnt.smp_rel_abort.value.ul++;
2056 }
2057 if (flags & SM_DESTROY) {
2058 bflags |= (B_INVAL|B_TRUNC);
2059 segmapcnt.smp_rel_abort.value.ul++;
2060 }
2061 if (smp->sm_refcnt == 1) {
2062 /*
2063 * We only bother doing the FREE and DONTNEED flags
2064 * if no one else is still referencing this mapping.
2065 */
2066 if (flags & SM_FREE) {
2067 bflags |= B_FREE;
2068 segmapcnt.smp_rel_free.value.ul++;
2069 }
2070 if (flags & SM_DONTNEED) {
2071 bflags |= B_DONTNEED;
2072 segmapcnt.smp_rel_dontneed.value.ul++;
2073 }
2074 }
2075 } else {
2076 smd_cpu[CPU->cpu_seqid].scpu.scpu_release++;
2077 }
2078
2079 vp = smp->sm_vp;
2080 offset = smp->sm_off;
2081
2082 if (--smp->sm_refcnt == 0) {
2083
2084 smp->sm_flags &= ~(SM_WRITE_DATA | SM_READ_DATA);
2085
2086 if (flags & (SM_INVAL|SM_DESTROY)) {
2087 segmap_hashout(smp); /* remove map info */
2088 if (is_kpm) {
2089 hat_kpm_mapout(pp, GET_KPME(smp), addr);
2090 if (smp->sm_flags & SM_NOTKPM_RELEASED) {
2091 smp->sm_flags &= ~SM_NOTKPM_RELEASED;
2092 hat_unload(kas.a_hat, segkmap->s_base +
2093 ((smp - smd_smap) * MAXBSIZE),
2094 MAXBSIZE, HAT_UNLOAD);
2095 }
2096
2097 } else {
2098 if (segmap_kpm)
2099 segkpm_mapout_validkpme(GET_KPME(smp));
2100
2101 smp->sm_flags &= ~SM_NOTKPM_RELEASED;
2102 hat_unload(kas.a_hat, addr, MAXBSIZE,
2103 HAT_UNLOAD);
2104 }
2105 }
2106 segmap_smapadd(smp); /* add to free list */
2107 }
2108
2109 mutex_exit(smtx);
2110
2111 if (is_kpm)
2112 page_unlock(pp);
2113 /*
2114 * Now invoke VOP_PUTPAGE() if any flags (except SM_DONTNEED)
2115 * are set.
2116 */
2117 if ((flags & ~SM_DONTNEED) != 0) {
2118 error = VOP_PUTPAGE(vp, offset, MAXBSIZE,
2119 bflags, CRED(), NULL);
2120 } else {
2121 error = 0;
2122 }
2123
2124 return (error);
2125 }
2126
2127 /*
2128 * Dump the pages belonging to this segmap segment.
2129 */
2130 static void
segmap_dump(struct seg * seg)2131 segmap_dump(struct seg *seg)
2132 {
2133 struct segmap_data *smd;
2134 struct smap *smp, *smp_end;
2135 page_t *pp;
2136 pfn_t pfn;
2137 u_offset_t off;
2138 caddr_t addr;
2139
2140 smd = (struct segmap_data *)seg->s_data;
2141 addr = seg->s_base;
2142 for (smp = smd->smd_sm, smp_end = smp + smd->smd_npages;
2143 smp < smp_end; smp++) {
2144
2145 if (smp->sm_refcnt) {
2146 for (off = 0; off < MAXBSIZE; off += PAGESIZE) {
2147 int we_own_it = 0;
2148
2149 /*
2150 * If pp == NULL, the page either does
2151 * not exist or is exclusively locked.
2152 * So determine if it exists before
2153 * searching for it.
2154 */
2155 if ((pp = page_lookup_nowait(smp->sm_vp,
2156 smp->sm_off + off, SE_SHARED)))
2157 we_own_it = 1;
2158 else
2159 pp = page_exists(smp->sm_vp,
2160 smp->sm_off + off);
2161
2162 if (pp) {
2163 pfn = page_pptonum(pp);
2164 dump_addpage(seg->s_as,
2165 addr + off, pfn);
2166 if (we_own_it)
2167 page_unlock(pp);
2168 }
2169 dump_timeleft = dump_timeout;
2170 }
2171 }
2172 addr += MAXBSIZE;
2173 }
2174 }
2175
2176 /*ARGSUSED*/
2177 static int
segmap_pagelock(struct seg * seg,caddr_t addr,size_t len,struct page *** ppp,enum lock_type type,enum seg_rw rw)2178 segmap_pagelock(struct seg *seg, caddr_t addr, size_t len,
2179 struct page ***ppp, enum lock_type type, enum seg_rw rw)
2180 {
2181 return (ENOTSUP);
2182 }
2183
2184 static int
segmap_getmemid(struct seg * seg,caddr_t addr,memid_t * memidp)2185 segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2186 {
2187 struct segmap_data *smd = (struct segmap_data *)seg->s_data;
2188
2189 memidp->val[0] = (uintptr_t)smd->smd_sm->sm_vp;
2190 memidp->val[1] = smd->smd_sm->sm_off + (uintptr_t)(addr - seg->s_base);
2191 return (0);
2192 }
2193
2194 /*ARGSUSED*/
2195 static lgrp_mem_policy_info_t *
segmap_getpolicy(struct seg * seg,caddr_t addr)2196 segmap_getpolicy(struct seg *seg, caddr_t addr)
2197 {
2198 return (NULL);
2199 }
2200
2201 /*ARGSUSED*/
2202 static int
segmap_capable(struct seg * seg,segcapability_t capability)2203 segmap_capable(struct seg *seg, segcapability_t capability)
2204 {
2205 return (0);
2206 }
2207
2208
2209 #ifdef SEGKPM_SUPPORT
2210
2211 /*
2212 * segkpm support routines
2213 */
2214
2215 static caddr_t
segmap_pagecreate_kpm(struct seg * seg,vnode_t * vp,u_offset_t off,struct smap * smp,enum seg_rw rw)2216 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off,
2217 struct smap *smp, enum seg_rw rw)
2218 {
2219 caddr_t base;
2220 page_t *pp;
2221 int newpage = 0;
2222 struct kpme *kpme;
2223
2224 ASSERT(smp->sm_refcnt > 0);
2225
2226 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
2227 kmutex_t *smtx;
2228
2229 base = segkpm_create_va(off);
2230
2231 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT,
2232 seg, base)) == NULL) {
2233 panic("segmap_pagecreate_kpm: "
2234 "page_create failed");
2235 /*NOTREACHED*/
2236 }
2237
2238 newpage = 1;
2239 page_io_unlock(pp);
2240 ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
2241
2242 /*
2243 * Mark this here until the following segmap_pagecreate
2244 * or segmap_release.
2245 */
2246 smtx = SMAPMTX(smp);
2247 mutex_enter(smtx);
2248 smp->sm_flags |= SM_KPM_NEWPAGE;
2249 mutex_exit(smtx);
2250 }
2251
2252 kpme = GET_KPME(smp);
2253 if (!newpage && kpme->kpe_page == pp)
2254 base = hat_kpm_page2va(pp, 0);
2255 else
2256 base = hat_kpm_mapin(pp, kpme);
2257
2258 /*
2259 * FS code may decide not to call segmap_pagecreate and we
2260 * don't invoke segmap_fault via TLB miss, so we have to set
2261 * ref and mod bits in advance.
2262 */
2263 if (rw == S_WRITE) {
2264 hat_setrefmod(pp);
2265 } else {
2266 ASSERT(rw == S_READ);
2267 hat_setref(pp);
2268 }
2269
2270 smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++;
2271
2272 return (base);
2273 }
2274
2275 /*
2276 * Find the smap structure corresponding to the
2277 * KPM addr and return it locked.
2278 */
2279 struct smap *
get_smap_kpm(caddr_t addr,page_t ** ppp)2280 get_smap_kpm(caddr_t addr, page_t **ppp)
2281 {
2282 struct smap *smp;
2283 struct vnode *vp;
2284 u_offset_t offset;
2285 caddr_t baseaddr = (caddr_t)((uintptr_t)addr & MAXBMASK);
2286 int hashid;
2287 kmutex_t *hashmtx;
2288 page_t *pp;
2289 union segmap_cpu *scpu;
2290
2291 pp = hat_kpm_vaddr2page(baseaddr);
2292
2293 ASSERT(pp && !PP_ISFREE(pp));
2294 ASSERT(PAGE_LOCKED(pp));
2295 ASSERT(((uintptr_t)pp->p_offset & MAXBOFFSET) == 0);
2296
2297 vp = pp->p_vnode;
2298 offset = pp->p_offset;
2299 ASSERT(vp != NULL);
2300
2301 /*
2302 * Assume the last smap used on this cpu is the one needed.
2303 */
2304 scpu = smd_cpu+CPU->cpu_seqid;
2305 smp = scpu->scpu.scpu_last_smap;
2306 mutex_enter(&smp->sm_mtx);
2307 if (smp->sm_vp == vp && smp->sm_off == offset) {
2308 ASSERT(smp->sm_refcnt > 0);
2309 } else {
2310 /*
2311 * Assumption wrong, find the smap on the hash chain.
2312 */
2313 mutex_exit(&smp->sm_mtx);
2314 SMAP_HASHFUNC(vp, offset, hashid); /* macro assigns hashid */
2315 hashmtx = SHASHMTX(hashid);
2316
2317 mutex_enter(hashmtx);
2318 smp = smd_hash[hashid].sh_hash_list;
2319 for (; smp != NULL; smp = smp->sm_hash) {
2320 if (smp->sm_vp == vp && smp->sm_off == offset)
2321 break;
2322 }
2323 mutex_exit(hashmtx);
2324 if (smp) {
2325 mutex_enter(&smp->sm_mtx);
2326 ASSERT(smp->sm_vp == vp && smp->sm_off == offset);
2327 }
2328 }
2329
2330 if (ppp)
2331 *ppp = smp ? pp : NULL;
2332
2333 return (smp);
2334 }
2335
2336 #else /* SEGKPM_SUPPORT */
2337
2338 /* segkpm stubs */
2339
2340 /*ARGSUSED*/
2341 static caddr_t
segmap_pagecreate_kpm(struct seg * seg,vnode_t * vp,u_offset_t off,struct smap * smp,enum seg_rw rw)2342 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off,
2343 struct smap *smp, enum seg_rw rw)
2344 {
2345 return (NULL);
2346 }
2347
2348 /*ARGSUSED*/
2349 struct smap *
get_smap_kpm(caddr_t addr,page_t ** ppp)2350 get_smap_kpm(caddr_t addr, page_t **ppp)
2351 {
2352 return (NULL);
2353 }
2354
2355 #endif /* SEGKPM_SUPPORT */
2356