1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27
28 /* Free memory management - zoned buddy allocator. */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39
40 /*
41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42 * costly to service. That is between allocation orders which should
43 * coalesce naturally under reasonable reclaim pressure and those which
44 * will not.
45 */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47
48 enum migratetype {
49 MIGRATE_UNMOVABLE,
50 MIGRATE_MOVABLE,
51 MIGRATE_RECLAIMABLE,
52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 /*
56 * MIGRATE_CMA migration type is designed to mimic the way
57 * ZONE_MOVABLE works. Only movable pages can be allocated
58 * from MIGRATE_CMA pageblocks and page allocator never
59 * implicitly change migration type of MIGRATE_CMA pageblock.
60 *
61 * The way to use it is to change migratetype of a range of
62 * pageblocks to MIGRATE_CMA which can be done by
63 * __free_pageblock_cma() function.
64 */
65 MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 MIGRATE_ISOLATE, /* can't allocate from here */
69 #endif
70 MIGRATE_TYPES
71 };
72
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75
76 #ifdef CONFIG_CMA
77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \
80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 # define is_migrate_cma(migratetype) false
83 # define is_migrate_cma_page(_page) false
84 # define is_migrate_cma_folio(folio, pfn) false
85 #endif
86
is_migrate_movable(int mt)87 static inline bool is_migrate_movable(int mt)
88 {
89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91
92 /*
93 * Check whether a migratetype can be merged with another migratetype.
94 *
95 * It is only mergeable when it can fall back to other migratetypes for
96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97 */
migratetype_is_mergeable(int mt)98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 return mt < MIGRATE_PCPTYPES;
101 }
102
103 #define for_each_migratetype_order(order, type) \
104 for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 for (type = 0; type < MIGRATE_TYPES; type++)
106
107 extern int page_group_by_mobility_disabled;
108
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110
111 #define get_pageblock_migratetype(page) \
112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113
114 #define folio_migratetype(folio) \
115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
116 MIGRATETYPE_MASK)
117 struct free_area {
118 struct list_head free_list[MIGRATE_TYPES];
119 unsigned long nr_free;
120 };
121
122 struct pglist_data;
123
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 NUMA_HIT, /* allocated in intended node */
127 NUMA_MISS, /* allocated in non intended node */
128 NUMA_FOREIGN, /* was intended here, hit elsewhere */
129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
130 NUMA_LOCAL, /* allocation from local node */
131 NUMA_OTHER, /* allocation from other node */
132 NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137
138 enum zone_stat_item {
139 /* First 128 byte cacheline (assuming 64 bit words) */
140 NR_FREE_PAGES,
141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 NR_ZONE_ACTIVE_ANON,
144 NR_ZONE_INACTIVE_FILE,
145 NR_ZONE_ACTIVE_FILE,
146 NR_ZONE_UNEVICTABLE,
147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
149 /* Second 128 byte cacheline */
150 NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 NR_ZSPAGES, /* allocated in zsmalloc */
153 #endif
154 NR_FREE_CMA_PAGES,
155 #ifdef CONFIG_UNACCEPTED_MEMORY
156 NR_UNACCEPTED,
157 #endif
158 NR_VM_ZONE_STAT_ITEMS };
159
160 enum node_stat_item {
161 NR_LRU_BASE,
162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 NR_ACTIVE_ANON, /* " " " " " */
164 NR_INACTIVE_FILE, /* " " " " " */
165 NR_ACTIVE_FILE, /* " " " " " */
166 NR_UNEVICTABLE, /* " " " " " */
167 NR_SLAB_RECLAIMABLE_B,
168 NR_SLAB_UNRECLAIMABLE_B,
169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
171 WORKINGSET_NODES,
172 WORKINGSET_REFAULT_BASE,
173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 WORKINGSET_REFAULT_FILE,
175 WORKINGSET_ACTIVATE_BASE,
176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 WORKINGSET_ACTIVATE_FILE,
178 WORKINGSET_RESTORE_BASE,
179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 WORKINGSET_RESTORE_FILE,
181 WORKINGSET_NODERECLAIM,
182 NR_ANON_MAPPED, /* Mapped anonymous pages */
183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
184 only modified from process context */
185 NR_FILE_PAGES,
186 NR_FILE_DIRTY,
187 NR_WRITEBACK,
188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
190 NR_SHMEM_THPS,
191 NR_SHMEM_PMDMAPPED,
192 NR_FILE_THPS,
193 NR_FILE_PMDMAPPED,
194 NR_ANON_THPS,
195 NR_VMSCAN_WRITE,
196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
197 NR_DIRTIED, /* page dirtyings since bootup */
198 NR_WRITTEN, /* page writings since bootup */
199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
203 NR_KERNEL_STACK_KB, /* measured in KiB */
204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 NR_KERNEL_SCS_KB, /* measured in KiB */
206 #endif
207 NR_PAGETABLE, /* used for pagetables */
208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
209 #ifdef CONFIG_IOMMU_SUPPORT
210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */
211 #endif
212 #ifdef CONFIG_SWAP
213 NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 PGPROMOTE_SUCCESS, /* promote successfully */
217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
218 #endif
219 /* PGDEMOTE_*: pages demoted */
220 PGDEMOTE_KSWAPD,
221 PGDEMOTE_DIRECT,
222 PGDEMOTE_KHUGEPAGED,
223 NR_VM_NODE_STAT_ITEMS
224 };
225
226 /*
227 * Returns true if the item should be printed in THPs (/proc/vmstat
228 * currently prints number of anon, file and shmem THPs. But the item
229 * is charged in pages).
230 */
vmstat_item_print_in_thp(enum node_stat_item item)231 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
232 {
233 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
234 return false;
235
236 return item == NR_ANON_THPS ||
237 item == NR_FILE_THPS ||
238 item == NR_SHMEM_THPS ||
239 item == NR_SHMEM_PMDMAPPED ||
240 item == NR_FILE_PMDMAPPED;
241 }
242
243 /*
244 * Returns true if the value is measured in bytes (most vmstat values are
245 * measured in pages). This defines the API part, the internal representation
246 * might be different.
247 */
vmstat_item_in_bytes(int idx)248 static __always_inline bool vmstat_item_in_bytes(int idx)
249 {
250 /*
251 * Global and per-node slab counters track slab pages.
252 * It's expected that changes are multiples of PAGE_SIZE.
253 * Internally values are stored in pages.
254 *
255 * Per-memcg and per-lruvec counters track memory, consumed
256 * by individual slab objects. These counters are actually
257 * byte-precise.
258 */
259 return (idx == NR_SLAB_RECLAIMABLE_B ||
260 idx == NR_SLAB_UNRECLAIMABLE_B);
261 }
262
263 /*
264 * We do arithmetic on the LRU lists in various places in the code,
265 * so it is important to keep the active lists LRU_ACTIVE higher in
266 * the array than the corresponding inactive lists, and to keep
267 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
268 *
269 * This has to be kept in sync with the statistics in zone_stat_item
270 * above and the descriptions in vmstat_text in mm/vmstat.c
271 */
272 #define LRU_BASE 0
273 #define LRU_ACTIVE 1
274 #define LRU_FILE 2
275
276 enum lru_list {
277 LRU_INACTIVE_ANON = LRU_BASE,
278 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
279 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
280 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
281 LRU_UNEVICTABLE,
282 NR_LRU_LISTS
283 };
284
285 enum vmscan_throttle_state {
286 VMSCAN_THROTTLE_WRITEBACK,
287 VMSCAN_THROTTLE_ISOLATED,
288 VMSCAN_THROTTLE_NOPROGRESS,
289 VMSCAN_THROTTLE_CONGESTED,
290 NR_VMSCAN_THROTTLE,
291 };
292
293 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
294
295 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
296
is_file_lru(enum lru_list lru)297 static inline bool is_file_lru(enum lru_list lru)
298 {
299 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
300 }
301
is_active_lru(enum lru_list lru)302 static inline bool is_active_lru(enum lru_list lru)
303 {
304 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
305 }
306
307 #define WORKINGSET_ANON 0
308 #define WORKINGSET_FILE 1
309 #define ANON_AND_FILE 2
310
311 enum lruvec_flags {
312 /*
313 * An lruvec has many dirty pages backed by a congested BDI:
314 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
315 * It can be cleared by cgroup reclaim or kswapd.
316 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
317 * It can only be cleared by kswapd.
318 *
319 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
320 * reclaim, but not vice versa. This only applies to the root cgroup.
321 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
322 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
323 * by kswapd).
324 */
325 LRUVEC_CGROUP_CONGESTED,
326 LRUVEC_NODE_CONGESTED,
327 };
328
329 #endif /* !__GENERATING_BOUNDS_H */
330
331 /*
332 * Evictable pages are divided into multiple generations. The youngest and the
333 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
334 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
335 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
336 * corresponding generation. The gen counter in folio->flags stores gen+1 while
337 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
338 *
339 * A page is added to the youngest generation on faulting. The aging needs to
340 * check the accessed bit at least twice before handing this page over to the
341 * eviction. The first check takes care of the accessed bit set on the initial
342 * fault; the second check makes sure this page hasn't been used since then.
343 * This process, AKA second chance, requires a minimum of two generations,
344 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
345 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
346 * rest of generations, if they exist, are considered inactive. See
347 * lru_gen_is_active().
348 *
349 * PG_active is always cleared while a page is on one of lrugen->folios[] so
350 * that the aging needs not to worry about it. And it's set again when a page
351 * considered active is isolated for non-reclaiming purposes, e.g., migration.
352 * See lru_gen_add_folio() and lru_gen_del_folio().
353 *
354 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
355 * number of categories of the active/inactive LRU when keeping track of
356 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
357 * in folio->flags.
358 */
359 #define MIN_NR_GENS 2U
360 #define MAX_NR_GENS 4U
361
362 /*
363 * Each generation is divided into multiple tiers. A page accessed N times
364 * through file descriptors is in tier order_base_2(N). A page in the first tier
365 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
366 * tables or read ahead. A page in any other tier (N>1) is marked by
367 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
368 * supported without using additional bits in folio->flags.
369 *
370 * In contrast to moving across generations which requires the LRU lock, moving
371 * across tiers only involves atomic operations on folio->flags and therefore
372 * has a negligible cost in the buffered access path. In the eviction path,
373 * comparisons of refaulted/(evicted+protected) from the first tier and the
374 * rest infer whether pages accessed multiple times through file descriptors
375 * are statistically hot and thus worth protecting.
376 *
377 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
378 * number of categories of the active/inactive LRU when keeping track of
379 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
380 * folio->flags.
381 */
382 #define MAX_NR_TIERS 4U
383
384 #ifndef __GENERATING_BOUNDS_H
385
386 struct lruvec;
387 struct page_vma_mapped_walk;
388
389 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
390 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
391
392 #ifdef CONFIG_LRU_GEN
393
394 enum {
395 LRU_GEN_ANON,
396 LRU_GEN_FILE,
397 };
398
399 enum {
400 LRU_GEN_CORE,
401 LRU_GEN_MM_WALK,
402 LRU_GEN_NONLEAF_YOUNG,
403 NR_LRU_GEN_CAPS
404 };
405
406 #define MIN_LRU_BATCH BITS_PER_LONG
407 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
408
409 /* whether to keep historical stats from evicted generations */
410 #ifdef CONFIG_LRU_GEN_STATS
411 #define NR_HIST_GENS MAX_NR_GENS
412 #else
413 #define NR_HIST_GENS 1U
414 #endif
415
416 /*
417 * The youngest generation number is stored in max_seq for both anon and file
418 * types as they are aged on an equal footing. The oldest generation numbers are
419 * stored in min_seq[] separately for anon and file types as clean file pages
420 * can be evicted regardless of swap constraints.
421 *
422 * Normally anon and file min_seq are in sync. But if swapping is constrained,
423 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
424 * min_seq behind.
425 *
426 * The number of pages in each generation is eventually consistent and therefore
427 * can be transiently negative when reset_batch_size() is pending.
428 */
429 struct lru_gen_folio {
430 /* the aging increments the youngest generation number */
431 unsigned long max_seq;
432 /* the eviction increments the oldest generation numbers */
433 unsigned long min_seq[ANON_AND_FILE];
434 /* the birth time of each generation in jiffies */
435 unsigned long timestamps[MAX_NR_GENS];
436 /* the multi-gen LRU lists, lazily sorted on eviction */
437 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
438 /* the multi-gen LRU sizes, eventually consistent */
439 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
440 /* the exponential moving average of refaulted */
441 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
442 /* the exponential moving average of evicted+protected */
443 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
444 /* the first tier doesn't need protection, hence the minus one */
445 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
446 /* can be modified without holding the LRU lock */
447 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
448 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
449 /* whether the multi-gen LRU is enabled */
450 bool enabled;
451 /* the memcg generation this lru_gen_folio belongs to */
452 u8 gen;
453 /* the list segment this lru_gen_folio belongs to */
454 u8 seg;
455 /* per-node lru_gen_folio list for global reclaim */
456 struct hlist_nulls_node list;
457 };
458
459 enum {
460 MM_LEAF_TOTAL, /* total leaf entries */
461 MM_LEAF_YOUNG, /* young leaf entries */
462 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
463 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
464 NR_MM_STATS
465 };
466
467 /* double-buffering Bloom filters */
468 #define NR_BLOOM_FILTERS 2
469
470 struct lru_gen_mm_state {
471 /* synced with max_seq after each iteration */
472 unsigned long seq;
473 /* where the current iteration continues after */
474 struct list_head *head;
475 /* where the last iteration ended before */
476 struct list_head *tail;
477 /* Bloom filters flip after each iteration */
478 unsigned long *filters[NR_BLOOM_FILTERS];
479 /* the mm stats for debugging */
480 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
481 };
482
483 struct lru_gen_mm_walk {
484 /* the lruvec under reclaim */
485 struct lruvec *lruvec;
486 /* max_seq from lru_gen_folio: can be out of date */
487 unsigned long seq;
488 /* the next address within an mm to scan */
489 unsigned long next_addr;
490 /* to batch promoted pages */
491 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
492 /* to batch the mm stats */
493 int mm_stats[NR_MM_STATS];
494 /* total batched items */
495 int batched;
496 bool can_swap;
497 bool force_scan;
498 };
499
500 /*
501 * For each node, memcgs are divided into two generations: the old and the
502 * young. For each generation, memcgs are randomly sharded into multiple bins
503 * to improve scalability. For each bin, the hlist_nulls is virtually divided
504 * into three segments: the head, the tail and the default.
505 *
506 * An onlining memcg is added to the tail of a random bin in the old generation.
507 * The eviction starts at the head of a random bin in the old generation. The
508 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
509 * the old generation, is incremented when all its bins become empty.
510 *
511 * There are four operations:
512 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
513 * current generation (old or young) and updates its "seg" to "head";
514 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
515 * current generation (old or young) and updates its "seg" to "tail";
516 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
517 * generation, updates its "gen" to "old" and resets its "seg" to "default";
518 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
519 * young generation, updates its "gen" to "young" and resets its "seg" to
520 * "default".
521 *
522 * The events that trigger the above operations are:
523 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
524 * 2. The first attempt to reclaim a memcg below low, which triggers
525 * MEMCG_LRU_TAIL;
526 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
527 * threshold, which triggers MEMCG_LRU_TAIL;
528 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
529 * threshold, which triggers MEMCG_LRU_YOUNG;
530 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
531 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
532 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
533 *
534 * Notes:
535 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
536 * of their max_seq counters ensures the eventual fairness to all eligible
537 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
538 * 2. There are only two valid generations: old (seq) and young (seq+1).
539 * MEMCG_NR_GENS is set to three so that when reading the generation counter
540 * locklessly, a stale value (seq-1) does not wraparound to young.
541 */
542 #define MEMCG_NR_GENS 3
543 #define MEMCG_NR_BINS 8
544
545 struct lru_gen_memcg {
546 /* the per-node memcg generation counter */
547 unsigned long seq;
548 /* each memcg has one lru_gen_folio per node */
549 unsigned long nr_memcgs[MEMCG_NR_GENS];
550 /* per-node lru_gen_folio list for global reclaim */
551 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
552 /* protects the above */
553 spinlock_t lock;
554 };
555
556 void lru_gen_init_pgdat(struct pglist_data *pgdat);
557 void lru_gen_init_lruvec(struct lruvec *lruvec);
558 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
559
560 void lru_gen_init_memcg(struct mem_cgroup *memcg);
561 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
562 void lru_gen_online_memcg(struct mem_cgroup *memcg);
563 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
564 void lru_gen_release_memcg(struct mem_cgroup *memcg);
565 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
566
567 #else /* !CONFIG_LRU_GEN */
568
lru_gen_init_pgdat(struct pglist_data * pgdat)569 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
570 {
571 }
572
lru_gen_init_lruvec(struct lruvec * lruvec)573 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
574 {
575 }
576
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)577 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
578 {
579 return false;
580 }
581
lru_gen_init_memcg(struct mem_cgroup * memcg)582 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
583 {
584 }
585
lru_gen_exit_memcg(struct mem_cgroup * memcg)586 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
587 {
588 }
589
lru_gen_online_memcg(struct mem_cgroup * memcg)590 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
591 {
592 }
593
lru_gen_offline_memcg(struct mem_cgroup * memcg)594 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
595 {
596 }
597
lru_gen_release_memcg(struct mem_cgroup * memcg)598 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
599 {
600 }
601
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)602 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
603 {
604 }
605
606 #endif /* CONFIG_LRU_GEN */
607
608 struct lruvec {
609 struct list_head lists[NR_LRU_LISTS];
610 /* per lruvec lru_lock for memcg */
611 spinlock_t lru_lock;
612 /*
613 * These track the cost of reclaiming one LRU - file or anon -
614 * over the other. As the observed cost of reclaiming one LRU
615 * increases, the reclaim scan balance tips toward the other.
616 */
617 unsigned long anon_cost;
618 unsigned long file_cost;
619 /* Non-resident age, driven by LRU movement */
620 atomic_long_t nonresident_age;
621 /* Refaults at the time of last reclaim cycle */
622 unsigned long refaults[ANON_AND_FILE];
623 /* Various lruvec state flags (enum lruvec_flags) */
624 unsigned long flags;
625 #ifdef CONFIG_LRU_GEN
626 /* evictable pages divided into generations */
627 struct lru_gen_folio lrugen;
628 #ifdef CONFIG_LRU_GEN_WALKS_MMU
629 /* to concurrently iterate lru_gen_mm_list */
630 struct lru_gen_mm_state mm_state;
631 #endif
632 #endif /* CONFIG_LRU_GEN */
633 #ifdef CONFIG_MEMCG
634 struct pglist_data *pgdat;
635 #endif
636 struct zswap_lruvec_state zswap_lruvec_state;
637 };
638
639 /* Isolate for asynchronous migration */
640 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
641 /* Isolate unevictable pages */
642 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
643
644 /* LRU Isolation modes. */
645 typedef unsigned __bitwise isolate_mode_t;
646
647 enum zone_watermarks {
648 WMARK_MIN,
649 WMARK_LOW,
650 WMARK_HIGH,
651 WMARK_PROMO,
652 NR_WMARK
653 };
654
655 /*
656 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
657 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
658 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
659 */
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 #define NR_PCP_THP 2
662 #else
663 #define NR_PCP_THP 0
664 #endif
665 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
666 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
667
668 /*
669 * Flags used in pcp->flags field.
670 *
671 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
672 * previous page freeing. To avoid to drain PCP for an accident
673 * high-order page freeing.
674 *
675 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
676 * draining PCP for consecutive high-order pages freeing without
677 * allocation if data cache slice of CPU is large enough. To reduce
678 * zone lock contention and keep cache-hot pages reusing.
679 */
680 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0)
681 #define PCPF_FREE_HIGH_BATCH BIT(1)
682
683 struct per_cpu_pages {
684 spinlock_t lock; /* Protects lists field */
685 int count; /* number of pages in the list */
686 int high; /* high watermark, emptying needed */
687 int high_min; /* min high watermark */
688 int high_max; /* max high watermark */
689 int batch; /* chunk size for buddy add/remove */
690 u8 flags; /* protected by pcp->lock */
691 u8 alloc_factor; /* batch scaling factor during allocate */
692 #ifdef CONFIG_NUMA
693 u8 expire; /* When 0, remote pagesets are drained */
694 #endif
695 short free_count; /* consecutive free count */
696
697 /* Lists of pages, one per migrate type stored on the pcp-lists */
698 struct list_head lists[NR_PCP_LISTS];
699 } ____cacheline_aligned_in_smp;
700
701 struct per_cpu_zonestat {
702 #ifdef CONFIG_SMP
703 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
704 s8 stat_threshold;
705 #endif
706 #ifdef CONFIG_NUMA
707 /*
708 * Low priority inaccurate counters that are only folded
709 * on demand. Use a large type to avoid the overhead of
710 * folding during refresh_cpu_vm_stats.
711 */
712 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
713 #endif
714 };
715
716 struct per_cpu_nodestat {
717 s8 stat_threshold;
718 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
719 };
720
721 #endif /* !__GENERATING_BOUNDS.H */
722
723 enum zone_type {
724 /*
725 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
726 * to DMA to all of the addressable memory (ZONE_NORMAL).
727 * On architectures where this area covers the whole 32 bit address
728 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
729 * DMA addressing constraints. This distinction is important as a 32bit
730 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
731 * platforms may need both zones as they support peripherals with
732 * different DMA addressing limitations.
733 */
734 #ifdef CONFIG_ZONE_DMA
735 ZONE_DMA,
736 #endif
737 #ifdef CONFIG_ZONE_DMA32
738 ZONE_DMA32,
739 #endif
740 /*
741 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
742 * performed on pages in ZONE_NORMAL if the DMA devices support
743 * transfers to all addressable memory.
744 */
745 ZONE_NORMAL,
746 #ifdef CONFIG_HIGHMEM
747 /*
748 * A memory area that is only addressable by the kernel through
749 * mapping portions into its own address space. This is for example
750 * used by i386 to allow the kernel to address the memory beyond
751 * 900MB. The kernel will set up special mappings (page
752 * table entries on i386) for each page that the kernel needs to
753 * access.
754 */
755 ZONE_HIGHMEM,
756 #endif
757 /*
758 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
759 * movable pages with few exceptional cases described below. Main use
760 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
761 * likely to succeed, and to locally limit unmovable allocations - e.g.,
762 * to increase the number of THP/huge pages. Notable special cases are:
763 *
764 * 1. Pinned pages: (long-term) pinning of movable pages might
765 * essentially turn such pages unmovable. Therefore, we do not allow
766 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
767 * faulted, they come from the right zone right away. However, it is
768 * still possible that address space already has pages in
769 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
770 * touches that memory before pinning). In such case we migrate them
771 * to a different zone. When migration fails - pinning fails.
772 * 2. memblock allocations: kernelcore/movablecore setups might create
773 * situations where ZONE_MOVABLE contains unmovable allocations
774 * after boot. Memory offlining and allocations fail early.
775 * 3. Memory holes: kernelcore/movablecore setups might create very rare
776 * situations where ZONE_MOVABLE contains memory holes after boot,
777 * for example, if we have sections that are only partially
778 * populated. Memory offlining and allocations fail early.
779 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
780 * memory offlining, such pages cannot be allocated.
781 * 5. Unmovable PG_offline pages: in paravirtualized environments,
782 * hotplugged memory blocks might only partially be managed by the
783 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
784 * parts not manged by the buddy are unmovable PG_offline pages. In
785 * some cases (virtio-mem), such pages can be skipped during
786 * memory offlining, however, cannot be moved/allocated. These
787 * techniques might use alloc_contig_range() to hide previously
788 * exposed pages from the buddy again (e.g., to implement some sort
789 * of memory unplug in virtio-mem).
790 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
791 * situations where ZERO_PAGE(0) which is allocated differently
792 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
793 * cannot be migrated.
794 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
795 * memory to the MOVABLE zone, the vmemmap pages are also placed in
796 * such zone. Such pages cannot be really moved around as they are
797 * self-stored in the range, but they are treated as movable when
798 * the range they describe is about to be offlined.
799 *
800 * In general, no unmovable allocations that degrade memory offlining
801 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
802 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
803 * if has_unmovable_pages() states that there are no unmovable pages,
804 * there can be false negatives).
805 */
806 ZONE_MOVABLE,
807 #ifdef CONFIG_ZONE_DEVICE
808 ZONE_DEVICE,
809 #endif
810 __MAX_NR_ZONES
811
812 };
813
814 #ifndef __GENERATING_BOUNDS_H
815
816 #define ASYNC_AND_SYNC 2
817
818 struct zone {
819 /* Read-mostly fields */
820
821 /* zone watermarks, access with *_wmark_pages(zone) macros */
822 unsigned long _watermark[NR_WMARK];
823 unsigned long watermark_boost;
824
825 unsigned long nr_reserved_highatomic;
826 unsigned long nr_free_highatomic;
827
828 /*
829 * We don't know if the memory that we're going to allocate will be
830 * freeable or/and it will be released eventually, so to avoid totally
831 * wasting several GB of ram we must reserve some of the lower zone
832 * memory (otherwise we risk to run OOM on the lower zones despite
833 * there being tons of freeable ram on the higher zones). This array is
834 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
835 * changes.
836 */
837 long lowmem_reserve[MAX_NR_ZONES];
838
839 #ifdef CONFIG_NUMA
840 int node;
841 #endif
842 struct pglist_data *zone_pgdat;
843 struct per_cpu_pages __percpu *per_cpu_pageset;
844 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
845 /*
846 * the high and batch values are copied to individual pagesets for
847 * faster access
848 */
849 int pageset_high_min;
850 int pageset_high_max;
851 int pageset_batch;
852
853 #ifndef CONFIG_SPARSEMEM
854 /*
855 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
856 * In SPARSEMEM, this map is stored in struct mem_section
857 */
858 unsigned long *pageblock_flags;
859 #endif /* CONFIG_SPARSEMEM */
860
861 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
862 unsigned long zone_start_pfn;
863
864 /*
865 * spanned_pages is the total pages spanned by the zone, including
866 * holes, which is calculated as:
867 * spanned_pages = zone_end_pfn - zone_start_pfn;
868 *
869 * present_pages is physical pages existing within the zone, which
870 * is calculated as:
871 * present_pages = spanned_pages - absent_pages(pages in holes);
872 *
873 * present_early_pages is present pages existing within the zone
874 * located on memory available since early boot, excluding hotplugged
875 * memory.
876 *
877 * managed_pages is present pages managed by the buddy system, which
878 * is calculated as (reserved_pages includes pages allocated by the
879 * bootmem allocator):
880 * managed_pages = present_pages - reserved_pages;
881 *
882 * cma pages is present pages that are assigned for CMA use
883 * (MIGRATE_CMA).
884 *
885 * So present_pages may be used by memory hotplug or memory power
886 * management logic to figure out unmanaged pages by checking
887 * (present_pages - managed_pages). And managed_pages should be used
888 * by page allocator and vm scanner to calculate all kinds of watermarks
889 * and thresholds.
890 *
891 * Locking rules:
892 *
893 * zone_start_pfn and spanned_pages are protected by span_seqlock.
894 * It is a seqlock because it has to be read outside of zone->lock,
895 * and it is done in the main allocator path. But, it is written
896 * quite infrequently.
897 *
898 * The span_seq lock is declared along with zone->lock because it is
899 * frequently read in proximity to zone->lock. It's good to
900 * give them a chance of being in the same cacheline.
901 *
902 * Write access to present_pages at runtime should be protected by
903 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
904 * present_pages should use get_online_mems() to get a stable value.
905 */
906 atomic_long_t managed_pages;
907 unsigned long spanned_pages;
908 unsigned long present_pages;
909 #if defined(CONFIG_MEMORY_HOTPLUG)
910 unsigned long present_early_pages;
911 #endif
912 #ifdef CONFIG_CMA
913 unsigned long cma_pages;
914 #endif
915
916 const char *name;
917
918 #ifdef CONFIG_MEMORY_ISOLATION
919 /*
920 * Number of isolated pageblock. It is used to solve incorrect
921 * freepage counting problem due to racy retrieving migratetype
922 * of pageblock. Protected by zone->lock.
923 */
924 unsigned long nr_isolate_pageblock;
925 #endif
926
927 #ifdef CONFIG_MEMORY_HOTPLUG
928 /* see spanned/present_pages for more description */
929 seqlock_t span_seqlock;
930 #endif
931
932 int initialized;
933
934 /* Write-intensive fields used from the page allocator */
935 CACHELINE_PADDING(_pad1_);
936
937 /* free areas of different sizes */
938 struct free_area free_area[NR_PAGE_ORDERS];
939
940 #ifdef CONFIG_UNACCEPTED_MEMORY
941 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
942 struct list_head unaccepted_pages;
943 #endif
944
945 /* zone flags, see below */
946 unsigned long flags;
947
948 /* Primarily protects free_area */
949 spinlock_t lock;
950
951 /* Write-intensive fields used by compaction and vmstats. */
952 CACHELINE_PADDING(_pad2_);
953
954 /*
955 * When free pages are below this point, additional steps are taken
956 * when reading the number of free pages to avoid per-cpu counter
957 * drift allowing watermarks to be breached
958 */
959 unsigned long percpu_drift_mark;
960
961 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
962 /* pfn where compaction free scanner should start */
963 unsigned long compact_cached_free_pfn;
964 /* pfn where compaction migration scanner should start */
965 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
966 unsigned long compact_init_migrate_pfn;
967 unsigned long compact_init_free_pfn;
968 #endif
969
970 #ifdef CONFIG_COMPACTION
971 /*
972 * On compaction failure, 1<<compact_defer_shift compactions
973 * are skipped before trying again. The number attempted since
974 * last failure is tracked with compact_considered.
975 * compact_order_failed is the minimum compaction failed order.
976 */
977 unsigned int compact_considered;
978 unsigned int compact_defer_shift;
979 int compact_order_failed;
980 #endif
981
982 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
983 /* Set to true when the PG_migrate_skip bits should be cleared */
984 bool compact_blockskip_flush;
985 #endif
986
987 bool contiguous;
988
989 CACHELINE_PADDING(_pad3_);
990 /* Zone statistics */
991 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
992 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
993 } ____cacheline_internodealigned_in_smp;
994
995 enum pgdat_flags {
996 PGDAT_DIRTY, /* reclaim scanning has recently found
997 * many dirty file pages at the tail
998 * of the LRU.
999 */
1000 PGDAT_WRITEBACK, /* reclaim scanning has recently found
1001 * many pages under writeback
1002 */
1003 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
1004 };
1005
1006 enum zone_flags {
1007 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1008 * Cleared when kswapd is woken.
1009 */
1010 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1011 ZONE_BELOW_HIGH, /* zone is below high watermark. */
1012 };
1013
wmark_pages(const struct zone * z,enum zone_watermarks w)1014 static inline unsigned long wmark_pages(const struct zone *z,
1015 enum zone_watermarks w)
1016 {
1017 return z->_watermark[w] + z->watermark_boost;
1018 }
1019
min_wmark_pages(const struct zone * z)1020 static inline unsigned long min_wmark_pages(const struct zone *z)
1021 {
1022 return wmark_pages(z, WMARK_MIN);
1023 }
1024
low_wmark_pages(const struct zone * z)1025 static inline unsigned long low_wmark_pages(const struct zone *z)
1026 {
1027 return wmark_pages(z, WMARK_LOW);
1028 }
1029
high_wmark_pages(const struct zone * z)1030 static inline unsigned long high_wmark_pages(const struct zone *z)
1031 {
1032 return wmark_pages(z, WMARK_HIGH);
1033 }
1034
promo_wmark_pages(const struct zone * z)1035 static inline unsigned long promo_wmark_pages(const struct zone *z)
1036 {
1037 return wmark_pages(z, WMARK_PROMO);
1038 }
1039
zone_managed_pages(struct zone * zone)1040 static inline unsigned long zone_managed_pages(struct zone *zone)
1041 {
1042 return (unsigned long)atomic_long_read(&zone->managed_pages);
1043 }
1044
zone_cma_pages(struct zone * zone)1045 static inline unsigned long zone_cma_pages(struct zone *zone)
1046 {
1047 #ifdef CONFIG_CMA
1048 return zone->cma_pages;
1049 #else
1050 return 0;
1051 #endif
1052 }
1053
zone_end_pfn(const struct zone * zone)1054 static inline unsigned long zone_end_pfn(const struct zone *zone)
1055 {
1056 return zone->zone_start_pfn + zone->spanned_pages;
1057 }
1058
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1059 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1060 {
1061 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1062 }
1063
zone_is_initialized(struct zone * zone)1064 static inline bool zone_is_initialized(struct zone *zone)
1065 {
1066 return zone->initialized;
1067 }
1068
zone_is_empty(struct zone * zone)1069 static inline bool zone_is_empty(struct zone *zone)
1070 {
1071 return zone->spanned_pages == 0;
1072 }
1073
1074 #ifndef BUILD_VDSO32_64
1075 /*
1076 * The zone field is never updated after free_area_init_core()
1077 * sets it, so none of the operations on it need to be atomic.
1078 */
1079
1080 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1081 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1082 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1083 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1084 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1085 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1086 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1087 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1088
1089 /*
1090 * Define the bit shifts to access each section. For non-existent
1091 * sections we define the shift as 0; that plus a 0 mask ensures
1092 * the compiler will optimise away reference to them.
1093 */
1094 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1095 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1096 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1097 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1098 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1099
1100 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1101 #ifdef NODE_NOT_IN_PAGE_FLAGS
1102 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1103 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1104 SECTIONS_PGOFF : ZONES_PGOFF)
1105 #else
1106 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1107 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1108 NODES_PGOFF : ZONES_PGOFF)
1109 #endif
1110
1111 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1112
1113 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1114 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1115 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1116 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1117 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1118 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1119
page_zonenum(const struct page * page)1120 static inline enum zone_type page_zonenum(const struct page *page)
1121 {
1122 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1123 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1124 }
1125
folio_zonenum(const struct folio * folio)1126 static inline enum zone_type folio_zonenum(const struct folio *folio)
1127 {
1128 return page_zonenum(&folio->page);
1129 }
1130
1131 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1132 static inline bool is_zone_device_page(const struct page *page)
1133 {
1134 return page_zonenum(page) == ZONE_DEVICE;
1135 }
1136
1137 /*
1138 * Consecutive zone device pages should not be merged into the same sgl
1139 * or bvec segment with other types of pages or if they belong to different
1140 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1141 * without scanning the entire segment. This helper returns true either if
1142 * both pages are not zone device pages or both pages are zone device pages
1143 * with the same pgmap.
1144 */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1145 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1146 const struct page *b)
1147 {
1148 if (is_zone_device_page(a) != is_zone_device_page(b))
1149 return false;
1150 if (!is_zone_device_page(a))
1151 return true;
1152 return a->pgmap == b->pgmap;
1153 }
1154
1155 extern void memmap_init_zone_device(struct zone *, unsigned long,
1156 unsigned long, struct dev_pagemap *);
1157 #else
is_zone_device_page(const struct page * page)1158 static inline bool is_zone_device_page(const struct page *page)
1159 {
1160 return false;
1161 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1162 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1163 const struct page *b)
1164 {
1165 return true;
1166 }
1167 #endif
1168
folio_is_zone_device(const struct folio * folio)1169 static inline bool folio_is_zone_device(const struct folio *folio)
1170 {
1171 return is_zone_device_page(&folio->page);
1172 }
1173
is_zone_movable_page(const struct page * page)1174 static inline bool is_zone_movable_page(const struct page *page)
1175 {
1176 return page_zonenum(page) == ZONE_MOVABLE;
1177 }
1178
folio_is_zone_movable(const struct folio * folio)1179 static inline bool folio_is_zone_movable(const struct folio *folio)
1180 {
1181 return folio_zonenum(folio) == ZONE_MOVABLE;
1182 }
1183 #endif
1184
1185 /*
1186 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1187 * intersection with the given zone
1188 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1189 static inline bool zone_intersects(struct zone *zone,
1190 unsigned long start_pfn, unsigned long nr_pages)
1191 {
1192 if (zone_is_empty(zone))
1193 return false;
1194 if (start_pfn >= zone_end_pfn(zone) ||
1195 start_pfn + nr_pages <= zone->zone_start_pfn)
1196 return false;
1197
1198 return true;
1199 }
1200
1201 /*
1202 * The "priority" of VM scanning is how much of the queues we will scan in one
1203 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1204 * queues ("queue_length >> 12") during an aging round.
1205 */
1206 #define DEF_PRIORITY 12
1207
1208 /* Maximum number of zones on a zonelist */
1209 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1210
1211 enum {
1212 ZONELIST_FALLBACK, /* zonelist with fallback */
1213 #ifdef CONFIG_NUMA
1214 /*
1215 * The NUMA zonelists are doubled because we need zonelists that
1216 * restrict the allocations to a single node for __GFP_THISNODE.
1217 */
1218 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1219 #endif
1220 MAX_ZONELISTS
1221 };
1222
1223 /*
1224 * This struct contains information about a zone in a zonelist. It is stored
1225 * here to avoid dereferences into large structures and lookups of tables
1226 */
1227 struct zoneref {
1228 struct zone *zone; /* Pointer to actual zone */
1229 int zone_idx; /* zone_idx(zoneref->zone) */
1230 };
1231
1232 /*
1233 * One allocation request operates on a zonelist. A zonelist
1234 * is a list of zones, the first one is the 'goal' of the
1235 * allocation, the other zones are fallback zones, in decreasing
1236 * priority.
1237 *
1238 * To speed the reading of the zonelist, the zonerefs contain the zone index
1239 * of the entry being read. Helper functions to access information given
1240 * a struct zoneref are
1241 *
1242 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1243 * zonelist_zone_idx() - Return the index of the zone for an entry
1244 * zonelist_node_idx() - Return the index of the node for an entry
1245 */
1246 struct zonelist {
1247 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1248 };
1249
1250 /*
1251 * The array of struct pages for flatmem.
1252 * It must be declared for SPARSEMEM as well because there are configurations
1253 * that rely on that.
1254 */
1255 extern struct page *mem_map;
1256
1257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1258 struct deferred_split {
1259 spinlock_t split_queue_lock;
1260 struct list_head split_queue;
1261 unsigned long split_queue_len;
1262 };
1263 #endif
1264
1265 #ifdef CONFIG_MEMORY_FAILURE
1266 /*
1267 * Per NUMA node memory failure handling statistics.
1268 */
1269 struct memory_failure_stats {
1270 /*
1271 * Number of raw pages poisoned.
1272 * Cases not accounted: memory outside kernel control, offline page,
1273 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1274 * error events, and unpoison actions from hwpoison_unpoison.
1275 */
1276 unsigned long total;
1277 /*
1278 * Recovery results of poisoned raw pages handled by memory_failure,
1279 * in sync with mf_result.
1280 * total = ignored + failed + delayed + recovered.
1281 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1282 */
1283 unsigned long ignored;
1284 unsigned long failed;
1285 unsigned long delayed;
1286 unsigned long recovered;
1287 };
1288 #endif
1289
1290 /*
1291 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1292 * it's memory layout. On UMA machines there is a single pglist_data which
1293 * describes the whole memory.
1294 *
1295 * Memory statistics and page replacement data structures are maintained on a
1296 * per-zone basis.
1297 */
1298 typedef struct pglist_data {
1299 /*
1300 * node_zones contains just the zones for THIS node. Not all of the
1301 * zones may be populated, but it is the full list. It is referenced by
1302 * this node's node_zonelists as well as other node's node_zonelists.
1303 */
1304 struct zone node_zones[MAX_NR_ZONES];
1305
1306 /*
1307 * node_zonelists contains references to all zones in all nodes.
1308 * Generally the first zones will be references to this node's
1309 * node_zones.
1310 */
1311 struct zonelist node_zonelists[MAX_ZONELISTS];
1312
1313 int nr_zones; /* number of populated zones in this node */
1314 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1315 struct page *node_mem_map;
1316 #ifdef CONFIG_PAGE_EXTENSION
1317 struct page_ext *node_page_ext;
1318 #endif
1319 #endif
1320 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1321 /*
1322 * Must be held any time you expect node_start_pfn,
1323 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1324 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1325 * init.
1326 *
1327 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1328 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1329 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1330 *
1331 * Nests above zone->lock and zone->span_seqlock
1332 */
1333 spinlock_t node_size_lock;
1334 #endif
1335 unsigned long node_start_pfn;
1336 unsigned long node_present_pages; /* total number of physical pages */
1337 unsigned long node_spanned_pages; /* total size of physical page
1338 range, including holes */
1339 int node_id;
1340 wait_queue_head_t kswapd_wait;
1341 wait_queue_head_t pfmemalloc_wait;
1342
1343 /* workqueues for throttling reclaim for different reasons. */
1344 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1345
1346 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1347 unsigned long nr_reclaim_start; /* nr pages written while throttled
1348 * when throttling started. */
1349 #ifdef CONFIG_MEMORY_HOTPLUG
1350 struct mutex kswapd_lock;
1351 #endif
1352 struct task_struct *kswapd; /* Protected by kswapd_lock */
1353 int kswapd_order;
1354 enum zone_type kswapd_highest_zoneidx;
1355
1356 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1357
1358 #ifdef CONFIG_COMPACTION
1359 int kcompactd_max_order;
1360 enum zone_type kcompactd_highest_zoneidx;
1361 wait_queue_head_t kcompactd_wait;
1362 struct task_struct *kcompactd;
1363 bool proactive_compact_trigger;
1364 #endif
1365 /*
1366 * This is a per-node reserve of pages that are not available
1367 * to userspace allocations.
1368 */
1369 unsigned long totalreserve_pages;
1370
1371 #ifdef CONFIG_NUMA
1372 /*
1373 * node reclaim becomes active if more unmapped pages exist.
1374 */
1375 unsigned long min_unmapped_pages;
1376 unsigned long min_slab_pages;
1377 #endif /* CONFIG_NUMA */
1378
1379 /* Write-intensive fields used by page reclaim */
1380 CACHELINE_PADDING(_pad1_);
1381
1382 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1383 /*
1384 * If memory initialisation on large machines is deferred then this
1385 * is the first PFN that needs to be initialised.
1386 */
1387 unsigned long first_deferred_pfn;
1388 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1389
1390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1391 struct deferred_split deferred_split_queue;
1392 #endif
1393
1394 #ifdef CONFIG_NUMA_BALANCING
1395 /* start time in ms of current promote rate limit period */
1396 unsigned int nbp_rl_start;
1397 /* number of promote candidate pages at start time of current rate limit period */
1398 unsigned long nbp_rl_nr_cand;
1399 /* promote threshold in ms */
1400 unsigned int nbp_threshold;
1401 /* start time in ms of current promote threshold adjustment period */
1402 unsigned int nbp_th_start;
1403 /*
1404 * number of promote candidate pages at start time of current promote
1405 * threshold adjustment period
1406 */
1407 unsigned long nbp_th_nr_cand;
1408 #endif
1409 /* Fields commonly accessed by the page reclaim scanner */
1410
1411 /*
1412 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1413 *
1414 * Use mem_cgroup_lruvec() to look up lruvecs.
1415 */
1416 struct lruvec __lruvec;
1417
1418 unsigned long flags;
1419
1420 #ifdef CONFIG_LRU_GEN
1421 /* kswap mm walk data */
1422 struct lru_gen_mm_walk mm_walk;
1423 /* lru_gen_folio list */
1424 struct lru_gen_memcg memcg_lru;
1425 #endif
1426
1427 CACHELINE_PADDING(_pad2_);
1428
1429 /* Per-node vmstats */
1430 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1431 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1432 #ifdef CONFIG_NUMA
1433 struct memory_tier __rcu *memtier;
1434 #endif
1435 #ifdef CONFIG_MEMORY_FAILURE
1436 struct memory_failure_stats mf_stats;
1437 #endif
1438 } pg_data_t;
1439
1440 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1441 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1442
1443 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1444 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1445
pgdat_end_pfn(pg_data_t * pgdat)1446 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1447 {
1448 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1449 }
1450
1451 #include <linux/memory_hotplug.h>
1452
1453 void build_all_zonelists(pg_data_t *pgdat);
1454 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1455 enum zone_type highest_zoneidx);
1456 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1457 int highest_zoneidx, unsigned int alloc_flags,
1458 long free_pages);
1459 bool zone_watermark_ok(struct zone *z, unsigned int order,
1460 unsigned long mark, int highest_zoneidx,
1461 unsigned int alloc_flags);
1462 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1463 unsigned long mark, int highest_zoneidx);
1464 /*
1465 * Memory initialization context, use to differentiate memory added by
1466 * the platform statically or via memory hotplug interface.
1467 */
1468 enum meminit_context {
1469 MEMINIT_EARLY,
1470 MEMINIT_HOTPLUG,
1471 };
1472
1473 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1474 unsigned long size);
1475
1476 extern void lruvec_init(struct lruvec *lruvec);
1477
lruvec_pgdat(struct lruvec * lruvec)1478 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1479 {
1480 #ifdef CONFIG_MEMCG
1481 return lruvec->pgdat;
1482 #else
1483 return container_of(lruvec, struct pglist_data, __lruvec);
1484 #endif
1485 }
1486
1487 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1488 int local_memory_node(int node_id);
1489 #else
local_memory_node(int node_id)1490 static inline int local_memory_node(int node_id) { return node_id; };
1491 #endif
1492
1493 /*
1494 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1495 */
1496 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1497
1498 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1499 static inline bool zone_is_zone_device(struct zone *zone)
1500 {
1501 return zone_idx(zone) == ZONE_DEVICE;
1502 }
1503 #else
zone_is_zone_device(struct zone * zone)1504 static inline bool zone_is_zone_device(struct zone *zone)
1505 {
1506 return false;
1507 }
1508 #endif
1509
1510 /*
1511 * Returns true if a zone has pages managed by the buddy allocator.
1512 * All the reclaim decisions have to use this function rather than
1513 * populated_zone(). If the whole zone is reserved then we can easily
1514 * end up with populated_zone() && !managed_zone().
1515 */
managed_zone(struct zone * zone)1516 static inline bool managed_zone(struct zone *zone)
1517 {
1518 return zone_managed_pages(zone);
1519 }
1520
1521 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1522 static inline bool populated_zone(struct zone *zone)
1523 {
1524 return zone->present_pages;
1525 }
1526
1527 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1528 static inline int zone_to_nid(struct zone *zone)
1529 {
1530 return zone->node;
1531 }
1532
zone_set_nid(struct zone * zone,int nid)1533 static inline void zone_set_nid(struct zone *zone, int nid)
1534 {
1535 zone->node = nid;
1536 }
1537 #else
zone_to_nid(struct zone * zone)1538 static inline int zone_to_nid(struct zone *zone)
1539 {
1540 return 0;
1541 }
1542
zone_set_nid(struct zone * zone,int nid)1543 static inline void zone_set_nid(struct zone *zone, int nid) {}
1544 #endif
1545
1546 extern int movable_zone;
1547
is_highmem_idx(enum zone_type idx)1548 static inline int is_highmem_idx(enum zone_type idx)
1549 {
1550 #ifdef CONFIG_HIGHMEM
1551 return (idx == ZONE_HIGHMEM ||
1552 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1553 #else
1554 return 0;
1555 #endif
1556 }
1557
1558 /**
1559 * is_highmem - helper function to quickly check if a struct zone is a
1560 * highmem zone or not. This is an attempt to keep references
1561 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1562 * @zone: pointer to struct zone variable
1563 * Return: 1 for a highmem zone, 0 otherwise
1564 */
is_highmem(struct zone * zone)1565 static inline int is_highmem(struct zone *zone)
1566 {
1567 return is_highmem_idx(zone_idx(zone));
1568 }
1569
1570 #ifdef CONFIG_ZONE_DMA
1571 bool has_managed_dma(void);
1572 #else
has_managed_dma(void)1573 static inline bool has_managed_dma(void)
1574 {
1575 return false;
1576 }
1577 #endif
1578
1579
1580 #ifndef CONFIG_NUMA
1581
1582 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1583 static inline struct pglist_data *NODE_DATA(int nid)
1584 {
1585 return &contig_page_data;
1586 }
1587
1588 #else /* CONFIG_NUMA */
1589
1590 #include <asm/mmzone.h>
1591
1592 #endif /* !CONFIG_NUMA */
1593
1594 extern struct pglist_data *first_online_pgdat(void);
1595 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1596 extern struct zone *next_zone(struct zone *zone);
1597
1598 /**
1599 * for_each_online_pgdat - helper macro to iterate over all online nodes
1600 * @pgdat: pointer to a pg_data_t variable
1601 */
1602 #define for_each_online_pgdat(pgdat) \
1603 for (pgdat = first_online_pgdat(); \
1604 pgdat; \
1605 pgdat = next_online_pgdat(pgdat))
1606 /**
1607 * for_each_zone - helper macro to iterate over all memory zones
1608 * @zone: pointer to struct zone variable
1609 *
1610 * The user only needs to declare the zone variable, for_each_zone
1611 * fills it in.
1612 */
1613 #define for_each_zone(zone) \
1614 for (zone = (first_online_pgdat())->node_zones; \
1615 zone; \
1616 zone = next_zone(zone))
1617
1618 #define for_each_populated_zone(zone) \
1619 for (zone = (first_online_pgdat())->node_zones; \
1620 zone; \
1621 zone = next_zone(zone)) \
1622 if (!populated_zone(zone)) \
1623 ; /* do nothing */ \
1624 else
1625
zonelist_zone(struct zoneref * zoneref)1626 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1627 {
1628 return zoneref->zone;
1629 }
1630
zonelist_zone_idx(struct zoneref * zoneref)1631 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1632 {
1633 return zoneref->zone_idx;
1634 }
1635
zonelist_node_idx(struct zoneref * zoneref)1636 static inline int zonelist_node_idx(struct zoneref *zoneref)
1637 {
1638 return zone_to_nid(zoneref->zone);
1639 }
1640
1641 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1642 enum zone_type highest_zoneidx,
1643 nodemask_t *nodes);
1644
1645 /**
1646 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1647 * @z: The cursor used as a starting point for the search
1648 * @highest_zoneidx: The zone index of the highest zone to return
1649 * @nodes: An optional nodemask to filter the zonelist with
1650 *
1651 * This function returns the next zone at or below a given zone index that is
1652 * within the allowed nodemask using a cursor as the starting point for the
1653 * search. The zoneref returned is a cursor that represents the current zone
1654 * being examined. It should be advanced by one before calling
1655 * next_zones_zonelist again.
1656 *
1657 * Return: the next zone at or below highest_zoneidx within the allowed
1658 * nodemask using a cursor within a zonelist as a starting point
1659 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1660 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1661 enum zone_type highest_zoneidx,
1662 nodemask_t *nodes)
1663 {
1664 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1665 return z;
1666 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1667 }
1668
1669 /**
1670 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1671 * @zonelist: The zonelist to search for a suitable zone
1672 * @highest_zoneidx: The zone index of the highest zone to return
1673 * @nodes: An optional nodemask to filter the zonelist with
1674 *
1675 * This function returns the first zone at or below a given zone index that is
1676 * within the allowed nodemask. The zoneref returned is a cursor that can be
1677 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1678 * one before calling.
1679 *
1680 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1681 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1682 * update due to cpuset modification.
1683 *
1684 * Return: Zoneref pointer for the first suitable zone found
1685 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1686 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1687 enum zone_type highest_zoneidx,
1688 nodemask_t *nodes)
1689 {
1690 return next_zones_zonelist(zonelist->_zonerefs,
1691 highest_zoneidx, nodes);
1692 }
1693
1694 /**
1695 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1696 * @zone: The current zone in the iterator
1697 * @z: The current pointer within zonelist->_zonerefs being iterated
1698 * @zlist: The zonelist being iterated
1699 * @highidx: The zone index of the highest zone to return
1700 * @nodemask: Nodemask allowed by the allocator
1701 *
1702 * This iterator iterates though all zones at or below a given zone index and
1703 * within a given nodemask
1704 */
1705 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1706 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1707 zone; \
1708 z = next_zones_zonelist(++z, highidx, nodemask), \
1709 zone = zonelist_zone(z))
1710
1711 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1712 for (zone = zonelist_zone(z); \
1713 zone; \
1714 z = next_zones_zonelist(++z, highidx, nodemask), \
1715 zone = zonelist_zone(z))
1716
1717
1718 /**
1719 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1720 * @zone: The current zone in the iterator
1721 * @z: The current pointer within zonelist->zones being iterated
1722 * @zlist: The zonelist being iterated
1723 * @highidx: The zone index of the highest zone to return
1724 *
1725 * This iterator iterates though all zones at or below a given zone index.
1726 */
1727 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1728 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1729
1730 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1731 static inline bool movable_only_nodes(nodemask_t *nodes)
1732 {
1733 struct zonelist *zonelist;
1734 struct zoneref *z;
1735 int nid;
1736
1737 if (nodes_empty(*nodes))
1738 return false;
1739
1740 /*
1741 * We can chose arbitrary node from the nodemask to get a
1742 * zonelist as they are interlinked. We just need to find
1743 * at least one zone that can satisfy kernel allocations.
1744 */
1745 nid = first_node(*nodes);
1746 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1747 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1748 return (!zonelist_zone(z)) ? true : false;
1749 }
1750
1751
1752 #ifdef CONFIG_SPARSEMEM
1753 #include <asm/sparsemem.h>
1754 #endif
1755
1756 #ifdef CONFIG_FLATMEM
1757 #define pfn_to_nid(pfn) (0)
1758 #endif
1759
1760 #ifdef CONFIG_SPARSEMEM
1761
1762 /*
1763 * PA_SECTION_SHIFT physical address to/from section number
1764 * PFN_SECTION_SHIFT pfn to/from section number
1765 */
1766 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1767 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1768
1769 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1770
1771 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1772 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1773
1774 #define SECTION_BLOCKFLAGS_BITS \
1775 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1776
1777 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1778 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1779 #endif
1780
pfn_to_section_nr(unsigned long pfn)1781 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1782 {
1783 return pfn >> PFN_SECTION_SHIFT;
1784 }
section_nr_to_pfn(unsigned long sec)1785 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1786 {
1787 return sec << PFN_SECTION_SHIFT;
1788 }
1789
1790 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1791 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1792
1793 #define SUBSECTION_SHIFT 21
1794 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1795
1796 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1797 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1798 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1799
1800 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1801 #error Subsection size exceeds section size
1802 #else
1803 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1804 #endif
1805
1806 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1807 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1808
1809 struct mem_section_usage {
1810 struct rcu_head rcu;
1811 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1812 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1813 #endif
1814 /* See declaration of similar field in struct zone */
1815 unsigned long pageblock_flags[0];
1816 };
1817
1818 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1819
1820 struct page;
1821 struct page_ext;
1822 struct mem_section {
1823 /*
1824 * This is, logically, a pointer to an array of struct
1825 * pages. However, it is stored with some other magic.
1826 * (see sparse.c::sparse_init_one_section())
1827 *
1828 * Additionally during early boot we encode node id of
1829 * the location of the section here to guide allocation.
1830 * (see sparse.c::memory_present())
1831 *
1832 * Making it a UL at least makes someone do a cast
1833 * before using it wrong.
1834 */
1835 unsigned long section_mem_map;
1836
1837 struct mem_section_usage *usage;
1838 #ifdef CONFIG_PAGE_EXTENSION
1839 /*
1840 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1841 * section. (see page_ext.h about this.)
1842 */
1843 struct page_ext *page_ext;
1844 unsigned long pad;
1845 #endif
1846 /*
1847 * WARNING: mem_section must be a power-of-2 in size for the
1848 * calculation and use of SECTION_ROOT_MASK to make sense.
1849 */
1850 };
1851
1852 #ifdef CONFIG_SPARSEMEM_EXTREME
1853 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1854 #else
1855 #define SECTIONS_PER_ROOT 1
1856 #endif
1857
1858 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1859 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1860 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1861
1862 #ifdef CONFIG_SPARSEMEM_EXTREME
1863 extern struct mem_section **mem_section;
1864 #else
1865 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1866 #endif
1867
section_to_usemap(struct mem_section * ms)1868 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1869 {
1870 return ms->usage->pageblock_flags;
1871 }
1872
__nr_to_section(unsigned long nr)1873 static inline struct mem_section *__nr_to_section(unsigned long nr)
1874 {
1875 unsigned long root = SECTION_NR_TO_ROOT(nr);
1876
1877 if (unlikely(root >= NR_SECTION_ROOTS))
1878 return NULL;
1879
1880 #ifdef CONFIG_SPARSEMEM_EXTREME
1881 if (!mem_section || !mem_section[root])
1882 return NULL;
1883 #endif
1884 return &mem_section[root][nr & SECTION_ROOT_MASK];
1885 }
1886 extern size_t mem_section_usage_size(void);
1887
1888 /*
1889 * We use the lower bits of the mem_map pointer to store
1890 * a little bit of information. The pointer is calculated
1891 * as mem_map - section_nr_to_pfn(pnum). The result is
1892 * aligned to the minimum alignment of the two values:
1893 * 1. All mem_map arrays are page-aligned.
1894 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1895 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1896 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1897 * worst combination is powerpc with 256k pages,
1898 * which results in PFN_SECTION_SHIFT equal 6.
1899 * To sum it up, at least 6 bits are available on all architectures.
1900 * However, we can exceed 6 bits on some other architectures except
1901 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1902 * with the worst case of 64K pages on arm64) if we make sure the
1903 * exceeded bit is not applicable to powerpc.
1904 */
1905 enum {
1906 SECTION_MARKED_PRESENT_BIT,
1907 SECTION_HAS_MEM_MAP_BIT,
1908 SECTION_IS_ONLINE_BIT,
1909 SECTION_IS_EARLY_BIT,
1910 #ifdef CONFIG_ZONE_DEVICE
1911 SECTION_TAINT_ZONE_DEVICE_BIT,
1912 #endif
1913 SECTION_MAP_LAST_BIT,
1914 };
1915
1916 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1917 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1918 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1919 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1920 #ifdef CONFIG_ZONE_DEVICE
1921 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1922 #endif
1923 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1924 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1925
__section_mem_map_addr(struct mem_section * section)1926 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1927 {
1928 unsigned long map = section->section_mem_map;
1929 map &= SECTION_MAP_MASK;
1930 return (struct page *)map;
1931 }
1932
present_section(struct mem_section * section)1933 static inline int present_section(struct mem_section *section)
1934 {
1935 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1936 }
1937
present_section_nr(unsigned long nr)1938 static inline int present_section_nr(unsigned long nr)
1939 {
1940 return present_section(__nr_to_section(nr));
1941 }
1942
valid_section(struct mem_section * section)1943 static inline int valid_section(struct mem_section *section)
1944 {
1945 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1946 }
1947
early_section(struct mem_section * section)1948 static inline int early_section(struct mem_section *section)
1949 {
1950 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1951 }
1952
valid_section_nr(unsigned long nr)1953 static inline int valid_section_nr(unsigned long nr)
1954 {
1955 return valid_section(__nr_to_section(nr));
1956 }
1957
online_section(struct mem_section * section)1958 static inline int online_section(struct mem_section *section)
1959 {
1960 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1961 }
1962
1963 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1964 static inline int online_device_section(struct mem_section *section)
1965 {
1966 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1967
1968 return section && ((section->section_mem_map & flags) == flags);
1969 }
1970 #else
online_device_section(struct mem_section * section)1971 static inline int online_device_section(struct mem_section *section)
1972 {
1973 return 0;
1974 }
1975 #endif
1976
online_section_nr(unsigned long nr)1977 static inline int online_section_nr(unsigned long nr)
1978 {
1979 return online_section(__nr_to_section(nr));
1980 }
1981
1982 #ifdef CONFIG_MEMORY_HOTPLUG
1983 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1984 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1985 #endif
1986
__pfn_to_section(unsigned long pfn)1987 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1988 {
1989 return __nr_to_section(pfn_to_section_nr(pfn));
1990 }
1991
1992 extern unsigned long __highest_present_section_nr;
1993
subsection_map_index(unsigned long pfn)1994 static inline int subsection_map_index(unsigned long pfn)
1995 {
1996 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1997 }
1998
1999 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2000 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2001 {
2002 int idx = subsection_map_index(pfn);
2003 struct mem_section_usage *usage = READ_ONCE(ms->usage);
2004
2005 return usage ? test_bit(idx, usage->subsection_map) : 0;
2006 }
2007 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2008 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2009 {
2010 return 1;
2011 }
2012 #endif
2013
2014 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2015 /**
2016 * pfn_valid - check if there is a valid memory map entry for a PFN
2017 * @pfn: the page frame number to check
2018 *
2019 * Check if there is a valid memory map entry aka struct page for the @pfn.
2020 * Note, that availability of the memory map entry does not imply that
2021 * there is actual usable memory at that @pfn. The struct page may
2022 * represent a hole or an unusable page frame.
2023 *
2024 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2025 */
pfn_valid(unsigned long pfn)2026 static inline int pfn_valid(unsigned long pfn)
2027 {
2028 struct mem_section *ms;
2029 int ret;
2030
2031 /*
2032 * Ensure the upper PAGE_SHIFT bits are clear in the
2033 * pfn. Else it might lead to false positives when
2034 * some of the upper bits are set, but the lower bits
2035 * match a valid pfn.
2036 */
2037 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2038 return 0;
2039
2040 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2041 return 0;
2042 ms = __pfn_to_section(pfn);
2043 rcu_read_lock_sched();
2044 if (!valid_section(ms)) {
2045 rcu_read_unlock_sched();
2046 return 0;
2047 }
2048 /*
2049 * Traditionally early sections always returned pfn_valid() for
2050 * the entire section-sized span.
2051 */
2052 ret = early_section(ms) || pfn_section_valid(ms, pfn);
2053 rcu_read_unlock_sched();
2054
2055 return ret;
2056 }
2057 #endif
2058
pfn_in_present_section(unsigned long pfn)2059 static inline int pfn_in_present_section(unsigned long pfn)
2060 {
2061 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2062 return 0;
2063 return present_section(__pfn_to_section(pfn));
2064 }
2065
next_present_section_nr(unsigned long section_nr)2066 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2067 {
2068 while (++section_nr <= __highest_present_section_nr) {
2069 if (present_section_nr(section_nr))
2070 return section_nr;
2071 }
2072
2073 return -1;
2074 }
2075
2076 /*
2077 * These are _only_ used during initialisation, therefore they
2078 * can use __initdata ... They could have names to indicate
2079 * this restriction.
2080 */
2081 #ifdef CONFIG_NUMA
2082 #define pfn_to_nid(pfn) \
2083 ({ \
2084 unsigned long __pfn_to_nid_pfn = (pfn); \
2085 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2086 })
2087 #else
2088 #define pfn_to_nid(pfn) (0)
2089 #endif
2090
2091 void sparse_init(void);
2092 #else
2093 #define sparse_init() do {} while (0)
2094 #define sparse_index_init(_sec, _nid) do {} while (0)
2095 #define pfn_in_present_section pfn_valid
2096 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2097 #endif /* CONFIG_SPARSEMEM */
2098
2099 #endif /* !__GENERATING_BOUNDS.H */
2100 #endif /* !__ASSEMBLY__ */
2101 #endif /* _LINUX_MMZONE_H */
2102