xref: /linux/drivers/infiniband/hw/hfi1/sdma.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2018 Intel Corporation.
4  */
5 
6 #include <linux/spinlock.h>
7 #include <linux/seqlock.h>
8 #include <linux/netdevice.h>
9 #include <linux/moduleparam.h>
10 #include <linux/bitops.h>
11 #include <linux/timer.h>
12 #include <linux/vmalloc.h>
13 #include <linux/highmem.h>
14 
15 #include "hfi.h"
16 #include "common.h"
17 #include "qp.h"
18 #include "sdma.h"
19 #include "iowait.h"
20 #include "trace.h"
21 
22 /* must be a power of 2 >= 64 <= 32768 */
23 #define SDMA_DESCQ_CNT 2048
24 #define SDMA_DESC_INTR 64
25 #define INVALID_TAIL 0xffff
26 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
27 
28 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
29 module_param(sdma_descq_cnt, uint, S_IRUGO);
30 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
31 
32 static uint sdma_idle_cnt = 250;
33 module_param(sdma_idle_cnt, uint, S_IRUGO);
34 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
35 
36 uint mod_num_sdma;
37 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
38 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
39 
40 static uint sdma_desct_intr = SDMA_DESC_INTR;
41 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
42 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
43 
44 #define SDMA_WAIT_BATCH_SIZE 20
45 /* max wait time for a SDMA engine to indicate it has halted */
46 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
47 /* all SDMA engine errors that cause a halt */
48 
49 #define SD(name) SEND_DMA_##name
50 #define ALL_SDMA_ENG_HALT_ERRS \
51 	(SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
52 	| SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
53 	| SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
54 	| SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
55 	| SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
56 	| SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
57 	| SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
58 	| SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
59 	| SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
60 	| SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
61 	| SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
62 	| SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
63 	| SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
64 	| SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
65 	| SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
66 	| SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
67 	| SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
68 	| SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
69 
70 /* sdma_sendctrl operations */
71 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
72 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
73 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
74 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
75 
76 /* handle long defines */
77 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
78 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
79 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
80 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
81 
82 static const char * const sdma_state_names[] = {
83 	[sdma_state_s00_hw_down]                = "s00_HwDown",
84 	[sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
85 	[sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
86 	[sdma_state_s20_idle]                   = "s20_Idle",
87 	[sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
88 	[sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
89 	[sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
90 	[sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
91 	[sdma_state_s80_hw_freeze]		= "s80_HwFreeze",
92 	[sdma_state_s82_freeze_sw_clean]	= "s82_FreezeSwClean",
93 	[sdma_state_s99_running]                = "s99_Running",
94 };
95 
96 #ifdef CONFIG_SDMA_VERBOSITY
97 static const char * const sdma_event_names[] = {
98 	[sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
99 	[sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
100 	[sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
101 	[sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
102 	[sdma_event_e30_go_running]   = "e30_GoRunning",
103 	[sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
104 	[sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
105 	[sdma_event_e60_hw_halted]    = "e60_HwHalted",
106 	[sdma_event_e70_go_idle]      = "e70_GoIdle",
107 	[sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
108 	[sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
109 	[sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
110 	[sdma_event_e85_link_down]    = "e85_LinkDown",
111 	[sdma_event_e90_sw_halted]    = "e90_SwHalted",
112 };
113 #endif
114 
115 static const struct sdma_set_state_action sdma_action_table[] = {
116 	[sdma_state_s00_hw_down] = {
117 		.go_s99_running_tofalse = 1,
118 		.op_enable = 0,
119 		.op_intenable = 0,
120 		.op_halt = 0,
121 		.op_cleanup = 0,
122 	},
123 	[sdma_state_s10_hw_start_up_halt_wait] = {
124 		.op_enable = 0,
125 		.op_intenable = 0,
126 		.op_halt = 1,
127 		.op_cleanup = 0,
128 	},
129 	[sdma_state_s15_hw_start_up_clean_wait] = {
130 		.op_enable = 0,
131 		.op_intenable = 1,
132 		.op_halt = 0,
133 		.op_cleanup = 1,
134 	},
135 	[sdma_state_s20_idle] = {
136 		.op_enable = 0,
137 		.op_intenable = 1,
138 		.op_halt = 0,
139 		.op_cleanup = 0,
140 	},
141 	[sdma_state_s30_sw_clean_up_wait] = {
142 		.op_enable = 0,
143 		.op_intenable = 0,
144 		.op_halt = 0,
145 		.op_cleanup = 0,
146 	},
147 	[sdma_state_s40_hw_clean_up_wait] = {
148 		.op_enable = 0,
149 		.op_intenable = 0,
150 		.op_halt = 0,
151 		.op_cleanup = 1,
152 	},
153 	[sdma_state_s50_hw_halt_wait] = {
154 		.op_enable = 0,
155 		.op_intenable = 0,
156 		.op_halt = 0,
157 		.op_cleanup = 0,
158 	},
159 	[sdma_state_s60_idle_halt_wait] = {
160 		.go_s99_running_tofalse = 1,
161 		.op_enable = 0,
162 		.op_intenable = 0,
163 		.op_halt = 1,
164 		.op_cleanup = 0,
165 	},
166 	[sdma_state_s80_hw_freeze] = {
167 		.op_enable = 0,
168 		.op_intenable = 0,
169 		.op_halt = 0,
170 		.op_cleanup = 0,
171 	},
172 	[sdma_state_s82_freeze_sw_clean] = {
173 		.op_enable = 0,
174 		.op_intenable = 0,
175 		.op_halt = 0,
176 		.op_cleanup = 0,
177 	},
178 	[sdma_state_s99_running] = {
179 		.op_enable = 1,
180 		.op_intenable = 1,
181 		.op_halt = 0,
182 		.op_cleanup = 0,
183 		.go_s99_running_totrue = 1,
184 	},
185 };
186 
187 #define SDMA_TAIL_UPDATE_THRESH 0x1F
188 
189 /* declare all statics here rather than keep sorting */
190 static void sdma_complete(struct kref *);
191 static void sdma_finalput(struct sdma_state *);
192 static void sdma_get(struct sdma_state *);
193 static void sdma_hw_clean_up_task(struct tasklet_struct *);
194 static void sdma_put(struct sdma_state *);
195 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
196 static void sdma_start_hw_clean_up(struct sdma_engine *);
197 static void sdma_sw_clean_up_task(struct tasklet_struct *);
198 static void sdma_sendctrl(struct sdma_engine *, unsigned);
199 static void init_sdma_regs(struct sdma_engine *, u32, uint);
200 static void sdma_process_event(
201 	struct sdma_engine *sde,
202 	enum sdma_events event);
203 static void __sdma_process_event(
204 	struct sdma_engine *sde,
205 	enum sdma_events event);
206 static void dump_sdma_state(struct sdma_engine *sde);
207 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
208 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
209 static void sdma_flush_descq(struct sdma_engine *sde);
210 
211 /**
212  * sdma_state_name() - return state string from enum
213  * @state: state
214  */
sdma_state_name(enum sdma_states state)215 static const char *sdma_state_name(enum sdma_states state)
216 {
217 	return sdma_state_names[state];
218 }
219 
sdma_get(struct sdma_state * ss)220 static void sdma_get(struct sdma_state *ss)
221 {
222 	kref_get(&ss->kref);
223 }
224 
sdma_complete(struct kref * kref)225 static void sdma_complete(struct kref *kref)
226 {
227 	struct sdma_state *ss =
228 		container_of(kref, struct sdma_state, kref);
229 
230 	complete(&ss->comp);
231 }
232 
sdma_put(struct sdma_state * ss)233 static void sdma_put(struct sdma_state *ss)
234 {
235 	kref_put(&ss->kref, sdma_complete);
236 }
237 
sdma_finalput(struct sdma_state * ss)238 static void sdma_finalput(struct sdma_state *ss)
239 {
240 	sdma_put(ss);
241 	wait_for_completion(&ss->comp);
242 }
243 
write_sde_csr(struct sdma_engine * sde,u32 offset0,u64 value)244 static inline void write_sde_csr(
245 	struct sdma_engine *sde,
246 	u32 offset0,
247 	u64 value)
248 {
249 	write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
250 }
251 
read_sde_csr(struct sdma_engine * sde,u32 offset0)252 static inline u64 read_sde_csr(
253 	struct sdma_engine *sde,
254 	u32 offset0)
255 {
256 	return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
257 }
258 
259 /*
260  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
261  * sdma engine 'sde' to drop to 0.
262  */
sdma_wait_for_packet_egress(struct sdma_engine * sde,int pause)263 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
264 					int pause)
265 {
266 	u64 off = 8 * sde->this_idx;
267 	struct hfi1_devdata *dd = sde->dd;
268 	int lcnt = 0;
269 	u64 reg_prev;
270 	u64 reg = 0;
271 
272 	while (1) {
273 		reg_prev = reg;
274 		reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
275 
276 		reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
277 		reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
278 		if (reg == 0)
279 			break;
280 		/* counter is reest if accupancy count changes */
281 		if (reg != reg_prev)
282 			lcnt = 0;
283 		if (lcnt++ > 500) {
284 			/* timed out - bounce the link */
285 			dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
286 				   __func__, sde->this_idx, (u32)reg);
287 			queue_work(dd->pport->link_wq,
288 				   &dd->pport->link_bounce_work);
289 			break;
290 		}
291 		udelay(1);
292 	}
293 }
294 
295 /*
296  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
297  * and pause for credit return.
298  */
sdma_wait(struct hfi1_devdata * dd)299 void sdma_wait(struct hfi1_devdata *dd)
300 {
301 	int i;
302 
303 	for (i = 0; i < dd->num_sdma; i++) {
304 		struct sdma_engine *sde = &dd->per_sdma[i];
305 
306 		sdma_wait_for_packet_egress(sde, 0);
307 	}
308 }
309 
sdma_set_desc_cnt(struct sdma_engine * sde,unsigned cnt)310 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
311 {
312 	u64 reg;
313 
314 	if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
315 		return;
316 	reg = cnt;
317 	reg &= SD(DESC_CNT_CNT_MASK);
318 	reg <<= SD(DESC_CNT_CNT_SHIFT);
319 	write_sde_csr(sde, SD(DESC_CNT), reg);
320 }
321 
complete_tx(struct sdma_engine * sde,struct sdma_txreq * tx,int res)322 static inline void complete_tx(struct sdma_engine *sde,
323 			       struct sdma_txreq *tx,
324 			       int res)
325 {
326 	/* protect against complete modifying */
327 	struct iowait *wait = tx->wait;
328 	callback_t complete = tx->complete;
329 
330 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
331 	trace_hfi1_sdma_out_sn(sde, tx->sn);
332 	if (WARN_ON_ONCE(sde->head_sn != tx->sn))
333 		dd_dev_err(sde->dd, "expected %llu got %llu\n",
334 			   sde->head_sn, tx->sn);
335 	sde->head_sn++;
336 #endif
337 	__sdma_txclean(sde->dd, tx);
338 	if (complete)
339 		(*complete)(tx, res);
340 	if (iowait_sdma_dec(wait))
341 		iowait_drain_wakeup(wait);
342 }
343 
344 /*
345  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
346  *
347  * Depending on timing there can be txreqs in two places:
348  * - in the descq ring
349  * - in the flush list
350  *
351  * To avoid ordering issues the descq ring needs to be flushed
352  * first followed by the flush list.
353  *
354  * This routine is called from two places
355  * - From a work queue item
356  * - Directly from the state machine just before setting the
357  *   state to running
358  *
359  * Must be called with head_lock held
360  *
361  */
sdma_flush(struct sdma_engine * sde)362 static void sdma_flush(struct sdma_engine *sde)
363 {
364 	struct sdma_txreq *txp, *txp_next;
365 	LIST_HEAD(flushlist);
366 	unsigned long flags;
367 	uint seq;
368 
369 	/* flush from head to tail */
370 	sdma_flush_descq(sde);
371 	spin_lock_irqsave(&sde->flushlist_lock, flags);
372 	/* copy flush list */
373 	list_splice_init(&sde->flushlist, &flushlist);
374 	spin_unlock_irqrestore(&sde->flushlist_lock, flags);
375 	/* flush from flush list */
376 	list_for_each_entry_safe(txp, txp_next, &flushlist, list)
377 		complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
378 	/* wakeup QPs orphaned on the dmawait list */
379 	do {
380 		struct iowait *w, *nw;
381 
382 		seq = read_seqbegin(&sde->waitlock);
383 		if (!list_empty(&sde->dmawait)) {
384 			write_seqlock(&sde->waitlock);
385 			list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
386 				if (w->wakeup) {
387 					w->wakeup(w, SDMA_AVAIL_REASON);
388 					list_del_init(&w->list);
389 				}
390 			}
391 			write_sequnlock(&sde->waitlock);
392 		}
393 	} while (read_seqretry(&sde->waitlock, seq));
394 }
395 
396 /*
397  * Fields a work request for flushing the descq ring
398  * and the flush list
399  *
400  * If the engine has been brought to running during
401  * the scheduling delay, the flush is ignored, assuming
402  * that the process of bringing the engine to running
403  * would have done this flush prior to going to running.
404  *
405  */
sdma_field_flush(struct work_struct * work)406 static void sdma_field_flush(struct work_struct *work)
407 {
408 	unsigned long flags;
409 	struct sdma_engine *sde =
410 		container_of(work, struct sdma_engine, flush_worker);
411 
412 	write_seqlock_irqsave(&sde->head_lock, flags);
413 	if (!__sdma_running(sde))
414 		sdma_flush(sde);
415 	write_sequnlock_irqrestore(&sde->head_lock, flags);
416 }
417 
sdma_err_halt_wait(struct work_struct * work)418 static void sdma_err_halt_wait(struct work_struct *work)
419 {
420 	struct sdma_engine *sde = container_of(work, struct sdma_engine,
421 						err_halt_worker);
422 	u64 statuscsr;
423 	unsigned long timeout;
424 
425 	timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
426 	while (1) {
427 		statuscsr = read_sde_csr(sde, SD(STATUS));
428 		statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
429 		if (statuscsr)
430 			break;
431 		if (time_after(jiffies, timeout)) {
432 			dd_dev_err(sde->dd,
433 				   "SDMA engine %d - timeout waiting for engine to halt\n",
434 				   sde->this_idx);
435 			/*
436 			 * Continue anyway.  This could happen if there was
437 			 * an uncorrectable error in the wrong spot.
438 			 */
439 			break;
440 		}
441 		usleep_range(80, 120);
442 	}
443 
444 	sdma_process_event(sde, sdma_event_e15_hw_halt_done);
445 }
446 
sdma_err_progress_check_schedule(struct sdma_engine * sde)447 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
448 {
449 	if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
450 		unsigned index;
451 		struct hfi1_devdata *dd = sde->dd;
452 
453 		for (index = 0; index < dd->num_sdma; index++) {
454 			struct sdma_engine *curr_sdma = &dd->per_sdma[index];
455 
456 			if (curr_sdma != sde)
457 				curr_sdma->progress_check_head =
458 							curr_sdma->descq_head;
459 		}
460 		dd_dev_err(sde->dd,
461 			   "SDMA engine %d - check scheduled\n",
462 				sde->this_idx);
463 		mod_timer(&sde->err_progress_check_timer, jiffies + 10);
464 	}
465 }
466 
sdma_err_progress_check(struct timer_list * t)467 static void sdma_err_progress_check(struct timer_list *t)
468 {
469 	unsigned index;
470 	struct sdma_engine *sde = timer_container_of(sde, t,
471 						     err_progress_check_timer);
472 
473 	dd_dev_err(sde->dd, "SDE progress check event\n");
474 	for (index = 0; index < sde->dd->num_sdma; index++) {
475 		struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
476 		unsigned long flags;
477 
478 		/* check progress on each engine except the current one */
479 		if (curr_sde == sde)
480 			continue;
481 		/*
482 		 * We must lock interrupts when acquiring sde->lock,
483 		 * to avoid a deadlock if interrupt triggers and spins on
484 		 * the same lock on same CPU
485 		 */
486 		spin_lock_irqsave(&curr_sde->tail_lock, flags);
487 		write_seqlock(&curr_sde->head_lock);
488 
489 		/* skip non-running queues */
490 		if (curr_sde->state.current_state != sdma_state_s99_running) {
491 			write_sequnlock(&curr_sde->head_lock);
492 			spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
493 			continue;
494 		}
495 
496 		if ((curr_sde->descq_head != curr_sde->descq_tail) &&
497 		    (curr_sde->descq_head ==
498 				curr_sde->progress_check_head))
499 			__sdma_process_event(curr_sde,
500 					     sdma_event_e90_sw_halted);
501 		write_sequnlock(&curr_sde->head_lock);
502 		spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
503 	}
504 	schedule_work(&sde->err_halt_worker);
505 }
506 
sdma_hw_clean_up_task(struct tasklet_struct * t)507 static void sdma_hw_clean_up_task(struct tasklet_struct *t)
508 {
509 	struct sdma_engine *sde = from_tasklet(sde, t,
510 					       sdma_hw_clean_up_task);
511 	u64 statuscsr;
512 
513 	while (1) {
514 #ifdef CONFIG_SDMA_VERBOSITY
515 		dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
516 			   sde->this_idx, slashstrip(__FILE__), __LINE__,
517 			__func__);
518 #endif
519 		statuscsr = read_sde_csr(sde, SD(STATUS));
520 		statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
521 		if (statuscsr)
522 			break;
523 		udelay(10);
524 	}
525 
526 	sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
527 }
528 
get_txhead(struct sdma_engine * sde)529 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
530 {
531 	return sde->tx_ring[sde->tx_head & sde->sdma_mask];
532 }
533 
534 /*
535  * flush ring for recovery
536  */
sdma_flush_descq(struct sdma_engine * sde)537 static void sdma_flush_descq(struct sdma_engine *sde)
538 {
539 	u16 head, tail;
540 	int progress = 0;
541 	struct sdma_txreq *txp = get_txhead(sde);
542 
543 	/* The reason for some of the complexity of this code is that
544 	 * not all descriptors have corresponding txps.  So, we have to
545 	 * be able to skip over descs until we wander into the range of
546 	 * the next txp on the list.
547 	 */
548 	head = sde->descq_head & sde->sdma_mask;
549 	tail = sde->descq_tail & sde->sdma_mask;
550 	while (head != tail) {
551 		/* advance head, wrap if needed */
552 		head = ++sde->descq_head & sde->sdma_mask;
553 		/* if now past this txp's descs, do the callback */
554 		if (txp && txp->next_descq_idx == head) {
555 			/* remove from list */
556 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
557 			complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
558 			trace_hfi1_sdma_progress(sde, head, tail, txp);
559 			txp = get_txhead(sde);
560 		}
561 		progress++;
562 	}
563 	if (progress)
564 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
565 }
566 
sdma_sw_clean_up_task(struct tasklet_struct * t)567 static void sdma_sw_clean_up_task(struct tasklet_struct *t)
568 {
569 	struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&sde->tail_lock, flags);
573 	write_seqlock(&sde->head_lock);
574 
575 	/*
576 	 * At this point, the following should always be true:
577 	 * - We are halted, so no more descriptors are getting retired.
578 	 * - We are not running, so no one is submitting new work.
579 	 * - Only we can send the e40_sw_cleaned, so we can't start
580 	 *   running again until we say so.  So, the active list and
581 	 *   descq are ours to play with.
582 	 */
583 
584 	/*
585 	 * In the error clean up sequence, software clean must be called
586 	 * before the hardware clean so we can use the hardware head in
587 	 * the progress routine.  A hardware clean or SPC unfreeze will
588 	 * reset the hardware head.
589 	 *
590 	 * Process all retired requests. The progress routine will use the
591 	 * latest physical hardware head - we are not running so speed does
592 	 * not matter.
593 	 */
594 	sdma_make_progress(sde, 0);
595 
596 	sdma_flush(sde);
597 
598 	/*
599 	 * Reset our notion of head and tail.
600 	 * Note that the HW registers have been reset via an earlier
601 	 * clean up.
602 	 */
603 	sde->descq_tail = 0;
604 	sde->descq_head = 0;
605 	sde->desc_avail = sdma_descq_freecnt(sde);
606 	*sde->head_dma = 0;
607 
608 	__sdma_process_event(sde, sdma_event_e40_sw_cleaned);
609 
610 	write_sequnlock(&sde->head_lock);
611 	spin_unlock_irqrestore(&sde->tail_lock, flags);
612 }
613 
sdma_sw_tear_down(struct sdma_engine * sde)614 static void sdma_sw_tear_down(struct sdma_engine *sde)
615 {
616 	struct sdma_state *ss = &sde->state;
617 
618 	/* Releasing this reference means the state machine has stopped. */
619 	sdma_put(ss);
620 
621 	/* stop waiting for all unfreeze events to complete */
622 	atomic_set(&sde->dd->sdma_unfreeze_count, -1);
623 	wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
624 }
625 
sdma_start_hw_clean_up(struct sdma_engine * sde)626 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
627 {
628 	tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
629 }
630 
sdma_set_state(struct sdma_engine * sde,enum sdma_states next_state)631 static void sdma_set_state(struct sdma_engine *sde,
632 			   enum sdma_states next_state)
633 {
634 	struct sdma_state *ss = &sde->state;
635 	const struct sdma_set_state_action *action = sdma_action_table;
636 	unsigned op = 0;
637 
638 	trace_hfi1_sdma_state(
639 		sde,
640 		sdma_state_names[ss->current_state],
641 		sdma_state_names[next_state]);
642 
643 	/* debugging bookkeeping */
644 	ss->previous_state = ss->current_state;
645 	ss->previous_op = ss->current_op;
646 	ss->current_state = next_state;
647 
648 	if (ss->previous_state != sdma_state_s99_running &&
649 	    next_state == sdma_state_s99_running)
650 		sdma_flush(sde);
651 
652 	if (action[next_state].op_enable)
653 		op |= SDMA_SENDCTRL_OP_ENABLE;
654 
655 	if (action[next_state].op_intenable)
656 		op |= SDMA_SENDCTRL_OP_INTENABLE;
657 
658 	if (action[next_state].op_halt)
659 		op |= SDMA_SENDCTRL_OP_HALT;
660 
661 	if (action[next_state].op_cleanup)
662 		op |= SDMA_SENDCTRL_OP_CLEANUP;
663 
664 	if (action[next_state].go_s99_running_tofalse)
665 		ss->go_s99_running = 0;
666 
667 	if (action[next_state].go_s99_running_totrue)
668 		ss->go_s99_running = 1;
669 
670 	ss->current_op = op;
671 	sdma_sendctrl(sde, ss->current_op);
672 }
673 
674 /**
675  * sdma_get_descq_cnt() - called when device probed
676  *
677  * Return a validated descq count.
678  *
679  * This is currently only used in the verbs initialization to build the tx
680  * list.
681  *
682  * This will probably be deleted in favor of a more scalable approach to
683  * alloc tx's.
684  *
685  */
sdma_get_descq_cnt(void)686 u16 sdma_get_descq_cnt(void)
687 {
688 	u16 count = sdma_descq_cnt;
689 
690 	if (!count)
691 		return SDMA_DESCQ_CNT;
692 	/* count must be a power of 2 greater than 64 and less than
693 	 * 32768.   Otherwise return default.
694 	 */
695 	if (!is_power_of_2(count))
696 		return SDMA_DESCQ_CNT;
697 	if (count < 64 || count > 32768)
698 		return SDMA_DESCQ_CNT;
699 	return count;
700 }
701 
702 /**
703  * sdma_engine_get_vl() - return vl for a given sdma engine
704  * @sde: sdma engine
705  *
706  * This function returns the vl mapped to a given engine, or an error if
707  * the mapping can't be found. The mapping fields are protected by RCU.
708  */
sdma_engine_get_vl(struct sdma_engine * sde)709 int sdma_engine_get_vl(struct sdma_engine *sde)
710 {
711 	struct hfi1_devdata *dd = sde->dd;
712 	struct sdma_vl_map *m;
713 	u8 vl;
714 
715 	if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
716 		return -EINVAL;
717 
718 	rcu_read_lock();
719 	m = rcu_dereference(dd->sdma_map);
720 	if (unlikely(!m)) {
721 		rcu_read_unlock();
722 		return -EINVAL;
723 	}
724 	vl = m->engine_to_vl[sde->this_idx];
725 	rcu_read_unlock();
726 
727 	return vl;
728 }
729 
730 /**
731  * sdma_select_engine_vl() - select sdma engine
732  * @dd: devdata
733  * @selector: a spreading factor
734  * @vl: this vl
735  *
736  *
737  * This function returns an engine based on the selector and a vl.  The
738  * mapping fields are protected by RCU.
739  */
sdma_select_engine_vl(struct hfi1_devdata * dd,u32 selector,u8 vl)740 struct sdma_engine *sdma_select_engine_vl(
741 	struct hfi1_devdata *dd,
742 	u32 selector,
743 	u8 vl)
744 {
745 	struct sdma_vl_map *m;
746 	struct sdma_map_elem *e;
747 	struct sdma_engine *rval;
748 
749 	/* NOTE This should only happen if SC->VL changed after the initial
750 	 *      checks on the QP/AH
751 	 *      Default will return engine 0 below
752 	 */
753 	if (vl >= num_vls) {
754 		rval = NULL;
755 		goto done;
756 	}
757 
758 	rcu_read_lock();
759 	m = rcu_dereference(dd->sdma_map);
760 	if (unlikely(!m)) {
761 		rcu_read_unlock();
762 		return &dd->per_sdma[0];
763 	}
764 	e = m->map[vl & m->mask];
765 	rval = e->sde[selector & e->mask];
766 	rcu_read_unlock();
767 
768 done:
769 	rval =  !rval ? &dd->per_sdma[0] : rval;
770 	trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
771 	return rval;
772 }
773 
774 /**
775  * sdma_select_engine_sc() - select sdma engine
776  * @dd: devdata
777  * @selector: a spreading factor
778  * @sc5: the 5 bit sc
779  *
780  *
781  * This function returns an engine based on the selector and an sc.
782  */
sdma_select_engine_sc(struct hfi1_devdata * dd,u32 selector,u8 sc5)783 struct sdma_engine *sdma_select_engine_sc(
784 	struct hfi1_devdata *dd,
785 	u32 selector,
786 	u8 sc5)
787 {
788 	u8 vl = sc_to_vlt(dd, sc5);
789 
790 	return sdma_select_engine_vl(dd, selector, vl);
791 }
792 
793 struct sdma_rht_map_elem {
794 	u32 mask;
795 	u8 ctr;
796 	struct sdma_engine *sde[];
797 };
798 
799 struct sdma_rht_node {
800 	unsigned long cpu_id;
801 	struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
802 	struct rhash_head node;
803 };
804 
805 #define NR_CPUS_HINT 192
806 
807 static const struct rhashtable_params sdma_rht_params = {
808 	.nelem_hint = NR_CPUS_HINT,
809 	.head_offset = offsetof(struct sdma_rht_node, node),
810 	.key_offset = offsetof(struct sdma_rht_node, cpu_id),
811 	.key_len = sizeof_field(struct sdma_rht_node, cpu_id),
812 	.max_size = NR_CPUS,
813 	.min_size = 8,
814 	.automatic_shrinking = true,
815 };
816 
817 /*
818  * sdma_select_user_engine() - select sdma engine based on user setup
819  * @dd: devdata
820  * @selector: a spreading factor
821  * @vl: this vl
822  *
823  * This function returns an sdma engine for a user sdma request.
824  * User defined sdma engine affinity setting is honored when applicable,
825  * otherwise system default sdma engine mapping is used. To ensure correct
826  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
827  */
sdma_select_user_engine(struct hfi1_devdata * dd,u32 selector,u8 vl)828 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
829 					    u32 selector, u8 vl)
830 {
831 	struct sdma_rht_node *rht_node;
832 	struct sdma_engine *sde = NULL;
833 	unsigned long cpu_id;
834 
835 	/*
836 	 * To ensure that always the same sdma engine(s) will be
837 	 * selected make sure the process is pinned to this CPU only.
838 	 */
839 	if (current->nr_cpus_allowed != 1)
840 		goto out;
841 
842 	rcu_read_lock();
843 	cpu_id = smp_processor_id();
844 	rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
845 				     sdma_rht_params);
846 
847 	if (rht_node && rht_node->map[vl]) {
848 		struct sdma_rht_map_elem *map = rht_node->map[vl];
849 
850 		sde = map->sde[selector & map->mask];
851 	}
852 	rcu_read_unlock();
853 
854 	if (sde)
855 		return sde;
856 
857 out:
858 	return sdma_select_engine_vl(dd, selector, vl);
859 }
860 
sdma_populate_sde_map(struct sdma_rht_map_elem * map)861 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
862 {
863 	int i;
864 
865 	for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
866 		map->sde[map->ctr + i] = map->sde[i];
867 }
868 
sdma_cleanup_sde_map(struct sdma_rht_map_elem * map,struct sdma_engine * sde)869 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
870 				 struct sdma_engine *sde)
871 {
872 	unsigned int i, pow;
873 
874 	/* only need to check the first ctr entries for a match */
875 	for (i = 0; i < map->ctr; i++) {
876 		if (map->sde[i] == sde) {
877 			memmove(&map->sde[i], &map->sde[i + 1],
878 				(map->ctr - i - 1) * sizeof(map->sde[0]));
879 			map->ctr--;
880 			pow = roundup_pow_of_two(map->ctr ? : 1);
881 			map->mask = pow - 1;
882 			sdma_populate_sde_map(map);
883 			break;
884 		}
885 	}
886 }
887 
888 /*
889  * Prevents concurrent reads and writes of the sdma engine cpu_mask
890  */
891 static DEFINE_MUTEX(process_to_sde_mutex);
892 
sdma_set_cpu_to_sde_map(struct sdma_engine * sde,const char * buf,size_t count)893 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
894 				size_t count)
895 {
896 	struct hfi1_devdata *dd = sde->dd;
897 	cpumask_var_t mask, new_mask;
898 	unsigned long cpu;
899 	int ret, vl, sz;
900 	struct sdma_rht_node *rht_node;
901 
902 	vl = sdma_engine_get_vl(sde);
903 	if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
904 		return -EINVAL;
905 
906 	ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
907 	if (!ret)
908 		return -ENOMEM;
909 
910 	ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
911 	if (!ret) {
912 		free_cpumask_var(mask);
913 		return -ENOMEM;
914 	}
915 	ret = cpulist_parse(buf, mask);
916 	if (ret)
917 		goto out_free;
918 
919 	if (!cpumask_subset(mask, cpu_online_mask)) {
920 		dd_dev_warn(sde->dd, "Invalid CPU mask\n");
921 		ret = -EINVAL;
922 		goto out_free;
923 	}
924 
925 	sz = sizeof(struct sdma_rht_map_elem) +
926 			(TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
927 
928 	mutex_lock(&process_to_sde_mutex);
929 
930 	for_each_cpu(cpu, mask) {
931 		/* Check if we have this already mapped */
932 		if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
933 			cpumask_set_cpu(cpu, new_mask);
934 			continue;
935 		}
936 
937 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
938 						  sdma_rht_params);
939 		if (!rht_node) {
940 			rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
941 			if (!rht_node) {
942 				ret = -ENOMEM;
943 				goto out;
944 			}
945 
946 			rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
947 			if (!rht_node->map[vl]) {
948 				kfree(rht_node);
949 				ret = -ENOMEM;
950 				goto out;
951 			}
952 			rht_node->cpu_id = cpu;
953 			rht_node->map[vl]->mask = 0;
954 			rht_node->map[vl]->ctr = 1;
955 			rht_node->map[vl]->sde[0] = sde;
956 
957 			ret = rhashtable_insert_fast(dd->sdma_rht,
958 						     &rht_node->node,
959 						     sdma_rht_params);
960 			if (ret) {
961 				kfree(rht_node->map[vl]);
962 				kfree(rht_node);
963 				dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
964 					   cpu);
965 				goto out;
966 			}
967 
968 		} else {
969 			int ctr, pow;
970 
971 			/* Add new user mappings */
972 			if (!rht_node->map[vl])
973 				rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
974 
975 			if (!rht_node->map[vl]) {
976 				ret = -ENOMEM;
977 				goto out;
978 			}
979 
980 			rht_node->map[vl]->ctr++;
981 			ctr = rht_node->map[vl]->ctr;
982 			rht_node->map[vl]->sde[ctr - 1] = sde;
983 			pow = roundup_pow_of_two(ctr);
984 			rht_node->map[vl]->mask = pow - 1;
985 
986 			/* Populate the sde map table */
987 			sdma_populate_sde_map(rht_node->map[vl]);
988 		}
989 		cpumask_set_cpu(cpu, new_mask);
990 	}
991 
992 	/* Clean up old mappings */
993 	for_each_cpu(cpu, cpu_online_mask) {
994 		struct sdma_rht_node *rht_node;
995 
996 		/* Don't cleanup sdes that are set in the new mask */
997 		if (cpumask_test_cpu(cpu, mask))
998 			continue;
999 
1000 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1001 						  sdma_rht_params);
1002 		if (rht_node) {
1003 			bool empty = true;
1004 			int i;
1005 
1006 			/* Remove mappings for old sde */
1007 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1008 				if (rht_node->map[i])
1009 					sdma_cleanup_sde_map(rht_node->map[i],
1010 							     sde);
1011 
1012 			/* Free empty hash table entries */
1013 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1014 				if (!rht_node->map[i])
1015 					continue;
1016 
1017 				if (rht_node->map[i]->ctr) {
1018 					empty = false;
1019 					break;
1020 				}
1021 			}
1022 
1023 			if (empty) {
1024 				ret = rhashtable_remove_fast(dd->sdma_rht,
1025 							     &rht_node->node,
1026 							     sdma_rht_params);
1027 				WARN_ON(ret);
1028 
1029 				for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1030 					kfree(rht_node->map[i]);
1031 
1032 				kfree(rht_node);
1033 			}
1034 		}
1035 	}
1036 
1037 	cpumask_copy(&sde->cpu_mask, new_mask);
1038 out:
1039 	mutex_unlock(&process_to_sde_mutex);
1040 out_free:
1041 	free_cpumask_var(mask);
1042 	free_cpumask_var(new_mask);
1043 	return ret ? : strnlen(buf, PAGE_SIZE);
1044 }
1045 
sdma_get_cpu_to_sde_map(struct sdma_engine * sde,char * buf)1046 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1047 {
1048 	mutex_lock(&process_to_sde_mutex);
1049 	if (cpumask_empty(&sde->cpu_mask))
1050 		snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1051 	else
1052 		cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1053 	mutex_unlock(&process_to_sde_mutex);
1054 	return strnlen(buf, PAGE_SIZE);
1055 }
1056 
sdma_rht_free(void * ptr,void * arg)1057 static void sdma_rht_free(void *ptr, void *arg)
1058 {
1059 	struct sdma_rht_node *rht_node = ptr;
1060 	int i;
1061 
1062 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1063 		kfree(rht_node->map[i]);
1064 
1065 	kfree(rht_node);
1066 }
1067 
1068 /**
1069  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1070  * @s: seq file
1071  * @dd: hfi1_devdata
1072  * @cpuid: cpu id
1073  *
1074  * This routine dumps the process to sde mappings per cpu
1075  */
sdma_seqfile_dump_cpu_list(struct seq_file * s,struct hfi1_devdata * dd,unsigned long cpuid)1076 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1077 				struct hfi1_devdata *dd,
1078 				unsigned long cpuid)
1079 {
1080 	struct sdma_rht_node *rht_node;
1081 	int i, j;
1082 
1083 	rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1084 					  sdma_rht_params);
1085 	if (!rht_node)
1086 		return;
1087 
1088 	seq_printf(s, "cpu%3lu: ", cpuid);
1089 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1090 		if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1091 			continue;
1092 
1093 		seq_printf(s, " vl%d: [", i);
1094 
1095 		for (j = 0; j < rht_node->map[i]->ctr; j++) {
1096 			if (!rht_node->map[i]->sde[j])
1097 				continue;
1098 
1099 			if (j > 0)
1100 				seq_puts(s, ",");
1101 
1102 			seq_printf(s, " sdma%2d",
1103 				   rht_node->map[i]->sde[j]->this_idx);
1104 		}
1105 		seq_puts(s, " ]");
1106 	}
1107 
1108 	seq_puts(s, "\n");
1109 }
1110 
1111 /*
1112  * Free the indicated map struct
1113  */
sdma_map_free(struct sdma_vl_map * m)1114 static void sdma_map_free(struct sdma_vl_map *m)
1115 {
1116 	int i;
1117 
1118 	for (i = 0; m && i < m->actual_vls; i++)
1119 		kfree(m->map[i]);
1120 	kfree(m);
1121 }
1122 
1123 /*
1124  * Handle RCU callback
1125  */
sdma_map_rcu_callback(struct rcu_head * list)1126 static void sdma_map_rcu_callback(struct rcu_head *list)
1127 {
1128 	struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1129 
1130 	sdma_map_free(m);
1131 }
1132 
1133 /**
1134  * sdma_map_init - called when # vls change
1135  * @dd: hfi1_devdata
1136  * @port: port number
1137  * @num_vls: number of vls
1138  * @vl_engines: per vl engine mapping (optional)
1139  *
1140  * This routine changes the mapping based on the number of vls.
1141  *
1142  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1143  * implies auto computing the loading and giving each VLs a uniform
1144  * distribution of engines per VL.
1145  *
1146  * The auto algorithm computes the sde_per_vl and the number of extra
1147  * engines.  Any extra engines are added from the last VL on down.
1148  *
1149  * rcu locking is used here to control access to the mapping fields.
1150  *
1151  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1152  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1153  * up to the next highest power of 2 and the first entry is reused
1154  * in a round robin fashion.
1155  *
1156  * If an error occurs the map change is not done and the mapping is
1157  * not changed.
1158  *
1159  */
sdma_map_init(struct hfi1_devdata * dd,u8 port,u8 num_vls,u8 * vl_engines)1160 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1161 {
1162 	int i, j;
1163 	int extra, sde_per_vl;
1164 	int engine = 0;
1165 	u8 lvl_engines[OPA_MAX_VLS];
1166 	struct sdma_vl_map *oldmap, *newmap;
1167 
1168 	if (!(dd->flags & HFI1_HAS_SEND_DMA))
1169 		return 0;
1170 
1171 	if (!vl_engines) {
1172 		/* truncate divide */
1173 		sde_per_vl = dd->num_sdma / num_vls;
1174 		/* extras */
1175 		extra = dd->num_sdma % num_vls;
1176 		vl_engines = lvl_engines;
1177 		/* add extras from last vl down */
1178 		for (i = num_vls - 1; i >= 0; i--, extra--)
1179 			vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1180 	}
1181 	/* build new map */
1182 	newmap = kzalloc(
1183 		sizeof(struct sdma_vl_map) +
1184 			roundup_pow_of_two(num_vls) *
1185 			sizeof(struct sdma_map_elem *),
1186 		GFP_KERNEL);
1187 	if (!newmap)
1188 		goto bail;
1189 	newmap->actual_vls = num_vls;
1190 	newmap->vls = roundup_pow_of_two(num_vls);
1191 	newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1192 	/* initialize back-map */
1193 	for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1194 		newmap->engine_to_vl[i] = -1;
1195 	for (i = 0; i < newmap->vls; i++) {
1196 		/* save for wrap around */
1197 		int first_engine = engine;
1198 
1199 		if (i < newmap->actual_vls) {
1200 			int sz = roundup_pow_of_two(vl_engines[i]);
1201 
1202 			/* only allocate once */
1203 			newmap->map[i] = kzalloc(
1204 				sizeof(struct sdma_map_elem) +
1205 					sz * sizeof(struct sdma_engine *),
1206 				GFP_KERNEL);
1207 			if (!newmap->map[i])
1208 				goto bail;
1209 			newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1210 			/* assign engines */
1211 			for (j = 0; j < sz; j++) {
1212 				newmap->map[i]->sde[j] =
1213 					&dd->per_sdma[engine];
1214 				if (++engine >= first_engine + vl_engines[i])
1215 					/* wrap back to first engine */
1216 					engine = first_engine;
1217 			}
1218 			/* assign back-map */
1219 			for (j = 0; j < vl_engines[i]; j++)
1220 				newmap->engine_to_vl[first_engine + j] = i;
1221 		} else {
1222 			/* just re-use entry without allocating */
1223 			newmap->map[i] = newmap->map[i % num_vls];
1224 		}
1225 		engine = first_engine + vl_engines[i];
1226 	}
1227 	/* newmap in hand, save old map */
1228 	spin_lock_irq(&dd->sde_map_lock);
1229 	oldmap = rcu_dereference_protected(dd->sdma_map,
1230 					   lockdep_is_held(&dd->sde_map_lock));
1231 
1232 	/* publish newmap */
1233 	rcu_assign_pointer(dd->sdma_map, newmap);
1234 
1235 	spin_unlock_irq(&dd->sde_map_lock);
1236 	/* success, free any old map after grace period */
1237 	if (oldmap)
1238 		call_rcu(&oldmap->list, sdma_map_rcu_callback);
1239 	return 0;
1240 bail:
1241 	/* free any partial allocation */
1242 	sdma_map_free(newmap);
1243 	return -ENOMEM;
1244 }
1245 
1246 /**
1247  * sdma_clean - Clean up allocated memory
1248  * @dd:          struct hfi1_devdata
1249  * @num_engines: num sdma engines
1250  *
1251  * This routine can be called regardless of the success of
1252  * sdma_init()
1253  */
sdma_clean(struct hfi1_devdata * dd,size_t num_engines)1254 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1255 {
1256 	size_t i;
1257 	struct sdma_engine *sde;
1258 
1259 	if (dd->sdma_pad_dma) {
1260 		dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1261 				  (void *)dd->sdma_pad_dma,
1262 				  dd->sdma_pad_phys);
1263 		dd->sdma_pad_dma = NULL;
1264 		dd->sdma_pad_phys = 0;
1265 	}
1266 	if (dd->sdma_heads_dma) {
1267 		dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1268 				  (void *)dd->sdma_heads_dma,
1269 				  dd->sdma_heads_phys);
1270 		dd->sdma_heads_dma = NULL;
1271 		dd->sdma_heads_phys = 0;
1272 	}
1273 	for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1274 		sde = &dd->per_sdma[i];
1275 
1276 		sde->head_dma = NULL;
1277 		sde->head_phys = 0;
1278 
1279 		if (sde->descq) {
1280 			dma_free_coherent(
1281 				&dd->pcidev->dev,
1282 				sde->descq_cnt * sizeof(u64[2]),
1283 				sde->descq,
1284 				sde->descq_phys
1285 			);
1286 			sde->descq = NULL;
1287 			sde->descq_phys = 0;
1288 		}
1289 		kvfree(sde->tx_ring);
1290 		sde->tx_ring = NULL;
1291 	}
1292 	if (rcu_access_pointer(dd->sdma_map)) {
1293 		spin_lock_irq(&dd->sde_map_lock);
1294 		sdma_map_free(rcu_access_pointer(dd->sdma_map));
1295 		RCU_INIT_POINTER(dd->sdma_map, NULL);
1296 		spin_unlock_irq(&dd->sde_map_lock);
1297 		synchronize_rcu();
1298 	}
1299 	kfree(dd->per_sdma);
1300 	dd->per_sdma = NULL;
1301 
1302 	if (dd->sdma_rht) {
1303 		rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1304 		kfree(dd->sdma_rht);
1305 		dd->sdma_rht = NULL;
1306 	}
1307 }
1308 
1309 /**
1310  * sdma_init() - called when device probed
1311  * @dd: hfi1_devdata
1312  * @port: port number (currently only zero)
1313  *
1314  * Initializes each sde and its csrs.
1315  * Interrupts are not required to be enabled.
1316  *
1317  * Returns:
1318  * 0 - success, -errno on failure
1319  */
sdma_init(struct hfi1_devdata * dd,u8 port)1320 int sdma_init(struct hfi1_devdata *dd, u8 port)
1321 {
1322 	unsigned this_idx;
1323 	struct sdma_engine *sde;
1324 	struct rhashtable *tmp_sdma_rht;
1325 	u16 descq_cnt;
1326 	void *curr_head;
1327 	struct hfi1_pportdata *ppd = dd->pport + port;
1328 	u32 per_sdma_credits;
1329 	uint idle_cnt = sdma_idle_cnt;
1330 	size_t num_engines = chip_sdma_engines(dd);
1331 	int ret = -ENOMEM;
1332 
1333 	if (!HFI1_CAP_IS_KSET(SDMA)) {
1334 		HFI1_CAP_CLEAR(SDMA_AHG);
1335 		return 0;
1336 	}
1337 	if (mod_num_sdma &&
1338 	    /* can't exceed chip support */
1339 	    mod_num_sdma <= chip_sdma_engines(dd) &&
1340 	    /* count must be >= vls */
1341 	    mod_num_sdma >= num_vls)
1342 		num_engines = mod_num_sdma;
1343 
1344 	dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1345 	dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1346 	dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1347 		    chip_sdma_mem_size(dd));
1348 
1349 	per_sdma_credits =
1350 		chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1351 
1352 	/* set up freeze waitqueue */
1353 	init_waitqueue_head(&dd->sdma_unfreeze_wq);
1354 	atomic_set(&dd->sdma_unfreeze_count, 0);
1355 
1356 	descq_cnt = sdma_get_descq_cnt();
1357 	dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1358 		    num_engines, descq_cnt);
1359 
1360 	/* alloc memory for array of send engines */
1361 	dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1362 				    GFP_KERNEL, dd->node);
1363 	if (!dd->per_sdma)
1364 		return ret;
1365 
1366 	idle_cnt = ns_to_cclock(dd, idle_cnt);
1367 	if (idle_cnt)
1368 		dd->default_desc1 =
1369 			SDMA_DESC1_HEAD_TO_HOST_FLAG;
1370 	else
1371 		dd->default_desc1 =
1372 			SDMA_DESC1_INT_REQ_FLAG;
1373 
1374 	if (!sdma_desct_intr)
1375 		sdma_desct_intr = SDMA_DESC_INTR;
1376 
1377 	/* Allocate memory for SendDMA descriptor FIFOs */
1378 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1379 		sde = &dd->per_sdma[this_idx];
1380 		sde->dd = dd;
1381 		sde->ppd = ppd;
1382 		sde->this_idx = this_idx;
1383 		sde->descq_cnt = descq_cnt;
1384 		sde->desc_avail = sdma_descq_freecnt(sde);
1385 		sde->sdma_shift = ilog2(descq_cnt);
1386 		sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1387 
1388 		/* Create a mask specifically for each interrupt source */
1389 		sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1390 					   this_idx);
1391 		sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1392 						this_idx);
1393 		sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1394 					    this_idx);
1395 		/* Create a combined mask to cover all 3 interrupt sources */
1396 		sde->imask = sde->int_mask | sde->progress_mask |
1397 			     sde->idle_mask;
1398 
1399 		spin_lock_init(&sde->tail_lock);
1400 		seqlock_init(&sde->head_lock);
1401 		spin_lock_init(&sde->senddmactrl_lock);
1402 		spin_lock_init(&sde->flushlist_lock);
1403 		seqlock_init(&sde->waitlock);
1404 		/* insure there is always a zero bit */
1405 		sde->ahg_bits = 0xfffffffe00000000ULL;
1406 
1407 		sdma_set_state(sde, sdma_state_s00_hw_down);
1408 
1409 		/* set up reference counting */
1410 		kref_init(&sde->state.kref);
1411 		init_completion(&sde->state.comp);
1412 
1413 		INIT_LIST_HEAD(&sde->flushlist);
1414 		INIT_LIST_HEAD(&sde->dmawait);
1415 
1416 		sde->tail_csr =
1417 			get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1418 
1419 		tasklet_setup(&sde->sdma_hw_clean_up_task,
1420 			      sdma_hw_clean_up_task);
1421 		tasklet_setup(&sde->sdma_sw_clean_up_task,
1422 			      sdma_sw_clean_up_task);
1423 		INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1424 		INIT_WORK(&sde->flush_worker, sdma_field_flush);
1425 
1426 		sde->progress_check_head = 0;
1427 
1428 		timer_setup(&sde->err_progress_check_timer,
1429 			    sdma_err_progress_check, 0);
1430 
1431 		sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1432 						descq_cnt * sizeof(u64[2]),
1433 						&sde->descq_phys, GFP_KERNEL);
1434 		if (!sde->descq)
1435 			goto bail;
1436 		sde->tx_ring =
1437 			kvzalloc_node(array_size(descq_cnt,
1438 						 sizeof(struct sdma_txreq *)),
1439 				      GFP_KERNEL, dd->node);
1440 		if (!sde->tx_ring)
1441 			goto bail;
1442 	}
1443 
1444 	dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1445 	/* Allocate memory for DMA of head registers to memory */
1446 	dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1447 						dd->sdma_heads_size,
1448 						&dd->sdma_heads_phys,
1449 						GFP_KERNEL);
1450 	if (!dd->sdma_heads_dma) {
1451 		dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1452 		goto bail;
1453 	}
1454 
1455 	/* Allocate memory for pad */
1456 	dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1457 					      &dd->sdma_pad_phys, GFP_KERNEL);
1458 	if (!dd->sdma_pad_dma) {
1459 		dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1460 		goto bail;
1461 	}
1462 
1463 	/* assign each engine to different cacheline and init registers */
1464 	curr_head = (void *)dd->sdma_heads_dma;
1465 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1466 		unsigned long phys_offset;
1467 
1468 		sde = &dd->per_sdma[this_idx];
1469 
1470 		sde->head_dma = curr_head;
1471 		curr_head += L1_CACHE_BYTES;
1472 		phys_offset = (unsigned long)sde->head_dma -
1473 			      (unsigned long)dd->sdma_heads_dma;
1474 		sde->head_phys = dd->sdma_heads_phys + phys_offset;
1475 		init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1476 	}
1477 	dd->flags |= HFI1_HAS_SEND_DMA;
1478 	dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1479 	dd->num_sdma = num_engines;
1480 	ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1481 	if (ret < 0)
1482 		goto bail;
1483 
1484 	tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1485 	if (!tmp_sdma_rht) {
1486 		ret = -ENOMEM;
1487 		goto bail;
1488 	}
1489 
1490 	ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1491 	if (ret < 0) {
1492 		kfree(tmp_sdma_rht);
1493 		goto bail;
1494 	}
1495 
1496 	dd->sdma_rht = tmp_sdma_rht;
1497 
1498 	dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1499 	return 0;
1500 
1501 bail:
1502 	sdma_clean(dd, num_engines);
1503 	return ret;
1504 }
1505 
1506 /**
1507  * sdma_all_running() - called when the link goes up
1508  * @dd: hfi1_devdata
1509  *
1510  * This routine moves all engines to the running state.
1511  */
sdma_all_running(struct hfi1_devdata * dd)1512 void sdma_all_running(struct hfi1_devdata *dd)
1513 {
1514 	struct sdma_engine *sde;
1515 	unsigned int i;
1516 
1517 	/* move all engines to running */
1518 	for (i = 0; i < dd->num_sdma; ++i) {
1519 		sde = &dd->per_sdma[i];
1520 		sdma_process_event(sde, sdma_event_e30_go_running);
1521 	}
1522 }
1523 
1524 /**
1525  * sdma_start() - called to kick off state processing for all engines
1526  * @dd: hfi1_devdata
1527  *
1528  * This routine is for kicking off the state processing for all required
1529  * sdma engines.  Interrupts need to be working at this point.
1530  *
1531  */
sdma_start(struct hfi1_devdata * dd)1532 void sdma_start(struct hfi1_devdata *dd)
1533 {
1534 	unsigned i;
1535 	struct sdma_engine *sde;
1536 
1537 	/* kick off the engines state processing */
1538 	for (i = 0; i < dd->num_sdma; ++i) {
1539 		sde = &dd->per_sdma[i];
1540 		sdma_process_event(sde, sdma_event_e10_go_hw_start);
1541 	}
1542 }
1543 
1544 /**
1545  * sdma_exit() - used when module is removed
1546  * @dd: hfi1_devdata
1547  */
sdma_exit(struct hfi1_devdata * dd)1548 void sdma_exit(struct hfi1_devdata *dd)
1549 {
1550 	unsigned this_idx;
1551 	struct sdma_engine *sde;
1552 
1553 	for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1554 			++this_idx) {
1555 		sde = &dd->per_sdma[this_idx];
1556 		if (!list_empty(&sde->dmawait))
1557 			dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1558 				   sde->this_idx);
1559 		sdma_process_event(sde, sdma_event_e00_go_hw_down);
1560 
1561 		timer_delete_sync(&sde->err_progress_check_timer);
1562 
1563 		/*
1564 		 * This waits for the state machine to exit so it is not
1565 		 * necessary to kill the sdma_sw_clean_up_task to make sure
1566 		 * it is not running.
1567 		 */
1568 		sdma_finalput(&sde->state);
1569 	}
1570 }
1571 
1572 /*
1573  * unmap the indicated descriptor
1574  */
sdma_unmap_desc(struct hfi1_devdata * dd,struct sdma_desc * descp)1575 static inline void sdma_unmap_desc(
1576 	struct hfi1_devdata *dd,
1577 	struct sdma_desc *descp)
1578 {
1579 	switch (sdma_mapping_type(descp)) {
1580 	case SDMA_MAP_SINGLE:
1581 		dma_unmap_single(&dd->pcidev->dev, sdma_mapping_addr(descp),
1582 				 sdma_mapping_len(descp), DMA_TO_DEVICE);
1583 		break;
1584 	case SDMA_MAP_PAGE:
1585 		dma_unmap_page(&dd->pcidev->dev, sdma_mapping_addr(descp),
1586 			       sdma_mapping_len(descp), DMA_TO_DEVICE);
1587 		break;
1588 	}
1589 
1590 	if (descp->pinning_ctx && descp->ctx_put)
1591 		descp->ctx_put(descp->pinning_ctx);
1592 	descp->pinning_ctx = NULL;
1593 }
1594 
1595 /*
1596  * return the mode as indicated by the first
1597  * descriptor in the tx.
1598  */
ahg_mode(struct sdma_txreq * tx)1599 static inline u8 ahg_mode(struct sdma_txreq *tx)
1600 {
1601 	return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1602 		>> SDMA_DESC1_HEADER_MODE_SHIFT;
1603 }
1604 
1605 /**
1606  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1607  * @dd: hfi1_devdata for unmapping
1608  * @tx: tx request to clean
1609  *
1610  * This is used in the progress routine to clean the tx or
1611  * by the ULP to toss an in-process tx build.
1612  *
1613  * The code can be called multiple times without issue.
1614  *
1615  */
__sdma_txclean(struct hfi1_devdata * dd,struct sdma_txreq * tx)1616 void __sdma_txclean(
1617 	struct hfi1_devdata *dd,
1618 	struct sdma_txreq *tx)
1619 {
1620 	u16 i;
1621 
1622 	if (tx->num_desc) {
1623 		u8 skip = 0, mode = ahg_mode(tx);
1624 
1625 		/* unmap first */
1626 		sdma_unmap_desc(dd, &tx->descp[0]);
1627 		/* determine number of AHG descriptors to skip */
1628 		if (mode > SDMA_AHG_APPLY_UPDATE1)
1629 			skip = mode >> 1;
1630 		for (i = 1 + skip; i < tx->num_desc; i++)
1631 			sdma_unmap_desc(dd, &tx->descp[i]);
1632 		tx->num_desc = 0;
1633 	}
1634 	kfree(tx->coalesce_buf);
1635 	tx->coalesce_buf = NULL;
1636 	/* kmalloc'ed descp */
1637 	if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1638 		tx->desc_limit = ARRAY_SIZE(tx->descs);
1639 		kfree(tx->descp);
1640 	}
1641 }
1642 
sdma_gethead(struct sdma_engine * sde)1643 static inline u16 sdma_gethead(struct sdma_engine *sde)
1644 {
1645 	struct hfi1_devdata *dd = sde->dd;
1646 	int use_dmahead;
1647 	u16 hwhead;
1648 
1649 #ifdef CONFIG_SDMA_VERBOSITY
1650 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1651 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1652 #endif
1653 
1654 retry:
1655 	use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1656 					(dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1657 	hwhead = use_dmahead ?
1658 		(u16)le64_to_cpu(*sde->head_dma) :
1659 		(u16)read_sde_csr(sde, SD(HEAD));
1660 
1661 	if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1662 		u16 cnt;
1663 		u16 swtail;
1664 		u16 swhead;
1665 		int sane;
1666 
1667 		swhead = sde->descq_head & sde->sdma_mask;
1668 		/* this code is really bad for cache line trading */
1669 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1670 		cnt = sde->descq_cnt;
1671 
1672 		if (swhead < swtail)
1673 			/* not wrapped */
1674 			sane = (hwhead >= swhead) & (hwhead <= swtail);
1675 		else if (swhead > swtail)
1676 			/* wrapped around */
1677 			sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1678 				(hwhead <= swtail);
1679 		else
1680 			/* empty */
1681 			sane = (hwhead == swhead);
1682 
1683 		if (unlikely(!sane)) {
1684 			dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n",
1685 				   sde->this_idx,
1686 				   use_dmahead ? "dma" : "kreg",
1687 				   hwhead, swhead, swtail, cnt);
1688 			if (use_dmahead) {
1689 				/* try one more time, using csr */
1690 				use_dmahead = 0;
1691 				goto retry;
1692 			}
1693 			/* proceed as if no progress */
1694 			hwhead = swhead;
1695 		}
1696 	}
1697 	return hwhead;
1698 }
1699 
1700 /*
1701  * This is called when there are send DMA descriptors that might be
1702  * available.
1703  *
1704  * This is called with head_lock held.
1705  */
sdma_desc_avail(struct sdma_engine * sde,uint avail)1706 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1707 {
1708 	struct iowait *wait, *nw, *twait;
1709 	struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1710 	uint i, n = 0, seq, tidx = 0;
1711 
1712 #ifdef CONFIG_SDMA_VERBOSITY
1713 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1714 		   slashstrip(__FILE__), __LINE__, __func__);
1715 	dd_dev_err(sde->dd, "avail: %u\n", avail);
1716 #endif
1717 
1718 	do {
1719 		seq = read_seqbegin(&sde->waitlock);
1720 		if (!list_empty(&sde->dmawait)) {
1721 			/* at least one item */
1722 			write_seqlock(&sde->waitlock);
1723 			/* Harvest waiters wanting DMA descriptors */
1724 			list_for_each_entry_safe(
1725 					wait,
1726 					nw,
1727 					&sde->dmawait,
1728 					list) {
1729 				u32 num_desc;
1730 
1731 				if (!wait->wakeup)
1732 					continue;
1733 				if (n == ARRAY_SIZE(waits))
1734 					break;
1735 				iowait_init_priority(wait);
1736 				num_desc = iowait_get_all_desc(wait);
1737 				if (num_desc > avail)
1738 					break;
1739 				avail -= num_desc;
1740 				/* Find the top-priority wait memeber */
1741 				if (n) {
1742 					twait = waits[tidx];
1743 					tidx =
1744 					    iowait_priority_update_top(wait,
1745 								       twait,
1746 								       n,
1747 								       tidx);
1748 				}
1749 				list_del_init(&wait->list);
1750 				waits[n++] = wait;
1751 			}
1752 			write_sequnlock(&sde->waitlock);
1753 			break;
1754 		}
1755 	} while (read_seqretry(&sde->waitlock, seq));
1756 
1757 	/* Schedule the top-priority entry first */
1758 	if (n)
1759 		waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1760 
1761 	for (i = 0; i < n; i++)
1762 		if (i != tidx)
1763 			waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1764 }
1765 
1766 /* head_lock must be held */
sdma_make_progress(struct sdma_engine * sde,u64 status)1767 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1768 {
1769 	struct sdma_txreq *txp = NULL;
1770 	int progress = 0;
1771 	u16 hwhead, swhead;
1772 	int idle_check_done = 0;
1773 
1774 	hwhead = sdma_gethead(sde);
1775 
1776 	/* The reason for some of the complexity of this code is that
1777 	 * not all descriptors have corresponding txps.  So, we have to
1778 	 * be able to skip over descs until we wander into the range of
1779 	 * the next txp on the list.
1780 	 */
1781 
1782 retry:
1783 	txp = get_txhead(sde);
1784 	swhead = sde->descq_head & sde->sdma_mask;
1785 	trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1786 	while (swhead != hwhead) {
1787 		/* advance head, wrap if needed */
1788 		swhead = ++sde->descq_head & sde->sdma_mask;
1789 
1790 		/* if now past this txp's descs, do the callback */
1791 		if (txp && txp->next_descq_idx == swhead) {
1792 			/* remove from list */
1793 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1794 			complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1795 			/* see if there is another txp */
1796 			txp = get_txhead(sde);
1797 		}
1798 		trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1799 		progress++;
1800 	}
1801 
1802 	/*
1803 	 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1804 	 * to updates to the dma_head location in host memory. The head
1805 	 * value read might not be fully up to date. If there are pending
1806 	 * descriptors and the SDMA idle interrupt fired then read from the
1807 	 * CSR SDMA head instead to get the latest value from the hardware.
1808 	 * The hardware SDMA head should be read at most once in this invocation
1809 	 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1810 	 */
1811 	if ((status & sde->idle_mask) && !idle_check_done) {
1812 		u16 swtail;
1813 
1814 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1815 		if (swtail != hwhead) {
1816 			hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1817 			idle_check_done = 1;
1818 			goto retry;
1819 		}
1820 	}
1821 
1822 	sde->last_status = status;
1823 	if (progress)
1824 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1825 }
1826 
1827 /*
1828  * sdma_engine_interrupt() - interrupt handler for engine
1829  * @sde: sdma engine
1830  * @status: sdma interrupt reason
1831  *
1832  * Status is a mask of the 3 possible interrupts for this engine.  It will
1833  * contain bits _only_ for this SDMA engine.  It will contain at least one
1834  * bit, it may contain more.
1835  */
sdma_engine_interrupt(struct sdma_engine * sde,u64 status)1836 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1837 {
1838 	trace_hfi1_sdma_engine_interrupt(sde, status);
1839 	write_seqlock(&sde->head_lock);
1840 	sdma_set_desc_cnt(sde, sdma_desct_intr);
1841 	if (status & sde->idle_mask)
1842 		sde->idle_int_cnt++;
1843 	else if (status & sde->progress_mask)
1844 		sde->progress_int_cnt++;
1845 	else if (status & sde->int_mask)
1846 		sde->sdma_int_cnt++;
1847 	sdma_make_progress(sde, status);
1848 	write_sequnlock(&sde->head_lock);
1849 }
1850 
1851 /**
1852  * sdma_engine_error() - error handler for engine
1853  * @sde: sdma engine
1854  * @status: sdma interrupt reason
1855  */
sdma_engine_error(struct sdma_engine * sde,u64 status)1856 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1857 {
1858 	unsigned long flags;
1859 
1860 #ifdef CONFIG_SDMA_VERBOSITY
1861 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1862 		   sde->this_idx,
1863 		   (unsigned long long)status,
1864 		   sdma_state_names[sde->state.current_state]);
1865 #endif
1866 	spin_lock_irqsave(&sde->tail_lock, flags);
1867 	write_seqlock(&sde->head_lock);
1868 	if (status & ALL_SDMA_ENG_HALT_ERRS)
1869 		__sdma_process_event(sde, sdma_event_e60_hw_halted);
1870 	if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1871 		dd_dev_err(sde->dd,
1872 			   "SDMA (%u) engine error: 0x%llx state %s\n",
1873 			   sde->this_idx,
1874 			   (unsigned long long)status,
1875 			   sdma_state_names[sde->state.current_state]);
1876 		dump_sdma_state(sde);
1877 	}
1878 	write_sequnlock(&sde->head_lock);
1879 	spin_unlock_irqrestore(&sde->tail_lock, flags);
1880 }
1881 
sdma_sendctrl(struct sdma_engine * sde,unsigned op)1882 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1883 {
1884 	u64 set_senddmactrl = 0;
1885 	u64 clr_senddmactrl = 0;
1886 	unsigned long flags;
1887 
1888 #ifdef CONFIG_SDMA_VERBOSITY
1889 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1890 		   sde->this_idx,
1891 		   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1892 		   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1893 		   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1894 		   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1895 #endif
1896 
1897 	if (op & SDMA_SENDCTRL_OP_ENABLE)
1898 		set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1899 	else
1900 		clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1901 
1902 	if (op & SDMA_SENDCTRL_OP_INTENABLE)
1903 		set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1904 	else
1905 		clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1906 
1907 	if (op & SDMA_SENDCTRL_OP_HALT)
1908 		set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1909 	else
1910 		clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1911 
1912 	spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1913 
1914 	sde->p_senddmactrl |= set_senddmactrl;
1915 	sde->p_senddmactrl &= ~clr_senddmactrl;
1916 
1917 	if (op & SDMA_SENDCTRL_OP_CLEANUP)
1918 		write_sde_csr(sde, SD(CTRL),
1919 			      sde->p_senddmactrl |
1920 			      SD(CTRL_SDMA_CLEANUP_SMASK));
1921 	else
1922 		write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1923 
1924 	spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1925 
1926 #ifdef CONFIG_SDMA_VERBOSITY
1927 	sdma_dumpstate(sde);
1928 #endif
1929 }
1930 
sdma_setlengen(struct sdma_engine * sde)1931 static void sdma_setlengen(struct sdma_engine *sde)
1932 {
1933 #ifdef CONFIG_SDMA_VERBOSITY
1934 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1935 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1936 #endif
1937 
1938 	/*
1939 	 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1940 	 * count to enable generation checking and load the internal
1941 	 * generation counter.
1942 	 */
1943 	write_sde_csr(sde, SD(LEN_GEN),
1944 		      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1945 	write_sde_csr(sde, SD(LEN_GEN),
1946 		      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1947 		      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1948 }
1949 
sdma_update_tail(struct sdma_engine * sde,u16 tail)1950 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1951 {
1952 	/* Commit writes to memory and advance the tail on the chip */
1953 	smp_wmb(); /* see get_txhead() */
1954 	writeq(tail, sde->tail_csr);
1955 }
1956 
1957 /*
1958  * This is called when changing to state s10_hw_start_up_halt_wait as
1959  * a result of send buffer errors or send DMA descriptor errors.
1960  */
sdma_hw_start_up(struct sdma_engine * sde)1961 static void sdma_hw_start_up(struct sdma_engine *sde)
1962 {
1963 	u64 reg;
1964 
1965 #ifdef CONFIG_SDMA_VERBOSITY
1966 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1967 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1968 #endif
1969 
1970 	sdma_setlengen(sde);
1971 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
1972 	*sde->head_dma = 0;
1973 
1974 	reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1975 	      SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1976 	write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1977 }
1978 
1979 /*
1980  * set_sdma_integrity
1981  *
1982  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1983  */
set_sdma_integrity(struct sdma_engine * sde)1984 static void set_sdma_integrity(struct sdma_engine *sde)
1985 {
1986 	struct hfi1_devdata *dd = sde->dd;
1987 
1988 	write_sde_csr(sde, SD(CHECK_ENABLE),
1989 		      hfi1_pkt_base_sdma_integrity(dd));
1990 }
1991 
init_sdma_regs(struct sdma_engine * sde,u32 credits,uint idle_cnt)1992 static void init_sdma_regs(
1993 	struct sdma_engine *sde,
1994 	u32 credits,
1995 	uint idle_cnt)
1996 {
1997 	u8 opval, opmask;
1998 #ifdef CONFIG_SDMA_VERBOSITY
1999 	struct hfi1_devdata *dd = sde->dd;
2000 
2001 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2002 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2003 #endif
2004 
2005 	write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2006 	sdma_setlengen(sde);
2007 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
2008 	write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2009 	write_sde_csr(sde, SD(DESC_CNT), 0);
2010 	write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2011 	write_sde_csr(sde, SD(MEMORY),
2012 		      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2013 		      ((u64)(credits * sde->this_idx) <<
2014 		       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2015 	write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2016 	set_sdma_integrity(sde);
2017 	opmask = OPCODE_CHECK_MASK_DISABLED;
2018 	opval = OPCODE_CHECK_VAL_DISABLED;
2019 	write_sde_csr(sde, SD(CHECK_OPCODE),
2020 		      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2021 		      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2022 }
2023 
2024 #ifdef CONFIG_SDMA_VERBOSITY
2025 
2026 #define sdma_dumpstate_helper0(reg) do { \
2027 		csr = read_csr(sde->dd, reg); \
2028 		dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2029 	} while (0)
2030 
2031 #define sdma_dumpstate_helper(reg) do { \
2032 		csr = read_sde_csr(sde, reg); \
2033 		dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2034 			#reg, sde->this_idx, csr); \
2035 	} while (0)
2036 
2037 #define sdma_dumpstate_helper2(reg) do { \
2038 		csr = read_csr(sde->dd, reg + (8 * i)); \
2039 		dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2040 				#reg, i, csr); \
2041 	} while (0)
2042 
sdma_dumpstate(struct sdma_engine * sde)2043 void sdma_dumpstate(struct sdma_engine *sde)
2044 {
2045 	u64 csr;
2046 	unsigned i;
2047 
2048 	sdma_dumpstate_helper(SD(CTRL));
2049 	sdma_dumpstate_helper(SD(STATUS));
2050 	sdma_dumpstate_helper0(SD(ERR_STATUS));
2051 	sdma_dumpstate_helper0(SD(ERR_MASK));
2052 	sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2053 	sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2054 
2055 	for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2056 		sdma_dumpstate_helper2(CCE_INT_STATUS);
2057 		sdma_dumpstate_helper2(CCE_INT_MASK);
2058 		sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2059 	}
2060 
2061 	sdma_dumpstate_helper(SD(TAIL));
2062 	sdma_dumpstate_helper(SD(HEAD));
2063 	sdma_dumpstate_helper(SD(PRIORITY_THLD));
2064 	sdma_dumpstate_helper(SD(IDLE_CNT));
2065 	sdma_dumpstate_helper(SD(RELOAD_CNT));
2066 	sdma_dumpstate_helper(SD(DESC_CNT));
2067 	sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2068 	sdma_dumpstate_helper(SD(MEMORY));
2069 	sdma_dumpstate_helper0(SD(ENGINES));
2070 	sdma_dumpstate_helper0(SD(MEM_SIZE));
2071 	/* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2072 	sdma_dumpstate_helper(SD(BASE_ADDR));
2073 	sdma_dumpstate_helper(SD(LEN_GEN));
2074 	sdma_dumpstate_helper(SD(HEAD_ADDR));
2075 	sdma_dumpstate_helper(SD(CHECK_ENABLE));
2076 	sdma_dumpstate_helper(SD(CHECK_VL));
2077 	sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2078 	sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2079 	sdma_dumpstate_helper(SD(CHECK_SLID));
2080 	sdma_dumpstate_helper(SD(CHECK_OPCODE));
2081 }
2082 #endif
2083 
dump_sdma_state(struct sdma_engine * sde)2084 static void dump_sdma_state(struct sdma_engine *sde)
2085 {
2086 	struct hw_sdma_desc *descqp;
2087 	u64 desc[2];
2088 	u64 addr;
2089 	u8 gen;
2090 	u16 len;
2091 	u16 head, tail, cnt;
2092 
2093 	head = sde->descq_head & sde->sdma_mask;
2094 	tail = sde->descq_tail & sde->sdma_mask;
2095 	cnt = sdma_descq_freecnt(sde);
2096 
2097 	dd_dev_err(sde->dd,
2098 		   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2099 		   sde->this_idx, head, tail, cnt,
2100 		   !list_empty(&sde->flushlist));
2101 
2102 	/* print info for each entry in the descriptor queue */
2103 	while (head != tail) {
2104 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2105 
2106 		descqp = &sde->descq[head];
2107 		desc[0] = le64_to_cpu(descqp->qw[0]);
2108 		desc[1] = le64_to_cpu(descqp->qw[1]);
2109 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2110 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2111 				'H' : '-';
2112 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2113 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2114 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2115 			& SDMA_DESC0_PHY_ADDR_MASK;
2116 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2117 			& SDMA_DESC1_GENERATION_MASK;
2118 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2119 			& SDMA_DESC0_BYTE_COUNT_MASK;
2120 		dd_dev_err(sde->dd,
2121 			   "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2122 			   head, flags, addr, gen, len);
2123 		dd_dev_err(sde->dd,
2124 			   "\tdesc0:0x%016llx desc1 0x%016llx\n",
2125 			   desc[0], desc[1]);
2126 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2127 			dd_dev_err(sde->dd,
2128 				   "\taidx: %u amode: %u alen: %u\n",
2129 				   (u8)((desc[1] &
2130 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2131 					SDMA_DESC1_HEADER_INDEX_SHIFT),
2132 				   (u8)((desc[1] &
2133 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
2134 					SDMA_DESC1_HEADER_MODE_SHIFT),
2135 				   (u8)((desc[1] &
2136 					 SDMA_DESC1_HEADER_DWS_SMASK) >>
2137 					SDMA_DESC1_HEADER_DWS_SHIFT));
2138 		head++;
2139 		head &= sde->sdma_mask;
2140 	}
2141 }
2142 
2143 #define SDE_FMT \
2144 	"SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2145 /**
2146  * sdma_seqfile_dump_sde() - debugfs dump of sde
2147  * @s: seq file
2148  * @sde: send dma engine to dump
2149  *
2150  * This routine dumps the sde to the indicated seq file.
2151  */
sdma_seqfile_dump_sde(struct seq_file * s,struct sdma_engine * sde)2152 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2153 {
2154 	u16 head, tail;
2155 	struct hw_sdma_desc *descqp;
2156 	u64 desc[2];
2157 	u64 addr;
2158 	u8 gen;
2159 	u16 len;
2160 
2161 	head = sde->descq_head & sde->sdma_mask;
2162 	tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2163 	seq_printf(s, SDE_FMT, sde->this_idx,
2164 		   sde->cpu,
2165 		   sdma_state_name(sde->state.current_state),
2166 		   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2167 		   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2168 		   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2169 		   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2170 		   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2171 		   (unsigned long long)le64_to_cpu(*sde->head_dma),
2172 		   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2173 		   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2174 		   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2175 		   (unsigned long long)sde->last_status,
2176 		   (unsigned long long)sde->ahg_bits,
2177 		   sde->tx_tail,
2178 		   sde->tx_head,
2179 		   sde->descq_tail,
2180 		   sde->descq_head,
2181 		   !list_empty(&sde->flushlist),
2182 		   sde->descq_full_count,
2183 		   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2184 
2185 	/* print info for each entry in the descriptor queue */
2186 	while (head != tail) {
2187 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2188 
2189 		descqp = &sde->descq[head];
2190 		desc[0] = le64_to_cpu(descqp->qw[0]);
2191 		desc[1] = le64_to_cpu(descqp->qw[1]);
2192 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2193 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2194 				'H' : '-';
2195 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2196 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2197 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2198 			& SDMA_DESC0_PHY_ADDR_MASK;
2199 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2200 			& SDMA_DESC1_GENERATION_MASK;
2201 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2202 			& SDMA_DESC0_BYTE_COUNT_MASK;
2203 		seq_printf(s,
2204 			   "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2205 			   head, flags, addr, gen, len);
2206 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2207 			seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2208 				   (u8)((desc[1] &
2209 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2210 					SDMA_DESC1_HEADER_INDEX_SHIFT),
2211 				   (u8)((desc[1] &
2212 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
2213 					SDMA_DESC1_HEADER_MODE_SHIFT));
2214 		head = (head + 1) & sde->sdma_mask;
2215 	}
2216 }
2217 
2218 /*
2219  * add the generation number into
2220  * the qw1 and return
2221  */
add_gen(struct sdma_engine * sde,u64 qw1)2222 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2223 {
2224 	u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2225 
2226 	qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2227 	qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2228 			<< SDMA_DESC1_GENERATION_SHIFT;
2229 	return qw1;
2230 }
2231 
2232 /*
2233  * This routine submits the indicated tx
2234  *
2235  * Space has already been guaranteed and
2236  * tail side of ring is locked.
2237  *
2238  * The hardware tail update is done
2239  * in the caller and that is facilitated
2240  * by returning the new tail.
2241  *
2242  * There is special case logic for ahg
2243  * to not add the generation number for
2244  * up to 2 descriptors that follow the
2245  * first descriptor.
2246  *
2247  */
submit_tx(struct sdma_engine * sde,struct sdma_txreq * tx)2248 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2249 {
2250 	int i;
2251 	u16 tail;
2252 	struct sdma_desc *descp = tx->descp;
2253 	u8 skip = 0, mode = ahg_mode(tx);
2254 
2255 	tail = sde->descq_tail & sde->sdma_mask;
2256 	sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2257 	sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2258 	trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2259 				   tail, &sde->descq[tail]);
2260 	tail = ++sde->descq_tail & sde->sdma_mask;
2261 	descp++;
2262 	if (mode > SDMA_AHG_APPLY_UPDATE1)
2263 		skip = mode >> 1;
2264 	for (i = 1; i < tx->num_desc; i++, descp++) {
2265 		u64 qw1;
2266 
2267 		sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2268 		if (skip) {
2269 			/* edits don't have generation */
2270 			qw1 = descp->qw[1];
2271 			skip--;
2272 		} else {
2273 			/* replace generation with real one for non-edits */
2274 			qw1 = add_gen(sde, descp->qw[1]);
2275 		}
2276 		sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2277 		trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2278 					   tail, &sde->descq[tail]);
2279 		tail = ++sde->descq_tail & sde->sdma_mask;
2280 	}
2281 	tx->next_descq_idx = tail;
2282 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2283 	tx->sn = sde->tail_sn++;
2284 	trace_hfi1_sdma_in_sn(sde, tx->sn);
2285 	WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2286 #endif
2287 	sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2288 	sde->desc_avail -= tx->num_desc;
2289 	return tail;
2290 }
2291 
2292 /*
2293  * Check for progress
2294  */
sdma_check_progress(struct sdma_engine * sde,struct iowait_work * wait,struct sdma_txreq * tx,bool pkts_sent)2295 static int sdma_check_progress(
2296 	struct sdma_engine *sde,
2297 	struct iowait_work *wait,
2298 	struct sdma_txreq *tx,
2299 	bool pkts_sent)
2300 {
2301 	int ret;
2302 
2303 	sde->desc_avail = sdma_descq_freecnt(sde);
2304 	if (tx->num_desc <= sde->desc_avail)
2305 		return -EAGAIN;
2306 	/* pulse the head_lock */
2307 	if (wait && iowait_ioww_to_iow(wait)->sleep) {
2308 		unsigned seq;
2309 
2310 		seq = raw_seqcount_begin(
2311 			(const seqcount_t *)&sde->head_lock.seqcount);
2312 		ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2313 		if (ret == -EAGAIN)
2314 			sde->desc_avail = sdma_descq_freecnt(sde);
2315 	} else {
2316 		ret = -EBUSY;
2317 	}
2318 	return ret;
2319 }
2320 
2321 /**
2322  * sdma_send_txreq() - submit a tx req to ring
2323  * @sde: sdma engine to use
2324  * @wait: SE wait structure to use when full (may be NULL)
2325  * @tx: sdma_txreq to submit
2326  * @pkts_sent: has any packet been sent yet?
2327  *
2328  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2329  * the packet will be queued to the list in wait.
2330  *
2331  * Return:
2332  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2333  * ring (wait == NULL)
2334  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2335  */
sdma_send_txreq(struct sdma_engine * sde,struct iowait_work * wait,struct sdma_txreq * tx,bool pkts_sent)2336 int sdma_send_txreq(struct sdma_engine *sde,
2337 		    struct iowait_work *wait,
2338 		    struct sdma_txreq *tx,
2339 		    bool pkts_sent)
2340 {
2341 	int ret = 0;
2342 	u16 tail;
2343 	unsigned long flags;
2344 
2345 	/* user should have supplied entire packet */
2346 	if (unlikely(tx->tlen))
2347 		return -EINVAL;
2348 	tx->wait = iowait_ioww_to_iow(wait);
2349 	spin_lock_irqsave(&sde->tail_lock, flags);
2350 retry:
2351 	if (unlikely(!__sdma_running(sde)))
2352 		goto unlock_noconn;
2353 	if (unlikely(tx->num_desc > sde->desc_avail))
2354 		goto nodesc;
2355 	tail = submit_tx(sde, tx);
2356 	if (wait)
2357 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
2358 	sdma_update_tail(sde, tail);
2359 unlock:
2360 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2361 	return ret;
2362 unlock_noconn:
2363 	if (wait)
2364 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
2365 	tx->next_descq_idx = 0;
2366 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2367 	tx->sn = sde->tail_sn++;
2368 	trace_hfi1_sdma_in_sn(sde, tx->sn);
2369 #endif
2370 	spin_lock(&sde->flushlist_lock);
2371 	list_add_tail(&tx->list, &sde->flushlist);
2372 	spin_unlock(&sde->flushlist_lock);
2373 	iowait_inc_wait_count(wait, tx->num_desc);
2374 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2375 	ret = -ECOMM;
2376 	goto unlock;
2377 nodesc:
2378 	ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2379 	if (ret == -EAGAIN) {
2380 		ret = 0;
2381 		goto retry;
2382 	}
2383 	sde->descq_full_count++;
2384 	goto unlock;
2385 }
2386 
2387 /**
2388  * sdma_send_txlist() - submit a list of tx req to ring
2389  * @sde: sdma engine to use
2390  * @wait: SE wait structure to use when full (may be NULL)
2391  * @tx_list: list of sdma_txreqs to submit
2392  * @count_out: pointer to a u16 which, after return will contain the total number of
2393  *             sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2394  *             whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2395  *             which are added to SDMA engine flush list if the SDMA engine state is
2396  *             not running.
2397  *
2398  * The call submits the list into the ring.
2399  *
2400  * If the iowait structure is non-NULL and not equal to the iowait list
2401  * the unprocessed part of the list  will be appended to the list in wait.
2402  *
2403  * In all cases, the tx_list will be updated so the head of the tx_list is
2404  * the list of descriptors that have yet to be transmitted.
2405  *
2406  * The intent of this call is to provide a more efficient
2407  * way of submitting multiple packets to SDMA while holding the tail
2408  * side locking.
2409  *
2410  * Return:
2411  * 0 - Success,
2412  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2413  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2414  */
sdma_send_txlist(struct sdma_engine * sde,struct iowait_work * wait,struct list_head * tx_list,u16 * count_out)2415 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2416 		     struct list_head *tx_list, u16 *count_out)
2417 {
2418 	struct sdma_txreq *tx, *tx_next;
2419 	int ret = 0;
2420 	unsigned long flags;
2421 	u16 tail = INVALID_TAIL;
2422 	u32 submit_count = 0, flush_count = 0, total_count;
2423 
2424 	spin_lock_irqsave(&sde->tail_lock, flags);
2425 retry:
2426 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2427 		tx->wait = iowait_ioww_to_iow(wait);
2428 		if (unlikely(!__sdma_running(sde)))
2429 			goto unlock_noconn;
2430 		if (unlikely(tx->num_desc > sde->desc_avail))
2431 			goto nodesc;
2432 		if (unlikely(tx->tlen)) {
2433 			ret = -EINVAL;
2434 			goto update_tail;
2435 		}
2436 		list_del_init(&tx->list);
2437 		tail = submit_tx(sde, tx);
2438 		submit_count++;
2439 		if (tail != INVALID_TAIL &&
2440 		    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2441 			sdma_update_tail(sde, tail);
2442 			tail = INVALID_TAIL;
2443 		}
2444 	}
2445 update_tail:
2446 	total_count = submit_count + flush_count;
2447 	if (wait) {
2448 		iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2449 		iowait_starve_clear(submit_count > 0,
2450 				    iowait_ioww_to_iow(wait));
2451 	}
2452 	if (tail != INVALID_TAIL)
2453 		sdma_update_tail(sde, tail);
2454 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2455 	*count_out = total_count;
2456 	return ret;
2457 unlock_noconn:
2458 	spin_lock(&sde->flushlist_lock);
2459 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2460 		tx->wait = iowait_ioww_to_iow(wait);
2461 		list_del_init(&tx->list);
2462 		tx->next_descq_idx = 0;
2463 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2464 		tx->sn = sde->tail_sn++;
2465 		trace_hfi1_sdma_in_sn(sde, tx->sn);
2466 #endif
2467 		list_add_tail(&tx->list, &sde->flushlist);
2468 		flush_count++;
2469 		iowait_inc_wait_count(wait, tx->num_desc);
2470 	}
2471 	spin_unlock(&sde->flushlist_lock);
2472 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2473 	ret = -ECOMM;
2474 	goto update_tail;
2475 nodesc:
2476 	ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2477 	if (ret == -EAGAIN) {
2478 		ret = 0;
2479 		goto retry;
2480 	}
2481 	sde->descq_full_count++;
2482 	goto update_tail;
2483 }
2484 
sdma_process_event(struct sdma_engine * sde,enum sdma_events event)2485 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2486 {
2487 	unsigned long flags;
2488 
2489 	spin_lock_irqsave(&sde->tail_lock, flags);
2490 	write_seqlock(&sde->head_lock);
2491 
2492 	__sdma_process_event(sde, event);
2493 
2494 	if (sde->state.current_state == sdma_state_s99_running)
2495 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2496 
2497 	write_sequnlock(&sde->head_lock);
2498 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2499 }
2500 
__sdma_process_event(struct sdma_engine * sde,enum sdma_events event)2501 static void __sdma_process_event(struct sdma_engine *sde,
2502 				 enum sdma_events event)
2503 {
2504 	struct sdma_state *ss = &sde->state;
2505 	int need_progress = 0;
2506 
2507 	/* CONFIG SDMA temporary */
2508 #ifdef CONFIG_SDMA_VERBOSITY
2509 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2510 		   sdma_state_names[ss->current_state],
2511 		   sdma_event_names[event]);
2512 #endif
2513 
2514 	switch (ss->current_state) {
2515 	case sdma_state_s00_hw_down:
2516 		switch (event) {
2517 		case sdma_event_e00_go_hw_down:
2518 			break;
2519 		case sdma_event_e30_go_running:
2520 			/*
2521 			 * If down, but running requested (usually result
2522 			 * of link up, then we need to start up.
2523 			 * This can happen when hw down is requested while
2524 			 * bringing the link up with traffic active on
2525 			 * 7220, e.g.
2526 			 */
2527 			ss->go_s99_running = 1;
2528 			fallthrough;	/* and start dma engine */
2529 		case sdma_event_e10_go_hw_start:
2530 			/* This reference means the state machine is started */
2531 			sdma_get(&sde->state);
2532 			sdma_set_state(sde,
2533 				       sdma_state_s10_hw_start_up_halt_wait);
2534 			break;
2535 		case sdma_event_e15_hw_halt_done:
2536 			break;
2537 		case sdma_event_e25_hw_clean_up_done:
2538 			break;
2539 		case sdma_event_e40_sw_cleaned:
2540 			sdma_sw_tear_down(sde);
2541 			break;
2542 		case sdma_event_e50_hw_cleaned:
2543 			break;
2544 		case sdma_event_e60_hw_halted:
2545 			break;
2546 		case sdma_event_e70_go_idle:
2547 			break;
2548 		case sdma_event_e80_hw_freeze:
2549 			break;
2550 		case sdma_event_e81_hw_frozen:
2551 			break;
2552 		case sdma_event_e82_hw_unfreeze:
2553 			break;
2554 		case sdma_event_e85_link_down:
2555 			break;
2556 		case sdma_event_e90_sw_halted:
2557 			break;
2558 		}
2559 		break;
2560 
2561 	case sdma_state_s10_hw_start_up_halt_wait:
2562 		switch (event) {
2563 		case sdma_event_e00_go_hw_down:
2564 			sdma_set_state(sde, sdma_state_s00_hw_down);
2565 			sdma_sw_tear_down(sde);
2566 			break;
2567 		case sdma_event_e10_go_hw_start:
2568 			break;
2569 		case sdma_event_e15_hw_halt_done:
2570 			sdma_set_state(sde,
2571 				       sdma_state_s15_hw_start_up_clean_wait);
2572 			sdma_start_hw_clean_up(sde);
2573 			break;
2574 		case sdma_event_e25_hw_clean_up_done:
2575 			break;
2576 		case sdma_event_e30_go_running:
2577 			ss->go_s99_running = 1;
2578 			break;
2579 		case sdma_event_e40_sw_cleaned:
2580 			break;
2581 		case sdma_event_e50_hw_cleaned:
2582 			break;
2583 		case sdma_event_e60_hw_halted:
2584 			schedule_work(&sde->err_halt_worker);
2585 			break;
2586 		case sdma_event_e70_go_idle:
2587 			ss->go_s99_running = 0;
2588 			break;
2589 		case sdma_event_e80_hw_freeze:
2590 			break;
2591 		case sdma_event_e81_hw_frozen:
2592 			break;
2593 		case sdma_event_e82_hw_unfreeze:
2594 			break;
2595 		case sdma_event_e85_link_down:
2596 			break;
2597 		case sdma_event_e90_sw_halted:
2598 			break;
2599 		}
2600 		break;
2601 
2602 	case sdma_state_s15_hw_start_up_clean_wait:
2603 		switch (event) {
2604 		case sdma_event_e00_go_hw_down:
2605 			sdma_set_state(sde, sdma_state_s00_hw_down);
2606 			sdma_sw_tear_down(sde);
2607 			break;
2608 		case sdma_event_e10_go_hw_start:
2609 			break;
2610 		case sdma_event_e15_hw_halt_done:
2611 			break;
2612 		case sdma_event_e25_hw_clean_up_done:
2613 			sdma_hw_start_up(sde);
2614 			sdma_set_state(sde, ss->go_s99_running ?
2615 				       sdma_state_s99_running :
2616 				       sdma_state_s20_idle);
2617 			break;
2618 		case sdma_event_e30_go_running:
2619 			ss->go_s99_running = 1;
2620 			break;
2621 		case sdma_event_e40_sw_cleaned:
2622 			break;
2623 		case sdma_event_e50_hw_cleaned:
2624 			break;
2625 		case sdma_event_e60_hw_halted:
2626 			break;
2627 		case sdma_event_e70_go_idle:
2628 			ss->go_s99_running = 0;
2629 			break;
2630 		case sdma_event_e80_hw_freeze:
2631 			break;
2632 		case sdma_event_e81_hw_frozen:
2633 			break;
2634 		case sdma_event_e82_hw_unfreeze:
2635 			break;
2636 		case sdma_event_e85_link_down:
2637 			break;
2638 		case sdma_event_e90_sw_halted:
2639 			break;
2640 		}
2641 		break;
2642 
2643 	case sdma_state_s20_idle:
2644 		switch (event) {
2645 		case sdma_event_e00_go_hw_down:
2646 			sdma_set_state(sde, sdma_state_s00_hw_down);
2647 			sdma_sw_tear_down(sde);
2648 			break;
2649 		case sdma_event_e10_go_hw_start:
2650 			break;
2651 		case sdma_event_e15_hw_halt_done:
2652 			break;
2653 		case sdma_event_e25_hw_clean_up_done:
2654 			break;
2655 		case sdma_event_e30_go_running:
2656 			sdma_set_state(sde, sdma_state_s99_running);
2657 			ss->go_s99_running = 1;
2658 			break;
2659 		case sdma_event_e40_sw_cleaned:
2660 			break;
2661 		case sdma_event_e50_hw_cleaned:
2662 			break;
2663 		case sdma_event_e60_hw_halted:
2664 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2665 			schedule_work(&sde->err_halt_worker);
2666 			break;
2667 		case sdma_event_e70_go_idle:
2668 			break;
2669 		case sdma_event_e85_link_down:
2670 		case sdma_event_e80_hw_freeze:
2671 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
2672 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2673 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2674 			break;
2675 		case sdma_event_e81_hw_frozen:
2676 			break;
2677 		case sdma_event_e82_hw_unfreeze:
2678 			break;
2679 		case sdma_event_e90_sw_halted:
2680 			break;
2681 		}
2682 		break;
2683 
2684 	case sdma_state_s30_sw_clean_up_wait:
2685 		switch (event) {
2686 		case sdma_event_e00_go_hw_down:
2687 			sdma_set_state(sde, sdma_state_s00_hw_down);
2688 			break;
2689 		case sdma_event_e10_go_hw_start:
2690 			break;
2691 		case sdma_event_e15_hw_halt_done:
2692 			break;
2693 		case sdma_event_e25_hw_clean_up_done:
2694 			break;
2695 		case sdma_event_e30_go_running:
2696 			ss->go_s99_running = 1;
2697 			break;
2698 		case sdma_event_e40_sw_cleaned:
2699 			sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2700 			sdma_start_hw_clean_up(sde);
2701 			break;
2702 		case sdma_event_e50_hw_cleaned:
2703 			break;
2704 		case sdma_event_e60_hw_halted:
2705 			break;
2706 		case sdma_event_e70_go_idle:
2707 			ss->go_s99_running = 0;
2708 			break;
2709 		case sdma_event_e80_hw_freeze:
2710 			break;
2711 		case sdma_event_e81_hw_frozen:
2712 			break;
2713 		case sdma_event_e82_hw_unfreeze:
2714 			break;
2715 		case sdma_event_e85_link_down:
2716 			ss->go_s99_running = 0;
2717 			break;
2718 		case sdma_event_e90_sw_halted:
2719 			break;
2720 		}
2721 		break;
2722 
2723 	case sdma_state_s40_hw_clean_up_wait:
2724 		switch (event) {
2725 		case sdma_event_e00_go_hw_down:
2726 			sdma_set_state(sde, sdma_state_s00_hw_down);
2727 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2728 			break;
2729 		case sdma_event_e10_go_hw_start:
2730 			break;
2731 		case sdma_event_e15_hw_halt_done:
2732 			break;
2733 		case sdma_event_e25_hw_clean_up_done:
2734 			sdma_hw_start_up(sde);
2735 			sdma_set_state(sde, ss->go_s99_running ?
2736 				       sdma_state_s99_running :
2737 				       sdma_state_s20_idle);
2738 			break;
2739 		case sdma_event_e30_go_running:
2740 			ss->go_s99_running = 1;
2741 			break;
2742 		case sdma_event_e40_sw_cleaned:
2743 			break;
2744 		case sdma_event_e50_hw_cleaned:
2745 			break;
2746 		case sdma_event_e60_hw_halted:
2747 			break;
2748 		case sdma_event_e70_go_idle:
2749 			ss->go_s99_running = 0;
2750 			break;
2751 		case sdma_event_e80_hw_freeze:
2752 			break;
2753 		case sdma_event_e81_hw_frozen:
2754 			break;
2755 		case sdma_event_e82_hw_unfreeze:
2756 			break;
2757 		case sdma_event_e85_link_down:
2758 			ss->go_s99_running = 0;
2759 			break;
2760 		case sdma_event_e90_sw_halted:
2761 			break;
2762 		}
2763 		break;
2764 
2765 	case sdma_state_s50_hw_halt_wait:
2766 		switch (event) {
2767 		case sdma_event_e00_go_hw_down:
2768 			sdma_set_state(sde, sdma_state_s00_hw_down);
2769 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2770 			break;
2771 		case sdma_event_e10_go_hw_start:
2772 			break;
2773 		case sdma_event_e15_hw_halt_done:
2774 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2775 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2776 			break;
2777 		case sdma_event_e25_hw_clean_up_done:
2778 			break;
2779 		case sdma_event_e30_go_running:
2780 			ss->go_s99_running = 1;
2781 			break;
2782 		case sdma_event_e40_sw_cleaned:
2783 			break;
2784 		case sdma_event_e50_hw_cleaned:
2785 			break;
2786 		case sdma_event_e60_hw_halted:
2787 			schedule_work(&sde->err_halt_worker);
2788 			break;
2789 		case sdma_event_e70_go_idle:
2790 			ss->go_s99_running = 0;
2791 			break;
2792 		case sdma_event_e80_hw_freeze:
2793 			break;
2794 		case sdma_event_e81_hw_frozen:
2795 			break;
2796 		case sdma_event_e82_hw_unfreeze:
2797 			break;
2798 		case sdma_event_e85_link_down:
2799 			ss->go_s99_running = 0;
2800 			break;
2801 		case sdma_event_e90_sw_halted:
2802 			break;
2803 		}
2804 		break;
2805 
2806 	case sdma_state_s60_idle_halt_wait:
2807 		switch (event) {
2808 		case sdma_event_e00_go_hw_down:
2809 			sdma_set_state(sde, sdma_state_s00_hw_down);
2810 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2811 			break;
2812 		case sdma_event_e10_go_hw_start:
2813 			break;
2814 		case sdma_event_e15_hw_halt_done:
2815 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2816 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2817 			break;
2818 		case sdma_event_e25_hw_clean_up_done:
2819 			break;
2820 		case sdma_event_e30_go_running:
2821 			ss->go_s99_running = 1;
2822 			break;
2823 		case sdma_event_e40_sw_cleaned:
2824 			break;
2825 		case sdma_event_e50_hw_cleaned:
2826 			break;
2827 		case sdma_event_e60_hw_halted:
2828 			schedule_work(&sde->err_halt_worker);
2829 			break;
2830 		case sdma_event_e70_go_idle:
2831 			ss->go_s99_running = 0;
2832 			break;
2833 		case sdma_event_e80_hw_freeze:
2834 			break;
2835 		case sdma_event_e81_hw_frozen:
2836 			break;
2837 		case sdma_event_e82_hw_unfreeze:
2838 			break;
2839 		case sdma_event_e85_link_down:
2840 			break;
2841 		case sdma_event_e90_sw_halted:
2842 			break;
2843 		}
2844 		break;
2845 
2846 	case sdma_state_s80_hw_freeze:
2847 		switch (event) {
2848 		case sdma_event_e00_go_hw_down:
2849 			sdma_set_state(sde, sdma_state_s00_hw_down);
2850 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2851 			break;
2852 		case sdma_event_e10_go_hw_start:
2853 			break;
2854 		case sdma_event_e15_hw_halt_done:
2855 			break;
2856 		case sdma_event_e25_hw_clean_up_done:
2857 			break;
2858 		case sdma_event_e30_go_running:
2859 			ss->go_s99_running = 1;
2860 			break;
2861 		case sdma_event_e40_sw_cleaned:
2862 			break;
2863 		case sdma_event_e50_hw_cleaned:
2864 			break;
2865 		case sdma_event_e60_hw_halted:
2866 			break;
2867 		case sdma_event_e70_go_idle:
2868 			ss->go_s99_running = 0;
2869 			break;
2870 		case sdma_event_e80_hw_freeze:
2871 			break;
2872 		case sdma_event_e81_hw_frozen:
2873 			sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2874 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2875 			break;
2876 		case sdma_event_e82_hw_unfreeze:
2877 			break;
2878 		case sdma_event_e85_link_down:
2879 			break;
2880 		case sdma_event_e90_sw_halted:
2881 			break;
2882 		}
2883 		break;
2884 
2885 	case sdma_state_s82_freeze_sw_clean:
2886 		switch (event) {
2887 		case sdma_event_e00_go_hw_down:
2888 			sdma_set_state(sde, sdma_state_s00_hw_down);
2889 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2890 			break;
2891 		case sdma_event_e10_go_hw_start:
2892 			break;
2893 		case sdma_event_e15_hw_halt_done:
2894 			break;
2895 		case sdma_event_e25_hw_clean_up_done:
2896 			break;
2897 		case sdma_event_e30_go_running:
2898 			ss->go_s99_running = 1;
2899 			break;
2900 		case sdma_event_e40_sw_cleaned:
2901 			/* notify caller this engine is done cleaning */
2902 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2903 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2904 			break;
2905 		case sdma_event_e50_hw_cleaned:
2906 			break;
2907 		case sdma_event_e60_hw_halted:
2908 			break;
2909 		case sdma_event_e70_go_idle:
2910 			ss->go_s99_running = 0;
2911 			break;
2912 		case sdma_event_e80_hw_freeze:
2913 			break;
2914 		case sdma_event_e81_hw_frozen:
2915 			break;
2916 		case sdma_event_e82_hw_unfreeze:
2917 			sdma_hw_start_up(sde);
2918 			sdma_set_state(sde, ss->go_s99_running ?
2919 				       sdma_state_s99_running :
2920 				       sdma_state_s20_idle);
2921 			break;
2922 		case sdma_event_e85_link_down:
2923 			break;
2924 		case sdma_event_e90_sw_halted:
2925 			break;
2926 		}
2927 		break;
2928 
2929 	case sdma_state_s99_running:
2930 		switch (event) {
2931 		case sdma_event_e00_go_hw_down:
2932 			sdma_set_state(sde, sdma_state_s00_hw_down);
2933 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2934 			break;
2935 		case sdma_event_e10_go_hw_start:
2936 			break;
2937 		case sdma_event_e15_hw_halt_done:
2938 			break;
2939 		case sdma_event_e25_hw_clean_up_done:
2940 			break;
2941 		case sdma_event_e30_go_running:
2942 			break;
2943 		case sdma_event_e40_sw_cleaned:
2944 			break;
2945 		case sdma_event_e50_hw_cleaned:
2946 			break;
2947 		case sdma_event_e60_hw_halted:
2948 			need_progress = 1;
2949 			sdma_err_progress_check_schedule(sde);
2950 			fallthrough;
2951 		case sdma_event_e90_sw_halted:
2952 			/*
2953 			* SW initiated halt does not perform engines
2954 			* progress check
2955 			*/
2956 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2957 			schedule_work(&sde->err_halt_worker);
2958 			break;
2959 		case sdma_event_e70_go_idle:
2960 			sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2961 			break;
2962 		case sdma_event_e85_link_down:
2963 			ss->go_s99_running = 0;
2964 			fallthrough;
2965 		case sdma_event_e80_hw_freeze:
2966 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
2967 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2968 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2969 			break;
2970 		case sdma_event_e81_hw_frozen:
2971 			break;
2972 		case sdma_event_e82_hw_unfreeze:
2973 			break;
2974 		}
2975 		break;
2976 	}
2977 
2978 	ss->last_event = event;
2979 	if (need_progress)
2980 		sdma_make_progress(sde, 0);
2981 }
2982 
2983 /*
2984  * _extend_sdma_tx_descs() - helper to extend txreq
2985  *
2986  * This is called once the initial nominal allocation
2987  * of descriptors in the sdma_txreq is exhausted.
2988  *
2989  * The code will bump the allocation up to the max
2990  * of MAX_DESC (64) descriptors. There doesn't seem
2991  * much point in an interim step. The last descriptor
2992  * is reserved for coalesce buffer in order to support
2993  * cases where input packet has >MAX_DESC iovecs.
2994  *
2995  */
_extend_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx)2996 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2997 {
2998 	int i;
2999 	struct sdma_desc *descp;
3000 
3001 	/* Handle last descriptor */
3002 	if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3003 		/* if tlen is 0, it is for padding, release last descriptor */
3004 		if (!tx->tlen) {
3005 			tx->desc_limit = MAX_DESC;
3006 		} else if (!tx->coalesce_buf) {
3007 			/* allocate coalesce buffer with space for padding */
3008 			tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3009 						   GFP_ATOMIC);
3010 			if (!tx->coalesce_buf)
3011 				goto enomem;
3012 			tx->coalesce_idx = 0;
3013 		}
3014 		return 0;
3015 	}
3016 
3017 	if (unlikely(tx->num_desc == MAX_DESC))
3018 		goto enomem;
3019 
3020 	descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3021 	if (!descp)
3022 		goto enomem;
3023 	tx->descp = descp;
3024 
3025 	/* reserve last descriptor for coalescing */
3026 	tx->desc_limit = MAX_DESC - 1;
3027 	/* copy ones already built */
3028 	for (i = 0; i < tx->num_desc; i++)
3029 		tx->descp[i] = tx->descs[i];
3030 	return 0;
3031 enomem:
3032 	__sdma_txclean(dd, tx);
3033 	return -ENOMEM;
3034 }
3035 
3036 /*
3037  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3038  *
3039  * This is called once the initial nominal allocation of descriptors
3040  * in the sdma_txreq is exhausted.
3041  *
3042  * This function calls _extend_sdma_tx_descs to extend or allocate
3043  * coalesce buffer. If there is a allocated coalesce buffer, it will
3044  * copy the input packet data into the coalesce buffer. It also adds
3045  * coalesce buffer descriptor once when whole packet is received.
3046  *
3047  * Return:
3048  * <0 - error
3049  * 0 - coalescing, don't populate descriptor
3050  * 1 - continue with populating descriptor
3051  */
ext_coal_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx,int type,void * kvaddr,struct page * page,unsigned long offset,u16 len)3052 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3053 			   int type, void *kvaddr, struct page *page,
3054 			   unsigned long offset, u16 len)
3055 {
3056 	int pad_len, rval;
3057 	dma_addr_t addr;
3058 
3059 	rval = _extend_sdma_tx_descs(dd, tx);
3060 	if (rval) {
3061 		__sdma_txclean(dd, tx);
3062 		return rval;
3063 	}
3064 
3065 	/* If coalesce buffer is allocated, copy data into it */
3066 	if (tx->coalesce_buf) {
3067 		if (type == SDMA_MAP_NONE) {
3068 			__sdma_txclean(dd, tx);
3069 			return -EINVAL;
3070 		}
3071 
3072 		if (type == SDMA_MAP_PAGE) {
3073 			kvaddr = kmap_local_page(page);
3074 			kvaddr += offset;
3075 		} else if (WARN_ON(!kvaddr)) {
3076 			__sdma_txclean(dd, tx);
3077 			return -EINVAL;
3078 		}
3079 
3080 		memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3081 		tx->coalesce_idx += len;
3082 		if (type == SDMA_MAP_PAGE)
3083 			kunmap_local(kvaddr);
3084 
3085 		/* If there is more data, return */
3086 		if (tx->tlen - tx->coalesce_idx)
3087 			return 0;
3088 
3089 		/* Whole packet is received; add any padding */
3090 		pad_len = tx->packet_len & (sizeof(u32) - 1);
3091 		if (pad_len) {
3092 			pad_len = sizeof(u32) - pad_len;
3093 			memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3094 			/* padding is taken care of for coalescing case */
3095 			tx->packet_len += pad_len;
3096 			tx->tlen += pad_len;
3097 		}
3098 
3099 		/* dma map the coalesce buffer */
3100 		addr = dma_map_single(&dd->pcidev->dev,
3101 				      tx->coalesce_buf,
3102 				      tx->tlen,
3103 				      DMA_TO_DEVICE);
3104 
3105 		if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3106 			__sdma_txclean(dd, tx);
3107 			return -ENOSPC;
3108 		}
3109 
3110 		/* Add descriptor for coalesce buffer */
3111 		tx->desc_limit = MAX_DESC;
3112 		return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3113 					 addr, tx->tlen, NULL, NULL, NULL);
3114 	}
3115 
3116 	return 1;
3117 }
3118 
3119 /* Update sdes when the lmc changes */
sdma_update_lmc(struct hfi1_devdata * dd,u64 mask,u32 lid)3120 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3121 {
3122 	struct sdma_engine *sde;
3123 	int i;
3124 	u64 sreg;
3125 
3126 	sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3127 		SD(CHECK_SLID_MASK_SHIFT)) |
3128 		(((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3129 		SD(CHECK_SLID_VALUE_SHIFT));
3130 
3131 	for (i = 0; i < dd->num_sdma; i++) {
3132 		hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3133 			  i, (u32)sreg);
3134 		sde = &dd->per_sdma[i];
3135 		write_sde_csr(sde, SD(CHECK_SLID), sreg);
3136 	}
3137 }
3138 
3139 /* tx not dword sized - pad */
_pad_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx)3140 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3141 {
3142 	int rval = 0;
3143 
3144 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
3145 		rval = _extend_sdma_tx_descs(dd, tx);
3146 		if (rval) {
3147 			__sdma_txclean(dd, tx);
3148 			return rval;
3149 		}
3150 	}
3151 
3152 	/* finish the one just added */
3153 	make_tx_sdma_desc(
3154 		tx,
3155 		SDMA_MAP_NONE,
3156 		dd->sdma_pad_phys,
3157 		sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)),
3158 		NULL, NULL, NULL);
3159 	tx->num_desc++;
3160 	_sdma_close_tx(dd, tx);
3161 	return rval;
3162 }
3163 
3164 /*
3165  * Add ahg to the sdma_txreq
3166  *
3167  * The logic will consume up to 3
3168  * descriptors at the beginning of
3169  * sdma_txreq.
3170  */
_sdma_txreq_ahgadd(struct sdma_txreq * tx,u8 num_ahg,u8 ahg_entry,u32 * ahg,u8 ahg_hlen)3171 void _sdma_txreq_ahgadd(
3172 	struct sdma_txreq *tx,
3173 	u8 num_ahg,
3174 	u8 ahg_entry,
3175 	u32 *ahg,
3176 	u8 ahg_hlen)
3177 {
3178 	u32 i, shift = 0, desc = 0;
3179 	u8 mode;
3180 
3181 	WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3182 	/* compute mode */
3183 	if (num_ahg == 1)
3184 		mode = SDMA_AHG_APPLY_UPDATE1;
3185 	else if (num_ahg <= 5)
3186 		mode = SDMA_AHG_APPLY_UPDATE2;
3187 	else
3188 		mode = SDMA_AHG_APPLY_UPDATE3;
3189 	tx->num_desc++;
3190 	/* initialize to consumed descriptors to zero */
3191 	switch (mode) {
3192 	case SDMA_AHG_APPLY_UPDATE3:
3193 		tx->num_desc++;
3194 		tx->descs[2].qw[0] = 0;
3195 		tx->descs[2].qw[1] = 0;
3196 		fallthrough;
3197 	case SDMA_AHG_APPLY_UPDATE2:
3198 		tx->num_desc++;
3199 		tx->descs[1].qw[0] = 0;
3200 		tx->descs[1].qw[1] = 0;
3201 		break;
3202 	}
3203 	ahg_hlen >>= 2;
3204 	tx->descs[0].qw[1] |=
3205 		(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3206 			<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
3207 		(((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3208 			<< SDMA_DESC1_HEADER_DWS_SHIFT) |
3209 		(((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3210 			<< SDMA_DESC1_HEADER_MODE_SHIFT) |
3211 		(((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3212 			<< SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3213 	for (i = 0; i < (num_ahg - 1); i++) {
3214 		if (!shift && !(i & 2))
3215 			desc++;
3216 		tx->descs[desc].qw[!!(i & 2)] |=
3217 			(((u64)ahg[i + 1])
3218 				<< shift);
3219 		shift = (shift + 32) & 63;
3220 	}
3221 }
3222 
3223 /**
3224  * sdma_ahg_alloc - allocate an AHG entry
3225  * @sde: engine to allocate from
3226  *
3227  * Return:
3228  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3229  * -ENOSPC if an entry is not available
3230  */
sdma_ahg_alloc(struct sdma_engine * sde)3231 int sdma_ahg_alloc(struct sdma_engine *sde)
3232 {
3233 	int nr;
3234 	int oldbit;
3235 
3236 	if (!sde) {
3237 		trace_hfi1_ahg_allocate(sde, -EINVAL);
3238 		return -EINVAL;
3239 	}
3240 	while (1) {
3241 		nr = ffz(READ_ONCE(sde->ahg_bits));
3242 		if (nr > 31) {
3243 			trace_hfi1_ahg_allocate(sde, -ENOSPC);
3244 			return -ENOSPC;
3245 		}
3246 		oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3247 		if (!oldbit)
3248 			break;
3249 		cpu_relax();
3250 	}
3251 	trace_hfi1_ahg_allocate(sde, nr);
3252 	return nr;
3253 }
3254 
3255 /**
3256  * sdma_ahg_free - free an AHG entry
3257  * @sde: engine to return AHG entry
3258  * @ahg_index: index to free
3259  *
3260  * This routine frees the indicate AHG entry.
3261  */
sdma_ahg_free(struct sdma_engine * sde,int ahg_index)3262 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3263 {
3264 	if (!sde)
3265 		return;
3266 	trace_hfi1_ahg_deallocate(sde, ahg_index);
3267 	if (ahg_index < 0 || ahg_index > 31)
3268 		return;
3269 	clear_bit(ahg_index, &sde->ahg_bits);
3270 }
3271 
3272 /*
3273  * SPC freeze handling for SDMA engines.  Called when the driver knows
3274  * the SPC is going into a freeze but before the freeze is fully
3275  * settled.  Generally an error interrupt.
3276  *
3277  * This event will pull the engine out of running so no more entries can be
3278  * added to the engine's queue.
3279  */
sdma_freeze_notify(struct hfi1_devdata * dd,int link_down)3280 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3281 {
3282 	int i;
3283 	enum sdma_events event = link_down ? sdma_event_e85_link_down :
3284 					     sdma_event_e80_hw_freeze;
3285 
3286 	/* set up the wait but do not wait here */
3287 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3288 
3289 	/* tell all engines to stop running and wait */
3290 	for (i = 0; i < dd->num_sdma; i++)
3291 		sdma_process_event(&dd->per_sdma[i], event);
3292 
3293 	/* sdma_freeze() will wait for all engines to have stopped */
3294 }
3295 
3296 /*
3297  * SPC freeze handling for SDMA engines.  Called when the driver knows
3298  * the SPC is fully frozen.
3299  */
sdma_freeze(struct hfi1_devdata * dd)3300 void sdma_freeze(struct hfi1_devdata *dd)
3301 {
3302 	int i;
3303 	int ret;
3304 
3305 	/*
3306 	 * Make sure all engines have moved out of the running state before
3307 	 * continuing.
3308 	 */
3309 	ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3310 				       atomic_read(&dd->sdma_unfreeze_count) <=
3311 				       0);
3312 	/* interrupted or count is negative, then unloading - just exit */
3313 	if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3314 		return;
3315 
3316 	/* set up the count for the next wait */
3317 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3318 
3319 	/* tell all engines that the SPC is frozen, they can start cleaning */
3320 	for (i = 0; i < dd->num_sdma; i++)
3321 		sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3322 
3323 	/*
3324 	 * Wait for everyone to finish software clean before exiting.  The
3325 	 * software clean will read engine CSRs, so must be completed before
3326 	 * the next step, which will clear the engine CSRs.
3327 	 */
3328 	(void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3329 				atomic_read(&dd->sdma_unfreeze_count) <= 0);
3330 	/* no need to check results - done no matter what */
3331 }
3332 
3333 /*
3334  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3335  *
3336  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3337  * that is left is a software clean.  We could do it after the SPC is fully
3338  * frozen, but then we'd have to add another state to wait for the unfreeze.
3339  * Instead, just defer the software clean until the unfreeze step.
3340  */
sdma_unfreeze(struct hfi1_devdata * dd)3341 void sdma_unfreeze(struct hfi1_devdata *dd)
3342 {
3343 	int i;
3344 
3345 	/* tell all engines start freeze clean up */
3346 	for (i = 0; i < dd->num_sdma; i++)
3347 		sdma_process_event(&dd->per_sdma[i],
3348 				   sdma_event_e82_hw_unfreeze);
3349 }
3350 
3351 /**
3352  * _sdma_engine_progress_schedule() - schedule progress on engine
3353  * @sde: sdma_engine to schedule progress
3354  *
3355  */
_sdma_engine_progress_schedule(struct sdma_engine * sde)3356 void _sdma_engine_progress_schedule(
3357 	struct sdma_engine *sde)
3358 {
3359 	trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3360 	/* assume we have selected a good cpu */
3361 	write_csr(sde->dd,
3362 		  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3363 		  sde->progress_mask);
3364 }
3365