1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_ddb.h"
34 #include "opt_ktrace.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_stack.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/conf.h>
42 #include <sys/elf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/ipc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/loginclass.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/shm.h>
66 #include <sys/smp.h>
67 #include <sys/stack.h>
68 #include <sys/stat.h>
69 #include <sys/dtrace_bsd.h>
70 #include <sys/sysctl.h>
71 #include <sys/filedesc.h>
72 #include <sys/tty.h>
73 #include <sys/signalvar.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/user.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #ifdef KTRACE
80 #include <sys/ktrace.h>
81 #endif
82
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/uma.h>
96
97 #include <fs/devfs/devfs.h>
98
99 #ifdef COMPAT_FREEBSD32
100 #include <compat/freebsd32/freebsd32.h>
101 #include <compat/freebsd32/freebsd32_util.h>
102 #endif
103
104 SDT_PROVIDER_DEFINE(proc);
105
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115 int preferthread);
116 static void pgdelete(struct pgrp *);
117 static int pgrp_init(void *mem, int size, int flags);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123
124 /*
125 * Other process lists
126 */
127 struct pidhashhead *pidhashtbl = NULL;
128 struct sx *pidhashtbl_lock;
129 u_long pidhash;
130 u_long pidhashlock;
131 struct pgrphashhead *pgrphashtbl;
132 u_long pgrphash;
133 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
134 struct sx __exclusive_cache_line allproc_lock;
135 struct sx __exclusive_cache_line proctree_lock;
136 struct mtx __exclusive_cache_line ppeers_lock;
137 struct mtx __exclusive_cache_line procid_lock;
138 uma_zone_t proc_zone;
139 uma_zone_t pgrp_zone;
140
141 /*
142 * The offset of various fields in struct proc and struct thread.
143 * These are used by kernel debuggers to enumerate kernel threads and
144 * processes.
145 */
146 const int proc_off_p_pid = offsetof(struct proc, p_pid);
147 const int proc_off_p_comm = offsetof(struct proc, p_comm);
148 const int proc_off_p_list = offsetof(struct proc, p_list);
149 const int proc_off_p_hash = offsetof(struct proc, p_hash);
150 const int proc_off_p_threads = offsetof(struct proc, p_threads);
151 const int thread_off_td_tid = offsetof(struct thread, td_tid);
152 const int thread_off_td_name = offsetof(struct thread, td_name);
153 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
154 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
155 const int thread_off_td_plist = offsetof(struct thread, td_plist);
156
157 EVENTHANDLER_LIST_DEFINE(process_ctor);
158 EVENTHANDLER_LIST_DEFINE(process_dtor);
159 EVENTHANDLER_LIST_DEFINE(process_init);
160 EVENTHANDLER_LIST_DEFINE(process_fini);
161 EVENTHANDLER_LIST_DEFINE(process_exit);
162 EVENTHANDLER_LIST_DEFINE(process_fork);
163 EVENTHANDLER_LIST_DEFINE(process_exec);
164
165 int kstack_pages = KSTACK_PAGES;
166 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
167 &kstack_pages, 0,
168 "Kernel stack size in pages");
169 static int vmmap_skip_res_cnt = 0;
170 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
171 &vmmap_skip_res_cnt, 0,
172 "Skip calculation of the pages resident count in kern.proc.vmmap");
173
174 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
175 #ifdef COMPAT_FREEBSD32
176 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
177 #endif
178
179 /*
180 * Initialize global process hashing structures.
181 */
182 void
procinit(void)183 procinit(void)
184 {
185 u_long i;
186
187 sx_init(&allproc_lock, "allproc");
188 sx_init(&proctree_lock, "proctree");
189 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
190 mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
191 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
192 pidhashlock = (pidhash + 1) / 64;
193 if (pidhashlock > 0)
194 pidhashlock--;
195 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
196 M_PROC, M_WAITOK | M_ZERO);
197 for (i = 0; i < pidhashlock + 1; i++)
198 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
199 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
200 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
201 proc_ctor, proc_dtor, proc_init, proc_fini,
202 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
203 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
204 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
205 uihashinit();
206 }
207
208 /*
209 * Prepare a proc for use.
210 */
211 static int
proc_ctor(void * mem,int size,void * arg,int flags)212 proc_ctor(void *mem, int size, void *arg, int flags)
213 {
214 struct proc *p;
215 struct thread *td;
216
217 p = (struct proc *)mem;
218 #ifdef KDTRACE_HOOKS
219 kdtrace_proc_ctor(p);
220 #endif
221 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
222 td = FIRST_THREAD_IN_PROC(p);
223 if (td != NULL) {
224 /* Make sure all thread constructors are executed */
225 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
226 }
227 return (0);
228 }
229
230 /*
231 * Reclaim a proc after use.
232 */
233 static void
proc_dtor(void * mem,int size,void * arg)234 proc_dtor(void *mem, int size, void *arg)
235 {
236 struct proc *p;
237 struct thread *td;
238
239 /* INVARIANTS checks go here */
240 p = (struct proc *)mem;
241 td = FIRST_THREAD_IN_PROC(p);
242 if (td != NULL) {
243 #ifdef INVARIANTS
244 KASSERT((p->p_numthreads == 1),
245 ("bad number of threads in exiting process"));
246 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
247 #endif
248 /* Free all OSD associated to this thread. */
249 osd_thread_exit(td);
250 ast_kclear(td);
251
252 /* Make sure all thread destructors are executed */
253 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
254 }
255 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
256 #ifdef KDTRACE_HOOKS
257 kdtrace_proc_dtor(p);
258 #endif
259 if (p->p_ksi != NULL)
260 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
261 }
262
263 /*
264 * Initialize type-stable parts of a proc (when newly created).
265 */
266 static int
proc_init(void * mem,int size,int flags)267 proc_init(void *mem, int size, int flags)
268 {
269 struct proc *p;
270
271 p = (struct proc *)mem;
272 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
273 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
274 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
275 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
276 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
277 cv_init(&p->p_pwait, "ppwait");
278 TAILQ_INIT(&p->p_threads); /* all threads in proc */
279 EVENTHANDLER_DIRECT_INVOKE(process_init, p);
280 p->p_stats = pstats_alloc();
281 p->p_pgrp = NULL;
282 TAILQ_INIT(&p->p_kqtim_stop);
283 return (0);
284 }
285
286 /*
287 * UMA should ensure that this function is never called.
288 * Freeing a proc structure would violate type stability.
289 */
290 static void
proc_fini(void * mem,int size)291 proc_fini(void *mem, int size)
292 {
293 #ifdef notnow
294 struct proc *p;
295
296 p = (struct proc *)mem;
297 EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
298 pstats_free(p->p_stats);
299 thread_free(FIRST_THREAD_IN_PROC(p));
300 mtx_destroy(&p->p_mtx);
301 if (p->p_ksi != NULL)
302 ksiginfo_free(p->p_ksi);
303 #else
304 panic("proc reclaimed");
305 #endif
306 }
307
308 static int
pgrp_init(void * mem,int size,int flags)309 pgrp_init(void *mem, int size, int flags)
310 {
311 struct pgrp *pg;
312
313 pg = mem;
314 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
315 sx_init(&pg->pg_killsx, "killpg racer");
316 return (0);
317 }
318
319 /*
320 * PID space management.
321 *
322 * These bitmaps are used by fork_findpid.
323 */
324 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
325 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
326 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
327 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
328
329 static bitstr_t *proc_id_array[] = {
330 proc_id_pidmap,
331 proc_id_grpidmap,
332 proc_id_sessidmap,
333 proc_id_reapmap,
334 };
335
336 void
proc_id_set(int type,pid_t id)337 proc_id_set(int type, pid_t id)
338 {
339
340 KASSERT(type >= 0 && type < nitems(proc_id_array),
341 ("invalid type %d\n", type));
342 mtx_lock(&procid_lock);
343 KASSERT(bit_test(proc_id_array[type], id) == 0,
344 ("bit %d already set in %d\n", id, type));
345 bit_set(proc_id_array[type], id);
346 mtx_unlock(&procid_lock);
347 }
348
349 void
proc_id_set_cond(int type,pid_t id)350 proc_id_set_cond(int type, pid_t id)
351 {
352
353 KASSERT(type >= 0 && type < nitems(proc_id_array),
354 ("invalid type %d\n", type));
355 if (bit_test(proc_id_array[type], id))
356 return;
357 mtx_lock(&procid_lock);
358 bit_set(proc_id_array[type], id);
359 mtx_unlock(&procid_lock);
360 }
361
362 void
proc_id_clear(int type,pid_t id)363 proc_id_clear(int type, pid_t id)
364 {
365
366 KASSERT(type >= 0 && type < nitems(proc_id_array),
367 ("invalid type %d\n", type));
368 mtx_lock(&procid_lock);
369 KASSERT(bit_test(proc_id_array[type], id) != 0,
370 ("bit %d not set in %d\n", id, type));
371 bit_clear(proc_id_array[type], id);
372 mtx_unlock(&procid_lock);
373 }
374
375 /*
376 * Is p an inferior of the current process?
377 */
378 int
inferior(struct proc * p)379 inferior(struct proc *p)
380 {
381
382 sx_assert(&proctree_lock, SX_LOCKED);
383 PROC_LOCK_ASSERT(p, MA_OWNED);
384 for (; p != curproc; p = proc_realparent(p)) {
385 if (p->p_pid == 0)
386 return (0);
387 }
388 return (1);
389 }
390
391 /*
392 * Shared lock all the pid hash lists.
393 */
394 void
pidhash_slockall(void)395 pidhash_slockall(void)
396 {
397 u_long i;
398
399 for (i = 0; i < pidhashlock + 1; i++)
400 sx_slock(&pidhashtbl_lock[i]);
401 }
402
403 /*
404 * Shared unlock all the pid hash lists.
405 */
406 void
pidhash_sunlockall(void)407 pidhash_sunlockall(void)
408 {
409 u_long i;
410
411 for (i = 0; i < pidhashlock + 1; i++)
412 sx_sunlock(&pidhashtbl_lock[i]);
413 }
414
415 /*
416 * Similar to pfind(), this function locate a process by number.
417 */
418 struct proc *
pfind_any_locked(pid_t pid)419 pfind_any_locked(pid_t pid)
420 {
421 struct proc *p;
422
423 sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
424 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
425 if (p->p_pid == pid) {
426 PROC_LOCK(p);
427 if (p->p_state == PRS_NEW) {
428 PROC_UNLOCK(p);
429 p = NULL;
430 }
431 break;
432 }
433 }
434 return (p);
435 }
436
437 /*
438 * Locate a process by number.
439 *
440 * By not returning processes in the PRS_NEW state, we allow callers to avoid
441 * testing for that condition to avoid dereferencing p_ucred, et al.
442 */
443 static __always_inline struct proc *
_pfind(pid_t pid,bool zombie)444 _pfind(pid_t pid, bool zombie)
445 {
446 struct proc *p;
447
448 p = curproc;
449 if (p->p_pid == pid) {
450 PROC_LOCK(p);
451 return (p);
452 }
453 sx_slock(PIDHASHLOCK(pid));
454 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
455 if (p->p_pid == pid) {
456 PROC_LOCK(p);
457 if (p->p_state == PRS_NEW ||
458 (!zombie && p->p_state == PRS_ZOMBIE)) {
459 PROC_UNLOCK(p);
460 p = NULL;
461 }
462 break;
463 }
464 }
465 sx_sunlock(PIDHASHLOCK(pid));
466 return (p);
467 }
468
469 struct proc *
pfind(pid_t pid)470 pfind(pid_t pid)
471 {
472
473 return (_pfind(pid, false));
474 }
475
476 /*
477 * Same as pfind but allow zombies.
478 */
479 struct proc *
pfind_any(pid_t pid)480 pfind_any(pid_t pid)
481 {
482
483 return (_pfind(pid, true));
484 }
485
486 /*
487 * Locate a process group by number.
488 * The caller must hold proctree_lock.
489 */
490 struct pgrp *
pgfind(pid_t pgid)491 pgfind(pid_t pgid)
492 {
493 struct pgrp *pgrp;
494
495 sx_assert(&proctree_lock, SX_LOCKED);
496
497 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
498 if (pgrp->pg_id == pgid) {
499 PGRP_LOCK(pgrp);
500 return (pgrp);
501 }
502 }
503 return (NULL);
504 }
505
506 /*
507 * Locate process and do additional manipulations, depending on flags.
508 */
509 int
pget(pid_t pid,int flags,struct proc ** pp)510 pget(pid_t pid, int flags, struct proc **pp)
511 {
512 struct proc *p;
513 struct thread *td1;
514 int error;
515
516 p = curproc;
517 if (p->p_pid == pid) {
518 PROC_LOCK(p);
519 } else {
520 p = NULL;
521 if (pid <= PID_MAX) {
522 if ((flags & PGET_NOTWEXIT) == 0)
523 p = pfind_any(pid);
524 else
525 p = pfind(pid);
526 } else if ((flags & PGET_NOTID) == 0) {
527 td1 = tdfind(pid, -1);
528 if (td1 != NULL)
529 p = td1->td_proc;
530 }
531 if (p == NULL)
532 return (ESRCH);
533 if ((flags & PGET_CANSEE) != 0) {
534 error = p_cansee(curthread, p);
535 if (error != 0)
536 goto errout;
537 }
538 }
539 if ((flags & PGET_CANDEBUG) != 0) {
540 error = p_candebug(curthread, p);
541 if (error != 0)
542 goto errout;
543 }
544 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
545 error = EPERM;
546 goto errout;
547 }
548 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
549 error = ESRCH;
550 goto errout;
551 }
552 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
553 /*
554 * XXXRW: Not clear ESRCH is the right error during proc
555 * execve().
556 */
557 error = ESRCH;
558 goto errout;
559 }
560 if ((flags & PGET_HOLD) != 0) {
561 _PHOLD(p);
562 PROC_UNLOCK(p);
563 }
564 *pp = p;
565 return (0);
566 errout:
567 PROC_UNLOCK(p);
568 return (error);
569 }
570
571 /*
572 * Create a new process group.
573 * pgid must be equal to the pid of p.
574 * Begin a new session if required.
575 */
576 int
enterpgrp(struct proc * p,pid_t pgid,struct pgrp * pgrp,struct session * sess)577 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
578 {
579 struct pgrp *old_pgrp;
580
581 sx_assert(&proctree_lock, SX_XLOCKED);
582
583 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
584 KASSERT(p->p_pid == pgid,
585 ("enterpgrp: new pgrp and pid != pgid"));
586 KASSERT(pgfind(pgid) == NULL,
587 ("enterpgrp: pgrp with pgid exists"));
588 KASSERT(!SESS_LEADER(p),
589 ("enterpgrp: session leader attempted setpgrp"));
590
591 old_pgrp = p->p_pgrp;
592 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
593 sx_xunlock(&proctree_lock);
594 sx_xlock(&old_pgrp->pg_killsx);
595 sx_xunlock(&old_pgrp->pg_killsx);
596 return (ERESTART);
597 }
598 MPASS(old_pgrp == p->p_pgrp);
599
600 if (sess != NULL) {
601 /*
602 * new session
603 */
604 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
605 PROC_LOCK(p);
606 p->p_flag &= ~P_CONTROLT;
607 PROC_UNLOCK(p);
608 PGRP_LOCK(pgrp);
609 sess->s_leader = p;
610 sess->s_sid = p->p_pid;
611 proc_id_set(PROC_ID_SESSION, p->p_pid);
612 refcount_init(&sess->s_count, 1);
613 sess->s_ttyvp = NULL;
614 sess->s_ttydp = NULL;
615 sess->s_ttyp = NULL;
616 bcopy(p->p_session->s_login, sess->s_login,
617 sizeof(sess->s_login));
618 pgrp->pg_session = sess;
619 KASSERT(p == curproc,
620 ("enterpgrp: mksession and p != curproc"));
621 } else {
622 pgrp->pg_session = p->p_session;
623 sess_hold(pgrp->pg_session);
624 PGRP_LOCK(pgrp);
625 }
626 pgrp->pg_id = pgid;
627 proc_id_set(PROC_ID_GROUP, p->p_pid);
628 LIST_INIT(&pgrp->pg_members);
629 pgrp->pg_flags = 0;
630
631 /*
632 * As we have an exclusive lock of proctree_lock,
633 * this should not deadlock.
634 */
635 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
636 SLIST_INIT(&pgrp->pg_sigiolst);
637 PGRP_UNLOCK(pgrp);
638
639 doenterpgrp(p, pgrp);
640
641 sx_xunlock(&old_pgrp->pg_killsx);
642 return (0);
643 }
644
645 /*
646 * Move p to an existing process group
647 */
648 int
enterthispgrp(struct proc * p,struct pgrp * pgrp)649 enterthispgrp(struct proc *p, struct pgrp *pgrp)
650 {
651 struct pgrp *old_pgrp;
652
653 sx_assert(&proctree_lock, SX_XLOCKED);
654 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
655 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
656 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
657 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
658 KASSERT(pgrp->pg_session == p->p_session,
659 ("%s: pgrp's session %p, p->p_session %p proc %p\n",
660 __func__, pgrp->pg_session, p->p_session, p));
661 KASSERT(pgrp != p->p_pgrp,
662 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
663
664 old_pgrp = p->p_pgrp;
665 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
666 sx_xunlock(&proctree_lock);
667 sx_xlock(&old_pgrp->pg_killsx);
668 sx_xunlock(&old_pgrp->pg_killsx);
669 return (ERESTART);
670 }
671 MPASS(old_pgrp == p->p_pgrp);
672 if (!sx_try_xlock(&pgrp->pg_killsx)) {
673 sx_xunlock(&old_pgrp->pg_killsx);
674 sx_xunlock(&proctree_lock);
675 sx_xlock(&pgrp->pg_killsx);
676 sx_xunlock(&pgrp->pg_killsx);
677 return (ERESTART);
678 }
679
680 doenterpgrp(p, pgrp);
681
682 sx_xunlock(&pgrp->pg_killsx);
683 sx_xunlock(&old_pgrp->pg_killsx);
684 return (0);
685 }
686
687 /*
688 * If true, any child of q which belongs to group pgrp, qualifies the
689 * process group pgrp as not orphaned.
690 */
691 static bool
isjobproc(struct proc * q,struct pgrp * pgrp)692 isjobproc(struct proc *q, struct pgrp *pgrp)
693 {
694 sx_assert(&proctree_lock, SX_LOCKED);
695
696 return (q->p_pgrp != pgrp &&
697 q->p_pgrp->pg_session == pgrp->pg_session);
698 }
699
700 static struct proc *
jobc_reaper(struct proc * p)701 jobc_reaper(struct proc *p)
702 {
703 struct proc *pp;
704
705 sx_assert(&proctree_lock, SA_LOCKED);
706
707 for (pp = p;;) {
708 pp = pp->p_reaper;
709 if (pp->p_reaper == pp ||
710 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
711 return (pp);
712 }
713 }
714
715 static struct proc *
jobc_parent(struct proc * p,struct proc * p_exiting)716 jobc_parent(struct proc *p, struct proc *p_exiting)
717 {
718 struct proc *pp;
719
720 sx_assert(&proctree_lock, SA_LOCKED);
721
722 pp = proc_realparent(p);
723 if (pp->p_pptr == NULL || pp == p_exiting ||
724 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
725 return (pp);
726 return (jobc_reaper(pp));
727 }
728
729 int
pgrp_calc_jobc(struct pgrp * pgrp)730 pgrp_calc_jobc(struct pgrp *pgrp)
731 {
732 struct proc *q;
733 int cnt;
734
735 #ifdef INVARIANTS
736 if (!mtx_owned(&pgrp->pg_mtx))
737 sx_assert(&proctree_lock, SA_LOCKED);
738 #endif
739
740 cnt = 0;
741 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
742 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
743 q->p_pptr == NULL)
744 continue;
745 if (isjobproc(jobc_parent(q, NULL), pgrp))
746 cnt++;
747 }
748 return (cnt);
749 }
750
751 /*
752 * Move p to a process group
753 */
754 static void
doenterpgrp(struct proc * p,struct pgrp * pgrp)755 doenterpgrp(struct proc *p, struct pgrp *pgrp)
756 {
757 struct pgrp *savepgrp;
758 struct proc *pp;
759
760 sx_assert(&proctree_lock, SX_XLOCKED);
761 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
762 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
763 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
764 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
765
766 savepgrp = p->p_pgrp;
767 pp = jobc_parent(p, NULL);
768
769 PGRP_LOCK(pgrp);
770 PGRP_LOCK(savepgrp);
771 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
772 orphanpg(savepgrp);
773 PROC_LOCK(p);
774 LIST_REMOVE(p, p_pglist);
775 p->p_pgrp = pgrp;
776 PROC_UNLOCK(p);
777 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
778 if (isjobproc(pp, pgrp))
779 pgrp->pg_flags &= ~PGRP_ORPHANED;
780 PGRP_UNLOCK(savepgrp);
781 PGRP_UNLOCK(pgrp);
782 if (LIST_EMPTY(&savepgrp->pg_members))
783 pgdelete(savepgrp);
784 }
785
786 /*
787 * remove process from process group
788 */
789 int
leavepgrp(struct proc * p)790 leavepgrp(struct proc *p)
791 {
792 struct pgrp *savepgrp;
793
794 sx_assert(&proctree_lock, SX_XLOCKED);
795 savepgrp = p->p_pgrp;
796 PGRP_LOCK(savepgrp);
797 PROC_LOCK(p);
798 LIST_REMOVE(p, p_pglist);
799 p->p_pgrp = NULL;
800 PROC_UNLOCK(p);
801 PGRP_UNLOCK(savepgrp);
802 if (LIST_EMPTY(&savepgrp->pg_members))
803 pgdelete(savepgrp);
804 return (0);
805 }
806
807 /*
808 * delete a process group
809 */
810 static void
pgdelete(struct pgrp * pgrp)811 pgdelete(struct pgrp *pgrp)
812 {
813 struct session *savesess;
814 struct tty *tp;
815
816 sx_assert(&proctree_lock, SX_XLOCKED);
817 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
818 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
819
820 /*
821 * Reset any sigio structures pointing to us as a result of
822 * F_SETOWN with our pgid. The proctree lock ensures that
823 * new sigio structures will not be added after this point.
824 */
825 funsetownlst(&pgrp->pg_sigiolst);
826
827 PGRP_LOCK(pgrp);
828 tp = pgrp->pg_session->s_ttyp;
829 LIST_REMOVE(pgrp, pg_hash);
830 savesess = pgrp->pg_session;
831 PGRP_UNLOCK(pgrp);
832
833 /* Remove the reference to the pgrp before deallocating it. */
834 if (tp != NULL) {
835 tty_lock(tp);
836 tty_rel_pgrp(tp, pgrp);
837 }
838
839 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
840 uma_zfree(pgrp_zone, pgrp);
841 sess_release(savesess);
842 }
843
844
845 static void
fixjobc_kill(struct proc * p)846 fixjobc_kill(struct proc *p)
847 {
848 struct proc *q;
849 struct pgrp *pgrp;
850
851 sx_assert(&proctree_lock, SX_LOCKED);
852 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
853 pgrp = p->p_pgrp;
854 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
855 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
856
857 /*
858 * p no longer affects process group orphanage for children.
859 * It is marked by the flag because p is only physically
860 * removed from its process group on wait(2).
861 */
862 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
863 p->p_treeflag |= P_TREE_GRPEXITED;
864
865 /*
866 * Check if exiting p orphans its own group.
867 */
868 pgrp = p->p_pgrp;
869 if (isjobproc(jobc_parent(p, NULL), pgrp)) {
870 PGRP_LOCK(pgrp);
871 if (pgrp_calc_jobc(pgrp) == 0)
872 orphanpg(pgrp);
873 PGRP_UNLOCK(pgrp);
874 }
875
876 /*
877 * Check this process' children to see whether they qualify
878 * their process groups after reparenting to reaper.
879 */
880 LIST_FOREACH(q, &p->p_children, p_sibling) {
881 pgrp = q->p_pgrp;
882 PGRP_LOCK(pgrp);
883 if (pgrp_calc_jobc(pgrp) == 0) {
884 /*
885 * We want to handle exactly the children that
886 * has p as realparent. Then, when calculating
887 * jobc_parent for children, we should ignore
888 * P_TREE_GRPEXITED flag already set on p.
889 */
890 if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
891 orphanpg(pgrp);
892 } else
893 pgrp->pg_flags &= ~PGRP_ORPHANED;
894 PGRP_UNLOCK(pgrp);
895 }
896 LIST_FOREACH(q, &p->p_orphans, p_orphan) {
897 pgrp = q->p_pgrp;
898 PGRP_LOCK(pgrp);
899 if (pgrp_calc_jobc(pgrp) == 0) {
900 if (isjobproc(p, pgrp))
901 orphanpg(pgrp);
902 } else
903 pgrp->pg_flags &= ~PGRP_ORPHANED;
904 PGRP_UNLOCK(pgrp);
905 }
906 }
907
908 void
killjobc(void)909 killjobc(void)
910 {
911 struct session *sp;
912 struct tty *tp;
913 struct proc *p;
914 struct vnode *ttyvp;
915
916 p = curproc;
917 MPASS(p->p_flag & P_WEXIT);
918 sx_assert(&proctree_lock, SX_LOCKED);
919
920 if (SESS_LEADER(p)) {
921 sp = p->p_session;
922
923 /*
924 * s_ttyp is not zero'd; we use this to indicate that
925 * the session once had a controlling terminal. (for
926 * logging and informational purposes)
927 */
928 SESS_LOCK(sp);
929 ttyvp = sp->s_ttyvp;
930 tp = sp->s_ttyp;
931 sp->s_ttyvp = NULL;
932 sp->s_ttydp = NULL;
933 sp->s_leader = NULL;
934 SESS_UNLOCK(sp);
935
936 /*
937 * Signal foreground pgrp and revoke access to
938 * controlling terminal if it has not been revoked
939 * already.
940 *
941 * Because the TTY may have been revoked in the mean
942 * time and could already have a new session associated
943 * with it, make sure we don't send a SIGHUP to a
944 * foreground process group that does not belong to this
945 * session.
946 */
947
948 if (tp != NULL) {
949 tty_lock(tp);
950 if (tp->t_session == sp)
951 tty_signal_pgrp(tp, SIGHUP);
952 tty_unlock(tp);
953 }
954
955 if (ttyvp != NULL) {
956 sx_xunlock(&proctree_lock);
957 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
958 VOP_REVOKE(ttyvp, REVOKEALL);
959 VOP_UNLOCK(ttyvp);
960 }
961 devfs_ctty_unref(ttyvp);
962 sx_xlock(&proctree_lock);
963 }
964 }
965 fixjobc_kill(p);
966 }
967
968 /*
969 * A process group has become orphaned, mark it as such for signal
970 * delivery code. If there are any stopped processes in the group,
971 * hang-up all process in that group.
972 */
973 static void
orphanpg(struct pgrp * pg)974 orphanpg(struct pgrp *pg)
975 {
976 struct proc *p;
977
978 PGRP_LOCK_ASSERT(pg, MA_OWNED);
979
980 pg->pg_flags |= PGRP_ORPHANED;
981
982 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
983 PROC_LOCK(p);
984 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
985 PROC_UNLOCK(p);
986 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
987 PROC_LOCK(p);
988 kern_psignal(p, SIGHUP);
989 kern_psignal(p, SIGCONT);
990 PROC_UNLOCK(p);
991 }
992 return;
993 }
994 PROC_UNLOCK(p);
995 }
996 }
997
998 void
sess_hold(struct session * s)999 sess_hold(struct session *s)
1000 {
1001
1002 refcount_acquire(&s->s_count);
1003 }
1004
1005 void
sess_release(struct session * s)1006 sess_release(struct session *s)
1007 {
1008
1009 if (refcount_release(&s->s_count)) {
1010 if (s->s_ttyp != NULL) {
1011 tty_lock(s->s_ttyp);
1012 tty_rel_sess(s->s_ttyp, s);
1013 }
1014 proc_id_clear(PROC_ID_SESSION, s->s_sid);
1015 mtx_destroy(&s->s_mtx);
1016 free(s, M_SESSION);
1017 }
1018 }
1019
1020 #ifdef DDB
1021
1022 static void
db_print_pgrp_one(struct pgrp * pgrp,struct proc * p)1023 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1024 {
1025 db_printf(
1026 " pid %d at %p pr %d pgrp %p e %d jc %d\n",
1027 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1028 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1029 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1030 }
1031
DB_SHOW_COMMAND_FLAGS(pgrpdump,pgrpdump,DB_CMD_MEMSAFE)1032 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1033 {
1034 struct pgrp *pgrp;
1035 struct proc *p;
1036 int i;
1037
1038 for (i = 0; i <= pgrphash; i++) {
1039 if (!LIST_EMPTY(&pgrphashtbl[i])) {
1040 db_printf("indx %d\n", i);
1041 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1042 db_printf(
1043 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1044 pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1045 pgrp->pg_session->s_count,
1046 LIST_FIRST(&pgrp->pg_members));
1047 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1048 db_print_pgrp_one(pgrp, p);
1049 }
1050 }
1051 }
1052 }
1053 #endif /* DDB */
1054
1055 /*
1056 * Calculate the kinfo_proc members which contain process-wide
1057 * informations.
1058 * Must be called with the target process locked.
1059 */
1060 static void
fill_kinfo_aggregate(struct proc * p,struct kinfo_proc * kp)1061 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1062 {
1063 struct thread *td;
1064
1065 PROC_LOCK_ASSERT(p, MA_OWNED);
1066
1067 kp->ki_estcpu = 0;
1068 kp->ki_pctcpu = 0;
1069 FOREACH_THREAD_IN_PROC(p, td) {
1070 thread_lock(td);
1071 kp->ki_pctcpu += sched_pctcpu(td);
1072 kp->ki_estcpu += sched_estcpu(td);
1073 thread_unlock(td);
1074 }
1075 }
1076
1077 /*
1078 * Fill in any information that is common to all threads in the process.
1079 * Must be called with the target process locked.
1080 */
1081 static void
fill_kinfo_proc_only(struct proc * p,struct kinfo_proc * kp)1082 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1083 {
1084 struct thread *td0;
1085 struct ucred *cred;
1086 struct sigacts *ps;
1087 struct timeval boottime;
1088
1089 PROC_LOCK_ASSERT(p, MA_OWNED);
1090
1091 kp->ki_structsize = sizeof(*kp);
1092 kp->ki_paddr = p;
1093 kp->ki_addr =/* p->p_addr; */0; /* XXX */
1094 kp->ki_args = p->p_args;
1095 kp->ki_textvp = p->p_textvp;
1096 #ifdef KTRACE
1097 kp->ki_tracep = ktr_get_tracevp(p, false);
1098 kp->ki_traceflag = p->p_traceflag;
1099 #endif
1100 kp->ki_fd = p->p_fd;
1101 kp->ki_pd = p->p_pd;
1102 kp->ki_vmspace = p->p_vmspace;
1103 kp->ki_flag = p->p_flag;
1104 kp->ki_flag2 = p->p_flag2;
1105 cred = p->p_ucred;
1106 if (cred) {
1107 kp->ki_uid = cred->cr_uid;
1108 kp->ki_ruid = cred->cr_ruid;
1109 kp->ki_svuid = cred->cr_svuid;
1110 kp->ki_cr_flags = 0;
1111 if (cred->cr_flags & CRED_FLAG_CAPMODE)
1112 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1113 /* XXX bde doesn't like KI_NGROUPS */
1114 if (cred->cr_ngroups > KI_NGROUPS) {
1115 kp->ki_ngroups = KI_NGROUPS;
1116 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1117 } else
1118 kp->ki_ngroups = cred->cr_ngroups;
1119 bcopy(cred->cr_groups, kp->ki_groups,
1120 kp->ki_ngroups * sizeof(gid_t));
1121 kp->ki_rgid = cred->cr_rgid;
1122 kp->ki_svgid = cred->cr_svgid;
1123 /* If jailed(cred), emulate the old P_JAILED flag. */
1124 if (jailed(cred)) {
1125 kp->ki_flag |= P_JAILED;
1126 /* If inside the jail, use 0 as a jail ID. */
1127 if (cred->cr_prison != curthread->td_ucred->cr_prison)
1128 kp->ki_jid = cred->cr_prison->pr_id;
1129 }
1130 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1131 sizeof(kp->ki_loginclass));
1132 }
1133 ps = p->p_sigacts;
1134 if (ps) {
1135 mtx_lock(&ps->ps_mtx);
1136 kp->ki_sigignore = ps->ps_sigignore;
1137 kp->ki_sigcatch = ps->ps_sigcatch;
1138 mtx_unlock(&ps->ps_mtx);
1139 }
1140 if (p->p_state != PRS_NEW &&
1141 p->p_state != PRS_ZOMBIE &&
1142 p->p_vmspace != NULL) {
1143 struct vmspace *vm = p->p_vmspace;
1144
1145 kp->ki_size = vm->vm_map.size;
1146 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1147 FOREACH_THREAD_IN_PROC(p, td0)
1148 kp->ki_rssize += td0->td_kstack_pages;
1149 kp->ki_swrss = vm->vm_swrss;
1150 kp->ki_tsize = vm->vm_tsize;
1151 kp->ki_dsize = vm->vm_dsize;
1152 kp->ki_ssize = vm->vm_ssize;
1153 } else if (p->p_state == PRS_ZOMBIE)
1154 kp->ki_stat = SZOMB;
1155 kp->ki_sflag = PS_INMEM;
1156 /* Calculate legacy swtime as seconds since 'swtick'. */
1157 kp->ki_swtime = (ticks - p->p_swtick) / hz;
1158 kp->ki_pid = p->p_pid;
1159 kp->ki_nice = p->p_nice;
1160 kp->ki_fibnum = p->p_fibnum;
1161 kp->ki_start = p->p_stats->p_start;
1162 getboottime(&boottime);
1163 timevaladd(&kp->ki_start, &boottime);
1164 PROC_STATLOCK(p);
1165 rufetch(p, &kp->ki_rusage);
1166 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1167 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1168 PROC_STATUNLOCK(p);
1169 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1170 /* Some callers want child times in a single value. */
1171 kp->ki_childtime = kp->ki_childstime;
1172 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1173
1174 FOREACH_THREAD_IN_PROC(p, td0)
1175 kp->ki_cow += td0->td_cow;
1176
1177 if (p->p_comm[0] != '\0')
1178 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1179 if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1180 p->p_sysent->sv_name[0] != '\0')
1181 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1182 kp->ki_siglist = p->p_siglist;
1183 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1184 kp->ki_acflag = p->p_acflag;
1185 kp->ki_lock = p->p_lock;
1186 if (p->p_pptr) {
1187 kp->ki_ppid = p->p_oppid;
1188 if (p->p_flag & P_TRACED)
1189 kp->ki_tracer = p->p_pptr->p_pid;
1190 }
1191 }
1192
1193 /*
1194 * Fill job-related process information.
1195 */
1196 static void
fill_kinfo_proc_pgrp(struct proc * p,struct kinfo_proc * kp)1197 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1198 {
1199 struct tty *tp;
1200 struct session *sp;
1201 struct pgrp *pgrp;
1202
1203 sx_assert(&proctree_lock, SA_LOCKED);
1204 PROC_LOCK_ASSERT(p, MA_OWNED);
1205
1206 pgrp = p->p_pgrp;
1207 if (pgrp == NULL)
1208 return;
1209
1210 kp->ki_pgid = pgrp->pg_id;
1211 kp->ki_jobc = pgrp_calc_jobc(pgrp);
1212
1213 sp = pgrp->pg_session;
1214 tp = NULL;
1215
1216 if (sp != NULL) {
1217 kp->ki_sid = sp->s_sid;
1218 SESS_LOCK(sp);
1219 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1220 if (sp->s_ttyvp)
1221 kp->ki_kiflag |= KI_CTTY;
1222 if (SESS_LEADER(p))
1223 kp->ki_kiflag |= KI_SLEADER;
1224 tp = sp->s_ttyp;
1225 SESS_UNLOCK(sp);
1226 }
1227
1228 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1229 kp->ki_tdev = tty_udev(tp);
1230 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1231 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1232 if (tp->t_session)
1233 kp->ki_tsid = tp->t_session->s_sid;
1234 } else {
1235 kp->ki_tdev = NODEV;
1236 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1237 }
1238 }
1239
1240 /*
1241 * Fill in information that is thread specific. Must be called with
1242 * target process locked. If 'preferthread' is set, overwrite certain
1243 * process-related fields that are maintained for both threads and
1244 * processes.
1245 */
1246 static void
fill_kinfo_thread(struct thread * td,struct kinfo_proc * kp,int preferthread)1247 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1248 {
1249 struct proc *p;
1250
1251 p = td->td_proc;
1252 kp->ki_tdaddr = td;
1253 PROC_LOCK_ASSERT(p, MA_OWNED);
1254
1255 if (preferthread)
1256 PROC_STATLOCK(p);
1257 thread_lock(td);
1258 if (td->td_wmesg != NULL)
1259 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1260 else
1261 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1262 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1263 sizeof(kp->ki_tdname)) {
1264 strlcpy(kp->ki_moretdname,
1265 td->td_name + sizeof(kp->ki_tdname) - 1,
1266 sizeof(kp->ki_moretdname));
1267 } else {
1268 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1269 }
1270 if (TD_ON_LOCK(td)) {
1271 kp->ki_kiflag |= KI_LOCKBLOCK;
1272 strlcpy(kp->ki_lockname, td->td_lockname,
1273 sizeof(kp->ki_lockname));
1274 } else {
1275 kp->ki_kiflag &= ~KI_LOCKBLOCK;
1276 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1277 }
1278
1279 if (p->p_state == PRS_NORMAL) { /* approximate. */
1280 if (TD_ON_RUNQ(td) ||
1281 TD_CAN_RUN(td) ||
1282 TD_IS_RUNNING(td)) {
1283 kp->ki_stat = SRUN;
1284 } else if (P_SHOULDSTOP(p)) {
1285 kp->ki_stat = SSTOP;
1286 } else if (TD_IS_SLEEPING(td)) {
1287 kp->ki_stat = SSLEEP;
1288 } else if (TD_ON_LOCK(td)) {
1289 kp->ki_stat = SLOCK;
1290 } else {
1291 kp->ki_stat = SWAIT;
1292 }
1293 } else if (p->p_state == PRS_ZOMBIE) {
1294 kp->ki_stat = SZOMB;
1295 } else {
1296 kp->ki_stat = SIDL;
1297 }
1298
1299 /* Things in the thread */
1300 kp->ki_wchan = td->td_wchan;
1301 kp->ki_pri.pri_level = td->td_priority;
1302 kp->ki_pri.pri_native = td->td_base_pri;
1303
1304 /*
1305 * Note: legacy fields; clamp at the old NOCPU value and/or
1306 * the maximum u_char CPU value.
1307 */
1308 if (td->td_lastcpu == NOCPU)
1309 kp->ki_lastcpu_old = NOCPU_OLD;
1310 else if (td->td_lastcpu > MAXCPU_OLD)
1311 kp->ki_lastcpu_old = MAXCPU_OLD;
1312 else
1313 kp->ki_lastcpu_old = td->td_lastcpu;
1314
1315 if (td->td_oncpu == NOCPU)
1316 kp->ki_oncpu_old = NOCPU_OLD;
1317 else if (td->td_oncpu > MAXCPU_OLD)
1318 kp->ki_oncpu_old = MAXCPU_OLD;
1319 else
1320 kp->ki_oncpu_old = td->td_oncpu;
1321
1322 kp->ki_lastcpu = td->td_lastcpu;
1323 kp->ki_oncpu = td->td_oncpu;
1324 kp->ki_tdflags = td->td_flags;
1325 kp->ki_tid = td->td_tid;
1326 kp->ki_numthreads = p->p_numthreads;
1327 kp->ki_pcb = td->td_pcb;
1328 kp->ki_kstack = (void *)td->td_kstack;
1329 kp->ki_slptime = (ticks - td->td_slptick) / hz;
1330 kp->ki_pri.pri_class = td->td_pri_class;
1331 kp->ki_pri.pri_user = td->td_user_pri;
1332
1333 if (preferthread) {
1334 rufetchtd(td, &kp->ki_rusage);
1335 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1336 kp->ki_pctcpu = sched_pctcpu(td);
1337 kp->ki_estcpu = sched_estcpu(td);
1338 kp->ki_cow = td->td_cow;
1339 }
1340
1341 /* We can't get this anymore but ps etc never used it anyway. */
1342 kp->ki_rqindex = 0;
1343
1344 if (preferthread)
1345 kp->ki_siglist = td->td_siglist;
1346 kp->ki_sigmask = td->td_sigmask;
1347 thread_unlock(td);
1348 if (preferthread)
1349 PROC_STATUNLOCK(p);
1350 }
1351
1352 /*
1353 * Fill in a kinfo_proc structure for the specified process.
1354 * Must be called with the target process locked.
1355 */
1356 void
fill_kinfo_proc(struct proc * p,struct kinfo_proc * kp)1357 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1358 {
1359 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1360
1361 bzero(kp, sizeof(*kp));
1362
1363 fill_kinfo_proc_pgrp(p,kp);
1364 fill_kinfo_proc_only(p, kp);
1365 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1366 fill_kinfo_aggregate(p, kp);
1367 }
1368
1369 struct pstats *
pstats_alloc(void)1370 pstats_alloc(void)
1371 {
1372
1373 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1374 }
1375
1376 /*
1377 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1378 */
1379 void
pstats_fork(struct pstats * src,struct pstats * dst)1380 pstats_fork(struct pstats *src, struct pstats *dst)
1381 {
1382
1383 bzero(&dst->pstat_startzero,
1384 __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1385 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1386 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1387 }
1388
1389 void
pstats_free(struct pstats * ps)1390 pstats_free(struct pstats *ps)
1391 {
1392
1393 free(ps, M_SUBPROC);
1394 }
1395
1396 #ifdef COMPAT_FREEBSD32
1397
1398 /*
1399 * This function is typically used to copy out the kernel address, so
1400 * it can be replaced by assignment of zero.
1401 */
1402 static inline uint32_t
ptr32_trim(const void * ptr)1403 ptr32_trim(const void *ptr)
1404 {
1405 uintptr_t uptr;
1406
1407 uptr = (uintptr_t)ptr;
1408 return ((uptr > UINT_MAX) ? 0 : uptr);
1409 }
1410
1411 #define PTRTRIM_CP(src,dst,fld) \
1412 do { (dst).fld = ptr32_trim((src).fld); } while (0)
1413
1414 static void
freebsd32_kinfo_proc_out(const struct kinfo_proc * ki,struct kinfo_proc32 * ki32)1415 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1416 {
1417 int i;
1418
1419 bzero(ki32, sizeof(struct kinfo_proc32));
1420 ki32->ki_structsize = sizeof(struct kinfo_proc32);
1421 CP(*ki, *ki32, ki_layout);
1422 PTRTRIM_CP(*ki, *ki32, ki_args);
1423 PTRTRIM_CP(*ki, *ki32, ki_paddr);
1424 PTRTRIM_CP(*ki, *ki32, ki_addr);
1425 PTRTRIM_CP(*ki, *ki32, ki_tracep);
1426 PTRTRIM_CP(*ki, *ki32, ki_textvp);
1427 PTRTRIM_CP(*ki, *ki32, ki_fd);
1428 PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1429 PTRTRIM_CP(*ki, *ki32, ki_wchan);
1430 CP(*ki, *ki32, ki_pid);
1431 CP(*ki, *ki32, ki_ppid);
1432 CP(*ki, *ki32, ki_pgid);
1433 CP(*ki, *ki32, ki_tpgid);
1434 CP(*ki, *ki32, ki_sid);
1435 CP(*ki, *ki32, ki_tsid);
1436 CP(*ki, *ki32, ki_jobc);
1437 CP(*ki, *ki32, ki_tdev);
1438 CP(*ki, *ki32, ki_tdev_freebsd11);
1439 CP(*ki, *ki32, ki_siglist);
1440 CP(*ki, *ki32, ki_sigmask);
1441 CP(*ki, *ki32, ki_sigignore);
1442 CP(*ki, *ki32, ki_sigcatch);
1443 CP(*ki, *ki32, ki_uid);
1444 CP(*ki, *ki32, ki_ruid);
1445 CP(*ki, *ki32, ki_svuid);
1446 CP(*ki, *ki32, ki_rgid);
1447 CP(*ki, *ki32, ki_svgid);
1448 CP(*ki, *ki32, ki_ngroups);
1449 for (i = 0; i < KI_NGROUPS; i++)
1450 CP(*ki, *ki32, ki_groups[i]);
1451 CP(*ki, *ki32, ki_size);
1452 CP(*ki, *ki32, ki_rssize);
1453 CP(*ki, *ki32, ki_swrss);
1454 CP(*ki, *ki32, ki_tsize);
1455 CP(*ki, *ki32, ki_dsize);
1456 CP(*ki, *ki32, ki_ssize);
1457 CP(*ki, *ki32, ki_xstat);
1458 CP(*ki, *ki32, ki_acflag);
1459 CP(*ki, *ki32, ki_pctcpu);
1460 CP(*ki, *ki32, ki_estcpu);
1461 CP(*ki, *ki32, ki_slptime);
1462 CP(*ki, *ki32, ki_swtime);
1463 CP(*ki, *ki32, ki_cow);
1464 CP(*ki, *ki32, ki_runtime);
1465 TV_CP(*ki, *ki32, ki_start);
1466 TV_CP(*ki, *ki32, ki_childtime);
1467 CP(*ki, *ki32, ki_flag);
1468 CP(*ki, *ki32, ki_kiflag);
1469 CP(*ki, *ki32, ki_traceflag);
1470 CP(*ki, *ki32, ki_stat);
1471 CP(*ki, *ki32, ki_nice);
1472 CP(*ki, *ki32, ki_lock);
1473 CP(*ki, *ki32, ki_rqindex);
1474 CP(*ki, *ki32, ki_oncpu);
1475 CP(*ki, *ki32, ki_lastcpu);
1476
1477 /* XXX TODO: wrap cpu value as appropriate */
1478 CP(*ki, *ki32, ki_oncpu_old);
1479 CP(*ki, *ki32, ki_lastcpu_old);
1480
1481 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1482 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1483 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1484 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1485 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1486 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1487 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1488 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1489 CP(*ki, *ki32, ki_tracer);
1490 CP(*ki, *ki32, ki_flag2);
1491 CP(*ki, *ki32, ki_fibnum);
1492 CP(*ki, *ki32, ki_cr_flags);
1493 CP(*ki, *ki32, ki_jid);
1494 CP(*ki, *ki32, ki_numthreads);
1495 CP(*ki, *ki32, ki_tid);
1496 CP(*ki, *ki32, ki_pri);
1497 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1498 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1499 PTRTRIM_CP(*ki, *ki32, ki_pcb);
1500 PTRTRIM_CP(*ki, *ki32, ki_kstack);
1501 PTRTRIM_CP(*ki, *ki32, ki_udata);
1502 PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1503 CP(*ki, *ki32, ki_sflag);
1504 CP(*ki, *ki32, ki_tdflags);
1505 }
1506 #endif
1507
1508 static ssize_t
kern_proc_out_size(struct proc * p,int flags)1509 kern_proc_out_size(struct proc *p, int flags)
1510 {
1511 ssize_t size = 0;
1512
1513 PROC_LOCK_ASSERT(p, MA_OWNED);
1514
1515 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1516 #ifdef COMPAT_FREEBSD32
1517 if ((flags & KERN_PROC_MASK32) != 0) {
1518 size += sizeof(struct kinfo_proc32);
1519 } else
1520 #endif
1521 size += sizeof(struct kinfo_proc);
1522 } else {
1523 #ifdef COMPAT_FREEBSD32
1524 if ((flags & KERN_PROC_MASK32) != 0)
1525 size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1526 else
1527 #endif
1528 size += sizeof(struct kinfo_proc) * p->p_numthreads;
1529 }
1530 PROC_UNLOCK(p);
1531 return (size);
1532 }
1533
1534 int
kern_proc_out(struct proc * p,struct sbuf * sb,int flags)1535 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1536 {
1537 struct thread *td;
1538 struct kinfo_proc ki;
1539 #ifdef COMPAT_FREEBSD32
1540 struct kinfo_proc32 ki32;
1541 #endif
1542 int error;
1543
1544 PROC_LOCK_ASSERT(p, MA_OWNED);
1545 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1546
1547 error = 0;
1548 fill_kinfo_proc(p, &ki);
1549 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1550 #ifdef COMPAT_FREEBSD32
1551 if ((flags & KERN_PROC_MASK32) != 0) {
1552 freebsd32_kinfo_proc_out(&ki, &ki32);
1553 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1554 error = ENOMEM;
1555 } else
1556 #endif
1557 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1558 error = ENOMEM;
1559 } else {
1560 FOREACH_THREAD_IN_PROC(p, td) {
1561 fill_kinfo_thread(td, &ki, 1);
1562 #ifdef COMPAT_FREEBSD32
1563 if ((flags & KERN_PROC_MASK32) != 0) {
1564 freebsd32_kinfo_proc_out(&ki, &ki32);
1565 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1566 error = ENOMEM;
1567 } else
1568 #endif
1569 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1570 error = ENOMEM;
1571 if (error != 0)
1572 break;
1573 }
1574 }
1575 PROC_UNLOCK(p);
1576 return (error);
1577 }
1578
1579 static int
sysctl_out_proc(struct proc * p,struct sysctl_req * req,int flags)1580 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1581 {
1582 struct sbuf sb;
1583 struct kinfo_proc ki;
1584 int error, error2;
1585
1586 if (req->oldptr == NULL)
1587 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1588
1589 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1590 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1591 error = kern_proc_out(p, &sb, flags);
1592 error2 = sbuf_finish(&sb);
1593 sbuf_delete(&sb);
1594 if (error != 0)
1595 return (error);
1596 else if (error2 != 0)
1597 return (error2);
1598 return (0);
1599 }
1600
1601 int
proc_iterate(int (* cb)(struct proc *,void *),void * cbarg)1602 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1603 {
1604 struct proc *p;
1605 int error, i, j;
1606
1607 for (i = 0; i < pidhashlock + 1; i++) {
1608 sx_slock(&proctree_lock);
1609 sx_slock(&pidhashtbl_lock[i]);
1610 for (j = i; j <= pidhash; j += pidhashlock + 1) {
1611 LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1612 if (p->p_state == PRS_NEW)
1613 continue;
1614 error = cb(p, cbarg);
1615 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1616 if (error != 0) {
1617 sx_sunlock(&pidhashtbl_lock[i]);
1618 sx_sunlock(&proctree_lock);
1619 return (error);
1620 }
1621 }
1622 }
1623 sx_sunlock(&pidhashtbl_lock[i]);
1624 sx_sunlock(&proctree_lock);
1625 }
1626 return (0);
1627 }
1628
1629 struct kern_proc_out_args {
1630 struct sysctl_req *req;
1631 int flags;
1632 int oid_number;
1633 int *name;
1634 };
1635
1636 static int
sysctl_kern_proc_iterate(struct proc * p,void * origarg)1637 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1638 {
1639 struct kern_proc_out_args *arg = origarg;
1640 int *name = arg->name;
1641 int oid_number = arg->oid_number;
1642 int flags = arg->flags;
1643 struct sysctl_req *req = arg->req;
1644 int error = 0;
1645
1646 PROC_LOCK(p);
1647
1648 KASSERT(p->p_ucred != NULL,
1649 ("process credential is NULL for non-NEW proc"));
1650 /*
1651 * Show a user only appropriate processes.
1652 */
1653 if (p_cansee(curthread, p))
1654 goto skip;
1655 /*
1656 * TODO - make more efficient (see notes below).
1657 * do by session.
1658 */
1659 switch (oid_number) {
1660 case KERN_PROC_GID:
1661 if (p->p_ucred->cr_gid != (gid_t)name[0])
1662 goto skip;
1663 break;
1664
1665 case KERN_PROC_PGRP:
1666 /* could do this by traversing pgrp */
1667 if (p->p_pgrp == NULL ||
1668 p->p_pgrp->pg_id != (pid_t)name[0])
1669 goto skip;
1670 break;
1671
1672 case KERN_PROC_RGID:
1673 if (p->p_ucred->cr_rgid != (gid_t)name[0])
1674 goto skip;
1675 break;
1676
1677 case KERN_PROC_SESSION:
1678 if (p->p_session == NULL ||
1679 p->p_session->s_sid != (pid_t)name[0])
1680 goto skip;
1681 break;
1682
1683 case KERN_PROC_TTY:
1684 if ((p->p_flag & P_CONTROLT) == 0 ||
1685 p->p_session == NULL)
1686 goto skip;
1687 /* XXX proctree_lock */
1688 SESS_LOCK(p->p_session);
1689 if (p->p_session->s_ttyp == NULL ||
1690 tty_udev(p->p_session->s_ttyp) !=
1691 (dev_t)name[0]) {
1692 SESS_UNLOCK(p->p_session);
1693 goto skip;
1694 }
1695 SESS_UNLOCK(p->p_session);
1696 break;
1697
1698 case KERN_PROC_UID:
1699 if (p->p_ucred->cr_uid != (uid_t)name[0])
1700 goto skip;
1701 break;
1702
1703 case KERN_PROC_RUID:
1704 if (p->p_ucred->cr_ruid != (uid_t)name[0])
1705 goto skip;
1706 break;
1707
1708 case KERN_PROC_PROC:
1709 break;
1710
1711 default:
1712 break;
1713 }
1714 error = sysctl_out_proc(p, req, flags);
1715 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1716 return (error);
1717 skip:
1718 PROC_UNLOCK(p);
1719 return (0);
1720 }
1721
1722 static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)1723 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1724 {
1725 struct kern_proc_out_args iterarg;
1726 int *name = (int *)arg1;
1727 u_int namelen = arg2;
1728 struct proc *p;
1729 int flags, oid_number;
1730 int error = 0;
1731
1732 oid_number = oidp->oid_number;
1733 if (oid_number != KERN_PROC_ALL &&
1734 (oid_number & KERN_PROC_INC_THREAD) == 0)
1735 flags = KERN_PROC_NOTHREADS;
1736 else {
1737 flags = 0;
1738 oid_number &= ~KERN_PROC_INC_THREAD;
1739 }
1740 #ifdef COMPAT_FREEBSD32
1741 if (req->flags & SCTL_MASK32)
1742 flags |= KERN_PROC_MASK32;
1743 #endif
1744 if (oid_number == KERN_PROC_PID) {
1745 if (namelen != 1)
1746 return (EINVAL);
1747 error = sysctl_wire_old_buffer(req, 0);
1748 if (error)
1749 return (error);
1750 sx_slock(&proctree_lock);
1751 error = pget((pid_t)name[0], PGET_CANSEE, &p);
1752 if (error == 0)
1753 error = sysctl_out_proc(p, req, flags);
1754 sx_sunlock(&proctree_lock);
1755 return (error);
1756 }
1757
1758 switch (oid_number) {
1759 case KERN_PROC_ALL:
1760 if (namelen != 0)
1761 return (EINVAL);
1762 break;
1763 case KERN_PROC_PROC:
1764 if (namelen != 0 && namelen != 1)
1765 return (EINVAL);
1766 break;
1767 default:
1768 if (namelen != 1)
1769 return (EINVAL);
1770 break;
1771 }
1772
1773 if (req->oldptr == NULL) {
1774 /* overestimate by 5 procs */
1775 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1776 if (error)
1777 return (error);
1778 } else {
1779 error = sysctl_wire_old_buffer(req, 0);
1780 if (error != 0)
1781 return (error);
1782 }
1783 iterarg.flags = flags;
1784 iterarg.oid_number = oid_number;
1785 iterarg.req = req;
1786 iterarg.name = name;
1787 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1788 return (error);
1789 }
1790
1791 struct pargs *
pargs_alloc(int len)1792 pargs_alloc(int len)
1793 {
1794 struct pargs *pa;
1795
1796 pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1797 M_WAITOK);
1798 refcount_init(&pa->ar_ref, 1);
1799 pa->ar_length = len;
1800 return (pa);
1801 }
1802
1803 static void
pargs_free(struct pargs * pa)1804 pargs_free(struct pargs *pa)
1805 {
1806
1807 free(pa, M_PARGS);
1808 }
1809
1810 void
pargs_hold(struct pargs * pa)1811 pargs_hold(struct pargs *pa)
1812 {
1813
1814 if (pa == NULL)
1815 return;
1816 refcount_acquire(&pa->ar_ref);
1817 }
1818
1819 void
pargs_drop(struct pargs * pa)1820 pargs_drop(struct pargs *pa)
1821 {
1822
1823 if (pa == NULL)
1824 return;
1825 if (refcount_release(&pa->ar_ref))
1826 pargs_free(pa);
1827 }
1828
1829 static int
proc_read_string(struct thread * td,struct proc * p,const char * sptr,char * buf,size_t len)1830 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1831 size_t len)
1832 {
1833 ssize_t n;
1834
1835 /*
1836 * This may return a short read if the string is shorter than the chunk
1837 * and is aligned at the end of the page, and the following page is not
1838 * mapped.
1839 */
1840 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1841 if (n <= 0)
1842 return (ENOMEM);
1843 return (0);
1844 }
1845
1846 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
1847
1848 enum proc_vector_type {
1849 PROC_ARG,
1850 PROC_ENV,
1851 PROC_AUX,
1852 };
1853
1854 #ifdef COMPAT_FREEBSD32
1855 static int
get_proc_vector32(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1856 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1857 size_t *vsizep, enum proc_vector_type type)
1858 {
1859 struct freebsd32_ps_strings pss;
1860 Elf32_Auxinfo aux;
1861 vm_offset_t vptr, ptr;
1862 uint32_t *proc_vector32;
1863 char **proc_vector;
1864 size_t vsize, size;
1865 int i, error;
1866
1867 error = 0;
1868 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1869 sizeof(pss))
1870 return (ENOMEM);
1871 switch (type) {
1872 case PROC_ARG:
1873 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1874 vsize = pss.ps_nargvstr;
1875 if (vsize > ARG_MAX)
1876 return (ENOEXEC);
1877 size = vsize * sizeof(int32_t);
1878 break;
1879 case PROC_ENV:
1880 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1881 vsize = pss.ps_nenvstr;
1882 if (vsize > ARG_MAX)
1883 return (ENOEXEC);
1884 size = vsize * sizeof(int32_t);
1885 break;
1886 case PROC_AUX:
1887 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1888 (pss.ps_nenvstr + 1) * sizeof(int32_t);
1889 if (vptr % 4 != 0)
1890 return (ENOEXEC);
1891 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1892 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1893 sizeof(aux))
1894 return (ENOMEM);
1895 if (aux.a_type == AT_NULL)
1896 break;
1897 ptr += sizeof(aux);
1898 }
1899 if (aux.a_type != AT_NULL)
1900 return (ENOEXEC);
1901 vsize = i + 1;
1902 size = vsize * sizeof(aux);
1903 break;
1904 default:
1905 KASSERT(0, ("Wrong proc vector type: %d", type));
1906 return (EINVAL);
1907 }
1908 proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1909 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1910 error = ENOMEM;
1911 goto done;
1912 }
1913 if (type == PROC_AUX) {
1914 *proc_vectorp = (char **)proc_vector32;
1915 *vsizep = vsize;
1916 return (0);
1917 }
1918 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1919 for (i = 0; i < (int)vsize; i++)
1920 proc_vector[i] = PTRIN(proc_vector32[i]);
1921 *proc_vectorp = proc_vector;
1922 *vsizep = vsize;
1923 done:
1924 free(proc_vector32, M_TEMP);
1925 return (error);
1926 }
1927 #endif
1928
1929 static int
get_proc_vector(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1930 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1931 size_t *vsizep, enum proc_vector_type type)
1932 {
1933 struct ps_strings pss;
1934 Elf_Auxinfo aux;
1935 vm_offset_t vptr, ptr;
1936 char **proc_vector;
1937 size_t vsize, size;
1938 int i;
1939
1940 #ifdef COMPAT_FREEBSD32
1941 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1942 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1943 #endif
1944 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1945 sizeof(pss))
1946 return (ENOMEM);
1947 switch (type) {
1948 case PROC_ARG:
1949 vptr = (vm_offset_t)pss.ps_argvstr;
1950 vsize = pss.ps_nargvstr;
1951 if (vsize > ARG_MAX)
1952 return (ENOEXEC);
1953 size = vsize * sizeof(char *);
1954 break;
1955 case PROC_ENV:
1956 vptr = (vm_offset_t)pss.ps_envstr;
1957 vsize = pss.ps_nenvstr;
1958 if (vsize > ARG_MAX)
1959 return (ENOEXEC);
1960 size = vsize * sizeof(char *);
1961 break;
1962 case PROC_AUX:
1963 /*
1964 * The aux array is just above env array on the stack. Check
1965 * that the address is naturally aligned.
1966 */
1967 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1968 * sizeof(char *);
1969 #if __ELF_WORD_SIZE == 64
1970 if (vptr % sizeof(uint64_t) != 0)
1971 #else
1972 if (vptr % sizeof(uint32_t) != 0)
1973 #endif
1974 return (ENOEXEC);
1975 /*
1976 * We count the array size reading the aux vectors from the
1977 * stack until AT_NULL vector is returned. So (to keep the code
1978 * simple) we read the process stack twice: the first time here
1979 * to find the size and the second time when copying the vectors
1980 * to the allocated proc_vector.
1981 */
1982 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1983 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1984 sizeof(aux))
1985 return (ENOMEM);
1986 if (aux.a_type == AT_NULL)
1987 break;
1988 ptr += sizeof(aux);
1989 }
1990 /*
1991 * If the PROC_AUXV_MAX entries are iterated over, and we have
1992 * not reached AT_NULL, it is most likely we are reading wrong
1993 * data: either the process doesn't have auxv array or data has
1994 * been modified. Return the error in this case.
1995 */
1996 if (aux.a_type != AT_NULL)
1997 return (ENOEXEC);
1998 vsize = i + 1;
1999 size = vsize * sizeof(aux);
2000 break;
2001 default:
2002 KASSERT(0, ("Wrong proc vector type: %d", type));
2003 return (EINVAL); /* In case we are built without INVARIANTS. */
2004 }
2005 proc_vector = malloc(size, M_TEMP, M_WAITOK);
2006 if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2007 free(proc_vector, M_TEMP);
2008 return (ENOMEM);
2009 }
2010 *proc_vectorp = proc_vector;
2011 *vsizep = vsize;
2012
2013 return (0);
2014 }
2015
2016 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
2017
2018 static int
get_ps_strings(struct thread * td,struct proc * p,struct sbuf * sb,enum proc_vector_type type)2019 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2020 enum proc_vector_type type)
2021 {
2022 size_t done, len, nchr, vsize;
2023 int error, i;
2024 char **proc_vector, *sptr;
2025 char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2026
2027 PROC_ASSERT_HELD(p);
2028
2029 /*
2030 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2031 */
2032 nchr = 2 * (PATH_MAX + ARG_MAX);
2033
2034 error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2035 if (error != 0)
2036 return (error);
2037 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2038 /*
2039 * The program may have scribbled into its argv array, e.g. to
2040 * remove some arguments. If that has happened, break out
2041 * before trying to read from NULL.
2042 */
2043 if (proc_vector[i] == NULL)
2044 break;
2045 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2046 error = proc_read_string(td, p, sptr, pss_string,
2047 sizeof(pss_string));
2048 if (error != 0)
2049 goto done;
2050 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2051 if (done + len >= nchr)
2052 len = nchr - done - 1;
2053 sbuf_bcat(sb, pss_string, len);
2054 if (len != GET_PS_STRINGS_CHUNK_SZ)
2055 break;
2056 done += GET_PS_STRINGS_CHUNK_SZ;
2057 }
2058 sbuf_bcat(sb, "", 1);
2059 done += len + 1;
2060 }
2061 done:
2062 free(proc_vector, M_TEMP);
2063 return (error);
2064 }
2065
2066 int
proc_getargv(struct thread * td,struct proc * p,struct sbuf * sb)2067 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2068 {
2069
2070 return (get_ps_strings(curthread, p, sb, PROC_ARG));
2071 }
2072
2073 int
proc_getenvv(struct thread * td,struct proc * p,struct sbuf * sb)2074 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2075 {
2076
2077 return (get_ps_strings(curthread, p, sb, PROC_ENV));
2078 }
2079
2080 int
proc_getauxv(struct thread * td,struct proc * p,struct sbuf * sb)2081 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2082 {
2083 size_t vsize, size;
2084 char **auxv;
2085 int error;
2086
2087 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2088 if (error == 0) {
2089 #ifdef COMPAT_FREEBSD32
2090 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2091 size = vsize * sizeof(Elf32_Auxinfo);
2092 else
2093 #endif
2094 size = vsize * sizeof(Elf_Auxinfo);
2095 if (sbuf_bcat(sb, auxv, size) != 0)
2096 error = ENOMEM;
2097 free(auxv, M_TEMP);
2098 }
2099 return (error);
2100 }
2101
2102 /*
2103 * This sysctl allows a process to retrieve the argument list or process
2104 * title for another process without groping around in the address space
2105 * of the other process. It also allow a process to set its own "process
2106 * title to a string of its own choice.
2107 */
2108 static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)2109 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2110 {
2111 int *name = (int *)arg1;
2112 u_int namelen = arg2;
2113 struct pargs *newpa, *pa;
2114 struct proc *p;
2115 struct sbuf sb;
2116 int flags, error = 0, error2;
2117 pid_t pid;
2118
2119 if (namelen != 1)
2120 return (EINVAL);
2121
2122 p = curproc;
2123 pid = (pid_t)name[0];
2124 if (pid == -1) {
2125 pid = p->p_pid;
2126 }
2127
2128 /*
2129 * If the query is for this process and it is single-threaded, there
2130 * is nobody to modify pargs, thus we can just read.
2131 */
2132 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2133 (pa = p->p_args) != NULL)
2134 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2135
2136 flags = PGET_CANSEE;
2137 if (req->newptr != NULL)
2138 flags |= PGET_ISCURRENT;
2139 error = pget(pid, flags, &p);
2140 if (error)
2141 return (error);
2142
2143 pa = p->p_args;
2144 if (pa != NULL) {
2145 pargs_hold(pa);
2146 PROC_UNLOCK(p);
2147 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2148 pargs_drop(pa);
2149 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2150 _PHOLD(p);
2151 PROC_UNLOCK(p);
2152 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2153 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2154 error = proc_getargv(curthread, p, &sb);
2155 error2 = sbuf_finish(&sb);
2156 PRELE(p);
2157 sbuf_delete(&sb);
2158 if (error == 0 && error2 != 0)
2159 error = error2;
2160 } else {
2161 PROC_UNLOCK(p);
2162 }
2163 if (error != 0 || req->newptr == NULL)
2164 return (error);
2165
2166 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2167 return (ENOMEM);
2168
2169 if (req->newlen == 0) {
2170 /*
2171 * Clear the argument pointer, so that we'll fetch arguments
2172 * with proc_getargv() until further notice.
2173 */
2174 newpa = NULL;
2175 } else {
2176 newpa = pargs_alloc(req->newlen);
2177 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2178 if (error != 0) {
2179 pargs_free(newpa);
2180 return (error);
2181 }
2182 }
2183 PROC_LOCK(p);
2184 pa = p->p_args;
2185 p->p_args = newpa;
2186 PROC_UNLOCK(p);
2187 pargs_drop(pa);
2188 return (0);
2189 }
2190
2191 /*
2192 * This sysctl allows a process to retrieve environment of another process.
2193 */
2194 static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)2195 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2196 {
2197 int *name = (int *)arg1;
2198 u_int namelen = arg2;
2199 struct proc *p;
2200 struct sbuf sb;
2201 int error, error2;
2202
2203 if (namelen != 1)
2204 return (EINVAL);
2205
2206 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2207 if (error != 0)
2208 return (error);
2209 if ((p->p_flag & P_SYSTEM) != 0) {
2210 PRELE(p);
2211 return (0);
2212 }
2213
2214 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2215 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2216 error = proc_getenvv(curthread, p, &sb);
2217 error2 = sbuf_finish(&sb);
2218 PRELE(p);
2219 sbuf_delete(&sb);
2220 return (error != 0 ? error : error2);
2221 }
2222
2223 /*
2224 * This sysctl allows a process to retrieve ELF auxiliary vector of
2225 * another process.
2226 */
2227 static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)2228 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2229 {
2230 int *name = (int *)arg1;
2231 u_int namelen = arg2;
2232 struct proc *p;
2233 struct sbuf sb;
2234 int error, error2;
2235
2236 if (namelen != 1)
2237 return (EINVAL);
2238
2239 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2240 if (error != 0)
2241 return (error);
2242 if ((p->p_flag & P_SYSTEM) != 0) {
2243 PRELE(p);
2244 return (0);
2245 }
2246 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2247 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2248 error = proc_getauxv(curthread, p, &sb);
2249 error2 = sbuf_finish(&sb);
2250 PRELE(p);
2251 sbuf_delete(&sb);
2252 return (error != 0 ? error : error2);
2253 }
2254
2255 /*
2256 * Look up the canonical executable path running in the specified process.
2257 * It tries to return the same hardlink name as was used for execve(2).
2258 * This allows the programs that modify their behavior based on their progname,
2259 * to operate correctly.
2260 *
2261 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2262 * calling conventions.
2263 * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2264 * allocated and freed by caller.
2265 * freebuf should be freed by caller, from the M_TEMP malloc type.
2266 */
2267 int
proc_get_binpath(struct proc * p,char * binname,char ** retbuf,char ** freebuf)2268 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2269 char **freebuf)
2270 {
2271 struct nameidata nd;
2272 struct vnode *vp, *dvp;
2273 size_t freepath_size;
2274 int error;
2275 bool do_fullpath;
2276
2277 PROC_LOCK_ASSERT(p, MA_OWNED);
2278
2279 vp = p->p_textvp;
2280 if (vp == NULL) {
2281 PROC_UNLOCK(p);
2282 *retbuf = "";
2283 *freebuf = NULL;
2284 return (0);
2285 }
2286 vref(vp);
2287 dvp = p->p_textdvp;
2288 if (dvp != NULL)
2289 vref(dvp);
2290 if (p->p_binname != NULL)
2291 strlcpy(binname, p->p_binname, MAXPATHLEN);
2292 PROC_UNLOCK(p);
2293
2294 do_fullpath = true;
2295 *freebuf = NULL;
2296 if (dvp != NULL && binname[0] != '\0') {
2297 freepath_size = MAXPATHLEN;
2298 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2299 retbuf, freebuf, &freepath_size) == 0) {
2300 /*
2301 * Recheck the looked up path. The binary
2302 * might have been renamed or replaced, in
2303 * which case we should not report old name.
2304 */
2305 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2306 error = namei(&nd);
2307 if (error == 0) {
2308 if (nd.ni_vp == vp)
2309 do_fullpath = false;
2310 vrele(nd.ni_vp);
2311 NDFREE_PNBUF(&nd);
2312 }
2313 }
2314 }
2315 if (do_fullpath) {
2316 free(*freebuf, M_TEMP);
2317 *freebuf = NULL;
2318 error = vn_fullpath(vp, retbuf, freebuf);
2319 }
2320 vrele(vp);
2321 if (dvp != NULL)
2322 vrele(dvp);
2323 return (error);
2324 }
2325
2326 /*
2327 * This sysctl allows a process to retrieve the path of the executable for
2328 * itself or another process.
2329 */
2330 static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)2331 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2332 {
2333 pid_t *pidp = (pid_t *)arg1;
2334 unsigned int arglen = arg2;
2335 struct proc *p;
2336 char *retbuf, *freebuf, *binname;
2337 int error;
2338
2339 if (arglen != 1)
2340 return (EINVAL);
2341 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2342 binname[0] = '\0';
2343 if (*pidp == -1) { /* -1 means this process */
2344 error = 0;
2345 p = req->td->td_proc;
2346 PROC_LOCK(p);
2347 } else {
2348 error = pget(*pidp, PGET_CANSEE, &p);
2349 }
2350
2351 if (error == 0)
2352 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2353 free(binname, M_TEMP);
2354 if (error != 0)
2355 return (error);
2356 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2357 free(freebuf, M_TEMP);
2358 return (error);
2359 }
2360
2361 static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)2362 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2363 {
2364 struct proc *p;
2365 char *sv_name;
2366 int *name;
2367 int namelen;
2368 int error;
2369
2370 namelen = arg2;
2371 if (namelen != 1)
2372 return (EINVAL);
2373
2374 name = (int *)arg1;
2375 error = pget((pid_t)name[0], PGET_CANSEE, &p);
2376 if (error != 0)
2377 return (error);
2378 sv_name = p->p_sysent->sv_name;
2379 PROC_UNLOCK(p);
2380 return (sysctl_handle_string(oidp, sv_name, 0, req));
2381 }
2382
2383 #ifdef KINFO_OVMENTRY_SIZE
2384 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2385 #endif
2386
2387 #ifdef COMPAT_FREEBSD7
2388 static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)2389 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2390 {
2391 vm_map_entry_t entry, tmp_entry;
2392 unsigned int last_timestamp, namelen;
2393 char *fullpath, *freepath;
2394 struct kinfo_ovmentry *kve;
2395 struct vattr va;
2396 struct ucred *cred;
2397 int error, *name;
2398 struct vnode *vp;
2399 struct proc *p;
2400 vm_map_t map;
2401 struct vmspace *vm;
2402
2403 namelen = arg2;
2404 if (namelen != 1)
2405 return (EINVAL);
2406
2407 name = (int *)arg1;
2408 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2409 if (error != 0)
2410 return (error);
2411 vm = vmspace_acquire_ref(p);
2412 if (vm == NULL) {
2413 PRELE(p);
2414 return (ESRCH);
2415 }
2416 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2417
2418 map = &vm->vm_map;
2419 vm_map_lock_read(map);
2420 VM_MAP_ENTRY_FOREACH(entry, map) {
2421 vm_object_t obj, tobj, lobj;
2422 vm_offset_t addr;
2423
2424 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2425 continue;
2426
2427 bzero(kve, sizeof(*kve));
2428 kve->kve_structsize = sizeof(*kve);
2429
2430 kve->kve_private_resident = 0;
2431 obj = entry->object.vm_object;
2432 if (obj != NULL) {
2433 VM_OBJECT_RLOCK(obj);
2434 if (obj->shadow_count == 1)
2435 kve->kve_private_resident =
2436 obj->resident_page_count;
2437 }
2438 kve->kve_resident = 0;
2439 addr = entry->start;
2440 while (addr < entry->end) {
2441 if (pmap_extract(map->pmap, addr))
2442 kve->kve_resident++;
2443 addr += PAGE_SIZE;
2444 }
2445
2446 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2447 if (tobj != obj) {
2448 VM_OBJECT_RLOCK(tobj);
2449 kve->kve_offset += tobj->backing_object_offset;
2450 }
2451 if (lobj != obj)
2452 VM_OBJECT_RUNLOCK(lobj);
2453 lobj = tobj;
2454 }
2455
2456 kve->kve_start = (void*)entry->start;
2457 kve->kve_end = (void*)entry->end;
2458 kve->kve_offset += (off_t)entry->offset;
2459
2460 if (entry->protection & VM_PROT_READ)
2461 kve->kve_protection |= KVME_PROT_READ;
2462 if (entry->protection & VM_PROT_WRITE)
2463 kve->kve_protection |= KVME_PROT_WRITE;
2464 if (entry->protection & VM_PROT_EXECUTE)
2465 kve->kve_protection |= KVME_PROT_EXEC;
2466
2467 if (entry->eflags & MAP_ENTRY_COW)
2468 kve->kve_flags |= KVME_FLAG_COW;
2469 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2470 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2471 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2472 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2473
2474 last_timestamp = map->timestamp;
2475 vm_map_unlock_read(map);
2476
2477 kve->kve_fileid = 0;
2478 kve->kve_fsid = 0;
2479 freepath = NULL;
2480 fullpath = "";
2481 if (lobj) {
2482 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2483 if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2484 kve->kve_type = KVME_TYPE_UNKNOWN;
2485 if (vp != NULL)
2486 vref(vp);
2487 if (lobj != obj)
2488 VM_OBJECT_RUNLOCK(lobj);
2489
2490 kve->kve_ref_count = obj->ref_count;
2491 kve->kve_shadow_count = obj->shadow_count;
2492 VM_OBJECT_RUNLOCK(obj);
2493 if (vp != NULL) {
2494 vn_fullpath(vp, &fullpath, &freepath);
2495 cred = curthread->td_ucred;
2496 vn_lock(vp, LK_SHARED | LK_RETRY);
2497 if (VOP_GETATTR(vp, &va, cred) == 0) {
2498 kve->kve_fileid = va.va_fileid;
2499 /* truncate */
2500 kve->kve_fsid = va.va_fsid;
2501 }
2502 vput(vp);
2503 }
2504 } else {
2505 kve->kve_type = KVME_TYPE_NONE;
2506 kve->kve_ref_count = 0;
2507 kve->kve_shadow_count = 0;
2508 }
2509
2510 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2511 if (freepath != NULL)
2512 free(freepath, M_TEMP);
2513
2514 error = SYSCTL_OUT(req, kve, sizeof(*kve));
2515 vm_map_lock_read(map);
2516 if (error)
2517 break;
2518 if (last_timestamp != map->timestamp) {
2519 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2520 entry = tmp_entry;
2521 }
2522 }
2523 vm_map_unlock_read(map);
2524 vmspace_free(vm);
2525 PRELE(p);
2526 free(kve, M_TEMP);
2527 return (error);
2528 }
2529 #endif /* COMPAT_FREEBSD7 */
2530
2531 #ifdef KINFO_VMENTRY_SIZE
2532 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2533 #endif
2534
2535 void
kern_proc_vmmap_resident(vm_map_t map,vm_map_entry_t entry,int * resident_count,bool * super)2536 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2537 int *resident_count, bool *super)
2538 {
2539 vm_object_t obj, tobj;
2540 vm_page_t m, m_adv;
2541 vm_offset_t addr;
2542 vm_paddr_t pa;
2543 vm_pindex_t pi, pi_adv, pindex;
2544 int incore;
2545
2546 *super = false;
2547 *resident_count = 0;
2548 if (vmmap_skip_res_cnt)
2549 return;
2550
2551 pa = 0;
2552 obj = entry->object.vm_object;
2553 addr = entry->start;
2554 m_adv = NULL;
2555 pi = OFF_TO_IDX(entry->offset);
2556 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2557 if (m_adv != NULL) {
2558 m = m_adv;
2559 } else {
2560 pi_adv = atop(entry->end - addr);
2561 pindex = pi;
2562 for (tobj = obj;; tobj = tobj->backing_object) {
2563 m = vm_page_find_least(tobj, pindex);
2564 if (m != NULL) {
2565 if (m->pindex == pindex)
2566 break;
2567 if (pi_adv > m->pindex - pindex) {
2568 pi_adv = m->pindex - pindex;
2569 m_adv = m;
2570 }
2571 }
2572 if (tobj->backing_object == NULL)
2573 goto next;
2574 pindex += OFF_TO_IDX(tobj->
2575 backing_object_offset);
2576 }
2577 }
2578 m_adv = NULL;
2579 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2580 (addr & (pagesizes[1] - 1)) == 0 && (incore =
2581 pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2582 *super = true;
2583 /*
2584 * The virtual page might be smaller than the physical
2585 * page, so we use the page size reported by the pmap
2586 * rather than m->psind.
2587 */
2588 pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
2589 } else {
2590 /*
2591 * We do not test the found page on validity.
2592 * Either the page is busy and being paged in,
2593 * or it was invalidated. The first case
2594 * should be counted as resident, the second
2595 * is not so clear; we do account both.
2596 */
2597 pi_adv = 1;
2598 }
2599 *resident_count += pi_adv;
2600 next:;
2601 }
2602 }
2603
2604 /*
2605 * Must be called with the process locked and will return unlocked.
2606 */
2607 int
kern_proc_vmmap_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)2608 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2609 {
2610 vm_map_entry_t entry, tmp_entry;
2611 struct vattr va;
2612 vm_map_t map;
2613 vm_object_t lobj, nobj, obj, tobj;
2614 char *fullpath, *freepath;
2615 struct kinfo_vmentry *kve;
2616 struct ucred *cred;
2617 struct vnode *vp;
2618 struct vmspace *vm;
2619 vm_offset_t addr;
2620 unsigned int last_timestamp;
2621 int error;
2622 key_t key;
2623 unsigned short seq;
2624 bool guard, super;
2625
2626 PROC_LOCK_ASSERT(p, MA_OWNED);
2627
2628 _PHOLD(p);
2629 PROC_UNLOCK(p);
2630 vm = vmspace_acquire_ref(p);
2631 if (vm == NULL) {
2632 PRELE(p);
2633 return (ESRCH);
2634 }
2635 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2636
2637 error = 0;
2638 map = &vm->vm_map;
2639 vm_map_lock_read(map);
2640 VM_MAP_ENTRY_FOREACH(entry, map) {
2641 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2642 continue;
2643
2644 addr = entry->end;
2645 bzero(kve, sizeof(*kve));
2646 obj = entry->object.vm_object;
2647 if (obj != NULL) {
2648 if ((obj->flags & OBJ_ANON) != 0)
2649 kve->kve_obj = (uintptr_t)obj;
2650
2651 for (tobj = obj; tobj != NULL;
2652 tobj = tobj->backing_object) {
2653 VM_OBJECT_RLOCK(tobj);
2654 kve->kve_offset += tobj->backing_object_offset;
2655 lobj = tobj;
2656 }
2657 if (obj->backing_object == NULL)
2658 kve->kve_private_resident =
2659 obj->resident_page_count;
2660 kern_proc_vmmap_resident(map, entry,
2661 &kve->kve_resident, &super);
2662 if (super)
2663 kve->kve_flags |= KVME_FLAG_SUPER;
2664 for (tobj = obj; tobj != NULL; tobj = nobj) {
2665 nobj = tobj->backing_object;
2666 if (tobj != obj && tobj != lobj)
2667 VM_OBJECT_RUNLOCK(tobj);
2668 }
2669 } else {
2670 lobj = NULL;
2671 }
2672
2673 kve->kve_start = entry->start;
2674 kve->kve_end = entry->end;
2675 kve->kve_offset += entry->offset;
2676
2677 if (entry->protection & VM_PROT_READ)
2678 kve->kve_protection |= KVME_PROT_READ;
2679 if (entry->protection & VM_PROT_WRITE)
2680 kve->kve_protection |= KVME_PROT_WRITE;
2681 if (entry->protection & VM_PROT_EXECUTE)
2682 kve->kve_protection |= KVME_PROT_EXEC;
2683 if (entry->max_protection & VM_PROT_READ)
2684 kve->kve_protection |= KVME_MAX_PROT_READ;
2685 if (entry->max_protection & VM_PROT_WRITE)
2686 kve->kve_protection |= KVME_MAX_PROT_WRITE;
2687 if (entry->max_protection & VM_PROT_EXECUTE)
2688 kve->kve_protection |= KVME_MAX_PROT_EXEC;
2689
2690 if (entry->eflags & MAP_ENTRY_COW)
2691 kve->kve_flags |= KVME_FLAG_COW;
2692 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2693 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2694 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2695 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2696 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2697 kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2698 if (entry->eflags & MAP_ENTRY_USER_WIRED)
2699 kve->kve_flags |= KVME_FLAG_USER_WIRED;
2700
2701 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2702
2703 last_timestamp = map->timestamp;
2704 vm_map_unlock_read(map);
2705
2706 freepath = NULL;
2707 fullpath = "";
2708 if (lobj != NULL) {
2709 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2710 if (vp != NULL)
2711 vref(vp);
2712 if (lobj != obj)
2713 VM_OBJECT_RUNLOCK(lobj);
2714
2715 kve->kve_ref_count = obj->ref_count;
2716 kve->kve_shadow_count = obj->shadow_count;
2717 if (obj->type == OBJT_DEVICE ||
2718 obj->type == OBJT_MGTDEVICE) {
2719 cdev_pager_get_path(obj, kve->kve_path,
2720 sizeof(kve->kve_path));
2721 }
2722 VM_OBJECT_RUNLOCK(obj);
2723 if ((lobj->flags & OBJ_SYSVSHM) != 0) {
2724 kve->kve_flags |= KVME_FLAG_SYSVSHM;
2725 shmobjinfo(lobj, &key, &seq);
2726 kve->kve_vn_fileid = key;
2727 kve->kve_vn_fsid_freebsd11 = seq;
2728 }
2729 if ((lobj->flags & OBJ_POSIXSHM) != 0) {
2730 kve->kve_flags |= KVME_FLAG_POSIXSHM;
2731 shm_get_path(lobj, kve->kve_path,
2732 sizeof(kve->kve_path));
2733 }
2734 if (vp != NULL) {
2735 vn_fullpath(vp, &fullpath, &freepath);
2736 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2737 cred = curthread->td_ucred;
2738 vn_lock(vp, LK_SHARED | LK_RETRY);
2739 if (VOP_GETATTR(vp, &va, cred) == 0) {
2740 kve->kve_vn_fileid = va.va_fileid;
2741 kve->kve_vn_fsid = va.va_fsid;
2742 kve->kve_vn_fsid_freebsd11 =
2743 kve->kve_vn_fsid; /* truncate */
2744 kve->kve_vn_mode =
2745 MAKEIMODE(va.va_type, va.va_mode);
2746 kve->kve_vn_size = va.va_size;
2747 kve->kve_vn_rdev = va.va_rdev;
2748 kve->kve_vn_rdev_freebsd11 =
2749 kve->kve_vn_rdev; /* truncate */
2750 kve->kve_status = KF_ATTR_VALID;
2751 }
2752 vput(vp);
2753 strlcpy(kve->kve_path, fullpath, sizeof(
2754 kve->kve_path));
2755 free(freepath, M_TEMP);
2756 }
2757 } else {
2758 kve->kve_type = guard ? KVME_TYPE_GUARD :
2759 KVME_TYPE_NONE;
2760 kve->kve_ref_count = 0;
2761 kve->kve_shadow_count = 0;
2762 }
2763
2764 /* Pack record size down */
2765 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2766 kve->kve_structsize =
2767 offsetof(struct kinfo_vmentry, kve_path) +
2768 strlen(kve->kve_path) + 1;
2769 else
2770 kve->kve_structsize = sizeof(*kve);
2771 kve->kve_structsize = roundup(kve->kve_structsize,
2772 sizeof(uint64_t));
2773
2774 /* Halt filling and truncate rather than exceeding maxlen */
2775 if (maxlen != -1 && maxlen < kve->kve_structsize) {
2776 error = 0;
2777 vm_map_lock_read(map);
2778 break;
2779 } else if (maxlen != -1)
2780 maxlen -= kve->kve_structsize;
2781
2782 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2783 error = ENOMEM;
2784 vm_map_lock_read(map);
2785 if (error != 0)
2786 break;
2787 if (last_timestamp != map->timestamp) {
2788 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2789 entry = tmp_entry;
2790 }
2791 }
2792 vm_map_unlock_read(map);
2793 vmspace_free(vm);
2794 PRELE(p);
2795 free(kve, M_TEMP);
2796 return (error);
2797 }
2798
2799 static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)2800 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2801 {
2802 struct proc *p;
2803 struct sbuf sb;
2804 u_int namelen;
2805 int error, error2, *name;
2806
2807 namelen = arg2;
2808 if (namelen != 1)
2809 return (EINVAL);
2810
2811 name = (int *)arg1;
2812 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2813 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2814 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2815 if (error != 0) {
2816 sbuf_delete(&sb);
2817 return (error);
2818 }
2819 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2820 error2 = sbuf_finish(&sb);
2821 sbuf_delete(&sb);
2822 return (error != 0 ? error : error2);
2823 }
2824
2825 #if defined(STACK) || defined(DDB)
2826 static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)2827 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2828 {
2829 struct kinfo_kstack *kkstp;
2830 int error, i, *name, numthreads;
2831 lwpid_t *lwpidarray;
2832 struct thread *td;
2833 struct stack *st;
2834 struct sbuf sb;
2835 struct proc *p;
2836 u_int namelen;
2837
2838 namelen = arg2;
2839 if (namelen != 1)
2840 return (EINVAL);
2841
2842 name = (int *)arg1;
2843 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2844 if (error != 0)
2845 return (error);
2846
2847 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2848 st = stack_create(M_WAITOK);
2849
2850 lwpidarray = NULL;
2851 PROC_LOCK(p);
2852 do {
2853 if (lwpidarray != NULL) {
2854 free(lwpidarray, M_TEMP);
2855 lwpidarray = NULL;
2856 }
2857 numthreads = p->p_numthreads;
2858 PROC_UNLOCK(p);
2859 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2860 M_WAITOK | M_ZERO);
2861 PROC_LOCK(p);
2862 } while (numthreads < p->p_numthreads);
2863
2864 /*
2865 * XXXRW: During the below loop, execve(2) and countless other sorts
2866 * of changes could have taken place. Should we check to see if the
2867 * vmspace has been replaced, or the like, in order to prevent
2868 * giving a snapshot that spans, say, execve(2), with some threads
2869 * before and some after? Among other things, the credentials could
2870 * have changed, in which case the right to extract debug info might
2871 * no longer be assured.
2872 */
2873 i = 0;
2874 FOREACH_THREAD_IN_PROC(p, td) {
2875 KASSERT(i < numthreads,
2876 ("sysctl_kern_proc_kstack: numthreads"));
2877 lwpidarray[i] = td->td_tid;
2878 i++;
2879 }
2880 PROC_UNLOCK(p);
2881 numthreads = i;
2882 for (i = 0; i < numthreads; i++) {
2883 td = tdfind(lwpidarray[i], p->p_pid);
2884 if (td == NULL) {
2885 continue;
2886 }
2887 bzero(kkstp, sizeof(*kkstp));
2888 (void)sbuf_new(&sb, kkstp->kkst_trace,
2889 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2890 thread_lock(td);
2891 kkstp->kkst_tid = td->td_tid;
2892 if (stack_save_td(st, td) == 0)
2893 kkstp->kkst_state = KKST_STATE_STACKOK;
2894 else
2895 kkstp->kkst_state = KKST_STATE_RUNNING;
2896 thread_unlock(td);
2897 PROC_UNLOCK(p);
2898 stack_sbuf_print(&sb, st);
2899 sbuf_finish(&sb);
2900 sbuf_delete(&sb);
2901 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2902 if (error)
2903 break;
2904 }
2905 PRELE(p);
2906 if (lwpidarray != NULL)
2907 free(lwpidarray, M_TEMP);
2908 stack_destroy(st);
2909 free(kkstp, M_TEMP);
2910 return (error);
2911 }
2912 #endif
2913
2914 /*
2915 * This sysctl allows a process to retrieve the full list of groups from
2916 * itself or another process.
2917 */
2918 static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)2919 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2920 {
2921 pid_t *pidp = (pid_t *)arg1;
2922 unsigned int arglen = arg2;
2923 struct proc *p;
2924 struct ucred *cred;
2925 int error;
2926
2927 if (arglen != 1)
2928 return (EINVAL);
2929 if (*pidp == -1) { /* -1 means this process */
2930 p = req->td->td_proc;
2931 PROC_LOCK(p);
2932 } else {
2933 error = pget(*pidp, PGET_CANSEE, &p);
2934 if (error != 0)
2935 return (error);
2936 }
2937
2938 cred = crhold(p->p_ucred);
2939 PROC_UNLOCK(p);
2940
2941 error = SYSCTL_OUT(req, cred->cr_groups,
2942 cred->cr_ngroups * sizeof(gid_t));
2943 crfree(cred);
2944 return (error);
2945 }
2946
2947 /*
2948 * This sysctl allows a process to retrieve or/and set the resource limit for
2949 * another process.
2950 */
2951 static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)2952 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2953 {
2954 int *name = (int *)arg1;
2955 u_int namelen = arg2;
2956 struct rlimit rlim;
2957 struct proc *p;
2958 u_int which;
2959 int flags, error;
2960
2961 if (namelen != 2)
2962 return (EINVAL);
2963
2964 which = (u_int)name[1];
2965 if (which >= RLIM_NLIMITS)
2966 return (EINVAL);
2967
2968 if (req->newptr != NULL && req->newlen != sizeof(rlim))
2969 return (EINVAL);
2970
2971 flags = PGET_HOLD | PGET_NOTWEXIT;
2972 if (req->newptr != NULL)
2973 flags |= PGET_CANDEBUG;
2974 else
2975 flags |= PGET_CANSEE;
2976 error = pget((pid_t)name[0], flags, &p);
2977 if (error != 0)
2978 return (error);
2979
2980 /*
2981 * Retrieve limit.
2982 */
2983 if (req->oldptr != NULL) {
2984 PROC_LOCK(p);
2985 lim_rlimit_proc(p, which, &rlim);
2986 PROC_UNLOCK(p);
2987 }
2988 error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2989 if (error != 0)
2990 goto errout;
2991
2992 /*
2993 * Set limit.
2994 */
2995 if (req->newptr != NULL) {
2996 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2997 if (error == 0)
2998 error = kern_proc_setrlimit(curthread, p, which, &rlim);
2999 }
3000
3001 errout:
3002 PRELE(p);
3003 return (error);
3004 }
3005
3006 /*
3007 * This sysctl allows a process to retrieve ps_strings structure location of
3008 * another process.
3009 */
3010 static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)3011 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
3012 {
3013 int *name = (int *)arg1;
3014 u_int namelen = arg2;
3015 struct proc *p;
3016 vm_offset_t ps_strings;
3017 int error;
3018 #ifdef COMPAT_FREEBSD32
3019 uint32_t ps_strings32;
3020 #endif
3021
3022 if (namelen != 1)
3023 return (EINVAL);
3024
3025 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3026 if (error != 0)
3027 return (error);
3028 #ifdef COMPAT_FREEBSD32
3029 if ((req->flags & SCTL_MASK32) != 0) {
3030 /*
3031 * We return 0 if the 32 bit emulation request is for a 64 bit
3032 * process.
3033 */
3034 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3035 PTROUT(PROC_PS_STRINGS(p)) : 0;
3036 PROC_UNLOCK(p);
3037 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3038 return (error);
3039 }
3040 #endif
3041 ps_strings = PROC_PS_STRINGS(p);
3042 PROC_UNLOCK(p);
3043 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3044 return (error);
3045 }
3046
3047 /*
3048 * This sysctl allows a process to retrieve umask of another process.
3049 */
3050 static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)3051 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3052 {
3053 int *name = (int *)arg1;
3054 u_int namelen = arg2;
3055 struct proc *p;
3056 int error;
3057 u_short cmask;
3058 pid_t pid;
3059
3060 if (namelen != 1)
3061 return (EINVAL);
3062
3063 pid = (pid_t)name[0];
3064 p = curproc;
3065 if (pid == p->p_pid || pid == 0) {
3066 cmask = p->p_pd->pd_cmask;
3067 goto out;
3068 }
3069
3070 error = pget(pid, PGET_WANTREAD, &p);
3071 if (error != 0)
3072 return (error);
3073
3074 cmask = p->p_pd->pd_cmask;
3075 PRELE(p);
3076 out:
3077 error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3078 return (error);
3079 }
3080
3081 /*
3082 * This sysctl allows a process to set and retrieve binary osreldate of
3083 * another process.
3084 */
3085 static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)3086 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3087 {
3088 int *name = (int *)arg1;
3089 u_int namelen = arg2;
3090 struct proc *p;
3091 int flags, error, osrel;
3092
3093 if (namelen != 1)
3094 return (EINVAL);
3095
3096 if (req->newptr != NULL && req->newlen != sizeof(osrel))
3097 return (EINVAL);
3098
3099 flags = PGET_HOLD | PGET_NOTWEXIT;
3100 if (req->newptr != NULL)
3101 flags |= PGET_CANDEBUG;
3102 else
3103 flags |= PGET_CANSEE;
3104 error = pget((pid_t)name[0], flags, &p);
3105 if (error != 0)
3106 return (error);
3107
3108 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3109 if (error != 0)
3110 goto errout;
3111
3112 if (req->newptr != NULL) {
3113 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3114 if (error != 0)
3115 goto errout;
3116 if (osrel < 0) {
3117 error = EINVAL;
3118 goto errout;
3119 }
3120 p->p_osrel = osrel;
3121 }
3122 errout:
3123 PRELE(p);
3124 return (error);
3125 }
3126
3127 static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)3128 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3129 {
3130 int *name = (int *)arg1;
3131 u_int namelen = arg2;
3132 struct proc *p;
3133 struct kinfo_sigtramp kst;
3134 const struct sysentvec *sv;
3135 int error;
3136 #ifdef COMPAT_FREEBSD32
3137 struct kinfo_sigtramp32 kst32;
3138 #endif
3139
3140 if (namelen != 1)
3141 return (EINVAL);
3142
3143 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3144 if (error != 0)
3145 return (error);
3146 sv = p->p_sysent;
3147 #ifdef COMPAT_FREEBSD32
3148 if ((req->flags & SCTL_MASK32) != 0) {
3149 bzero(&kst32, sizeof(kst32));
3150 if (SV_PROC_FLAG(p, SV_ILP32)) {
3151 if (PROC_HAS_SHP(p)) {
3152 kst32.ksigtramp_start = PROC_SIGCODE(p);
3153 kst32.ksigtramp_end = kst32.ksigtramp_start +
3154 ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3155 *sv->sv_szsigcode :
3156 (uintptr_t)sv->sv_szsigcode);
3157 } else {
3158 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3159 *sv->sv_szsigcode;
3160 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3161 }
3162 }
3163 PROC_UNLOCK(p);
3164 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3165 return (error);
3166 }
3167 #endif
3168 bzero(&kst, sizeof(kst));
3169 if (PROC_HAS_SHP(p)) {
3170 kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3171 kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3172 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3173 (uintptr_t)sv->sv_szsigcode);
3174 } else {
3175 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3176 *sv->sv_szsigcode;
3177 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3178 }
3179 PROC_UNLOCK(p);
3180 error = SYSCTL_OUT(req, &kst, sizeof(kst));
3181 return (error);
3182 }
3183
3184 static int
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)3185 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3186 {
3187 int *name = (int *)arg1;
3188 u_int namelen = arg2;
3189 pid_t pid;
3190 struct proc *p;
3191 struct thread *td1;
3192 uintptr_t addr;
3193 #ifdef COMPAT_FREEBSD32
3194 uint32_t addr32;
3195 #endif
3196 int error;
3197
3198 if (namelen != 1 || req->newptr != NULL)
3199 return (EINVAL);
3200
3201 pid = (pid_t)name[0];
3202 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3203 if (error != 0)
3204 return (error);
3205
3206 PROC_LOCK(p);
3207 #ifdef COMPAT_FREEBSD32
3208 if (SV_CURPROC_FLAG(SV_ILP32)) {
3209 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3210 error = EINVAL;
3211 goto errlocked;
3212 }
3213 }
3214 #endif
3215 if (pid <= PID_MAX) {
3216 td1 = FIRST_THREAD_IN_PROC(p);
3217 } else {
3218 FOREACH_THREAD_IN_PROC(p, td1) {
3219 if (td1->td_tid == pid)
3220 break;
3221 }
3222 }
3223 if (td1 == NULL) {
3224 error = ESRCH;
3225 goto errlocked;
3226 }
3227 /*
3228 * The access to the private thread flags. It is fine as far
3229 * as no out-of-thin-air values are read from td_pflags, and
3230 * usermode read of the td_sigblock_ptr is racy inherently,
3231 * since target process might have already changed it
3232 * meantime.
3233 */
3234 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3235 addr = (uintptr_t)td1->td_sigblock_ptr;
3236 else
3237 error = ENOTTY;
3238
3239 errlocked:
3240 _PRELE(p);
3241 PROC_UNLOCK(p);
3242 if (error != 0)
3243 return (error);
3244
3245 #ifdef COMPAT_FREEBSD32
3246 if (SV_CURPROC_FLAG(SV_ILP32)) {
3247 addr32 = addr;
3248 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3249 } else
3250 #endif
3251 error = SYSCTL_OUT(req, &addr, sizeof(addr));
3252 return (error);
3253 }
3254
3255 static int
sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)3256 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3257 {
3258 struct kinfo_vm_layout kvm;
3259 struct proc *p;
3260 struct vmspace *vmspace;
3261 int error, *name;
3262
3263 name = (int *)arg1;
3264 if ((u_int)arg2 != 1)
3265 return (EINVAL);
3266
3267 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3268 if (error != 0)
3269 return (error);
3270 #ifdef COMPAT_FREEBSD32
3271 if (SV_CURPROC_FLAG(SV_ILP32)) {
3272 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3273 PROC_UNLOCK(p);
3274 return (EINVAL);
3275 }
3276 }
3277 #endif
3278 vmspace = vmspace_acquire_ref(p);
3279 PROC_UNLOCK(p);
3280
3281 memset(&kvm, 0, sizeof(kvm));
3282 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3283 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3284 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3285 kvm.kvm_text_size = vmspace->vm_tsize;
3286 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3287 kvm.kvm_data_size = vmspace->vm_dsize;
3288 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3289 kvm.kvm_stack_size = vmspace->vm_ssize;
3290 kvm.kvm_shp_addr = vmspace->vm_shp_base;
3291 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3292 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3293 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3294 if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3295 kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3296 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3297 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3298 if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3299 kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3300 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3301 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3302 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3303 PROC_HAS_SHP(p))
3304 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3305
3306 #ifdef COMPAT_FREEBSD32
3307 if (SV_CURPROC_FLAG(SV_ILP32)) {
3308 struct kinfo_vm_layout32 kvm32;
3309
3310 memset(&kvm32, 0, sizeof(kvm32));
3311 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3312 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3313 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3314 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3315 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3316 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3317 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3318 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3319 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3320 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3321 kvm32.kvm_map_flags = kvm.kvm_map_flags;
3322 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3323 goto out;
3324 }
3325 #endif
3326
3327 error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3328 #ifdef COMPAT_FREEBSD32
3329 out:
3330 #endif
3331 vmspace_free(vmspace);
3332 return (error);
3333 }
3334
3335 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3336 "Process table");
3337
3338 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3339 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3340 "Return entire process table");
3341
3342 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3343 sysctl_kern_proc, "Process table");
3344
3345 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3346 sysctl_kern_proc, "Process table");
3347
3348 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3349 sysctl_kern_proc, "Process table");
3350
3351 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3352 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3353
3354 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3355 sysctl_kern_proc, "Process table");
3356
3357 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3358 sysctl_kern_proc, "Process table");
3359
3360 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3361 sysctl_kern_proc, "Process table");
3362
3363 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3364 sysctl_kern_proc, "Process table");
3365
3366 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3367 sysctl_kern_proc, "Return process table, no threads");
3368
3369 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3370 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3371 sysctl_kern_proc_args, "Process argument list");
3372
3373 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3374 sysctl_kern_proc_env, "Process environment");
3375
3376 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3377 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3378
3379 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3380 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3381
3382 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3383 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3384 "Process syscall vector name (ABI type)");
3385
3386 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3387 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3388
3389 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3390 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3391
3392 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3393 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3394
3395 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3396 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3397
3398 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3399 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3400
3401 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3402 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3403
3404 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3405 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3406
3407 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3408 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3409
3410 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3411 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3412 "Return process table, including threads");
3413
3414 #ifdef COMPAT_FREEBSD7
3415 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3416 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3417 #endif
3418
3419 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3420 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3421
3422 #if defined(STACK) || defined(DDB)
3423 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3424 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3425 #endif
3426
3427 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3428 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3429
3430 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3431 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3432 "Process resource limits");
3433
3434 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3435 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3436 "Process ps_strings location");
3437
3438 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3439 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3440
3441 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3442 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3443 "Process binary osreldate");
3444
3445 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3446 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3447 "Process signal trampoline location");
3448
3449 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3450 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3451 "Thread sigfastblock address");
3452
3453 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3454 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3455 "Process virtual address space layout info");
3456
3457 static struct sx stop_all_proc_blocker;
3458 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3459
3460 bool
stop_all_proc_block(void)3461 stop_all_proc_block(void)
3462 {
3463 return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3464 }
3465
3466 void
stop_all_proc_unblock(void)3467 stop_all_proc_unblock(void)
3468 {
3469 sx_xunlock(&stop_all_proc_blocker);
3470 }
3471
3472 int allproc_gen;
3473
3474 /*
3475 * stop_all_proc() purpose is to stop all process which have usermode,
3476 * except current process for obvious reasons. This makes it somewhat
3477 * unreliable when invoked from multithreaded process. The service
3478 * must not be user-callable anyway.
3479 */
3480 void
stop_all_proc(void)3481 stop_all_proc(void)
3482 {
3483 struct proc *cp, *p;
3484 int r, gen;
3485 bool restart, seen_stopped, seen_exiting, stopped_some;
3486
3487 if (!stop_all_proc_block())
3488 return;
3489
3490 cp = curproc;
3491 allproc_loop:
3492 sx_xlock(&allproc_lock);
3493 gen = allproc_gen;
3494 seen_exiting = seen_stopped = stopped_some = restart = false;
3495 LIST_REMOVE(cp, p_list);
3496 LIST_INSERT_HEAD(&allproc, cp, p_list);
3497 for (;;) {
3498 p = LIST_NEXT(cp, p_list);
3499 if (p == NULL)
3500 break;
3501 LIST_REMOVE(cp, p_list);
3502 LIST_INSERT_AFTER(p, cp, p_list);
3503 PROC_LOCK(p);
3504 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
3505 P_STOPPED_SIG)) != 0) {
3506 PROC_UNLOCK(p);
3507 continue;
3508 }
3509 if ((p->p_flag2 & P2_WEXIT) != 0) {
3510 seen_exiting = true;
3511 PROC_UNLOCK(p);
3512 continue;
3513 }
3514 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3515 /*
3516 * Stopped processes are tolerated when there
3517 * are no other processes which might continue
3518 * them. P_STOPPED_SINGLE but not
3519 * P_TOTAL_STOP process still has at least one
3520 * thread running.
3521 */
3522 seen_stopped = true;
3523 PROC_UNLOCK(p);
3524 continue;
3525 }
3526 if ((p->p_flag & P_TRACED) != 0) {
3527 /*
3528 * thread_single() below cannot stop traced p,
3529 * so skip it. OTOH, we cannot require
3530 * restart because debugger might be either
3531 * already stopped or traced as well.
3532 */
3533 PROC_UNLOCK(p);
3534 continue;
3535 }
3536 sx_xunlock(&allproc_lock);
3537 _PHOLD(p);
3538 r = thread_single(p, SINGLE_ALLPROC);
3539 if (r != 0)
3540 restart = true;
3541 else
3542 stopped_some = true;
3543 _PRELE(p);
3544 PROC_UNLOCK(p);
3545 sx_xlock(&allproc_lock);
3546 }
3547 /* Catch forked children we did not see in iteration. */
3548 if (gen != allproc_gen)
3549 restart = true;
3550 sx_xunlock(&allproc_lock);
3551 if (restart || stopped_some || seen_exiting || seen_stopped) {
3552 kern_yield(PRI_USER);
3553 goto allproc_loop;
3554 }
3555 }
3556
3557 void
resume_all_proc(void)3558 resume_all_proc(void)
3559 {
3560 struct proc *cp, *p;
3561
3562 cp = curproc;
3563 sx_xlock(&allproc_lock);
3564 again:
3565 LIST_REMOVE(cp, p_list);
3566 LIST_INSERT_HEAD(&allproc, cp, p_list);
3567 for (;;) {
3568 p = LIST_NEXT(cp, p_list);
3569 if (p == NULL)
3570 break;
3571 LIST_REMOVE(cp, p_list);
3572 LIST_INSERT_AFTER(p, cp, p_list);
3573 PROC_LOCK(p);
3574 if ((p->p_flag & P_TOTAL_STOP) != 0) {
3575 sx_xunlock(&allproc_lock);
3576 _PHOLD(p);
3577 thread_single_end(p, SINGLE_ALLPROC);
3578 _PRELE(p);
3579 PROC_UNLOCK(p);
3580 sx_xlock(&allproc_lock);
3581 } else {
3582 PROC_UNLOCK(p);
3583 }
3584 }
3585 /* Did the loop above missed any stopped process ? */
3586 FOREACH_PROC_IN_SYSTEM(p) {
3587 /* No need for proc lock. */
3588 if ((p->p_flag & P_TOTAL_STOP) != 0)
3589 goto again;
3590 }
3591 sx_xunlock(&allproc_lock);
3592
3593 stop_all_proc_unblock();
3594 }
3595
3596 /* #define TOTAL_STOP_DEBUG 1 */
3597 #ifdef TOTAL_STOP_DEBUG
3598 volatile static int ap_resume;
3599 #include <sys/mount.h>
3600
3601 static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)3602 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3603 {
3604 int error, val;
3605
3606 val = 0;
3607 ap_resume = 0;
3608 error = sysctl_handle_int(oidp, &val, 0, req);
3609 if (error != 0 || req->newptr == NULL)
3610 return (error);
3611 if (val != 0) {
3612 stop_all_proc();
3613 syncer_suspend();
3614 while (ap_resume == 0)
3615 ;
3616 syncer_resume();
3617 resume_all_proc();
3618 }
3619 return (0);
3620 }
3621
3622 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3623 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3624 sysctl_debug_stop_all_proc, "I",
3625 "");
3626 #endif
3627