1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/systm.h>
28 #include <sys/stream.h>
29 #include <sys/strsubr.h>
30 #include <sys/ddi.h>
31 #include <sys/sunddi.h>
32 #include <sys/kmem.h>
33 #include <sys/socket.h>
34 #include <sys/random.h>
35 #include <sys/tsol/tndb.h>
36 #include <sys/tsol/tnet.h>
37
38 #include <netinet/in.h>
39 #include <netinet/ip6.h>
40 #include <netinet/sctp.h>
41
42 #include <inet/common.h>
43 #include <inet/ip.h>
44 #include <inet/ip6.h>
45 #include <inet/ip_ire.h>
46 #include <inet/ip_if.h>
47 #include <inet/ip_ndp.h>
48 #include <inet/mib2.h>
49 #include <inet/nd.h>
50 #include <inet/optcom.h>
51 #include <inet/sctp_ip.h>
52 #include <inet/ipclassifier.h>
53
54 #include "sctp_impl.h"
55 #include "sctp_addr.h"
56 #include "sctp_asconf.h"
57
58 static struct kmem_cache *sctp_kmem_faddr_cache;
59 static void sctp_init_faddr(sctp_t *, sctp_faddr_t *, in6_addr_t *, mblk_t *);
60
61 /* Set the source address. Refer to comments in sctp_get_dest(). */
62 void
sctp_set_saddr(sctp_t * sctp,sctp_faddr_t * fp)63 sctp_set_saddr(sctp_t *sctp, sctp_faddr_t *fp)
64 {
65 boolean_t v6 = !fp->sf_isv4;
66 boolean_t addr_set;
67
68 fp->sf_saddr = sctp_get_valid_addr(sctp, v6, &addr_set);
69 /*
70 * If there is no source address avaialble, mark this peer address
71 * as unreachable for now. When the heartbeat timer fires, it will
72 * call sctp_get_dest() to re-check if there is any source address
73 * available.
74 */
75 if (!addr_set)
76 fp->sf_state = SCTP_FADDRS_UNREACH;
77 }
78
79 /*
80 * Call this function to get information about a peer addr fp.
81 *
82 * Uses ip_attr_connect to avoid explicit use of ire and source address
83 * selection.
84 */
85 void
sctp_get_dest(sctp_t * sctp,sctp_faddr_t * fp)86 sctp_get_dest(sctp_t *sctp, sctp_faddr_t *fp)
87 {
88 in6_addr_t laddr;
89 in6_addr_t nexthop;
90 sctp_saddr_ipif_t *sp;
91 int hdrlen;
92 sctp_stack_t *sctps = sctp->sctp_sctps;
93 conn_t *connp = sctp->sctp_connp;
94 iulp_t uinfo;
95 uint_t pmtu;
96 int error;
97 uint32_t flags = IPDF_VERIFY_DST | IPDF_IPSEC |
98 IPDF_SELECT_SRC | IPDF_UNIQUE_DCE;
99
100 /*
101 * Tell sctp_make_mp it needs to call us again should we not
102 * complete and set the saddr.
103 */
104 fp->sf_saddr = ipv6_all_zeros;
105
106 /*
107 * If this addr is not reachable, mark it as unconfirmed for now, the
108 * state will be changed back to unreachable later in this function
109 * if it is still the case.
110 */
111 if (fp->sf_state == SCTP_FADDRS_UNREACH) {
112 fp->sf_state = SCTP_FADDRS_UNCONFIRMED;
113 }
114
115 /*
116 * Socket is connected - enable PMTU discovery.
117 */
118 if (!sctps->sctps_ignore_path_mtu)
119 fp->sf_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
120
121 ip_attr_nexthop(&connp->conn_xmit_ipp, fp->sf_ixa, &fp->sf_faddr,
122 &nexthop);
123
124 laddr = fp->sf_saddr;
125 error = ip_attr_connect(connp, fp->sf_ixa, &laddr, &fp->sf_faddr,
126 &nexthop, connp->conn_fport, &laddr, &uinfo, flags);
127
128 if (error != 0) {
129 dprint(3, ("sctp_get_dest: no ire for %x:%x:%x:%x\n",
130 SCTP_PRINTADDR(fp->sf_faddr)));
131 /*
132 * It is tempting to just leave the src addr
133 * unspecified and let IP figure it out, but we
134 * *cannot* do this, since IP may choose a src addr
135 * that is not part of this association... unless
136 * this sctp has bound to all addrs. So if the dest
137 * lookup fails, try to find one in our src addr
138 * list, unless the sctp has bound to all addrs, in
139 * which case we change the src addr to unspec.
140 *
141 * Note that if this is a v6 endpoint but it does
142 * not have any v4 address at this point (e.g. may
143 * have been deleted), sctp_get_valid_addr() will
144 * return mapped INADDR_ANY. In this case, this
145 * address should be marked not reachable so that
146 * it won't be used to send data.
147 */
148 sctp_set_saddr(sctp, fp);
149 if (fp->sf_state == SCTP_FADDRS_UNREACH)
150 return;
151 goto check_current;
152 }
153 ASSERT(fp->sf_ixa->ixa_ire != NULL);
154 ASSERT(!(fp->sf_ixa->ixa_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)));
155
156 if (!sctp->sctp_loopback)
157 sctp->sctp_loopback = uinfo.iulp_loopback;
158
159 /* Make sure the laddr is part of this association */
160 if ((sp = sctp_saddr_lookup(sctp, &laddr, 0)) != NULL &&
161 !sp->saddr_ipif_dontsrc) {
162 if (sp->saddr_ipif_unconfirmed == 1)
163 sp->saddr_ipif_unconfirmed = 0;
164 /* We did IPsec policy lookup for laddr already */
165 fp->sf_saddr = laddr;
166 } else {
167 dprint(2, ("sctp_get_dest: src addr is not part of assoc "
168 "%x:%x:%x:%x\n", SCTP_PRINTADDR(laddr)));
169
170 /*
171 * Set the src to the first saddr and hope for the best.
172 * Note that this case should very seldomly
173 * happen. One scenario this can happen is an app
174 * explicitly bind() to an address. But that address is
175 * not the preferred source address to send to the peer.
176 */
177 sctp_set_saddr(sctp, fp);
178 if (fp->sf_state == SCTP_FADDRS_UNREACH) {
179 return;
180 }
181 }
182
183 /*
184 * Pull out RTO information for this faddr and use it if we don't
185 * have any yet.
186 */
187 if (fp->sf_srtt == -1 && uinfo.iulp_rtt != 0) {
188 /* The cached value is in ms. */
189 fp->sf_srtt = MSEC_TO_TICK(uinfo.iulp_rtt);
190 fp->sf_rttvar = MSEC_TO_TICK(uinfo.iulp_rtt_sd);
191 fp->sf_rto = 3 * fp->sf_srtt;
192
193 /* Bound the RTO by configured min and max values */
194 if (fp->sf_rto < sctp->sctp_rto_min) {
195 fp->sf_rto = sctp->sctp_rto_min;
196 }
197 if (fp->sf_rto > sctp->sctp_rto_max) {
198 fp->sf_rto = sctp->sctp_rto_max;
199 }
200 SCTP_MAX_RTO(sctp, fp);
201 }
202 pmtu = uinfo.iulp_mtu;
203
204 /*
205 * Record the MTU for this faddr. If the MTU for this faddr has
206 * changed, check if the assc MTU will also change.
207 */
208 if (fp->sf_isv4) {
209 hdrlen = sctp->sctp_hdr_len;
210 } else {
211 hdrlen = sctp->sctp_hdr6_len;
212 }
213 if ((fp->sf_pmss + hdrlen) != pmtu) {
214 /* Make sure that sf_pmss is a multiple of SCTP_ALIGN. */
215 fp->sf_pmss = (pmtu - hdrlen) & ~(SCTP_ALIGN - 1);
216 if (fp->sf_cwnd < (fp->sf_pmss * 2)) {
217 SET_CWND(fp, fp->sf_pmss,
218 sctps->sctps_slow_start_initial);
219 }
220 }
221
222 check_current:
223 if (fp == sctp->sctp_current)
224 sctp_set_faddr_current(sctp, fp);
225 }
226
227 void
sctp_update_dce(sctp_t * sctp)228 sctp_update_dce(sctp_t *sctp)
229 {
230 sctp_faddr_t *fp;
231 sctp_stack_t *sctps = sctp->sctp_sctps;
232 iulp_t uinfo;
233 ip_stack_t *ipst = sctps->sctps_netstack->netstack_ip;
234 uint_t ifindex;
235
236 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->sf_next) {
237 bzero(&uinfo, sizeof (uinfo));
238 /*
239 * Only record the PMTU for this faddr if we actually have
240 * done discovery. This prevents initialized default from
241 * clobbering any real info that IP may have.
242 */
243 if (fp->sf_pmtu_discovered) {
244 if (fp->sf_isv4) {
245 uinfo.iulp_mtu = fp->sf_pmss +
246 sctp->sctp_hdr_len;
247 } else {
248 uinfo.iulp_mtu = fp->sf_pmss +
249 sctp->sctp_hdr6_len;
250 }
251 }
252 if (sctps->sctps_rtt_updates != 0 &&
253 fp->sf_rtt_updates >= sctps->sctps_rtt_updates) {
254 /*
255 * dce_update_uinfo() merges these values with the
256 * old values.
257 */
258 uinfo.iulp_rtt = TICK_TO_MSEC(fp->sf_srtt);
259 uinfo.iulp_rtt_sd = TICK_TO_MSEC(fp->sf_rttvar);
260 fp->sf_rtt_updates = 0;
261 }
262 ifindex = 0;
263 if (IN6_IS_ADDR_LINKSCOPE(&fp->sf_faddr)) {
264 /*
265 * If we are going to create a DCE we'd better have
266 * an ifindex
267 */
268 if (fp->sf_ixa->ixa_nce != NULL) {
269 ifindex = fp->sf_ixa->ixa_nce->nce_common->
270 ncec_ill->ill_phyint->phyint_ifindex;
271 } else {
272 continue;
273 }
274 }
275
276 (void) dce_update_uinfo(&fp->sf_faddr, ifindex, &uinfo, ipst);
277 }
278 }
279
280 /*
281 * The sender must later set the total length in the IP header.
282 */
283 mblk_t *
sctp_make_mp(sctp_t * sctp,sctp_faddr_t * fp,int trailer)284 sctp_make_mp(sctp_t *sctp, sctp_faddr_t *fp, int trailer)
285 {
286 mblk_t *mp;
287 size_t ipsctplen;
288 int isv4;
289 sctp_stack_t *sctps = sctp->sctp_sctps;
290 boolean_t src_changed = B_FALSE;
291
292 ASSERT(fp != NULL);
293 isv4 = fp->sf_isv4;
294
295 if (SCTP_IS_ADDR_UNSPEC(isv4, fp->sf_saddr) ||
296 (fp->sf_ixa->ixa_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
297 /* Need to pick a source */
298 sctp_get_dest(sctp, fp);
299 /*
300 * Although we still may not get an IRE, the source address
301 * may be changed in sctp_get_ire(). Set src_changed to
302 * true so that the source address is copied again.
303 */
304 src_changed = B_TRUE;
305 }
306
307 /* There is no suitable source address to use, return. */
308 if (fp->sf_state == SCTP_FADDRS_UNREACH)
309 return (NULL);
310
311 ASSERT(fp->sf_ixa->ixa_ire != NULL);
312 ASSERT(!SCTP_IS_ADDR_UNSPEC(isv4, fp->sf_saddr));
313
314 if (isv4) {
315 ipsctplen = sctp->sctp_hdr_len;
316 } else {
317 ipsctplen = sctp->sctp_hdr6_len;
318 }
319
320 mp = allocb(ipsctplen + sctps->sctps_wroff_xtra + trailer, BPRI_MED);
321 if (mp == NULL) {
322 ip1dbg(("sctp_make_mp: error making mp..\n"));
323 return (NULL);
324 }
325 mp->b_rptr += sctps->sctps_wroff_xtra;
326 mp->b_wptr = mp->b_rptr + ipsctplen;
327
328 ASSERT(OK_32PTR(mp->b_wptr));
329
330 if (isv4) {
331 ipha_t *iph = (ipha_t *)mp->b_rptr;
332
333 bcopy(sctp->sctp_iphc, mp->b_rptr, ipsctplen);
334 if (fp != sctp->sctp_current || src_changed) {
335 /* Fix the source and destination addresses. */
336 IN6_V4MAPPED_TO_IPADDR(&fp->sf_faddr, iph->ipha_dst);
337 IN6_V4MAPPED_TO_IPADDR(&fp->sf_saddr, iph->ipha_src);
338 }
339 /* set or clear the don't fragment bit */
340 if (fp->sf_df) {
341 iph->ipha_fragment_offset_and_flags = htons(IPH_DF);
342 } else {
343 iph->ipha_fragment_offset_and_flags = 0;
344 }
345 } else {
346 bcopy(sctp->sctp_iphc6, mp->b_rptr, ipsctplen);
347 if (fp != sctp->sctp_current || src_changed) {
348 /* Fix the source and destination addresses. */
349 ((ip6_t *)(mp->b_rptr))->ip6_dst = fp->sf_faddr;
350 ((ip6_t *)(mp->b_rptr))->ip6_src = fp->sf_saddr;
351 }
352 }
353 ASSERT(sctp->sctp_connp != NULL);
354 return (mp);
355 }
356
357 /*
358 * Notify upper layers about preferred write offset, write size.
359 */
360 void
sctp_set_ulp_prop(sctp_t * sctp)361 sctp_set_ulp_prop(sctp_t *sctp)
362 {
363 int hdrlen;
364 struct sock_proto_props sopp;
365
366 sctp_stack_t *sctps = sctp->sctp_sctps;
367
368 if (sctp->sctp_current->sf_isv4) {
369 hdrlen = sctp->sctp_hdr_len;
370 } else {
371 hdrlen = sctp->sctp_hdr6_len;
372 }
373 ASSERT(sctp->sctp_ulpd);
374
375 sctp->sctp_connp->conn_wroff = sctps->sctps_wroff_xtra + hdrlen +
376 sizeof (sctp_data_hdr_t);
377
378 ASSERT(sctp->sctp_current->sf_pmss == sctp->sctp_mss);
379 bzero(&sopp, sizeof (sopp));
380 sopp.sopp_flags = SOCKOPT_MAXBLK|SOCKOPT_WROFF;
381 sopp.sopp_wroff = sctp->sctp_connp->conn_wroff;
382 sopp.sopp_maxblk = sctp->sctp_mss - sizeof (sctp_data_hdr_t);
383 sctp->sctp_ulp_prop(sctp->sctp_ulpd, &sopp);
384 }
385
386 /*
387 * Set the lengths in the packet and the transmit attributes.
388 */
389 void
sctp_set_iplen(sctp_t * sctp,mblk_t * mp,ip_xmit_attr_t * ixa)390 sctp_set_iplen(sctp_t *sctp, mblk_t *mp, ip_xmit_attr_t *ixa)
391 {
392 uint16_t sum = 0;
393 ipha_t *iph;
394 ip6_t *ip6h;
395 mblk_t *pmp = mp;
396 boolean_t isv4;
397
398 isv4 = (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
399 for (; pmp; pmp = pmp->b_cont)
400 sum += pmp->b_wptr - pmp->b_rptr;
401
402 ixa->ixa_pktlen = sum;
403 if (isv4) {
404 iph = (ipha_t *)mp->b_rptr;
405 iph->ipha_length = htons(sum);
406 ixa->ixa_ip_hdr_length = sctp->sctp_ip_hdr_len;
407 } else {
408 ip6h = (ip6_t *)mp->b_rptr;
409 ip6h->ip6_plen = htons(sum - IPV6_HDR_LEN);
410 ixa->ixa_ip_hdr_length = sctp->sctp_ip_hdr6_len;
411 }
412 }
413
414 int
sctp_compare_faddrsets(sctp_faddr_t * a1,sctp_faddr_t * a2)415 sctp_compare_faddrsets(sctp_faddr_t *a1, sctp_faddr_t *a2)
416 {
417 int na1 = 0;
418 int overlap = 0;
419 int equal = 1;
420 int onematch;
421 sctp_faddr_t *fp1, *fp2;
422
423 for (fp1 = a1; fp1; fp1 = fp1->sf_next) {
424 onematch = 0;
425 for (fp2 = a2; fp2; fp2 = fp2->sf_next) {
426 if (IN6_ARE_ADDR_EQUAL(&fp1->sf_faddr,
427 &fp2->sf_faddr)) {
428 overlap++;
429 onematch = 1;
430 break;
431 }
432 if (!onematch) {
433 equal = 0;
434 }
435 }
436 na1++;
437 }
438
439 if (equal) {
440 return (SCTP_ADDR_EQUAL);
441 }
442 if (overlap == na1) {
443 return (SCTP_ADDR_SUBSET);
444 }
445 if (overlap) {
446 return (SCTP_ADDR_OVERLAP);
447 }
448 return (SCTP_ADDR_DISJOINT);
449 }
450
451 /*
452 * Returns 0 on success, ENOMEM on memory allocation failure, EHOSTUNREACH
453 * if the connection credentials fail remote host accreditation or
454 * if the new destination does not support the previously established
455 * connection security label. If sleep is true, this function should
456 * never fail for a memory allocation failure. The boolean parameter
457 * "first" decides whether the newly created faddr structure should be
458 * added at the beginning of the list or at the end.
459 *
460 * Note: caller must hold conn fanout lock.
461 */
462 int
sctp_add_faddr(sctp_t * sctp,in6_addr_t * addr,int sleep,boolean_t first)463 sctp_add_faddr(sctp_t *sctp, in6_addr_t *addr, int sleep, boolean_t first)
464 {
465 sctp_faddr_t *faddr;
466 mblk_t *timer_mp;
467 int err;
468 conn_t *connp = sctp->sctp_connp;
469
470 if (is_system_labeled()) {
471 ip_xmit_attr_t *ixa = connp->conn_ixa;
472 ts_label_t *effective_tsl = NULL;
473
474 ASSERT(ixa->ixa_tsl != NULL);
475
476 /*
477 * Verify the destination is allowed to receive packets
478 * at the security label of the connection we are initiating.
479 *
480 * tsol_check_dest() will create a new effective label for
481 * this connection with a modified label or label flags only
482 * if there are changes from the original label.
483 *
484 * Accept whatever label we get if this is the first
485 * destination address for this connection. The security
486 * label and label flags must match any previuous settings
487 * for all subsequent destination addresses.
488 */
489 if (IN6_IS_ADDR_V4MAPPED(addr)) {
490 uint32_t dst;
491 IN6_V4MAPPED_TO_IPADDR(addr, dst);
492 err = tsol_check_dest(ixa->ixa_tsl,
493 &dst, IPV4_VERSION, connp->conn_mac_mode,
494 connp->conn_zone_is_global, &effective_tsl);
495 } else {
496 err = tsol_check_dest(ixa->ixa_tsl,
497 addr, IPV6_VERSION, connp->conn_mac_mode,
498 connp->conn_zone_is_global, &effective_tsl);
499 }
500 if (err != 0)
501 return (err);
502
503 if (sctp->sctp_faddrs == NULL && effective_tsl != NULL) {
504 ip_xmit_attr_replace_tsl(ixa, effective_tsl);
505 } else if (effective_tsl != NULL) {
506 label_rele(effective_tsl);
507 return (EHOSTUNREACH);
508 }
509 }
510
511 if ((faddr = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep)) == NULL)
512 return (ENOMEM);
513 bzero(faddr, sizeof (*faddr));
514 timer_mp = sctp_timer_alloc((sctp), sctp_rexmit_timer, sleep);
515 if (timer_mp == NULL) {
516 kmem_cache_free(sctp_kmem_faddr_cache, faddr);
517 return (ENOMEM);
518 }
519 ((sctpt_t *)(timer_mp->b_rptr))->sctpt_faddr = faddr;
520
521 /* Start with any options set on the conn */
522 faddr->sf_ixa = conn_get_ixa_exclusive(connp);
523 if (faddr->sf_ixa == NULL) {
524 freemsg(timer_mp);
525 kmem_cache_free(sctp_kmem_faddr_cache, faddr);
526 return (ENOMEM);
527 }
528 faddr->sf_ixa->ixa_notify_cookie = connp->conn_sctp;
529
530 sctp_init_faddr(sctp, faddr, addr, timer_mp);
531 ASSERT(faddr->sf_ixa->ixa_cred != NULL);
532
533 /* ip_attr_connect didn't allow broadcats/multicast dest */
534 ASSERT(faddr->sf_next == NULL);
535
536 if (sctp->sctp_faddrs == NULL) {
537 ASSERT(sctp->sctp_lastfaddr == NULL);
538 /* only element on list; first and last are same */
539 sctp->sctp_faddrs = sctp->sctp_lastfaddr = faddr;
540 } else if (first) {
541 ASSERT(sctp->sctp_lastfaddr != NULL);
542 faddr->sf_next = sctp->sctp_faddrs;
543 sctp->sctp_faddrs = faddr;
544 } else {
545 sctp->sctp_lastfaddr->sf_next = faddr;
546 sctp->sctp_lastfaddr = faddr;
547 }
548 sctp->sctp_nfaddrs++;
549
550 return (0);
551 }
552
553 sctp_faddr_t *
sctp_lookup_faddr(sctp_t * sctp,in6_addr_t * addr)554 sctp_lookup_faddr(sctp_t *sctp, in6_addr_t *addr)
555 {
556 sctp_faddr_t *fp;
557
558 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->sf_next) {
559 if (IN6_ARE_ADDR_EQUAL(&fp->sf_faddr, addr))
560 break;
561 }
562
563 return (fp);
564 }
565
566 sctp_faddr_t *
sctp_lookup_faddr_nosctp(sctp_faddr_t * fp,in6_addr_t * addr)567 sctp_lookup_faddr_nosctp(sctp_faddr_t *fp, in6_addr_t *addr)
568 {
569 for (; fp; fp = fp->sf_next) {
570 if (IN6_ARE_ADDR_EQUAL(&fp->sf_faddr, addr)) {
571 break;
572 }
573 }
574
575 return (fp);
576 }
577
578 /*
579 * To change the currently used peer address to the specified one.
580 */
581 void
sctp_set_faddr_current(sctp_t * sctp,sctp_faddr_t * fp)582 sctp_set_faddr_current(sctp_t *sctp, sctp_faddr_t *fp)
583 {
584 /* Now setup the composite header. */
585 if (fp->sf_isv4) {
586 IN6_V4MAPPED_TO_IPADDR(&fp->sf_faddr,
587 sctp->sctp_ipha->ipha_dst);
588 IN6_V4MAPPED_TO_IPADDR(&fp->sf_saddr,
589 sctp->sctp_ipha->ipha_src);
590 /* update don't fragment bit */
591 if (fp->sf_df) {
592 sctp->sctp_ipha->ipha_fragment_offset_and_flags =
593 htons(IPH_DF);
594 } else {
595 sctp->sctp_ipha->ipha_fragment_offset_and_flags = 0;
596 }
597 } else {
598 sctp->sctp_ip6h->ip6_dst = fp->sf_faddr;
599 sctp->sctp_ip6h->ip6_src = fp->sf_saddr;
600 }
601
602 sctp->sctp_current = fp;
603 sctp->sctp_mss = fp->sf_pmss;
604
605 /* Update the uppper layer for the change. */
606 if (!SCTP_IS_DETACHED(sctp))
607 sctp_set_ulp_prop(sctp);
608 }
609
610 void
sctp_redo_faddr_srcs(sctp_t * sctp)611 sctp_redo_faddr_srcs(sctp_t *sctp)
612 {
613 sctp_faddr_t *fp;
614
615 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->sf_next) {
616 sctp_get_dest(sctp, fp);
617 }
618 }
619
620 void
sctp_faddr_alive(sctp_t * sctp,sctp_faddr_t * fp)621 sctp_faddr_alive(sctp_t *sctp, sctp_faddr_t *fp)
622 {
623 int64_t now = LBOLT_FASTPATH64;
624
625 /*
626 * If we are under memory pressure, we abort association waiting
627 * in zero window probing state for too long. We do this by not
628 * resetting sctp_strikes. So if sctp_zero_win_probe continues
629 * while under memory pressure, this association will eventually
630 * time out.
631 */
632 if (!sctp->sctp_zero_win_probe || !sctp->sctp_sctps->sctps_reclaim) {
633 sctp->sctp_strikes = 0;
634 }
635 fp->sf_strikes = 0;
636 fp->sf_lastactive = now;
637 fp->sf_hb_expiry = now + SET_HB_INTVL(fp);
638 fp->sf_hb_pending = B_FALSE;
639 if (fp->sf_state != SCTP_FADDRS_ALIVE) {
640 fp->sf_state = SCTP_FADDRS_ALIVE;
641 sctp_intf_event(sctp, fp->sf_faddr, SCTP_ADDR_AVAILABLE, 0);
642 /* Should have a full IRE now */
643 sctp_get_dest(sctp, fp);
644
645 /*
646 * If this is the primary, switch back to it now. And
647 * we probably want to reset the source addr used to reach
648 * it.
649 * Note that if we didn't find a source in sctp_get_dest
650 * then we'd be unreachable at this point in time.
651 */
652 if (fp == sctp->sctp_primary &&
653 fp->sf_state != SCTP_FADDRS_UNREACH) {
654 sctp_set_faddr_current(sctp, fp);
655 return;
656 }
657 }
658 }
659
660 /*
661 * Return B_TRUE if there is still an active peer address with zero strikes;
662 * otherwise rturn B_FALSE.
663 */
664 boolean_t
sctp_is_a_faddr_clean(sctp_t * sctp)665 sctp_is_a_faddr_clean(sctp_t *sctp)
666 {
667 sctp_faddr_t *fp;
668
669 for (fp = sctp->sctp_faddrs; fp; fp = fp->sf_next) {
670 if (fp->sf_state == SCTP_FADDRS_ALIVE && fp->sf_strikes == 0) {
671 return (B_TRUE);
672 }
673 }
674
675 return (B_FALSE);
676 }
677
678 /*
679 * Returns 0 if there is at leave one other active faddr, -1 if there
680 * are none. If there are none left, faddr_dead() will start killing the
681 * association.
682 * If the downed faddr was the current faddr, a new current faddr
683 * will be chosen.
684 */
685 int
sctp_faddr_dead(sctp_t * sctp,sctp_faddr_t * fp,int newstate)686 sctp_faddr_dead(sctp_t *sctp, sctp_faddr_t *fp, int newstate)
687 {
688 sctp_faddr_t *ofp;
689 sctp_stack_t *sctps = sctp->sctp_sctps;
690
691 if (fp->sf_state == SCTP_FADDRS_ALIVE) {
692 sctp_intf_event(sctp, fp->sf_faddr, SCTP_ADDR_UNREACHABLE, 0);
693 }
694 fp->sf_state = newstate;
695
696 dprint(1, ("sctp_faddr_dead: %x:%x:%x:%x down (state=%d)\n",
697 SCTP_PRINTADDR(fp->sf_faddr), newstate));
698
699 if (fp == sctp->sctp_current) {
700 /* Current faddr down; need to switch it */
701 sctp->sctp_current = NULL;
702 }
703
704 /* Find next alive faddr */
705 ofp = fp;
706 for (fp = fp->sf_next; fp != NULL; fp = fp->sf_next) {
707 if (fp->sf_state == SCTP_FADDRS_ALIVE) {
708 break;
709 }
710 }
711
712 if (fp == NULL) {
713 /* Continue from beginning of list */
714 for (fp = sctp->sctp_faddrs; fp != ofp; fp = fp->sf_next) {
715 if (fp->sf_state == SCTP_FADDRS_ALIVE) {
716 break;
717 }
718 }
719 }
720
721 /*
722 * Find a new fp, so if the current faddr is dead, use the new fp
723 * as the current one.
724 */
725 if (fp != ofp) {
726 if (sctp->sctp_current == NULL) {
727 dprint(1, ("sctp_faddr_dead: failover->%x:%x:%x:%x\n",
728 SCTP_PRINTADDR(fp->sf_faddr)));
729 /*
730 * Note that we don't need to reset the source addr
731 * of the new fp.
732 */
733 sctp_set_faddr_current(sctp, fp);
734 }
735 return (0);
736 }
737
738
739 /* All faddrs are down; kill the association */
740 dprint(1, ("sctp_faddr_dead: all faddrs down, killing assoc\n"));
741 SCTPS_BUMP_MIB(sctps, sctpAborted);
742 sctp_assoc_event(sctp, sctp->sctp_state < SCTPS_ESTABLISHED ?
743 SCTP_CANT_STR_ASSOC : SCTP_COMM_LOST, 0, NULL);
744 sctp_clean_death(sctp, sctp->sctp_client_errno ?
745 sctp->sctp_client_errno : ETIMEDOUT);
746
747 return (-1);
748 }
749
750 sctp_faddr_t *
sctp_rotate_faddr(sctp_t * sctp,sctp_faddr_t * ofp)751 sctp_rotate_faddr(sctp_t *sctp, sctp_faddr_t *ofp)
752 {
753 sctp_faddr_t *nfp = NULL;
754 sctp_faddr_t *saved_fp = NULL;
755 int min_strikes;
756
757 if (ofp == NULL) {
758 ofp = sctp->sctp_current;
759 }
760 /* Nothing to do */
761 if (sctp->sctp_nfaddrs < 2)
762 return (ofp);
763
764 /*
765 * Find the next live peer address with zero strikes. In case
766 * there is none, find the one with the lowest number of strikes.
767 */
768 min_strikes = ofp->sf_strikes;
769 nfp = ofp->sf_next;
770 while (nfp != ofp) {
771 /* If reached end of list, continue scan from the head */
772 if (nfp == NULL) {
773 nfp = sctp->sctp_faddrs;
774 continue;
775 }
776 if (nfp->sf_state == SCTP_FADDRS_ALIVE) {
777 if (nfp->sf_strikes == 0)
778 break;
779 if (nfp->sf_strikes < min_strikes) {
780 min_strikes = nfp->sf_strikes;
781 saved_fp = nfp;
782 }
783 }
784 nfp = nfp->sf_next;
785 }
786 /* If reached the old address, there is no zero strike path */
787 if (nfp == ofp)
788 nfp = NULL;
789
790 /*
791 * If there is a peer address with zero strikes we use that, if not
792 * return a peer address with fewer strikes than the one last used,
793 * if neither exist we may as well stay with the old one.
794 */
795 if (nfp != NULL)
796 return (nfp);
797 if (saved_fp != NULL)
798 return (saved_fp);
799 return (ofp);
800 }
801
802 void
sctp_unlink_faddr(sctp_t * sctp,sctp_faddr_t * fp)803 sctp_unlink_faddr(sctp_t *sctp, sctp_faddr_t *fp)
804 {
805 sctp_faddr_t *fpp;
806
807 fpp = NULL;
808
809 if (!sctp->sctp_faddrs) {
810 return;
811 }
812
813 if (fp->sf_timer_mp != NULL) {
814 sctp_timer_free(fp->sf_timer_mp);
815 fp->sf_timer_mp = NULL;
816 fp->sf_timer_running = 0;
817 }
818 if (fp->sf_rc_timer_mp != NULL) {
819 sctp_timer_free(fp->sf_rc_timer_mp);
820 fp->sf_rc_timer_mp = NULL;
821 fp->sf_rc_timer_running = 0;
822 }
823 if (fp->sf_ixa != NULL) {
824 ixa_refrele(fp->sf_ixa);
825 fp->sf_ixa = NULL;
826 }
827
828 if (fp == sctp->sctp_faddrs) {
829 goto gotit;
830 }
831
832 for (fpp = sctp->sctp_faddrs; fpp->sf_next != fp; fpp = fpp->sf_next)
833 ;
834
835 gotit:
836 ASSERT(sctp->sctp_conn_tfp != NULL);
837 mutex_enter(&sctp->sctp_conn_tfp->tf_lock);
838 if (fp == sctp->sctp_faddrs) {
839 sctp->sctp_faddrs = fp->sf_next;
840 } else {
841 fpp->sf_next = fp->sf_next;
842 }
843 mutex_exit(&sctp->sctp_conn_tfp->tf_lock);
844 kmem_cache_free(sctp_kmem_faddr_cache, fp);
845 sctp->sctp_nfaddrs--;
846 }
847
848 void
sctp_zap_faddrs(sctp_t * sctp,int caller_holds_lock)849 sctp_zap_faddrs(sctp_t *sctp, int caller_holds_lock)
850 {
851 sctp_faddr_t *fp, *fpn;
852
853 if (sctp->sctp_faddrs == NULL) {
854 ASSERT(sctp->sctp_lastfaddr == NULL);
855 return;
856 }
857
858 ASSERT(sctp->sctp_lastfaddr != NULL);
859 sctp->sctp_lastfaddr = NULL;
860 sctp->sctp_current = NULL;
861 sctp->sctp_primary = NULL;
862
863 sctp_free_faddr_timers(sctp);
864
865 if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) {
866 /* in conn fanout; need to hold lock */
867 mutex_enter(&sctp->sctp_conn_tfp->tf_lock);
868 }
869
870 for (fp = sctp->sctp_faddrs; fp; fp = fpn) {
871 fpn = fp->sf_next;
872 if (fp->sf_ixa != NULL) {
873 ixa_refrele(fp->sf_ixa);
874 fp->sf_ixa = NULL;
875 }
876 kmem_cache_free(sctp_kmem_faddr_cache, fp);
877 sctp->sctp_nfaddrs--;
878 }
879
880 sctp->sctp_faddrs = NULL;
881 ASSERT(sctp->sctp_nfaddrs == 0);
882 if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) {
883 mutex_exit(&sctp->sctp_conn_tfp->tf_lock);
884 }
885
886 }
887
888 void
sctp_zap_addrs(sctp_t * sctp)889 sctp_zap_addrs(sctp_t *sctp)
890 {
891 sctp_zap_faddrs(sctp, 0);
892 sctp_free_saddrs(sctp);
893 }
894
895 /*
896 * Build two SCTP header templates; one for IPv4 and one for IPv6.
897 * Store them in sctp_iphc and sctp_iphc6 respectively (and related fields).
898 * There are no IP addresses in the templates, but the port numbers and
899 * verifier are field in from the conn_t and sctp_t.
900 *
901 * Returns failure if can't allocate memory, or if there is a problem
902 * with a routing header/option.
903 *
904 * We allocate space for the minimum sctp header (sctp_hdr_t).
905 *
906 * We massage an routing option/header. There is no checksum implication
907 * for a routing header for sctp.
908 *
909 * Caller needs to update conn_wroff if desired.
910 *
911 * TSol notes: This assumes that a SCTP association has a single peer label
912 * since we only track a single pair of ipp_label_v4/v6 and not a separate one
913 * for each faddr.
914 */
915 int
sctp_build_hdrs(sctp_t * sctp,int sleep)916 sctp_build_hdrs(sctp_t *sctp, int sleep)
917 {
918 conn_t *connp = sctp->sctp_connp;
919 ip_pkt_t *ipp = &connp->conn_xmit_ipp;
920 uint_t ip_hdr_length;
921 uchar_t *hdrs;
922 uint_t hdrs_len;
923 uint_t ulp_hdr_length = sizeof (sctp_hdr_t);
924 ipha_t *ipha;
925 ip6_t *ip6h;
926 sctp_hdr_t *sctph;
927 in6_addr_t v6src, v6dst;
928 ipaddr_t v4src, v4dst;
929
930 v4src = connp->conn_saddr_v4;
931 v4dst = connp->conn_faddr_v4;
932 v6src = connp->conn_saddr_v6;
933 v6dst = connp->conn_faddr_v6;
934
935 /* First do IPv4 header */
936 ip_hdr_length = ip_total_hdrs_len_v4(ipp);
937
938 /* In case of TX label and IP options it can be too much */
939 if (ip_hdr_length > IP_MAX_HDR_LENGTH) {
940 /* Preserves existing TX errno for this */
941 return (EHOSTUNREACH);
942 }
943 hdrs_len = ip_hdr_length + ulp_hdr_length;
944 ASSERT(hdrs_len != 0);
945
946 if (hdrs_len != sctp->sctp_iphc_len) {
947 /* Allocate new before we free any old */
948 hdrs = kmem_alloc(hdrs_len, sleep);
949 if (hdrs == NULL)
950 return (ENOMEM);
951
952 if (sctp->sctp_iphc != NULL)
953 kmem_free(sctp->sctp_iphc, sctp->sctp_iphc_len);
954 sctp->sctp_iphc = hdrs;
955 sctp->sctp_iphc_len = hdrs_len;
956 } else {
957 hdrs = sctp->sctp_iphc;
958 }
959 sctp->sctp_hdr_len = sctp->sctp_iphc_len;
960 sctp->sctp_ip_hdr_len = ip_hdr_length;
961
962 sctph = (sctp_hdr_t *)(hdrs + ip_hdr_length);
963 sctp->sctp_sctph = sctph;
964 sctph->sh_sport = connp->conn_lport;
965 sctph->sh_dport = connp->conn_fport;
966 sctph->sh_verf = sctp->sctp_fvtag;
967 sctph->sh_chksum = 0;
968
969 ipha = (ipha_t *)hdrs;
970 sctp->sctp_ipha = ipha;
971
972 ipha->ipha_src = v4src;
973 ipha->ipha_dst = v4dst;
974 ip_build_hdrs_v4(hdrs, ip_hdr_length, ipp, connp->conn_proto);
975 ipha->ipha_length = htons(hdrs_len);
976 ipha->ipha_fragment_offset_and_flags = 0;
977
978 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS)
979 (void) ip_massage_options(ipha, connp->conn_netstack);
980
981 /* Now IPv6 */
982 ip_hdr_length = ip_total_hdrs_len_v6(ipp);
983 hdrs_len = ip_hdr_length + ulp_hdr_length;
984 ASSERT(hdrs_len != 0);
985
986 if (hdrs_len != sctp->sctp_iphc6_len) {
987 /* Allocate new before we free any old */
988 hdrs = kmem_alloc(hdrs_len, sleep);
989 if (hdrs == NULL)
990 return (ENOMEM);
991
992 if (sctp->sctp_iphc6 != NULL)
993 kmem_free(sctp->sctp_iphc6, sctp->sctp_iphc6_len);
994 sctp->sctp_iphc6 = hdrs;
995 sctp->sctp_iphc6_len = hdrs_len;
996 } else {
997 hdrs = sctp->sctp_iphc6;
998 }
999 sctp->sctp_hdr6_len = sctp->sctp_iphc6_len;
1000 sctp->sctp_ip_hdr6_len = ip_hdr_length;
1001
1002 sctph = (sctp_hdr_t *)(hdrs + ip_hdr_length);
1003 sctp->sctp_sctph6 = sctph;
1004 sctph->sh_sport = connp->conn_lport;
1005 sctph->sh_dport = connp->conn_fport;
1006 sctph->sh_verf = sctp->sctp_fvtag;
1007 sctph->sh_chksum = 0;
1008
1009 ip6h = (ip6_t *)hdrs;
1010 sctp->sctp_ip6h = ip6h;
1011
1012 ip6h->ip6_src = v6src;
1013 ip6h->ip6_dst = v6dst;
1014 ip_build_hdrs_v6(hdrs, ip_hdr_length, ipp, connp->conn_proto,
1015 connp->conn_flowinfo);
1016 ip6h->ip6_plen = htons(hdrs_len - IPV6_HDR_LEN);
1017
1018 if (ipp->ipp_fields & IPPF_RTHDR) {
1019 uint8_t *end;
1020 ip6_rthdr_t *rth;
1021
1022 end = (uint8_t *)ip6h + ip_hdr_length;
1023 rth = ip_find_rthdr_v6(ip6h, end);
1024 if (rth != NULL) {
1025 (void) ip_massage_options_v6(ip6h, rth,
1026 connp->conn_netstack);
1027 }
1028
1029 /*
1030 * Verify that the first hop isn't a mapped address.
1031 * Routers along the path need to do this verification
1032 * for subsequent hops.
1033 */
1034 if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst))
1035 return (EADDRNOTAVAIL);
1036 }
1037 return (0);
1038 }
1039
1040 static int
sctp_v4_label(sctp_t * sctp,sctp_faddr_t * fp)1041 sctp_v4_label(sctp_t *sctp, sctp_faddr_t *fp)
1042 {
1043 conn_t *connp = sctp->sctp_connp;
1044
1045 ASSERT(fp->sf_ixa->ixa_flags & IXAF_IS_IPV4);
1046 return (conn_update_label(connp, fp->sf_ixa, &fp->sf_faddr,
1047 &connp->conn_xmit_ipp));
1048 }
1049
1050 static int
sctp_v6_label(sctp_t * sctp,sctp_faddr_t * fp)1051 sctp_v6_label(sctp_t *sctp, sctp_faddr_t *fp)
1052 {
1053 conn_t *connp = sctp->sctp_connp;
1054
1055 ASSERT(!(fp->sf_ixa->ixa_flags & IXAF_IS_IPV4));
1056 return (conn_update_label(connp, fp->sf_ixa, &fp->sf_faddr,
1057 &connp->conn_xmit_ipp));
1058 }
1059
1060 /*
1061 * XXX implement more sophisticated logic
1062 *
1063 * Tsol note: We have already verified the addresses using tsol_check_dest
1064 * in sctp_add_faddr, thus no need to redo that here.
1065 * We do setup ipp_label_v4 and ipp_label_v6 based on which addresses
1066 * we have.
1067 */
1068 int
sctp_set_hdraddrs(sctp_t * sctp)1069 sctp_set_hdraddrs(sctp_t *sctp)
1070 {
1071 sctp_faddr_t *fp;
1072 int gotv4 = 0;
1073 int gotv6 = 0;
1074 conn_t *connp = sctp->sctp_connp;
1075
1076 ASSERT(sctp->sctp_faddrs != NULL);
1077 ASSERT(sctp->sctp_nsaddrs > 0);
1078
1079 /* Set up using the primary first */
1080 connp->conn_faddr_v6 = sctp->sctp_primary->sf_faddr;
1081 /* saddr may be unspec; make_mp() will handle this */
1082 connp->conn_saddr_v6 = sctp->sctp_primary->sf_saddr;
1083 connp->conn_laddr_v6 = connp->conn_saddr_v6;
1084 if (IN6_IS_ADDR_V4MAPPED(&sctp->sctp_primary->sf_faddr)) {
1085 if (!is_system_labeled() ||
1086 sctp_v4_label(sctp, sctp->sctp_primary) == 0) {
1087 gotv4 = 1;
1088 if (connp->conn_family == AF_INET) {
1089 goto done;
1090 }
1091 }
1092 } else {
1093 if (!is_system_labeled() ||
1094 sctp_v6_label(sctp, sctp->sctp_primary) == 0) {
1095 gotv6 = 1;
1096 }
1097 }
1098
1099 for (fp = sctp->sctp_faddrs; fp; fp = fp->sf_next) {
1100 if (!gotv4 && IN6_IS_ADDR_V4MAPPED(&fp->sf_faddr)) {
1101 if (!is_system_labeled() ||
1102 sctp_v4_label(sctp, fp) == 0) {
1103 gotv4 = 1;
1104 if (connp->conn_family == AF_INET || gotv6) {
1105 break;
1106 }
1107 }
1108 } else if (!gotv6 && !IN6_IS_ADDR_V4MAPPED(&fp->sf_faddr)) {
1109 if (!is_system_labeled() ||
1110 sctp_v6_label(sctp, fp) == 0) {
1111 gotv6 = 1;
1112 if (gotv4)
1113 break;
1114 }
1115 }
1116 }
1117
1118 done:
1119 if (!gotv4 && !gotv6)
1120 return (EACCES);
1121
1122 return (0);
1123 }
1124
1125 /*
1126 * got_errchunk is set B_TRUE only if called from validate_init_params(), when
1127 * an ERROR chunk is already prepended the size of which needs updating for
1128 * additional unrecognized parameters. Other callers either prepend the ERROR
1129 * chunk with the correct size after calling this function, or they are calling
1130 * to add an invalid parameter to an INIT_ACK chunk, in that case no ERROR chunk
1131 * exists, the CAUSE blocks go into the INIT_ACK directly.
1132 *
1133 * *errmp will be non-NULL both when adding an additional CAUSE block to an
1134 * existing prepended COOKIE ERROR chunk (processing params of an INIT_ACK),
1135 * and when adding unrecognized parameters after the first, to an INIT_ACK
1136 * (processing params of an INIT chunk).
1137 */
1138 void
sctp_add_unrec_parm(sctp_parm_hdr_t * uph,mblk_t ** errmp,boolean_t got_errchunk)1139 sctp_add_unrec_parm(sctp_parm_hdr_t *uph, mblk_t **errmp,
1140 boolean_t got_errchunk)
1141 {
1142 mblk_t *mp;
1143 sctp_parm_hdr_t *ph;
1144 size_t len;
1145 int pad;
1146 sctp_chunk_hdr_t *ecp;
1147
1148 len = sizeof (*ph) + ntohs(uph->sph_len);
1149 if ((pad = len % SCTP_ALIGN) != 0) {
1150 pad = SCTP_ALIGN - pad;
1151 len += pad;
1152 }
1153 mp = allocb(len, BPRI_MED);
1154 if (mp == NULL) {
1155 return;
1156 }
1157
1158 ph = (sctp_parm_hdr_t *)(mp->b_rptr);
1159 ph->sph_type = htons(PARM_UNRECOGNIZED);
1160 ph->sph_len = htons(len - pad);
1161
1162 /* copy in the unrecognized parameter */
1163 bcopy(uph, ph + 1, ntohs(uph->sph_len));
1164
1165 if (pad != 0)
1166 bzero((mp->b_rptr + len - pad), pad);
1167
1168 mp->b_wptr = mp->b_rptr + len;
1169 if (*errmp != NULL) {
1170 /*
1171 * Update total length if an ERROR chunk, then link
1172 * this CAUSE block to the possible chain of CAUSE
1173 * blocks attached to the ERROR chunk or INIT_ACK
1174 * being created.
1175 */
1176 if (got_errchunk) {
1177 /* ERROR chunk already prepended */
1178 ecp = (sctp_chunk_hdr_t *)((*errmp)->b_rptr);
1179 ecp->sch_len = htons(ntohs(ecp->sch_len) + len);
1180 }
1181 linkb(*errmp, mp);
1182 } else {
1183 *errmp = mp;
1184 }
1185 }
1186
1187 /*
1188 * o Bounds checking
1189 * o Updates remaining
1190 * o Checks alignment
1191 */
1192 sctp_parm_hdr_t *
sctp_next_parm(sctp_parm_hdr_t * current,ssize_t * remaining)1193 sctp_next_parm(sctp_parm_hdr_t *current, ssize_t *remaining)
1194 {
1195 int pad;
1196 uint16_t len;
1197
1198 len = ntohs(current->sph_len);
1199 *remaining -= len;
1200 if (*remaining < sizeof (*current) || len < sizeof (*current)) {
1201 return (NULL);
1202 }
1203 if ((pad = len & (SCTP_ALIGN - 1)) != 0) {
1204 pad = SCTP_ALIGN - pad;
1205 *remaining -= pad;
1206 }
1207 /*LINTED pointer cast may result in improper alignment*/
1208 current = (sctp_parm_hdr_t *)((char *)current + len + pad);
1209 return (current);
1210 }
1211
1212 /*
1213 * Sets the address parameters given in the INIT chunk into sctp's
1214 * faddrs; if psctp is non-NULL, copies psctp's saddrs. If there are
1215 * no address parameters in the INIT chunk, a single faddr is created
1216 * from the ip hdr at the beginning of pkt.
1217 * If there already are existing addresses hanging from sctp, merge
1218 * them in, if the old info contains addresses which are not present
1219 * in this new info, get rid of them, and clean the pointers if there's
1220 * messages which have this as their target address.
1221 *
1222 * We also re-adjust the source address list here since the list may
1223 * contain more than what is actually part of the association. If
1224 * we get here from sctp_send_cookie_echo(), we are on the active
1225 * side and psctp will be NULL and ich will be the INIT-ACK chunk.
1226 * If we get here from sctp_accept_comm(), ich will be the INIT chunk
1227 * and psctp will the listening endpoint.
1228 *
1229 * INIT processing: When processing the INIT we inherit the src address
1230 * list from the listener. For a loopback or linklocal association, we
1231 * delete the list and just take the address from the IP header (since
1232 * that's how we created the INIT-ACK). Additionally, for loopback we
1233 * ignore the address params in the INIT. For determining which address
1234 * types were sent in the INIT-ACK we follow the same logic as in
1235 * creating the INIT-ACK. We delete addresses of the type that are not
1236 * supported by the peer.
1237 *
1238 * INIT-ACK processing: When processing the INIT-ACK since we had not
1239 * included addr params for loopback or linklocal addresses when creating
1240 * the INIT, we just use the address from the IP header. Further, for
1241 * loopback we ignore the addr param list. We mark addresses of the
1242 * type not supported by the peer as unconfirmed.
1243 *
1244 * In case of INIT processing we look for supported address types in the
1245 * supported address param, if present. In both cases the address type in
1246 * the IP header is supported as well as types for addresses in the param
1247 * list, if any.
1248 *
1249 * Once we have the supported address types sctp_check_saddr() runs through
1250 * the source address list and deletes or marks as unconfirmed address of
1251 * types not supported by the peer.
1252 *
1253 * Returns 0 on success, sys errno on failure
1254 */
1255 int
sctp_get_addrparams(sctp_t * sctp,sctp_t * psctp,mblk_t * pkt,sctp_chunk_hdr_t * ich,uint_t * sctp_options)1256 sctp_get_addrparams(sctp_t *sctp, sctp_t *psctp, mblk_t *pkt,
1257 sctp_chunk_hdr_t *ich, uint_t *sctp_options)
1258 {
1259 sctp_init_chunk_t *init;
1260 ipha_t *iph;
1261 ip6_t *ip6h;
1262 in6_addr_t hdrsaddr[1];
1263 in6_addr_t hdrdaddr[1];
1264 sctp_parm_hdr_t *ph;
1265 ssize_t remaining;
1266 int isv4;
1267 int err;
1268 sctp_faddr_t *fp;
1269 int supp_af = 0;
1270 boolean_t check_saddr = B_TRUE;
1271 in6_addr_t curaddr;
1272 sctp_stack_t *sctps = sctp->sctp_sctps;
1273 conn_t *connp = sctp->sctp_connp;
1274
1275 if (sctp_options != NULL)
1276 *sctp_options = 0;
1277
1278 /* extract the address from the IP header */
1279 isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION);
1280 if (isv4) {
1281 iph = (ipha_t *)pkt->b_rptr;
1282 IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdrsaddr);
1283 IN6_IPADDR_TO_V4MAPPED(iph->ipha_dst, hdrdaddr);
1284 supp_af |= PARM_SUPP_V4;
1285 } else {
1286 ip6h = (ip6_t *)pkt->b_rptr;
1287 hdrsaddr[0] = ip6h->ip6_src;
1288 hdrdaddr[0] = ip6h->ip6_dst;
1289 supp_af |= PARM_SUPP_V6;
1290 }
1291
1292 /*
1293 * Unfortunately, we can't delay this because adding an faddr
1294 * looks for the presence of the source address (from the ire
1295 * for the faddr) in the source address list. We could have
1296 * delayed this if, say, this was a loopback/linklocal connection.
1297 * Now, we just end up nuking this list and taking the addr from
1298 * the IP header for loopback/linklocal.
1299 */
1300 if (psctp != NULL && psctp->sctp_nsaddrs > 0) {
1301 ASSERT(sctp->sctp_nsaddrs == 0);
1302
1303 err = sctp_dup_saddrs(psctp, sctp, KM_NOSLEEP);
1304 if (err != 0)
1305 return (err);
1306 }
1307 /*
1308 * We will add the faddr before parsing the address list as this
1309 * might be a loopback connection and we would not have to
1310 * go through the list.
1311 *
1312 * Make sure the header's addr is in the list
1313 */
1314 fp = sctp_lookup_faddr(sctp, hdrsaddr);
1315 if (fp == NULL) {
1316 /* not included; add it now */
1317 err = sctp_add_faddr(sctp, hdrsaddr, KM_NOSLEEP, B_TRUE);
1318 if (err != 0)
1319 return (err);
1320
1321 /* sctp_faddrs will be the hdr addr */
1322 fp = sctp->sctp_faddrs;
1323 }
1324 /* make the header addr the primary */
1325
1326 if (cl_sctp_assoc_change != NULL && psctp == NULL)
1327 curaddr = sctp->sctp_current->sf_faddr;
1328
1329 sctp->sctp_primary = fp;
1330 sctp->sctp_current = fp;
1331 sctp->sctp_mss = fp->sf_pmss;
1332
1333 /* For loopback connections & linklocal get address from the header */
1334 if (sctp->sctp_loopback || sctp->sctp_linklocal) {
1335 if (sctp->sctp_nsaddrs != 0)
1336 sctp_free_saddrs(sctp);
1337 if ((err = sctp_saddr_add_addr(sctp, hdrdaddr, 0)) != 0)
1338 return (err);
1339 /* For loopback ignore address list */
1340 if (sctp->sctp_loopback)
1341 return (0);
1342 check_saddr = B_FALSE;
1343 }
1344
1345 /* Walk the params in the INIT [ACK], pulling out addr params */
1346 remaining = ntohs(ich->sch_len) - sizeof (*ich) -
1347 sizeof (sctp_init_chunk_t);
1348 if (remaining < sizeof (*ph)) {
1349 if (check_saddr) {
1350 sctp_check_saddr(sctp, supp_af, psctp == NULL ?
1351 B_FALSE : B_TRUE, hdrdaddr);
1352 }
1353 ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL);
1354 return (0);
1355 }
1356
1357 init = (sctp_init_chunk_t *)(ich + 1);
1358 ph = (sctp_parm_hdr_t *)(init + 1);
1359
1360 /* params will have already been byteordered when validating */
1361 while (ph != NULL) {
1362 if (ph->sph_type == htons(PARM_SUPP_ADDRS)) {
1363 int plen;
1364 uint16_t *p;
1365 uint16_t addrtype;
1366
1367 ASSERT(psctp != NULL);
1368 plen = ntohs(ph->sph_len);
1369 p = (uint16_t *)(ph + 1);
1370 while (plen > 0) {
1371 addrtype = ntohs(*p);
1372 switch (addrtype) {
1373 case PARM_ADDR6:
1374 supp_af |= PARM_SUPP_V6;
1375 break;
1376 case PARM_ADDR4:
1377 supp_af |= PARM_SUPP_V4;
1378 break;
1379 default:
1380 break;
1381 }
1382 p++;
1383 plen -= sizeof (*p);
1384 }
1385 } else if (ph->sph_type == htons(PARM_ADDR4)) {
1386 if (remaining >= PARM_ADDR4_LEN) {
1387 in6_addr_t addr;
1388 ipaddr_t ta;
1389
1390 supp_af |= PARM_SUPP_V4;
1391 /*
1392 * Screen out broad/multicasts & loopback.
1393 * If the endpoint only accepts v6 address,
1394 * go to the next one.
1395 *
1396 * Subnet broadcast check is done in
1397 * sctp_add_faddr(). If the address is
1398 * a broadcast address, it won't be added.
1399 */
1400 bcopy(ph + 1, &ta, sizeof (ta));
1401 if (ta == 0 ||
1402 ta == INADDR_BROADCAST ||
1403 ta == htonl(INADDR_LOOPBACK) ||
1404 CLASSD(ta) || connp->conn_ipv6_v6only) {
1405 goto next;
1406 }
1407 IN6_INADDR_TO_V4MAPPED((struct in_addr *)
1408 (ph + 1), &addr);
1409
1410 /* Check for duplicate. */
1411 if (sctp_lookup_faddr(sctp, &addr) != NULL)
1412 goto next;
1413
1414 /* OK, add it to the faddr set */
1415 err = sctp_add_faddr(sctp, &addr, KM_NOSLEEP,
1416 B_FALSE);
1417 /* Something is wrong... Try the next one. */
1418 if (err != 0)
1419 goto next;
1420 }
1421 } else if (ph->sph_type == htons(PARM_ADDR6) &&
1422 connp->conn_family == AF_INET6) {
1423 /* An v4 socket should not take v6 addresses. */
1424 if (remaining >= PARM_ADDR6_LEN) {
1425 in6_addr_t *addr6;
1426
1427 supp_af |= PARM_SUPP_V6;
1428 addr6 = (in6_addr_t *)(ph + 1);
1429 /*
1430 * Screen out link locals, mcast, loopback
1431 * and bogus v6 address.
1432 */
1433 if (IN6_IS_ADDR_LINKLOCAL(addr6) ||
1434 IN6_IS_ADDR_MULTICAST(addr6) ||
1435 IN6_IS_ADDR_LOOPBACK(addr6) ||
1436 IN6_IS_ADDR_V4MAPPED(addr6)) {
1437 goto next;
1438 }
1439 /* Check for duplicate. */
1440 if (sctp_lookup_faddr(sctp, addr6) != NULL)
1441 goto next;
1442
1443 err = sctp_add_faddr(sctp,
1444 (in6_addr_t *)(ph + 1), KM_NOSLEEP,
1445 B_FALSE);
1446 /* Something is wrong... Try the next one. */
1447 if (err != 0)
1448 goto next;
1449 }
1450 } else if (ph->sph_type == htons(PARM_FORWARD_TSN)) {
1451 if (sctp_options != NULL)
1452 *sctp_options |= SCTP_PRSCTP_OPTION;
1453 } /* else; skip */
1454
1455 next:
1456 ph = sctp_next_parm(ph, &remaining);
1457 }
1458 if (check_saddr) {
1459 sctp_check_saddr(sctp, supp_af, psctp == NULL ? B_FALSE :
1460 B_TRUE, hdrdaddr);
1461 }
1462 ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL);
1463 /*
1464 * We have the right address list now, update clustering's
1465 * knowledge because when we sent the INIT we had just added
1466 * the address the INIT was sent to.
1467 */
1468 if (psctp == NULL && cl_sctp_assoc_change != NULL) {
1469 uchar_t *alist;
1470 size_t asize;
1471 uchar_t *dlist;
1472 size_t dsize;
1473
1474 asize = sizeof (in6_addr_t) * sctp->sctp_nfaddrs;
1475 alist = kmem_alloc(asize, KM_NOSLEEP);
1476 if (alist == NULL) {
1477 SCTP_KSTAT(sctps, sctp_cl_assoc_change);
1478 return (ENOMEM);
1479 }
1480 /*
1481 * Just include the address the INIT was sent to in the
1482 * delete list and send the entire faddr list. We could
1483 * do it differently (i.e include all the addresses in the
1484 * add list even if it contains the original address OR
1485 * remove the original address from the add list etc.), but
1486 * this seems reasonable enough.
1487 */
1488 dsize = sizeof (in6_addr_t);
1489 dlist = kmem_alloc(dsize, KM_NOSLEEP);
1490 if (dlist == NULL) {
1491 kmem_free(alist, asize);
1492 SCTP_KSTAT(sctps, sctp_cl_assoc_change);
1493 return (ENOMEM);
1494 }
1495 bcopy(&curaddr, dlist, sizeof (curaddr));
1496 sctp_get_faddr_list(sctp, alist, asize);
1497 (*cl_sctp_assoc_change)(connp->conn_family, alist, asize,
1498 sctp->sctp_nfaddrs, dlist, dsize, 1, SCTP_CL_PADDR,
1499 (cl_sctp_handle_t)sctp);
1500 /* alist and dlist will be freed by the clustering module */
1501 }
1502 return (0);
1503 }
1504
1505 /*
1506 * Returns 0 if the check failed and the restart should be refused,
1507 * 1 if the check succeeded.
1508 */
1509 int
sctp_secure_restart_check(mblk_t * pkt,sctp_chunk_hdr_t * ich,uint32_t ports,int sleep,sctp_stack_t * sctps,ip_recv_attr_t * ira)1510 sctp_secure_restart_check(mblk_t *pkt, sctp_chunk_hdr_t *ich, uint32_t ports,
1511 int sleep, sctp_stack_t *sctps, ip_recv_attr_t *ira)
1512 {
1513 sctp_faddr_t *fp, *fphead = NULL;
1514 sctp_parm_hdr_t *ph;
1515 ssize_t remaining;
1516 int isv4;
1517 ipha_t *iph;
1518 ip6_t *ip6h;
1519 in6_addr_t hdraddr[1];
1520 int retval = 0;
1521 sctp_tf_t *tf;
1522 sctp_t *sctp;
1523 int compres;
1524 sctp_init_chunk_t *init;
1525 int nadded = 0;
1526
1527 /* extract the address from the IP header */
1528 isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION);
1529 if (isv4) {
1530 iph = (ipha_t *)pkt->b_rptr;
1531 IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdraddr);
1532 } else {
1533 ip6h = (ip6_t *)pkt->b_rptr;
1534 hdraddr[0] = ip6h->ip6_src;
1535 }
1536
1537 /* Walk the params in the INIT [ACK], pulling out addr params */
1538 remaining = ntohs(ich->sch_len) - sizeof (*ich) -
1539 sizeof (sctp_init_chunk_t);
1540 if (remaining < sizeof (*ph)) {
1541 /* no parameters; restart OK */
1542 return (1);
1543 }
1544 init = (sctp_init_chunk_t *)(ich + 1);
1545 ph = (sctp_parm_hdr_t *)(init + 1);
1546
1547 while (ph != NULL) {
1548 sctp_faddr_t *fpa = NULL;
1549
1550 /* params will have already been byteordered when validating */
1551 if (ph->sph_type == htons(PARM_ADDR4)) {
1552 if (remaining >= PARM_ADDR4_LEN) {
1553 in6_addr_t addr;
1554 IN6_INADDR_TO_V4MAPPED((struct in_addr *)
1555 (ph + 1), &addr);
1556 fpa = kmem_cache_alloc(sctp_kmem_faddr_cache,
1557 sleep);
1558 if (fpa == NULL) {
1559 goto done;
1560 }
1561 bzero(fpa, sizeof (*fpa));
1562 fpa->sf_faddr = addr;
1563 fpa->sf_next = NULL;
1564 }
1565 } else if (ph->sph_type == htons(PARM_ADDR6)) {
1566 if (remaining >= PARM_ADDR6_LEN) {
1567 fpa = kmem_cache_alloc(sctp_kmem_faddr_cache,
1568 sleep);
1569 if (fpa == NULL) {
1570 goto done;
1571 }
1572 bzero(fpa, sizeof (*fpa));
1573 bcopy(ph + 1, &fpa->sf_faddr,
1574 sizeof (fpa->sf_faddr));
1575 fpa->sf_next = NULL;
1576 }
1577 }
1578 /* link in the new addr, if it was an addr param */
1579 if (fpa != NULL) {
1580 if (fphead == NULL) {
1581 fphead = fpa;
1582 } else {
1583 fpa->sf_next = fphead;
1584 fphead = fpa;
1585 }
1586 }
1587
1588 ph = sctp_next_parm(ph, &remaining);
1589 }
1590
1591 if (fphead == NULL) {
1592 /* no addr parameters; restart OK */
1593 return (1);
1594 }
1595
1596 /*
1597 * got at least one; make sure the header's addr is
1598 * in the list
1599 */
1600 fp = sctp_lookup_faddr_nosctp(fphead, hdraddr);
1601 if (fp == NULL) {
1602 /* not included; add it now */
1603 fp = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep);
1604 if (fp == NULL) {
1605 goto done;
1606 }
1607 bzero(fp, sizeof (*fp));
1608 fp->sf_faddr = *hdraddr;
1609 fp->sf_next = fphead;
1610 fphead = fp;
1611 }
1612
1613 /*
1614 * Now, we can finally do the check: For each sctp instance
1615 * on the hash line for ports, compare its faddr set against
1616 * the new one. If the new one is a strict subset of any
1617 * existing sctp's faddrs, the restart is OK. However, if there
1618 * is an overlap, this could be an attack, so return failure.
1619 * If all sctp's faddrs are disjoint, this is a legitimate new
1620 * association.
1621 */
1622 tf = &(sctps->sctps_conn_fanout[SCTP_CONN_HASH(sctps, ports)]);
1623 mutex_enter(&tf->tf_lock);
1624
1625 for (sctp = tf->tf_sctp; sctp; sctp = sctp->sctp_conn_hash_next) {
1626 if (ports != sctp->sctp_connp->conn_ports) {
1627 continue;
1628 }
1629 compres = sctp_compare_faddrsets(fphead, sctp->sctp_faddrs);
1630 if (compres <= SCTP_ADDR_SUBSET) {
1631 retval = 1;
1632 mutex_exit(&tf->tf_lock);
1633 goto done;
1634 }
1635 if (compres == SCTP_ADDR_OVERLAP) {
1636 dprint(1,
1637 ("new assoc from %x:%x:%x:%x overlaps with %p\n",
1638 SCTP_PRINTADDR(*hdraddr), (void *)sctp));
1639 /*
1640 * While we still hold the lock, we need to
1641 * figure out which addresses have been
1642 * added so we can include them in the abort
1643 * we will send back. Since these faddrs will
1644 * never be used, we overload the rto field
1645 * here, setting it to 0 if the address was
1646 * not added, 1 if it was added.
1647 */
1648 for (fp = fphead; fp; fp = fp->sf_next) {
1649 if (sctp_lookup_faddr(sctp, &fp->sf_faddr)) {
1650 fp->sf_rto = 0;
1651 } else {
1652 fp->sf_rto = 1;
1653 nadded++;
1654 }
1655 }
1656 mutex_exit(&tf->tf_lock);
1657 goto done;
1658 }
1659 }
1660 mutex_exit(&tf->tf_lock);
1661
1662 /* All faddrs are disjoint; legit new association */
1663 retval = 1;
1664
1665 done:
1666 /* If are attempted adds, send back an abort listing the addrs */
1667 if (nadded > 0) {
1668 void *dtail;
1669 size_t dlen;
1670
1671 dtail = kmem_alloc(PARM_ADDR6_LEN * nadded, KM_NOSLEEP);
1672 if (dtail == NULL) {
1673 goto cleanup;
1674 }
1675
1676 ph = dtail;
1677 dlen = 0;
1678 for (fp = fphead; fp; fp = fp->sf_next) {
1679 if (fp->sf_rto == 0) {
1680 continue;
1681 }
1682 if (IN6_IS_ADDR_V4MAPPED(&fp->sf_faddr)) {
1683 ipaddr_t addr4;
1684
1685 ph->sph_type = htons(PARM_ADDR4);
1686 ph->sph_len = htons(PARM_ADDR4_LEN);
1687 IN6_V4MAPPED_TO_IPADDR(&fp->sf_faddr, addr4);
1688 ph++;
1689 bcopy(&addr4, ph, sizeof (addr4));
1690 ph = (sctp_parm_hdr_t *)
1691 ((char *)ph + sizeof (addr4));
1692 dlen += PARM_ADDR4_LEN;
1693 } else {
1694 ph->sph_type = htons(PARM_ADDR6);
1695 ph->sph_len = htons(PARM_ADDR6_LEN);
1696 ph++;
1697 bcopy(&fp->sf_faddr, ph, sizeof (fp->sf_faddr));
1698 ph = (sctp_parm_hdr_t *)
1699 ((char *)ph + sizeof (fp->sf_faddr));
1700 dlen += PARM_ADDR6_LEN;
1701 }
1702 }
1703
1704 /* Send off the abort */
1705 sctp_send_abort(sctp, sctp_init2vtag(ich),
1706 SCTP_ERR_RESTART_NEW_ADDRS, dtail, dlen, pkt, 0, B_TRUE,
1707 ira);
1708
1709 kmem_free(dtail, PARM_ADDR6_LEN * nadded);
1710 }
1711
1712 cleanup:
1713 /* Clean up */
1714 if (fphead) {
1715 sctp_faddr_t *fpn;
1716 for (fp = fphead; fp; fp = fpn) {
1717 fpn = fp->sf_next;
1718 if (fp->sf_ixa != NULL) {
1719 ixa_refrele(fp->sf_ixa);
1720 fp->sf_ixa = NULL;
1721 }
1722 kmem_cache_free(sctp_kmem_faddr_cache, fp);
1723 }
1724 }
1725
1726 return (retval);
1727 }
1728
1729 /*
1730 * Reset any state related to transmitted chunks.
1731 */
1732 void
sctp_congest_reset(sctp_t * sctp)1733 sctp_congest_reset(sctp_t *sctp)
1734 {
1735 sctp_faddr_t *fp;
1736 sctp_stack_t *sctps = sctp->sctp_sctps;
1737 mblk_t *mp;
1738
1739 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->sf_next) {
1740 fp->sf_ssthresh = sctps->sctps_initial_mtu;
1741 SET_CWND(fp, fp->sf_pmss, sctps->sctps_slow_start_initial);
1742 fp->sf_suna = 0;
1743 fp->sf_pba = 0;
1744 }
1745 /*
1746 * Clean up the transmit list as well since we have reset accounting
1747 * on all the fps. Send event upstream, if required.
1748 */
1749 while ((mp = sctp->sctp_xmit_head) != NULL) {
1750 sctp->sctp_xmit_head = mp->b_next;
1751 mp->b_next = NULL;
1752 if (sctp->sctp_xmit_head != NULL)
1753 sctp->sctp_xmit_head->b_prev = NULL;
1754 sctp_sendfail_event(sctp, mp, 0, B_TRUE);
1755 }
1756 sctp->sctp_xmit_head = NULL;
1757 sctp->sctp_xmit_tail = NULL;
1758 sctp->sctp_xmit_unacked = NULL;
1759
1760 sctp->sctp_unacked = 0;
1761 /*
1762 * Any control message as well. We will clean-up this list as well.
1763 * This contains any pending ASCONF request that we have queued/sent.
1764 * If we do get an ACK we will just drop it. However, given that
1765 * we are restarting chances are we aren't going to get any.
1766 */
1767 if (sctp->sctp_cxmit_list != NULL)
1768 sctp_asconf_free_cxmit(sctp, NULL);
1769 sctp->sctp_cxmit_list = NULL;
1770 sctp->sctp_cchunk_pend = 0;
1771
1772 sctp->sctp_rexmitting = B_FALSE;
1773 sctp->sctp_rxt_nxttsn = 0;
1774 sctp->sctp_rxt_maxtsn = 0;
1775
1776 sctp->sctp_zero_win_probe = B_FALSE;
1777 }
1778
1779 static void
sctp_init_faddr(sctp_t * sctp,sctp_faddr_t * fp,in6_addr_t * addr,mblk_t * timer_mp)1780 sctp_init_faddr(sctp_t *sctp, sctp_faddr_t *fp, in6_addr_t *addr,
1781 mblk_t *timer_mp)
1782 {
1783 sctp_stack_t *sctps = sctp->sctp_sctps;
1784
1785 ASSERT(fp->sf_ixa != NULL);
1786
1787 bcopy(addr, &fp->sf_faddr, sizeof (*addr));
1788 if (IN6_IS_ADDR_V4MAPPED(addr)) {
1789 fp->sf_isv4 = 1;
1790 /* Make sure that sf_pmss is a multiple of SCTP_ALIGN. */
1791 fp->sf_pmss =
1792 (sctps->sctps_initial_mtu - sctp->sctp_hdr_len) &
1793 ~(SCTP_ALIGN - 1);
1794 fp->sf_ixa->ixa_flags |= IXAF_IS_IPV4;
1795 } else {
1796 fp->sf_isv4 = 0;
1797 fp->sf_pmss =
1798 (sctps->sctps_initial_mtu - sctp->sctp_hdr6_len) &
1799 ~(SCTP_ALIGN - 1);
1800 fp->sf_ixa->ixa_flags &= ~IXAF_IS_IPV4;
1801 }
1802 fp->sf_cwnd = sctps->sctps_slow_start_initial * fp->sf_pmss;
1803 fp->sf_rto = MIN(sctp->sctp_rto_initial, sctp->sctp_rto_max_init);
1804 SCTP_MAX_RTO(sctp, fp);
1805 fp->sf_srtt = -1;
1806 fp->sf_rtt_updates = 0;
1807 fp->sf_strikes = 0;
1808 fp->sf_max_retr = sctp->sctp_pp_max_rxt;
1809 /* Mark it as not confirmed. */
1810 fp->sf_state = SCTP_FADDRS_UNCONFIRMED;
1811 fp->sf_hb_interval = sctp->sctp_hb_interval;
1812 fp->sf_ssthresh = sctps->sctps_initial_ssthresh;
1813 fp->sf_suna = 0;
1814 fp->sf_pba = 0;
1815 fp->sf_acked = 0;
1816 fp->sf_lastactive = fp->sf_hb_expiry = ddi_get_lbolt64();
1817 fp->sf_timer_mp = timer_mp;
1818 fp->sf_hb_pending = B_FALSE;
1819 fp->sf_hb_enabled = B_TRUE;
1820 fp->sf_df = 1;
1821 fp->sf_pmtu_discovered = 0;
1822 fp->sf_next = NULL;
1823 fp->sf_T3expire = 0;
1824 (void) random_get_pseudo_bytes((uint8_t *)&fp->sf_hb_secret,
1825 sizeof (fp->sf_hb_secret));
1826 fp->sf_rxt_unacked = 0;
1827
1828 sctp_get_dest(sctp, fp);
1829 }
1830
1831 /*ARGSUSED*/
1832 static int
faddr_constructor(void * buf,void * arg,int flags)1833 faddr_constructor(void *buf, void *arg, int flags)
1834 {
1835 sctp_faddr_t *fp = buf;
1836
1837 fp->sf_timer_mp = NULL;
1838 fp->sf_timer_running = 0;
1839
1840 fp->sf_rc_timer_mp = NULL;
1841 fp->sf_rc_timer_running = 0;
1842
1843 return (0);
1844 }
1845
1846 /*ARGSUSED*/
1847 static void
faddr_destructor(void * buf,void * arg)1848 faddr_destructor(void *buf, void *arg)
1849 {
1850 sctp_faddr_t *fp = buf;
1851
1852 ASSERT(fp->sf_timer_mp == NULL);
1853 ASSERT(fp->sf_timer_running == 0);
1854
1855 ASSERT(fp->sf_rc_timer_mp == NULL);
1856 ASSERT(fp->sf_rc_timer_running == 0);
1857 }
1858
1859 void
sctp_faddr_init(void)1860 sctp_faddr_init(void)
1861 {
1862 sctp_kmem_faddr_cache = kmem_cache_create("sctp_faddr_cache",
1863 sizeof (sctp_faddr_t), 0, faddr_constructor, faddr_destructor,
1864 NULL, NULL, NULL, 0);
1865 }
1866
1867 void
sctp_faddr_fini(void)1868 sctp_faddr_fini(void)
1869 {
1870 kmem_cache_destroy(sctp_kmem_faddr_cache);
1871 }
1872