xref: /freebsd/sys/dev/sdhci/sdhci.c (revision aaf0a7302d10912e62dcd8e047798b4a2aefa039)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/callout.h>
33 #include <sys/conf.h>
34 #include <sys/kernel.h>
35 #include <sys/kobj.h>
36 #include <sys/libkern.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/resource.h>
42 #include <sys/rman.h>
43 #include <sys/sysctl.h>
44 #include <sys/taskqueue.h>
45 #include <sys/sbuf.h>
46 
47 #include <machine/bus.h>
48 #include <machine/resource.h>
49 #include <machine/stdarg.h>
50 
51 #include <dev/mmc/bridge.h>
52 #include <dev/mmc/mmcreg.h>
53 #include <dev/mmc/mmcbrvar.h>
54 
55 #include <dev/sdhci/sdhci.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_debug.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt_sim.h>
62 
63 #include "mmcbr_if.h"
64 #include "sdhci_if.h"
65 
66 #include "opt_mmccam.h"
67 
68 SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
69     "sdhci driver");
70 
71 static int sdhci_debug = 0;
72 SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0,
73     "Debug level");
74 u_int sdhci_quirk_clear = 0;
75 SYSCTL_UINT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear,
76     0, "Mask of quirks to clear");
77 u_int sdhci_quirk_set = 0;
78 SYSCTL_UINT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0,
79     "Mask of quirks to set");
80 
81 #define	RD1(slot, off)	SDHCI_READ_1((slot)->bus, (slot), (off))
82 #define	RD2(slot, off)	SDHCI_READ_2((slot)->bus, (slot), (off))
83 #define	RD4(slot, off)	SDHCI_READ_4((slot)->bus, (slot), (off))
84 #define	RD_MULTI_4(slot, off, ptr, count)	\
85     SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
86 
87 #define	WR1(slot, off, val)	SDHCI_WRITE_1((slot)->bus, (slot), (off), (val))
88 #define	WR2(slot, off, val)	SDHCI_WRITE_2((slot)->bus, (slot), (off), (val))
89 #define	WR4(slot, off, val)	SDHCI_WRITE_4((slot)->bus, (slot), (off), (val))
90 #define	WR_MULTI_4(slot, off, ptr, count)	\
91     SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
92 
93 static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err);
94 static void sdhci_card_poll(void *arg);
95 static void sdhci_card_task(void *arg, int pending);
96 static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask);
97 static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask);
98 static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset);
99 static void sdhci_handle_card_present_locked(struct sdhci_slot *slot,
100     bool is_present);
101 static void sdhci_finish_command(struct sdhci_slot *slot);
102 static void sdhci_init(struct sdhci_slot *slot);
103 static void sdhci_read_block_pio(struct sdhci_slot *slot);
104 static void sdhci_req_done(struct sdhci_slot *slot);
105 static void sdhci_req_wakeup(struct mmc_request *req);
106 static void sdhci_retune(void *arg);
107 static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock);
108 static void sdhci_set_power(struct sdhci_slot *slot, u_char power);
109 static void sdhci_set_transfer_mode(struct sdhci_slot *slot,
110    const struct mmc_data *data);
111 static void sdhci_start(struct sdhci_slot *slot);
112 static void sdhci_timeout(void *arg);
113 static void sdhci_start_command(struct sdhci_slot *slot,
114    struct mmc_command *cmd);
115 static void sdhci_start_data(struct sdhci_slot *slot,
116    const struct mmc_data *data);
117 static void sdhci_write_block_pio(struct sdhci_slot *slot);
118 static void sdhci_transfer_pio(struct sdhci_slot *slot);
119 
120 #ifdef MMCCAM
121 /* CAM-related */
122 static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb);
123 static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
124     int proposed_clock);
125 static void sdhci_cam_poll(struct cam_sim *sim);
126 static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb);
127 static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb);
128 static int sdhci_cam_update_ios(struct sdhci_slot *slot);
129 #endif
130 
131 /* helper routines */
132 static int sdhci_dma_alloc(struct sdhci_slot *slot);
133 static void sdhci_dma_free(struct sdhci_slot *slot);
134 static void sdhci_dumpcaps(struct sdhci_slot *slot);
135 static void sdhci_dumpcaps_buf(struct sdhci_slot *slot, struct sbuf *s);
136 static void sdhci_dumpregs(struct sdhci_slot *slot);
137 static void sdhci_dumpregs_buf(struct sdhci_slot *slot, struct sbuf *s);
138 static int sdhci_syctl_dumpcaps(SYSCTL_HANDLER_ARGS);
139 static int sdhci_syctl_dumpregs(SYSCTL_HANDLER_ARGS);
140 static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs,
141     int error);
142 static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
143     __printflike(2, 3);
144 static int slot_sprintf(const struct sdhci_slot *slot, struct sbuf *s,
145     const char * fmt, ...) __printflike(3, 4);
146 static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot);
147 
148 #define	SDHCI_LOCK(_slot)		mtx_lock(&(_slot)->mtx)
149 #define	SDHCI_UNLOCK(_slot)		mtx_unlock(&(_slot)->mtx)
150 #define	SDHCI_LOCK_INIT(_slot) \
151 	mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF)
152 #define	SDHCI_LOCK_DESTROY(_slot)	mtx_destroy(&_slot->mtx);
153 #define	SDHCI_ASSERT_LOCKED(_slot)	mtx_assert(&_slot->mtx, MA_OWNED);
154 #define	SDHCI_ASSERT_UNLOCKED(_slot)	mtx_assert(&_slot->mtx, MA_NOTOWNED);
155 
156 #define	SDHCI_DEFAULT_MAX_FREQ	50
157 
158 #define	SDHCI_200_MAX_DIVIDER	256
159 #define	SDHCI_300_MAX_DIVIDER	2046
160 
161 #define	SDHCI_CARD_PRESENT_TICKS	(hz / 5)
162 #define	SDHCI_INSERT_DELAY_TICKS	(hz / 2)
163 
164 /*
165  * Broadcom BCM577xx Controller Constants
166  */
167 /* Maximum divider supported by the default clock source. */
168 #define	BCM577XX_DEFAULT_MAX_DIVIDER	256
169 /* Alternative clock's base frequency. */
170 #define	BCM577XX_ALT_CLOCK_BASE		63000000
171 
172 #define	BCM577XX_HOST_CONTROL		0x198
173 #define	BCM577XX_CTRL_CLKSEL_MASK	0xFFFFCFFF
174 #define	BCM577XX_CTRL_CLKSEL_SHIFT	12
175 #define	BCM577XX_CTRL_CLKSEL_DEFAULT	0x0
176 #define	BCM577XX_CTRL_CLKSEL_64MHZ	0x3
177 
178 static void
sdhci_getaddr(void * arg,bus_dma_segment_t * segs,int nsegs,int error)179 sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
180 {
181 
182 	if (error != 0) {
183 		printf("getaddr: error %d\n", error);
184 		return;
185 	}
186 	*(bus_addr_t *)arg = segs[0].ds_addr;
187 }
188 
189 static int
slot_printf(const struct sdhci_slot * slot,const char * fmt,...)190 slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
191 {
192 	char buf[128];
193 	va_list ap;
194 	int retval;
195 
196 	/*
197 	 * Make sure we print a single line all together rather than in two
198 	 * halves to avoid console gibberish bingo.
199 	 */
200 	va_start(ap, fmt);
201 	retval = vsnprintf(buf, sizeof(buf), fmt, ap);
202 	va_end(ap);
203 
204 	retval += printf("%s-slot%d: %s",
205 	    device_get_nameunit(slot->bus), slot->num, buf);
206 	return (retval);
207 }
208 
209 static int
slot_sprintf(const struct sdhci_slot * slot,struct sbuf * s,const char * fmt,...)210 slot_sprintf(const struct sdhci_slot *slot, struct sbuf *s,
211     const char * fmt, ...)
212 {
213 	va_list ap;
214 	int retval;
215 
216 	retval = sbuf_printf(s, "%s-slot%d: ", device_get_nameunit(slot->bus), slot->num);
217 
218 	va_start(ap, fmt);
219 	retval += sbuf_vprintf(s, fmt, ap);
220 	va_end(ap);
221 
222 	return (retval);
223 }
224 
225 static void
sdhci_dumpregs_buf(struct sdhci_slot * slot,struct sbuf * s)226 sdhci_dumpregs_buf(struct sdhci_slot *slot, struct sbuf *s)
227 {
228 	slot_sprintf(slot, s,  "============== REGISTER DUMP ==============\n");
229 
230 	slot_sprintf(slot, s,  "Sys addr: 0x%08x | Version:  0x%08x\n",
231 	    RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION));
232 	slot_sprintf(slot, s,  "Blk size: 0x%08x | Blk cnt:  0x%08x\n",
233 	    RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT));
234 	slot_sprintf(slot, s,  "Argument: 0x%08x | Trn mode: 0x%08x\n",
235 	    RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE));
236 	slot_sprintf(slot, s,  "Present:  0x%08x | Host ctl: 0x%08x\n",
237 	    RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL));
238 	slot_sprintf(slot, s,  "Power:    0x%08x | Blk gap:  0x%08x\n",
239 	    RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL));
240 	slot_sprintf(slot, s,  "Wake-up:  0x%08x | Clock:    0x%08x\n",
241 	    RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL));
242 	slot_sprintf(slot, s,  "Timeout:  0x%08x | Int stat: 0x%08x\n",
243 	    RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS));
244 	slot_sprintf(slot, s,  "Int enab: 0x%08x | Sig enab: 0x%08x\n",
245 	    RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE));
246 	slot_sprintf(slot, s,  "AC12 err: 0x%08x | Host ctl2:0x%08x\n",
247 	    RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2));
248 	slot_sprintf(slot, s,  "Caps:     0x%08x | Caps2:    0x%08x\n",
249 	    RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2));
250 	slot_sprintf(slot, s,  "Max curr: 0x%08x | ADMA err: 0x%08x\n",
251 	    RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR));
252 	slot_sprintf(slot, s,  "ADMA addr:0x%08x | Slot int: 0x%08x\n",
253 	    RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS));
254 
255 	slot_sprintf(slot, s,  "===========================================\n");
256 }
257 
258 static void
sdhci_dumpregs(struct sdhci_slot * slot)259 sdhci_dumpregs(struct sdhci_slot *slot)
260 {
261 	struct sbuf s;
262 
263 	if (sbuf_new(&s, NULL, 1024, SBUF_NOWAIT | SBUF_AUTOEXTEND) == NULL) {
264 		slot_printf(slot, "sdhci_dumpregs: Failed to allocate memory for sbuf\n");
265 		return;
266 	}
267 
268 	sbuf_set_drain(&s, &sbuf_printf_drain, NULL);
269 	sdhci_dumpregs_buf(slot, &s);
270 	sbuf_finish(&s);
271 	sbuf_delete(&s);
272 }
273 
274 static int
sdhci_syctl_dumpregs(SYSCTL_HANDLER_ARGS)275 sdhci_syctl_dumpregs(SYSCTL_HANDLER_ARGS)
276 {
277 	struct sdhci_slot *slot = arg1;
278 	struct sbuf s;
279 
280 	sbuf_new_for_sysctl(&s, NULL, 1024, req);
281 	sbuf_putc(&s, '\n');
282 	sdhci_dumpregs_buf(slot, &s);
283 	sbuf_finish(&s);
284 	sbuf_delete(&s);
285 
286 	return (0);
287 }
288 
289 static void
sdhci_dumpcaps_buf(struct sdhci_slot * slot,struct sbuf * s)290 sdhci_dumpcaps_buf(struct sdhci_slot *slot, struct sbuf *s)
291 {
292 	int host_caps = slot->host.caps;
293 	int caps = slot->caps;
294 
295 	slot_sprintf(slot, s,
296 	    "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n",
297 	    slot->max_clk / 1000000,
298 	    (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "",
299 	    (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" :
300 	    ((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"),
301 	    (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "",
302 	    (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "",
303 	    ((caps & SDHCI_CAN_VDD_180) &&
304 	    (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "",
305 	    (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "",
306 	    (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "",
307 	    (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "",
308 	    (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "",
309 	    (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "",
310 	    (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO",
311 	    (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" :
312 	    (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" :
313 	    "removable");
314 	if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 |
315 	    MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE))
316 		slot_sprintf(slot, s, "eMMC:%s%s%s%s\n",
317 		    (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "",
318 		    (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "",
319 		    (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "",
320 		    ((host_caps &
321 		    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ==
322 		    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ?
323 		    " HS400ES" : "");
324 	if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
325 	    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104))
326 		slot_sprintf(slot, s, "UHS-I:%s%s%s%s%s\n",
327 		    (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "",
328 		    (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "",
329 		    (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "",
330 		    (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "",
331 		    (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : "");
332 	if (slot->opt & SDHCI_TUNING_SUPPORTED)
333 		slot_sprintf(slot, s,
334 		    "Re-tuning count %d secs, mode %d\n",
335 		    slot->retune_count, slot->retune_mode + 1);
336 }
337 
338 static void
sdhci_dumpcaps(struct sdhci_slot * slot)339 sdhci_dumpcaps(struct sdhci_slot *slot)
340 {
341 	struct sbuf s;
342 
343 	if (sbuf_new(&s, NULL, 1024, SBUF_NOWAIT | SBUF_AUTOEXTEND) == NULL) {
344 		slot_printf(slot, "sdhci_dumpcaps: Failed to allocate memory for sbuf\n");
345 		return;
346 	}
347 
348 	sbuf_set_drain(&s, &sbuf_printf_drain, NULL);
349 	sdhci_dumpcaps_buf(slot, &s);
350 	sbuf_finish(&s);
351 	sbuf_delete(&s);
352 }
353 
354 static int
sdhci_syctl_dumpcaps(SYSCTL_HANDLER_ARGS)355 sdhci_syctl_dumpcaps(SYSCTL_HANDLER_ARGS)
356 {
357 	struct sdhci_slot *slot = arg1;
358 	struct sbuf s;
359 
360 	sbuf_new_for_sysctl(&s, NULL, 1024, req);
361 	sbuf_putc(&s, '\n');
362 	sdhci_dumpcaps_buf(slot, &s);
363 	sbuf_finish(&s);
364 	sbuf_delete(&s);
365 
366 	return (0);
367 }
368 
369 static uint32_t
sdhci_tuning_intmask(const struct sdhci_slot * slot)370 sdhci_tuning_intmask(const struct sdhci_slot *slot)
371 {
372 	uint32_t intmask;
373 
374 	intmask = 0;
375 	if (slot->opt & SDHCI_TUNING_ENABLED) {
376 		intmask |= SDHCI_INT_TUNEERR;
377 		if (slot->retune_mode == SDHCI_RETUNE_MODE_2 ||
378 		    slot->retune_mode == SDHCI_RETUNE_MODE_3)
379 			intmask |= SDHCI_INT_RETUNE;
380 	}
381 	return (intmask);
382 }
383 
384 static void
sdhci_init(struct sdhci_slot * slot)385 sdhci_init(struct sdhci_slot *slot)
386 {
387 
388 	SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL);
389 
390 	/* Enable interrupts. */
391 	slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
392 	    SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
393 	    SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
394 	    SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
395 	    SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE |
396 	    SDHCI_INT_ACMD12ERR;
397 
398 	if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
399 	    !(slot->opt & SDHCI_NON_REMOVABLE)) {
400 		slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT;
401 	}
402 
403 	WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
404 	WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
405 }
406 
407 static void
sdhci_set_clock(struct sdhci_slot * slot,uint32_t clock)408 sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock)
409 {
410 	uint32_t clk_base;
411 	uint32_t clk_sel;
412 	uint32_t res;
413 	uint16_t clk;
414 	uint16_t div;
415 	int timeout;
416 
417 	if (clock == slot->clock)
418 		return;
419 	clock = SDHCI_SET_CLOCK(slot->bus, slot, clock);
420 	slot->clock = clock;
421 
422 	/* Turn off the clock. */
423 	clk = RD2(slot, SDHCI_CLOCK_CONTROL);
424 	WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN);
425 	/* If no clock requested - leave it so. */
426 	if (clock == 0)
427 		return;
428 
429 	/* Determine the clock base frequency */
430 	clk_base = slot->max_clk;
431 	if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) {
432 		clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) &
433 		    BCM577XX_CTRL_CLKSEL_MASK;
434 
435 		/*
436 		 * Select clock source appropriate for the requested frequency.
437 		 */
438 		if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) {
439 			clk_base = BCM577XX_ALT_CLOCK_BASE;
440 			clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ <<
441 			    BCM577XX_CTRL_CLKSEL_SHIFT);
442 		} else {
443 			clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT <<
444 			    BCM577XX_CTRL_CLKSEL_SHIFT);
445 		}
446 
447 		WR2(slot, BCM577XX_HOST_CONTROL, clk_sel);
448 	}
449 
450 	/* Recalculate timeout clock frequency based on the new sd clock. */
451 	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
452 		slot->timeout_clk = slot->clock / 1000;
453 
454 	if (slot->version < SDHCI_SPEC_300) {
455 		/* Looking for highest freq <= clock. */
456 		res = clk_base;
457 		for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) {
458 			if (res <= clock)
459 				break;
460 			res >>= 1;
461 		}
462 		/* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */
463 		div >>= 1;
464 	} else {
465 		/* Version 3.0 divisors are multiples of two up to 1023 * 2 */
466 		if (clock >= clk_base)
467 			div = 0;
468 		else {
469 			for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) {
470 				if ((clk_base / div) <= clock)
471 					break;
472 			}
473 		}
474 		div >>= 1;
475 	}
476 
477 	if (bootverbose || sdhci_debug)
478 		slot_printf(slot, "Divider %d for freq %d (base %d)\n",
479 			div, clock, clk_base);
480 
481 	/* Now we have got divider, set it. */
482 	clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT;
483 	clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK)
484 		<< SDHCI_DIVIDER_HI_SHIFT;
485 
486 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
487 	/* Enable clock. */
488 	clk |= SDHCI_CLOCK_INT_EN;
489 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
490 	/* Wait up to 10 ms until it stabilize. */
491 	timeout = 10;
492 	while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL))
493 		& SDHCI_CLOCK_INT_STABLE)) {
494 		if (timeout == 0) {
495 			slot_printf(slot,
496 			    "Internal clock never stabilised.\n");
497 			sdhci_dumpregs(slot);
498 			return;
499 		}
500 		timeout--;
501 		DELAY(1000);
502 	}
503 	/* Pass clock signal to the bus. */
504 	clk |= SDHCI_CLOCK_CARD_EN;
505 	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
506 }
507 
508 static void
sdhci_set_power(struct sdhci_slot * slot,u_char power)509 sdhci_set_power(struct sdhci_slot *slot, u_char power)
510 {
511 	int i;
512 	uint8_t pwr;
513 
514 	if (slot->power == power)
515 		return;
516 
517 	slot->power = power;
518 
519 	/* Turn off the power. */
520 	pwr = 0;
521 	WR1(slot, SDHCI_POWER_CONTROL, pwr);
522 	/* If power down requested - leave it so. */
523 	if (power == 0)
524 		return;
525 	/* Set voltage. */
526 	switch (1 << power) {
527 	case MMC_OCR_LOW_VOLTAGE:
528 		pwr |= SDHCI_POWER_180;
529 		break;
530 	case MMC_OCR_290_300:
531 	case MMC_OCR_300_310:
532 		pwr |= SDHCI_POWER_300;
533 		break;
534 	case MMC_OCR_320_330:
535 	case MMC_OCR_330_340:
536 		pwr |= SDHCI_POWER_330;
537 		break;
538 	}
539 	WR1(slot, SDHCI_POWER_CONTROL, pwr);
540 	/*
541 	 * Turn on VDD1 power.  Note that at least some Intel controllers can
542 	 * fail to enable bus power on the first try after transiting from D3
543 	 * to D0, so we give them up to 2 ms.
544 	 */
545 	pwr |= SDHCI_POWER_ON;
546 	for (i = 0; i < 20; i++) {
547 		WR1(slot, SDHCI_POWER_CONTROL, pwr);
548 		if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)
549 			break;
550 		DELAY(100);
551 	}
552 	if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON))
553 		slot_printf(slot, "Bus power failed to enable\n");
554 
555 	if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) {
556 		WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10);
557 		DELAY(10);
558 		WR1(slot, SDHCI_POWER_CONTROL, pwr);
559 		DELAY(300);
560 	}
561 }
562 
563 static void
sdhci_read_block_pio(struct sdhci_slot * slot)564 sdhci_read_block_pio(struct sdhci_slot *slot)
565 {
566 	uint32_t data;
567 	char *buffer;
568 	size_t left;
569 
570 	buffer = slot->curcmd->data->data;
571 	buffer += slot->offset;
572 	/* Transfer one block at a time. */
573 #ifdef MMCCAM
574 	if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE)
575 		left = min(slot->curcmd->data->block_size,
576 		    slot->curcmd->data->len - slot->offset);
577 	else
578 #endif
579 		left = min(512, slot->curcmd->data->len - slot->offset);
580 	slot->offset += left;
581 
582 	/* If we are too fast, broken controllers return zeroes. */
583 	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS)
584 		DELAY(10);
585 	/* Handle unaligned and aligned buffer cases. */
586 	if ((intptr_t)buffer & 3) {
587 		while (left > 3) {
588 			data = RD4(slot, SDHCI_BUFFER);
589 			buffer[0] = data;
590 			buffer[1] = (data >> 8);
591 			buffer[2] = (data >> 16);
592 			buffer[3] = (data >> 24);
593 			buffer += 4;
594 			left -= 4;
595 		}
596 	} else {
597 		RD_MULTI_4(slot, SDHCI_BUFFER,
598 		    (uint32_t *)buffer, left >> 2);
599 		left &= 3;
600 	}
601 	/* Handle uneven size case. */
602 	if (left > 0) {
603 		data = RD4(slot, SDHCI_BUFFER);
604 		while (left > 0) {
605 			*(buffer++) = data;
606 			data >>= 8;
607 			left--;
608 		}
609 	}
610 }
611 
612 static void
sdhci_write_block_pio(struct sdhci_slot * slot)613 sdhci_write_block_pio(struct sdhci_slot *slot)
614 {
615 	uint32_t data = 0;
616 	char *buffer;
617 	size_t left;
618 
619 	buffer = slot->curcmd->data->data;
620 	buffer += slot->offset;
621 	/* Transfer one block at a time. */
622 #ifdef MMCCAM
623 	if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) {
624 		left = min(slot->curcmd->data->block_size,
625 		    slot->curcmd->data->len - slot->offset);
626 	} else
627 #endif
628 		left = min(512, slot->curcmd->data->len - slot->offset);
629 	slot->offset += left;
630 
631 	/* Handle unaligned and aligned buffer cases. */
632 	if ((intptr_t)buffer & 3) {
633 		while (left > 3) {
634 			data = buffer[0] +
635 			    (buffer[1] << 8) +
636 			    (buffer[2] << 16) +
637 			    (buffer[3] << 24);
638 			left -= 4;
639 			buffer += 4;
640 			WR4(slot, SDHCI_BUFFER, data);
641 		}
642 	} else {
643 		WR_MULTI_4(slot, SDHCI_BUFFER,
644 		    (uint32_t *)buffer, left >> 2);
645 		left &= 3;
646 	}
647 	/* Handle uneven size case. */
648 	if (left > 0) {
649 		while (left > 0) {
650 			data <<= 8;
651 			data += *(buffer++);
652 			left--;
653 		}
654 		WR4(slot, SDHCI_BUFFER, data);
655 	}
656 }
657 
658 static void
sdhci_transfer_pio(struct sdhci_slot * slot)659 sdhci_transfer_pio(struct sdhci_slot *slot)
660 {
661 
662 	/* Read as many blocks as possible. */
663 	if (slot->curcmd->data->flags & MMC_DATA_READ) {
664 		while (RD4(slot, SDHCI_PRESENT_STATE) &
665 		    SDHCI_DATA_AVAILABLE) {
666 			sdhci_read_block_pio(slot);
667 			if (slot->offset >= slot->curcmd->data->len)
668 				break;
669 		}
670 	} else {
671 		while (RD4(slot, SDHCI_PRESENT_STATE) &
672 		    SDHCI_SPACE_AVAILABLE) {
673 			sdhci_write_block_pio(slot);
674 			if (slot->offset >= slot->curcmd->data->len)
675 				break;
676 		}
677 	}
678 }
679 
680 static void
sdhci_card_task(void * arg,int pending __unused)681 sdhci_card_task(void *arg, int pending __unused)
682 {
683 	struct sdhci_slot *slot = arg;
684 #ifndef MMCCAM
685 	device_t d;
686 #endif
687 
688 	SDHCI_LOCK(slot);
689 	if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) {
690 #ifdef MMCCAM
691 		if (slot->card_present == 0) {
692 #else
693 		if (slot->dev == NULL) {
694 #endif
695 			/* If card is present - attach mmc bus. */
696 			if (bootverbose || sdhci_debug)
697 				slot_printf(slot, "Card inserted\n");
698 #ifdef MMCCAM
699 			slot->card_present = 1;
700 			mmccam_start_discovery(slot->sim);
701 			SDHCI_UNLOCK(slot);
702 #else
703 			SDHCI_UNLOCK(slot);
704 			bus_topo_lock();
705 			d = slot->dev = device_add_child(slot->bus, "mmc", DEVICE_UNIT_ANY);
706 			if (d) {
707 				device_set_ivars(d, slot);
708 				(void)device_probe_and_attach(d);
709 			}
710 			bus_topo_unlock();
711 #endif
712 		} else
713 			SDHCI_UNLOCK(slot);
714 	} else {
715 #ifdef MMCCAM
716 		if (slot->card_present == 1) {
717 #else
718 		if (slot->dev != NULL) {
719 			d = slot->dev;
720 #endif
721 			/* If no card present - detach mmc bus. */
722 			if (bootverbose || sdhci_debug)
723 				slot_printf(slot, "Card removed\n");
724 			slot->dev = NULL;
725 #ifdef MMCCAM
726 			slot->card_present = 0;
727 			mmccam_start_discovery(slot->sim);
728 			SDHCI_UNLOCK(slot);
729 #else
730 			slot->intmask &= ~sdhci_tuning_intmask(slot);
731 			WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
732 			WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
733 			slot->opt &= ~SDHCI_TUNING_ENABLED;
734 			SDHCI_UNLOCK(slot);
735 			callout_drain(&slot->retune_callout);
736 			bus_topo_lock();
737 			device_delete_child(slot->bus, d);
738 			bus_topo_unlock();
739 #endif
740 		} else
741 			SDHCI_UNLOCK(slot);
742 	}
743 }
744 
745 static void
746 sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present)
747 {
748 	bool was_present;
749 
750 	/*
751 	 * If there was no card and now there is one, schedule the task to
752 	 * create the child device after a short delay.  The delay is to
753 	 * debounce the card insert (sometimes the card detect pin stabilizes
754 	 * before the other pins have made good contact).
755 	 *
756 	 * If there was a card present and now it's gone, immediately schedule
757 	 * the task to delete the child device.  No debouncing -- gone is gone,
758 	 * because once power is removed, a full card re-init is needed, and
759 	 * that happens by deleting and recreating the child device.
760 	 */
761 #ifdef MMCCAM
762 	was_present = slot->card_present;
763 #else
764 	was_present = slot->dev != NULL;
765 #endif
766 	if (!was_present && is_present) {
767 		taskqueue_enqueue_timeout(taskqueue_bus,
768 		    &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS);
769 	} else if (was_present && !is_present) {
770 		taskqueue_enqueue(taskqueue_bus, &slot->card_task);
771 	}
772 }
773 
774 void
775 sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present)
776 {
777 
778 	SDHCI_LOCK(slot);
779 	sdhci_handle_card_present_locked(slot, is_present);
780 	SDHCI_UNLOCK(slot);
781 }
782 
783 static void
784 sdhci_card_poll(void *arg)
785 {
786 	struct sdhci_slot *slot = arg;
787 
788 	sdhci_handle_card_present(slot,
789 	    SDHCI_GET_CARD_PRESENT(slot->bus, slot));
790 	callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS,
791 	    sdhci_card_poll, slot);
792 }
793 
794 static int
795 sdhci_dma_alloc(struct sdhci_slot *slot)
796 {
797 	int err;
798 
799 	if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) {
800 		if (maxphys <= 1024 * 4)
801 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K;
802 		else if (maxphys <= 1024 * 8)
803 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K;
804 		else if (maxphys <= 1024 * 16)
805 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K;
806 		else if (maxphys <= 1024 * 32)
807 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K;
808 		else if (maxphys <= 1024 * 64)
809 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K;
810 		else if (maxphys <= 1024 * 128)
811 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K;
812 		else if (maxphys <= 1024 * 256)
813 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K;
814 		else
815 			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K;
816 	}
817 	slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary);
818 
819 	/*
820 	 * Allocate the DMA tag for an SDMA bounce buffer.
821 	 * Note that the SDHCI specification doesn't state any alignment
822 	 * constraint for the SDMA system address.  However, controllers
823 	 * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when
824 	 * forming the actual address of data, requiring the SDMA buffer to
825 	 * be aligned to the SDMA boundary.
826 	 */
827 	err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz,
828 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
829 	    slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW,
830 	    NULL, NULL, &slot->dmatag);
831 	if (err != 0) {
832 		slot_printf(slot, "Can't create DMA tag for SDMA\n");
833 		return (err);
834 	}
835 	/* Allocate DMA memory for the SDMA bounce buffer. */
836 	err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem,
837 	    BUS_DMA_NOWAIT, &slot->dmamap);
838 	if (err != 0) {
839 		slot_printf(slot, "Can't alloc DMA memory for SDMA\n");
840 		bus_dma_tag_destroy(slot->dmatag);
841 		return (err);
842 	}
843 	/* Map the memory of the SDMA bounce buffer. */
844 	err = bus_dmamap_load(slot->dmatag, slot->dmamap,
845 	    (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr,
846 	    &slot->paddr, 0);
847 	if (err != 0 || slot->paddr == 0) {
848 		slot_printf(slot, "Can't load DMA memory for SDMA\n");
849 		bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
850 		bus_dma_tag_destroy(slot->dmatag);
851 		if (err)
852 			return (err);
853 		else
854 			return (EFAULT);
855 	}
856 
857 	return (0);
858 }
859 
860 static void
861 sdhci_dma_free(struct sdhci_slot *slot)
862 {
863 
864 	bus_dmamap_unload(slot->dmatag, slot->dmamap);
865 	bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
866 	bus_dma_tag_destroy(slot->dmatag);
867 }
868 
869 int
870 sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num)
871 {
872 	kobjop_desc_t kobj_desc;
873 	kobj_method_t *kobj_method;
874 	uint32_t caps, caps2, freq, host_caps;
875 	int err;
876 	char node_name[8];
877 	struct sysctl_oid *node_oid;
878 
879 	SDHCI_LOCK_INIT(slot);
880 
881 	slot->num = num;
882 	slot->bus = dev;
883 
884 	slot->version = (RD2(slot, SDHCI_HOST_VERSION)
885 		>> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK;
886 	if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) {
887 		caps = slot->caps;
888 		caps2 = slot->caps2;
889 	} else {
890 		caps = RD4(slot, SDHCI_CAPABILITIES);
891 		if (slot->version >= SDHCI_SPEC_300)
892 			caps2 = RD4(slot, SDHCI_CAPABILITIES2);
893 		else
894 			caps2 = 0;
895 	}
896 	if (slot->version >= SDHCI_SPEC_300) {
897 		if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE &&
898 		    (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) {
899 			slot_printf(slot,
900 			    "Driver doesn't support shared bus slots\n");
901 			SDHCI_LOCK_DESTROY(slot);
902 			return (ENXIO);
903 		} else if ((caps & SDHCI_SLOTTYPE_MASK) ==
904 		    SDHCI_SLOTTYPE_EMBEDDED) {
905 			slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE;
906 		}
907 	}
908 	/* Calculate base clock frequency. */
909 	if (slot->version >= SDHCI_SPEC_300)
910 		freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >>
911 		    SDHCI_CLOCK_BASE_SHIFT;
912 	else
913 		freq = (caps & SDHCI_CLOCK_BASE_MASK) >>
914 		    SDHCI_CLOCK_BASE_SHIFT;
915 	if (freq != 0)
916 		slot->max_clk = freq * 1000000;
917 	/*
918 	 * If the frequency wasn't in the capabilities and the hardware driver
919 	 * hasn't already set max_clk we're probably not going to work right
920 	 * with an assumption, so complain about it.
921 	 */
922 	if (slot->max_clk == 0) {
923 		slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000;
924 		slot_printf(slot, "Hardware doesn't specify base clock "
925 		    "frequency, using %dMHz as default.\n",
926 		    SDHCI_DEFAULT_MAX_FREQ);
927 	}
928 	/* Calculate/set timeout clock frequency. */
929 	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) {
930 		slot->timeout_clk = slot->max_clk / 1000;
931 	} else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) {
932 		slot->timeout_clk = 1000;
933 	} else {
934 		slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >>
935 		    SDHCI_TIMEOUT_CLK_SHIFT;
936 		if (caps & SDHCI_TIMEOUT_CLK_UNIT)
937 			slot->timeout_clk *= 1000;
938 	}
939 	/*
940 	 * If the frequency wasn't in the capabilities and the hardware driver
941 	 * hasn't already set timeout_clk we'll probably work okay using the
942 	 * max timeout, but still mention it.
943 	 */
944 	if (slot->timeout_clk == 0) {
945 		slot_printf(slot, "Hardware doesn't specify timeout clock "
946 		    "frequency, setting BROKEN_TIMEOUT quirk.\n");
947 		slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
948 	}
949 
950 	slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot);
951 	slot->host.f_max = slot->max_clk;
952 	slot->host.host_ocr = 0;
953 	if (caps & SDHCI_CAN_VDD_330)
954 	    slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340;
955 	if (caps & SDHCI_CAN_VDD_300)
956 	    slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
957 	/*
958 	 * 1.8V VDD is not supposed to be used for removable cards.  Hardware
959 	 * prior to v3.0 had no way to indicate embedded slots, but did
960 	 * sometimes support 1.8v for non-removable devices.
961 	 */
962 	if ((caps & SDHCI_CAN_VDD_180) && (slot->version < SDHCI_SPEC_300 ||
963 	    (slot->opt & SDHCI_SLOT_EMBEDDED)))
964 	    slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
965 	if (slot->host.host_ocr == 0) {
966 		slot_printf(slot, "Hardware doesn't report any "
967 		    "support voltages.\n");
968 	}
969 
970 	host_caps = slot->host.caps;
971 	host_caps |= MMC_CAP_4_BIT_DATA;
972 	if (caps & SDHCI_CAN_DO_8BITBUS)
973 		host_caps |= MMC_CAP_8_BIT_DATA;
974 	if (caps & SDHCI_CAN_DO_HISPD)
975 		host_caps |= MMC_CAP_HSPEED;
976 	if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC)
977 		host_caps |= MMC_CAP_BOOT_NOACC;
978 	if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY)
979 		host_caps |= MMC_CAP_WAIT_WHILE_BUSY;
980 
981 	/* Determine supported UHS-I and eMMC modes. */
982 	if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50))
983 		host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
984 	if (caps2 & SDHCI_CAN_SDR104) {
985 		host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
986 		if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200))
987 			host_caps |= MMC_CAP_MMC_HS200;
988 	} else if (caps2 & SDHCI_CAN_SDR50)
989 		host_caps |= MMC_CAP_UHS_SDR50;
990 	if (caps2 & SDHCI_CAN_DDR50 &&
991 	    !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50))
992 		host_caps |= MMC_CAP_UHS_DDR50;
993 	if (slot->quirks & SDHCI_QUIRK_MMC_DDR52)
994 		host_caps |= MMC_CAP_MMC_DDR52;
995 	if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 &&
996 	    caps2 & SDHCI_CAN_MMC_HS400)
997 		host_caps |= MMC_CAP_MMC_HS400;
998 	if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 &&
999 	    caps2 & SDHCI_CAN_SDR104)
1000 		host_caps |= MMC_CAP_MMC_HS400;
1001 
1002 	/*
1003 	 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the
1004 	 * default NULL implementation.
1005 	 */
1006 	kobj_desc = &sdhci_set_uhs_timing_desc;
1007 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1008 	    kobj_desc);
1009 	if (kobj_method == &kobj_desc->deflt)
1010 		host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1011 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
1012 		    MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400);
1013 
1014 #define	SDHCI_CAP_MODES_TUNING(caps2)					\
1015     (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) |		\
1016     MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 |	\
1017     MMC_CAP_MMC_HS400)
1018 
1019 	/*
1020 	 * Disable UHS-I and eMMC modes that require (re-)tuning if either
1021 	 * the tune or re-tune method is the default NULL implementation.
1022 	 */
1023 	kobj_desc = &mmcbr_tune_desc;
1024 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1025 	    kobj_desc);
1026 	if (kobj_method == &kobj_desc->deflt)
1027 		goto no_tuning;
1028 	kobj_desc = &mmcbr_retune_desc;
1029 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1030 	    kobj_desc);
1031 	if (kobj_method == &kobj_desc->deflt) {
1032 no_tuning:
1033 		host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2));
1034 	}
1035 
1036 	/* Allocate tuning structures and determine tuning parameters. */
1037 	if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) {
1038 		slot->opt |= SDHCI_TUNING_SUPPORTED;
1039 		slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF,
1040 		    M_WAITOK);
1041 		slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF,
1042 		    M_WAITOK);
1043 		slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF,
1044 		    M_WAITOK);
1045 		if (caps2 & SDHCI_TUNE_SDR50)
1046 			slot->opt |= SDHCI_SDR50_NEEDS_TUNING;
1047 		slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >>
1048 		    SDHCI_RETUNE_MODES_SHIFT;
1049 		if (slot->retune_mode == SDHCI_RETUNE_MODE_1) {
1050 			slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >>
1051 			    SDHCI_RETUNE_CNT_SHIFT;
1052 			if (slot->retune_count > 0xb) {
1053 				slot_printf(slot, "Unknown re-tuning count "
1054 				    "%x, using 1 sec\n", slot->retune_count);
1055 				slot->retune_count = 1;
1056 			} else if (slot->retune_count != 0)
1057 				slot->retune_count =
1058 				    1 << (slot->retune_count - 1);
1059 		}
1060 	}
1061 
1062 #undef SDHCI_CAP_MODES_TUNING
1063 
1064 	/* Determine supported VCCQ signaling levels. */
1065 	host_caps |= MMC_CAP_SIGNALING_330;
1066 	if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1067 	    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
1068 	    MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 |
1069 	    MMC_CAP_MMC_HS400_180))
1070 		host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180;
1071 
1072 	/*
1073 	 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the
1074 	 * default NULL implementation.  Disable 1.2 V support if it's the
1075 	 * generic SDHCI implementation.
1076 	 */
1077 	kobj_desc = &mmcbr_switch_vccq_desc;
1078 	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1079 	    kobj_desc);
1080 	if (kobj_method == &kobj_desc->deflt)
1081 		host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180);
1082 	else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq)
1083 		host_caps &= ~MMC_CAP_SIGNALING_120;
1084 
1085 	/* Determine supported driver types (type B is always mandatory). */
1086 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_A)
1087 		host_caps |= MMC_CAP_DRIVER_TYPE_A;
1088 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_C)
1089 		host_caps |= MMC_CAP_DRIVER_TYPE_C;
1090 	if (caps2 & SDHCI_CAN_DRIVE_TYPE_D)
1091 		host_caps |= MMC_CAP_DRIVER_TYPE_D;
1092 	slot->host.caps = host_caps;
1093 
1094 	/* Decide if we have usable DMA. */
1095 	if (caps & SDHCI_CAN_DO_DMA)
1096 		slot->opt |= SDHCI_HAVE_DMA;
1097 
1098 	if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA)
1099 		slot->opt &= ~SDHCI_HAVE_DMA;
1100 	if (slot->quirks & SDHCI_QUIRK_FORCE_DMA)
1101 		slot->opt |= SDHCI_HAVE_DMA;
1102 	if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE)
1103 		slot->opt |= SDHCI_NON_REMOVABLE;
1104 
1105 	/*
1106 	 * Use platform-provided transfer backend
1107 	 * with PIO as a fallback mechanism
1108 	 */
1109 	if (slot->opt & SDHCI_PLATFORM_TRANSFER)
1110 		slot->opt &= ~SDHCI_HAVE_DMA;
1111 
1112 	if (slot->opt & SDHCI_HAVE_DMA) {
1113 		err = sdhci_dma_alloc(slot);
1114 		if (err != 0) {
1115 			if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1116 				free(slot->tune_req, M_DEVBUF);
1117 				free(slot->tune_cmd, M_DEVBUF);
1118 				free(slot->tune_data, M_DEVBUF);
1119 			}
1120 			SDHCI_LOCK_DESTROY(slot);
1121 			return (err);
1122 		}
1123 	}
1124 
1125 	if (bootverbose || sdhci_debug) {
1126 		sdhci_dumpcaps(slot);
1127 		sdhci_dumpregs(slot);
1128 	}
1129 
1130 	slot->timeout = 10;
1131 	SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus),
1132 	    SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO,
1133 	    "timeout", CTLFLAG_RWTUN, &slot->timeout, 0,
1134 	    "Maximum timeout for SDHCI transfers (in secs)");
1135 	TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot);
1136 	TIMEOUT_TASK_INIT(taskqueue_bus, &slot->card_delayed_task, 0,
1137 		sdhci_card_task, slot);
1138 	callout_init(&slot->card_poll_callout, 1);
1139 	callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0);
1140 	callout_init_mtx(&slot->retune_callout, &slot->mtx, 0);
1141 
1142 	if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
1143 	    !(slot->opt & SDHCI_NON_REMOVABLE)) {
1144 		callout_reset(&slot->card_poll_callout,
1145 		    SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot);
1146 	}
1147 
1148 	sdhci_init(slot);
1149 
1150 	snprintf(node_name, sizeof(node_name), "slot%d", slot->num);
1151 
1152 	node_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
1153 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1154 	    OID_AUTO, node_name, CTLFLAG_RW, 0, "slot specific node");
1155 
1156 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid),
1157 	    OID_AUTO, "quirks", CTLFLAG_RD, &slot->quirks, 0, "Slot quirks");
1158 
1159 	node_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev),
1160 	    SYSCTL_CHILDREN(node_oid), OID_AUTO, "debug", CTLFLAG_RW, 0,
1161 	    "Debugging node");
1162 
1163 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid),
1164 	    OID_AUTO, "dumpregs", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1165 	    slot, 0, &sdhci_syctl_dumpregs,
1166 	    "A", "Dump SDHCI registers");
1167 
1168 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid),
1169 	    OID_AUTO, "dumpcaps", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1170 	    slot, 0, &sdhci_syctl_dumpcaps,
1171 	    "A", "Dump SDHCI capabilites");
1172 
1173 	return (0);
1174 }
1175 
1176 #ifndef MMCCAM
1177 void
1178 sdhci_start_slot(struct sdhci_slot *slot)
1179 {
1180 
1181 	sdhci_card_task(slot, 0);
1182 }
1183 #endif
1184 
1185 int
1186 sdhci_cleanup_slot(struct sdhci_slot *slot)
1187 {
1188 	device_t d;
1189 
1190 	callout_drain(&slot->timeout_callout);
1191 	callout_drain(&slot->card_poll_callout);
1192 	callout_drain(&slot->retune_callout);
1193 	taskqueue_drain(taskqueue_bus, &slot->card_task);
1194 	taskqueue_drain_timeout(taskqueue_bus, &slot->card_delayed_task);
1195 
1196 	SDHCI_LOCK(slot);
1197 	d = slot->dev;
1198 	slot->dev = NULL;
1199 	SDHCI_UNLOCK(slot);
1200 	if (d != NULL)
1201 		device_delete_child(slot->bus, d);
1202 
1203 	SDHCI_LOCK(slot);
1204 	SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL);
1205 	SDHCI_UNLOCK(slot);
1206 	if (slot->opt & SDHCI_HAVE_DMA)
1207 		sdhci_dma_free(slot);
1208 	if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1209 		free(slot->tune_req, M_DEVBUF);
1210 		free(slot->tune_cmd, M_DEVBUF);
1211 		free(slot->tune_data, M_DEVBUF);
1212 	}
1213 
1214 	SDHCI_LOCK_DESTROY(slot);
1215 
1216 	return (0);
1217 }
1218 
1219 int
1220 sdhci_generic_suspend(struct sdhci_slot *slot)
1221 {
1222 
1223 	/*
1224 	 * We expect the MMC layer to issue initial tuning after resume.
1225 	 * Otherwise, we'd need to indicate re-tuning including circuit reset
1226 	 * being required at least for re-tuning modes 1 and 2 ourselves.
1227 	 */
1228 	callout_drain(&slot->retune_callout);
1229 	SDHCI_LOCK(slot);
1230 	slot->opt &= ~SDHCI_TUNING_ENABLED;
1231 	SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL);
1232 	SDHCI_UNLOCK(slot);
1233 
1234 	return (0);
1235 }
1236 
1237 int
1238 sdhci_generic_resume(struct sdhci_slot *slot)
1239 {
1240 
1241 	SDHCI_LOCK(slot);
1242 	sdhci_init(slot);
1243 	SDHCI_UNLOCK(slot);
1244 
1245 	return (0);
1246 }
1247 
1248 void
1249 sdhci_generic_reset(device_t brdev __unused, struct sdhci_slot *slot,
1250     uint8_t mask)
1251 {
1252 	int timeout;
1253 	uint32_t clock;
1254 
1255 	if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
1256 		if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot))
1257 			return;
1258 	}
1259 
1260 	/* Some controllers need this kick or reset won't work. */
1261 	if ((mask & SDHCI_RESET_ALL) == 0 &&
1262 	    (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) {
1263 		/* This is to force an update */
1264 		clock = slot->clock;
1265 		slot->clock = 0;
1266 		sdhci_set_clock(slot, clock);
1267 	}
1268 
1269 	if (mask & SDHCI_RESET_ALL) {
1270 		slot->clock = 0;
1271 		slot->power = 0;
1272 	}
1273 
1274 	WR1(slot, SDHCI_SOFTWARE_RESET, mask);
1275 
1276 	if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) {
1277 		/*
1278 		 * Resets on TI OMAPs and AM335x are incompatible with SDHCI
1279 		 * specification.  The reset bit has internal propagation delay,
1280 		 * so a fast read after write returns 0 even if reset process is
1281 		 * in progress.  The workaround is to poll for 1 before polling
1282 		 * for 0.  In the worst case, if we miss seeing it asserted the
1283 		 * time we spent waiting is enough to ensure the reset finishes.
1284 		 */
1285 		timeout = 10000;
1286 		while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) {
1287 			if (timeout <= 0)
1288 				break;
1289 			timeout--;
1290 			DELAY(1);
1291 		}
1292 	}
1293 
1294 	/* Wait max 100 ms */
1295 	timeout = 10000;
1296 	/* Controller clears the bits when it's done */
1297 	while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) {
1298 		if (timeout <= 0) {
1299 			slot_printf(slot, "Reset 0x%x never completed.\n",
1300 			    mask);
1301 			sdhci_dumpregs(slot);
1302 			return;
1303 		}
1304 		timeout--;
1305 		DELAY(10);
1306 	}
1307 }
1308 
1309 uint32_t
1310 sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot)
1311 {
1312 
1313 	if (slot->version >= SDHCI_SPEC_300)
1314 		return (slot->max_clk / SDHCI_300_MAX_DIVIDER);
1315 	else
1316 		return (slot->max_clk / SDHCI_200_MAX_DIVIDER);
1317 }
1318 
1319 bool
1320 sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot)
1321 {
1322 
1323 	if (slot->opt & SDHCI_NON_REMOVABLE)
1324 		return true;
1325 
1326 	return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
1327 }
1328 
1329 void
1330 sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot)
1331 {
1332 	const struct mmc_ios *ios;
1333 	uint16_t hostctrl2;
1334 
1335 	if (slot->version < SDHCI_SPEC_300)
1336 		return;
1337 
1338 	SDHCI_ASSERT_LOCKED(slot);
1339 	ios = &slot->host.ios;
1340 	sdhci_set_clock(slot, 0);
1341 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1342 	hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK;
1343 	if (ios->clock > SD_SDR50_MAX) {
1344 		if (ios->timing == bus_timing_mmc_hs400 ||
1345 		    ios->timing == bus_timing_mmc_hs400es)
1346 			hostctrl2 |= SDHCI_CTRL2_MMC_HS400;
1347 		else
1348 			hostctrl2 |= SDHCI_CTRL2_UHS_SDR104;
1349 	}
1350 	else if (ios->clock > SD_SDR25_MAX)
1351 		hostctrl2 |= SDHCI_CTRL2_UHS_SDR50;
1352 	else if (ios->clock > SD_SDR12_MAX) {
1353 		if (ios->timing == bus_timing_uhs_ddr50 ||
1354 		    ios->timing == bus_timing_mmc_ddr52)
1355 			hostctrl2 |= SDHCI_CTRL2_UHS_DDR50;
1356 		else
1357 			hostctrl2 |= SDHCI_CTRL2_UHS_SDR25;
1358 	} else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY)
1359 		hostctrl2 |= SDHCI_CTRL2_UHS_SDR12;
1360 	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1361 	sdhci_set_clock(slot, ios->clock);
1362 }
1363 
1364 int
1365 sdhci_generic_update_ios(device_t brdev, device_t reqdev)
1366 {
1367 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1368 	struct mmc_ios *ios = &slot->host.ios;
1369 
1370 	SDHCI_LOCK(slot);
1371 	/* Do full reset on bus power down to clear from any state. */
1372 	if (ios->power_mode == power_off) {
1373 		WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
1374 		sdhci_init(slot);
1375 	}
1376 	/* Configure the bus. */
1377 	sdhci_set_clock(slot, ios->clock);
1378 	sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
1379 	if (ios->bus_width == bus_width_8) {
1380 		slot->hostctrl |= SDHCI_CTRL_8BITBUS;
1381 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1382 	} else if (ios->bus_width == bus_width_4) {
1383 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1384 		slot->hostctrl |= SDHCI_CTRL_4BITBUS;
1385 	} else if (ios->bus_width == bus_width_1) {
1386 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1387 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1388 	} else {
1389 		panic("Invalid bus width: %d", ios->bus_width);
1390 	}
1391 	if (ios->clock > SD_SDR12_MAX &&
1392 	    !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
1393 		slot->hostctrl |= SDHCI_CTRL_HISPD;
1394 	else
1395 		slot->hostctrl &= ~SDHCI_CTRL_HISPD;
1396 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
1397 	SDHCI_SET_UHS_TIMING(brdev, slot);
1398 	/* Some controllers like reset after bus changes. */
1399 	if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
1400 		SDHCI_RESET(slot->bus, slot,
1401 		    SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1402 
1403 	SDHCI_UNLOCK(slot);
1404 	return (0);
1405 }
1406 
1407 int
1408 sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev)
1409 {
1410 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1411 	enum mmc_vccq vccq;
1412 	int err;
1413 	uint16_t hostctrl2;
1414 
1415 	if (slot->version < SDHCI_SPEC_300)
1416 		return (0);
1417 
1418 	err = 0;
1419 	vccq = slot->host.ios.vccq;
1420 	SDHCI_LOCK(slot);
1421 	sdhci_set_clock(slot, 0);
1422 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1423 	switch (vccq) {
1424 	case vccq_330:
1425 		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1426 			goto done;
1427 		hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE;
1428 		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1429 		DELAY(5000);
1430 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1431 		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1432 			goto done;
1433 		err = EAGAIN;
1434 		break;
1435 	case vccq_180:
1436 		if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) {
1437 			err = EINVAL;
1438 			goto done;
1439 		}
1440 		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1441 			goto done;
1442 		hostctrl2 |= SDHCI_CTRL2_S18_ENABLE;
1443 		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1444 		DELAY(5000);
1445 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1446 		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1447 			goto done;
1448 		err = EAGAIN;
1449 		break;
1450 	default:
1451 		slot_printf(slot,
1452 		    "Attempt to set unsupported signaling voltage\n");
1453 		err = EINVAL;
1454 		break;
1455 	}
1456 done:
1457 	sdhci_set_clock(slot, slot->host.ios.clock);
1458 	SDHCI_UNLOCK(slot);
1459 	return (err);
1460 }
1461 
1462 int
1463 sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400)
1464 {
1465 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1466 	const struct mmc_ios *ios = &slot->host.ios;
1467 	struct mmc_command *tune_cmd;
1468 	struct mmc_data *tune_data;
1469 	uint32_t opcode;
1470 	int err;
1471 
1472 	if (!(slot->opt & SDHCI_TUNING_SUPPORTED))
1473 		return (0);
1474 
1475 	slot->retune_ticks = slot->retune_count * hz;
1476 	opcode = MMC_SEND_TUNING_BLOCK;
1477 	SDHCI_LOCK(slot);
1478 	switch (ios->timing) {
1479 	case bus_timing_mmc_hs400:
1480 		slot_printf(slot, "HS400 must be tuned in HS200 mode\n");
1481 		SDHCI_UNLOCK(slot);
1482 		return (EINVAL);
1483 	case bus_timing_mmc_hs200:
1484 		/*
1485 		 * In HS400 mode, controllers use the data strobe line to
1486 		 * latch data from the devices so periodic re-tuning isn't
1487 		 * expected to be required.
1488 		 */
1489 		if (hs400)
1490 			slot->retune_ticks = 0;
1491 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1492 		break;
1493 	case bus_timing_uhs_ddr50:
1494 	case bus_timing_uhs_sdr104:
1495 		break;
1496 	case bus_timing_uhs_sdr50:
1497 		if (slot->opt & SDHCI_SDR50_NEEDS_TUNING)
1498 			break;
1499 		SDHCI_UNLOCK(slot);
1500 		return (0);
1501 	default:
1502 		slot_printf(slot, "Tuning requested but not required.\n");
1503 		SDHCI_UNLOCK(slot);
1504 		return (EINVAL);
1505 	}
1506 
1507 	tune_cmd = slot->tune_cmd;
1508 	memset(tune_cmd, 0, sizeof(*tune_cmd));
1509 	tune_cmd->opcode = opcode;
1510 	tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1511 	tune_data = tune_cmd->data = slot->tune_data;
1512 	memset(tune_data, 0, sizeof(*tune_data));
1513 	tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
1514 	    ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 :
1515 	    MMC_TUNING_LEN;
1516 	tune_data->flags = MMC_DATA_READ;
1517 	tune_data->mrq = tune_cmd->mrq = slot->tune_req;
1518 
1519 	slot->opt &= ~SDHCI_TUNING_ENABLED;
1520 	err = sdhci_exec_tuning(slot, true);
1521 	if (err == 0) {
1522 		slot->opt |= SDHCI_TUNING_ENABLED;
1523 		slot->intmask |= sdhci_tuning_intmask(slot);
1524 		WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
1525 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1526 		if (slot->retune_ticks) {
1527 			callout_reset(&slot->retune_callout, slot->retune_ticks,
1528 			    sdhci_retune, slot);
1529 		}
1530 	}
1531 	SDHCI_UNLOCK(slot);
1532 	return (err);
1533 }
1534 
1535 int
1536 sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset)
1537 {
1538 	struct sdhci_slot *slot = device_get_ivars(reqdev);
1539 	int err;
1540 
1541 	if (!(slot->opt & SDHCI_TUNING_ENABLED))
1542 		return (0);
1543 
1544 	/* HS400 must be tuned in HS200 mode. */
1545 	if (slot->host.ios.timing == bus_timing_mmc_hs400)
1546 		return (EINVAL);
1547 
1548 	SDHCI_LOCK(slot);
1549 	err = sdhci_exec_tuning(slot, reset);
1550 	/*
1551 	 * There are two ways sdhci_exec_tuning() can fail:
1552 	 * EBUSY should not actually happen when requests are only issued
1553 	 *	 with the host properly acquired, and
1554 	 * EIO   re-tuning failed (but it did work initially).
1555 	 *
1556 	 * In both cases, we should retry at later point if periodic re-tuning
1557 	 * is enabled.  Note that due to slot->retune_req not being cleared in
1558 	 * these failure cases, the MMC layer should trigger another attempt at
1559 	 * re-tuning with the next request anyway, though.
1560 	 */
1561 	if (slot->retune_ticks) {
1562 		callout_reset(&slot->retune_callout, slot->retune_ticks,
1563 		    sdhci_retune, slot);
1564 	}
1565 	SDHCI_UNLOCK(slot);
1566 	return (err);
1567 }
1568 
1569 static int
1570 sdhci_exec_tuning(struct sdhci_slot *slot, bool reset)
1571 {
1572 	struct mmc_request *tune_req;
1573 	struct mmc_command *tune_cmd;
1574 	int i;
1575 	uint32_t intmask;
1576 	uint16_t hostctrl2;
1577 	u_char opt;
1578 
1579 	SDHCI_ASSERT_LOCKED(slot);
1580 	if (slot->req != NULL)
1581 		return (EBUSY);
1582 
1583 	/* Tuning doesn't work with DMA enabled. */
1584 	opt = slot->opt;
1585 	slot->opt = opt & ~SDHCI_HAVE_DMA;
1586 
1587 	/*
1588 	 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only
1589 	 * kind of interrupt we receive in response to a tuning request.
1590 	 */
1591 	intmask = slot->intmask;
1592 	slot->intmask = SDHCI_INT_DATA_AVAIL;
1593 	WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL);
1594 	WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL);
1595 
1596 	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1597 	if (reset)
1598 		hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK;
1599 	else
1600 		hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK;
1601 	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING);
1602 
1603 	tune_req = slot->tune_req;
1604 	tune_cmd = slot->tune_cmd;
1605 	for (i = 0; i < MMC_TUNING_MAX; i++) {
1606 		memset(tune_req, 0, sizeof(*tune_req));
1607 		tune_req->cmd = tune_cmd;
1608 		tune_req->done = sdhci_req_wakeup;
1609 		tune_req->done_data = slot;
1610 		slot->req = tune_req;
1611 		slot->flags = 0;
1612 		sdhci_start(slot);
1613 		while (!(tune_req->flags & MMC_REQ_DONE))
1614 			msleep(tune_req, &slot->mtx, 0, "sdhciet", 0);
1615 		if (!(tune_req->flags & MMC_TUNE_DONE))
1616 			break;
1617 		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1618 		if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING))
1619 			break;
1620 		if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK)
1621 			DELAY(1000);
1622 	}
1623 
1624 	/*
1625 	 * Restore DMA usage and interrupts.
1626 	 * Note that the interrupt aggregation code might have cleared
1627 	 * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask
1628 	 * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE
1629 	 * doesn't lose these.
1630 	 */
1631 	slot->opt = opt;
1632 	slot->intmask = intmask;
1633 	WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END |
1634 	    SDHCI_INT_RESPONSE);
1635 	WR4(slot, SDHCI_SIGNAL_ENABLE, intmask);
1636 
1637 	if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING |
1638 	    SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) {
1639 		slot->retune_req = 0;
1640 		return (0);
1641 	}
1642 
1643 	slot_printf(slot, "Tuning failed, using fixed sampling clock\n");
1644 	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING |
1645 	    SDHCI_CTRL2_SAMPLING_CLOCK));
1646 	SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1647 	return (EIO);
1648 }
1649 
1650 static void
1651 sdhci_retune(void *arg)
1652 {
1653 	struct sdhci_slot *slot = arg;
1654 
1655 	slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
1656 }
1657 
1658 #ifdef MMCCAM
1659 static void
1660 sdhci_req_done(struct sdhci_slot *slot)
1661 {
1662 	union ccb *ccb;
1663 
1664 	if (__predict_false(sdhci_debug > 1))
1665 		slot_printf(slot, "%s\n", __func__);
1666 	if (slot->ccb != NULL && slot->curcmd != NULL) {
1667 		callout_stop(&slot->timeout_callout);
1668 		ccb = slot->ccb;
1669 		slot->ccb = NULL;
1670 		slot->curcmd = NULL;
1671 
1672 		/* Tell CAM the request is finished */
1673 		struct ccb_mmcio *mmcio;
1674 		mmcio = &ccb->mmcio;
1675 
1676 		ccb->ccb_h.status =
1677 		    (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
1678 		xpt_done(ccb);
1679 	}
1680 }
1681 #else
1682 static void
1683 sdhci_req_done(struct sdhci_slot *slot)
1684 {
1685 	struct mmc_request *req;
1686 
1687 	if (slot->req != NULL && slot->curcmd != NULL) {
1688 		callout_stop(&slot->timeout_callout);
1689 		req = slot->req;
1690 		slot->req = NULL;
1691 		slot->curcmd = NULL;
1692 		req->done(req);
1693 	}
1694 }
1695 #endif
1696 
1697 static void
1698 sdhci_req_wakeup(struct mmc_request *req)
1699 {
1700 
1701 	req->flags |= MMC_REQ_DONE;
1702 	wakeup(req);
1703 }
1704 
1705 static void
1706 sdhci_timeout(void *arg)
1707 {
1708 	struct sdhci_slot *slot = arg;
1709 
1710 	if (slot->curcmd != NULL) {
1711 		slot_printf(slot, "Controller timeout\n");
1712 		sdhci_dumpregs(slot);
1713 		SDHCI_RESET(slot->bus, slot,
1714 		    SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1715 		slot->curcmd->error = MMC_ERR_TIMEOUT;
1716 		sdhci_req_done(slot);
1717 	} else {
1718 		slot_printf(slot, "Spurious timeout - no active command\n");
1719 	}
1720 }
1721 
1722 static void
1723 sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data)
1724 {
1725 	uint16_t mode;
1726 
1727 	if (data == NULL)
1728 		return;
1729 
1730 	mode = SDHCI_TRNS_BLK_CNT_EN;
1731 	if (data->len > 512 || data->block_count > 1) {
1732 		mode |= SDHCI_TRNS_MULTI;
1733 		if (data->block_count == 0 && __predict_true(
1734 #ifdef MMCCAM
1735 		    slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION &&
1736 #else
1737 		    slot->req->stop != NULL &&
1738 #endif
1739 		    !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)))
1740 			mode |= SDHCI_TRNS_ACMD12;
1741 	}
1742 	if (data->flags & MMC_DATA_READ)
1743 		mode |= SDHCI_TRNS_READ;
1744 	if (slot->flags & SDHCI_USE_DMA)
1745 		mode |= SDHCI_TRNS_DMA;
1746 
1747 	WR2(slot, SDHCI_TRANSFER_MODE, mode);
1748 }
1749 
1750 static void
1751 sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd)
1752 {
1753 	int flags, timeout;
1754 	uint32_t mask;
1755 
1756 	slot->curcmd = cmd;
1757 	slot->cmd_done = 0;
1758 
1759 	cmd->error = MMC_ERR_NONE;
1760 
1761 	/* This flags combination is not supported by controller. */
1762 	if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
1763 		slot_printf(slot, "Unsupported response type!\n");
1764 		cmd->error = MMC_ERR_FAILED;
1765 		sdhci_req_done(slot);
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * Do not issue command if there is no card, clock or power.
1771 	 * Controller will not detect timeout without clock active.
1772 	 */
1773 	if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) ||
1774 	    slot->power == 0 ||
1775 	    slot->clock == 0) {
1776 		slot_printf(slot,
1777 			    "Cannot issue a command (power=%d clock=%d)\n",
1778 			    slot->power, slot->clock);
1779 		cmd->error = MMC_ERR_FAILED;
1780 		sdhci_req_done(slot);
1781 		return;
1782 	}
1783 	/* Always wait for free CMD bus. */
1784 	mask = SDHCI_CMD_INHIBIT;
1785 	/* Wait for free DAT if we have data or busy signal. */
1786 	if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY))
1787 		mask |= SDHCI_DAT_INHIBIT;
1788 	/*
1789 	 * We shouldn't wait for DAT for stop commands or CMD19/CMD21.  Note
1790 	 * that these latter are also special in that SDHCI_CMD_DATA should
1791 	 * be set below but no actual data is ever read from the controller.
1792 	*/
1793 #ifdef MMCCAM
1794 	if (cmd == &slot->ccb->mmcio.stop ||
1795 #else
1796 	if (cmd == slot->req->stop ||
1797 #endif
1798 	    __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK ||
1799 	    cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))
1800 		mask &= ~SDHCI_DAT_INHIBIT;
1801 	/*
1802 	 *  Wait for bus no more then 250 ms.  Typically there will be no wait
1803 	 *  here at all, but when writing a crash dump we may be bypassing the
1804 	 *  host platform's interrupt handler, and in some cases that handler
1805 	 *  may be working around hardware quirks such as not respecting r1b
1806 	 *  busy indications.  In those cases, this wait-loop serves the purpose
1807 	 *  of waiting for the prior command and data transfers to be done, and
1808 	 *  SD cards are allowed to take up to 250ms for write and erase ops.
1809 	 *  (It's usually more like 20-30ms in the real world.)
1810 	 */
1811 	timeout = 250;
1812 	while (mask & RD4(slot, SDHCI_PRESENT_STATE)) {
1813 		if (timeout == 0) {
1814 			slot_printf(slot, "Controller never released "
1815 			    "inhibit bit(s).\n");
1816 			sdhci_dumpregs(slot);
1817 			cmd->error = MMC_ERR_FAILED;
1818 			sdhci_req_done(slot);
1819 			return;
1820 		}
1821 		timeout--;
1822 		DELAY(1000);
1823 	}
1824 
1825 	/* Prepare command flags. */
1826 	if (!(cmd->flags & MMC_RSP_PRESENT))
1827 		flags = SDHCI_CMD_RESP_NONE;
1828 	else if (cmd->flags & MMC_RSP_136)
1829 		flags = SDHCI_CMD_RESP_LONG;
1830 	else if (cmd->flags & MMC_RSP_BUSY)
1831 		flags = SDHCI_CMD_RESP_SHORT_BUSY;
1832 	else
1833 		flags = SDHCI_CMD_RESP_SHORT;
1834 	if (cmd->flags & MMC_RSP_CRC)
1835 		flags |= SDHCI_CMD_CRC;
1836 	if (cmd->flags & MMC_RSP_OPCODE)
1837 		flags |= SDHCI_CMD_INDEX;
1838 	if (cmd->data != NULL)
1839 		flags |= SDHCI_CMD_DATA;
1840 	if (cmd->opcode == MMC_STOP_TRANSMISSION)
1841 		flags |= SDHCI_CMD_TYPE_ABORT;
1842 	/* Prepare data. */
1843 	sdhci_start_data(slot, cmd->data);
1844 	/*
1845 	 * Interrupt aggregation: To reduce total number of interrupts
1846 	 * group response interrupt with data interrupt when possible.
1847 	 * If there going to be data interrupt, mask response one.
1848 	 */
1849 	if (slot->data_done == 0) {
1850 		WR4(slot, SDHCI_SIGNAL_ENABLE,
1851 		    slot->intmask &= ~SDHCI_INT_RESPONSE);
1852 	}
1853 	/* Set command argument. */
1854 	WR4(slot, SDHCI_ARGUMENT, cmd->arg);
1855 	/* Set data transfer mode. */
1856 	sdhci_set_transfer_mode(slot, cmd->data);
1857 	if (__predict_false(sdhci_debug > 1))
1858 		slot_printf(slot, "Starting command opcode %#04x flags %#04x\n",
1859 		    cmd->opcode, flags);
1860 
1861 	/* Start command. */
1862 	WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff));
1863 	/* Start timeout callout. */
1864 	callout_reset(&slot->timeout_callout, slot->timeout * hz,
1865 	    sdhci_timeout, slot);
1866 }
1867 
1868 static void
1869 sdhci_finish_command(struct sdhci_slot *slot)
1870 {
1871 	int i;
1872 	uint32_t val;
1873 	uint8_t extra;
1874 
1875 	if (__predict_false(sdhci_debug > 1))
1876 		slot_printf(slot, "%s: called, err %d flags %#04x\n",
1877 		    __func__, slot->curcmd->error, slot->curcmd->flags);
1878 	slot->cmd_done = 1;
1879 	/*
1880 	 * Interrupt aggregation: Restore command interrupt.
1881 	 * Main restore point for the case when command interrupt
1882 	 * happened first.
1883 	 */
1884 	if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK &&
1885 	    slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200))
1886 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |=
1887 		    SDHCI_INT_RESPONSE);
1888 	/* In case of error - reset host and return. */
1889 	if (slot->curcmd->error) {
1890 		if (slot->curcmd->error == MMC_ERR_BADCRC)
1891 			slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
1892 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
1893 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
1894 		sdhci_start(slot);
1895 		return;
1896 	}
1897 	/* If command has response - fetch it. */
1898 	if (slot->curcmd->flags & MMC_RSP_PRESENT) {
1899 		if (slot->curcmd->flags & MMC_RSP_136) {
1900 			/* CRC is stripped so we need one byte shift. */
1901 			extra = 0;
1902 			for (i = 0; i < 4; i++) {
1903 				val = RD4(slot, SDHCI_RESPONSE + i * 4);
1904 				if (slot->quirks &
1905 				    SDHCI_QUIRK_DONT_SHIFT_RESPONSE)
1906 					slot->curcmd->resp[3 - i] = val;
1907 				else {
1908 					slot->curcmd->resp[3 - i] =
1909 					    (val << 8) | extra;
1910 					extra = val >> 24;
1911 				}
1912 			}
1913 		} else
1914 			slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE);
1915 	}
1916 	if (__predict_false(sdhci_debug > 1))
1917 		slot_printf(slot, "Resp: %#04x %#04x %#04x %#04x\n",
1918 		    slot->curcmd->resp[0], slot->curcmd->resp[1],
1919 		    slot->curcmd->resp[2], slot->curcmd->resp[3]);
1920 
1921 	/* If data ready - finish. */
1922 	if (slot->data_done)
1923 		sdhci_start(slot);
1924 }
1925 
1926 static void
1927 sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data)
1928 {
1929 	uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout;
1930 	uint8_t div;
1931 
1932 	if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
1933 		slot->data_done = 1;
1934 		return;
1935 	}
1936 
1937 	slot->data_done = 0;
1938 
1939 	/* Calculate and set data timeout.*/
1940 	/* XXX: We should have this from mmc layer, now assume 1 sec. */
1941 	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) {
1942 		div = 0xE;
1943 	} else {
1944 		target_timeout = 1000000;
1945 		div = 0;
1946 		current_timeout = (1 << 13) * 1000 / slot->timeout_clk;
1947 		while (current_timeout < target_timeout && div < 0xE) {
1948 			++div;
1949 			current_timeout <<= 1;
1950 		}
1951 		/* Compensate for an off-by-one error in the CaFe chip.*/
1952 		if (div < 0xE &&
1953 		    (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) {
1954 			++div;
1955 		}
1956 	}
1957 	WR1(slot, SDHCI_TIMEOUT_CONTROL, div);
1958 
1959 	if (data == NULL)
1960 		return;
1961 
1962 	/* Use DMA if possible. */
1963 	if ((slot->opt & SDHCI_HAVE_DMA))
1964 		slot->flags |= SDHCI_USE_DMA;
1965 	/* If data is small, broken DMA may return zeroes instead of data. */
1966 	if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) &&
1967 	    (data->len <= 512))
1968 		slot->flags &= ~SDHCI_USE_DMA;
1969 	/* Some controllers require even block sizes. */
1970 	if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) &&
1971 	    ((data->len) & 0x3))
1972 		slot->flags &= ~SDHCI_USE_DMA;
1973 	/* Load DMA buffer. */
1974 	if (slot->flags & SDHCI_USE_DMA) {
1975 		sdma_bbufsz = slot->sdma_bbufsz;
1976 		if (data->flags & MMC_DATA_READ)
1977 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1978 			    BUS_DMASYNC_PREREAD);
1979 		else {
1980 			memcpy(slot->dmamem, data->data, ulmin(data->len,
1981 			    sdma_bbufsz));
1982 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1983 			    BUS_DMASYNC_PREWRITE);
1984 		}
1985 		WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
1986 		/*
1987 		 * Interrupt aggregation: Mask border interrupt for the last
1988 		 * bounce buffer and unmask otherwise.
1989 		 */
1990 		if (data->len == sdma_bbufsz)
1991 			slot->intmask &= ~SDHCI_INT_DMA_END;
1992 		else
1993 			slot->intmask |= SDHCI_INT_DMA_END;
1994 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1995 	}
1996 	/* Current data offset for both PIO and DMA. */
1997 	slot->offset = 0;
1998 #ifdef MMCCAM
1999 	if (data->flags & MMC_DATA_BLOCK_SIZE) {
2000 		/* Set block size and request border interrupts on the SDMA boundary. */
2001 		blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, data->block_size);
2002 		blkcnt = data->block_count;
2003 		if (__predict_false(sdhci_debug > 0))
2004 			slot_printf(slot, "SDIO Custom block params: blksz: "
2005 			    "%#10x, blk cnt: %#10x\n", blksz, blkcnt);
2006 	} else
2007 #endif
2008 	{
2009 		/* Set block size and request border interrupts on the SDMA boundary. */
2010 		blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512));
2011 		blkcnt = howmany(data->len, 512);
2012 	}
2013 
2014 	WR2(slot, SDHCI_BLOCK_SIZE, blksz);
2015 	WR2(slot, SDHCI_BLOCK_COUNT, blkcnt);
2016 	if (__predict_false(sdhci_debug > 1))
2017 		slot_printf(slot, "Blk size: 0x%08x | Blk cnt:  0x%08x\n",
2018 		    blksz, blkcnt);
2019 }
2020 
2021 void
2022 sdhci_finish_data(struct sdhci_slot *slot)
2023 {
2024 	struct mmc_data *data = slot->curcmd->data;
2025 	size_t left;
2026 
2027 	/* Interrupt aggregation: Restore command interrupt.
2028 	 * Auxiliary restore point for the case when data interrupt
2029 	 * happened first. */
2030 	if (!slot->cmd_done) {
2031 		WR4(slot, SDHCI_SIGNAL_ENABLE,
2032 		    slot->intmask |= SDHCI_INT_RESPONSE);
2033 	}
2034 	/* Unload rest of data from DMA buffer. */
2035 	if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) &&
2036 	    slot->curcmd->data != NULL) {
2037 		if (data->flags & MMC_DATA_READ) {
2038 			left = data->len - slot->offset;
2039 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2040 			    BUS_DMASYNC_POSTREAD);
2041 			memcpy((u_char*)data->data + slot->offset, slot->dmamem,
2042 			    ulmin(left, slot->sdma_bbufsz));
2043 		} else
2044 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2045 			    BUS_DMASYNC_POSTWRITE);
2046 	}
2047 	slot->data_done = 1;
2048 	/* If there was error - reset the host. */
2049 	if (slot->curcmd->error) {
2050 		if (slot->curcmd->error == MMC_ERR_BADCRC)
2051 			slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
2052 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2053 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
2054 		sdhci_start(slot);
2055 		return;
2056 	}
2057 	/* If we already have command response - finish. */
2058 	if (slot->cmd_done)
2059 		sdhci_start(slot);
2060 }
2061 
2062 #ifdef MMCCAM
2063 static void
2064 sdhci_start(struct sdhci_slot *slot)
2065 {
2066 	union ccb *ccb;
2067 	struct ccb_mmcio *mmcio;
2068 
2069 	ccb = slot->ccb;
2070 	if (ccb == NULL)
2071 		return;
2072 
2073 	mmcio = &ccb->mmcio;
2074 	if (!(slot->flags & CMD_STARTED)) {
2075 		slot->flags |= CMD_STARTED;
2076 		sdhci_start_command(slot, &mmcio->cmd);
2077 		return;
2078 	}
2079 
2080 	/*
2081 	 * Old stack doesn't use this!
2082 	 * Enabling this code causes significant performance degradation
2083 	 * and IRQ storms on BBB, Wandboard behaves fine.
2084 	 * Not using this code does no harm...
2085 	if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) {
2086 		slot->flags |= STOP_STARTED;
2087 		sdhci_start_command(slot, &mmcio->stop);
2088 		return;
2089 	}
2090 	*/
2091 	if (__predict_false(sdhci_debug > 1))
2092 		slot_printf(slot, "result: %d\n", mmcio->cmd.error);
2093 	if (mmcio->cmd.error == 0 &&
2094 	    (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) {
2095 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2096 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
2097 	}
2098 
2099 	sdhci_req_done(slot);
2100 }
2101 #else
2102 static void
2103 sdhci_start(struct sdhci_slot *slot)
2104 {
2105 	const struct mmc_request *req;
2106 
2107 	req = slot->req;
2108 	if (req == NULL)
2109 		return;
2110 
2111 	if (!(slot->flags & CMD_STARTED)) {
2112 		slot->flags |= CMD_STARTED;
2113 		sdhci_start_command(slot, req->cmd);
2114 		return;
2115 	}
2116 	if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) &&
2117 	    !(slot->flags & STOP_STARTED) && req->stop) {
2118 		slot->flags |= STOP_STARTED;
2119 		sdhci_start_command(slot, req->stop);
2120 		return;
2121 	}
2122 	if (__predict_false(sdhci_debug > 1))
2123 		slot_printf(slot, "result: %d\n", req->cmd->error);
2124 	if (!req->cmd->error &&
2125 	    ((slot->curcmd == req->stop &&
2126 	     (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) ||
2127 	     (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
2128 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2129 		SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA);
2130 	}
2131 
2132 	sdhci_req_done(slot);
2133 }
2134 #endif
2135 
2136 int
2137 sdhci_generic_request(device_t brdev __unused, device_t reqdev,
2138     struct mmc_request *req)
2139 {
2140 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2141 
2142 	SDHCI_LOCK(slot);
2143 	if (slot->req != NULL) {
2144 		SDHCI_UNLOCK(slot);
2145 		return (EBUSY);
2146 	}
2147 	if (__predict_false(sdhci_debug > 1)) {
2148 		slot_printf(slot,
2149 		    "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
2150 		    req->cmd->opcode, req->cmd->arg, req->cmd->flags,
2151 		    (req->cmd->data)?(u_int)req->cmd->data->len:0,
2152 		    (req->cmd->data)?req->cmd->data->flags:0);
2153 	}
2154 	slot->req = req;
2155 	slot->flags = 0;
2156 	sdhci_start(slot);
2157 	SDHCI_UNLOCK(slot);
2158 	if (dumping) {
2159 		while (slot->req != NULL) {
2160 			sdhci_generic_intr(slot);
2161 			DELAY(10);
2162 		}
2163 	}
2164 	return (0);
2165 }
2166 
2167 int
2168 sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev)
2169 {
2170 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2171 	uint32_t val;
2172 
2173 	SDHCI_LOCK(slot);
2174 	val = RD4(slot, SDHCI_PRESENT_STATE);
2175 	SDHCI_UNLOCK(slot);
2176 	return (!(val & SDHCI_WRITE_PROTECT));
2177 }
2178 
2179 int
2180 sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev)
2181 {
2182 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2183 	int err = 0;
2184 
2185 	SDHCI_LOCK(slot);
2186 	while (slot->bus_busy)
2187 		msleep(slot, &slot->mtx, 0, "sdhciah", 0);
2188 	slot->bus_busy++;
2189 	/* Activate led. */
2190 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED);
2191 	SDHCI_UNLOCK(slot);
2192 	return (err);
2193 }
2194 
2195 int
2196 sdhci_generic_release_host(device_t brdev __unused, device_t reqdev)
2197 {
2198 	struct sdhci_slot *slot = device_get_ivars(reqdev);
2199 
2200 	SDHCI_LOCK(slot);
2201 	/* Deactivate led. */
2202 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED);
2203 	slot->bus_busy--;
2204 	wakeup(slot);
2205 	SDHCI_UNLOCK(slot);
2206 	return (0);
2207 }
2208 
2209 static void
2210 sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask)
2211 {
2212 
2213 	if (!slot->curcmd) {
2214 		slot_printf(slot, "Got command interrupt 0x%08x, but "
2215 		    "there is no active command.\n", intmask);
2216 		sdhci_dumpregs(slot);
2217 		return;
2218 	}
2219 	if (intmask & SDHCI_INT_TIMEOUT)
2220 		slot->curcmd->error = MMC_ERR_TIMEOUT;
2221 	else if (intmask & SDHCI_INT_CRC)
2222 		slot->curcmd->error = MMC_ERR_BADCRC;
2223 	else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
2224 		slot->curcmd->error = MMC_ERR_FIFO;
2225 
2226 	sdhci_finish_command(slot);
2227 }
2228 
2229 static void
2230 sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask)
2231 {
2232 	struct mmc_data *data;
2233 	size_t left;
2234 	uint32_t sdma_bbufsz;
2235 
2236 	if (!slot->curcmd) {
2237 		slot_printf(slot, "Got data interrupt 0x%08x, but "
2238 		    "there is no active command.\n", intmask);
2239 		sdhci_dumpregs(slot);
2240 		return;
2241 	}
2242 	if (slot->curcmd->data == NULL &&
2243 	    (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
2244 		slot_printf(slot, "Got data interrupt 0x%08x, but "
2245 		    "there is no active data operation.\n",
2246 		    intmask);
2247 		sdhci_dumpregs(slot);
2248 		return;
2249 	}
2250 	if (intmask & SDHCI_INT_DATA_TIMEOUT)
2251 		slot->curcmd->error = MMC_ERR_TIMEOUT;
2252 	else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT))
2253 		slot->curcmd->error = MMC_ERR_BADCRC;
2254 	if (slot->curcmd->data == NULL &&
2255 	    (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
2256 	    SDHCI_INT_DMA_END))) {
2257 		slot_printf(slot, "Got data interrupt 0x%08x, but "
2258 		    "there is busy-only command.\n", intmask);
2259 		sdhci_dumpregs(slot);
2260 		slot->curcmd->error = MMC_ERR_INVALID;
2261 	}
2262 	if (slot->curcmd->error) {
2263 		/* No need to continue after any error. */
2264 		goto done;
2265 	}
2266 
2267 	/* Handle tuning completion interrupt. */
2268 	if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) &&
2269 	    (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK ||
2270 	    slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) {
2271 		slot->req->flags |= MMC_TUNE_DONE;
2272 		sdhci_finish_command(slot);
2273 		sdhci_finish_data(slot);
2274 		return;
2275 	}
2276 	/* Handle PIO interrupt. */
2277 	if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) {
2278 		if ((slot->opt & SDHCI_PLATFORM_TRANSFER) &&
2279 		    SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) {
2280 			SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot,
2281 			    &intmask);
2282 			slot->flags |= PLATFORM_DATA_STARTED;
2283 		} else
2284 			sdhci_transfer_pio(slot);
2285 	}
2286 	/* Handle DMA border. */
2287 	if (intmask & SDHCI_INT_DMA_END) {
2288 		data = slot->curcmd->data;
2289 		sdma_bbufsz = slot->sdma_bbufsz;
2290 
2291 		/* Unload DMA buffer ... */
2292 		left = data->len - slot->offset;
2293 		if (data->flags & MMC_DATA_READ) {
2294 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2295 			    BUS_DMASYNC_POSTREAD);
2296 			memcpy((u_char*)data->data + slot->offset, slot->dmamem,
2297 			    ulmin(left, sdma_bbufsz));
2298 		} else {
2299 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2300 			    BUS_DMASYNC_POSTWRITE);
2301 		}
2302 		/* ... and reload it again. */
2303 		slot->offset += sdma_bbufsz;
2304 		left = data->len - slot->offset;
2305 		if (data->flags & MMC_DATA_READ) {
2306 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2307 			    BUS_DMASYNC_PREREAD);
2308 		} else {
2309 			memcpy(slot->dmamem, (u_char*)data->data + slot->offset,
2310 			    ulmin(left, sdma_bbufsz));
2311 			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2312 			    BUS_DMASYNC_PREWRITE);
2313 		}
2314 		/*
2315 		 * Interrupt aggregation: Mask border interrupt for the last
2316 		 * bounce buffer.
2317 		 */
2318 		if (left == sdma_bbufsz) {
2319 			slot->intmask &= ~SDHCI_INT_DMA_END;
2320 			WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2321 		}
2322 		/* Restart DMA. */
2323 		WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
2324 	}
2325 	/* We have got all data. */
2326 	if (intmask & SDHCI_INT_DATA_END) {
2327 		if (slot->flags & PLATFORM_DATA_STARTED) {
2328 			slot->flags &= ~PLATFORM_DATA_STARTED;
2329 			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2330 		} else
2331 			sdhci_finish_data(slot);
2332 	}
2333 done:
2334 	if (slot->curcmd != NULL && slot->curcmd->error != 0) {
2335 		if (slot->flags & PLATFORM_DATA_STARTED) {
2336 			slot->flags &= ~PLATFORM_DATA_STARTED;
2337 			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2338 		} else
2339 			sdhci_finish_data(slot);
2340 	}
2341 }
2342 
2343 static void
2344 sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err)
2345 {
2346 
2347 	if (!slot->curcmd) {
2348 		slot_printf(slot, "Got AutoCMD12 error 0x%04x, but "
2349 		    "there is no active command.\n", acmd_err);
2350 		sdhci_dumpregs(slot);
2351 		return;
2352 	}
2353 	slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err);
2354 	SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD);
2355 }
2356 
2357 void
2358 sdhci_generic_intr(struct sdhci_slot *slot)
2359 {
2360 	uint32_t intmask, present;
2361 	uint16_t val16;
2362 
2363 	SDHCI_LOCK(slot);
2364 	/* Read slot interrupt status. */
2365 	intmask = RD4(slot, SDHCI_INT_STATUS);
2366 	if (intmask == 0 || intmask == 0xffffffff) {
2367 		SDHCI_UNLOCK(slot);
2368 		return;
2369 	}
2370 	if (__predict_false(sdhci_debug > 2))
2371 		slot_printf(slot, "Interrupt %#x\n", intmask);
2372 
2373 	/* Handle tuning error interrupt. */
2374 	if (__predict_false(intmask & SDHCI_INT_TUNEERR)) {
2375 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR);
2376 		slot_printf(slot, "Tuning error indicated\n");
2377 		slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
2378 		if (slot->curcmd) {
2379 			slot->curcmd->error = MMC_ERR_BADCRC;
2380 			sdhci_finish_command(slot);
2381 		}
2382 	}
2383 	/* Handle re-tuning interrupt. */
2384 	if (__predict_false(intmask & SDHCI_INT_RETUNE))
2385 		slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
2386 	/* Handle card presence interrupts. */
2387 	if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
2388 		present = (intmask & SDHCI_INT_CARD_INSERT) != 0;
2389 		slot->intmask &=
2390 		    ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
2391 		slot->intmask |= present ? SDHCI_INT_CARD_REMOVE :
2392 		    SDHCI_INT_CARD_INSERT;
2393 		WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
2394 		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2395 		WR4(slot, SDHCI_INT_STATUS, intmask &
2396 		    (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE));
2397 		sdhci_handle_card_present_locked(slot, present);
2398 	}
2399 	/* Handle command interrupts. */
2400 	if (intmask & SDHCI_INT_CMD_MASK) {
2401 		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK);
2402 		sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK);
2403 	}
2404 	/* Handle data interrupts. */
2405 	if (intmask & SDHCI_INT_DATA_MASK) {
2406 		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK);
2407 		/* Don't call data_irq in case of errored command. */
2408 		if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0)
2409 			sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK);
2410 	}
2411 	/* Handle AutoCMD12 error interrupt. */
2412 	if (intmask & SDHCI_INT_ACMD12ERR) {
2413 		/* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */
2414 		val16 = RD2(slot, SDHCI_ACMD12_ERR);
2415 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR);
2416 		sdhci_acmd_irq(slot, val16);
2417 	}
2418 	/* Handle bus power interrupt. */
2419 	if (intmask & SDHCI_INT_BUS_POWER) {
2420 		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER);
2421 		slot_printf(slot, "Card is consuming too much power!\n");
2422 	}
2423 	intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE |
2424 	    SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK |
2425 	    SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER);
2426 	/* The rest is unknown. */
2427 	if (intmask) {
2428 		WR4(slot, SDHCI_INT_STATUS, intmask);
2429 		slot_printf(slot, "Unexpected interrupt 0x%08x.\n",
2430 		    intmask);
2431 		sdhci_dumpregs(slot);
2432 	}
2433 
2434 	SDHCI_UNLOCK(slot);
2435 }
2436 
2437 int
2438 sdhci_generic_read_ivar(device_t bus, device_t child, int which,
2439     uintptr_t *result)
2440 {
2441 	const struct sdhci_slot *slot = device_get_ivars(child);
2442 
2443 	switch (which) {
2444 	default:
2445 		return (EINVAL);
2446 	case MMCBR_IVAR_BUS_MODE:
2447 		*result = slot->host.ios.bus_mode;
2448 		break;
2449 	case MMCBR_IVAR_BUS_WIDTH:
2450 		*result = slot->host.ios.bus_width;
2451 		break;
2452 	case MMCBR_IVAR_CHIP_SELECT:
2453 		*result = slot->host.ios.chip_select;
2454 		break;
2455 	case MMCBR_IVAR_CLOCK:
2456 		*result = slot->host.ios.clock;
2457 		break;
2458 	case MMCBR_IVAR_F_MIN:
2459 		*result = slot->host.f_min;
2460 		break;
2461 	case MMCBR_IVAR_F_MAX:
2462 		*result = slot->host.f_max;
2463 		break;
2464 	case MMCBR_IVAR_HOST_OCR:
2465 		*result = slot->host.host_ocr;
2466 		break;
2467 	case MMCBR_IVAR_MODE:
2468 		*result = slot->host.mode;
2469 		break;
2470 	case MMCBR_IVAR_OCR:
2471 		*result = slot->host.ocr;
2472 		break;
2473 	case MMCBR_IVAR_POWER_MODE:
2474 		*result = slot->host.ios.power_mode;
2475 		break;
2476 	case MMCBR_IVAR_VDD:
2477 		*result = slot->host.ios.vdd;
2478 		break;
2479 	case MMCBR_IVAR_RETUNE_REQ:
2480 		if (slot->opt & SDHCI_TUNING_ENABLED) {
2481 			if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) {
2482 				*result = retune_req_reset;
2483 				break;
2484 			}
2485 			if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) {
2486 				*result = retune_req_normal;
2487 				break;
2488 			}
2489 		}
2490 		*result = retune_req_none;
2491 		break;
2492 	case MMCBR_IVAR_VCCQ:
2493 		*result = slot->host.ios.vccq;
2494 		break;
2495 	case MMCBR_IVAR_CAPS:
2496 		*result = slot->host.caps;
2497 		break;
2498 	case MMCBR_IVAR_TIMING:
2499 		*result = slot->host.ios.timing;
2500 		break;
2501 	case MMCBR_IVAR_MAX_DATA:
2502 		/*
2503 		 * Re-tuning modes 1 and 2 restrict the maximum data length
2504 		 * per read/write command to 4 MiB.
2505 		 */
2506 		if (slot->opt & SDHCI_TUNING_ENABLED &&
2507 		    (slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
2508 		    slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
2509 			*result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
2510 			break;
2511 		}
2512 		*result = 65535;
2513 		break;
2514 	case MMCBR_IVAR_MAX_BUSY_TIMEOUT:
2515 		/*
2516 		 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs.
2517 		 */
2518 		*result = 1000000;
2519 		break;
2520 	}
2521 	return (0);
2522 }
2523 
2524 int
2525 sdhci_generic_write_ivar(device_t bus, device_t child, int which,
2526     uintptr_t value)
2527 {
2528 	struct sdhci_slot *slot = device_get_ivars(child);
2529 	uint32_t clock, max_clock;
2530 	int i;
2531 
2532 	if (sdhci_debug > 1)
2533 		slot_printf(slot, "%s: var=%d\n", __func__, which);
2534 	switch (which) {
2535 	default:
2536 		return (EINVAL);
2537 	case MMCBR_IVAR_BUS_MODE:
2538 		slot->host.ios.bus_mode = value;
2539 		break;
2540 	case MMCBR_IVAR_BUS_WIDTH:
2541 		slot->host.ios.bus_width = value;
2542 		break;
2543 	case MMCBR_IVAR_CHIP_SELECT:
2544 		slot->host.ios.chip_select = value;
2545 		break;
2546 	case MMCBR_IVAR_CLOCK:
2547 		if (value > 0) {
2548 			max_clock = slot->max_clk;
2549 			clock = max_clock;
2550 
2551 			if (slot->version < SDHCI_SPEC_300) {
2552 				for (i = 0; i < SDHCI_200_MAX_DIVIDER;
2553 				    i <<= 1) {
2554 					if (clock <= value)
2555 						break;
2556 					clock >>= 1;
2557 				}
2558 			} else {
2559 				for (i = 0; i < SDHCI_300_MAX_DIVIDER;
2560 				    i += 2) {
2561 					if (clock <= value)
2562 						break;
2563 					clock = max_clock / (i + 2);
2564 				}
2565 			}
2566 
2567 			slot->host.ios.clock = clock;
2568 		} else
2569 			slot->host.ios.clock = 0;
2570 		break;
2571 	case MMCBR_IVAR_MODE:
2572 		slot->host.mode = value;
2573 		break;
2574 	case MMCBR_IVAR_OCR:
2575 		slot->host.ocr = value;
2576 		break;
2577 	case MMCBR_IVAR_POWER_MODE:
2578 		slot->host.ios.power_mode = value;
2579 		break;
2580 	case MMCBR_IVAR_VDD:
2581 		slot->host.ios.vdd = value;
2582 		break;
2583 	case MMCBR_IVAR_VCCQ:
2584 		slot->host.ios.vccq = value;
2585 		break;
2586 	case MMCBR_IVAR_TIMING:
2587 		slot->host.ios.timing = value;
2588 		break;
2589 	case MMCBR_IVAR_CAPS:
2590 	case MMCBR_IVAR_HOST_OCR:
2591 	case MMCBR_IVAR_F_MIN:
2592 	case MMCBR_IVAR_F_MAX:
2593 	case MMCBR_IVAR_MAX_DATA:
2594 	case MMCBR_IVAR_RETUNE_REQ:
2595 		return (EINVAL);
2596 	}
2597 	return (0);
2598 }
2599 
2600 #ifdef MMCCAM
2601 void
2602 sdhci_start_slot(struct sdhci_slot *slot)
2603 {
2604 
2605 	if ((slot->devq = cam_simq_alloc(1)) == NULL)
2606 		goto fail;
2607 
2608 	mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF);
2609 	slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll,
2610 	    "sdhci_slot", slot, device_get_unit(slot->bus),
2611 	    &slot->sim_mtx, 1, 1, slot->devq);
2612 
2613 	if (slot->sim == NULL) {
2614 		cam_simq_free(slot->devq);
2615 		slot_printf(slot, "cannot allocate CAM SIM\n");
2616 		goto fail;
2617 	}
2618 
2619 	mtx_lock(&slot->sim_mtx);
2620 	if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) {
2621 		slot_printf(slot, "cannot register SCSI pass-through bus\n");
2622 		cam_sim_free(slot->sim, FALSE);
2623 		cam_simq_free(slot->devq);
2624 		mtx_unlock(&slot->sim_mtx);
2625 		goto fail;
2626 	}
2627 	mtx_unlock(&slot->sim_mtx);
2628 
2629 	/* End CAM-specific init */
2630 	slot->card_present = 0;
2631 	sdhci_card_task(slot, 0);
2632 	return;
2633 
2634 fail:
2635 	if (slot->sim != NULL) {
2636 		mtx_lock(&slot->sim_mtx);
2637 		xpt_bus_deregister(cam_sim_path(slot->sim));
2638 		cam_sim_free(slot->sim, FALSE);
2639 		mtx_unlock(&slot->sim_mtx);
2640 	}
2641 
2642 	if (slot->devq != NULL)
2643 		cam_simq_free(slot->devq);
2644 }
2645 
2646 void
2647 sdhci_cam_action(struct cam_sim *sim, union ccb *ccb)
2648 {
2649 	struct sdhci_slot *slot;
2650 
2651 	slot = cam_sim_softc(sim);
2652 	if (slot == NULL) {
2653 		ccb->ccb_h.status = CAM_SEL_TIMEOUT;
2654 		xpt_done(ccb);
2655 		return;
2656 	}
2657 
2658 	mtx_assert(&slot->sim_mtx, MA_OWNED);
2659 
2660 	switch (ccb->ccb_h.func_code) {
2661 	case XPT_PATH_INQ:
2662 		mmc_path_inq(&ccb->cpi, "Deglitch Networks", sim, maxphys);
2663 		break;
2664 
2665 	case XPT_MMC_GET_TRAN_SETTINGS:
2666 	case XPT_GET_TRAN_SETTINGS:
2667 	{
2668 		struct ccb_trans_settings *cts = &ccb->cts;
2669 		uint32_t max_data;
2670 
2671 		if (sdhci_debug > 1)
2672 			slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n");
2673 
2674 		cts->protocol = PROTO_MMCSD;
2675 		cts->protocol_version = 1;
2676 		cts->transport = XPORT_MMCSD;
2677 		cts->transport_version = 1;
2678 		cts->xport_specific.valid = 0;
2679 		cts->proto_specific.mmc.host_ocr = slot->host.host_ocr;
2680 		cts->proto_specific.mmc.host_f_min = slot->host.f_min;
2681 		cts->proto_specific.mmc.host_f_max = slot->host.f_max;
2682 		cts->proto_specific.mmc.host_caps = slot->host.caps;
2683 		/*
2684 		 * Re-tuning modes 1 and 2 restrict the maximum data length
2685 		 * per read/write command to 4 MiB.
2686 		 */
2687 		if (slot->opt & SDHCI_TUNING_ENABLED &&
2688 		    (slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
2689 		    slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
2690 			max_data = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
2691 		} else {
2692 			max_data = 65535;
2693 		}
2694 		cts->proto_specific.mmc.host_max_data = max_data;
2695 
2696 		memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios));
2697 		ccb->ccb_h.status = CAM_REQ_CMP;
2698 		break;
2699 	}
2700 	case XPT_MMC_SET_TRAN_SETTINGS:
2701 	case XPT_SET_TRAN_SETTINGS:
2702 		if (sdhci_debug > 1)
2703 			slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n");
2704 		sdhci_cam_settran_settings(slot, ccb);
2705 		ccb->ccb_h.status = CAM_REQ_CMP;
2706 		break;
2707 	case XPT_RESET_BUS:
2708 		if (sdhci_debug > 1)
2709 			slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n");
2710 		ccb->ccb_h.status = CAM_REQ_CMP;
2711 		break;
2712 	case XPT_MMC_IO:
2713 		/*
2714 		 * Here is the HW-dependent part of
2715 		 * sending the command to the underlying h/w
2716 		 * At some point in the future an interrupt comes.
2717 		 * Then the request will be marked as completed.
2718 		 */
2719 		if (__predict_false(sdhci_debug > 1))
2720 			slot_printf(slot, "Got XPT_MMC_IO\n");
2721 		ccb->ccb_h.status = CAM_REQ_INPROG;
2722 
2723 		sdhci_cam_request(cam_sim_softc(sim), ccb);
2724 		return;
2725 	default:
2726 		ccb->ccb_h.status = CAM_REQ_INVALID;
2727 		break;
2728 	}
2729 	xpt_done(ccb);
2730 	return;
2731 }
2732 
2733 void
2734 sdhci_cam_poll(struct cam_sim *sim)
2735 {
2736 	sdhci_generic_intr(cam_sim_softc(sim));
2737 }
2738 
2739 static int
2740 sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
2741     int proposed_clock)
2742 {
2743 	int max_clock, clock, i;
2744 
2745 	if (proposed_clock == 0)
2746 		return 0;
2747 	max_clock = slot->max_clk;
2748 	clock = max_clock;
2749 
2750 	if (slot->version < SDHCI_SPEC_300) {
2751 		for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) {
2752 			if (clock <= proposed_clock)
2753 				break;
2754 			clock >>= 1;
2755 		}
2756 	} else {
2757 		for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) {
2758 			if (clock <= proposed_clock)
2759 				break;
2760 			clock = max_clock / (i + 2);
2761 		}
2762 	}
2763 	return clock;
2764 }
2765 
2766 static int
2767 sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb)
2768 {
2769 	struct mmc_ios *ios;
2770 	const struct mmc_ios *new_ios;
2771 	const struct ccb_trans_settings_mmc *cts;
2772 
2773 	ios = &slot->host.ios;
2774 	cts = &ccb->cts.proto_specific.mmc;
2775 	new_ios = &cts->ios;
2776 
2777 	/* Update only requested fields */
2778 	if (cts->ios_valid & MMC_CLK) {
2779 		ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock);
2780 		if (sdhci_debug > 1)
2781 			slot_printf(slot, "Clock => %d\n", ios->clock);
2782 	}
2783 	if (cts->ios_valid & MMC_VDD) {
2784 		ios->vdd = new_ios->vdd;
2785 		if (sdhci_debug > 1)
2786 			slot_printf(slot, "VDD => %d\n", ios->vdd);
2787 	}
2788 	if (cts->ios_valid & MMC_CS) {
2789 		ios->chip_select = new_ios->chip_select;
2790 		if (sdhci_debug > 1)
2791 			slot_printf(slot, "CS => %d\n", ios->chip_select);
2792 	}
2793 	if (cts->ios_valid & MMC_BW) {
2794 		ios->bus_width = new_ios->bus_width;
2795 		if (sdhci_debug > 1)
2796 			slot_printf(slot, "Bus width => %d\n", ios->bus_width);
2797 	}
2798 	if (cts->ios_valid & MMC_PM) {
2799 		ios->power_mode = new_ios->power_mode;
2800 		if (sdhci_debug > 1)
2801 			slot_printf(slot, "Power mode => %d\n", ios->power_mode);
2802 	}
2803 	if (cts->ios_valid & MMC_BT) {
2804 		ios->timing = new_ios->timing;
2805 		if (sdhci_debug > 1)
2806 			slot_printf(slot, "Timing => %d\n", ios->timing);
2807 	}
2808 	if (cts->ios_valid & MMC_BM) {
2809 		ios->bus_mode = new_ios->bus_mode;
2810 		if (sdhci_debug > 1)
2811 			slot_printf(slot, "Bus mode => %d\n", ios->bus_mode);
2812 	}
2813 	if (cts->ios_valid & MMC_VCCQ) {
2814 		ios->vccq = new_ios->vccq;
2815 		if (sdhci_debug > 1)
2816 			slot_printf(slot, "VCCQ => %d\n", ios->vccq);
2817 	}
2818 
2819 	/* XXX Provide a way to call a chip-specific IOS update, required for TI */
2820 	return (sdhci_cam_update_ios(slot));
2821 }
2822 
2823 static int
2824 sdhci_cam_update_ios(struct sdhci_slot *slot)
2825 {
2826 	struct mmc_ios *ios = &slot->host.ios;
2827 
2828 	if (sdhci_debug > 1)
2829 		slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n",
2830 		    __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing);
2831 	SDHCI_LOCK(slot);
2832 	/* Do full reset on bus power down to clear from any state. */
2833 	if (ios->power_mode == power_off) {
2834 		WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
2835 		sdhci_init(slot);
2836 	}
2837 	/* Configure the bus. */
2838 	sdhci_set_clock(slot, ios->clock);
2839 	sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
2840 	if (ios->bus_width == bus_width_8) {
2841 		slot->hostctrl |= SDHCI_CTRL_8BITBUS;
2842 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2843 	} else if (ios->bus_width == bus_width_4) {
2844 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2845 		slot->hostctrl |= SDHCI_CTRL_4BITBUS;
2846 	} else if (ios->bus_width == bus_width_1) {
2847 		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2848 		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2849 	} else {
2850 		panic("Invalid bus width: %d", ios->bus_width);
2851 	}
2852 	if (ios->timing == bus_timing_hs &&
2853 	    !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
2854 		slot->hostctrl |= SDHCI_CTRL_HISPD;
2855 	else
2856 		slot->hostctrl &= ~SDHCI_CTRL_HISPD;
2857 	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
2858 	/* Some controllers like reset after bus changes. */
2859 	if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
2860 		SDHCI_RESET(slot->bus, slot,
2861 		    SDHCI_RESET_CMD | SDHCI_RESET_DATA);
2862 
2863 	SDHCI_UNLOCK(slot);
2864 	return (0);
2865 }
2866 
2867 static int
2868 sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb)
2869 {
2870 	const struct ccb_mmcio *mmcio;
2871 
2872 	mmcio = &ccb->mmcio;
2873 
2874 	SDHCI_LOCK(slot);
2875 /*	if (slot->req != NULL) {
2876 		SDHCI_UNLOCK(slot);
2877 		return (EBUSY);
2878 	}
2879 */
2880 	if (__predict_false(sdhci_debug > 1)) {
2881 		slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x "
2882 		    "blksz=%zu blkcnt=%zu\n",
2883 		    mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags,
2884 		    mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0,
2885 		    mmcio->cmd.data != NULL ? mmcio->cmd.data->flags : 0,
2886 		    mmcio->cmd.data != NULL ? mmcio->cmd.data->block_size : 0,
2887 		    mmcio->cmd.data != NULL ? mmcio->cmd.data->block_count : 0);
2888 	}
2889 	if (mmcio->cmd.data != NULL) {
2890 		if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0)
2891 			panic("data->len = %d, data->flags = %d -- something is b0rked",
2892 			    (int)mmcio->cmd.data->len, mmcio->cmd.data->flags);
2893 	}
2894 	slot->ccb = ccb;
2895 	slot->flags = 0;
2896 	sdhci_start(slot);
2897 	SDHCI_UNLOCK(slot);
2898 	return (0);
2899 }
2900 #endif /* MMCCAM */
2901 
2902 MODULE_VERSION(sdhci, SDHCI_VERSION);
2903