1 /*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/stdint.h>
35
36 #ifdef _KERNEL
37 #include "opt_scsi.h"
38
39 #include <sys/systm.h>
40 #include <sys/libkern.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/sysctl.h>
46 #include <sys/ctype.h>
47 #else
48 #include <errno.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <ctype.h>
53 #endif
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_queue.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/scsi/scsi_all.h>
60 #include <sys/ata.h>
61 #include <sys/sbuf.h>
62
63 #ifdef _KERNEL
64 #include <cam/cam_periph.h>
65 #include <cam/cam_xpt_sim.h>
66 #include <cam/cam_xpt_periph.h>
67 #include <cam/cam_xpt_internal.h>
68 #else
69 #include <camlib.h>
70 #include <stddef.h>
71
72 #ifndef FALSE
73 #define FALSE 0
74 #endif /* FALSE */
75 #ifndef TRUE
76 #define TRUE 1
77 #endif /* TRUE */
78 #define ERESTART -1 /* restart syscall */
79 #define EJUSTRETURN -2 /* don't modify regs, just return */
80 #endif /* !_KERNEL */
81
82 /*
83 * This is the default number of milliseconds we wait for devices to settle
84 * after a SCSI bus reset.
85 */
86 #ifndef SCSI_DELAY
87 #define SCSI_DELAY 2000
88 #endif
89 /*
90 * All devices need _some_ sort of bus settle delay, so we'll set it to
91 * a minimum value of 100ms. Note that this is pertinent only for SPI-
92 * not transport like Fibre Channel or iSCSI where 'delay' is completely
93 * meaningless.
94 */
95 #ifndef SCSI_MIN_DELAY
96 #define SCSI_MIN_DELAY 100
97 #endif
98 /*
99 * Make sure the user isn't using seconds instead of milliseconds.
100 */
101 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
102 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value"
103 #endif
104
105 int scsi_delay;
106
107 static int ascentrycomp(const void *key, const void *member);
108 static int senseentrycomp(const void *key, const void *member);
109 static void fetchtableentries(int sense_key, int asc, int ascq,
110 struct scsi_inquiry_data *,
111 const struct sense_key_table_entry **,
112 const struct asc_table_entry **);
113
114 #ifdef _KERNEL
115 static void init_scsi_delay(void);
116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117 static int set_scsi_delay(int delay);
118 #endif
119
120 #if !defined(SCSI_NO_OP_STRINGS)
121
122 #define D (1 << T_DIRECT)
123 #define T (1 << T_SEQUENTIAL)
124 #define L (1 << T_PRINTER)
125 #define P (1 << T_PROCESSOR)
126 #define W (1 << T_WORM)
127 #define R (1 << T_CDROM)
128 #define O (1 << T_OPTICAL)
129 #define M (1 << T_CHANGER)
130 #define A (1 << T_STORARRAY)
131 #define E (1 << T_ENCLOSURE)
132 #define B (1 << T_RBC)
133 #define K (1 << T_OCRW)
134 #define V (1 << T_ADC)
135 #define F (1 << T_OSD)
136 #define S (1 << T_SCANNER)
137 #define C (1 << T_COMM)
138
139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140
141 static struct op_table_entry plextor_cd_ops[] = {
142 { 0xD8, R, "CD-DA READ" }
143 };
144
145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146 {
147 /*
148 * I believe that 0xD8 is the Plextor proprietary command
149 * to read CD-DA data. I'm not sure which Plextor CDROM
150 * models support the command, though. I know for sure
151 * that the 4X, 8X, and 12X models do, and presumably the
152 * 12-20X does. I don't know about any earlier models,
153 * though. If anyone has any more complete information,
154 * feel free to change this quirk entry.
155 */
156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157 nitems(plextor_cd_ops),
158 plextor_cd_ops
159 }
160 };
161
162 static struct op_table_entry scsi_op_codes[] = {
163 /*
164 * From: http://www.t10.org/lists/op-num.txt
165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166 * and Jung-uk Kim (jkim@FreeBSD.org)
167 *
168 * Note: order is important in this table, scsi_op_desc() currently
169 * depends on the opcodes in the table being in order to save
170 * search time.
171 * Note: scanner and comm. devices are carried over from the previous
172 * version because they were removed in the latest spec.
173 */
174 /* File: OP-NUM.TXT
175 *
176 * SCSI Operation Codes
177 * Numeric Sorted Listing
178 * as of 5/26/15
179 *
180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) -----------------
182 * . L - PRINTER DEVICE (SSC) M = Mandatory
183 * . P - PROCESSOR DEVICE (SPC) O = Optional
184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete
186 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
187 * . . .M - MEDIA CHANGER DEVICE (SMC-2)
188 * . . . A - STORAGE ARRAY DEVICE (SCC-2)
189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES)
190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
193 * . . . . .F - OBJECT-BASED STORAGE (OSD)
194 * OP DTLPWROMAEBKVF Description
195 * -- -------------- ---------------------------------------------- */
196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */
197 { 0x00, ALL, "TEST UNIT READY" },
198 /* 01 M REWIND */
199 { 0x01, T, "REWIND" },
200 /* 01 Z V ZZZZ REZERO UNIT */
201 { 0x01, D | W | R | O | M, "REZERO UNIT" },
202 /* 02 VVVVVV V */
203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */
204 { 0x03, ALL, "REQUEST SENSE" },
205 /* 04 M OO FORMAT UNIT */
206 { 0x04, D | R | O, "FORMAT UNIT" },
207 /* 04 O FORMAT MEDIUM */
208 { 0x04, T, "FORMAT MEDIUM" },
209 /* 04 O FORMAT */
210 { 0x04, L, "FORMAT" },
211 /* 05 VMVVVV V READ BLOCK LIMITS */
212 { 0x05, T, "READ BLOCK LIMITS" },
213 /* 06 VVVVVV V */
214 /* 07 OVV O OV REASSIGN BLOCKS */
215 { 0x07, D | W | O, "REASSIGN BLOCKS" },
216 /* 07 O INITIALIZE ELEMENT STATUS */
217 { 0x07, M, "INITIALIZE ELEMENT STATUS" },
218 /* 08 MOV O OV READ(6) */
219 { 0x08, D | T | W | O, "READ(6)" },
220 /* 08 O RECEIVE */
221 { 0x08, P, "RECEIVE" },
222 /* 08 GET MESSAGE(6) */
223 { 0x08, C, "GET MESSAGE(6)" },
224 /* 09 VVVVVV V */
225 /* 0A OO O OV WRITE(6) */
226 { 0x0A, D | T | W | O, "WRITE(6)" },
227 /* 0A M SEND(6) */
228 { 0x0A, P, "SEND(6)" },
229 /* 0A SEND MESSAGE(6) */
230 { 0x0A, C, "SEND MESSAGE(6)" },
231 /* 0A M PRINT */
232 { 0x0A, L, "PRINT" },
233 /* 0B Z ZOZV SEEK(6) */
234 { 0x0B, D | W | R | O, "SEEK(6)" },
235 /* 0B O SET CAPACITY */
236 { 0x0B, T, "SET CAPACITY" },
237 /* 0B O SLEW AND PRINT */
238 { 0x0B, L, "SLEW AND PRINT" },
239 /* 0C VVVVVV V */
240 /* 0D VVVVVV V */
241 /* 0E VVVVVV V */
242 /* 0F VOVVVV V READ REVERSE(6) */
243 { 0x0F, T, "READ REVERSE(6)" },
244 /* 10 VM VVV WRITE FILEMARKS(6) */
245 { 0x10, T, "WRITE FILEMARKS(6)" },
246 /* 10 O SYNCHRONIZE BUFFER */
247 { 0x10, L, "SYNCHRONIZE BUFFER" },
248 /* 11 VMVVVV SPACE(6) */
249 { 0x11, T, "SPACE(6)" },
250 /* 12 MMMMMMMMMMMMMM INQUIRY */
251 { 0x12, ALL, "INQUIRY" },
252 /* 13 V VVVV */
253 /* 13 O VERIFY(6) */
254 { 0x13, T, "VERIFY(6)" },
255 /* 14 VOOVVV RECOVER BUFFERED DATA */
256 { 0x14, T | L, "RECOVER BUFFERED DATA" },
257 /* 15 OMO O OOOO OO MODE SELECT(6) */
258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259 /* 16 ZZMZO OOOZ O RESERVE(6) */
260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261 /* 16 Z RESERVE ELEMENT(6) */
262 { 0x16, M, "RESERVE ELEMENT(6)" },
263 /* 17 ZZMZO OOOZ O RELEASE(6) */
264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265 /* 17 Z RELEASE ELEMENT(6) */
266 { 0x17, M, "RELEASE ELEMENT(6)" },
267 /* 18 ZZZZOZO Z COPY */
268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" },
269 /* 19 VMVVVV ERASE(6) */
270 { 0x19, T, "ERASE(6)" },
271 /* 1A OMO O OOOO OO MODE SENSE(6) */
272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273 /* 1B O OOO O MO O START STOP UNIT */
274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" },
275 /* 1B O M LOAD UNLOAD */
276 { 0x1B, T | V, "LOAD UNLOAD" },
277 /* 1B SCAN */
278 { 0x1B, S, "SCAN" },
279 /* 1B O STOP PRINT */
280 { 0x1B, L, "STOP PRINT" },
281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */
284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */
286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" },
287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */
288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289 /* 1F */
290 /* 20 V VVV V */
291 /* 21 V VVV V */
292 /* 22 V VVV V */
293 /* 23 V V V V */
294 /* 23 O READ FORMAT CAPACITIES */
295 { 0x23, R, "READ FORMAT CAPACITIES" },
296 /* 24 V VV SET WINDOW */
297 { 0x24, S, "SET WINDOW" },
298 /* 25 M M M M READ CAPACITY(10) */
299 { 0x25, D | W | O | B, "READ CAPACITY(10)" },
300 /* 25 O READ CAPACITY */
301 { 0x25, R, "READ CAPACITY" },
302 /* 25 M READ CARD CAPACITY */
303 { 0x25, K, "READ CARD CAPACITY" },
304 /* 25 GET WINDOW */
305 { 0x25, S, "GET WINDOW" },
306 /* 26 V VV */
307 /* 27 V VV */
308 /* 28 M MOM MM READ(10) */
309 { 0x28, D | W | R | O | B | K | S, "READ(10)" },
310 /* 28 GET MESSAGE(10) */
311 { 0x28, C, "GET MESSAGE(10)" },
312 /* 29 V VVO READ GENERATION */
313 { 0x29, O, "READ GENERATION" },
314 /* 2A O MOM MO WRITE(10) */
315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" },
316 /* 2A SEND(10) */
317 { 0x2A, S, "SEND(10)" },
318 /* 2A SEND MESSAGE(10) */
319 { 0x2A, C, "SEND MESSAGE(10)" },
320 /* 2B Z OOO O SEEK(10) */
321 { 0x2B, D | W | R | O | K, "SEEK(10)" },
322 /* 2B O LOCATE(10) */
323 { 0x2B, T, "LOCATE(10)" },
324 /* 2B O POSITION TO ELEMENT */
325 { 0x2B, M, "POSITION TO ELEMENT" },
326 /* 2C V OO ERASE(10) */
327 { 0x2C, R | O, "ERASE(10)" },
328 /* 2D O READ UPDATED BLOCK */
329 { 0x2D, O, "READ UPDATED BLOCK" },
330 /* 2D V */
331 /* 2E O OOO MO WRITE AND VERIFY(10) */
332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333 /* 2F O OOO VERIFY(10) */
334 { 0x2F, D | W | R | O, "VERIFY(10)" },
335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */
336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" },
337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */
338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" },
339 /* 31 OBJECT POSITION */
340 { 0x31, S, "OBJECT POSITION" },
341 /* 32 Z ZZZ SEARCH DATA LOW(10) */
342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" },
343 /* 33 Z OZO SET LIMITS(10) */
344 { 0x33, D | W | R | O, "SET LIMITS(10)" },
345 /* 34 O O O O PRE-FETCH(10) */
346 { 0x34, D | W | O | K, "PRE-FETCH(10)" },
347 /* 34 M READ POSITION */
348 { 0x34, T, "READ POSITION" },
349 /* 34 GET DATA BUFFER STATUS */
350 { 0x34, S, "GET DATA BUFFER STATUS" },
351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */
352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */
354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355 /* 37 O O READ DEFECT DATA(10) */
356 { 0x37, D | O, "READ DEFECT DATA(10)" },
357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */
358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359 /* 38 O O O MEDIUM SCAN */
360 { 0x38, W | O | K, "MEDIUM SCAN" },
361 /* 39 ZZZZOZO Z COMPARE */
362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" },
363 /* 3A ZZZZOZO Z COPY AND VERIFY */
364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */
366 { 0x3B, ALL, "WRITE BUFFER" },
367 /* 3C OOOOOOOOOO OOO READ BUFFER */
368 { 0x3C, ALL & ~(B), "READ BUFFER" },
369 /* 3D O UPDATE BLOCK */
370 { 0x3D, O, "UPDATE BLOCK" },
371 /* 3E O O O READ LONG(10) */
372 { 0x3E, D | W | O, "READ LONG(10)" },
373 /* 3F O O O WRITE LONG(10) */
374 { 0x3F, D | W | O, "WRITE LONG(10)" },
375 /* 40 ZZZZOZOZ CHANGE DEFINITION */
376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377 /* 41 O WRITE SAME(10) */
378 { 0x41, D, "WRITE SAME(10)" },
379 /* 42 O UNMAP */
380 { 0x42, D, "UNMAP" },
381 /* 42 O READ SUB-CHANNEL */
382 { 0x42, R, "READ SUB-CHANNEL" },
383 /* 43 O READ TOC/PMA/ATIP */
384 { 0x43, R, "READ TOC/PMA/ATIP" },
385 /* 44 M M REPORT DENSITY SUPPORT */
386 { 0x44, T | V, "REPORT DENSITY SUPPORT" },
387 /* 44 READ HEADER */
388 /* 45 O PLAY AUDIO(10) */
389 { 0x45, R, "PLAY AUDIO(10)" },
390 /* 46 M GET CONFIGURATION */
391 { 0x46, R, "GET CONFIGURATION" },
392 /* 47 O PLAY AUDIO MSF */
393 { 0x47, R, "PLAY AUDIO MSF" },
394 /* 48 O SANITIZE */
395 { 0x48, D, "SANITIZE" },
396 /* 49 */
397 /* 4A M GET EVENT STATUS NOTIFICATION */
398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" },
399 /* 4B O PAUSE/RESUME */
400 { 0x4B, R, "PAUSE/RESUME" },
401 /* 4C OOOOO OOOO OOO LOG SELECT */
402 { 0x4C, ALL & ~(R | B), "LOG SELECT" },
403 /* 4D OOOOO OOOO OMO LOG SENSE */
404 { 0x4D, ALL & ~(R | B), "LOG SENSE" },
405 /* 4E O STOP PLAY/SCAN */
406 { 0x4E, R, "STOP PLAY/SCAN" },
407 /* 4F */
408 /* 50 O XDWRITE(10) */
409 { 0x50, D, "XDWRITE(10)" },
410 /* 51 O XPWRITE(10) */
411 { 0x51, D, "XPWRITE(10)" },
412 /* 51 O READ DISC INFORMATION */
413 { 0x51, R, "READ DISC INFORMATION" },
414 /* 52 O XDREAD(10) */
415 { 0x52, D, "XDREAD(10)" },
416 /* 52 O READ TRACK INFORMATION */
417 { 0x52, R, "READ TRACK INFORMATION" },
418 /* 53 O XDWRITEREAD(10) */
419 { 0x53, D, "XDWRITEREAD(10)" },
420 /* 53 O RESERVE TRACK */
421 { 0x53, R, "RESERVE TRACK" },
422 /* 54 O SEND OPC INFORMATION */
423 { 0x54, R, "SEND OPC INFORMATION" },
424 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */
425 { 0x55, ALL & ~(P), "MODE SELECT(10)" },
426 /* 56 ZZMZO OOOZ RESERVE(10) */
427 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
428 /* 56 Z RESERVE ELEMENT(10) */
429 { 0x56, M, "RESERVE ELEMENT(10)" },
430 /* 57 ZZMZO OOOZ RELEASE(10) */
431 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
432 /* 57 Z RELEASE ELEMENT(10) */
433 { 0x57, M, "RELEASE ELEMENT(10)" },
434 /* 58 O REPAIR TRACK */
435 { 0x58, R, "REPAIR TRACK" },
436 /* 59 */
437 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */
438 { 0x5A, ALL & ~(P), "MODE SENSE(10)" },
439 /* 5B O CLOSE TRACK/SESSION */
440 { 0x5B, R, "CLOSE TRACK/SESSION" },
441 /* 5C O READ BUFFER CAPACITY */
442 { 0x5C, R, "READ BUFFER CAPACITY" },
443 /* 5D O SEND CUE SHEET */
444 { 0x5D, R, "SEND CUE SHEET" },
445 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */
446 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
447 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */
448 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
449 /* 7E OO O OOOO O extended CDB */
450 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" },
451 /* 7F O M variable length CDB (more than 16 bytes) */
452 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" },
453 /* 80 Z XDWRITE EXTENDED(16) */
454 { 0x80, D, "XDWRITE EXTENDED(16)" },
455 /* 80 M WRITE FILEMARKS(16) */
456 { 0x80, T, "WRITE FILEMARKS(16)" },
457 /* 81 Z REBUILD(16) */
458 { 0x81, D, "REBUILD(16)" },
459 /* 81 O READ REVERSE(16) */
460 { 0x81, T, "READ REVERSE(16)" },
461 /* 82 Z REGENERATE(16) */
462 { 0x82, D, "REGENERATE(16)" },
463 /* 82 O ALLOW OVERWRITE */
464 { 0x82, T, "ALLOW OVERWRITE" },
465 /* 83 OOOOO O OO EXTENDED COPY */
466 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" },
467 /* 84 OOOOO O OO RECEIVE COPY RESULTS */
468 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
469 /* 85 O O O ATA COMMAND PASS THROUGH(16) */
470 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" },
471 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */
472 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" },
473 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */
474 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
475 /* 88 MM O O O READ(16) */
476 { 0x88, D | T | W | O | B, "READ(16)" },
477 /* 89 O COMPARE AND WRITE*/
478 { 0x89, D, "COMPARE AND WRITE" },
479 /* 8A OM O O O WRITE(16) */
480 { 0x8A, D | T | W | O | B, "WRITE(16)" },
481 /* 8B O ORWRITE */
482 { 0x8B, D, "ORWRITE" },
483 /* 8C OO O OO O M READ ATTRIBUTE */
484 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" },
485 /* 8D OO O OO O O WRITE ATTRIBUTE */
486 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
487 /* 8E O O O O WRITE AND VERIFY(16) */
488 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" },
489 /* 8F OO O O O VERIFY(16) */
490 { 0x8F, D | T | W | O | B, "VERIFY(16)" },
491 /* 90 O O O O PRE-FETCH(16) */
492 { 0x90, D | W | O | B, "PRE-FETCH(16)" },
493 /* 91 O O O O SYNCHRONIZE CACHE(16) */
494 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" },
495 /* 91 O SPACE(16) */
496 { 0x91, T, "SPACE(16)" },
497 /* 92 Z O O LOCK UNLOCK CACHE(16) */
498 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" },
499 /* 92 O LOCATE(16) */
500 { 0x92, T, "LOCATE(16)" },
501 /* 93 O WRITE SAME(16) */
502 { 0x93, D, "WRITE SAME(16)" },
503 /* 93 M ERASE(16) */
504 { 0x93, T, "ERASE(16)" },
505 /* 94 O ZBC OUT */
506 { 0x94, ALL, "ZBC OUT" },
507 /* 95 O ZBC IN */
508 { 0x95, ALL, "ZBC IN" },
509 /* 96 */
510 /* 97 */
511 /* 98 */
512 /* 99 */
513 /* 9A O WRITE STREAM(16) */
514 { 0x9A, D, "WRITE STREAM(16)" },
515 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */
516 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" },
517 /* 9C O WRITE ATOMIC(16) */
518 { 0x9C, D, "WRITE ATOMIC(16)" },
519 /* 9D SERVICE ACTION BIDIRECTIONAL */
520 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
521 /* XXX KDM ALL for this? op-num.txt defines it for none.. */
522 /* 9E SERVICE ACTION IN(16) */
523 { 0x9E, ALL, "SERVICE ACTION IN(16)" },
524 /* 9F M SERVICE ACTION OUT(16) */
525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" },
526 /* A0 MMOOO OMMM OMO REPORT LUNS */
527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" },
528 /* A1 O BLANK */
529 { 0xA1, R, "BLANK" },
530 /* A1 O O ATA COMMAND PASS THROUGH(12) */
531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" },
532 /* A2 OO O O SECURITY PROTOCOL IN */
533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" },
534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */
535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536 /* A3 O SEND KEY */
537 { 0xA3, R, "SEND KEY" },
538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */
539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540 /* A4 O REPORT KEY */
541 { 0xA4, R, "REPORT KEY" },
542 /* A5 O O OM MOVE MEDIUM */
543 { 0xA5, T | W | O | M, "MOVE MEDIUM" },
544 /* A5 O PLAY AUDIO(12) */
545 { 0xA5, R, "PLAY AUDIO(12)" },
546 /* A6 O EXCHANGE MEDIUM */
547 { 0xA6, M, "EXCHANGE MEDIUM" },
548 /* A6 O LOAD/UNLOAD C/DVD */
549 { 0xA6, R, "LOAD/UNLOAD C/DVD" },
550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */
551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" },
552 /* A7 O SET READ AHEAD */
553 { 0xA7, R, "SET READ AHEAD" },
554 /* A8 O OOO READ(12) */
555 { 0xA8, D | W | R | O, "READ(12)" },
556 /* A8 GET MESSAGE(12) */
557 { 0xA8, C, "GET MESSAGE(12)" },
558 /* A9 O SERVICE ACTION OUT(12) */
559 { 0xA9, V, "SERVICE ACTION OUT(12)" },
560 /* AA O OOO WRITE(12) */
561 { 0xAA, D | W | R | O, "WRITE(12)" },
562 /* AA SEND MESSAGE(12) */
563 { 0xAA, C, "SEND MESSAGE(12)" },
564 /* AB O O SERVICE ACTION IN(12) */
565 { 0xAB, R | V, "SERVICE ACTION IN(12)" },
566 /* AC O ERASE(12) */
567 { 0xAC, O, "ERASE(12)" },
568 /* AC O GET PERFORMANCE */
569 { 0xAC, R, "GET PERFORMANCE" },
570 /* AD O READ DVD STRUCTURE */
571 { 0xAD, R, "READ DVD STRUCTURE" },
572 /* AE O O O WRITE AND VERIFY(12) */
573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" },
574 /* AF O OZO VERIFY(12) */
575 { 0xAF, D | W | R | O, "VERIFY(12)" },
576 /* B0 ZZZ SEARCH DATA HIGH(12) */
577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" },
578 /* B1 ZZZ SEARCH DATA EQUAL(12) */
579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" },
580 /* B2 ZZZ SEARCH DATA LOW(12) */
581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" },
582 /* B3 Z OZO SET LIMITS(12) */
583 { 0xB3, D | W | R | O, "SET LIMITS(12)" },
584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */
585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586 /* B5 OO O O SECURITY PROTOCOL OUT */
587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" },
588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */
589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" },
590 /* B6 O SEND VOLUME TAG */
591 { 0xB6, M, "SEND VOLUME TAG" },
592 /* B6 O SET STREAMING */
593 { 0xB6, R, "SET STREAMING" },
594 /* B7 O O READ DEFECT DATA(12) */
595 { 0xB7, D | O, "READ DEFECT DATA(12)" },
596 /* B8 O OZOM READ ELEMENT STATUS */
597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" },
598 /* B9 O READ CD MSF */
599 { 0xB9, R, "READ CD MSF" },
600 /* BA O O OOMO REDUNDANCY GROUP (IN) */
601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602 /* BA O SCAN */
603 { 0xBA, R, "SCAN" },
604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */
605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606 /* BB O SET CD SPEED */
607 { 0xBB, R, "SET CD SPEED" },
608 /* BC O O OOMO SPARE (IN) */
609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" },
610 /* BD O O OOOO SPARE (OUT) */
611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" },
612 /* BD O MECHANISM STATUS */
613 { 0xBD, R, "MECHANISM STATUS" },
614 /* BE O O OOMO VOLUME SET (IN) */
615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" },
616 /* BE O READ CD */
617 { 0xBE, R, "READ CD" },
618 /* BF O O OOOO VOLUME SET (OUT) */
619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" },
620 /* BF O SEND DVD STRUCTURE */
621 { 0xBF, R, "SEND DVD STRUCTURE" }
622 };
623
624 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)625 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
626 {
627 caddr_t match;
628 int i, j;
629 uint32_t opmask;
630 uint16_t pd_type;
631 int num_ops[2];
632 struct op_table_entry *table[2];
633 int num_tables;
634
635 /*
636 * If we've got inquiry data, use it to determine what type of
637 * device we're dealing with here. Otherwise, assume direct
638 * access.
639 */
640 if (inq_data == NULL) {
641 pd_type = T_DIRECT;
642 match = NULL;
643 } else {
644 pd_type = SID_TYPE(inq_data);
645
646 match = cam_quirkmatch((caddr_t)inq_data,
647 (caddr_t)scsi_op_quirk_table,
648 nitems(scsi_op_quirk_table),
649 sizeof(*scsi_op_quirk_table),
650 scsi_inquiry_match);
651 }
652
653 if (match != NULL) {
654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656 table[1] = scsi_op_codes;
657 num_ops[1] = nitems(scsi_op_codes);
658 num_tables = 2;
659 } else {
660 /*
661 * If this is true, we have a vendor specific opcode that
662 * wasn't covered in the quirk table.
663 */
664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665 return("Vendor Specific Command");
666
667 table[0] = scsi_op_codes;
668 num_ops[0] = nitems(scsi_op_codes);
669 num_tables = 1;
670 }
671
672 /* RBC is 'Simplified' Direct Access Device */
673 if (pd_type == T_RBC)
674 pd_type = T_DIRECT;
675
676 /*
677 * Host managed drives are direct access for the most part.
678 */
679 if (pd_type == T_ZBC_HM)
680 pd_type = T_DIRECT;
681
682 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
683 if (pd_type == T_NODEVICE)
684 pd_type = T_DIRECT;
685
686 opmask = 1 << pd_type;
687
688 for (j = 0; j < num_tables; j++) {
689 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
690 if ((table[j][i].opcode == opcode)
691 && ((table[j][i].opmask & opmask) != 0))
692 return(table[j][i].desc);
693 }
694 }
695
696 /*
697 * If we can't find a match for the command in the table, we just
698 * assume it's a vendor specifc command.
699 */
700 return("Vendor Specific Command");
701
702 }
703
704 #else /* SCSI_NO_OP_STRINGS */
705
706 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)707 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
708 {
709 return("");
710 }
711
712 #endif
713
714 #if !defined(SCSI_NO_SENSE_STRINGS)
715 #define SST(asc, ascq, action, desc) \
716 asc, ascq, action, desc
717 #else
718 const char empty_string[] = "";
719
720 #define SST(asc, ascq, action, desc) \
721 asc, ascq, action, empty_string
722 #endif
723
724 const struct sense_key_table_entry sense_key_table[] =
725 {
726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
742 };
743
744 static struct asc_table_entry quantum_fireball_entries[] = {
745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
746 "Logical unit not ready, initializing cmd. required") }
747 };
748
749 static struct asc_table_entry sony_mo_entries[] = {
750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
751 "Logical unit not ready, cause not reportable") }
752 };
753
754 static struct asc_table_entry hgst_entries[] = {
755 { SST(0x04, 0xF0, SS_RDEF,
756 "Vendor Unique - Logical Unit Not Ready") },
757 { SST(0x0A, 0x01, SS_RDEF,
758 "Unrecovered Super Certification Log Write Error") },
759 { SST(0x0A, 0x02, SS_RDEF,
760 "Unrecovered Super Certification Log Read Error") },
761 { SST(0x15, 0x03, SS_RDEF,
762 "Unrecovered Sector Error") },
763 { SST(0x3E, 0x04, SS_RDEF,
764 "Unrecovered Self-Test Hard-Cache Test Fail") },
765 { SST(0x3E, 0x05, SS_RDEF,
766 "Unrecovered Self-Test OTF-Cache Fail") },
767 { SST(0x40, 0x00, SS_RDEF,
768 "Unrecovered SAT No Buffer Overflow Error") },
769 { SST(0x40, 0x01, SS_RDEF,
770 "Unrecovered SAT Buffer Overflow Error") },
771 { SST(0x40, 0x02, SS_RDEF,
772 "Unrecovered SAT No Buffer Overflow With ECS Fault") },
773 { SST(0x40, 0x03, SS_RDEF,
774 "Unrecovered SAT Buffer Overflow With ECS Fault") },
775 { SST(0x40, 0x81, SS_RDEF,
776 "DRAM Failure") },
777 { SST(0x44, 0x0B, SS_RDEF,
778 "Vendor Unique - Internal Target Failure") },
779 { SST(0x44, 0xF2, SS_RDEF,
780 "Vendor Unique - Internal Target Failure") },
781 { SST(0x44, 0xF6, SS_RDEF,
782 "Vendor Unique - Internal Target Failure") },
783 { SST(0x44, 0xF9, SS_RDEF,
784 "Vendor Unique - Internal Target Failure") },
785 { SST(0x44, 0xFA, SS_RDEF,
786 "Vendor Unique - Internal Target Failure") },
787 { SST(0x5D, 0x22, SS_RDEF,
788 "Extreme Over-Temperature Warning") },
789 { SST(0x5D, 0x50, SS_RDEF,
790 "Load/Unload cycle Count Warning") },
791 { SST(0x81, 0x00, SS_RDEF,
792 "Vendor Unique - Internal Logic Error") },
793 { SST(0x85, 0x00, SS_RDEF,
794 "Vendor Unique - Internal Key Seed Error") },
795 };
796
797 static struct asc_table_entry seagate_entries[] = {
798 { SST(0x04, 0xF0, SS_RDEF,
799 "Logical Unit Not Ready, super certify in Progress") },
800 { SST(0x08, 0x86, SS_RDEF,
801 "Write Fault Data Corruption") },
802 { SST(0x09, 0x0D, SS_RDEF,
803 "Tracking Failure") },
804 { SST(0x09, 0x0E, SS_RDEF,
805 "ETF Failure") },
806 { SST(0x0B, 0x5D, SS_RDEF,
807 "Pre-SMART Warning") },
808 { SST(0x0B, 0x85, SS_RDEF,
809 "5V Voltage Warning") },
810 { SST(0x0B, 0x8C, SS_RDEF,
811 "12V Voltage Warning") },
812 { SST(0x0C, 0xFF, SS_RDEF,
813 "Write Error - Too many error recovery revs") },
814 { SST(0x11, 0xFF, SS_RDEF,
815 "Unrecovered Read Error - Too many error recovery revs") },
816 { SST(0x19, 0x0E, SS_RDEF,
817 "Fewer than 1/2 defect list copies") },
818 { SST(0x20, 0xF3, SS_RDEF,
819 "Illegal CDB linked to skip mask cmd") },
820 { SST(0x24, 0xF0, SS_RDEF,
821 "Illegal byte in CDB, LBA not matching") },
822 { SST(0x24, 0xF1, SS_RDEF,
823 "Illegal byte in CDB, LEN not matching") },
824 { SST(0x24, 0xF2, SS_RDEF,
825 "Mask not matching transfer length") },
826 { SST(0x24, 0xF3, SS_RDEF,
827 "Drive formatted without plist") },
828 { SST(0x26, 0x95, SS_RDEF,
829 "Invalid Field Parameter - CAP File") },
830 { SST(0x26, 0x96, SS_RDEF,
831 "Invalid Field Parameter - RAP File") },
832 { SST(0x26, 0x97, SS_RDEF,
833 "Invalid Field Parameter - TMS Firmware Tag") },
834 { SST(0x26, 0x98, SS_RDEF,
835 "Invalid Field Parameter - Check Sum") },
836 { SST(0x26, 0x99, SS_RDEF,
837 "Invalid Field Parameter - Firmware Tag") },
838 { SST(0x29, 0x08, SS_RDEF,
839 "Write Log Dump data") },
840 { SST(0x29, 0x09, SS_RDEF,
841 "Write Log Dump data") },
842 { SST(0x29, 0x0A, SS_RDEF,
843 "Reserved disk space") },
844 { SST(0x29, 0x0B, SS_RDEF,
845 "SDBP") },
846 { SST(0x29, 0x0C, SS_RDEF,
847 "SDBP") },
848 { SST(0x31, 0x91, SS_RDEF,
849 "Format Corrupted World Wide Name (WWN) is Invalid") },
850 { SST(0x32, 0x03, SS_RDEF,
851 "Defect List - Length exceeds Command Allocated Length") },
852 { SST(0x33, 0x00, SS_RDEF,
853 "Flash not ready for access") },
854 { SST(0x3F, 0x70, SS_RDEF,
855 "Invalid RAP block") },
856 { SST(0x3F, 0x71, SS_RDEF,
857 "RAP/ETF mismatch") },
858 { SST(0x3F, 0x90, SS_RDEF,
859 "Invalid CAP block") },
860 { SST(0x3F, 0x91, SS_RDEF,
861 "World Wide Name (WWN) Mismatch") },
862 { SST(0x40, 0x01, SS_RDEF,
863 "DRAM Parity Error") },
864 { SST(0x40, 0x02, SS_RDEF,
865 "DRAM Parity Error") },
866 { SST(0x42, 0x0A, SS_RDEF,
867 "Loopback Test") },
868 { SST(0x42, 0x0B, SS_RDEF,
869 "Loopback Test") },
870 { SST(0x44, 0xF2, SS_RDEF,
871 "Compare error during data integrity check") },
872 { SST(0x44, 0xF6, SS_RDEF,
873 "Unrecoverable error during data integrity check") },
874 { SST(0x47, 0x80, SS_RDEF,
875 "Fibre Channel Sequence Error") },
876 { SST(0x4E, 0x01, SS_RDEF,
877 "Information Unit Too Short") },
878 { SST(0x80, 0x00, SS_RDEF,
879 "General Firmware Error / Command Timeout") },
880 { SST(0x80, 0x01, SS_RDEF,
881 "Command Timeout") },
882 { SST(0x80, 0x02, SS_RDEF,
883 "Command Timeout") },
884 { SST(0x80, 0x80, SS_RDEF,
885 "FC FIFO Error During Read Transfer") },
886 { SST(0x80, 0x81, SS_RDEF,
887 "FC FIFO Error During Write Transfer") },
888 { SST(0x80, 0x82, SS_RDEF,
889 "DISC FIFO Error During Read Transfer") },
890 { SST(0x80, 0x83, SS_RDEF,
891 "DISC FIFO Error During Write Transfer") },
892 { SST(0x80, 0x84, SS_RDEF,
893 "LBA Seeded LRC Error on Read") },
894 { SST(0x80, 0x85, SS_RDEF,
895 "LBA Seeded LRC Error on Write") },
896 { SST(0x80, 0x86, SS_RDEF,
897 "IOEDC Error on Read") },
898 { SST(0x80, 0x87, SS_RDEF,
899 "IOEDC Error on Write") },
900 { SST(0x80, 0x88, SS_RDEF,
901 "Host Parity Check Failed") },
902 { SST(0x80, 0x89, SS_RDEF,
903 "IOEDC error on read detected by formatter") },
904 { SST(0x80, 0x8A, SS_RDEF,
905 "Host Parity Errors / Host FIFO Initialization Failed") },
906 { SST(0x80, 0x8B, SS_RDEF,
907 "Host Parity Errors") },
908 { SST(0x80, 0x8C, SS_RDEF,
909 "Host Parity Errors") },
910 { SST(0x80, 0x8D, SS_RDEF,
911 "Host Parity Errors") },
912 { SST(0x81, 0x00, SS_RDEF,
913 "LA Check Failed") },
914 { SST(0x82, 0x00, SS_RDEF,
915 "Internal client detected insufficient buffer") },
916 { SST(0x84, 0x00, SS_RDEF,
917 "Scheduled Diagnostic And Repair") },
918 };
919
920 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
921 {
922 /*
923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
924 * when they really should return 0x04 0x02.
925 */
926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
927 /*num_sense_keys*/0,
928 nitems(quantum_fireball_entries),
929 /*sense key entries*/NULL,
930 quantum_fireball_entries
931 },
932 {
933 /*
934 * This Sony MO drive likes to return 0x04, 0x00 when it
935 * isn't spun up.
936 */
937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
938 /*num_sense_keys*/0,
939 nitems(sony_mo_entries),
940 /*sense key entries*/NULL,
941 sony_mo_entries
942 },
943 {
944 /*
945 * HGST vendor-specific error codes
946 */
947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
948 /*num_sense_keys*/0,
949 nitems(hgst_entries),
950 /*sense key entries*/NULL,
951 hgst_entries
952 },
953 {
954 /*
955 * SEAGATE vendor-specific error codes
956 */
957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
958 /*num_sense_keys*/0,
959 nitems(seagate_entries),
960 /*sense key entries*/NULL,
961 seagate_entries
962 }
963 };
964
965 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
966
967 static struct asc_table_entry asc_table[] = {
968 /*
969 * From: http://www.t10.org/lists/asc-num.txt
970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
971 */
972 /*
973 * File: ASC-NUM.TXT
974 *
975 * SCSI ASC/ASCQ Assignments
976 * Numeric Sorted Listing
977 * as of Sat Mar 25 2023 at 04:30 (using old columns)
978 *
979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) -------------------
981 * . L - PRINTER DEVICE (SSC) blank = reserved
982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed
983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
984 * . . R - CD DEVICE (MMC)
985 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
986 * . . .M - MEDIA CHANGER DEVICE (SMC)
987 * . . . A - STORAGE ARRAY DEVICE (SCC)
988 * . . . E - ENCLOSURE SERVICES DEVICE (SES)
989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
992 * . . . . .F - OBJECT-BASED STORAGE (OSD)
993 * DTLPWROMAEBKVF
994 * ASC ASCQ Action
995 * Description
996 */
997 /* DTLPWROMAEBKVF */
998 { SST(0x00, 0x00, SS_NOP,
999 "No additional sense information") },
1000 /* T */
1001 { SST(0x00, 0x01, SS_RDEF,
1002 "Filemark detected") },
1003 /* T */
1004 { SST(0x00, 0x02, SS_RDEF,
1005 "End-of-partition/medium detected") },
1006 /* T */
1007 { SST(0x00, 0x03, SS_RDEF,
1008 "Setmark detected") },
1009 /* T */
1010 { SST(0x00, 0x04, SS_RDEF,
1011 "Beginning-of-partition/medium detected") },
1012 /* TL */
1013 { SST(0x00, 0x05, SS_RDEF,
1014 "End-of-data detected") },
1015 /* DTLPWROMAEBKVF */
1016 { SST(0x00, 0x06, SS_RDEF,
1017 "I/O process terminated") },
1018 /* T */
1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */
1020 "Programmable early warning detected") },
1021 /* R */
1022 { SST(0x00, 0x11, SS_FATAL | EBUSY,
1023 "Audio play operation in progress") },
1024 /* R */
1025 { SST(0x00, 0x12, SS_NOP,
1026 "Audio play operation paused") },
1027 /* R */
1028 { SST(0x00, 0x13, SS_NOP,
1029 "Audio play operation successfully completed") },
1030 /* R */
1031 { SST(0x00, 0x14, SS_RDEF,
1032 "Audio play operation stopped due to error") },
1033 /* R */
1034 { SST(0x00, 0x15, SS_NOP,
1035 "No current audio status to return") },
1036 /* DTLPWROMAEBKVF */
1037 { SST(0x00, 0x16, SS_FATAL | EBUSY,
1038 "Operation in progress") },
1039 /* DTL WROMAEBKVF */
1040 { SST(0x00, 0x17, SS_RDEF,
1041 "Cleaning requested") },
1042 /* T */
1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */
1044 "Erase operation in progress") },
1045 /* T */
1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */
1047 "Locate operation in progress") },
1048 /* T */
1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */
1050 "Rewind operation in progress") },
1051 /* T */
1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */
1053 "Set capacity operation in progress") },
1054 /* T */
1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */
1056 "Verify operation in progress") },
1057 /* DT B */
1058 { SST(0x00, 0x1D, SS_NOP,
1059 "ATA pass through information available") },
1060 /* DT R MAEBKV */
1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */
1062 "Conflicting SA creation request") },
1063 /* DT B */
1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */
1065 "Logical unit transitioning to another power condition") },
1066 /* DT P B */
1067 { SST(0x00, 0x20, SS_NOP,
1068 "Extended copy information available") },
1069 /* D */
1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */
1071 "Atomic command aborted due to ACA") },
1072 /* D */
1073 { SST(0x00, 0x22, SS_RDEF, /* XXX TBD */
1074 "Deferred microcode is pending") },
1075 /* D */
1076 { SST(0x00, 0x23, SS_RDEF, /* XXX TBD */
1077 "Overlapping atomic command in progress") },
1078 /* D W O BK */
1079 { SST(0x01, 0x00, SS_RDEF,
1080 "No index/sector signal") },
1081 /* D WRO BK */
1082 { SST(0x02, 0x00, SS_FATAL | EIO,
1083 "No seek complete") },
1084 /* DTL W O BK */
1085 { SST(0x03, 0x00, SS_RDEF,
1086 "Peripheral device write fault") },
1087 /* T */
1088 { SST(0x03, 0x01, SS_RDEF,
1089 "No write current") },
1090 /* T */
1091 { SST(0x03, 0x02, SS_RDEF,
1092 "Excessive write errors") },
1093 /* DTLPWROMAEBKVF */
1094 { SST(0x04, 0x00, SS_RDEF,
1095 "Logical unit not ready, cause not reportable") },
1096 /* DTLPWROMAEBKVF */
1097 { SST(0x04, 0x01, SS_WAIT | EBUSY,
1098 "Logical unit is in process of becoming ready") },
1099 /* DTLPWROMAEBKVF */
1100 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1101 "Logical unit not ready, initializing command required") },
1102 /* DTLPWROMAEBKVF */
1103 { SST(0x04, 0x03, SS_FATAL | ENXIO,
1104 "Logical unit not ready, manual intervention required") },
1105 /* DTL RO B */
1106 { SST(0x04, 0x04, SS_FATAL | EBUSY,
1107 "Logical unit not ready, format in progress") },
1108 /* DT W O A BK F */
1109 { SST(0x04, 0x05, SS_FATAL | EBUSY,
1110 "Logical unit not ready, rebuild in progress") },
1111 /* DT W O A BK */
1112 { SST(0x04, 0x06, SS_FATAL | EBUSY,
1113 "Logical unit not ready, recalculation in progress") },
1114 /* DTLPWROMAEBKVF */
1115 { SST(0x04, 0x07, SS_FATAL | EBUSY,
1116 "Logical unit not ready, operation in progress") },
1117 /* R */
1118 { SST(0x04, 0x08, SS_FATAL | EBUSY,
1119 "Logical unit not ready, long write in progress") },
1120 /* DTLPWROMAEBKVF */
1121 { SST(0x04, 0x09, SS_FATAL | EBUSY,
1122 "Logical unit not ready, self-test in progress") },
1123 /* DTLPWROMAEBKVF */
1124 { SST(0x04, 0x0A, SS_WAIT | ENXIO,
1125 "Logical unit not accessible, asymmetric access state transition")},
1126 /* DTLPWROMAEBKVF */
1127 { SST(0x04, 0x0B, SS_FATAL | ENXIO,
1128 "Logical unit not accessible, target port in standby state") },
1129 /* DTLPWROMAEBKVF */
1130 { SST(0x04, 0x0C, SS_FATAL | ENXIO,
1131 "Logical unit not accessible, target port in unavailable state") },
1132 /* F */
1133 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */
1134 "Logical unit not ready, structure check required") },
1135 /* DTL WR MAEBKVF */
1136 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */
1137 "Logical unit not ready, security session in progress") },
1138 /* DT WROM B */
1139 { SST(0x04, 0x10, SS_FATAL | ENODEV,
1140 "Logical unit not ready, auxiliary memory not accessible") },
1141 /* DT WRO AEB VF */
1142 { SST(0x04, 0x11, SS_WAIT | ENXIO,
1143 "Logical unit not ready, notify (enable spinup) required") },
1144 /* M V */
1145 { SST(0x04, 0x12, SS_FATAL | ENXIO,
1146 "Logical unit not ready, offline") },
1147 /* DT R MAEBKV */
1148 { SST(0x04, 0x13, SS_WAIT | EBUSY,
1149 "Logical unit not ready, SA creation in progress") },
1150 /* D B */
1151 { SST(0x04, 0x14, SS_WAIT | ENOSPC,
1152 "Logical unit not ready, space allocation in progress") },
1153 /* M */
1154 { SST(0x04, 0x15, SS_FATAL | ENXIO,
1155 "Logical unit not ready, robotics disabled") },
1156 /* M */
1157 { SST(0x04, 0x16, SS_FATAL | ENXIO,
1158 "Logical unit not ready, configuration required") },
1159 /* M */
1160 { SST(0x04, 0x17, SS_FATAL | ENXIO,
1161 "Logical unit not ready, calibration required") },
1162 /* M */
1163 { SST(0x04, 0x18, SS_FATAL | ENXIO,
1164 "Logical unit not ready, a door is open") },
1165 /* M */
1166 { SST(0x04, 0x19, SS_FATAL | ENODEV,
1167 "Logical unit not ready, operating in sequential mode") },
1168 /* DT B */
1169 { SST(0x04, 0x1A, SS_WAIT | EBUSY,
1170 "Logical unit not ready, START/STOP UNIT command in progress") },
1171 /* D B */
1172 { SST(0x04, 0x1B, SS_WAIT | EBUSY,
1173 "Logical unit not ready, sanitize in progress") },
1174 /* DT MAEB */
1175 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1176 "Logical unit not ready, additional power use not yet granted") },
1177 /* D */
1178 { SST(0x04, 0x1D, SS_WAIT | EBUSY,
1179 "Logical unit not ready, configuration in progress") },
1180 /* D */
1181 { SST(0x04, 0x1E, SS_FATAL | ENXIO,
1182 "Logical unit not ready, microcode activation required") },
1183 /* DTLPWROMAEBKVF */
1184 { SST(0x04, 0x1F, SS_FATAL | ENXIO,
1185 "Logical unit not ready, microcode download required") },
1186 /* DTLPWROMAEBKVF */
1187 { SST(0x04, 0x20, SS_FATAL | ENXIO,
1188 "Logical unit not ready, logical unit reset required") },
1189 /* DTLPWROMAEBKVF */
1190 { SST(0x04, 0x21, SS_FATAL | ENXIO,
1191 "Logical unit not ready, hard reset required") },
1192 /* DTLPWROMAEBKVF */
1193 { SST(0x04, 0x22, SS_FATAL | ENXIO,
1194 "Logical unit not ready, power cycle required") },
1195 /* D */
1196 { SST(0x04, 0x23, SS_FATAL | ENXIO,
1197 "Logical unit not ready, affiliation required") },
1198 /* D */
1199 { SST(0x04, 0x24, SS_FATAL | EBUSY,
1200 "Depopulation in progress") },
1201 /* D */
1202 { SST(0x04, 0x25, SS_FATAL | EBUSY,
1203 "Depopulation restoration in progress") },
1204 /* DTL WROMAEBKVF */
1205 { SST(0x05, 0x00, SS_RDEF,
1206 "Logical unit does not respond to selection") },
1207 /* D WROM BK */
1208 { SST(0x06, 0x00, SS_RDEF,
1209 "No reference position found") },
1210 /* DTL WROM BK */
1211 { SST(0x07, 0x00, SS_RDEF,
1212 "Multiple peripheral devices selected") },
1213 /* DTL WROMAEBKVF */
1214 { SST(0x08, 0x00, SS_RDEF,
1215 "Logical unit communication failure") },
1216 /* DTL WROMAEBKVF */
1217 { SST(0x08, 0x01, SS_RDEF,
1218 "Logical unit communication time-out") },
1219 /* DTL WROMAEBKVF */
1220 { SST(0x08, 0x02, SS_RDEF,
1221 "Logical unit communication parity error") },
1222 /* DT ROM BK */
1223 { SST(0x08, 0x03, SS_RDEF,
1224 "Logical unit communication CRC error (Ultra-DMA/32)") },
1225 /* DTLPWRO K */
1226 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */
1227 "Unreachable copy target") },
1228 /* DT WRO B */
1229 { SST(0x09, 0x00, SS_RDEF,
1230 "Track following error") },
1231 /* WRO K */
1232 { SST(0x09, 0x01, SS_RDEF,
1233 "Tracking servo failure") },
1234 /* WRO K */
1235 { SST(0x09, 0x02, SS_RDEF,
1236 "Focus servo failure") },
1237 /* WRO */
1238 { SST(0x09, 0x03, SS_RDEF,
1239 "Spindle servo failure") },
1240 /* DT WRO B */
1241 { SST(0x09, 0x04, SS_RDEF,
1242 "Head select fault") },
1243 /* DT RO B */
1244 { SST(0x09, 0x05, SS_RDEF,
1245 "Vibration induced tracking error") },
1246 /* DTLPWROMAEBKVF */
1247 { SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1248 "Error log overflow") },
1249 /* DTLPWROMAEBKVF */
1250 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1251 "Warning") },
1252 /* DTLPWROMAEBKVF */
1253 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1254 "Warning - specified temperature exceeded") },
1255 /* DTLPWROMAEBKVF */
1256 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1257 "Warning - enclosure degraded") },
1258 /* DTLPWROMAEBKVF */
1259 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1260 "Warning - background self-test failed") },
1261 /* DTLPWRO AEBKVF */
1262 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1263 "Warning - background pre-scan detected medium error") },
1264 /* DTLPWRO AEBKVF */
1265 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1266 "Warning - background medium scan detected medium error") },
1267 /* DTLPWROMAEBKVF */
1268 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1269 "Warning - non-volatile cache now volatile") },
1270 /* DTLPWROMAEBKVF */
1271 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1272 "Warning - degraded power to non-volatile cache") },
1273 /* DTLPWROMAEBKVF */
1274 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1275 "Warning - power loss expected") },
1276 /* D */
1277 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1278 "Warning - device statistics notification available") },
1279 /* DTLPWROMAEBKV */
1280 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1281 "Warning - High critical temperature limit exceeded") },
1282 /* DTLPWROMAEBKV */
1283 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1284 "Warning - Low critical temperature limit exceeded") },
1285 /* DTLPWROMAEBKV */
1286 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1287 "Warning - High operating temperature limit exceeded") },
1288 /* DTLPWROMAEBKV */
1289 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1290 "Warning - Low operating temperature limit exceeded") },
1291 /* DTLPWROMAEBKV */
1292 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1293 "Warning - High citical humidity limit exceeded") },
1294 /* DTLPWROMAEBKV */
1295 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1296 "Warning - Low citical humidity limit exceeded") },
1297 /* DTLPWROMAEBKV */
1298 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1299 "Warning - High operating humidity limit exceeded") },
1300 /* DTLPWROMAEBKV */
1301 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1302 "Warning - Low operating humidity limit exceeded") },
1303 /* DTLPWROMAEBKVF */
1304 { SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE,
1305 "Warning - Microcode security at risk") },
1306 /* DTLPWROMAEBKVF */
1307 { SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE,
1308 "Warning - Microcode digital signature validation failure") },
1309 /* D */
1310 { SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE,
1311 "Warning - Physical element status change") },
1312 /* T R */
1313 { SST(0x0C, 0x00, SS_RDEF,
1314 "Write error") },
1315 /* K */
1316 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1317 "Write error - recovered with auto reallocation") },
1318 /* D W O BK */
1319 { SST(0x0C, 0x02, SS_RDEF,
1320 "Write error - auto reallocation failed") },
1321 /* D W O BK */
1322 { SST(0x0C, 0x03, SS_RDEF,
1323 "Write error - recommend reassignment") },
1324 /* DT W O B */
1325 { SST(0x0C, 0x04, SS_RDEF,
1326 "Compression check miscompare error") },
1327 /* DT W O B */
1328 { SST(0x0C, 0x05, SS_RDEF,
1329 "Data expansion occurred during compression") },
1330 /* DT W O B */
1331 { SST(0x0C, 0x06, SS_RDEF,
1332 "Block not compressible") },
1333 /* R */
1334 { SST(0x0C, 0x07, SS_RDEF,
1335 "Write error - recovery needed") },
1336 /* R */
1337 { SST(0x0C, 0x08, SS_RDEF,
1338 "Write error - recovery failed") },
1339 /* R */
1340 { SST(0x0C, 0x09, SS_RDEF,
1341 "Write error - loss of streaming") },
1342 /* R */
1343 { SST(0x0C, 0x0A, SS_RDEF,
1344 "Write error - padding blocks added") },
1345 /* DT WROM B */
1346 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */
1347 "Auxiliary memory write error") },
1348 /* DTLPWRO AEBKVF */
1349 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */
1350 "Write error - unexpected unsolicited data") },
1351 /* DTLPWRO AEBKVF */
1352 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */
1353 "Write error - not enough unsolicited data") },
1354 /* DT W O BK */
1355 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */
1356 "Multiple write errors") },
1357 /* R */
1358 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */
1359 "Defects in error window") },
1360 /* D */
1361 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */
1362 "Incomplete multiple atomic write operations") },
1363 /* D */
1364 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */
1365 "Write error - recovery scan needed") },
1366 /* D */
1367 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */
1368 "Write error - insufficient zone resources") },
1369 /* DTLPWRO A K */
1370 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */
1371 "Error detected by third party temporary initiator") },
1372 /* DTLPWRO A K */
1373 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */
1374 "Third party device failure") },
1375 /* DTLPWRO A K */
1376 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */
1377 "Copy target device not reachable") },
1378 /* DTLPWRO A K */
1379 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */
1380 "Incorrect copy target device type") },
1381 /* DTLPWRO A K */
1382 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */
1383 "Copy target device data underrun") },
1384 /* DTLPWRO A K */
1385 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */
1386 "Copy target device data overrun") },
1387 /* DT PWROMAEBK F */
1388 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */
1389 "Invalid information unit") },
1390 /* DT PWROMAEBK F */
1391 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */
1392 "Information unit too short") },
1393 /* DT PWROMAEBK F */
1394 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */
1395 "Information unit too long") },
1396 /* DT P R MAEBK F */
1397 { SST(0x0E, 0x03, SS_FATAL | EINVAL,
1398 "Invalid field in command information unit") },
1399 /* D W O BK */
1400 { SST(0x10, 0x00, SS_RDEF,
1401 "ID CRC or ECC error") },
1402 /* DT W O */
1403 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */
1404 "Logical block guard check failed") },
1405 /* DT W O */
1406 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */
1407 "Logical block application tag check failed") },
1408 /* DT W O */
1409 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */
1410 "Logical block reference tag check failed") },
1411 /* T */
1412 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */
1413 "Logical block protection error on recovered buffer data") },
1414 /* T */
1415 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */
1416 "Logical block protection method error") },
1417 /* DT WRO BK */
1418 { SST(0x11, 0x00, SS_FATAL|EIO,
1419 "Unrecovered read error") },
1420 /* DT WRO BK */
1421 { SST(0x11, 0x01, SS_FATAL|EIO,
1422 "Read retries exhausted") },
1423 /* DT WRO BK */
1424 { SST(0x11, 0x02, SS_FATAL|EIO,
1425 "Error too long to correct") },
1426 /* DT W O BK */
1427 { SST(0x11, 0x03, SS_FATAL|EIO,
1428 "Multiple read errors") },
1429 /* D W O BK */
1430 { SST(0x11, 0x04, SS_FATAL|EIO,
1431 "Unrecovered read error - auto reallocate failed") },
1432 /* WRO B */
1433 { SST(0x11, 0x05, SS_FATAL|EIO,
1434 "L-EC uncorrectable error") },
1435 /* WRO B */
1436 { SST(0x11, 0x06, SS_FATAL|EIO,
1437 "CIRC unrecovered error") },
1438 /* W O B */
1439 { SST(0x11, 0x07, SS_RDEF,
1440 "Data re-synchronization error") },
1441 /* T */
1442 { SST(0x11, 0x08, SS_RDEF,
1443 "Incomplete block read") },
1444 /* T */
1445 { SST(0x11, 0x09, SS_RDEF,
1446 "No gap found") },
1447 /* DT O BK */
1448 { SST(0x11, 0x0A, SS_RDEF,
1449 "Miscorrected error") },
1450 /* D W O BK */
1451 { SST(0x11, 0x0B, SS_FATAL|EIO,
1452 "Unrecovered read error - recommend reassignment") },
1453 /* D W O BK */
1454 { SST(0x11, 0x0C, SS_FATAL|EIO,
1455 "Unrecovered read error - recommend rewrite the data") },
1456 /* DT WRO B */
1457 { SST(0x11, 0x0D, SS_RDEF,
1458 "De-compression CRC error") },
1459 /* DT WRO B */
1460 { SST(0x11, 0x0E, SS_RDEF,
1461 "Cannot decompress using declared algorithm") },
1462 /* R */
1463 { SST(0x11, 0x0F, SS_RDEF,
1464 "Error reading UPC/EAN number") },
1465 /* R */
1466 { SST(0x11, 0x10, SS_RDEF,
1467 "Error reading ISRC number") },
1468 /* R */
1469 { SST(0x11, 0x11, SS_RDEF,
1470 "Read error - loss of streaming") },
1471 /* DT WROM B */
1472 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */
1473 "Auxiliary memory read error") },
1474 /* DTLPWRO AEBKVF */
1475 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */
1476 "Read error - failed retransmission request") },
1477 /* D */
1478 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */
1479 "Read error - LBA marked bad by application client") },
1480 /* D */
1481 { SST(0x11, 0x15, SS_FATAL | EIO,
1482 "Write after sanitize required") },
1483 /* D W O BK */
1484 { SST(0x12, 0x00, SS_RDEF,
1485 "Address mark not found for ID field") },
1486 /* D W O BK */
1487 { SST(0x13, 0x00, SS_RDEF,
1488 "Address mark not found for data field") },
1489 /* DTL WRO BK */
1490 { SST(0x14, 0x00, SS_RDEF,
1491 "Recorded entity not found") },
1492 /* DT WRO BK */
1493 { SST(0x14, 0x01, SS_RDEF,
1494 "Record not found") },
1495 /* T */
1496 { SST(0x14, 0x02, SS_RDEF,
1497 "Filemark or setmark not found") },
1498 /* T */
1499 { SST(0x14, 0x03, SS_RDEF,
1500 "End-of-data not found") },
1501 /* T */
1502 { SST(0x14, 0x04, SS_RDEF,
1503 "Block sequence error") },
1504 /* DT W O BK */
1505 { SST(0x14, 0x05, SS_RDEF,
1506 "Record not found - recommend reassignment") },
1507 /* DT W O BK */
1508 { SST(0x14, 0x06, SS_RDEF,
1509 "Record not found - data auto-reallocated") },
1510 /* T */
1511 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */
1512 "Locate operation failure") },
1513 /* DTL WROM BK */
1514 { SST(0x15, 0x00, SS_RDEF,
1515 "Random positioning error") },
1516 /* DTL WROM BK */
1517 { SST(0x15, 0x01, SS_RDEF,
1518 "Mechanical positioning error") },
1519 /* DT WRO BK */
1520 { SST(0x15, 0x02, SS_RDEF,
1521 "Positioning error detected by read of medium") },
1522 /* D W O BK */
1523 { SST(0x16, 0x00, SS_RDEF,
1524 "Data synchronization mark error") },
1525 /* D W O BK */
1526 { SST(0x16, 0x01, SS_RDEF,
1527 "Data sync error - data rewritten") },
1528 /* D W O BK */
1529 { SST(0x16, 0x02, SS_RDEF,
1530 "Data sync error - recommend rewrite") },
1531 /* D W O BK */
1532 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1533 "Data sync error - data auto-reallocated") },
1534 /* D W O BK */
1535 { SST(0x16, 0x04, SS_RDEF,
1536 "Data sync error - recommend reassignment") },
1537 /* DT WRO BK */
1538 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1539 "Recovered data with no error correction applied") },
1540 /* DT WRO BK */
1541 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1542 "Recovered data with retries") },
1543 /* DT WRO BK */
1544 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1545 "Recovered data with positive head offset") },
1546 /* DT WRO BK */
1547 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1548 "Recovered data with negative head offset") },
1549 /* WRO B */
1550 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1551 "Recovered data with retries and/or CIRC applied") },
1552 /* D WRO BK */
1553 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1554 "Recovered data using previous sector ID") },
1555 /* D W O BK */
1556 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1557 "Recovered data without ECC - data auto-reallocated") },
1558 /* D WRO BK */
1559 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1560 "Recovered data without ECC - recommend reassignment") },
1561 /* D WRO BK */
1562 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1563 "Recovered data without ECC - recommend rewrite") },
1564 /* D WRO BK */
1565 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1566 "Recovered data without ECC - data rewritten") },
1567 /* DT WRO BK */
1568 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1569 "Recovered data with error correction applied") },
1570 /* D WRO BK */
1571 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1572 "Recovered data with error corr. & retries applied") },
1573 /* D WRO BK */
1574 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1575 "Recovered data - data auto-reallocated") },
1576 /* R */
1577 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1578 "Recovered data with CIRC") },
1579 /* R */
1580 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1581 "Recovered data with L-EC") },
1582 /* D WRO BK */
1583 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1584 "Recovered data - recommend reassignment") },
1585 /* D WRO BK */
1586 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1587 "Recovered data - recommend rewrite") },
1588 /* D W O BK */
1589 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1590 "Recovered data with ECC - data rewritten") },
1591 /* R */
1592 { SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1593 "Recovered data with linking") },
1594 /* D O K */
1595 { SST(0x19, 0x00, SS_RDEF,
1596 "Defect list error") },
1597 /* D O K */
1598 { SST(0x19, 0x01, SS_RDEF,
1599 "Defect list not available") },
1600 /* D O K */
1601 { SST(0x19, 0x02, SS_RDEF,
1602 "Defect list error in primary list") },
1603 /* D O K */
1604 { SST(0x19, 0x03, SS_RDEF,
1605 "Defect list error in grown list") },
1606 /* DTLPWROMAEBKVF */
1607 { SST(0x1A, 0x00, SS_RDEF,
1608 "Parameter list length error") },
1609 /* DTLPWROMAEBKVF */
1610 { SST(0x1B, 0x00, SS_RDEF,
1611 "Synchronous data transfer error") },
1612 /* D O BK */
1613 { SST(0x1C, 0x00, SS_RDEF,
1614 "Defect list not found") },
1615 /* D O BK */
1616 { SST(0x1C, 0x01, SS_RDEF,
1617 "Primary defect list not found") },
1618 /* D O BK */
1619 { SST(0x1C, 0x02, SS_RDEF,
1620 "Grown defect list not found") },
1621 /* DT WRO BK */
1622 { SST(0x1D, 0x00, SS_FATAL,
1623 "Miscompare during verify operation") },
1624 /* D B */
1625 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */
1626 "Miscomparable verify of unmapped LBA") },
1627 /* D W O BK */
1628 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1629 "Recovered ID with ECC correction") },
1630 /* D O K */
1631 { SST(0x1F, 0x00, SS_RDEF,
1632 "Partial defect list transfer") },
1633 /* DTLPWROMAEBKVF */
1634 { SST(0x20, 0x00, SS_FATAL | EINVAL,
1635 "Invalid command operation code") },
1636 /* DT PWROMAEBK */
1637 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */
1638 "Access denied - initiator pending-enrolled") },
1639 /* DT PWROMAEBK */
1640 { SST(0x20, 0x02, SS_FATAL | EPERM,
1641 "Access denied - no access rights") },
1642 /* DT PWROMAEBK */
1643 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */
1644 "Access denied - invalid mgmt ID key") },
1645 /* T */
1646 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */
1647 "Illegal command while in write capable state") },
1648 /* T */
1649 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */
1650 "Obsolete") },
1651 /* T */
1652 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */
1653 "Illegal command while in explicit address mode") },
1654 /* T */
1655 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */
1656 "Illegal command while in implicit address mode") },
1657 /* DT PWROMAEBK */
1658 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */
1659 "Access denied - enrollment conflict") },
1660 /* DT PWROMAEBK */
1661 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */
1662 "Access denied - invalid LU identifier") },
1663 /* DT PWROMAEBK */
1664 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */
1665 "Access denied - invalid proxy token") },
1666 /* DT PWROMAEBK */
1667 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */
1668 "Access denied - ACL LUN conflict") },
1669 /* T */
1670 { SST(0x20, 0x0C, SS_FATAL | EINVAL,
1671 "Illegal command when not in append-only mode") },
1672 /* D */
1673 { SST(0x20, 0x0D, SS_FATAL | EINVAL,
1674 "Not an administrative logical unit") },
1675 /* D */
1676 { SST(0x20, 0x0E, SS_FATAL | EINVAL,
1677 "Not a subsidiary logical unit") },
1678 /* D */
1679 { SST(0x20, 0x0F, SS_FATAL | EINVAL,
1680 "Not a conglomerate logical unit") },
1681 /* DT WRO BK */
1682 { SST(0x21, 0x00, SS_FATAL | EINVAL,
1683 "Logical block address out of range") },
1684 /* DT WROM BK */
1685 { SST(0x21, 0x01, SS_FATAL | EINVAL,
1686 "Invalid element address") },
1687 /* R */
1688 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */
1689 "Invalid address for write") },
1690 /* R */
1691 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */
1692 "Invalid write crossing layer jump") },
1693 /* D */
1694 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */
1695 "Unaligned write command") },
1696 /* D */
1697 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */
1698 "Write boundary violation") },
1699 /* D */
1700 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */
1701 "Attempt to read invalid data") },
1702 /* D */
1703 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */
1704 "Read boundary violation") },
1705 /* D */
1706 { SST(0x21, 0x08, SS_FATAL | EINVAL,
1707 "Misaligned write command") },
1708 /* D */
1709 { SST(0x21, 0x09, SS_FATAL | EINVAL,
1710 "Attempt to access gap zone") },
1711 /* D */
1712 { SST(0x22, 0x00, SS_FATAL | EINVAL,
1713 "Illegal function (use 20 00, 24 00, or 26 00)") },
1714 /* DT P B */
1715 { SST(0x23, 0x00, SS_FATAL | EINVAL,
1716 "Invalid token operation, cause not reportable") },
1717 /* DT P B */
1718 { SST(0x23, 0x01, SS_FATAL | EINVAL,
1719 "Invalid token operation, unsupported token type") },
1720 /* DT P B */
1721 { SST(0x23, 0x02, SS_FATAL | EINVAL,
1722 "Invalid token operation, remote token usage not supported") },
1723 /* DT P B */
1724 { SST(0x23, 0x03, SS_FATAL | EINVAL,
1725 "Invalid token operation, remote ROD token creation not supported") },
1726 /* DT P B */
1727 { SST(0x23, 0x04, SS_FATAL | EINVAL,
1728 "Invalid token operation, token unknown") },
1729 /* DT P B */
1730 { SST(0x23, 0x05, SS_FATAL | EINVAL,
1731 "Invalid token operation, token corrupt") },
1732 /* DT P B */
1733 { SST(0x23, 0x06, SS_FATAL | EINVAL,
1734 "Invalid token operation, token revoked") },
1735 /* DT P B */
1736 { SST(0x23, 0x07, SS_FATAL | EINVAL,
1737 "Invalid token operation, token expired") },
1738 /* DT P B */
1739 { SST(0x23, 0x08, SS_FATAL | EINVAL,
1740 "Invalid token operation, token cancelled") },
1741 /* DT P B */
1742 { SST(0x23, 0x09, SS_FATAL | EINVAL,
1743 "Invalid token operation, token deleted") },
1744 /* DT P B */
1745 { SST(0x23, 0x0A, SS_FATAL | EINVAL,
1746 "Invalid token operation, invalid token length") },
1747 /* DTLPWROMAEBKVF */
1748 { SST(0x24, 0x00, SS_FATAL | EINVAL,
1749 "Invalid field in CDB") },
1750 /* DTLPWRO AEBKVF */
1751 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */
1752 "CDB decryption error") },
1753 /* T */
1754 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */
1755 "Obsolete") },
1756 /* T */
1757 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */
1758 "Obsolete") },
1759 /* F */
1760 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */
1761 "Security audit value frozen") },
1762 /* F */
1763 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */
1764 "Security working key frozen") },
1765 /* F */
1766 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */
1767 "NONCE not unique") },
1768 /* F */
1769 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */
1770 "NONCE timestamp out of range") },
1771 /* DT R MAEBKV */
1772 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */
1773 "Invalid XCDB") },
1774 /* D */
1775 { SST(0x24, 0x09, SS_FATAL | EINVAL,
1776 "Invalid fast format") },
1777 /* DTLPWROMAEBKVF */
1778 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1779 "Logical unit not supported") },
1780 /* DTLPWROMAEBKVF */
1781 { SST(0x26, 0x00, SS_FATAL | EINVAL,
1782 "Invalid field in parameter list") },
1783 /* DTLPWROMAEBKVF */
1784 { SST(0x26, 0x01, SS_FATAL | EINVAL,
1785 "Parameter not supported") },
1786 /* DTLPWROMAEBKVF */
1787 { SST(0x26, 0x02, SS_FATAL | EINVAL,
1788 "Parameter value invalid") },
1789 /* DTLPWROMAE K */
1790 { SST(0x26, 0x03, SS_FATAL | EINVAL,
1791 "Threshold parameters not supported") },
1792 /* DTLPWROMAEBKVF */
1793 { SST(0x26, 0x04, SS_FATAL | EINVAL,
1794 "Invalid release of persistent reservation") },
1795 /* DTLPWRO A BK */
1796 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */
1797 "Data decryption error") },
1798 /* DTLPWRO K */
1799 { SST(0x26, 0x06, SS_FATAL | EINVAL,
1800 "Too many target descriptors") },
1801 /* DTLPWRO K */
1802 { SST(0x26, 0x07, SS_FATAL | EINVAL,
1803 "Unsupported target descriptor type code") },
1804 /* DTLPWRO K */
1805 { SST(0x26, 0x08, SS_FATAL | EINVAL,
1806 "Too many segment descriptors") },
1807 /* DTLPWRO K */
1808 { SST(0x26, 0x09, SS_FATAL | EINVAL,
1809 "Unsupported segment descriptor type code") },
1810 /* DTLPWRO K */
1811 { SST(0x26, 0x0A, SS_FATAL | EINVAL,
1812 "Unexpected inexact segment") },
1813 /* DTLPWRO K */
1814 { SST(0x26, 0x0B, SS_FATAL | EINVAL,
1815 "Inline data length exceeded") },
1816 /* DTLPWRO K */
1817 { SST(0x26, 0x0C, SS_FATAL | EINVAL,
1818 "Invalid operation for copy source or destination") },
1819 /* DTLPWRO K */
1820 { SST(0x26, 0x0D, SS_FATAL | EINVAL,
1821 "Copy segment granularity violation") },
1822 /* DT PWROMAEBK */
1823 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */
1824 "Invalid parameter while port is enabled") },
1825 /* F */
1826 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */
1827 "Invalid data-out buffer integrity check value") },
1828 /* T */
1829 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */
1830 "Data decryption key fail limit reached") },
1831 /* T */
1832 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */
1833 "Incomplete key-associated data set") },
1834 /* T */
1835 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */
1836 "Vendor specific key reference not found") },
1837 /* D */
1838 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */
1839 "Application tag mode page is invalid") },
1840 /* T */
1841 { SST(0x26, 0x14, SS_RDEF, /* XXX TBD */
1842 "Tape stream mirroring prevented") },
1843 /* T */
1844 { SST(0x26, 0x15, SS_FATAL | EINVAL,
1845 "Copy source or copy destination not authorized") },
1846 /* D */
1847 { SST(0x26, 0x16, SS_FATAL | EINVAL,
1848 "Fast copy not possible") },
1849 /* DT WRO BK */
1850 { SST(0x27, 0x00, SS_FATAL | EACCES,
1851 "Write protected") },
1852 /* DT WRO BK */
1853 { SST(0x27, 0x01, SS_FATAL | EACCES,
1854 "Hardware write protected") },
1855 /* DT WRO BK */
1856 { SST(0x27, 0x02, SS_FATAL | EACCES,
1857 "Logical unit software write protected") },
1858 /* T R */
1859 { SST(0x27, 0x03, SS_FATAL | EACCES,
1860 "Associated write protect") },
1861 /* T R */
1862 { SST(0x27, 0x04, SS_FATAL | EACCES,
1863 "Persistent write protect") },
1864 /* T R */
1865 { SST(0x27, 0x05, SS_FATAL | EACCES,
1866 "Permanent write protect") },
1867 /* R F */
1868 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */
1869 "Conditional write protect") },
1870 /* D B */
1871 { SST(0x27, 0x07, SS_FATAL | ENOSPC,
1872 "Space allocation failed write protect") },
1873 /* D */
1874 { SST(0x27, 0x08, SS_FATAL | EACCES,
1875 "Zone is read only") },
1876 /* DTLPWROMAEBKVF */
1877 { SST(0x28, 0x00, SS_FATAL | ENXIO,
1878 "Not ready to ready change, medium may have changed") },
1879 /* DT WROM B */
1880 { SST(0x28, 0x01, SS_FATAL | ENXIO,
1881 "Import or export element accessed") },
1882 /* R */
1883 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */
1884 "Format-layer may have changed") },
1885 /* M */
1886 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */
1887 "Import/export element accessed, medium changed") },
1888 /*
1889 * XXX JGibbs - All of these should use the same errno, but I don't
1890 * think ENXIO is the correct choice. Should we borrow from
1891 * the networking errnos? ECONNRESET anyone?
1892 */
1893 /* DTLPWROMAEBKVF */
1894 { SST(0x29, 0x00, SS_FATAL | ENXIO,
1895 "Power on, reset, or bus device reset occurred") },
1896 /* DTLPWROMAEBKVF */
1897 { SST(0x29, 0x01, SS_RDEF,
1898 "Power on occurred") },
1899 /* DTLPWROMAEBKVF */
1900 { SST(0x29, 0x02, SS_RDEF,
1901 "SCSI bus reset occurred") },
1902 /* DTLPWROMAEBKVF */
1903 { SST(0x29, 0x03, SS_RDEF,
1904 "Bus device reset function occurred") },
1905 /* DTLPWROMAEBKVF */
1906 { SST(0x29, 0x04, SS_RDEF,
1907 "Device internal reset") },
1908 /* DTLPWROMAEBKVF */
1909 { SST(0x29, 0x05, SS_RDEF,
1910 "Transceiver mode changed to single-ended") },
1911 /* DTLPWROMAEBKVF */
1912 { SST(0x29, 0x06, SS_RDEF,
1913 "Transceiver mode changed to LVD") },
1914 /* DTLPWROMAEBKVF */
1915 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */
1916 "I_T nexus loss occurred") },
1917 /* DTL WROMAEBKVF */
1918 { SST(0x2A, 0x00, SS_RDEF,
1919 "Parameters changed") },
1920 /* DTL WROMAEBKVF */
1921 { SST(0x2A, 0x01, SS_RDEF,
1922 "Mode parameters changed") },
1923 /* DTL WROMAE K */
1924 { SST(0x2A, 0x02, SS_RDEF,
1925 "Log parameters changed") },
1926 /* DTLPWROMAE K */
1927 { SST(0x2A, 0x03, SS_RDEF,
1928 "Reservations preempted") },
1929 /* DTLPWROMAE */
1930 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */
1931 "Reservations released") },
1932 /* DTLPWROMAE */
1933 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */
1934 "Registrations preempted") },
1935 /* DTLPWROMAEBKVF */
1936 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */
1937 "Asymmetric access state changed") },
1938 /* DTLPWROMAEBKVF */
1939 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */
1940 "Implicit asymmetric access state transition failed") },
1941 /* DT WROMAEBKVF */
1942 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */
1943 "Priority changed") },
1944 /* D */
1945 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */
1946 "Capacity data has changed") },
1947 /* DT */
1948 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */
1949 "Error history I_T nexus cleared") },
1950 /* DT */
1951 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */
1952 "Error history snapshot released") },
1953 /* F */
1954 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */
1955 "Error recovery attributes have changed") },
1956 /* T */
1957 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */
1958 "Data encryption capabilities changed") },
1959 /* DT M E V */
1960 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */
1961 "Timestamp changed") },
1962 /* T */
1963 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */
1964 "Data encryption parameters changed by another I_T nexus") },
1965 /* T */
1966 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */
1967 "Data encryption parameters changed by vendor specific event") },
1968 /* T */
1969 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */
1970 "Data encryption key instance counter has changed") },
1971 /* DT R MAEBKV */
1972 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */
1973 "SA creation capabilities data has changed") },
1974 /* T M V */
1975 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */
1976 "Medium removal prevention preempted") },
1977 /* D */
1978 { SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */
1979 "Zone reset write pointer recommended") },
1980 /* DTLPWRO K */
1981 { SST(0x2B, 0x00, SS_RDEF,
1982 "Copy cannot execute since host cannot disconnect") },
1983 /* DTLPWROMAEBKVF */
1984 { SST(0x2C, 0x00, SS_RDEF,
1985 "Command sequence error") },
1986 /* */
1987 { SST(0x2C, 0x01, SS_RDEF,
1988 "Too many windows specified") },
1989 /* */
1990 { SST(0x2C, 0x02, SS_RDEF,
1991 "Invalid combination of windows specified") },
1992 /* R */
1993 { SST(0x2C, 0x03, SS_RDEF,
1994 "Current program area is not empty") },
1995 /* R */
1996 { SST(0x2C, 0x04, SS_RDEF,
1997 "Current program area is empty") },
1998 /* B */
1999 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */
2000 "Illegal power condition request") },
2001 /* R */
2002 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */
2003 "Persistent prevent conflict") },
2004 /* DTLPWROMAEBKVF */
2005 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */
2006 "Previous busy status") },
2007 /* DTLPWROMAEBKVF */
2008 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */
2009 "Previous task set full status") },
2010 /* DTLPWROM EBKVF */
2011 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */
2012 "Previous reservation conflict status") },
2013 /* F */
2014 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */
2015 "Partition or collection contains user objects") },
2016 /* T */
2017 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */
2018 "Not reserved") },
2019 /* D */
2020 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */
2021 "ORWRITE generation does not match") },
2022 /* D */
2023 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */
2024 "Reset write pointer not allowed") },
2025 /* D */
2026 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */
2027 "Zone is offline") },
2028 /* D */
2029 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */
2030 "Stream not open") },
2031 /* D */
2032 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */
2033 "Unwritten data in zone") },
2034 /* D */
2035 { SST(0x2C, 0x11, SS_FATAL | EINVAL,
2036 "Descriptor format sense data required") },
2037 /* D */
2038 { SST(0x2C, 0x12, SS_FATAL | EINVAL,
2039 "Zone is inactive") },
2040 /* DTPEROMAEBKVF */
2041 { SST(0x2C, 0x13, SS_FATAL | EINVAL,
2042 "Well known logical unit access required") },
2043 /* T */
2044 { SST(0x2D, 0x00, SS_RDEF,
2045 "Overwrite error on update in place") },
2046 /* R */
2047 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */
2048 "Insufficient time for operation") },
2049 /* D */
2050 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */
2051 "Command timeout before processing") },
2052 /* D */
2053 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */
2054 "Command timeout during processing") },
2055 /* D */
2056 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */
2057 "Command timeout during processing due to error recovery") },
2058 /* DTLPWROMAEBKVF */
2059 { SST(0x2F, 0x00, SS_RDEF,
2060 "Commands cleared by another initiator") },
2061 /* D */
2062 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */
2063 "Commands cleared by power loss notification") },
2064 /* DTLPWROMAEBKVF */
2065 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */
2066 "Commands cleared by device server") },
2067 /* DTLPWROMAEBKVF */
2068 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */
2069 "Some commands cleared by queuing layer event") },
2070 /* DT WROM BK */
2071 { SST(0x30, 0x00, SS_RDEF,
2072 "Incompatible medium installed") },
2073 /* DT WRO BK */
2074 { SST(0x30, 0x01, SS_RDEF,
2075 "Cannot read medium - unknown format") },
2076 /* DT WRO BK */
2077 { SST(0x30, 0x02, SS_RDEF,
2078 "Cannot read medium - incompatible format") },
2079 /* DT R K */
2080 { SST(0x30, 0x03, SS_RDEF,
2081 "Cleaning cartridge installed") },
2082 /* DT WRO BK */
2083 { SST(0x30, 0x04, SS_RDEF,
2084 "Cannot write medium - unknown format") },
2085 /* DT WRO BK */
2086 { SST(0x30, 0x05, SS_RDEF,
2087 "Cannot write medium - incompatible format") },
2088 /* DT WRO B */
2089 { SST(0x30, 0x06, SS_RDEF,
2090 "Cannot format medium - incompatible medium") },
2091 /* DTL WROMAEBKVF */
2092 { SST(0x30, 0x07, SS_RDEF,
2093 "Cleaning failure") },
2094 /* R */
2095 { SST(0x30, 0x08, SS_RDEF,
2096 "Cannot write - application code mismatch") },
2097 /* R */
2098 { SST(0x30, 0x09, SS_RDEF,
2099 "Current session not fixated for append") },
2100 /* DT WRO AEBK */
2101 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */
2102 "Cleaning request rejected") },
2103 /* T */
2104 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */
2105 "WORM medium - overwrite attempted") },
2106 /* T */
2107 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */
2108 "WORM medium - integrity check") },
2109 /* R */
2110 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */
2111 "Medium not formatted") },
2112 /* M */
2113 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */
2114 "Incompatible volume type") },
2115 /* M */
2116 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */
2117 "Incompatible volume qualifier") },
2118 /* M */
2119 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */
2120 "Cleaning volume expired") },
2121 /* DT WRO BK */
2122 { SST(0x31, 0x00, SS_FATAL | ENXIO,
2123 "Medium format corrupted") },
2124 /* D L RO B */
2125 { SST(0x31, 0x01, SS_RDEF,
2126 "Format command failed") },
2127 /* R */
2128 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */
2129 "Zoned formatting failed due to spare linking") },
2130 /* D B */
2131 { SST(0x31, 0x03, SS_FATAL | EIO,
2132 "SANITIZE command failed") },
2133 /* D */
2134 { SST(0x31, 0x04, SS_FATAL | EIO,
2135 "Depopulation failed") },
2136 /* D */
2137 { SST(0x31, 0x05, SS_FATAL | EIO,
2138 "Depopulation restoration failed") },
2139 /* D W O BK */
2140 { SST(0x32, 0x00, SS_RDEF,
2141 "No defect spare location available") },
2142 /* D W O BK */
2143 { SST(0x32, 0x01, SS_RDEF,
2144 "Defect list update failure") },
2145 /* T */
2146 { SST(0x33, 0x00, SS_RDEF,
2147 "Tape length error") },
2148 /* DTLPWROMAEBKVF */
2149 { SST(0x34, 0x00, SS_RDEF,
2150 "Enclosure failure") },
2151 /* DTLPWROMAEBKVF */
2152 { SST(0x35, 0x00, SS_RDEF,
2153 "Enclosure services failure") },
2154 /* DTLPWROMAEBKVF */
2155 { SST(0x35, 0x01, SS_RDEF,
2156 "Unsupported enclosure function") },
2157 /* DTLPWROMAEBKVF */
2158 { SST(0x35, 0x02, SS_RDEF,
2159 "Enclosure services unavailable") },
2160 /* DTLPWROMAEBKVF */
2161 { SST(0x35, 0x03, SS_RDEF,
2162 "Enclosure services transfer failure") },
2163 /* DTLPWROMAEBKVF */
2164 { SST(0x35, 0x04, SS_RDEF,
2165 "Enclosure services transfer refused") },
2166 /* DTL WROMAEBKVF */
2167 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */
2168 "Enclosure services checksum error") },
2169 /* L */
2170 { SST(0x36, 0x00, SS_RDEF,
2171 "Ribbon, ink, or toner failure") },
2172 /* DTL WROMAEBKVF */
2173 { SST(0x37, 0x00, SS_RDEF,
2174 "Rounded parameter") },
2175 /* B */
2176 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */
2177 "Event status notification") },
2178 /* B */
2179 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */
2180 "ESN - power management class event") },
2181 /* B */
2182 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */
2183 "ESN - media class event") },
2184 /* B */
2185 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */
2186 "ESN - device busy class event") },
2187 /* D */
2188 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */
2189 "Thin provisioning soft threshold reached") },
2190 /* D */
2191 { SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE,
2192 "Depopulation interrupted") },
2193 /* DTL WROMAE K */
2194 { SST(0x39, 0x00, SS_RDEF,
2195 "Saving parameters not supported") },
2196 /* DTL WROM BK */
2197 { SST(0x3A, 0x00, SS_FATAL | ENXIO,
2198 "Medium not present") },
2199 /* DT WROM BK */
2200 { SST(0x3A, 0x01, SS_FATAL | ENXIO,
2201 "Medium not present - tray closed") },
2202 /* DT WROM BK */
2203 { SST(0x3A, 0x02, SS_FATAL | ENXIO,
2204 "Medium not present - tray open") },
2205 /* DT WROM B */
2206 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */
2207 "Medium not present - loadable") },
2208 /* DT WRO B */
2209 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */
2210 "Medium not present - medium auxiliary memory accessible") },
2211 /* TL */
2212 { SST(0x3B, 0x00, SS_RDEF,
2213 "Sequential positioning error") },
2214 /* T */
2215 { SST(0x3B, 0x01, SS_RDEF,
2216 "Tape position error at beginning-of-medium") },
2217 /* T */
2218 { SST(0x3B, 0x02, SS_RDEF,
2219 "Tape position error at end-of-medium") },
2220 /* L */
2221 { SST(0x3B, 0x03, SS_RDEF,
2222 "Tape or electronic vertical forms unit not ready") },
2223 /* L */
2224 { SST(0x3B, 0x04, SS_RDEF,
2225 "Slew failure") },
2226 /* L */
2227 { SST(0x3B, 0x05, SS_RDEF,
2228 "Paper jam") },
2229 /* L */
2230 { SST(0x3B, 0x06, SS_RDEF,
2231 "Failed to sense top-of-form") },
2232 /* L */
2233 { SST(0x3B, 0x07, SS_RDEF,
2234 "Failed to sense bottom-of-form") },
2235 /* T */
2236 { SST(0x3B, 0x08, SS_RDEF,
2237 "Reposition error") },
2238 /* */
2239 { SST(0x3B, 0x09, SS_RDEF,
2240 "Read past end of medium") },
2241 /* */
2242 { SST(0x3B, 0x0A, SS_RDEF,
2243 "Read past beginning of medium") },
2244 /* */
2245 { SST(0x3B, 0x0B, SS_RDEF,
2246 "Position past end of medium") },
2247 /* T */
2248 { SST(0x3B, 0x0C, SS_RDEF,
2249 "Position past beginning of medium") },
2250 /* DT WROM BK */
2251 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2252 "Medium destination element full") },
2253 /* DT WROM BK */
2254 { SST(0x3B, 0x0E, SS_RDEF,
2255 "Medium source element empty") },
2256 /* R */
2257 { SST(0x3B, 0x0F, SS_RDEF,
2258 "End of medium reached") },
2259 /* DT WROM BK */
2260 { SST(0x3B, 0x11, SS_RDEF,
2261 "Medium magazine not accessible") },
2262 /* DT WROM BK */
2263 { SST(0x3B, 0x12, SS_RDEF,
2264 "Medium magazine removed") },
2265 /* DT WROM BK */
2266 { SST(0x3B, 0x13, SS_RDEF,
2267 "Medium magazine inserted") },
2268 /* DT WROM BK */
2269 { SST(0x3B, 0x14, SS_RDEF,
2270 "Medium magazine locked") },
2271 /* DT WROM BK */
2272 { SST(0x3B, 0x15, SS_RDEF,
2273 "Medium magazine unlocked") },
2274 /* R */
2275 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */
2276 "Mechanical positioning or changer error") },
2277 /* F */
2278 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */
2279 "Read past end of user object") },
2280 /* M */
2281 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */
2282 "Element disabled") },
2283 /* M */
2284 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */
2285 "Element enabled") },
2286 /* M */
2287 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */
2288 "Data transfer device removed") },
2289 /* M */
2290 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */
2291 "Data transfer device inserted") },
2292 /* T */
2293 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */
2294 "Too many logical objects on partition to support operation") },
2295 /* M */
2296 { SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */
2297 "Element static information changed") },
2298 /* DTLPWROMAE K */
2299 { SST(0x3D, 0x00, SS_RDEF,
2300 "Invalid bits in IDENTIFY message") },
2301 /* DTLPWROMAEBKVF */
2302 { SST(0x3E, 0x00, SS_RDEF,
2303 "Logical unit has not self-configured yet") },
2304 /* DTLPWROMAEBKVF */
2305 { SST(0x3E, 0x01, SS_RDEF,
2306 "Logical unit failure") },
2307 /* DTLPWROMAEBKVF */
2308 { SST(0x3E, 0x02, SS_RDEF,
2309 "Timeout on logical unit") },
2310 /* DTLPWROMAEBKVF */
2311 { SST(0x3E, 0x03, SS_FATAL | ENXIO,
2312 "Logical unit failed self-test") },
2313 /* DTLPWROMAEBKVF */
2314 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */
2315 "Logical unit unable to update self-test log") },
2316 /* DTLPWROMAEBKVF */
2317 { SST(0x3F, 0x00, SS_RDEF,
2318 "Target operating conditions have changed") },
2319 /* DTLPWROMAEBKVF */
2320 { SST(0x3F, 0x01, SS_RDEF,
2321 "Microcode has been changed") },
2322 /* DTLPWROM BK */
2323 { SST(0x3F, 0x02, SS_RDEF,
2324 "Changed operating definition") },
2325 /* DTLPWROMAEBKVF */
2326 { SST(0x3F, 0x03, SS_RDEF,
2327 "INQUIRY data has changed") },
2328 /* DT WROMAEBK */
2329 { SST(0x3F, 0x04, SS_RDEF,
2330 "Component device attached") },
2331 /* DT WROMAEBK */
2332 { SST(0x3F, 0x05, SS_RDEF,
2333 "Device identifier changed") },
2334 /* DT WROMAEB */
2335 { SST(0x3F, 0x06, SS_RDEF,
2336 "Redundancy group created or modified") },
2337 /* DT WROMAEB */
2338 { SST(0x3F, 0x07, SS_RDEF,
2339 "Redundancy group deleted") },
2340 /* DT WROMAEB */
2341 { SST(0x3F, 0x08, SS_RDEF,
2342 "Spare created or modified") },
2343 /* DT WROMAEB */
2344 { SST(0x3F, 0x09, SS_RDEF,
2345 "Spare deleted") },
2346 /* DT WROMAEBK */
2347 { SST(0x3F, 0x0A, SS_RDEF,
2348 "Volume set created or modified") },
2349 /* DT WROMAEBK */
2350 { SST(0x3F, 0x0B, SS_RDEF,
2351 "Volume set deleted") },
2352 /* DT WROMAEBK */
2353 { SST(0x3F, 0x0C, SS_RDEF,
2354 "Volume set deassigned") },
2355 /* DT WROMAEBK */
2356 { SST(0x3F, 0x0D, SS_RDEF,
2357 "Volume set reassigned") },
2358 /* DTLPWROMAE */
2359 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2360 "Reported LUNs data has changed") },
2361 /* DTLPWROMAEBKVF */
2362 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */
2363 "Echo buffer overwritten") },
2364 /* DT WROM B */
2365 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */
2366 "Medium loadable") },
2367 /* DT WROM B */
2368 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */
2369 "Medium auxiliary memory accessible") },
2370 /* DTLPWR MAEBK F */
2371 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */
2372 "iSCSI IP address added") },
2373 /* DTLPWR MAEBK F */
2374 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */
2375 "iSCSI IP address removed") },
2376 /* DTLPWR MAEBK F */
2377 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */
2378 "iSCSI IP address changed") },
2379 /* DTLPWR MAEBK */
2380 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */
2381 "Inspect referrals sense descriptors") },
2382 /* DTLPWROMAEBKVF */
2383 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */
2384 "Microcode has been changed without reset") },
2385 /* D */
2386 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */
2387 "Zone transition to full") },
2388 /* D */
2389 { SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */
2390 "Bind completed") },
2391 /* D */
2392 { SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */
2393 "Bind redirected") },
2394 /* D */
2395 { SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */
2396 "Subsidiary binding changed") },
2397 { SST(0x40, 0x00, SS_FATAL | ENXIO,
2398 "RAM failure") }, /* deprecated - use 40 NN instead */
2399 /* DTLPWROMAEBKVF */
2400 { SST(0x40, 0x80, SS_FATAL | ENXIO,
2401 "Diagnostic failure: ASCQ = Component ID") },
2402 /* DTLPWROMAEBKVF */
2403 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2404 NULL) }, /* Range 0x80->0xFF */
2405 /* D */
2406 { SST(0x41, 0x00, SS_RDEF,
2407 "Data path failure") }, /* deprecated - use 40 NN instead */
2408 /* D */
2409 { SST(0x42, 0x00, SS_RDEF,
2410 "Power-on or self-test failure") },
2411 /* deprecated - use 40 NN instead */
2412 /* DTLPWROMAEBKVF */
2413 { SST(0x43, 0x00, SS_RDEF,
2414 "Message error") },
2415 /* DTLPWROMAEBKVF */
2416 { SST(0x44, 0x00, SS_FATAL | ENXIO,
2417 "Internal target failure") },
2418 /* DT P MAEBKVF */
2419 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */
2420 "Persistent reservation information lost") },
2421 /* DT B */
2422 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */
2423 "ATA device failed set features") },
2424 /* DTLPWROMAEBKVF */
2425 { SST(0x45, 0x00, SS_RDEF,
2426 "Select or reselect failure") },
2427 /* DTLPWROM BK */
2428 { SST(0x46, 0x00, SS_RDEF,
2429 "Unsuccessful soft reset") },
2430 /* DTLPWROMAEBKVF */
2431 { SST(0x47, 0x00, SS_RDEF,
2432 "SCSI parity error") },
2433 /* DTLPWROMAEBKVF */
2434 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */
2435 "Data phase CRC error detected") },
2436 /* DTLPWROMAEBKVF */
2437 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */
2438 "SCSI parity error detected during ST data phase") },
2439 /* DTLPWROMAEBKVF */
2440 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */
2441 "Information unit iuCRC error detected") },
2442 /* DTLPWROMAEBKVF */
2443 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */
2444 "Asynchronous information protection error detected") },
2445 /* DTLPWROMAEBKVF */
2446 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */
2447 "Protocol service CRC error") },
2448 /* DT MAEBKVF */
2449 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */
2450 "PHY test function in progress") },
2451 /* DT PWROMAEBK */
2452 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */
2453 "Some commands cleared by iSCSI protocol event") },
2454 /* DTLPWROMAEBKVF */
2455 { SST(0x48, 0x00, SS_RDEF,
2456 "Initiator detected error message received") },
2457 /* DTLPWROMAEBKVF */
2458 { SST(0x49, 0x00, SS_RDEF,
2459 "Invalid message error") },
2460 /* DTLPWROMAEBKVF */
2461 { SST(0x4A, 0x00, SS_RDEF,
2462 "Command phase error") },
2463 /* DTLPWROMAEBKVF */
2464 { SST(0x4B, 0x00, SS_RDEF,
2465 "Data phase error") },
2466 /* DT PWROMAEBK */
2467 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */
2468 "Invalid target port transfer tag received") },
2469 /* DT PWROMAEBK */
2470 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */
2471 "Too much write data") },
2472 /* DT PWROMAEBK */
2473 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */
2474 "ACK/NAK timeout") },
2475 /* DT PWROMAEBK */
2476 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */
2477 "NAK received") },
2478 /* DT PWROMAEBK */
2479 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */
2480 "Data offset error") },
2481 /* DT PWROMAEBK */
2482 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */
2483 "Initiator response timeout") },
2484 /* DT PWROMAEBK F */
2485 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */
2486 "Connection lost") },
2487 /* DT PWROMAEBK F */
2488 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */
2489 "Data-in buffer overflow - data buffer size") },
2490 /* DT PWROMAEBK F */
2491 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */
2492 "Data-in buffer overflow - data buffer descriptor area") },
2493 /* DT PWROMAEBK F */
2494 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */
2495 "Data-in buffer error") },
2496 /* DT PWROMAEBK F */
2497 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */
2498 "Data-out buffer overflow - data buffer size") },
2499 /* DT PWROMAEBK F */
2500 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */
2501 "Data-out buffer overflow - data buffer descriptor area") },
2502 /* DT PWROMAEBK F */
2503 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */
2504 "Data-out buffer error") },
2505 /* DT PWROMAEBK F */
2506 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */
2507 "PCIe fabric error") },
2508 /* DT PWROMAEBK F */
2509 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */
2510 "PCIe completion timeout") },
2511 /* DT PWROMAEBK F */
2512 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */
2513 "PCIe completer abort") },
2514 /* DT PWROMAEBK F */
2515 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */
2516 "PCIe poisoned TLP received") },
2517 /* DT PWROMAEBK F */
2518 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */
2519 "PCIe ECRC check failed") },
2520 /* DT PWROMAEBK F */
2521 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */
2522 "PCIe unsupported request") },
2523 /* DT PWROMAEBK F */
2524 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */
2525 "PCIe ACS violation") },
2526 /* DT PWROMAEBK F */
2527 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */
2528 "PCIe TLP prefix blocket") },
2529 /* DTLPWROMAEBKVF */
2530 { SST(0x4C, 0x00, SS_RDEF,
2531 "Logical unit failed self-configuration") },
2532 /* DTLPWROMAEBKVF */
2533 { SST(0x4D, 0x00, SS_RDEF,
2534 "Tagged overlapped commands: ASCQ = Queue tag ID") },
2535 /* DTLPWROMAEBKVF */
2536 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2537 NULL) }, /* Range 0x00->0xFF */
2538 /* DTLPWROMAEBKVF */
2539 { SST(0x4E, 0x00, SS_RDEF,
2540 "Overlapped commands attempted") },
2541 /* T */
2542 { SST(0x50, 0x00, SS_RDEF,
2543 "Write append error") },
2544 /* T */
2545 { SST(0x50, 0x01, SS_RDEF,
2546 "Write append position error") },
2547 /* T */
2548 { SST(0x50, 0x02, SS_RDEF,
2549 "Position error related to timing") },
2550 /* T RO */
2551 { SST(0x51, 0x00, SS_RDEF,
2552 "Erase failure") },
2553 /* R */
2554 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */
2555 "Erase failure - incomplete erase operation detected") },
2556 /* T */
2557 { SST(0x52, 0x00, SS_RDEF,
2558 "Cartridge fault") },
2559 /* DTL WROM BK */
2560 { SST(0x53, 0x00, SS_RDEF,
2561 "Media load or eject failed") },
2562 /* T */
2563 { SST(0x53, 0x01, SS_RDEF,
2564 "Unload tape failure") },
2565 /* DT WROM BK */
2566 { SST(0x53, 0x02, SS_RDEF,
2567 "Medium removal prevented") },
2568 /* M */
2569 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */
2570 "Medium removal prevented by data transfer element") },
2571 /* T */
2572 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */
2573 "Medium thread or unthread failure") },
2574 /* M */
2575 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */
2576 "Volume identifier invalid") },
2577 /* T */
2578 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */
2579 "Volume identifier missing") },
2580 /* M */
2581 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */
2582 "Duplicate volume identifier") },
2583 /* M */
2584 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */
2585 "Element status unknown") },
2586 /* M */
2587 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */
2588 "Data transfer device error - load failed") },
2589 /* M */
2590 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */
2591 "Data transfer device error - unload failed") },
2592 /* M */
2593 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */
2594 "Data transfer device error - unload missing") },
2595 /* M */
2596 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */
2597 "Data transfer device error - eject failed") },
2598 /* M */
2599 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */
2600 "Data transfer device error - library communication failed") },
2601 /* P */
2602 { SST(0x54, 0x00, SS_RDEF,
2603 "SCSI to host system interface failure") },
2604 /* P */
2605 { SST(0x55, 0x00, SS_RDEF,
2606 "System resource failure") },
2607 /* D O BK */
2608 { SST(0x55, 0x01, SS_FATAL | ENOSPC,
2609 "System buffer full") },
2610 /* DTLPWROMAE K */
2611 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */
2612 "Insufficient reservation resources") },
2613 /* DTLPWROMAE K */
2614 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */
2615 "Insufficient resources") },
2616 /* DTLPWROMAE K */
2617 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */
2618 "Insufficient registration resources") },
2619 /* DT PWROMAEBK */
2620 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */
2621 "Insufficient access control resources") },
2622 /* DT WROM B */
2623 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */
2624 "Auxiliary memory out of space") },
2625 /* F */
2626 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */
2627 "Quota error") },
2628 /* T */
2629 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */
2630 "Maximum number of supplemental decryption keys exceeded") },
2631 /* M */
2632 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */
2633 "Medium auxiliary memory not accessible") },
2634 /* M */
2635 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */
2636 "Data currently unavailable") },
2637 /* DTLPWROMAEBKVF */
2638 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */
2639 "Insufficient power for operation") },
2640 /* DT P B */
2641 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */
2642 "Insufficient resources to create ROD") },
2643 /* DT P B */
2644 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */
2645 "Insufficient resources to create ROD token") },
2646 /* D */
2647 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */
2648 "Insufficient zone resources") },
2649 /* D */
2650 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */
2651 "Insufficient zone resources to complete write") },
2652 /* D */
2653 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */
2654 "Maximum number of streams open") },
2655 /* D */
2656 { SST(0x55, 0x11, SS_RDEF, /* XXX TBD */
2657 "Insufficient resources to bind") },
2658 /* R */
2659 { SST(0x57, 0x00, SS_RDEF,
2660 "Unable to recover table-of-contents") },
2661 /* O */
2662 { SST(0x58, 0x00, SS_RDEF,
2663 "Generation does not exist") },
2664 /* O */
2665 { SST(0x59, 0x00, SS_RDEF,
2666 "Updated block read") },
2667 /* DTLPWRO BK */
2668 { SST(0x5A, 0x00, SS_RDEF,
2669 "Operator request or state change input") },
2670 /* DT WROM BK */
2671 { SST(0x5A, 0x01, SS_RDEF,
2672 "Operator medium removal request") },
2673 /* DT WRO A BK */
2674 { SST(0x5A, 0x02, SS_RDEF,
2675 "Operator selected write protect") },
2676 /* DT WRO A BK */
2677 { SST(0x5A, 0x03, SS_RDEF,
2678 "Operator selected write permit") },
2679 /* DTLPWROM K */
2680 { SST(0x5B, 0x00, SS_RDEF,
2681 "Log exception") },
2682 /* DTLPWROM K */
2683 { SST(0x5B, 0x01, SS_RDEF,
2684 "Threshold condition met") },
2685 /* DTLPWROM K */
2686 { SST(0x5B, 0x02, SS_RDEF,
2687 "Log counter at maximum") },
2688 /* DTLPWROM K */
2689 { SST(0x5B, 0x03, SS_RDEF,
2690 "Log list codes exhausted") },
2691 /* D O */
2692 { SST(0x5C, 0x00, SS_RDEF,
2693 "RPL status change") },
2694 /* D O */
2695 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2696 "Spindles synchronized") },
2697 /* D O */
2698 { SST(0x5C, 0x02, SS_RDEF,
2699 "Spindles not synchronized") },
2700 /* DTLPWROMAEBKVF */
2701 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2702 "Failure prediction threshold exceeded") },
2703 /* R B */
2704 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2705 "Media failure prediction threshold exceeded") },
2706 /* R */
2707 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2708 "Logical unit failure prediction threshold exceeded") },
2709 /* R */
2710 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2711 "Spare area exhaustion prediction threshold exceeded") },
2712 /* D B */
2713 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2714 "Hardware impending failure general hard drive failure") },
2715 /* D B */
2716 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2717 "Hardware impending failure drive error rate too high") },
2718 /* D B */
2719 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2720 "Hardware impending failure data error rate too high") },
2721 /* D B */
2722 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2723 "Hardware impending failure seek error rate too high") },
2724 /* D B */
2725 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2726 "Hardware impending failure too many block reassigns") },
2727 /* D B */
2728 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2729 "Hardware impending failure access times too high") },
2730 /* D B */
2731 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2732 "Hardware impending failure start unit times too high") },
2733 /* D B */
2734 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2735 "Hardware impending failure channel parametrics") },
2736 /* D B */
2737 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2738 "Hardware impending failure controller detected") },
2739 /* D B */
2740 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2741 "Hardware impending failure throughput performance") },
2742 /* D B */
2743 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2744 "Hardware impending failure seek time performance") },
2745 /* D B */
2746 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2747 "Hardware impending failure spin-up retry count") },
2748 /* D B */
2749 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2750 "Hardware impending failure drive calibration retry count") },
2751 /* D B */
2752 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2753 "Hardware impending failure power loss protection circuit") },
2754 /* D B */
2755 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2756 "Controller impending failure general hard drive failure") },
2757 /* D B */
2758 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2759 "Controller impending failure drive error rate too high") },
2760 /* D B */
2761 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2762 "Controller impending failure data error rate too high") },
2763 /* D B */
2764 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2765 "Controller impending failure seek error rate too high") },
2766 /* D B */
2767 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2768 "Controller impending failure too many block reassigns") },
2769 /* D B */
2770 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2771 "Controller impending failure access times too high") },
2772 /* D B */
2773 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2774 "Controller impending failure start unit times too high") },
2775 /* D B */
2776 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2777 "Controller impending failure channel parametrics") },
2778 /* D B */
2779 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2780 "Controller impending failure controller detected") },
2781 /* D B */
2782 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2783 "Controller impending failure throughput performance") },
2784 /* D B */
2785 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2786 "Controller impending failure seek time performance") },
2787 /* D B */
2788 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2789 "Controller impending failure spin-up retry count") },
2790 /* D B */
2791 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2792 "Controller impending failure drive calibration retry count") },
2793 /* D B */
2794 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2795 "Data channel impending failure general hard drive failure") },
2796 /* D B */
2797 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2798 "Data channel impending failure drive error rate too high") },
2799 /* D B */
2800 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2801 "Data channel impending failure data error rate too high") },
2802 /* D B */
2803 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2804 "Data channel impending failure seek error rate too high") },
2805 /* D B */
2806 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2807 "Data channel impending failure too many block reassigns") },
2808 /* D B */
2809 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2810 "Data channel impending failure access times too high") },
2811 /* D B */
2812 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2813 "Data channel impending failure start unit times too high") },
2814 /* D B */
2815 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2816 "Data channel impending failure channel parametrics") },
2817 /* D B */
2818 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2819 "Data channel impending failure controller detected") },
2820 /* D B */
2821 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2822 "Data channel impending failure throughput performance") },
2823 /* D B */
2824 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2825 "Data channel impending failure seek time performance") },
2826 /* D B */
2827 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2828 "Data channel impending failure spin-up retry count") },
2829 /* D B */
2830 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2831 "Data channel impending failure drive calibration retry count") },
2832 /* D B */
2833 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2834 "Servo impending failure general hard drive failure") },
2835 /* D B */
2836 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2837 "Servo impending failure drive error rate too high") },
2838 /* D B */
2839 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2840 "Servo impending failure data error rate too high") },
2841 /* D B */
2842 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2843 "Servo impending failure seek error rate too high") },
2844 /* D B */
2845 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2846 "Servo impending failure too many block reassigns") },
2847 /* D B */
2848 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2849 "Servo impending failure access times too high") },
2850 /* D B */
2851 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2852 "Servo impending failure start unit times too high") },
2853 /* D B */
2854 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2855 "Servo impending failure channel parametrics") },
2856 /* D B */
2857 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2858 "Servo impending failure controller detected") },
2859 /* D B */
2860 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2861 "Servo impending failure throughput performance") },
2862 /* D B */
2863 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2864 "Servo impending failure seek time performance") },
2865 /* D B */
2866 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2867 "Servo impending failure spin-up retry count") },
2868 /* D B */
2869 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2870 "Servo impending failure drive calibration retry count") },
2871 /* D B */
2872 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2873 "Spindle impending failure general hard drive failure") },
2874 /* D B */
2875 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2876 "Spindle impending failure drive error rate too high") },
2877 /* D B */
2878 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2879 "Spindle impending failure data error rate too high") },
2880 /* D B */
2881 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2882 "Spindle impending failure seek error rate too high") },
2883 /* D B */
2884 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2885 "Spindle impending failure too many block reassigns") },
2886 /* D B */
2887 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2888 "Spindle impending failure access times too high") },
2889 /* D B */
2890 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2891 "Spindle impending failure start unit times too high") },
2892 /* D B */
2893 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2894 "Spindle impending failure channel parametrics") },
2895 /* D B */
2896 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2897 "Spindle impending failure controller detected") },
2898 /* D B */
2899 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2900 "Spindle impending failure throughput performance") },
2901 /* D B */
2902 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2903 "Spindle impending failure seek time performance") },
2904 /* D B */
2905 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2906 "Spindle impending failure spin-up retry count") },
2907 /* D B */
2908 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2909 "Spindle impending failure drive calibration retry count") },
2910 /* D B */
2911 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2912 "Firmware impending failure general hard drive failure") },
2913 /* D B */
2914 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2915 "Firmware impending failure drive error rate too high") },
2916 /* D B */
2917 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2918 "Firmware impending failure data error rate too high") },
2919 /* D B */
2920 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2921 "Firmware impending failure seek error rate too high") },
2922 /* D B */
2923 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2924 "Firmware impending failure too many block reassigns") },
2925 /* D B */
2926 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2927 "Firmware impending failure access times too high") },
2928 /* D B */
2929 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2930 "Firmware impending failure start unit times too high") },
2931 /* D B */
2932 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2933 "Firmware impending failure channel parametrics") },
2934 /* D B */
2935 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2936 "Firmware impending failure controller detected") },
2937 /* D B */
2938 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2939 "Firmware impending failure throughput performance") },
2940 /* D B */
2941 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2942 "Firmware impending failure seek time performance") },
2943 /* D B */
2944 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2945 "Firmware impending failure spin-up retry count") },
2946 /* D B */
2947 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2948 "Firmware impending failure drive calibration retry count") },
2949 /* D B */
2950 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2951 "Media impending failure endurance limit met") },
2952 /* DTLPWROMAEBKVF */
2953 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2954 "Failure prediction threshold exceeded (false)") },
2955 /* DTLPWRO A K */
2956 { SST(0x5E, 0x00, SS_RDEF,
2957 "Low power condition on") },
2958 /* DTLPWRO A K */
2959 { SST(0x5E, 0x01, SS_RDEF,
2960 "Idle condition activated by timer") },
2961 /* DTLPWRO A K */
2962 { SST(0x5E, 0x02, SS_RDEF,
2963 "Standby condition activated by timer") },
2964 /* DTLPWRO A K */
2965 { SST(0x5E, 0x03, SS_RDEF,
2966 "Idle condition activated by command") },
2967 /* DTLPWRO A K */
2968 { SST(0x5E, 0x04, SS_RDEF,
2969 "Standby condition activated by command") },
2970 /* DTLPWRO A K */
2971 { SST(0x5E, 0x05, SS_RDEF,
2972 "Idle-B condition activated by timer") },
2973 /* DTLPWRO A K */
2974 { SST(0x5E, 0x06, SS_RDEF,
2975 "Idle-B condition activated by command") },
2976 /* DTLPWRO A K */
2977 { SST(0x5E, 0x07, SS_RDEF,
2978 "Idle-C condition activated by timer") },
2979 /* DTLPWRO A K */
2980 { SST(0x5E, 0x08, SS_RDEF,
2981 "Idle-C condition activated by command") },
2982 /* DTLPWRO A K */
2983 { SST(0x5E, 0x09, SS_RDEF,
2984 "Standby-Y condition activated by timer") },
2985 /* DTLPWRO A K */
2986 { SST(0x5E, 0x0A, SS_RDEF,
2987 "Standby-Y condition activated by command") },
2988 /* B */
2989 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */
2990 "Power state change to active") },
2991 /* B */
2992 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */
2993 "Power state change to idle") },
2994 /* B */
2995 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */
2996 "Power state change to standby") },
2997 /* B */
2998 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */
2999 "Power state change to sleep") },
3000 /* BK */
3001 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */
3002 "Power state change to device control") },
3003 /* */
3004 { SST(0x60, 0x00, SS_RDEF,
3005 "Lamp failure") },
3006 /* */
3007 { SST(0x61, 0x00, SS_RDEF,
3008 "Video acquisition error") },
3009 /* */
3010 { SST(0x61, 0x01, SS_RDEF,
3011 "Unable to acquire video") },
3012 /* */
3013 { SST(0x61, 0x02, SS_RDEF,
3014 "Out of focus") },
3015 /* */
3016 { SST(0x62, 0x00, SS_RDEF,
3017 "Scan head positioning error") },
3018 /* R */
3019 { SST(0x63, 0x00, SS_RDEF,
3020 "End of user area encountered on this track") },
3021 /* R */
3022 { SST(0x63, 0x01, SS_FATAL | ENOSPC,
3023 "Packet does not fit in available space") },
3024 /* R */
3025 { SST(0x64, 0x00, SS_FATAL | ENXIO,
3026 "Illegal mode for this track") },
3027 /* R */
3028 { SST(0x64, 0x01, SS_RDEF,
3029 "Invalid packet size") },
3030 /* DTLPWROMAEBKVF */
3031 { SST(0x65, 0x00, SS_RDEF,
3032 "Voltage fault") },
3033 /* */
3034 { SST(0x66, 0x00, SS_RDEF,
3035 "Automatic document feeder cover up") },
3036 /* */
3037 { SST(0x66, 0x01, SS_RDEF,
3038 "Automatic document feeder lift up") },
3039 /* */
3040 { SST(0x66, 0x02, SS_RDEF,
3041 "Document jam in automatic document feeder") },
3042 /* */
3043 { SST(0x66, 0x03, SS_RDEF,
3044 "Document miss feed automatic in document feeder") },
3045 /* A */
3046 { SST(0x67, 0x00, SS_RDEF,
3047 "Configuration failure") },
3048 /* A */
3049 { SST(0x67, 0x01, SS_RDEF,
3050 "Configuration of incapable logical units failed") },
3051 /* A */
3052 { SST(0x67, 0x02, SS_RDEF,
3053 "Add logical unit failed") },
3054 /* A */
3055 { SST(0x67, 0x03, SS_RDEF,
3056 "Modification of logical unit failed") },
3057 /* A */
3058 { SST(0x67, 0x04, SS_RDEF,
3059 "Exchange of logical unit failed") },
3060 /* A */
3061 { SST(0x67, 0x05, SS_RDEF,
3062 "Remove of logical unit failed") },
3063 /* A */
3064 { SST(0x67, 0x06, SS_RDEF,
3065 "Attachment of logical unit failed") },
3066 /* A */
3067 { SST(0x67, 0x07, SS_RDEF,
3068 "Creation of logical unit failed") },
3069 /* A */
3070 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */
3071 "Assign failure occurred") },
3072 /* A */
3073 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */
3074 "Multiply assigned logical unit") },
3075 /* DTLPWROMAEBKVF */
3076 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */
3077 "Set target port groups command failed") },
3078 /* DT B */
3079 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */
3080 "ATA device feature not enabled") },
3081 /* D */
3082 { SST(0x67, 0x0C, SS_FATAL | EIO,
3083 "Command rejected") },
3084 /* D */
3085 { SST(0x67, 0x0D, SS_FATAL | EINVAL,
3086 "Explicit bind not allowed") },
3087 /* A */
3088 { SST(0x68, 0x00, SS_RDEF,
3089 "Logical unit not configured") },
3090 /* D */
3091 { SST(0x68, 0x01, SS_RDEF,
3092 "Subsidiary logical unit not configured") },
3093 /* A */
3094 { SST(0x69, 0x00, SS_RDEF,
3095 "Data loss on logical unit") },
3096 /* A */
3097 { SST(0x69, 0x01, SS_RDEF,
3098 "Multiple logical unit failures") },
3099 /* A */
3100 { SST(0x69, 0x02, SS_RDEF,
3101 "Parity/data mismatch") },
3102 /* A */
3103 { SST(0x6A, 0x00, SS_RDEF,
3104 "Informational, refer to log") },
3105 /* A */
3106 { SST(0x6B, 0x00, SS_RDEF,
3107 "State change has occurred") },
3108 /* A */
3109 { SST(0x6B, 0x01, SS_RDEF,
3110 "Redundancy level got better") },
3111 /* A */
3112 { SST(0x6B, 0x02, SS_RDEF,
3113 "Redundancy level got worse") },
3114 /* A */
3115 { SST(0x6C, 0x00, SS_RDEF,
3116 "Rebuild failure occurred") },
3117 /* A */
3118 { SST(0x6D, 0x00, SS_RDEF,
3119 "Recalculate failure occurred") },
3120 /* A */
3121 { SST(0x6E, 0x00, SS_RDEF,
3122 "Command to logical unit failed") },
3123 /* R */
3124 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */
3125 "Copy protection key exchange failure - authentication failure") },
3126 /* R */
3127 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */
3128 "Copy protection key exchange failure - key not present") },
3129 /* R */
3130 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */
3131 "Copy protection key exchange failure - key not established") },
3132 /* R */
3133 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */
3134 "Read of scrambled sector without authentication") },
3135 /* R */
3136 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */
3137 "Media region code is mismatched to logical unit region") },
3138 /* R */
3139 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */
3140 "Drive region must be permanent/region reset count error") },
3141 /* R */
3142 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */
3143 "Insufficient block count for binding NONCE recording") },
3144 /* R */
3145 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */
3146 "Conflict in binding NONCE recording") },
3147 /* R */
3148 { SST(0x6F, 0x08, SS_FATAL | EPERM,
3149 "Insufficient permission") },
3150 /* R */
3151 { SST(0x6F, 0x09, SS_FATAL | EINVAL,
3152 "Invalid drive-host pairing server") },
3153 /* R */
3154 { SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */
3155 "Drive-host pairing suspended") },
3156 /* T */
3157 { SST(0x70, 0x00, SS_RDEF,
3158 "Decompression exception short: ASCQ = Algorithm ID") },
3159 /* T */
3160 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3161 NULL) }, /* Range 0x00 -> 0xFF */
3162 /* T */
3163 { SST(0x71, 0x00, SS_RDEF,
3164 "Decompression exception long: ASCQ = Algorithm ID") },
3165 /* T */
3166 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3167 NULL) }, /* Range 0x00 -> 0xFF */
3168 /* R */
3169 { SST(0x72, 0x00, SS_RDEF,
3170 "Session fixation error") },
3171 /* R */
3172 { SST(0x72, 0x01, SS_RDEF,
3173 "Session fixation error writing lead-in") },
3174 /* R */
3175 { SST(0x72, 0x02, SS_RDEF,
3176 "Session fixation error writing lead-out") },
3177 /* R */
3178 { SST(0x72, 0x03, SS_RDEF,
3179 "Session fixation error - incomplete track in session") },
3180 /* R */
3181 { SST(0x72, 0x04, SS_RDEF,
3182 "Empty or partially written reserved track") },
3183 /* R */
3184 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */
3185 "No more track reservations allowed") },
3186 /* R */
3187 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */
3188 "RMZ extension is not allowed") },
3189 /* R */
3190 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */
3191 "No more test zone extensions are allowed") },
3192 /* R */
3193 { SST(0x73, 0x00, SS_RDEF,
3194 "CD control error") },
3195 /* R */
3196 { SST(0x73, 0x01, SS_RDEF,
3197 "Power calibration area almost full") },
3198 /* R */
3199 { SST(0x73, 0x02, SS_FATAL | ENOSPC,
3200 "Power calibration area is full") },
3201 /* R */
3202 { SST(0x73, 0x03, SS_RDEF,
3203 "Power calibration area error") },
3204 /* R */
3205 { SST(0x73, 0x04, SS_RDEF,
3206 "Program memory area update failure") },
3207 /* R */
3208 { SST(0x73, 0x05, SS_RDEF,
3209 "Program memory area is full") },
3210 /* R */
3211 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */
3212 "RMA/PMA is almost full") },
3213 /* R */
3214 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */
3215 "Current power calibration area almost full") },
3216 /* R */
3217 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */
3218 "Current power calibration area is full") },
3219 /* R */
3220 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */
3221 "RDZ is full") },
3222 /* T */
3223 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */
3224 "Security error") },
3225 /* T */
3226 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */
3227 "Unable to decrypt data") },
3228 /* T */
3229 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */
3230 "Unencrypted data encountered while decrypting") },
3231 /* T */
3232 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */
3233 "Incorrect data encryption key") },
3234 /* T */
3235 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */
3236 "Cryptographic integrity validation failed") },
3237 /* T */
3238 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */
3239 "Error decrypting data") },
3240 /* T */
3241 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */
3242 "Unknown signature verification key") },
3243 /* T */
3244 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */
3245 "Encryption parameters not useable") },
3246 /* DT R M E VF */
3247 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */
3248 "Digital signature validation failure") },
3249 /* T */
3250 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */
3251 "Encryption mode mismatch on read") },
3252 /* T */
3253 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */
3254 "Encrypted block not raw read enabled") },
3255 /* T */
3256 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */
3257 "Incorrect encryption parameters") },
3258 /* DT R MAEBKV */
3259 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */
3260 "Unable to decrypt parameter list") },
3261 /* T */
3262 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */
3263 "Encryption algorithm disabled") },
3264 /* DT R MAEBKV */
3265 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */
3266 "SA creation parameter value invalid") },
3267 /* DT R MAEBKV */
3268 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */
3269 "SA creation parameter value rejected") },
3270 /* DT R MAEBKV */
3271 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */
3272 "Invalid SA usage") },
3273 /* T */
3274 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */
3275 "Data encryption configuration prevented") },
3276 /* DT R MAEBKV */
3277 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */
3278 "SA creation parameter not supported") },
3279 /* DT R MAEBKV */
3280 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */
3281 "Authentication failed") },
3282 /* V */
3283 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */
3284 "External data encryption key manager access error") },
3285 /* V */
3286 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */
3287 "External data encryption key manager error") },
3288 /* V */
3289 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */
3290 "External data encryption key not found") },
3291 /* V */
3292 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */
3293 "External data encryption request not authorized") },
3294 /* T */
3295 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */
3296 "External data encryption control timeout") },
3297 /* T */
3298 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */
3299 "External data encryption control error") },
3300 /* DT R M E V */
3301 { SST(0x74, 0x71, SS_FATAL | EACCES,
3302 "Logical unit access not authorized") },
3303 /* D */
3304 { SST(0x74, 0x79, SS_FATAL | EACCES,
3305 "Security conflict in translated device") }
3306 };
3307
3308 const u_int asc_table_size = nitems(asc_table);
3309
3310 struct asc_key
3311 {
3312 int asc;
3313 int ascq;
3314 };
3315
3316 static int
ascentrycomp(const void * key,const void * member)3317 ascentrycomp(const void *key, const void *member)
3318 {
3319 int asc;
3320 int ascq;
3321 const struct asc_table_entry *table_entry;
3322
3323 asc = ((const struct asc_key *)key)->asc;
3324 ascq = ((const struct asc_key *)key)->ascq;
3325 table_entry = (const struct asc_table_entry *)member;
3326
3327 if (asc >= table_entry->asc) {
3328 if (asc > table_entry->asc)
3329 return (1);
3330
3331 if (ascq <= table_entry->ascq) {
3332 /* Check for ranges */
3333 if (ascq == table_entry->ascq
3334 || ((table_entry->action & SSQ_RANGE) != 0
3335 && ascq >= (table_entry - 1)->ascq))
3336 return (0);
3337 return (-1);
3338 }
3339 return (1);
3340 }
3341 return (-1);
3342 }
3343
3344 static int
senseentrycomp(const void * key,const void * member)3345 senseentrycomp(const void *key, const void *member)
3346 {
3347 int sense_key;
3348 const struct sense_key_table_entry *table_entry;
3349
3350 sense_key = *((const int *)key);
3351 table_entry = (const struct sense_key_table_entry *)member;
3352
3353 if (sense_key >= table_entry->sense_key) {
3354 if (sense_key == table_entry->sense_key)
3355 return (0);
3356 return (1);
3357 }
3358 return (-1);
3359 }
3360
3361 static void
fetchtableentries(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const struct sense_key_table_entry ** sense_entry,const struct asc_table_entry ** asc_entry)3362 fetchtableentries(int sense_key, int asc, int ascq,
3363 struct scsi_inquiry_data *inq_data,
3364 const struct sense_key_table_entry **sense_entry,
3365 const struct asc_table_entry **asc_entry)
3366 {
3367 caddr_t match;
3368 const struct asc_table_entry *asc_tables[2];
3369 const struct sense_key_table_entry *sense_tables[2];
3370 struct asc_key asc_ascq;
3371 size_t asc_tables_size[2];
3372 size_t sense_tables_size[2];
3373 int num_asc_tables;
3374 int num_sense_tables;
3375 int i;
3376
3377 /* Default to failure */
3378 *sense_entry = NULL;
3379 *asc_entry = NULL;
3380 match = NULL;
3381 if (inq_data != NULL)
3382 match = cam_quirkmatch((caddr_t)inq_data,
3383 (caddr_t)sense_quirk_table,
3384 sense_quirk_table_size,
3385 sizeof(*sense_quirk_table),
3386 scsi_inquiry_match);
3387
3388 if (match != NULL) {
3389 struct scsi_sense_quirk_entry *quirk;
3390
3391 quirk = (struct scsi_sense_quirk_entry *)match;
3392 asc_tables[0] = quirk->asc_info;
3393 asc_tables_size[0] = quirk->num_ascs;
3394 asc_tables[1] = asc_table;
3395 asc_tables_size[1] = asc_table_size;
3396 num_asc_tables = 2;
3397 sense_tables[0] = quirk->sense_key_info;
3398 sense_tables_size[0] = quirk->num_sense_keys;
3399 sense_tables[1] = sense_key_table;
3400 sense_tables_size[1] = nitems(sense_key_table);
3401 num_sense_tables = 2;
3402 } else {
3403 asc_tables[0] = asc_table;
3404 asc_tables_size[0] = asc_table_size;
3405 num_asc_tables = 1;
3406 sense_tables[0] = sense_key_table;
3407 sense_tables_size[0] = nitems(sense_key_table);
3408 num_sense_tables = 1;
3409 }
3410
3411 asc_ascq.asc = asc;
3412 asc_ascq.ascq = ascq;
3413 for (i = 0; i < num_asc_tables; i++) {
3414 void *found_entry;
3415
3416 found_entry = bsearch(&asc_ascq, asc_tables[i],
3417 asc_tables_size[i],
3418 sizeof(**asc_tables),
3419 ascentrycomp);
3420
3421 if (found_entry) {
3422 /*
3423 * If we get to the SSQ_RANGE entry, we're one too
3424 * far. The prior entry is the interesting one, since it
3425 * contains the string to print, etc. Only the top end
3426 * range is interesting in this entry.
3427 */
3428 *asc_entry = (struct asc_table_entry *)found_entry;
3429 if (((*asc_entry)->action & SSQ_RANGE) != 0)
3430 (*asc_entry)--;
3431 break;
3432 }
3433 }
3434
3435 for (i = 0; i < num_sense_tables; i++) {
3436 void *found_entry;
3437
3438 found_entry = bsearch(&sense_key, sense_tables[i],
3439 sense_tables_size[i],
3440 sizeof(**sense_tables),
3441 senseentrycomp);
3442
3443 if (found_entry) {
3444 *sense_entry =
3445 (struct sense_key_table_entry *)found_entry;
3446 break;
3447 }
3448 }
3449 }
3450
3451 void
scsi_sense_desc(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const char ** sense_key_desc,const char ** asc_desc)3452 scsi_sense_desc(int sense_key, int asc, int ascq,
3453 struct scsi_inquiry_data *inq_data,
3454 const char **sense_key_desc, const char **asc_desc)
3455 {
3456 const struct asc_table_entry *asc_entry;
3457 const struct sense_key_table_entry *sense_entry;
3458
3459 fetchtableentries(sense_key, asc, ascq,
3460 inq_data,
3461 &sense_entry,
3462 &asc_entry);
3463
3464 if (sense_entry != NULL)
3465 *sense_key_desc = sense_entry->desc;
3466 else
3467 *sense_key_desc = "Invalid Sense Key";
3468
3469 if (asc_entry != NULL)
3470 *asc_desc = asc_entry->desc;
3471 else if (asc >= 0x80 && asc <= 0xff)
3472 *asc_desc = "Vendor Specific ASC";
3473 else if (ascq >= 0x80 && ascq <= 0xff)
3474 *asc_desc = "Vendor Specific ASCQ";
3475 else
3476 *asc_desc = "Reserved ASC/ASCQ pair";
3477 }
3478
3479 /*
3480 * Given sense and device type information, return the appropriate action.
3481 * If we do not understand the specific error as identified by the ASC/ASCQ
3482 * pair, fall back on the more generic actions derived from the sense key.
3483 */
3484 scsi_sense_action
scsi_error_action(struct ccb_scsiio * csio,struct scsi_inquiry_data * inq_data,uint32_t sense_flags)3485 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3486 uint32_t sense_flags)
3487 {
3488 const struct asc_table_entry *asc_entry;
3489 const struct sense_key_table_entry *sense_entry;
3490 int error_code, sense_key, asc, ascq;
3491 scsi_sense_action action;
3492
3493 if (!scsi_extract_sense_ccb((union ccb *)csio,
3494 &error_code, &sense_key, &asc, &ascq)) {
3495 action = SS_RDEF;
3496 } else if ((error_code == SSD_DEFERRED_ERROR)
3497 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3498 /*
3499 * XXX dufault@FreeBSD.org
3500 * This error doesn't relate to the command associated
3501 * with this request sense. A deferred error is an error
3502 * for a command that has already returned GOOD status
3503 * (see SCSI2 8.2.14.2).
3504 *
3505 * By my reading of that section, it looks like the current
3506 * command has been cancelled, we should now clean things up
3507 * (hopefully recovering any lost data) and then retry the
3508 * current command. There are two easy choices, both wrong:
3509 *
3510 * 1. Drop through (like we had been doing), thus treating
3511 * this as if the error were for the current command and
3512 * return and stop the current command.
3513 *
3514 * 2. Issue a retry (like I made it do) thus hopefully
3515 * recovering the current transfer, and ignoring the
3516 * fact that we've dropped a command.
3517 *
3518 * These should probably be handled in a device specific
3519 * sense handler or punted back up to a user mode daemon
3520 */
3521 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3522 } else {
3523 fetchtableentries(sense_key, asc, ascq,
3524 inq_data,
3525 &sense_entry,
3526 &asc_entry);
3527
3528 /*
3529 * Override the 'No additional Sense' entry (0,0)
3530 * with the error action of the sense key.
3531 */
3532 if (asc_entry != NULL
3533 && (asc != 0 || ascq != 0))
3534 action = asc_entry->action;
3535 else if (sense_entry != NULL)
3536 action = sense_entry->action;
3537 else
3538 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3539
3540 if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3541 /*
3542 * The action succeeded but the device wants
3543 * the user to know that some recovery action
3544 * was required.
3545 */
3546 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3547 action |= SS_NOP|SSQ_PRINT_SENSE;
3548 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3549 if ((sense_flags & SF_QUIET_IR) != 0)
3550 action &= ~SSQ_PRINT_SENSE;
3551 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3552 if ((sense_flags & SF_RETRY_UA) != 0
3553 && (action & SS_MASK) == SS_FAIL) {
3554 action &= ~(SS_MASK|SSQ_MASK);
3555 action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3556 SSQ_PRINT_SENSE;
3557 }
3558 action |= SSQ_UA;
3559 }
3560 }
3561 if ((action & SS_MASK) >= SS_START &&
3562 (sense_flags & SF_NO_RECOVERY)) {
3563 action &= ~SS_MASK;
3564 action |= SS_FAIL;
3565 } else if ((action & SS_MASK) == SS_RETRY &&
3566 (sense_flags & SF_NO_RETRY)) {
3567 action &= ~SS_MASK;
3568 action |= SS_FAIL;
3569 }
3570 if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3571 action |= SSQ_PRINT_SENSE;
3572 else if ((sense_flags & SF_NO_PRINT) != 0)
3573 action &= ~SSQ_PRINT_SENSE;
3574
3575 return (action);
3576 }
3577
3578 char *
scsi_cdb_string(uint8_t * cdb_ptr,char * cdb_string,size_t len)3579 scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len)
3580 {
3581 struct sbuf sb;
3582 int error;
3583
3584 if (len == 0)
3585 return ("");
3586
3587 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3588
3589 scsi_cdb_sbuf(cdb_ptr, &sb);
3590
3591 /* ENOMEM just means that the fixed buffer is full, OK to ignore */
3592 error = sbuf_finish(&sb);
3593 if (error != 0 &&
3594 #ifdef _KERNEL
3595 error != ENOMEM)
3596 #else
3597 errno != ENOMEM)
3598 #endif
3599 return ("");
3600
3601 return(sbuf_data(&sb));
3602 }
3603
3604 void
scsi_cdb_sbuf(uint8_t * cdb_ptr,struct sbuf * sb)3605 scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb)
3606 {
3607 uint8_t cdb_len;
3608 int i;
3609
3610 if (cdb_ptr == NULL)
3611 return;
3612
3613 /*
3614 * This is taken from the SCSI-3 draft spec.
3615 * (T10/1157D revision 0.3)
3616 * The top 3 bits of an opcode are the group code. The next 5 bits
3617 * are the command code.
3618 * Group 0: six byte commands
3619 * Group 1: ten byte commands
3620 * Group 2: ten byte commands
3621 * Group 3: reserved
3622 * Group 4: sixteen byte commands
3623 * Group 5: twelve byte commands
3624 * Group 6: vendor specific
3625 * Group 7: vendor specific
3626 */
3627 switch((*cdb_ptr >> 5) & 0x7) {
3628 case 0:
3629 cdb_len = 6;
3630 break;
3631 case 1:
3632 case 2:
3633 cdb_len = 10;
3634 break;
3635 case 3:
3636 case 6:
3637 case 7:
3638 /* in this case, just print out the opcode */
3639 cdb_len = 1;
3640 break;
3641 case 4:
3642 cdb_len = 16;
3643 break;
3644 case 5:
3645 cdb_len = 12;
3646 break;
3647 }
3648
3649 for (i = 0; i < cdb_len; i++)
3650 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3651
3652 return;
3653 }
3654
3655 const char *
scsi_status_string(struct ccb_scsiio * csio)3656 scsi_status_string(struct ccb_scsiio *csio)
3657 {
3658 switch(csio->scsi_status) {
3659 case SCSI_STATUS_OK:
3660 return("OK");
3661 case SCSI_STATUS_CHECK_COND:
3662 return("Check Condition");
3663 case SCSI_STATUS_BUSY:
3664 return("Busy");
3665 case SCSI_STATUS_INTERMED:
3666 return("Intermediate");
3667 case SCSI_STATUS_INTERMED_COND_MET:
3668 return("Intermediate-Condition Met");
3669 case SCSI_STATUS_RESERV_CONFLICT:
3670 return("Reservation Conflict");
3671 case SCSI_STATUS_CMD_TERMINATED:
3672 return("Command Terminated");
3673 case SCSI_STATUS_QUEUE_FULL:
3674 return("Queue Full");
3675 case SCSI_STATUS_ACA_ACTIVE:
3676 return("ACA Active");
3677 case SCSI_STATUS_TASK_ABORTED:
3678 return("Task Aborted");
3679 default: {
3680 static char unkstr[64];
3681 snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3682 csio->scsi_status);
3683 return(unkstr);
3684 }
3685 }
3686 }
3687
3688 /*
3689 * scsi_command_string() returns 0 for success and -1 for failure.
3690 */
3691 #ifdef _KERNEL
3692 int
scsi_command_string(struct ccb_scsiio * csio,struct sbuf * sb)3693 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3694 #else /* !_KERNEL */
3695 int
3696 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3697 struct sbuf *sb)
3698 #endif /* _KERNEL/!_KERNEL */
3699 {
3700 struct scsi_inquiry_data *inq_data;
3701 #ifdef _KERNEL
3702 struct ccb_getdev *cgd;
3703 #endif /* _KERNEL */
3704
3705 #ifdef _KERNEL
3706 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3707 return(-1);
3708 /*
3709 * Get the device information.
3710 */
3711 xpt_setup_ccb(&cgd->ccb_h,
3712 csio->ccb_h.path,
3713 CAM_PRIORITY_NORMAL);
3714 cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3715 xpt_action((union ccb *)cgd);
3716
3717 /*
3718 * If the device is unconfigured, just pretend that it is a hard
3719 * drive. scsi_op_desc() needs this.
3720 */
3721 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3722 cgd->inq_data.device = T_DIRECT;
3723
3724 inq_data = &cgd->inq_data;
3725
3726 #else /* !_KERNEL */
3727
3728 inq_data = &device->inq_data;
3729
3730 #endif /* _KERNEL/!_KERNEL */
3731
3732 sbuf_printf(sb, "%s. CDB: ",
3733 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3734 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3735
3736 #ifdef _KERNEL
3737 xpt_free_ccb((union ccb *)cgd);
3738 #endif
3739
3740 return(0);
3741 }
3742
3743 /*
3744 * Iterate over sense descriptors. Each descriptor is passed into iter_func().
3745 * If iter_func() returns 0, list traversal continues. If iter_func()
3746 * returns non-zero, list traversal is stopped.
3747 */
3748 void
scsi_desc_iterate(struct scsi_sense_data_desc * sense,u_int sense_len,int (* iter_func)(struct scsi_sense_data_desc * sense,u_int,struct scsi_sense_desc_header *,void *),void * arg)3749 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3750 int (*iter_func)(struct scsi_sense_data_desc *sense,
3751 u_int, struct scsi_sense_desc_header *,
3752 void *), void *arg)
3753 {
3754 int cur_pos;
3755 int desc_len;
3756
3757 /*
3758 * First make sure the extra length field is present.
3759 */
3760 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3761 return;
3762
3763 /*
3764 * The length of data actually returned may be different than the
3765 * extra_len recorded in the structure.
3766 */
3767 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3768
3769 /*
3770 * Limit this further by the extra length reported, and the maximum
3771 * allowed extra length.
3772 */
3773 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3774
3775 /*
3776 * Subtract the size of the header from the descriptor length.
3777 * This is to ensure that we have at least the header left, so we
3778 * don't have to check that inside the loop. This can wind up
3779 * being a negative value.
3780 */
3781 desc_len -= sizeof(struct scsi_sense_desc_header);
3782
3783 for (cur_pos = 0; cur_pos < desc_len;) {
3784 struct scsi_sense_desc_header *header;
3785
3786 header = (struct scsi_sense_desc_header *)
3787 &sense->sense_desc[cur_pos];
3788
3789 /*
3790 * Check to make sure we have the entire descriptor. We
3791 * don't call iter_func() unless we do.
3792 *
3793 * Note that although cur_pos is at the beginning of the
3794 * descriptor, desc_len already has the header length
3795 * subtracted. So the comparison of the length in the
3796 * header (which does not include the header itself) to
3797 * desc_len - cur_pos is correct.
3798 */
3799 if (header->length > (desc_len - cur_pos))
3800 break;
3801
3802 if (iter_func(sense, sense_len, header, arg) != 0)
3803 break;
3804
3805 cur_pos += sizeof(*header) + header->length;
3806 }
3807 }
3808
3809 struct scsi_find_desc_info {
3810 uint8_t desc_type;
3811 struct scsi_sense_desc_header *header;
3812 };
3813
3814 static int
scsi_find_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)3815 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3816 struct scsi_sense_desc_header *header, void *arg)
3817 {
3818 struct scsi_find_desc_info *desc_info;
3819
3820 desc_info = (struct scsi_find_desc_info *)arg;
3821
3822 if (header->desc_type == desc_info->desc_type) {
3823 desc_info->header = header;
3824
3825 /* We found the descriptor, tell the iterator to stop. */
3826 return (1);
3827 } else
3828 return (0);
3829 }
3830
3831 /*
3832 * Given a descriptor type, return a pointer to it if it is in the sense
3833 * data and not truncated. Avoiding truncating sense data will simplify
3834 * things significantly for the caller.
3835 */
3836 uint8_t *
scsi_find_desc(struct scsi_sense_data_desc * sense,u_int sense_len,uint8_t desc_type)3837 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3838 uint8_t desc_type)
3839 {
3840 struct scsi_find_desc_info desc_info;
3841
3842 desc_info.desc_type = desc_type;
3843 desc_info.header = NULL;
3844
3845 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3846
3847 return ((uint8_t *)desc_info.header);
3848 }
3849
3850 /*
3851 * Fill in SCSI descriptor sense data with the specified parameters.
3852 */
3853 static void
scsi_set_sense_data_desc_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)3854 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3855 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3856 int sense_key, int asc, int ascq, va_list ap)
3857 {
3858 struct scsi_sense_data_desc *sense;
3859 scsi_sense_elem_type elem_type;
3860 int space, len;
3861 uint8_t *desc, *data;
3862
3863 memset(sense_data, 0, sizeof(*sense_data));
3864 sense = (struct scsi_sense_data_desc *)sense_data;
3865 if (current_error != 0)
3866 sense->error_code = SSD_DESC_CURRENT_ERROR;
3867 else
3868 sense->error_code = SSD_DESC_DEFERRED_ERROR;
3869 sense->sense_key = sense_key;
3870 sense->add_sense_code = asc;
3871 sense->add_sense_code_qual = ascq;
3872 sense->flags = 0;
3873
3874 desc = &sense->sense_desc[0];
3875 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3876 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3877 SSD_ELEM_NONE) {
3878 if (elem_type >= SSD_ELEM_MAX) {
3879 printf("%s: invalid sense type %d\n", __func__,
3880 elem_type);
3881 break;
3882 }
3883 len = va_arg(ap, int);
3884 data = va_arg(ap, uint8_t *);
3885
3886 switch (elem_type) {
3887 case SSD_ELEM_SKIP:
3888 break;
3889 case SSD_ELEM_DESC:
3890 if (space < len) {
3891 sense->flags |= SSDD_SDAT_OVFL;
3892 break;
3893 }
3894 bcopy(data, desc, len);
3895 desc += len;
3896 space -= len;
3897 break;
3898 case SSD_ELEM_SKS: {
3899 struct scsi_sense_sks *sks = (void *)desc;
3900
3901 if (len > sizeof(sks->sense_key_spec))
3902 break;
3903 if (space < sizeof(*sks)) {
3904 sense->flags |= SSDD_SDAT_OVFL;
3905 break;
3906 }
3907 sks->desc_type = SSD_DESC_SKS;
3908 sks->length = sizeof(*sks) -
3909 (offsetof(struct scsi_sense_sks, length) + 1);
3910 bcopy(data, &sks->sense_key_spec, len);
3911 desc += sizeof(*sks);
3912 space -= sizeof(*sks);
3913 break;
3914 }
3915 case SSD_ELEM_COMMAND: {
3916 struct scsi_sense_command *cmd = (void *)desc;
3917
3918 if (len > sizeof(cmd->command_info))
3919 break;
3920 if (space < sizeof(*cmd)) {
3921 sense->flags |= SSDD_SDAT_OVFL;
3922 break;
3923 }
3924 cmd->desc_type = SSD_DESC_COMMAND;
3925 cmd->length = sizeof(*cmd) -
3926 (offsetof(struct scsi_sense_command, length) + 1);
3927 bcopy(data, &cmd->command_info[
3928 sizeof(cmd->command_info) - len], len);
3929 desc += sizeof(*cmd);
3930 space -= sizeof(*cmd);
3931 break;
3932 }
3933 case SSD_ELEM_INFO: {
3934 struct scsi_sense_info *info = (void *)desc;
3935
3936 if (len > sizeof(info->info))
3937 break;
3938 if (space < sizeof(*info)) {
3939 sense->flags |= SSDD_SDAT_OVFL;
3940 break;
3941 }
3942 info->desc_type = SSD_DESC_INFO;
3943 info->length = sizeof(*info) -
3944 (offsetof(struct scsi_sense_info, length) + 1);
3945 info->byte2 = SSD_INFO_VALID;
3946 bcopy(data, &info->info[sizeof(info->info) - len], len);
3947 desc += sizeof(*info);
3948 space -= sizeof(*info);
3949 break;
3950 }
3951 case SSD_ELEM_FRU: {
3952 struct scsi_sense_fru *fru = (void *)desc;
3953
3954 if (len > sizeof(fru->fru))
3955 break;
3956 if (space < sizeof(*fru)) {
3957 sense->flags |= SSDD_SDAT_OVFL;
3958 break;
3959 }
3960 fru->desc_type = SSD_DESC_FRU;
3961 fru->length = sizeof(*fru) -
3962 (offsetof(struct scsi_sense_fru, length) + 1);
3963 fru->fru = *data;
3964 desc += sizeof(*fru);
3965 space -= sizeof(*fru);
3966 break;
3967 }
3968 case SSD_ELEM_STREAM: {
3969 struct scsi_sense_stream *stream = (void *)desc;
3970
3971 if (len > sizeof(stream->byte3))
3972 break;
3973 if (space < sizeof(*stream)) {
3974 sense->flags |= SSDD_SDAT_OVFL;
3975 break;
3976 }
3977 stream->desc_type = SSD_DESC_STREAM;
3978 stream->length = sizeof(*stream) -
3979 (offsetof(struct scsi_sense_stream, length) + 1);
3980 stream->byte3 = *data;
3981 desc += sizeof(*stream);
3982 space -= sizeof(*stream);
3983 break;
3984 }
3985 default:
3986 /*
3987 * We shouldn't get here, but if we do, do nothing.
3988 * We've already consumed the arguments above.
3989 */
3990 break;
3991 }
3992 }
3993 sense->extra_len = desc - &sense->sense_desc[0];
3994 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3995 sense->extra_len;
3996 }
3997
3998 /*
3999 * Fill in SCSI fixed sense data with the specified parameters.
4000 */
4001 static void
scsi_set_sense_data_fixed_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)4002 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
4003 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
4004 int sense_key, int asc, int ascq, va_list ap)
4005 {
4006 struct scsi_sense_data_fixed *sense;
4007 scsi_sense_elem_type elem_type;
4008 uint8_t *data;
4009 int len;
4010
4011 memset(sense_data, 0, sizeof(*sense_data));
4012 sense = (struct scsi_sense_data_fixed *)sense_data;
4013 if (current_error != 0)
4014 sense->error_code = SSD_CURRENT_ERROR;
4015 else
4016 sense->error_code = SSD_DEFERRED_ERROR;
4017 sense->flags = sense_key & SSD_KEY;
4018 sense->extra_len = 0;
4019 if (*sense_len >= 13) {
4020 sense->add_sense_code = asc;
4021 sense->extra_len = MAX(sense->extra_len, 5);
4022 } else
4023 sense->flags |= SSD_SDAT_OVFL;
4024 if (*sense_len >= 14) {
4025 sense->add_sense_code_qual = ascq;
4026 sense->extra_len = MAX(sense->extra_len, 6);
4027 } else
4028 sense->flags |= SSD_SDAT_OVFL;
4029
4030 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
4031 SSD_ELEM_NONE) {
4032 if (elem_type >= SSD_ELEM_MAX) {
4033 printf("%s: invalid sense type %d\n", __func__,
4034 elem_type);
4035 break;
4036 }
4037 len = va_arg(ap, int);
4038 data = va_arg(ap, uint8_t *);
4039
4040 switch (elem_type) {
4041 case SSD_ELEM_SKIP:
4042 break;
4043 case SSD_ELEM_SKS:
4044 if (len > sizeof(sense->sense_key_spec))
4045 break;
4046 if (*sense_len < 18) {
4047 sense->flags |= SSD_SDAT_OVFL;
4048 break;
4049 }
4050 bcopy(data, &sense->sense_key_spec[0], len);
4051 sense->extra_len = MAX(sense->extra_len, 10);
4052 break;
4053 case SSD_ELEM_COMMAND:
4054 if (*sense_len < 12) {
4055 sense->flags |= SSD_SDAT_OVFL;
4056 break;
4057 }
4058 if (len > sizeof(sense->cmd_spec_info)) {
4059 data += len - sizeof(sense->cmd_spec_info);
4060 len = sizeof(sense->cmd_spec_info);
4061 }
4062 bcopy(data, &sense->cmd_spec_info[
4063 sizeof(sense->cmd_spec_info) - len], len);
4064 sense->extra_len = MAX(sense->extra_len, 4);
4065 break;
4066 case SSD_ELEM_INFO:
4067 /* Set VALID bit only if no overflow. */
4068 sense->error_code |= SSD_ERRCODE_VALID;
4069 while (len > sizeof(sense->info)) {
4070 if (data[0] != 0)
4071 sense->error_code &= ~SSD_ERRCODE_VALID;
4072 data ++;
4073 len --;
4074 }
4075 bcopy(data, &sense->info[sizeof(sense->info) - len], len);
4076 break;
4077 case SSD_ELEM_FRU:
4078 if (*sense_len < 15) {
4079 sense->flags |= SSD_SDAT_OVFL;
4080 break;
4081 }
4082 sense->fru = *data;
4083 sense->extra_len = MAX(sense->extra_len, 7);
4084 break;
4085 case SSD_ELEM_STREAM:
4086 sense->flags |= *data &
4087 (SSD_ILI | SSD_EOM | SSD_FILEMARK);
4088 break;
4089 default:
4090
4091 /*
4092 * We can't handle that in fixed format. Skip it.
4093 */
4094 break;
4095 }
4096 }
4097 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
4098 sense->extra_len;
4099 }
4100
4101 /*
4102 * Fill in SCSI sense data with the specified parameters. This routine can
4103 * fill in either fixed or descriptor type sense data.
4104 */
4105 void
scsi_set_sense_data_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)4106 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
4107 scsi_sense_data_type sense_format, int current_error,
4108 int sense_key, int asc, int ascq, va_list ap)
4109 {
4110
4111 if (*sense_len > SSD_FULL_SIZE)
4112 *sense_len = SSD_FULL_SIZE;
4113 if (sense_format == SSD_TYPE_DESC)
4114 scsi_set_sense_data_desc_va(sense_data, sense_len,
4115 sense_format, current_error, sense_key, asc, ascq, ap);
4116 else
4117 scsi_set_sense_data_fixed_va(sense_data, sense_len,
4118 sense_format, current_error, sense_key, asc, ascq, ap);
4119 }
4120
4121 void
scsi_set_sense_data(struct scsi_sense_data * sense_data,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4122 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4123 scsi_sense_data_type sense_format, int current_error,
4124 int sense_key, int asc, int ascq, ...)
4125 {
4126 va_list ap;
4127 u_int sense_len = SSD_FULL_SIZE;
4128
4129 va_start(ap, ascq);
4130 scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4131 current_error, sense_key, asc, ascq, ap);
4132 va_end(ap);
4133 }
4134
4135 void
scsi_set_sense_data_len(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4136 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4137 scsi_sense_data_type sense_format, int current_error,
4138 int sense_key, int asc, int ascq, ...)
4139 {
4140 va_list ap;
4141
4142 va_start(ap, ascq);
4143 scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4144 current_error, sense_key, asc, ascq, ap);
4145 va_end(ap);
4146 }
4147
4148 /*
4149 * Get sense information for three similar sense data types.
4150 */
4151 int
scsi_get_sense_info(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t info_type,uint64_t * info,int64_t * signed_info)4152 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4153 uint8_t info_type, uint64_t *info, int64_t *signed_info)
4154 {
4155 scsi_sense_data_type sense_type;
4156
4157 if (sense_len == 0)
4158 goto bailout;
4159
4160 sense_type = scsi_sense_type(sense_data);
4161
4162 switch (sense_type) {
4163 case SSD_TYPE_DESC: {
4164 struct scsi_sense_data_desc *sense;
4165 uint8_t *desc;
4166
4167 sense = (struct scsi_sense_data_desc *)sense_data;
4168
4169 desc = scsi_find_desc(sense, sense_len, info_type);
4170 if (desc == NULL)
4171 goto bailout;
4172
4173 switch (info_type) {
4174 case SSD_DESC_INFO: {
4175 struct scsi_sense_info *info_desc;
4176
4177 info_desc = (struct scsi_sense_info *)desc;
4178
4179 if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
4180 goto bailout;
4181
4182 *info = scsi_8btou64(info_desc->info);
4183 if (signed_info != NULL)
4184 *signed_info = *info;
4185 break;
4186 }
4187 case SSD_DESC_COMMAND: {
4188 struct scsi_sense_command *cmd_desc;
4189
4190 cmd_desc = (struct scsi_sense_command *)desc;
4191
4192 *info = scsi_8btou64(cmd_desc->command_info);
4193 if (signed_info != NULL)
4194 *signed_info = *info;
4195 break;
4196 }
4197 case SSD_DESC_FRU: {
4198 struct scsi_sense_fru *fru_desc;
4199
4200 fru_desc = (struct scsi_sense_fru *)desc;
4201
4202 if (fru_desc->fru == 0)
4203 goto bailout;
4204
4205 *info = fru_desc->fru;
4206 if (signed_info != NULL)
4207 *signed_info = (int8_t)fru_desc->fru;
4208 break;
4209 }
4210 default:
4211 goto bailout;
4212 break;
4213 }
4214 break;
4215 }
4216 case SSD_TYPE_FIXED: {
4217 struct scsi_sense_data_fixed *sense;
4218
4219 sense = (struct scsi_sense_data_fixed *)sense_data;
4220
4221 switch (info_type) {
4222 case SSD_DESC_INFO: {
4223 uint32_t info_val;
4224
4225 if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4226 goto bailout;
4227
4228 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4229 goto bailout;
4230
4231 info_val = scsi_4btoul(sense->info);
4232
4233 *info = info_val;
4234 if (signed_info != NULL)
4235 *signed_info = (int32_t)info_val;
4236 break;
4237 }
4238 case SSD_DESC_COMMAND: {
4239 uint32_t cmd_val;
4240
4241 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4242 cmd_spec_info) == 0)
4243 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4244 goto bailout;
4245
4246 cmd_val = scsi_4btoul(sense->cmd_spec_info);
4247 if (cmd_val == 0)
4248 goto bailout;
4249
4250 *info = cmd_val;
4251 if (signed_info != NULL)
4252 *signed_info = (int32_t)cmd_val;
4253 break;
4254 }
4255 case SSD_DESC_FRU:
4256 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4257 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4258 goto bailout;
4259
4260 if (sense->fru == 0)
4261 goto bailout;
4262
4263 *info = sense->fru;
4264 if (signed_info != NULL)
4265 *signed_info = (int8_t)sense->fru;
4266 break;
4267 default:
4268 goto bailout;
4269 break;
4270 }
4271 break;
4272 }
4273 default:
4274 goto bailout;
4275 break;
4276 }
4277
4278 return (0);
4279 bailout:
4280 return (1);
4281 }
4282
4283 int
scsi_get_sks(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t * sks)4284 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4285 {
4286 scsi_sense_data_type sense_type;
4287
4288 if (sense_len == 0)
4289 goto bailout;
4290
4291 sense_type = scsi_sense_type(sense_data);
4292
4293 switch (sense_type) {
4294 case SSD_TYPE_DESC: {
4295 struct scsi_sense_data_desc *sense;
4296 struct scsi_sense_sks *desc;
4297
4298 sense = (struct scsi_sense_data_desc *)sense_data;
4299
4300 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4301 SSD_DESC_SKS);
4302 if (desc == NULL)
4303 goto bailout;
4304
4305 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4306 goto bailout;
4307
4308 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4309 break;
4310 }
4311 case SSD_TYPE_FIXED: {
4312 struct scsi_sense_data_fixed *sense;
4313
4314 sense = (struct scsi_sense_data_fixed *)sense_data;
4315
4316 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4317 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4318 goto bailout;
4319
4320 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4321 goto bailout;
4322
4323 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4324 break;
4325 }
4326 default:
4327 goto bailout;
4328 break;
4329 }
4330 return (0);
4331 bailout:
4332 return (1);
4333 }
4334
4335 /*
4336 * Provide a common interface for fixed and descriptor sense to detect
4337 * whether we have block-specific sense information. It is clear by the
4338 * presence of the block descriptor in descriptor mode, but we have to
4339 * infer from the inquiry data and ILI bit in fixed mode.
4340 */
4341 int
scsi_get_block_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * block_bits)4342 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4343 struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4344 {
4345 scsi_sense_data_type sense_type;
4346
4347 if (inq_data != NULL) {
4348 switch (SID_TYPE(inq_data)) {
4349 case T_DIRECT:
4350 case T_RBC:
4351 case T_ZBC_HM:
4352 break;
4353 default:
4354 goto bailout;
4355 break;
4356 }
4357 }
4358
4359 sense_type = scsi_sense_type(sense_data);
4360
4361 switch (sense_type) {
4362 case SSD_TYPE_DESC: {
4363 struct scsi_sense_data_desc *sense;
4364 struct scsi_sense_block *block;
4365
4366 sense = (struct scsi_sense_data_desc *)sense_data;
4367
4368 block = (struct scsi_sense_block *)scsi_find_desc(sense,
4369 sense_len, SSD_DESC_BLOCK);
4370 if (block == NULL)
4371 goto bailout;
4372
4373 *block_bits = block->byte3;
4374 break;
4375 }
4376 case SSD_TYPE_FIXED: {
4377 struct scsi_sense_data_fixed *sense;
4378
4379 sense = (struct scsi_sense_data_fixed *)sense_data;
4380
4381 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4382 goto bailout;
4383
4384 *block_bits = sense->flags & SSD_ILI;
4385 break;
4386 }
4387 default:
4388 goto bailout;
4389 break;
4390 }
4391 return (0);
4392 bailout:
4393 return (1);
4394 }
4395
4396 int
scsi_get_stream_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * stream_bits)4397 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4398 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4399 {
4400 scsi_sense_data_type sense_type;
4401
4402 if (inq_data != NULL) {
4403 switch (SID_TYPE(inq_data)) {
4404 case T_SEQUENTIAL:
4405 break;
4406 default:
4407 goto bailout;
4408 break;
4409 }
4410 }
4411
4412 sense_type = scsi_sense_type(sense_data);
4413
4414 switch (sense_type) {
4415 case SSD_TYPE_DESC: {
4416 struct scsi_sense_data_desc *sense;
4417 struct scsi_sense_stream *stream;
4418
4419 sense = (struct scsi_sense_data_desc *)sense_data;
4420
4421 stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4422 sense_len, SSD_DESC_STREAM);
4423 if (stream == NULL)
4424 goto bailout;
4425
4426 *stream_bits = stream->byte3;
4427 break;
4428 }
4429 case SSD_TYPE_FIXED: {
4430 struct scsi_sense_data_fixed *sense;
4431
4432 sense = (struct scsi_sense_data_fixed *)sense_data;
4433
4434 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4435 goto bailout;
4436
4437 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4438 break;
4439 }
4440 default:
4441 goto bailout;
4442 break;
4443 }
4444 return (0);
4445 bailout:
4446 return (1);
4447 }
4448
4449 void
scsi_info_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t info)4450 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4451 struct scsi_inquiry_data *inq_data, uint64_t info)
4452 {
4453 sbuf_printf(sb, "Info: %#jx", info);
4454 }
4455
4456 void
scsi_command_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t csi)4457 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4458 struct scsi_inquiry_data *inq_data, uint64_t csi)
4459 {
4460 sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4461 }
4462
4463 void
scsi_progress_sbuf(struct sbuf * sb,uint16_t progress)4464 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4465 {
4466 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4467 (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4468 progress, SSD_SKS_PROGRESS_DENOM);
4469 }
4470
4471 /*
4472 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4473 */
4474 int
scsi_sks_sbuf(struct sbuf * sb,int sense_key,uint8_t * sks)4475 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4476 {
4477
4478 switch (sense_key) {
4479 case SSD_KEY_ILLEGAL_REQUEST: {
4480 struct scsi_sense_sks_field *field;
4481 int bad_command;
4482 char tmpstr[40];
4483
4484 /*Field Pointer*/
4485 field = (struct scsi_sense_sks_field *)sks;
4486
4487 if (field->byte0 & SSD_SKS_FIELD_CMD)
4488 bad_command = 1;
4489 else
4490 bad_command = 0;
4491
4492 tmpstr[0] = '\0';
4493
4494 /* Bit pointer is valid */
4495 if (field->byte0 & SSD_SKS_BPV)
4496 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4497 field->byte0 & SSD_SKS_BIT_VALUE);
4498
4499 sbuf_printf(sb, "%s byte %d %sis invalid",
4500 bad_command ? "Command" : "Data",
4501 scsi_2btoul(field->field), tmpstr);
4502 break;
4503 }
4504 case SSD_KEY_UNIT_ATTENTION: {
4505 struct scsi_sense_sks_overflow *overflow;
4506
4507 overflow = (struct scsi_sense_sks_overflow *)sks;
4508
4509 /*UA Condition Queue Overflow*/
4510 sbuf_printf(sb, "Unit Attention Condition Queue %s",
4511 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4512 "Overflowed" : "Did Not Overflow??");
4513 break;
4514 }
4515 case SSD_KEY_RECOVERED_ERROR:
4516 case SSD_KEY_HARDWARE_ERROR:
4517 case SSD_KEY_MEDIUM_ERROR: {
4518 struct scsi_sense_sks_retry *retry;
4519
4520 /*Actual Retry Count*/
4521 retry = (struct scsi_sense_sks_retry *)sks;
4522
4523 sbuf_printf(sb, "Actual Retry Count: %d",
4524 scsi_2btoul(retry->actual_retry_count));
4525 break;
4526 }
4527 case SSD_KEY_NO_SENSE:
4528 case SSD_KEY_NOT_READY: {
4529 struct scsi_sense_sks_progress *progress;
4530 int progress_val;
4531
4532 /*Progress Indication*/
4533 progress = (struct scsi_sense_sks_progress *)sks;
4534 progress_val = scsi_2btoul(progress->progress);
4535
4536 scsi_progress_sbuf(sb, progress_val);
4537 break;
4538 }
4539 case SSD_KEY_COPY_ABORTED: {
4540 struct scsi_sense_sks_segment *segment;
4541 char tmpstr[40];
4542
4543 /*Segment Pointer*/
4544 segment = (struct scsi_sense_sks_segment *)sks;
4545
4546 tmpstr[0] = '\0';
4547
4548 if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4549 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4550 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4551
4552 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4553 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4554 scsi_2btoul(segment->field), tmpstr);
4555 break;
4556 }
4557 default:
4558 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4559 scsi_2btoul(&sks[1]));
4560 break;
4561 }
4562
4563 return (0);
4564 }
4565
4566 void
scsi_fru_sbuf(struct sbuf * sb,uint64_t fru)4567 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4568 {
4569 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4570 }
4571
4572 void
scsi_stream_sbuf(struct sbuf * sb,uint8_t stream_bits)4573 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
4574 {
4575 int need_comma;
4576
4577 need_comma = 0;
4578 /*
4579 * XXX KDM this needs more descriptive decoding.
4580 */
4581 sbuf_cat(sb, "Stream Command Sense Data: ");
4582 if (stream_bits & SSD_DESC_STREAM_FM) {
4583 sbuf_cat(sb, "Filemark");
4584 need_comma = 1;
4585 }
4586
4587 if (stream_bits & SSD_DESC_STREAM_EOM) {
4588 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4589 need_comma = 1;
4590 }
4591
4592 if (stream_bits & SSD_DESC_STREAM_ILI)
4593 sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4594 }
4595
4596 void
scsi_block_sbuf(struct sbuf * sb,uint8_t block_bits)4597 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
4598 {
4599
4600 sbuf_cat(sb, "Block Command Sense Data: ");
4601 if (block_bits & SSD_DESC_BLOCK_ILI)
4602 sbuf_cat(sb, "ILI");
4603 }
4604
4605 void
scsi_sense_info_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4606 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4607 u_int sense_len, uint8_t *cdb, int cdb_len,
4608 struct scsi_inquiry_data *inq_data,
4609 struct scsi_sense_desc_header *header)
4610 {
4611 struct scsi_sense_info *info;
4612
4613 info = (struct scsi_sense_info *)header;
4614
4615 if ((info->byte2 & SSD_INFO_VALID) == 0)
4616 return;
4617
4618 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4619 }
4620
4621 void
scsi_sense_command_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4622 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4623 u_int sense_len, uint8_t *cdb, int cdb_len,
4624 struct scsi_inquiry_data *inq_data,
4625 struct scsi_sense_desc_header *header)
4626 {
4627 struct scsi_sense_command *command;
4628
4629 command = (struct scsi_sense_command *)header;
4630
4631 scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4632 scsi_8btou64(command->command_info));
4633 }
4634
4635 void
scsi_sense_sks_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4636 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4637 u_int sense_len, uint8_t *cdb, int cdb_len,
4638 struct scsi_inquiry_data *inq_data,
4639 struct scsi_sense_desc_header *header)
4640 {
4641 struct scsi_sense_sks *sks;
4642 int error_code, sense_key, asc, ascq;
4643
4644 sks = (struct scsi_sense_sks *)header;
4645
4646 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4647 return;
4648
4649 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4650 &asc, &ascq, /*show_errors*/ 1);
4651
4652 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4653 }
4654
4655 void
scsi_sense_fru_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4656 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4657 u_int sense_len, uint8_t *cdb, int cdb_len,
4658 struct scsi_inquiry_data *inq_data,
4659 struct scsi_sense_desc_header *header)
4660 {
4661 struct scsi_sense_fru *fru;
4662
4663 fru = (struct scsi_sense_fru *)header;
4664
4665 if (fru->fru == 0)
4666 return;
4667
4668 scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4669 }
4670
4671 void
scsi_sense_stream_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4672 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4673 u_int sense_len, uint8_t *cdb, int cdb_len,
4674 struct scsi_inquiry_data *inq_data,
4675 struct scsi_sense_desc_header *header)
4676 {
4677 struct scsi_sense_stream *stream;
4678
4679 stream = (struct scsi_sense_stream *)header;
4680 scsi_stream_sbuf(sb, stream->byte3);
4681 }
4682
4683 void
scsi_sense_block_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4684 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4685 u_int sense_len, uint8_t *cdb, int cdb_len,
4686 struct scsi_inquiry_data *inq_data,
4687 struct scsi_sense_desc_header *header)
4688 {
4689 struct scsi_sense_block *block;
4690
4691 block = (struct scsi_sense_block *)header;
4692 scsi_block_sbuf(sb, block->byte3);
4693 }
4694
4695 void
scsi_sense_progress_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4696 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4697 u_int sense_len, uint8_t *cdb, int cdb_len,
4698 struct scsi_inquiry_data *inq_data,
4699 struct scsi_sense_desc_header *header)
4700 {
4701 struct scsi_sense_progress *progress;
4702 const char *sense_key_desc;
4703 const char *asc_desc;
4704 int progress_val;
4705
4706 progress = (struct scsi_sense_progress *)header;
4707
4708 /*
4709 * Get descriptions for the sense key, ASC, and ASCQ in the
4710 * progress descriptor. These could be different than the values
4711 * in the overall sense data.
4712 */
4713 scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4714 progress->add_sense_code_qual, inq_data,
4715 &sense_key_desc, &asc_desc);
4716
4717 progress_val = scsi_2btoul(progress->progress);
4718
4719 /*
4720 * The progress indicator is for the operation described by the
4721 * sense key, ASC, and ASCQ in the descriptor.
4722 */
4723 sbuf_cat(sb, sense_key_desc);
4724 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4725 progress->add_sense_code_qual, asc_desc);
4726 scsi_progress_sbuf(sb, progress_val);
4727 }
4728
4729 void
scsi_sense_ata_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4730 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4731 u_int sense_len, uint8_t *cdb, int cdb_len,
4732 struct scsi_inquiry_data *inq_data,
4733 struct scsi_sense_desc_header *header)
4734 {
4735 struct scsi_sense_ata_ret_desc *res;
4736
4737 res = (struct scsi_sense_ata_ret_desc *)header;
4738
4739 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4740 res->status,
4741 (res->status & 0x80) ? "BSY " : "",
4742 (res->status & 0x40) ? "DRDY " : "",
4743 (res->status & 0x20) ? "DF " : "",
4744 (res->status & 0x10) ? "SERV " : "",
4745 (res->status & 0x08) ? "DRQ " : "",
4746 (res->status & 0x04) ? "CORR " : "",
4747 (res->status & 0x02) ? "IDX " : "",
4748 (res->status & 0x01) ? "ERR" : "");
4749 if (res->status & 1) {
4750 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4751 res->error,
4752 (res->error & 0x80) ? "ICRC " : "",
4753 (res->error & 0x40) ? "UNC " : "",
4754 (res->error & 0x20) ? "MC " : "",
4755 (res->error & 0x10) ? "IDNF " : "",
4756 (res->error & 0x08) ? "MCR " : "",
4757 (res->error & 0x04) ? "ABRT " : "",
4758 (res->error & 0x02) ? "NM " : "",
4759 (res->error & 0x01) ? "ILI" : "");
4760 }
4761
4762 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4763 sbuf_printf(sb, "count: %02x%02x, ",
4764 res->count_15_8, res->count_7_0);
4765 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4766 res->lba_47_40, res->lba_39_32, res->lba_31_24,
4767 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4768 } else {
4769 sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4770 sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4771 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4772 }
4773 sbuf_printf(sb, "device: %02x, ", res->device);
4774 }
4775
4776 void
scsi_sense_forwarded_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4777 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4778 u_int sense_len, uint8_t *cdb, int cdb_len,
4779 struct scsi_inquiry_data *inq_data,
4780 struct scsi_sense_desc_header *header)
4781 {
4782 struct scsi_sense_forwarded *forwarded;
4783 const char *sense_key_desc;
4784 const char *asc_desc;
4785 int error_code, sense_key, asc, ascq;
4786
4787 forwarded = (struct scsi_sense_forwarded *)header;
4788 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4789 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4790 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4791
4792 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4793 sense_key_desc, asc, ascq, asc_desc);
4794 }
4795
4796 /*
4797 * Generic sense descriptor printing routine. This is used when we have
4798 * not yet implemented a specific printing routine for this descriptor.
4799 */
4800 void
scsi_sense_generic_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4801 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4802 u_int sense_len, uint8_t *cdb, int cdb_len,
4803 struct scsi_inquiry_data *inq_data,
4804 struct scsi_sense_desc_header *header)
4805 {
4806 int i;
4807 uint8_t *buf_ptr;
4808
4809 sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4810
4811 buf_ptr = (uint8_t *)&header[1];
4812
4813 for (i = 0; i < header->length; i++, buf_ptr++)
4814 sbuf_printf(sb, " %02x", *buf_ptr);
4815 }
4816
4817 /*
4818 * Keep this list in numeric order. This speeds the array traversal.
4819 */
4820 struct scsi_sense_desc_printer {
4821 uint8_t desc_type;
4822 /*
4823 * The function arguments here are the superset of what is needed
4824 * to print out various different descriptors. Command and
4825 * information descriptors need inquiry data and command type.
4826 * Sense key specific descriptors need the sense key.
4827 *
4828 * The sense, cdb, and inquiry data arguments may be NULL, but the
4829 * information printed may not be fully decoded as a result.
4830 */
4831 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4832 u_int sense_len, uint8_t *cdb, int cdb_len,
4833 struct scsi_inquiry_data *inq_data,
4834 struct scsi_sense_desc_header *header);
4835 } scsi_sense_printers[] = {
4836 {SSD_DESC_INFO, scsi_sense_info_sbuf},
4837 {SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4838 {SSD_DESC_SKS, scsi_sense_sks_sbuf},
4839 {SSD_DESC_FRU, scsi_sense_fru_sbuf},
4840 {SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4841 {SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4842 {SSD_DESC_ATA, scsi_sense_ata_sbuf},
4843 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4844 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4845 };
4846
4847 void
scsi_sense_desc_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4848 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4849 u_int sense_len, uint8_t *cdb, int cdb_len,
4850 struct scsi_inquiry_data *inq_data,
4851 struct scsi_sense_desc_header *header)
4852 {
4853 u_int i;
4854
4855 for (i = 0; i < nitems(scsi_sense_printers); i++) {
4856 struct scsi_sense_desc_printer *printer;
4857
4858 printer = &scsi_sense_printers[i];
4859
4860 /*
4861 * The list is sorted, so quit if we've passed our
4862 * descriptor number.
4863 */
4864 if (printer->desc_type > header->desc_type)
4865 break;
4866
4867 if (printer->desc_type != header->desc_type)
4868 continue;
4869
4870 printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4871 inq_data, header);
4872
4873 return;
4874 }
4875
4876 /*
4877 * No specific printing routine, so use the generic routine.
4878 */
4879 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4880 inq_data, header);
4881 }
4882
4883 scsi_sense_data_type
scsi_sense_type(struct scsi_sense_data * sense_data)4884 scsi_sense_type(struct scsi_sense_data *sense_data)
4885 {
4886 switch (sense_data->error_code & SSD_ERRCODE) {
4887 case SSD_DESC_CURRENT_ERROR:
4888 case SSD_DESC_DEFERRED_ERROR:
4889 return (SSD_TYPE_DESC);
4890 break;
4891 case SSD_CURRENT_ERROR:
4892 case SSD_DEFERRED_ERROR:
4893 return (SSD_TYPE_FIXED);
4894 break;
4895 default:
4896 break;
4897 }
4898
4899 return (SSD_TYPE_NONE);
4900 }
4901
4902 struct scsi_print_sense_info {
4903 struct sbuf *sb;
4904 char *path_str;
4905 uint8_t *cdb;
4906 int cdb_len;
4907 struct scsi_inquiry_data *inq_data;
4908 };
4909
4910 static int
scsi_print_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)4911 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4912 struct scsi_sense_desc_header *header, void *arg)
4913 {
4914 struct scsi_print_sense_info *print_info;
4915
4916 print_info = (struct scsi_print_sense_info *)arg;
4917
4918 switch (header->desc_type) {
4919 case SSD_DESC_INFO:
4920 case SSD_DESC_FRU:
4921 case SSD_DESC_COMMAND:
4922 case SSD_DESC_SKS:
4923 case SSD_DESC_BLOCK:
4924 case SSD_DESC_STREAM:
4925 /*
4926 * We have already printed these descriptors, if they are
4927 * present.
4928 */
4929 break;
4930 default: {
4931 sbuf_printf(print_info->sb, "%s", print_info->path_str);
4932 scsi_sense_desc_sbuf(print_info->sb,
4933 (struct scsi_sense_data *)sense, sense_len,
4934 print_info->cdb, print_info->cdb_len,
4935 print_info->inq_data, header);
4936 sbuf_putc(print_info->sb, '\n');
4937 break;
4938 }
4939 }
4940
4941 /*
4942 * Tell the iterator that we want to see more descriptors if they
4943 * are present.
4944 */
4945 return (0);
4946 }
4947
4948 void
scsi_sense_only_sbuf(struct scsi_sense_data * sense,u_int sense_len,struct sbuf * sb,char * path_str,struct scsi_inquiry_data * inq_data,uint8_t * cdb,int cdb_len)4949 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4950 struct sbuf *sb, char *path_str,
4951 struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4952 int cdb_len)
4953 {
4954 int error_code, sense_key, asc, ascq;
4955
4956 sbuf_cat(sb, path_str);
4957
4958 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4959 &asc, &ascq, /*show_errors*/ 1);
4960
4961 sbuf_cat(sb, "SCSI sense: ");
4962 switch (error_code) {
4963 case SSD_DEFERRED_ERROR:
4964 case SSD_DESC_DEFERRED_ERROR:
4965 sbuf_cat(sb, "Deferred error: ");
4966
4967 /* FALLTHROUGH */
4968 case SSD_CURRENT_ERROR:
4969 case SSD_DESC_CURRENT_ERROR:
4970 {
4971 struct scsi_sense_data_desc *desc_sense;
4972 struct scsi_print_sense_info print_info;
4973 const char *sense_key_desc;
4974 const char *asc_desc;
4975 uint8_t sks[3];
4976 uint64_t val;
4977 uint8_t bits;
4978
4979 /*
4980 * Get descriptions for the sense key, ASC, and ASCQ. If
4981 * these aren't present in the sense data (i.e. the sense
4982 * data isn't long enough), the -1 values that
4983 * scsi_extract_sense_len() returns will yield default
4984 * or error descriptions.
4985 */
4986 scsi_sense_desc(sense_key, asc, ascq, inq_data,
4987 &sense_key_desc, &asc_desc);
4988
4989 /*
4990 * We first print the sense key and ASC/ASCQ.
4991 */
4992 sbuf_cat(sb, sense_key_desc);
4993 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4994
4995 /*
4996 * Print any block or stream device-specific information.
4997 */
4998 if (scsi_get_block_info(sense, sense_len, inq_data,
4999 &bits) == 0 && bits != 0) {
5000 sbuf_cat(sb, path_str);
5001 scsi_block_sbuf(sb, bits);
5002 sbuf_putc(sb, '\n');
5003 } else if (scsi_get_stream_info(sense, sense_len, inq_data,
5004 &bits) == 0 && bits != 0) {
5005 sbuf_cat(sb, path_str);
5006 scsi_stream_sbuf(sb, bits);
5007 sbuf_putc(sb, '\n');
5008 }
5009
5010 /*
5011 * Print the info field.
5012 */
5013 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
5014 &val, NULL) == 0) {
5015 sbuf_cat(sb, path_str);
5016 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
5017 sbuf_putc(sb, '\n');
5018 }
5019
5020 /*
5021 * Print the FRU.
5022 */
5023 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
5024 &val, NULL) == 0) {
5025 sbuf_cat(sb, path_str);
5026 scsi_fru_sbuf(sb, val);
5027 sbuf_putc(sb, '\n');
5028 }
5029
5030 /*
5031 * Print any command-specific information.
5032 */
5033 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
5034 &val, NULL) == 0) {
5035 sbuf_cat(sb, path_str);
5036 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
5037 sbuf_putc(sb, '\n');
5038 }
5039
5040 /*
5041 * Print out any sense-key-specific information.
5042 */
5043 if (scsi_get_sks(sense, sense_len, sks) == 0) {
5044 sbuf_cat(sb, path_str);
5045 scsi_sks_sbuf(sb, sense_key, sks);
5046 sbuf_putc(sb, '\n');
5047 }
5048
5049 /*
5050 * If this is fixed sense, we're done. If we have
5051 * descriptor sense, we might have more information
5052 * available.
5053 */
5054 if (scsi_sense_type(sense) != SSD_TYPE_DESC)
5055 break;
5056
5057 desc_sense = (struct scsi_sense_data_desc *)sense;
5058
5059 print_info.sb = sb;
5060 print_info.path_str = path_str;
5061 print_info.cdb = cdb;
5062 print_info.cdb_len = cdb_len;
5063 print_info.inq_data = inq_data;
5064
5065 /*
5066 * Print any sense descriptors that we have not already printed.
5067 */
5068 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
5069 &print_info);
5070 break;
5071 }
5072 case -1:
5073 /*
5074 * scsi_extract_sense_len() sets values to -1 if the
5075 * show_errors flag is set and they aren't present in the
5076 * sense data. This means that sense_len is 0.
5077 */
5078 sbuf_cat(sb, "No sense data present\n");
5079 break;
5080 default: {
5081 sbuf_printf(sb, "Error code 0x%x", error_code);
5082 if (sense->error_code & SSD_ERRCODE_VALID) {
5083 struct scsi_sense_data_fixed *fixed_sense;
5084
5085 fixed_sense = (struct scsi_sense_data_fixed *)sense;
5086
5087 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
5088 uint32_t info;
5089
5090 info = scsi_4btoul(fixed_sense->info);
5091
5092 sbuf_printf(sb, " at block no. %d (decimal)",
5093 info);
5094 }
5095 }
5096 sbuf_putc(sb, '\n');
5097 break;
5098 }
5099 }
5100 }
5101
5102 /*
5103 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5104 */
5105 #ifdef _KERNEL
5106 int
scsi_sense_sbuf(struct ccb_scsiio * csio,struct sbuf * sb,scsi_sense_string_flags flags)5107 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5108 scsi_sense_string_flags flags)
5109 #else /* !_KERNEL */
5110 int
5111 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5112 struct sbuf *sb, scsi_sense_string_flags flags)
5113 #endif /* _KERNEL/!_KERNEL */
5114 {
5115 struct scsi_sense_data *sense;
5116 struct scsi_inquiry_data *inq_data;
5117 #ifdef _KERNEL
5118 struct ccb_getdev *cgd;
5119 #endif /* _KERNEL */
5120 char path_str[64];
5121
5122 #ifndef _KERNEL
5123 if (device == NULL)
5124 return(-1);
5125 #endif /* !_KERNEL */
5126 if ((csio == NULL) || (sb == NULL))
5127 return(-1);
5128
5129 /*
5130 * If the CDB is a physical address, we can't deal with it..
5131 */
5132 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5133 flags &= ~SSS_FLAG_PRINT_COMMAND;
5134
5135 #ifdef _KERNEL
5136 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5137 #else /* !_KERNEL */
5138 cam_path_string(device, path_str, sizeof(path_str));
5139 #endif /* _KERNEL/!_KERNEL */
5140
5141 #ifdef _KERNEL
5142 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5143 return(-1);
5144 /*
5145 * Get the device information.
5146 */
5147 xpt_setup_ccb(&cgd->ccb_h,
5148 csio->ccb_h.path,
5149 CAM_PRIORITY_NORMAL);
5150 cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5151 xpt_action((union ccb *)cgd);
5152
5153 /*
5154 * If the device is unconfigured, just pretend that it is a hard
5155 * drive. scsi_op_desc() needs this.
5156 */
5157 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5158 cgd->inq_data.device = T_DIRECT;
5159
5160 inq_data = &cgd->inq_data;
5161
5162 #else /* !_KERNEL */
5163
5164 inq_data = &device->inq_data;
5165
5166 #endif /* _KERNEL/!_KERNEL */
5167
5168 sense = NULL;
5169
5170 if (flags & SSS_FLAG_PRINT_COMMAND) {
5171 sbuf_cat(sb, path_str);
5172
5173 #ifdef _KERNEL
5174 scsi_command_string(csio, sb);
5175 #else /* !_KERNEL */
5176 scsi_command_string(device, csio, sb);
5177 #endif /* _KERNEL/!_KERNEL */
5178 sbuf_putc(sb, '\n');
5179 }
5180
5181 /*
5182 * If the sense data is a physical pointer, forget it.
5183 */
5184 if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5185 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5186 #ifdef _KERNEL
5187 xpt_free_ccb((union ccb*)cgd);
5188 #endif /* _KERNEL/!_KERNEL */
5189 return(-1);
5190 } else {
5191 /*
5192 * bcopy the pointer to avoid unaligned access
5193 * errors on finicky architectures. We don't
5194 * ensure that the sense data is pointer aligned.
5195 */
5196 bcopy((struct scsi_sense_data **)&csio->sense_data,
5197 &sense, sizeof(struct scsi_sense_data *));
5198 }
5199 } else {
5200 /*
5201 * If the physical sense flag is set, but the sense pointer
5202 * is not also set, we assume that the user is an idiot and
5203 * return. (Well, okay, it could be that somehow, the
5204 * entire csio is physical, but we would have probably core
5205 * dumped on one of the bogus pointer deferences above
5206 * already.)
5207 */
5208 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5209 #ifdef _KERNEL
5210 xpt_free_ccb((union ccb*)cgd);
5211 #endif /* _KERNEL/!_KERNEL */
5212 return(-1);
5213 } else
5214 sense = &csio->sense_data;
5215 }
5216
5217 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5218 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5219
5220 #ifdef _KERNEL
5221 xpt_free_ccb((union ccb*)cgd);
5222 #endif /* _KERNEL/!_KERNEL */
5223 return(0);
5224 }
5225
5226 #ifdef _KERNEL
5227 char *
scsi_sense_string(struct ccb_scsiio * csio,char * str,int str_len)5228 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5229 #else /* !_KERNEL */
5230 char *
5231 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5232 char *str, int str_len)
5233 #endif /* _KERNEL/!_KERNEL */
5234 {
5235 struct sbuf sb;
5236
5237 sbuf_new(&sb, str, str_len, 0);
5238
5239 #ifdef _KERNEL
5240 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5241 #else /* !_KERNEL */
5242 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5243 #endif /* _KERNEL/!_KERNEL */
5244
5245 sbuf_finish(&sb);
5246
5247 return(sbuf_data(&sb));
5248 }
5249
5250 #ifdef _KERNEL
5251 void
scsi_sense_print(struct ccb_scsiio * csio)5252 scsi_sense_print(struct ccb_scsiio *csio)
5253 {
5254 struct sbuf sb;
5255 char str[512];
5256
5257 sbuf_new(&sb, str, sizeof(str), 0);
5258
5259 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5260
5261 sbuf_finish(&sb);
5262
5263 sbuf_putbuf(&sb);
5264 }
5265
5266 #else /* !_KERNEL */
5267 void
scsi_sense_print(struct cam_device * device,struct ccb_scsiio * csio,FILE * ofile)5268 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5269 FILE *ofile)
5270 {
5271 struct sbuf sb;
5272 char str[512];
5273
5274 if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5275 return;
5276
5277 sbuf_new(&sb, str, sizeof(str), 0);
5278
5279 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5280
5281 sbuf_finish(&sb);
5282
5283 fprintf(ofile, "%s", sbuf_data(&sb));
5284 }
5285
5286 #endif /* _KERNEL/!_KERNEL */
5287
5288 /*
5289 * Extract basic sense information. This is backward-compatible with the
5290 * previous implementation. For new implementations,
5291 * scsi_extract_sense_len() is recommended.
5292 */
5293 void
scsi_extract_sense(struct scsi_sense_data * sense_data,int * error_code,int * sense_key,int * asc,int * ascq)5294 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5295 int *sense_key, int *asc, int *ascq)
5296 {
5297 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5298 sense_key, asc, ascq, /*show_errors*/ 0);
5299 }
5300
5301 /*
5302 * Extract basic sense information from SCSI I/O CCB structure.
5303 */
5304 int
scsi_extract_sense_ccb(union ccb * ccb,int * error_code,int * sense_key,int * asc,int * ascq)5305 scsi_extract_sense_ccb(union ccb *ccb,
5306 int *error_code, int *sense_key, int *asc, int *ascq)
5307 {
5308 struct scsi_sense_data *sense_data;
5309
5310 /* Make sure there are some sense data we can access. */
5311 if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5312 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5313 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5314 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5315 (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5316 return (0);
5317
5318 if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5319 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5320 &sense_data, sizeof(struct scsi_sense_data *));
5321 else
5322 sense_data = &ccb->csio.sense_data;
5323 scsi_extract_sense_len(sense_data,
5324 ccb->csio.sense_len - ccb->csio.sense_resid,
5325 error_code, sense_key, asc, ascq, 1);
5326 if (*error_code == -1)
5327 return (0);
5328 return (1);
5329 }
5330
5331 /*
5332 * Extract basic sense information. If show_errors is set, sense values
5333 * will be set to -1 if they are not present.
5334 */
5335 void
scsi_extract_sense_len(struct scsi_sense_data * sense_data,u_int sense_len,int * error_code,int * sense_key,int * asc,int * ascq,int show_errors)5336 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5337 int *error_code, int *sense_key, int *asc, int *ascq,
5338 int show_errors)
5339 {
5340 /*
5341 * If we have no length, we have no sense.
5342 */
5343 if (sense_len == 0) {
5344 if (show_errors == 0) {
5345 *error_code = 0;
5346 *sense_key = 0;
5347 *asc = 0;
5348 *ascq = 0;
5349 } else {
5350 *error_code = -1;
5351 *sense_key = -1;
5352 *asc = -1;
5353 *ascq = -1;
5354 }
5355 return;
5356 }
5357
5358 *error_code = sense_data->error_code & SSD_ERRCODE;
5359
5360 switch (*error_code) {
5361 case SSD_DESC_CURRENT_ERROR:
5362 case SSD_DESC_DEFERRED_ERROR: {
5363 struct scsi_sense_data_desc *sense;
5364
5365 sense = (struct scsi_sense_data_desc *)sense_data;
5366
5367 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5368 *sense_key = sense->sense_key & SSD_KEY;
5369 else
5370 *sense_key = (show_errors) ? -1 : 0;
5371
5372 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5373 *asc = sense->add_sense_code;
5374 else
5375 *asc = (show_errors) ? -1 : 0;
5376
5377 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5378 *ascq = sense->add_sense_code_qual;
5379 else
5380 *ascq = (show_errors) ? -1 : 0;
5381 break;
5382 }
5383 case SSD_CURRENT_ERROR:
5384 case SSD_DEFERRED_ERROR:
5385 default: {
5386 struct scsi_sense_data_fixed *sense;
5387
5388 sense = (struct scsi_sense_data_fixed *)sense_data;
5389
5390 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5391 *sense_key = sense->flags & SSD_KEY;
5392 else
5393 *sense_key = (show_errors) ? -1 : 0;
5394
5395 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5396 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5397 *asc = sense->add_sense_code;
5398 else
5399 *asc = (show_errors) ? -1 : 0;
5400
5401 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5402 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5403 *ascq = sense->add_sense_code_qual;
5404 else
5405 *ascq = (show_errors) ? -1 : 0;
5406 break;
5407 }
5408 }
5409 }
5410
5411 int
scsi_get_sense_key(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5412 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5413 int show_errors)
5414 {
5415 int error_code, sense_key, asc, ascq;
5416
5417 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5418 &sense_key, &asc, &ascq, show_errors);
5419
5420 return (sense_key);
5421 }
5422
5423 int
scsi_get_asc(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5424 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5425 int show_errors)
5426 {
5427 int error_code, sense_key, asc, ascq;
5428
5429 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5430 &sense_key, &asc, &ascq, show_errors);
5431
5432 return (asc);
5433 }
5434
5435 int
scsi_get_ascq(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5436 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5437 int show_errors)
5438 {
5439 int error_code, sense_key, asc, ascq;
5440
5441 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5442 &sense_key, &asc, &ascq, show_errors);
5443
5444 return (ascq);
5445 }
5446
5447 /*
5448 * This function currently requires at least 36 bytes, or
5449 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this
5450 * function needs more or less data in the future, another length should be
5451 * defined in scsi_all.h to indicate the minimum amount of data necessary
5452 * for this routine to function properly.
5453 */
5454 void
scsi_print_inquiry_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5455 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5456 {
5457 uint8_t type;
5458 char *dtype, *qtype;
5459
5460 type = SID_TYPE(inq_data);
5461
5462 /*
5463 * Figure out basic device type and qualifier.
5464 */
5465 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5466 qtype = " (vendor-unique qualifier)";
5467 } else {
5468 switch (SID_QUAL(inq_data)) {
5469 case SID_QUAL_LU_CONNECTED:
5470 qtype = "";
5471 break;
5472
5473 case SID_QUAL_LU_OFFLINE:
5474 qtype = " (offline)";
5475 break;
5476
5477 case SID_QUAL_RSVD:
5478 qtype = " (reserved qualifier)";
5479 break;
5480 default:
5481 case SID_QUAL_BAD_LU:
5482 qtype = " (LUN not supported)";
5483 break;
5484 }
5485 }
5486
5487 switch (type) {
5488 case T_DIRECT:
5489 dtype = "Direct Access";
5490 break;
5491 case T_SEQUENTIAL:
5492 dtype = "Sequential Access";
5493 break;
5494 case T_PRINTER:
5495 dtype = "Printer";
5496 break;
5497 case T_PROCESSOR:
5498 dtype = "Processor";
5499 break;
5500 case T_WORM:
5501 dtype = "WORM";
5502 break;
5503 case T_CDROM:
5504 dtype = "CD-ROM";
5505 break;
5506 case T_SCANNER:
5507 dtype = "Scanner";
5508 break;
5509 case T_OPTICAL:
5510 dtype = "Optical";
5511 break;
5512 case T_CHANGER:
5513 dtype = "Changer";
5514 break;
5515 case T_COMM:
5516 dtype = "Communication";
5517 break;
5518 case T_STORARRAY:
5519 dtype = "Storage Array";
5520 break;
5521 case T_ENCLOSURE:
5522 dtype = "Enclosure Services";
5523 break;
5524 case T_RBC:
5525 dtype = "Simplified Direct Access";
5526 break;
5527 case T_OCRW:
5528 dtype = "Optical Card Read/Write";
5529 break;
5530 case T_OSD:
5531 dtype = "Object-Based Storage";
5532 break;
5533 case T_ADC:
5534 dtype = "Automation/Drive Interface";
5535 break;
5536 case T_ZBC_HM:
5537 dtype = "Host Managed Zoned Block";
5538 break;
5539 case T_NODEVICE:
5540 dtype = "Uninstalled";
5541 break;
5542 default:
5543 dtype = "unknown";
5544 break;
5545 }
5546
5547 scsi_print_inquiry_short_sbuf(sb, inq_data);
5548
5549 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5550
5551 if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5552 sbuf_cat(sb, "SCSI ");
5553 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5554 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5555 } else {
5556 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5557 }
5558 sbuf_printf(sb, "device%s\n", qtype);
5559 }
5560
5561 void
scsi_print_inquiry(struct scsi_inquiry_data * inq_data)5562 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5563 {
5564 struct sbuf sb;
5565 char buffer[120];
5566
5567 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5568 scsi_print_inquiry_sbuf(&sb, inq_data);
5569 sbuf_finish(&sb);
5570 sbuf_putbuf(&sb);
5571 }
5572
5573 void
scsi_print_inquiry_short_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5574 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5575 {
5576
5577 sbuf_putc(sb, '<');
5578 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5579 sbuf_putc(sb, ' ');
5580 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5581 sbuf_putc(sb, ' ');
5582 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5583 sbuf_cat(sb, "> ");
5584 }
5585
5586 void
scsi_print_inquiry_short(struct scsi_inquiry_data * inq_data)5587 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5588 {
5589 struct sbuf sb;
5590 char buffer[84];
5591
5592 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5593 scsi_print_inquiry_short_sbuf(&sb, inq_data);
5594 sbuf_finish(&sb);
5595 sbuf_putbuf(&sb);
5596 }
5597
5598 /*
5599 * Table of syncrates that don't follow the "divisible by 4"
5600 * rule. This table will be expanded in future SCSI specs.
5601 */
5602 static struct {
5603 u_int period_factor;
5604 u_int period; /* in 100ths of ns */
5605 } scsi_syncrates[] = {
5606 { 0x08, 625 }, /* FAST-160 */
5607 { 0x09, 1250 }, /* FAST-80 */
5608 { 0x0a, 2500 }, /* FAST-40 40MHz */
5609 { 0x0b, 3030 }, /* FAST-40 33MHz */
5610 { 0x0c, 5000 } /* FAST-20 */
5611 };
5612
5613 /*
5614 * Return the frequency in kHz corresponding to the given
5615 * sync period factor.
5616 */
5617 u_int
scsi_calc_syncsrate(u_int period_factor)5618 scsi_calc_syncsrate(u_int period_factor)
5619 {
5620 u_int i;
5621 u_int num_syncrates;
5622
5623 /*
5624 * It's a bug if period is zero, but if it is anyway, don't
5625 * die with a divide fault- instead return something which
5626 * 'approximates' async
5627 */
5628 if (period_factor == 0) {
5629 return (3300);
5630 }
5631
5632 num_syncrates = nitems(scsi_syncrates);
5633 /* See if the period is in the "exception" table */
5634 for (i = 0; i < num_syncrates; i++) {
5635 if (period_factor == scsi_syncrates[i].period_factor) {
5636 /* Period in kHz */
5637 return (100000000 / scsi_syncrates[i].period);
5638 }
5639 }
5640
5641 /*
5642 * Wasn't in the table, so use the standard
5643 * 4 times conversion.
5644 */
5645 return (10000000 / (period_factor * 4 * 10));
5646 }
5647
5648 /*
5649 * Return the SCSI sync parameter that corresponds to
5650 * the passed in period in 10ths of ns.
5651 */
5652 u_int
scsi_calc_syncparam(u_int period)5653 scsi_calc_syncparam(u_int period)
5654 {
5655 u_int i;
5656 u_int num_syncrates;
5657
5658 if (period == 0)
5659 return (~0); /* Async */
5660
5661 /* Adjust for exception table being in 100ths. */
5662 period *= 10;
5663 num_syncrates = nitems(scsi_syncrates);
5664 /* See if the period is in the "exception" table */
5665 for (i = 0; i < num_syncrates; i++) {
5666 if (period <= scsi_syncrates[i].period) {
5667 /* Period in 100ths of ns */
5668 return (scsi_syncrates[i].period_factor);
5669 }
5670 }
5671
5672 /*
5673 * Wasn't in the table, so use the standard
5674 * 1/4 period in ns conversion.
5675 */
5676 return (period/400);
5677 }
5678
5679 int
scsi_devid_is_naa_ieee_reg(uint8_t * bufp)5680 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5681 {
5682 struct scsi_vpd_id_descriptor *descr;
5683 struct scsi_vpd_id_naa_basic *naa;
5684 int n;
5685
5686 descr = (struct scsi_vpd_id_descriptor *)bufp;
5687 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5688 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5689 return 0;
5690 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5691 return 0;
5692 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
5693 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
5694 return 0;
5695 return 1;
5696 }
5697
5698 int
scsi_devid_is_sas_target(uint8_t * bufp)5699 scsi_devid_is_sas_target(uint8_t *bufp)
5700 {
5701 struct scsi_vpd_id_descriptor *descr;
5702
5703 descr = (struct scsi_vpd_id_descriptor *)bufp;
5704 if (!scsi_devid_is_naa_ieee_reg(bufp))
5705 return 0;
5706 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5707 return 0;
5708 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5709 return 0;
5710 return 1;
5711 }
5712
5713 int
scsi_devid_is_lun_eui64(uint8_t * bufp)5714 scsi_devid_is_lun_eui64(uint8_t *bufp)
5715 {
5716 struct scsi_vpd_id_descriptor *descr;
5717
5718 descr = (struct scsi_vpd_id_descriptor *)bufp;
5719 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5720 return 0;
5721 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5722 return 0;
5723 return 1;
5724 }
5725
5726 int
scsi_devid_is_lun_naa(uint8_t * bufp)5727 scsi_devid_is_lun_naa(uint8_t *bufp)
5728 {
5729 struct scsi_vpd_id_descriptor *descr;
5730
5731 descr = (struct scsi_vpd_id_descriptor *)bufp;
5732 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5733 return 0;
5734 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5735 return 0;
5736 return 1;
5737 }
5738
5739 int
scsi_devid_is_lun_t10(uint8_t * bufp)5740 scsi_devid_is_lun_t10(uint8_t *bufp)
5741 {
5742 struct scsi_vpd_id_descriptor *descr;
5743
5744 descr = (struct scsi_vpd_id_descriptor *)bufp;
5745 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5746 return 0;
5747 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5748 return 0;
5749 return 1;
5750 }
5751
5752 int
scsi_devid_is_lun_name(uint8_t * bufp)5753 scsi_devid_is_lun_name(uint8_t *bufp)
5754 {
5755 struct scsi_vpd_id_descriptor *descr;
5756
5757 descr = (struct scsi_vpd_id_descriptor *)bufp;
5758 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5759 return 0;
5760 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5761 return 0;
5762 return 1;
5763 }
5764
5765 int
scsi_devid_is_lun_md5(uint8_t * bufp)5766 scsi_devid_is_lun_md5(uint8_t *bufp)
5767 {
5768 struct scsi_vpd_id_descriptor *descr;
5769
5770 descr = (struct scsi_vpd_id_descriptor *)bufp;
5771 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5772 return 0;
5773 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5774 return 0;
5775 return 1;
5776 }
5777
5778 int
scsi_devid_is_lun_uuid(uint8_t * bufp)5779 scsi_devid_is_lun_uuid(uint8_t *bufp)
5780 {
5781 struct scsi_vpd_id_descriptor *descr;
5782
5783 descr = (struct scsi_vpd_id_descriptor *)bufp;
5784 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5785 return 0;
5786 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5787 return 0;
5788 return 1;
5789 }
5790
5791 int
scsi_devid_is_port_naa(uint8_t * bufp)5792 scsi_devid_is_port_naa(uint8_t *bufp)
5793 {
5794 struct scsi_vpd_id_descriptor *descr;
5795
5796 descr = (struct scsi_vpd_id_descriptor *)bufp;
5797 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5798 return 0;
5799 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5800 return 0;
5801 return 1;
5802 }
5803
5804 struct scsi_vpd_id_descriptor *
scsi_get_devid_desc(struct scsi_vpd_id_descriptor * desc,uint32_t len,scsi_devid_checkfn_t ck_fn)5805 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5806 scsi_devid_checkfn_t ck_fn)
5807 {
5808 uint8_t *desc_buf_end;
5809
5810 desc_buf_end = (uint8_t *)desc + len;
5811
5812 for (; desc->identifier <= desc_buf_end &&
5813 desc->identifier + desc->length <= desc_buf_end;
5814 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5815 + desc->length)) {
5816 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5817 return (desc);
5818 }
5819 return (NULL);
5820 }
5821
5822 struct scsi_vpd_id_descriptor *
scsi_get_devid(struct scsi_vpd_device_id * id,uint32_t page_len,scsi_devid_checkfn_t ck_fn)5823 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5824 scsi_devid_checkfn_t ck_fn)
5825 {
5826 uint32_t len;
5827
5828 if (page_len < sizeof(*id))
5829 return (NULL);
5830 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5831 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5832 id->desc_list, len, ck_fn));
5833 }
5834
5835 int
scsi_transportid_sbuf(struct sbuf * sb,struct scsi_transportid_header * hdr,uint32_t valid_len)5836 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5837 uint32_t valid_len)
5838 {
5839 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5840 case SCSI_PROTO_FC: {
5841 struct scsi_transportid_fcp *fcp;
5842 uint64_t n_port_name;
5843
5844 fcp = (struct scsi_transportid_fcp *)hdr;
5845
5846 n_port_name = scsi_8btou64(fcp->n_port_name);
5847
5848 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5849 break;
5850 }
5851 case SCSI_PROTO_SPI: {
5852 struct scsi_transportid_spi *spi;
5853
5854 spi = (struct scsi_transportid_spi *)hdr;
5855
5856 sbuf_printf(sb, "SPI address: %u,%u",
5857 scsi_2btoul(spi->scsi_addr),
5858 scsi_2btoul(spi->rel_trgt_port_id));
5859 break;
5860 }
5861 case SCSI_PROTO_SSA:
5862 /*
5863 * XXX KDM there is no transport ID defined in SPC-4 for
5864 * SSA.
5865 */
5866 break;
5867 case SCSI_PROTO_1394: {
5868 struct scsi_transportid_1394 *sbp;
5869 uint64_t eui64;
5870
5871 sbp = (struct scsi_transportid_1394 *)hdr;
5872
5873 eui64 = scsi_8btou64(sbp->eui64);
5874 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5875 break;
5876 }
5877 case SCSI_PROTO_RDMA: {
5878 struct scsi_transportid_rdma *rdma;
5879 unsigned int i;
5880
5881 rdma = (struct scsi_transportid_rdma *)hdr;
5882
5883 sbuf_cat(sb, "RDMA address: 0x");
5884 for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5885 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5886 break;
5887 }
5888 case SCSI_PROTO_ISCSI: {
5889 uint32_t add_len, i;
5890 uint8_t *iscsi_name = NULL;
5891 int nul_found = 0;
5892
5893 sbuf_cat(sb, "iSCSI address: ");
5894 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5895 SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5896 struct scsi_transportid_iscsi_device *dev;
5897
5898 dev = (struct scsi_transportid_iscsi_device *)hdr;
5899
5900 /*
5901 * Verify how much additional data we really have.
5902 */
5903 add_len = scsi_2btoul(dev->additional_length);
5904 add_len = MIN(add_len, valid_len -
5905 __offsetof(struct scsi_transportid_iscsi_device,
5906 iscsi_name));
5907 iscsi_name = &dev->iscsi_name[0];
5908
5909 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5910 SCSI_TRN_ISCSI_FORMAT_PORT) {
5911 struct scsi_transportid_iscsi_port *port;
5912
5913 port = (struct scsi_transportid_iscsi_port *)hdr;
5914
5915 add_len = scsi_2btoul(port->additional_length);
5916 add_len = MIN(add_len, valid_len -
5917 __offsetof(struct scsi_transportid_iscsi_port,
5918 iscsi_name));
5919 iscsi_name = &port->iscsi_name[0];
5920 } else {
5921 sbuf_printf(sb, "unknown format %x",
5922 (hdr->format_protocol &
5923 SCSI_TRN_FORMAT_MASK) >>
5924 SCSI_TRN_FORMAT_SHIFT);
5925 break;
5926 }
5927 if (add_len == 0) {
5928 sbuf_cat(sb, "not enough data");
5929 break;
5930 }
5931 /*
5932 * This is supposed to be a NUL-terminated ASCII
5933 * string, but you never know. So we're going to
5934 * check. We need to do this because there is no
5935 * sbuf equivalent of strncat().
5936 */
5937 for (i = 0; i < add_len; i++) {
5938 if (iscsi_name[i] == '\0') {
5939 nul_found = 1;
5940 break;
5941 }
5942 }
5943 /*
5944 * If there is a NUL in the name, we can just use
5945 * sbuf_cat(). Otherwise we need to use sbuf_bcat().
5946 */
5947 if (nul_found != 0)
5948 sbuf_cat(sb, iscsi_name);
5949 else
5950 sbuf_bcat(sb, iscsi_name, add_len);
5951 break;
5952 }
5953 case SCSI_PROTO_SAS: {
5954 struct scsi_transportid_sas *sas;
5955 uint64_t sas_addr;
5956
5957 sas = (struct scsi_transportid_sas *)hdr;
5958
5959 sas_addr = scsi_8btou64(sas->sas_address);
5960 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5961 break;
5962 }
5963 case SCSI_PROTO_ADITP:
5964 case SCSI_PROTO_ATA:
5965 case SCSI_PROTO_UAS:
5966 /*
5967 * No Transport ID format for ADI, ATA or USB is defined in
5968 * SPC-4.
5969 */
5970 sbuf_printf(sb, "No known Transport ID format for protocol "
5971 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5972 break;
5973 case SCSI_PROTO_SOP: {
5974 struct scsi_transportid_sop *sop;
5975 struct scsi_sop_routing_id_norm *rid;
5976
5977 sop = (struct scsi_transportid_sop *)hdr;
5978 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5979
5980 /*
5981 * Note that there is no alternate format specified in SPC-4
5982 * for the PCIe routing ID, so we don't really have a way
5983 * to know whether the second byte of the routing ID is
5984 * a device and function or just a function. So we just
5985 * assume bus,device,function.
5986 */
5987 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5988 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5989 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5990 break;
5991 }
5992 case SCSI_PROTO_NONE:
5993 default:
5994 sbuf_printf(sb, "Unknown protocol %#x",
5995 hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5996 break;
5997 }
5998
5999 return (0);
6000 }
6001
6002 struct scsi_nv scsi_proto_map[] = {
6003 { "fcp", SCSI_PROTO_FC },
6004 { "spi", SCSI_PROTO_SPI },
6005 { "ssa", SCSI_PROTO_SSA },
6006 { "sbp", SCSI_PROTO_1394 },
6007 { "1394", SCSI_PROTO_1394 },
6008 { "srp", SCSI_PROTO_RDMA },
6009 { "rdma", SCSI_PROTO_RDMA },
6010 { "iscsi", SCSI_PROTO_ISCSI },
6011 { "iqn", SCSI_PROTO_ISCSI },
6012 { "sas", SCSI_PROTO_SAS },
6013 { "aditp", SCSI_PROTO_ADITP },
6014 { "ata", SCSI_PROTO_ATA },
6015 { "uas", SCSI_PROTO_UAS },
6016 { "usb", SCSI_PROTO_UAS },
6017 { "sop", SCSI_PROTO_SOP }
6018 };
6019
6020 const char *
scsi_nv_to_str(struct scsi_nv * table,int num_table_entries,uint64_t value)6021 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
6022 {
6023 int i;
6024
6025 for (i = 0; i < num_table_entries; i++) {
6026 if (table[i].value == value)
6027 return (table[i].name);
6028 }
6029
6030 return (NULL);
6031 }
6032
6033 /*
6034 * Given a name/value table, find a value matching the given name.
6035 * Return values:
6036 * SCSI_NV_FOUND - match found
6037 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact
6038 * SCSI_NV_NOT_FOUND - no match found
6039 */
6040 scsi_nv_status
scsi_get_nv(struct scsi_nv * table,int num_table_entries,char * name,int * table_entry,scsi_nv_flags flags)6041 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
6042 char *name, int *table_entry, scsi_nv_flags flags)
6043 {
6044 int i, num_matches = 0;
6045
6046 for (i = 0; i < num_table_entries; i++) {
6047 size_t table_len, name_len;
6048
6049 table_len = strlen(table[i].name);
6050 name_len = strlen(name);
6051
6052 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
6053 && (strncasecmp(table[i].name, name, name_len) == 0))
6054 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
6055 && (strncmp(table[i].name, name, name_len) == 0))) {
6056 *table_entry = i;
6057
6058 /*
6059 * Check for an exact match. If we have the same
6060 * number of characters in the table as the argument,
6061 * and we already know they're the same, we have
6062 * an exact match.
6063 */
6064 if (table_len == name_len)
6065 return (SCSI_NV_FOUND);
6066
6067 /*
6068 * Otherwise, bump up the number of matches. We'll
6069 * see later how many we have.
6070 */
6071 num_matches++;
6072 }
6073 }
6074
6075 if (num_matches > 1)
6076 return (SCSI_NV_AMBIGUOUS);
6077 else if (num_matches == 1)
6078 return (SCSI_NV_FOUND);
6079 else
6080 return (SCSI_NV_NOT_FOUND);
6081 }
6082
6083 /*
6084 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are
6085 * all 64-bit numbers, the code is similar.
6086 */
6087 int
scsi_parse_transportid_64bit(int proto_id,char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6088 scsi_parse_transportid_64bit(int proto_id, char *id_str,
6089 struct scsi_transportid_header **hdr,
6090 unsigned int *alloc_len,
6091 #ifdef _KERNEL
6092 struct malloc_type *type, int flags,
6093 #endif
6094 char *error_str, int error_str_len)
6095 {
6096 uint64_t value;
6097 char *endptr;
6098 int retval;
6099 size_t alloc_size;
6100
6101 retval = 0;
6102
6103 value = strtouq(id_str, &endptr, 0);
6104 if (*endptr != '\0') {
6105 if (error_str != NULL) {
6106 snprintf(error_str, error_str_len, "%s: error "
6107 "parsing ID %s, 64-bit number required",
6108 __func__, id_str);
6109 }
6110 retval = 1;
6111 goto bailout;
6112 }
6113
6114 switch (proto_id) {
6115 case SCSI_PROTO_FC:
6116 alloc_size = sizeof(struct scsi_transportid_fcp);
6117 break;
6118 case SCSI_PROTO_1394:
6119 alloc_size = sizeof(struct scsi_transportid_1394);
6120 break;
6121 case SCSI_PROTO_SAS:
6122 alloc_size = sizeof(struct scsi_transportid_sas);
6123 break;
6124 default:
6125 if (error_str != NULL) {
6126 snprintf(error_str, error_str_len, "%s: unsupported "
6127 "protocol %d", __func__, proto_id);
6128 }
6129 retval = 1;
6130 goto bailout;
6131 break; /* NOTREACHED */
6132 }
6133 #ifdef _KERNEL
6134 *hdr = malloc(alloc_size, type, flags);
6135 #else /* _KERNEL */
6136 *hdr = malloc(alloc_size);
6137 #endif /*_KERNEL */
6138 if (*hdr == NULL) {
6139 if (error_str != NULL) {
6140 snprintf(error_str, error_str_len, "%s: unable to "
6141 "allocate %zu bytes", __func__, alloc_size);
6142 }
6143 retval = 1;
6144 goto bailout;
6145 }
6146
6147 *alloc_len = alloc_size;
6148
6149 bzero(*hdr, alloc_size);
6150
6151 switch (proto_id) {
6152 case SCSI_PROTO_FC: {
6153 struct scsi_transportid_fcp *fcp;
6154
6155 fcp = (struct scsi_transportid_fcp *)(*hdr);
6156 fcp->format_protocol = SCSI_PROTO_FC |
6157 SCSI_TRN_FCP_FORMAT_DEFAULT;
6158 scsi_u64to8b(value, fcp->n_port_name);
6159 break;
6160 }
6161 case SCSI_PROTO_1394: {
6162 struct scsi_transportid_1394 *sbp;
6163
6164 sbp = (struct scsi_transportid_1394 *)(*hdr);
6165 sbp->format_protocol = SCSI_PROTO_1394 |
6166 SCSI_TRN_1394_FORMAT_DEFAULT;
6167 scsi_u64to8b(value, sbp->eui64);
6168 break;
6169 }
6170 case SCSI_PROTO_SAS: {
6171 struct scsi_transportid_sas *sas;
6172
6173 sas = (struct scsi_transportid_sas *)(*hdr);
6174 sas->format_protocol = SCSI_PROTO_SAS |
6175 SCSI_TRN_SAS_FORMAT_DEFAULT;
6176 scsi_u64to8b(value, sas->sas_address);
6177 break;
6178 }
6179 default:
6180 break;
6181 }
6182 bailout:
6183 return (retval);
6184 }
6185
6186 /*
6187 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6188 */
6189 int
scsi_parse_transportid_spi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6190 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6191 unsigned int *alloc_len,
6192 #ifdef _KERNEL
6193 struct malloc_type *type, int flags,
6194 #endif
6195 char *error_str, int error_str_len)
6196 {
6197 unsigned long scsi_addr, target_port;
6198 struct scsi_transportid_spi *spi;
6199 char *tmpstr, *endptr;
6200 int retval;
6201
6202 retval = 0;
6203
6204 tmpstr = strsep(&id_str, ",");
6205 if (tmpstr == NULL) {
6206 if (error_str != NULL) {
6207 snprintf(error_str, error_str_len,
6208 "%s: no ID found", __func__);
6209 }
6210 retval = 1;
6211 goto bailout;
6212 }
6213 scsi_addr = strtoul(tmpstr, &endptr, 0);
6214 if (*endptr != '\0') {
6215 if (error_str != NULL) {
6216 snprintf(error_str, error_str_len, "%s: error "
6217 "parsing SCSI ID %s, number required",
6218 __func__, tmpstr);
6219 }
6220 retval = 1;
6221 goto bailout;
6222 }
6223
6224 if (id_str == NULL) {
6225 if (error_str != NULL) {
6226 snprintf(error_str, error_str_len, "%s: no relative "
6227 "target port found", __func__);
6228 }
6229 retval = 1;
6230 goto bailout;
6231 }
6232
6233 target_port = strtoul(id_str, &endptr, 0);
6234 if (*endptr != '\0') {
6235 if (error_str != NULL) {
6236 snprintf(error_str, error_str_len, "%s: error "
6237 "parsing relative target port %s, number "
6238 "required", __func__, id_str);
6239 }
6240 retval = 1;
6241 goto bailout;
6242 }
6243 #ifdef _KERNEL
6244 spi = malloc(sizeof(*spi), type, flags);
6245 #else
6246 spi = malloc(sizeof(*spi));
6247 #endif
6248 if (spi == NULL) {
6249 if (error_str != NULL) {
6250 snprintf(error_str, error_str_len, "%s: unable to "
6251 "allocate %zu bytes", __func__,
6252 sizeof(*spi));
6253 }
6254 retval = 1;
6255 goto bailout;
6256 }
6257 *alloc_len = sizeof(*spi);
6258 bzero(spi, sizeof(*spi));
6259
6260 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6261 scsi_ulto2b(scsi_addr, spi->scsi_addr);
6262 scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6263
6264 *hdr = (struct scsi_transportid_header *)spi;
6265 bailout:
6266 return (retval);
6267 }
6268
6269 /*
6270 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits,
6271 * optionally prefixed by "0x" or "0X".
6272 */
6273 int
scsi_parse_transportid_rdma(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6274 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6275 unsigned int *alloc_len,
6276 #ifdef _KERNEL
6277 struct malloc_type *type, int flags,
6278 #endif
6279 char *error_str, int error_str_len)
6280 {
6281 struct scsi_transportid_rdma *rdma;
6282 int retval;
6283 size_t id_len, rdma_id_size;
6284 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6285 char *tmpstr;
6286 unsigned int i, j;
6287
6288 retval = 0;
6289 id_len = strlen(id_str);
6290 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6291
6292 /*
6293 * Check the size. It needs to be either 32 or 34 characters long.
6294 */
6295 if ((id_len != (rdma_id_size * 2))
6296 && (id_len != ((rdma_id_size * 2) + 2))) {
6297 if (error_str != NULL) {
6298 snprintf(error_str, error_str_len, "%s: RDMA ID "
6299 "must be 32 hex digits (0x prefix "
6300 "optional), only %zu seen", __func__, id_len);
6301 }
6302 retval = 1;
6303 goto bailout;
6304 }
6305
6306 tmpstr = id_str;
6307 /*
6308 * If the user gave us 34 characters, the string needs to start
6309 * with '0x'.
6310 */
6311 if (id_len == ((rdma_id_size * 2) + 2)) {
6312 if ((tmpstr[0] == '0')
6313 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6314 tmpstr += 2;
6315 } else {
6316 if (error_str != NULL) {
6317 snprintf(error_str, error_str_len, "%s: RDMA "
6318 "ID prefix, if used, must be \"0x\", "
6319 "got %s", __func__, tmpstr);
6320 }
6321 retval = 1;
6322 goto bailout;
6323 }
6324 }
6325 bzero(rdma_id, sizeof(rdma_id));
6326
6327 /*
6328 * Convert ASCII hex into binary bytes. There is no standard
6329 * 128-bit integer type, and so no strtou128t() routine to convert
6330 * from hex into a large integer. In the end, we're not going to
6331 * an integer, but rather to a byte array, so that and the fact
6332 * that we require the user to give us 32 hex digits simplifies the
6333 * logic.
6334 */
6335 for (i = 0; i < (rdma_id_size * 2); i++) {
6336 int cur_shift;
6337 unsigned char c;
6338
6339 /* Increment the byte array one for every 2 hex digits */
6340 j = i >> 1;
6341
6342 /*
6343 * The first digit in every pair is the most significant
6344 * 4 bits. The second is the least significant 4 bits.
6345 */
6346 if ((i % 2) == 0)
6347 cur_shift = 4;
6348 else
6349 cur_shift = 0;
6350
6351 c = tmpstr[i];
6352 /* Convert the ASCII hex character into a number */
6353 if (isdigit(c))
6354 c -= '0';
6355 else if (isalpha(c))
6356 c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6357 else {
6358 if (error_str != NULL) {
6359 snprintf(error_str, error_str_len, "%s: "
6360 "RDMA ID must be hex digits, got "
6361 "invalid character %c", __func__,
6362 tmpstr[i]);
6363 }
6364 retval = 1;
6365 goto bailout;
6366 }
6367 /*
6368 * The converted number can't be less than 0; the type is
6369 * unsigned, and the subtraction logic will not give us
6370 * a negative number. So we only need to make sure that
6371 * the value is not greater than 0xf. (i.e. make sure the
6372 * user didn't give us a value like "0x12jklmno").
6373 */
6374 if (c > 0xf) {
6375 if (error_str != NULL) {
6376 snprintf(error_str, error_str_len, "%s: "
6377 "RDMA ID must be hex digits, got "
6378 "invalid character %c", __func__,
6379 tmpstr[i]);
6380 }
6381 retval = 1;
6382 goto bailout;
6383 }
6384
6385 rdma_id[j] |= c << cur_shift;
6386 }
6387
6388 #ifdef _KERNEL
6389 rdma = malloc(sizeof(*rdma), type, flags);
6390 #else
6391 rdma = malloc(sizeof(*rdma));
6392 #endif
6393 if (rdma == NULL) {
6394 if (error_str != NULL) {
6395 snprintf(error_str, error_str_len, "%s: unable to "
6396 "allocate %zu bytes", __func__,
6397 sizeof(*rdma));
6398 }
6399 retval = 1;
6400 goto bailout;
6401 }
6402 *alloc_len = sizeof(*rdma);
6403 bzero(rdma, *alloc_len);
6404
6405 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6406 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6407
6408 *hdr = (struct scsi_transportid_header *)rdma;
6409
6410 bailout:
6411 return (retval);
6412 }
6413
6414 /*
6415 * Parse an iSCSI name. The format is either just the name:
6416 *
6417 * iqn.2012-06.com.example:target0
6418 * or the name, separator and initiator session ID:
6419 *
6420 * iqn.2012-06.com.example:target0,i,0x123
6421 *
6422 * The separator format is exact.
6423 */
6424 int
scsi_parse_transportid_iscsi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6425 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6426 unsigned int *alloc_len,
6427 #ifdef _KERNEL
6428 struct malloc_type *type, int flags,
6429 #endif
6430 char *error_str, int error_str_len)
6431 {
6432 size_t id_len, sep_len, id_size, name_len;
6433 int retval;
6434 unsigned int i, sep_pos, sep_found;
6435 const char *sep_template = ",i,0x";
6436 const char *iqn_prefix = "iqn.";
6437 struct scsi_transportid_iscsi_device *iscsi;
6438
6439 retval = 0;
6440 sep_found = 0;
6441
6442 id_len = strlen(id_str);
6443 sep_len = strlen(sep_template);
6444
6445 /*
6446 * The separator is defined as exactly ',i,0x'. Any other commas,
6447 * or any other form, is an error. So look for a comma, and once
6448 * we find that, the next few characters must match the separator
6449 * exactly. Once we get through the separator, there should be at
6450 * least one character.
6451 */
6452 for (i = 0, sep_pos = 0; i < id_len; i++) {
6453 if (sep_pos == 0) {
6454 if (id_str[i] == sep_template[sep_pos])
6455 sep_pos++;
6456
6457 continue;
6458 }
6459 if (sep_pos < sep_len) {
6460 if (id_str[i] == sep_template[sep_pos]) {
6461 sep_pos++;
6462 continue;
6463 }
6464 if (error_str != NULL) {
6465 snprintf(error_str, error_str_len, "%s: "
6466 "invalid separator in iSCSI name "
6467 "\"%s\"",
6468 __func__, id_str);
6469 }
6470 retval = 1;
6471 goto bailout;
6472 } else {
6473 sep_found = 1;
6474 break;
6475 }
6476 }
6477
6478 /*
6479 * Check to see whether we have a separator but no digits after it.
6480 */
6481 if ((sep_pos != 0)
6482 && (sep_found == 0)) {
6483 if (error_str != NULL) {
6484 snprintf(error_str, error_str_len, "%s: no digits "
6485 "found after separator in iSCSI name \"%s\"",
6486 __func__, id_str);
6487 }
6488 retval = 1;
6489 goto bailout;
6490 }
6491
6492 /*
6493 * The incoming ID string has the "iqn." prefix stripped off. We
6494 * need enough space for the base structure (the structures are the
6495 * same for the two iSCSI forms), the prefix, the ID string and a
6496 * terminating NUL.
6497 */
6498 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6499
6500 #ifdef _KERNEL
6501 iscsi = malloc(id_size, type, flags);
6502 #else
6503 iscsi = malloc(id_size);
6504 #endif
6505 if (iscsi == NULL) {
6506 if (error_str != NULL) {
6507 snprintf(error_str, error_str_len, "%s: unable to "
6508 "allocate %zu bytes", __func__, id_size);
6509 }
6510 retval = 1;
6511 goto bailout;
6512 }
6513 *alloc_len = id_size;
6514 bzero(iscsi, id_size);
6515
6516 iscsi->format_protocol = SCSI_PROTO_ISCSI;
6517 if (sep_found == 0)
6518 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6519 else
6520 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6521 name_len = id_size - sizeof(*iscsi);
6522 scsi_ulto2b(name_len, iscsi->additional_length);
6523 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6524
6525 *hdr = (struct scsi_transportid_header *)iscsi;
6526
6527 bailout:
6528 return (retval);
6529 }
6530
6531 /*
6532 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be
6533 * of the form 'bus,device,function' or 'bus,function'.
6534 */
6535 int
scsi_parse_transportid_sop(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6536 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6537 unsigned int *alloc_len,
6538 #ifdef _KERNEL
6539 struct malloc_type *type, int flags,
6540 #endif
6541 char *error_str, int error_str_len)
6542 {
6543 struct scsi_transportid_sop *sop;
6544 unsigned long bus, device, function;
6545 char *tmpstr, *endptr;
6546 int retval, device_spec;
6547
6548 retval = 0;
6549 device_spec = 0;
6550 device = 0;
6551
6552 tmpstr = strsep(&id_str, ",");
6553 if ((tmpstr == NULL)
6554 || (*tmpstr == '\0')) {
6555 if (error_str != NULL) {
6556 snprintf(error_str, error_str_len, "%s: no ID found",
6557 __func__);
6558 }
6559 retval = 1;
6560 goto bailout;
6561 }
6562 bus = strtoul(tmpstr, &endptr, 0);
6563 if (*endptr != '\0') {
6564 if (error_str != NULL) {
6565 snprintf(error_str, error_str_len, "%s: error "
6566 "parsing PCIe bus %s, number required",
6567 __func__, tmpstr);
6568 }
6569 retval = 1;
6570 goto bailout;
6571 }
6572 if ((id_str == NULL)
6573 || (*id_str == '\0')) {
6574 if (error_str != NULL) {
6575 snprintf(error_str, error_str_len, "%s: no PCIe "
6576 "device or function found", __func__);
6577 }
6578 retval = 1;
6579 goto bailout;
6580 }
6581 tmpstr = strsep(&id_str, ",");
6582 function = strtoul(tmpstr, &endptr, 0);
6583 if (*endptr != '\0') {
6584 if (error_str != NULL) {
6585 snprintf(error_str, error_str_len, "%s: error "
6586 "parsing PCIe device/function %s, number "
6587 "required", __func__, tmpstr);
6588 }
6589 retval = 1;
6590 goto bailout;
6591 }
6592 /*
6593 * Check to see whether the user specified a third value. If so,
6594 * the second is the device.
6595 */
6596 if (id_str != NULL) {
6597 if (*id_str == '\0') {
6598 if (error_str != NULL) {
6599 snprintf(error_str, error_str_len, "%s: "
6600 "no PCIe function found", __func__);
6601 }
6602 retval = 1;
6603 goto bailout;
6604 }
6605 device = function;
6606 device_spec = 1;
6607 function = strtoul(id_str, &endptr, 0);
6608 if (*endptr != '\0') {
6609 if (error_str != NULL) {
6610 snprintf(error_str, error_str_len, "%s: "
6611 "error parsing PCIe function %s, "
6612 "number required", __func__, id_str);
6613 }
6614 retval = 1;
6615 goto bailout;
6616 }
6617 }
6618 if (bus > SCSI_TRN_SOP_BUS_MAX) {
6619 if (error_str != NULL) {
6620 snprintf(error_str, error_str_len, "%s: bus value "
6621 "%lu greater than maximum %u", __func__,
6622 bus, SCSI_TRN_SOP_BUS_MAX);
6623 }
6624 retval = 1;
6625 goto bailout;
6626 }
6627
6628 if ((device_spec != 0)
6629 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6630 if (error_str != NULL) {
6631 snprintf(error_str, error_str_len, "%s: device value "
6632 "%lu greater than maximum %u", __func__,
6633 device, SCSI_TRN_SOP_DEV_MAX);
6634 }
6635 retval = 1;
6636 goto bailout;
6637 }
6638
6639 if (((device_spec != 0)
6640 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6641 || ((device_spec == 0)
6642 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6643 if (error_str != NULL) {
6644 snprintf(error_str, error_str_len, "%s: function value "
6645 "%lu greater than maximum %u", __func__,
6646 function, (device_spec == 0) ?
6647 SCSI_TRN_SOP_FUNC_ALT_MAX :
6648 SCSI_TRN_SOP_FUNC_NORM_MAX);
6649 }
6650 retval = 1;
6651 goto bailout;
6652 }
6653
6654 #ifdef _KERNEL
6655 sop = malloc(sizeof(*sop), type, flags);
6656 #else
6657 sop = malloc(sizeof(*sop));
6658 #endif
6659 if (sop == NULL) {
6660 if (error_str != NULL) {
6661 snprintf(error_str, error_str_len, "%s: unable to "
6662 "allocate %zu bytes", __func__, sizeof(*sop));
6663 }
6664 retval = 1;
6665 goto bailout;
6666 }
6667 *alloc_len = sizeof(*sop);
6668 bzero(sop, sizeof(*sop));
6669 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6670 if (device_spec != 0) {
6671 struct scsi_sop_routing_id_norm rid;
6672
6673 rid.bus = bus;
6674 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6675 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6676 sizeof(sop->routing_id)));
6677 } else {
6678 struct scsi_sop_routing_id_alt rid;
6679
6680 rid.bus = bus;
6681 rid.function = function;
6682 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6683 sizeof(sop->routing_id)));
6684 }
6685
6686 *hdr = (struct scsi_transportid_header *)sop;
6687 bailout:
6688 return (retval);
6689 }
6690
6691 /*
6692 * transportid_str: NUL-terminated string with format: protcol,id
6693 * The ID is protocol specific.
6694 * hdr: Storage will be allocated for the transport ID.
6695 * alloc_len: The amount of memory allocated is returned here.
6696 * type: Malloc bucket (kernel only).
6697 * flags: Malloc flags (kernel only).
6698 * error_str: If non-NULL, it will contain error information (without
6699 * a terminating newline) if an error is returned.
6700 * error_str_len: Allocated length of the error string.
6701 *
6702 * Returns 0 for success, non-zero for failure.
6703 */
6704 int
scsi_parse_transportid(char * transportid_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6705 scsi_parse_transportid(char *transportid_str,
6706 struct scsi_transportid_header **hdr,
6707 unsigned int *alloc_len,
6708 #ifdef _KERNEL
6709 struct malloc_type *type, int flags,
6710 #endif
6711 char *error_str, int error_str_len)
6712 {
6713 char *tmpstr;
6714 scsi_nv_status status;
6715 u_int num_proto_entries;
6716 int retval, table_entry;
6717
6718 retval = 0;
6719 table_entry = 0;
6720
6721 /*
6722 * We do allow a period as well as a comma to separate the protocol
6723 * from the ID string. This is to accommodate iSCSI names, which
6724 * start with "iqn.".
6725 */
6726 tmpstr = strsep(&transportid_str, ",.");
6727 if (tmpstr == NULL) {
6728 if (error_str != NULL) {
6729 snprintf(error_str, error_str_len,
6730 "%s: transportid_str is NULL", __func__);
6731 }
6732 retval = 1;
6733 goto bailout;
6734 }
6735
6736 num_proto_entries = nitems(scsi_proto_map);
6737 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6738 &table_entry, SCSI_NV_FLAG_IG_CASE);
6739 if (status != SCSI_NV_FOUND) {
6740 if (error_str != NULL) {
6741 snprintf(error_str, error_str_len, "%s: %s protocol "
6742 "name %s", __func__,
6743 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6744 "invalid", tmpstr);
6745 }
6746 retval = 1;
6747 goto bailout;
6748 }
6749 switch (scsi_proto_map[table_entry].value) {
6750 case SCSI_PROTO_FC:
6751 case SCSI_PROTO_1394:
6752 case SCSI_PROTO_SAS:
6753 retval = scsi_parse_transportid_64bit(
6754 scsi_proto_map[table_entry].value, transportid_str, hdr,
6755 alloc_len,
6756 #ifdef _KERNEL
6757 type, flags,
6758 #endif
6759 error_str, error_str_len);
6760 break;
6761 case SCSI_PROTO_SPI:
6762 retval = scsi_parse_transportid_spi(transportid_str, hdr,
6763 alloc_len,
6764 #ifdef _KERNEL
6765 type, flags,
6766 #endif
6767 error_str, error_str_len);
6768 break;
6769 case SCSI_PROTO_RDMA:
6770 retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6771 alloc_len,
6772 #ifdef _KERNEL
6773 type, flags,
6774 #endif
6775 error_str, error_str_len);
6776 break;
6777 case SCSI_PROTO_ISCSI:
6778 retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6779 alloc_len,
6780 #ifdef _KERNEL
6781 type, flags,
6782 #endif
6783 error_str, error_str_len);
6784 break;
6785 case SCSI_PROTO_SOP:
6786 retval = scsi_parse_transportid_sop(transportid_str, hdr,
6787 alloc_len,
6788 #ifdef _KERNEL
6789 type, flags,
6790 #endif
6791 error_str, error_str_len);
6792 break;
6793 case SCSI_PROTO_SSA:
6794 case SCSI_PROTO_ADITP:
6795 case SCSI_PROTO_ATA:
6796 case SCSI_PROTO_UAS:
6797 case SCSI_PROTO_NONE:
6798 default:
6799 /*
6800 * There is no format defined for a Transport ID for these
6801 * protocols. So even if the user gives us something, we
6802 * have no way to turn it into a standard SCSI Transport ID.
6803 */
6804 retval = 1;
6805 if (error_str != NULL) {
6806 snprintf(error_str, error_str_len, "%s: no Transport "
6807 "ID format exists for protocol %s",
6808 __func__, tmpstr);
6809 }
6810 goto bailout;
6811 break; /* NOTREACHED */
6812 }
6813 bailout:
6814 return (retval);
6815 }
6816
6817 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6818 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6819 "Remaining Capacity in Partition",
6820 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6821 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6822 "Maximum Capacity in Partition",
6823 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6824 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6825 "TapeAlert Flags",
6826 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6827 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6828 "Load Count",
6829 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6830 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6831 "MAM Space Remaining",
6832 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6833 /*parse_str*/ NULL },
6834 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6835 "Assigning Organization",
6836 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6837 /*parse_str*/ NULL },
6838 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6839 "Format Density Code",
6840 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6841 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6842 "Initialization Count",
6843 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6844 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6845 "Volume Identifier",
6846 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6847 /*parse_str*/ NULL },
6848 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6849 "Volume Change Reference",
6850 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6851 /*parse_str*/ NULL },
6852 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6853 "Device Vendor/Serial at Last Load",
6854 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6855 /*parse_str*/ NULL },
6856 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6857 "Device Vendor/Serial at Last Load - 1",
6858 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6859 /*parse_str*/ NULL },
6860 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6861 "Device Vendor/Serial at Last Load - 2",
6862 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6863 /*parse_str*/ NULL },
6864 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6865 "Device Vendor/Serial at Last Load - 3",
6866 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6867 /*parse_str*/ NULL },
6868 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6869 "Total MB Written in Medium Life",
6870 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6871 /*parse_str*/ NULL },
6872 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6873 "Total MB Read in Medium Life",
6874 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6875 /*parse_str*/ NULL },
6876 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6877 "Total MB Written in Current/Last Load",
6878 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6879 /*parse_str*/ NULL },
6880 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6881 "Total MB Read in Current/Last Load",
6882 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6883 /*parse_str*/ NULL },
6884 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6885 "Logical Position of First Encrypted Block",
6886 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6887 /*parse_str*/ NULL },
6888 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6889 "Logical Position of First Unencrypted Block after First "
6890 "Encrypted Block",
6891 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6892 /*parse_str*/ NULL },
6893 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6894 "Medium Usage History",
6895 /*suffix*/ NULL, /*to_str*/ NULL,
6896 /*parse_str*/ NULL },
6897 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6898 "Partition Usage History",
6899 /*suffix*/ NULL, /*to_str*/ NULL,
6900 /*parse_str*/ NULL },
6901 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6902 "Medium Manufacturer",
6903 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6904 /*parse_str*/ NULL },
6905 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6906 "Medium Serial Number",
6907 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6908 /*parse_str*/ NULL },
6909 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6910 "Medium Length",
6911 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6912 /*parse_str*/ NULL },
6913 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6914 SCSI_ATTR_FLAG_FP_1DIGIT,
6915 "Medium Width",
6916 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6917 /*parse_str*/ NULL },
6918 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6919 "Assigning Organization",
6920 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6921 /*parse_str*/ NULL },
6922 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6923 "Medium Density Code",
6924 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6925 /*parse_str*/ NULL },
6926 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6927 "Medium Manufacture Date",
6928 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6929 /*parse_str*/ NULL },
6930 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6931 "MAM Capacity",
6932 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6933 /*parse_str*/ NULL },
6934 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6935 "Medium Type",
6936 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6937 /*parse_str*/ NULL },
6938 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6939 "Medium Type Information",
6940 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6941 /*parse_str*/ NULL },
6942 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6943 "Medium Serial Number",
6944 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6945 /*parse_str*/ NULL },
6946 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6947 "Application Vendor",
6948 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6949 /*parse_str*/ NULL },
6950 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6951 "Application Name",
6952 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6953 /*parse_str*/ NULL },
6954 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6955 "Application Version",
6956 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6957 /*parse_str*/ NULL },
6958 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6959 "User Medium Text Label",
6960 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6961 /*parse_str*/ NULL },
6962 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6963 "Date and Time Last Written",
6964 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6965 /*parse_str*/ NULL },
6966 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6967 "Text Localization Identifier",
6968 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6969 /*parse_str*/ NULL },
6970 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6971 "Barcode",
6972 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6973 /*parse_str*/ NULL },
6974 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6975 "Owning Host Textual Name",
6976 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6977 /*parse_str*/ NULL },
6978 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6979 "Media Pool",
6980 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6981 /*parse_str*/ NULL },
6982 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6983 "Partition User Text Label",
6984 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6985 /*parse_str*/ NULL },
6986 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6987 "Load/Unload at Partition",
6988 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6989 /*parse_str*/ NULL },
6990 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6991 "Application Format Version",
6992 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6993 /*parse_str*/ NULL },
6994 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6995 "Volume Coherency Information",
6996 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6997 /*parse_str*/ NULL },
6998 { 0x0ff1, SCSI_ATTR_FLAG_NONE,
6999 "Spectra MLM Creation",
7000 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7001 /*parse_str*/ NULL },
7002 { 0x0ff2, SCSI_ATTR_FLAG_NONE,
7003 "Spectra MLM C3",
7004 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7005 /*parse_str*/ NULL },
7006 { 0x0ff3, SCSI_ATTR_FLAG_NONE,
7007 "Spectra MLM RW",
7008 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7009 /*parse_str*/ NULL },
7010 { 0x0ff4, SCSI_ATTR_FLAG_NONE,
7011 "Spectra MLM SDC List",
7012 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7013 /*parse_str*/ NULL },
7014 { 0x0ff7, SCSI_ATTR_FLAG_NONE,
7015 "Spectra MLM Post Scan",
7016 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7017 /*parse_str*/ NULL },
7018 { 0x0ffe, SCSI_ATTR_FLAG_NONE,
7019 "Spectra MLM Checksum",
7020 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7021 /*parse_str*/ NULL },
7022 { 0x17f1, SCSI_ATTR_FLAG_NONE,
7023 "Spectra MLM Creation",
7024 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7025 /*parse_str*/ NULL },
7026 { 0x17f2, SCSI_ATTR_FLAG_NONE,
7027 "Spectra MLM C3",
7028 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7029 /*parse_str*/ NULL },
7030 { 0x17f3, SCSI_ATTR_FLAG_NONE,
7031 "Spectra MLM RW",
7032 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7033 /*parse_str*/ NULL },
7034 { 0x17f4, SCSI_ATTR_FLAG_NONE,
7035 "Spectra MLM SDC List",
7036 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7037 /*parse_str*/ NULL },
7038 { 0x17f7, SCSI_ATTR_FLAG_NONE,
7039 "Spectra MLM Post Scan",
7040 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7041 /*parse_str*/ NULL },
7042 { 0x17ff, SCSI_ATTR_FLAG_NONE,
7043 "Spectra MLM Checksum",
7044 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7045 /*parse_str*/ NULL },
7046 };
7047
7048 /*
7049 * Print out Volume Coherency Information (Attribute 0x080c).
7050 * This field has two variable length members, including one at the
7051 * beginning, so it isn't practical to have a fixed structure definition.
7052 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
7053 * 2013.
7054 */
7055 int
scsi_attrib_volcoh_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7056 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7057 uint32_t valid_len, uint32_t flags,
7058 uint32_t output_flags, char *error_str,
7059 int error_str_len)
7060 {
7061 size_t avail_len;
7062 uint32_t field_size;
7063 uint64_t tmp_val;
7064 uint8_t *cur_ptr;
7065 int retval;
7066 int vcr_len, as_len;
7067
7068 retval = 0;
7069 tmp_val = 0;
7070
7071 field_size = scsi_2btoul(hdr->length);
7072 avail_len = valid_len - sizeof(*hdr);
7073 if (field_size > avail_len) {
7074 if (error_str != NULL) {
7075 snprintf(error_str, error_str_len, "Available "
7076 "length of attribute ID 0x%.4x %zu < field "
7077 "length %u", scsi_2btoul(hdr->id), avail_len,
7078 field_size);
7079 }
7080 retval = 1;
7081 goto bailout;
7082 } else if (field_size == 0) {
7083 /*
7084 * It isn't clear from the spec whether a field length of
7085 * 0 is invalid here. It probably is, but be lenient here
7086 * to avoid inconveniencing the user.
7087 */
7088 goto bailout;
7089 }
7090 cur_ptr = hdr->attribute;
7091 vcr_len = *cur_ptr;
7092 cur_ptr++;
7093
7094 sbuf_cat(sb, "\n\tVolume Change Reference Value:");
7095
7096 switch (vcr_len) {
7097 case 0:
7098 if (error_str != NULL) {
7099 snprintf(error_str, error_str_len, "Volume Change "
7100 "Reference value has length of 0");
7101 }
7102 retval = 1;
7103 goto bailout;
7104 break; /*NOTREACHED*/
7105 case 1:
7106 tmp_val = *cur_ptr;
7107 break;
7108 case 2:
7109 tmp_val = scsi_2btoul(cur_ptr);
7110 break;
7111 case 3:
7112 tmp_val = scsi_3btoul(cur_ptr);
7113 break;
7114 case 4:
7115 tmp_val = scsi_4btoul(cur_ptr);
7116 break;
7117 case 8:
7118 tmp_val = scsi_8btou64(cur_ptr);
7119 break;
7120 default:
7121 sbuf_putc(sb, '\n');
7122 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7123 break;
7124 }
7125 if (vcr_len <= 8)
7126 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7127
7128 cur_ptr += vcr_len;
7129 tmp_val = scsi_8btou64(cur_ptr);
7130 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7131
7132 cur_ptr += sizeof(tmp_val);
7133 tmp_val = scsi_8btou64(cur_ptr);
7134 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7135 (uintmax_t)tmp_val);
7136
7137 /*
7138 * Figure out how long the Application Client Specific Information
7139 * is and produce a hexdump.
7140 */
7141 cur_ptr += sizeof(tmp_val);
7142 as_len = scsi_2btoul(cur_ptr);
7143 cur_ptr += sizeof(uint16_t);
7144 sbuf_cat(sb, "\tApplication Client Specific Information: ");
7145 if (((as_len == SCSI_LTFS_VER0_LEN)
7146 || (as_len == SCSI_LTFS_VER1_LEN))
7147 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7148 sbuf_cat(sb, "LTFS\n");
7149 cur_ptr += SCSI_LTFS_STR_LEN + 1;
7150 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7151 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7152 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7153 cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7154 /* XXX KDM check the length */
7155 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7156 } else {
7157 sbuf_cat(sb, "Unknown\n");
7158 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7159 }
7160
7161 bailout:
7162 return (retval);
7163 }
7164
7165 int
scsi_attrib_vendser_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7166 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7167 uint32_t valid_len, uint32_t flags,
7168 uint32_t output_flags, char *error_str,
7169 int error_str_len)
7170 {
7171 size_t avail_len;
7172 uint32_t field_size;
7173 struct scsi_attrib_vendser *vendser;
7174 cam_strvis_flags strvis_flags;
7175 int retval = 0;
7176
7177 field_size = scsi_2btoul(hdr->length);
7178 avail_len = valid_len - sizeof(*hdr);
7179 if (field_size > avail_len) {
7180 if (error_str != NULL) {
7181 snprintf(error_str, error_str_len, "Available "
7182 "length of attribute ID 0x%.4x %zu < field "
7183 "length %u", scsi_2btoul(hdr->id), avail_len,
7184 field_size);
7185 }
7186 retval = 1;
7187 goto bailout;
7188 } else if (field_size == 0) {
7189 /*
7190 * A field size of 0 doesn't make sense here. The device
7191 * can at least give you the vendor ID, even if it can't
7192 * give you the serial number.
7193 */
7194 if (error_str != NULL) {
7195 snprintf(error_str, error_str_len, "The length of "
7196 "attribute ID 0x%.4x is 0",
7197 scsi_2btoul(hdr->id));
7198 }
7199 retval = 1;
7200 goto bailout;
7201 }
7202 vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7203
7204 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7205 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7206 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7207 break;
7208 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7209 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7210 break;
7211 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7212 default:
7213 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7214 break;
7215 }
7216 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7217 strvis_flags);
7218 sbuf_putc(sb, ' ');
7219 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7220 strvis_flags);
7221 bailout:
7222 return (retval);
7223 }
7224
7225 int
scsi_attrib_hexdump_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7226 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7227 uint32_t valid_len, uint32_t flags,
7228 uint32_t output_flags, char *error_str,
7229 int error_str_len)
7230 {
7231 uint32_t field_size;
7232 ssize_t avail_len;
7233 uint32_t print_len;
7234 uint8_t *num_ptr;
7235 int retval = 0;
7236
7237 field_size = scsi_2btoul(hdr->length);
7238 avail_len = valid_len - sizeof(*hdr);
7239 print_len = MIN(avail_len, field_size);
7240 num_ptr = hdr->attribute;
7241
7242 if (print_len > 0) {
7243 sbuf_putc(sb, '\n');
7244 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7245 }
7246
7247 return (retval);
7248 }
7249
7250 int
scsi_attrib_int_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7251 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7252 uint32_t valid_len, uint32_t flags,
7253 uint32_t output_flags, char *error_str,
7254 int error_str_len)
7255 {
7256 uint64_t print_number;
7257 size_t avail_len;
7258 uint32_t number_size;
7259 int retval = 0;
7260
7261 number_size = scsi_2btoul(hdr->length);
7262
7263 avail_len = valid_len - sizeof(*hdr);
7264 if (avail_len < number_size) {
7265 if (error_str != NULL) {
7266 snprintf(error_str, error_str_len, "Available "
7267 "length of attribute ID 0x%.4x %zu < field "
7268 "length %u", scsi_2btoul(hdr->id), avail_len,
7269 number_size);
7270 }
7271 retval = 1;
7272 goto bailout;
7273 }
7274
7275 switch (number_size) {
7276 case 0:
7277 /*
7278 * We don't treat this as an error, since there may be
7279 * scenarios where a device reports a field but then gives
7280 * a length of 0. See the note in scsi_attrib_ascii_sbuf().
7281 */
7282 goto bailout;
7283 break; /*NOTREACHED*/
7284 case 1:
7285 print_number = hdr->attribute[0];
7286 break;
7287 case 2:
7288 print_number = scsi_2btoul(hdr->attribute);
7289 break;
7290 case 3:
7291 print_number = scsi_3btoul(hdr->attribute);
7292 break;
7293 case 4:
7294 print_number = scsi_4btoul(hdr->attribute);
7295 break;
7296 case 8:
7297 print_number = scsi_8btou64(hdr->attribute);
7298 break;
7299 default:
7300 /*
7301 * If we wind up here, the number is too big to print
7302 * normally, so just do a hexdump.
7303 */
7304 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7305 flags, output_flags,
7306 error_str, error_str_len);
7307 goto bailout;
7308 break;
7309 }
7310
7311 if (flags & SCSI_ATTR_FLAG_FP) {
7312 #ifndef _KERNEL
7313 long double num_float;
7314
7315 num_float = (long double)print_number;
7316
7317 if (flags & SCSI_ATTR_FLAG_DIV_10)
7318 num_float /= 10;
7319
7320 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7321 1 : 0, num_float);
7322 #else /* _KERNEL */
7323 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7324 (print_number / 10) : print_number);
7325 #endif /* _KERNEL */
7326 } else if (flags & SCSI_ATTR_FLAG_HEX) {
7327 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7328 } else
7329 sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7330
7331 bailout:
7332 return (retval);
7333 }
7334
7335 int
scsi_attrib_ascii_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7336 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7337 uint32_t valid_len, uint32_t flags,
7338 uint32_t output_flags, char *error_str,
7339 int error_str_len)
7340 {
7341 size_t avail_len;
7342 uint32_t field_size, print_size;
7343 int retval = 0;
7344
7345 avail_len = valid_len - sizeof(*hdr);
7346 field_size = scsi_2btoul(hdr->length);
7347 print_size = MIN(avail_len, field_size);
7348
7349 if (print_size > 0) {
7350 cam_strvis_flags strvis_flags;
7351
7352 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7353 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7354 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7355 break;
7356 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7357 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7358 break;
7359 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7360 default:
7361 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7362 break;
7363 }
7364 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7365 } else if (avail_len < field_size) {
7366 /*
7367 * We only report an error if the user didn't allocate
7368 * enough space to hold the full value of this field. If
7369 * the field length is 0, that is allowed by the spec.
7370 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7371 * "This attribute indicates the current volume identifier
7372 * (see SMC-3) of the medium. If the device server supports
7373 * this attribute but does not have access to the volume
7374 * identifier, the device server shall report this attribute
7375 * with an attribute length value of zero."
7376 */
7377 if (error_str != NULL) {
7378 snprintf(error_str, error_str_len, "Available "
7379 "length of attribute ID 0x%.4x %zu < field "
7380 "length %u", scsi_2btoul(hdr->id), avail_len,
7381 field_size);
7382 }
7383 retval = 1;
7384 }
7385
7386 return (retval);
7387 }
7388
7389 int
scsi_attrib_text_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7390 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7391 uint32_t valid_len, uint32_t flags,
7392 uint32_t output_flags, char *error_str,
7393 int error_str_len)
7394 {
7395 size_t avail_len;
7396 uint32_t field_size, print_size;
7397 int retval = 0;
7398 int esc_text = 1;
7399
7400 avail_len = valid_len - sizeof(*hdr);
7401 field_size = scsi_2btoul(hdr->length);
7402 print_size = MIN(avail_len, field_size);
7403
7404 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7405 SCSI_ATTR_OUTPUT_TEXT_RAW)
7406 esc_text = 0;
7407
7408 if (print_size > 0) {
7409 uint32_t i;
7410
7411 for (i = 0; i < print_size; i++) {
7412 if (hdr->attribute[i] == '\0')
7413 continue;
7414 else if (((unsigned char)hdr->attribute[i] < 0x80)
7415 || (esc_text == 0))
7416 sbuf_putc(sb, hdr->attribute[i]);
7417 else
7418 sbuf_printf(sb, "%%%02x",
7419 (unsigned char)hdr->attribute[i]);
7420 }
7421 } else if (avail_len < field_size) {
7422 /*
7423 * We only report an error if the user didn't allocate
7424 * enough space to hold the full value of this field.
7425 */
7426 if (error_str != NULL) {
7427 snprintf(error_str, error_str_len, "Available "
7428 "length of attribute ID 0x%.4x %zu < field "
7429 "length %u", scsi_2btoul(hdr->id), avail_len,
7430 field_size);
7431 }
7432 retval = 1;
7433 }
7434
7435 return (retval);
7436 }
7437
7438 struct scsi_attrib_table_entry *
scsi_find_attrib_entry(struct scsi_attrib_table_entry * table,size_t num_table_entries,uint32_t id)7439 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7440 size_t num_table_entries, uint32_t id)
7441 {
7442 uint32_t i;
7443
7444 for (i = 0; i < num_table_entries; i++) {
7445 if (table[i].id == id)
7446 return (&table[i]);
7447 }
7448
7449 return (NULL);
7450 }
7451
7452 struct scsi_attrib_table_entry *
scsi_get_attrib_entry(uint32_t id)7453 scsi_get_attrib_entry(uint32_t id)
7454 {
7455 return (scsi_find_attrib_entry(scsi_mam_attr_table,
7456 nitems(scsi_mam_attr_table), id));
7457 }
7458
7459 int
scsi_attrib_value_sbuf(struct sbuf * sb,uint32_t valid_len,struct scsi_mam_attribute_header * hdr,uint32_t output_flags,char * error_str,size_t error_str_len)7460 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7461 struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7462 char *error_str, size_t error_str_len)
7463 {
7464 int retval;
7465
7466 switch (hdr->byte2 & SMA_FORMAT_MASK) {
7467 case SMA_FORMAT_ASCII:
7468 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7469 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7470 break;
7471 case SMA_FORMAT_BINARY:
7472 if (scsi_2btoul(hdr->length) <= 8)
7473 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7474 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7475 error_str_len);
7476 else
7477 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7478 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7479 error_str_len);
7480 break;
7481 case SMA_FORMAT_TEXT:
7482 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7483 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7484 error_str_len);
7485 break;
7486 default:
7487 if (error_str != NULL) {
7488 snprintf(error_str, error_str_len, "Unknown attribute "
7489 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7490 }
7491 retval = 1;
7492 goto bailout;
7493 break; /*NOTREACHED*/
7494 }
7495
7496 sbuf_trim(sb);
7497
7498 bailout:
7499
7500 return (retval);
7501 }
7502
7503 void
scsi_attrib_prefix_sbuf(struct sbuf * sb,uint32_t output_flags,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,const char * desc)7504 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7505 struct scsi_mam_attribute_header *hdr,
7506 uint32_t valid_len, const char *desc)
7507 {
7508 int need_space = 0;
7509 uint32_t len;
7510 uint32_t id;
7511
7512 /*
7513 * We can't do anything if we don't have enough valid data for the
7514 * header.
7515 */
7516 if (valid_len < sizeof(*hdr))
7517 return;
7518
7519 id = scsi_2btoul(hdr->id);
7520 /*
7521 * Note that we print out the value of the attribute listed in the
7522 * header, regardless of whether we actually got that many bytes
7523 * back from the device through the controller. A truncated result
7524 * could be the result of a failure to ask for enough data; the
7525 * header indicates how many bytes are allocated for this attribute
7526 * in the MAM.
7527 */
7528 len = scsi_2btoul(hdr->length);
7529
7530 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7531 SCSI_ATTR_OUTPUT_FIELD_NONE)
7532 return;
7533
7534 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7535 && (desc != NULL)) {
7536 sbuf_cat(sb, desc);
7537 need_space = 1;
7538 }
7539
7540 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7541 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7542 need_space = 0;
7543 }
7544
7545 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7546 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7547 need_space = 0;
7548 }
7549 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7550 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7551 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7552 }
7553 sbuf_cat(sb, ": ");
7554 }
7555
7556 int
scsi_attrib_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,struct scsi_attrib_table_entry * user_table,size_t num_user_entries,int prefer_user_table,uint32_t output_flags,char * error_str,int error_str_len)7557 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7558 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7559 size_t num_user_entries, int prefer_user_table,
7560 uint32_t output_flags, char *error_str, int error_str_len)
7561 {
7562 int retval;
7563 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7564 struct scsi_attrib_table_entry *entry = NULL;
7565 size_t table1_size = 0, table2_size = 0;
7566 uint32_t id;
7567
7568 retval = 0;
7569
7570 if (valid_len < sizeof(*hdr)) {
7571 retval = 1;
7572 goto bailout;
7573 }
7574
7575 id = scsi_2btoul(hdr->id);
7576
7577 if (user_table != NULL) {
7578 if (prefer_user_table != 0) {
7579 table1 = user_table;
7580 table1_size = num_user_entries;
7581 table2 = scsi_mam_attr_table;
7582 table2_size = nitems(scsi_mam_attr_table);
7583 } else {
7584 table1 = scsi_mam_attr_table;
7585 table1_size = nitems(scsi_mam_attr_table);
7586 table2 = user_table;
7587 table2_size = num_user_entries;
7588 }
7589 } else {
7590 table1 = scsi_mam_attr_table;
7591 table1_size = nitems(scsi_mam_attr_table);
7592 }
7593
7594 entry = scsi_find_attrib_entry(table1, table1_size, id);
7595 if (entry != NULL) {
7596 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7597 entry->desc);
7598 if (entry->to_str == NULL)
7599 goto print_default;
7600 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7601 output_flags, error_str, error_str_len);
7602 goto bailout;
7603 }
7604 if (table2 != NULL) {
7605 entry = scsi_find_attrib_entry(table2, table2_size, id);
7606 if (entry != NULL) {
7607 if (entry->to_str == NULL)
7608 goto print_default;
7609
7610 scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7611 valid_len, entry->desc);
7612 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7613 output_flags, error_str,
7614 error_str_len);
7615 goto bailout;
7616 }
7617 }
7618
7619 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7620
7621 print_default:
7622 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7623 error_str, error_str_len);
7624 bailout:
7625 if (retval == 0) {
7626 if ((entry != NULL)
7627 && (entry->suffix != NULL))
7628 sbuf_printf(sb, " %s", entry->suffix);
7629
7630 sbuf_trim(sb);
7631 sbuf_putc(sb, '\n');
7632 }
7633
7634 return (retval);
7635 }
7636
7637 void
scsi_test_unit_ready(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7638 scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries,
7639 void (*cbfcnp)(struct cam_periph *, union ccb *),
7640 uint8_t tag_action, uint8_t sense_len, uint32_t timeout)
7641 {
7642 struct scsi_test_unit_ready *scsi_cmd;
7643
7644 cam_fill_csio(csio,
7645 retries,
7646 cbfcnp,
7647 CAM_DIR_NONE,
7648 tag_action,
7649 /*data_ptr*/NULL,
7650 /*dxfer_len*/0,
7651 sense_len,
7652 sizeof(*scsi_cmd),
7653 timeout);
7654
7655 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7656 bzero(scsi_cmd, sizeof(*scsi_cmd));
7657 scsi_cmd->opcode = TEST_UNIT_READY;
7658 }
7659
7660 void
scsi_request_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),void * data_ptr,uint8_t dxfer_len,uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7661 scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries,
7662 void (*cbfcnp)(struct cam_periph *, union ccb *),
7663 void *data_ptr, uint8_t dxfer_len, uint8_t tag_action,
7664 uint8_t sense_len, uint32_t timeout)
7665 {
7666 struct scsi_request_sense *scsi_cmd;
7667
7668 cam_fill_csio(csio,
7669 retries,
7670 cbfcnp,
7671 CAM_DIR_IN,
7672 tag_action,
7673 data_ptr,
7674 dxfer_len,
7675 sense_len,
7676 sizeof(*scsi_cmd),
7677 timeout);
7678
7679 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7680 bzero(scsi_cmd, sizeof(*scsi_cmd));
7681 scsi_cmd->opcode = REQUEST_SENSE;
7682 scsi_cmd->length = dxfer_len;
7683 }
7684
7685 void
scsi_inquiry(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * inq_buf,uint32_t inq_len,int evpd,uint8_t page_code,uint8_t sense_len,uint32_t timeout)7686 scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries,
7687 void (*cbfcnp)(struct cam_periph *, union ccb *),
7688 uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len,
7689 int evpd, uint8_t page_code, uint8_t sense_len,
7690 uint32_t timeout)
7691 {
7692 struct scsi_inquiry *scsi_cmd;
7693
7694 cam_fill_csio(csio,
7695 retries,
7696 cbfcnp,
7697 /*flags*/CAM_DIR_IN,
7698 tag_action,
7699 /*data_ptr*/inq_buf,
7700 /*dxfer_len*/inq_len,
7701 sense_len,
7702 sizeof(*scsi_cmd),
7703 timeout);
7704
7705 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7706 bzero(scsi_cmd, sizeof(*scsi_cmd));
7707 scsi_cmd->opcode = INQUIRY;
7708 if (evpd) {
7709 scsi_cmd->byte2 |= SI_EVPD;
7710 scsi_cmd->page_code = page_code;
7711 }
7712 scsi_ulto2b(inq_len, scsi_cmd->length);
7713 }
7714
7715 void
scsi_mode_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7716 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7717 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7718 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7719 uint8_t sense_len, uint32_t timeout)
7720 {
7721
7722 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7723 pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7724 }
7725
7726 void
scsi_mode_sense_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7727 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7728 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7729 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7730 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7731 {
7732
7733 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7734 pc, page, 0, param_buf, param_len, minimum_cmd_size,
7735 sense_len, timeout);
7736 }
7737
7738 void
scsi_mode_sense_subpage(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t subpage,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7739 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7740 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7741 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7742 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7743 uint32_t timeout)
7744 {
7745 uint8_t cdb_len;
7746
7747 /*
7748 * Use the smallest possible command to perform the operation.
7749 */
7750 if ((param_len < 256)
7751 && (minimum_cmd_size < 10)) {
7752 /*
7753 * We can fit in a 6 byte cdb.
7754 */
7755 struct scsi_mode_sense_6 *scsi_cmd;
7756
7757 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7758 bzero(scsi_cmd, sizeof(*scsi_cmd));
7759 scsi_cmd->opcode = MODE_SENSE_6;
7760 if (dbd != 0)
7761 scsi_cmd->byte2 |= SMS_DBD;
7762 scsi_cmd->page = pc | page;
7763 scsi_cmd->subpage = subpage;
7764 scsi_cmd->length = param_len;
7765 cdb_len = sizeof(*scsi_cmd);
7766 } else {
7767 /*
7768 * Need a 10 byte cdb.
7769 */
7770 struct scsi_mode_sense_10 *scsi_cmd;
7771
7772 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7773 bzero(scsi_cmd, sizeof(*scsi_cmd));
7774 scsi_cmd->opcode = MODE_SENSE_10;
7775 if (dbd != 0)
7776 scsi_cmd->byte2 |= SMS_DBD;
7777 scsi_cmd->page = pc | page;
7778 scsi_cmd->subpage = subpage;
7779 scsi_ulto2b(param_len, scsi_cmd->length);
7780 cdb_len = sizeof(*scsi_cmd);
7781 }
7782 cam_fill_csio(csio,
7783 retries,
7784 cbfcnp,
7785 CAM_DIR_IN,
7786 tag_action,
7787 param_buf,
7788 param_len,
7789 sense_len,
7790 cdb_len,
7791 timeout);
7792 }
7793
7794 void
scsi_mode_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7795 scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries,
7796 void (*cbfcnp)(struct cam_periph *, union ccb *),
7797 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7798 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7799 uint32_t timeout)
7800 {
7801 scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7802 scsi_page_fmt, save_pages, param_buf,
7803 param_len, 0, sense_len, timeout);
7804 }
7805
7806 void
scsi_mode_select_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7807 scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries,
7808 void (*cbfcnp)(struct cam_periph *, union ccb *),
7809 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7810 uint8_t *param_buf, uint32_t param_len,
7811 int minimum_cmd_size, uint8_t sense_len,
7812 uint32_t timeout)
7813 {
7814 uint8_t cdb_len;
7815
7816 /*
7817 * Use the smallest possible command to perform the operation.
7818 */
7819 if ((param_len < 256)
7820 && (minimum_cmd_size < 10)) {
7821 /*
7822 * We can fit in a 6 byte cdb.
7823 */
7824 struct scsi_mode_select_6 *scsi_cmd;
7825
7826 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7827 bzero(scsi_cmd, sizeof(*scsi_cmd));
7828 scsi_cmd->opcode = MODE_SELECT_6;
7829 if (scsi_page_fmt != 0)
7830 scsi_cmd->byte2 |= SMS_PF;
7831 if (save_pages != 0)
7832 scsi_cmd->byte2 |= SMS_SP;
7833 scsi_cmd->length = param_len;
7834 cdb_len = sizeof(*scsi_cmd);
7835 } else {
7836 /*
7837 * Need a 10 byte cdb.
7838 */
7839 struct scsi_mode_select_10 *scsi_cmd;
7840
7841 scsi_cmd =
7842 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7843 bzero(scsi_cmd, sizeof(*scsi_cmd));
7844 scsi_cmd->opcode = MODE_SELECT_10;
7845 if (scsi_page_fmt != 0)
7846 scsi_cmd->byte2 |= SMS_PF;
7847 if (save_pages != 0)
7848 scsi_cmd->byte2 |= SMS_SP;
7849 scsi_ulto2b(param_len, scsi_cmd->length);
7850 cdb_len = sizeof(*scsi_cmd);
7851 }
7852 cam_fill_csio(csio,
7853 retries,
7854 cbfcnp,
7855 CAM_DIR_OUT,
7856 tag_action,
7857 param_buf,
7858 param_len,
7859 sense_len,
7860 cdb_len,
7861 timeout);
7862 }
7863
7864 void
scsi_log_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,uint8_t page,int save_pages,int ppc,uint32_t paramptr,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7865 scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries,
7866 void (*cbfcnp)(struct cam_periph *, union ccb *),
7867 uint8_t tag_action, uint8_t page_code, uint8_t page,
7868 int save_pages, int ppc, uint32_t paramptr,
7869 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7870 uint32_t timeout)
7871 {
7872 struct scsi_log_sense *scsi_cmd;
7873 uint8_t cdb_len;
7874
7875 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7876 bzero(scsi_cmd, sizeof(*scsi_cmd));
7877 scsi_cmd->opcode = LOG_SENSE;
7878 scsi_cmd->page = page_code | page;
7879 if (save_pages != 0)
7880 scsi_cmd->byte2 |= SLS_SP;
7881 if (ppc != 0)
7882 scsi_cmd->byte2 |= SLS_PPC;
7883 scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7884 scsi_ulto2b(param_len, scsi_cmd->length);
7885 cdb_len = sizeof(*scsi_cmd);
7886
7887 cam_fill_csio(csio,
7888 retries,
7889 cbfcnp,
7890 /*flags*/CAM_DIR_IN,
7891 tag_action,
7892 /*data_ptr*/param_buf,
7893 /*dxfer_len*/param_len,
7894 sense_len,
7895 cdb_len,
7896 timeout);
7897 }
7898
7899 void
scsi_log_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,int save_pages,int pc_reset,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7900 scsi_log_select(struct ccb_scsiio *csio, uint32_t retries,
7901 void (*cbfcnp)(struct cam_periph *, union ccb *),
7902 uint8_t tag_action, uint8_t page_code, int save_pages,
7903 int pc_reset, uint8_t *param_buf, uint32_t param_len,
7904 uint8_t sense_len, uint32_t timeout)
7905 {
7906 struct scsi_log_select *scsi_cmd;
7907 uint8_t cdb_len;
7908
7909 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7910 bzero(scsi_cmd, sizeof(*scsi_cmd));
7911 scsi_cmd->opcode = LOG_SELECT;
7912 scsi_cmd->page = page_code & SLS_PAGE_CODE;
7913 if (save_pages != 0)
7914 scsi_cmd->byte2 |= SLS_SP;
7915 if (pc_reset != 0)
7916 scsi_cmd->byte2 |= SLS_PCR;
7917 scsi_ulto2b(param_len, scsi_cmd->length);
7918 cdb_len = sizeof(*scsi_cmd);
7919
7920 cam_fill_csio(csio,
7921 retries,
7922 cbfcnp,
7923 /*flags*/CAM_DIR_OUT,
7924 tag_action,
7925 /*data_ptr*/param_buf,
7926 /*dxfer_len*/param_len,
7927 sense_len,
7928 cdb_len,
7929 timeout);
7930 }
7931
7932 /*
7933 * Prevent or allow the user to remove the media
7934 */
7935 void
scsi_prevent(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t action,uint8_t sense_len,uint32_t timeout)7936 scsi_prevent(struct ccb_scsiio *csio, uint32_t retries,
7937 void (*cbfcnp)(struct cam_periph *, union ccb *),
7938 uint8_t tag_action, uint8_t action,
7939 uint8_t sense_len, uint32_t timeout)
7940 {
7941 struct scsi_prevent *scsi_cmd;
7942
7943 cam_fill_csio(csio,
7944 retries,
7945 cbfcnp,
7946 /*flags*/CAM_DIR_NONE,
7947 tag_action,
7948 /*data_ptr*/NULL,
7949 /*dxfer_len*/0,
7950 sense_len,
7951 sizeof(*scsi_cmd),
7952 timeout);
7953
7954 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7955 bzero(scsi_cmd, sizeof(*scsi_cmd));
7956 scsi_cmd->opcode = PREVENT_ALLOW;
7957 scsi_cmd->how = action;
7958 }
7959
7960 /* XXX allow specification of address and PMI bit and LBA */
7961 void
scsi_read_capacity(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,struct scsi_read_capacity_data * rcap_buf,uint8_t sense_len,uint32_t timeout)7962 scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries,
7963 void (*cbfcnp)(struct cam_periph *, union ccb *),
7964 uint8_t tag_action,
7965 struct scsi_read_capacity_data *rcap_buf,
7966 uint8_t sense_len, uint32_t timeout)
7967 {
7968 struct scsi_read_capacity *scsi_cmd;
7969
7970 cam_fill_csio(csio,
7971 retries,
7972 cbfcnp,
7973 /*flags*/CAM_DIR_IN,
7974 tag_action,
7975 /*data_ptr*/(uint8_t *)rcap_buf,
7976 /*dxfer_len*/sizeof(*rcap_buf),
7977 sense_len,
7978 sizeof(*scsi_cmd),
7979 timeout);
7980
7981 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7982 bzero(scsi_cmd, sizeof(*scsi_cmd));
7983 scsi_cmd->opcode = READ_CAPACITY;
7984 }
7985
7986 void
scsi_read_capacity_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t lba,int reladr,int pmi,uint8_t * rcap_buf,int rcap_buf_len,uint8_t sense_len,uint32_t timeout)7987 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7988 void (*cbfcnp)(struct cam_periph *, union ccb *),
7989 uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7990 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7991 uint32_t timeout)
7992 {
7993 struct scsi_read_capacity_16 *scsi_cmd;
7994
7995 cam_fill_csio(csio,
7996 retries,
7997 cbfcnp,
7998 /*flags*/CAM_DIR_IN,
7999 tag_action,
8000 /*data_ptr*/(uint8_t *)rcap_buf,
8001 /*dxfer_len*/rcap_buf_len,
8002 sense_len,
8003 sizeof(*scsi_cmd),
8004 timeout);
8005 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
8006 bzero(scsi_cmd, sizeof(*scsi_cmd));
8007 scsi_cmd->opcode = SERVICE_ACTION_IN;
8008 scsi_cmd->service_action = SRC16_SERVICE_ACTION;
8009 scsi_u64to8b(lba, scsi_cmd->addr);
8010 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
8011 if (pmi)
8012 reladr |= SRC16_PMI;
8013 if (reladr)
8014 reladr |= SRC16_RELADR;
8015 }
8016
8017 void
scsi_report_luns(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t select_report,struct scsi_report_luns_data * rpl_buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8018 scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries,
8019 void (*cbfcnp)(struct cam_periph *, union ccb *),
8020 uint8_t tag_action, uint8_t select_report,
8021 struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len,
8022 uint8_t sense_len, uint32_t timeout)
8023 {
8024 struct scsi_report_luns *scsi_cmd;
8025
8026 cam_fill_csio(csio,
8027 retries,
8028 cbfcnp,
8029 /*flags*/CAM_DIR_IN,
8030 tag_action,
8031 /*data_ptr*/(uint8_t *)rpl_buf,
8032 /*dxfer_len*/alloc_len,
8033 sense_len,
8034 sizeof(*scsi_cmd),
8035 timeout);
8036 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
8037 bzero(scsi_cmd, sizeof(*scsi_cmd));
8038 scsi_cmd->opcode = REPORT_LUNS;
8039 scsi_cmd->select_report = select_report;
8040 scsi_ulto4b(alloc_len, scsi_cmd->length);
8041 }
8042
8043 void
scsi_report_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8044 scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries,
8045 void (*cbfcnp)(struct cam_periph *, union ccb *),
8046 uint8_t tag_action, uint8_t pdf,
8047 void *buf, uint32_t alloc_len,
8048 uint8_t sense_len, uint32_t timeout)
8049 {
8050 struct scsi_target_group *scsi_cmd;
8051
8052 cam_fill_csio(csio,
8053 retries,
8054 cbfcnp,
8055 /*flags*/CAM_DIR_IN,
8056 tag_action,
8057 /*data_ptr*/(uint8_t *)buf,
8058 /*dxfer_len*/alloc_len,
8059 sense_len,
8060 sizeof(*scsi_cmd),
8061 timeout);
8062 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8063 bzero(scsi_cmd, sizeof(*scsi_cmd));
8064 scsi_cmd->opcode = MAINTENANCE_IN;
8065 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
8066 scsi_ulto4b(alloc_len, scsi_cmd->length);
8067 }
8068
8069 void
scsi_report_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8070 scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8071 void (*cbfcnp)(struct cam_periph *, union ccb *),
8072 uint8_t tag_action, uint8_t pdf,
8073 void *buf, uint32_t alloc_len,
8074 uint8_t sense_len, uint32_t timeout)
8075 {
8076 struct scsi_timestamp *scsi_cmd;
8077
8078 cam_fill_csio(csio,
8079 retries,
8080 cbfcnp,
8081 /*flags*/CAM_DIR_IN,
8082 tag_action,
8083 /*data_ptr*/(uint8_t *)buf,
8084 /*dxfer_len*/alloc_len,
8085 sense_len,
8086 sizeof(*scsi_cmd),
8087 timeout);
8088 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8089 bzero(scsi_cmd, sizeof(*scsi_cmd));
8090 scsi_cmd->opcode = MAINTENANCE_IN;
8091 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
8092 scsi_ulto4b(alloc_len, scsi_cmd->length);
8093 }
8094
8095 void
scsi_set_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8096 scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries,
8097 void (*cbfcnp)(struct cam_periph *, union ccb *),
8098 uint8_t tag_action, void *buf, uint32_t alloc_len,
8099 uint8_t sense_len, uint32_t timeout)
8100 {
8101 struct scsi_target_group *scsi_cmd;
8102
8103 cam_fill_csio(csio,
8104 retries,
8105 cbfcnp,
8106 /*flags*/CAM_DIR_OUT,
8107 tag_action,
8108 /*data_ptr*/(uint8_t *)buf,
8109 /*dxfer_len*/alloc_len,
8110 sense_len,
8111 sizeof(*scsi_cmd),
8112 timeout);
8113 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8114 bzero(scsi_cmd, sizeof(*scsi_cmd));
8115 scsi_cmd->opcode = MAINTENANCE_OUT;
8116 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8117 scsi_ulto4b(alloc_len, scsi_cmd->length);
8118 }
8119
8120 void
scsi_create_timestamp(uint8_t * timestamp_6b_buf,uint64_t timestamp)8121 scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8122 uint64_t timestamp)
8123 {
8124 uint8_t buf[8];
8125 scsi_u64to8b(timestamp, buf);
8126 /*
8127 * Using memcopy starting at buf[2] because the set timestamp parameters
8128 * only has six bytes for the timestamp to fit into, and we don't have a
8129 * scsi_u64to6b function.
8130 */
8131 memcpy(timestamp_6b_buf, &buf[2], 6);
8132 }
8133
8134 void
scsi_set_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8135 scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8136 void (*cbfcnp)(struct cam_periph *, union ccb *),
8137 uint8_t tag_action, void *buf, uint32_t alloc_len,
8138 uint8_t sense_len, uint32_t timeout)
8139 {
8140 struct scsi_timestamp *scsi_cmd;
8141
8142 cam_fill_csio(csio,
8143 retries,
8144 cbfcnp,
8145 /*flags*/CAM_DIR_OUT,
8146 tag_action,
8147 /*data_ptr*/(uint8_t *) buf,
8148 /*dxfer_len*/alloc_len,
8149 sense_len,
8150 sizeof(*scsi_cmd),
8151 timeout);
8152 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8153 bzero(scsi_cmd, sizeof(*scsi_cmd));
8154 scsi_cmd->opcode = MAINTENANCE_OUT;
8155 scsi_cmd->service_action = SET_TIMESTAMP;
8156 scsi_ulto4b(alloc_len, scsi_cmd->length);
8157 }
8158
8159 /*
8160 * Syncronize the media to the contents of the cache for
8161 * the given lba/count pair. Specifying 0/0 means sync
8162 * the whole cache.
8163 */
8164 void
scsi_synchronize_cache(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t begin_lba,uint16_t lb_count,uint8_t sense_len,uint32_t timeout)8165 scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries,
8166 void (*cbfcnp)(struct cam_periph *, union ccb *),
8167 uint8_t tag_action, uint32_t begin_lba,
8168 uint16_t lb_count, uint8_t sense_len,
8169 uint32_t timeout)
8170 {
8171 struct scsi_sync_cache *scsi_cmd;
8172
8173 cam_fill_csio(csio,
8174 retries,
8175 cbfcnp,
8176 /*flags*/CAM_DIR_NONE,
8177 tag_action,
8178 /*data_ptr*/NULL,
8179 /*dxfer_len*/0,
8180 sense_len,
8181 sizeof(*scsi_cmd),
8182 timeout);
8183
8184 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8185 bzero(scsi_cmd, sizeof(*scsi_cmd));
8186 scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8187 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8188 scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8189 }
8190
8191 void
scsi_read_write(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int readop,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8192 scsi_read_write(struct ccb_scsiio *csio, uint32_t retries,
8193 void (*cbfcnp)(struct cam_periph *, union ccb *),
8194 uint8_t tag_action, int readop, uint8_t byte2,
8195 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8196 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8197 uint32_t timeout)
8198 {
8199 int read;
8200 uint8_t cdb_len;
8201
8202 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8203
8204 /*
8205 * Use the smallest possible command to perform the operation
8206 * as some legacy hardware does not support the 10 byte commands.
8207 * If any of the bits in byte2 is set, we have to go with a larger
8208 * command.
8209 */
8210 if ((minimum_cmd_size < 10)
8211 && ((lba & 0x1fffff) == lba)
8212 && ((block_count & 0xff) == block_count)
8213 && (byte2 == 0)) {
8214 /*
8215 * We can fit in a 6 byte cdb.
8216 */
8217 struct scsi_rw_6 *scsi_cmd;
8218
8219 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8220 scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8221 scsi_ulto3b(lba, scsi_cmd->addr);
8222 scsi_cmd->length = block_count & 0xff;
8223 scsi_cmd->control = 0;
8224 cdb_len = sizeof(*scsi_cmd);
8225
8226 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8227 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8228 scsi_cmd->addr[1], scsi_cmd->addr[2],
8229 scsi_cmd->length, dxfer_len));
8230 } else if ((minimum_cmd_size < 12)
8231 && ((block_count & 0xffff) == block_count)
8232 && ((lba & 0xffffffff) == lba)) {
8233 /*
8234 * Need a 10 byte cdb.
8235 */
8236 struct scsi_rw_10 *scsi_cmd;
8237
8238 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8239 scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8240 scsi_cmd->byte2 = byte2;
8241 scsi_ulto4b(lba, scsi_cmd->addr);
8242 scsi_cmd->reserved = 0;
8243 scsi_ulto2b(block_count, scsi_cmd->length);
8244 scsi_cmd->control = 0;
8245 cdb_len = sizeof(*scsi_cmd);
8246
8247 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8248 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8249 scsi_cmd->addr[1], scsi_cmd->addr[2],
8250 scsi_cmd->addr[3], scsi_cmd->length[0],
8251 scsi_cmd->length[1], dxfer_len));
8252 } else if ((minimum_cmd_size < 16)
8253 && ((block_count & 0xffffffff) == block_count)
8254 && ((lba & 0xffffffff) == lba)) {
8255 /*
8256 * The block count is too big for a 10 byte CDB, use a 12
8257 * byte CDB.
8258 */
8259 struct scsi_rw_12 *scsi_cmd;
8260
8261 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8262 scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8263 scsi_cmd->byte2 = byte2;
8264 scsi_ulto4b(lba, scsi_cmd->addr);
8265 scsi_cmd->reserved = 0;
8266 scsi_ulto4b(block_count, scsi_cmd->length);
8267 scsi_cmd->control = 0;
8268 cdb_len = sizeof(*scsi_cmd);
8269
8270 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8271 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8272 scsi_cmd->addr[1], scsi_cmd->addr[2],
8273 scsi_cmd->addr[3], scsi_cmd->length[0],
8274 scsi_cmd->length[1], scsi_cmd->length[2],
8275 scsi_cmd->length[3], dxfer_len));
8276 } else {
8277 /*
8278 * 16 byte CDB. We'll only get here if the LBA is larger
8279 * than 2^32, or if the user asks for a 16 byte command.
8280 */
8281 struct scsi_rw_16 *scsi_cmd;
8282
8283 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8284 scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8285 scsi_cmd->byte2 = byte2;
8286 scsi_u64to8b(lba, scsi_cmd->addr);
8287 scsi_cmd->reserved = 0;
8288 scsi_ulto4b(block_count, scsi_cmd->length);
8289 scsi_cmd->control = 0;
8290 cdb_len = sizeof(*scsi_cmd);
8291 }
8292 cam_fill_csio(csio,
8293 retries,
8294 cbfcnp,
8295 (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8296 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8297 tag_action,
8298 data_ptr,
8299 dxfer_len,
8300 sense_len,
8301 cdb_len,
8302 timeout);
8303 }
8304
8305 void
scsi_write_same(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8306 scsi_write_same(struct ccb_scsiio *csio, uint32_t retries,
8307 void (*cbfcnp)(struct cam_periph *, union ccb *),
8308 uint8_t tag_action, uint8_t byte2,
8309 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8310 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8311 uint32_t timeout)
8312 {
8313 uint8_t cdb_len;
8314 if ((minimum_cmd_size < 16) &&
8315 ((block_count & 0xffff) == block_count) &&
8316 ((lba & 0xffffffff) == lba)) {
8317 /*
8318 * Need a 10 byte cdb.
8319 */
8320 struct scsi_write_same_10 *scsi_cmd;
8321
8322 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8323 scsi_cmd->opcode = WRITE_SAME_10;
8324 scsi_cmd->byte2 = byte2;
8325 scsi_ulto4b(lba, scsi_cmd->addr);
8326 scsi_cmd->group = 0;
8327 scsi_ulto2b(block_count, scsi_cmd->length);
8328 scsi_cmd->control = 0;
8329 cdb_len = sizeof(*scsi_cmd);
8330
8331 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8332 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8333 scsi_cmd->addr[1], scsi_cmd->addr[2],
8334 scsi_cmd->addr[3], scsi_cmd->length[0],
8335 scsi_cmd->length[1], dxfer_len));
8336 } else {
8337 /*
8338 * 16 byte CDB. We'll only get here if the LBA is larger
8339 * than 2^32, or if the user asks for a 16 byte command.
8340 */
8341 struct scsi_write_same_16 *scsi_cmd;
8342
8343 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8344 scsi_cmd->opcode = WRITE_SAME_16;
8345 scsi_cmd->byte2 = byte2;
8346 scsi_u64to8b(lba, scsi_cmd->addr);
8347 scsi_ulto4b(block_count, scsi_cmd->length);
8348 scsi_cmd->group = 0;
8349 scsi_cmd->control = 0;
8350 cdb_len = sizeof(*scsi_cmd);
8351
8352 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8353 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8354 scsi_cmd->addr[0], scsi_cmd->addr[1],
8355 scsi_cmd->addr[2], scsi_cmd->addr[3],
8356 scsi_cmd->addr[4], scsi_cmd->addr[5],
8357 scsi_cmd->addr[6], scsi_cmd->addr[7],
8358 scsi_cmd->length[0], scsi_cmd->length[1],
8359 scsi_cmd->length[2], scsi_cmd->length[3],
8360 dxfer_len));
8361 }
8362 cam_fill_csio(csio,
8363 retries,
8364 cbfcnp,
8365 /*flags*/CAM_DIR_OUT,
8366 tag_action,
8367 data_ptr,
8368 dxfer_len,
8369 sense_len,
8370 cdb_len,
8371 timeout);
8372 }
8373
8374 void
scsi_ata_identify(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8375 scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries,
8376 void (*cbfcnp)(struct cam_periph *, union ccb *),
8377 uint8_t tag_action, uint8_t *data_ptr,
8378 uint16_t dxfer_len, uint8_t sense_len,
8379 uint32_t timeout)
8380 {
8381 scsi_ata_pass(csio,
8382 retries,
8383 cbfcnp,
8384 /*flags*/CAM_DIR_IN,
8385 tag_action,
8386 /*protocol*/AP_PROTO_PIO_IN,
8387 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8388 AP_FLAG_BYT_BLOK_BLOCKS |
8389 AP_FLAG_TLEN_SECT_CNT,
8390 /*features*/0,
8391 /*sector_count*/dxfer_len / 512,
8392 /*lba*/0,
8393 /*command*/ATA_ATA_IDENTIFY,
8394 /*device*/ 0,
8395 /*icc*/ 0,
8396 /*auxiliary*/ 0,
8397 /*control*/0,
8398 data_ptr,
8399 dxfer_len,
8400 /*cdb_storage*/ NULL,
8401 /*cdb_storage_len*/ 0,
8402 /*minimum_cmd_size*/ 0,
8403 sense_len,
8404 timeout);
8405 }
8406
8407 void
scsi_ata_trim(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint16_t block_count,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8408 scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries,
8409 void (*cbfcnp)(struct cam_periph *, union ccb *),
8410 uint8_t tag_action, uint16_t block_count,
8411 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8412 uint32_t timeout)
8413 {
8414 scsi_ata_pass_16(csio,
8415 retries,
8416 cbfcnp,
8417 /*flags*/CAM_DIR_OUT,
8418 tag_action,
8419 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8420 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8421 /*features*/ATA_DSM_TRIM,
8422 /*sector_count*/block_count,
8423 /*lba*/0,
8424 /*command*/ATA_DATA_SET_MANAGEMENT,
8425 /*control*/0,
8426 data_ptr,
8427 dxfer_len,
8428 sense_len,
8429 timeout);
8430 }
8431
8432 int
scsi_ata_read_log(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t log_address,uint32_t page_number,uint16_t block_count,uint8_t protocol,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8433 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8434 void (*cbfcnp)(struct cam_periph *, union ccb *),
8435 uint8_t tag_action, uint32_t log_address,
8436 uint32_t page_number, uint16_t block_count,
8437 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8438 uint8_t sense_len, uint32_t timeout)
8439 {
8440 uint8_t command, protocol_out;
8441 uint16_t count_out;
8442 uint64_t lba;
8443 int retval;
8444
8445 retval = 0;
8446
8447 switch (protocol) {
8448 case AP_PROTO_DMA:
8449 count_out = block_count;
8450 command = ATA_READ_LOG_DMA_EXT;
8451 protocol_out = AP_PROTO_DMA;
8452 break;
8453 case AP_PROTO_PIO_IN:
8454 default:
8455 count_out = block_count;
8456 command = ATA_READ_LOG_EXT;
8457 protocol_out = AP_PROTO_PIO_IN;
8458 break;
8459 }
8460
8461 lba = (((uint64_t)page_number & 0xff00) << 32) |
8462 ((page_number & 0x00ff) << 8) |
8463 (log_address & 0xff);
8464
8465 protocol_out |= AP_EXTEND;
8466
8467 retval = scsi_ata_pass(csio,
8468 retries,
8469 cbfcnp,
8470 /*flags*/CAM_DIR_IN,
8471 tag_action,
8472 /*protocol*/ protocol_out,
8473 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8474 AP_FLAG_BYT_BLOK_BLOCKS |
8475 AP_FLAG_TDIR_FROM_DEV,
8476 /*feature*/ 0,
8477 /*sector_count*/ count_out,
8478 /*lba*/ lba,
8479 /*command*/ command,
8480 /*device*/ 0,
8481 /*icc*/ 0,
8482 /*auxiliary*/ 0,
8483 /*control*/0,
8484 data_ptr,
8485 dxfer_len,
8486 /*cdb_storage*/ NULL,
8487 /*cdb_storage_len*/ 0,
8488 /*minimum_cmd_size*/ 0,
8489 sense_len,
8490 timeout);
8491
8492 return (retval);
8493 }
8494
scsi_ata_setfeatures(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t feature,uint64_t lba,uint32_t count,uint8_t sense_len,uint32_t timeout)8495 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
8496 void (*cbfcnp)(struct cam_periph *, union ccb *),
8497 uint8_t tag_action, uint8_t feature,
8498 uint64_t lba, uint32_t count,
8499 uint8_t sense_len, uint32_t timeout)
8500 {
8501 return (scsi_ata_pass(csio,
8502 retries,
8503 cbfcnp,
8504 /*flags*/CAM_DIR_NONE,
8505 tag_action,
8506 /*protocol*/AP_PROTO_PIO_IN,
8507 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8508 AP_FLAG_BYT_BLOK_BYTES |
8509 AP_FLAG_TLEN_SECT_CNT,
8510 /*features*/feature,
8511 /*sector_count*/count,
8512 /*lba*/lba,
8513 /*command*/ATA_SETFEATURES,
8514 /*device*/ 0,
8515 /*icc*/ 0,
8516 /*auxiliary*/0,
8517 /*control*/0,
8518 /*data_ptr*/NULL,
8519 /*dxfer_len*/0,
8520 /*cdb_storage*/NULL,
8521 /*cdb_storage_len*/0,
8522 /*minimum_cmd_size*/0,
8523 sense_len,
8524 timeout));
8525 }
8526
8527 /*
8528 * Note! This is an unusual CDB building function because it can return
8529 * an error in the event that the command in question requires a variable
8530 * length CDB, but the caller has not given storage space for one or has not
8531 * given enough storage space. If there is enough space available in the
8532 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8533 */
8534 int
scsi_ata_pass(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t device,uint8_t icc,uint32_t auxiliary,uint8_t control,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t * cdb_storage,size_t cdb_storage_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)8535 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8536 void (*cbfcnp)(struct cam_periph *, union ccb *),
8537 uint32_t flags, uint8_t tag_action,
8538 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8539 uint16_t sector_count, uint64_t lba, uint8_t command,
8540 uint8_t device, uint8_t icc, uint32_t auxiliary,
8541 uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len,
8542 uint8_t *cdb_storage, size_t cdb_storage_len,
8543 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
8544 {
8545 uint32_t cam_flags;
8546 uint8_t *cdb_ptr;
8547 int cmd_size;
8548 int retval;
8549 uint8_t cdb_len;
8550
8551 retval = 0;
8552 cam_flags = flags;
8553
8554 /*
8555 * Round the user's request to the nearest command size that is at
8556 * least as big as what he requested.
8557 */
8558 if (minimum_cmd_size <= 12)
8559 cmd_size = 12;
8560 else if (minimum_cmd_size > 16)
8561 cmd_size = 32;
8562 else
8563 cmd_size = 16;
8564
8565 /*
8566 * If we have parameters that require a 48-bit ATA command, we have to
8567 * use the 16 byte ATA PASS-THROUGH command at least.
8568 */
8569 if (((lba > ATA_MAX_28BIT_LBA)
8570 || (sector_count > 255)
8571 || (features > 255)
8572 || (protocol & AP_EXTEND))
8573 && ((cmd_size < 16)
8574 || ((protocol & AP_EXTEND) == 0))) {
8575 if (cmd_size < 16)
8576 cmd_size = 16;
8577 protocol |= AP_EXTEND;
8578 }
8579
8580 /*
8581 * The icc and auxiliary ATA registers are only supported in the
8582 * 32-byte version of the ATA PASS-THROUGH command.
8583 */
8584 if ((icc != 0)
8585 || (auxiliary != 0)) {
8586 cmd_size = 32;
8587 protocol |= AP_EXTEND;
8588 }
8589
8590 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8591 && ((cdb_storage == NULL)
8592 || (cdb_storage_len < cmd_size))) {
8593 retval = 1;
8594 goto bailout;
8595 }
8596
8597 /*
8598 * At this point we know we have enough space to store the command
8599 * in one place or another. We prefer the built-in array, but used
8600 * the passed in storage if necessary.
8601 */
8602 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8603 cdb_ptr = csio->cdb_io.cdb_bytes;
8604 else {
8605 cdb_ptr = cdb_storage;
8606 cam_flags |= CAM_CDB_POINTER;
8607 }
8608
8609 if (cmd_size <= 12) {
8610 struct ata_pass_12 *cdb;
8611
8612 cdb = (struct ata_pass_12 *)cdb_ptr;
8613 cdb_len = sizeof(*cdb);
8614 bzero(cdb, cdb_len);
8615
8616 cdb->opcode = ATA_PASS_12;
8617 cdb->protocol = protocol;
8618 cdb->flags = ata_flags;
8619 cdb->features = features;
8620 cdb->sector_count = sector_count;
8621 cdb->lba_low = lba & 0xff;
8622 cdb->lba_mid = (lba >> 8) & 0xff;
8623 cdb->lba_high = (lba >> 16) & 0xff;
8624 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8625 cdb->command = command;
8626 cdb->control = control;
8627 } else if (cmd_size <= 16) {
8628 struct ata_pass_16 *cdb;
8629
8630 cdb = (struct ata_pass_16 *)cdb_ptr;
8631 cdb_len = sizeof(*cdb);
8632 bzero(cdb, cdb_len);
8633
8634 cdb->opcode = ATA_PASS_16;
8635 cdb->protocol = protocol;
8636 cdb->flags = ata_flags;
8637 cdb->features = features & 0xff;
8638 cdb->sector_count = sector_count & 0xff;
8639 cdb->lba_low = lba & 0xff;
8640 cdb->lba_mid = (lba >> 8) & 0xff;
8641 cdb->lba_high = (lba >> 16) & 0xff;
8642 /*
8643 * If AP_EXTEND is set, we're sending a 48-bit command.
8644 * Otherwise it's a 28-bit command.
8645 */
8646 if (protocol & AP_EXTEND) {
8647 cdb->lba_low_ext = (lba >> 24) & 0xff;
8648 cdb->lba_mid_ext = (lba >> 32) & 0xff;
8649 cdb->lba_high_ext = (lba >> 40) & 0xff;
8650 cdb->features_ext = (features >> 8) & 0xff;
8651 cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8652 cdb->device = device | ATA_DEV_LBA;
8653 } else {
8654 cdb->lba_low_ext = (lba >> 24) & 0xf;
8655 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8656 }
8657 cdb->command = command;
8658 cdb->control = control;
8659 } else {
8660 struct ata_pass_32 *cdb;
8661 uint8_t tmp_lba[8];
8662
8663 cdb = (struct ata_pass_32 *)cdb_ptr;
8664 cdb_len = sizeof(*cdb);
8665 bzero(cdb, cdb_len);
8666 cdb->opcode = VARIABLE_LEN_CDB;
8667 cdb->control = control;
8668 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8669 service_action);
8670 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8671 cdb->protocol = protocol;
8672 cdb->flags = ata_flags;
8673
8674 if ((protocol & AP_EXTEND) == 0) {
8675 lba &= 0x0fffffff;
8676 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8677 features &= 0xff;
8678 sector_count &= 0xff;
8679 } else {
8680 cdb->device = device | ATA_DEV_LBA;
8681 }
8682 scsi_u64to8b(lba, tmp_lba);
8683 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8684 scsi_ulto2b(features, cdb->features);
8685 scsi_ulto2b(sector_count, cdb->count);
8686 cdb->command = command;
8687 cdb->icc = icc;
8688 scsi_ulto4b(auxiliary, cdb->auxiliary);
8689 }
8690
8691 cam_fill_csio(csio,
8692 retries,
8693 cbfcnp,
8694 cam_flags,
8695 tag_action,
8696 data_ptr,
8697 dxfer_len,
8698 sense_len,
8699 cmd_size,
8700 timeout);
8701 bailout:
8702 return (retval);
8703 }
8704
8705 void
scsi_ata_pass_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t control,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8706 scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries,
8707 void (*cbfcnp)(struct cam_periph *, union ccb *),
8708 uint32_t flags, uint8_t tag_action,
8709 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8710 uint16_t sector_count, uint64_t lba, uint8_t command,
8711 uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len,
8712 uint8_t sense_len, uint32_t timeout)
8713 {
8714 struct ata_pass_16 *ata_cmd;
8715
8716 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8717 ata_cmd->opcode = ATA_PASS_16;
8718 ata_cmd->protocol = protocol;
8719 ata_cmd->flags = ata_flags;
8720 ata_cmd->features_ext = features >> 8;
8721 ata_cmd->features = features;
8722 ata_cmd->sector_count_ext = sector_count >> 8;
8723 ata_cmd->sector_count = sector_count;
8724 ata_cmd->lba_low = lba;
8725 ata_cmd->lba_mid = lba >> 8;
8726 ata_cmd->lba_high = lba >> 16;
8727 ata_cmd->device = ATA_DEV_LBA;
8728 if (protocol & AP_EXTEND) {
8729 ata_cmd->lba_low_ext = lba >> 24;
8730 ata_cmd->lba_mid_ext = lba >> 32;
8731 ata_cmd->lba_high_ext = lba >> 40;
8732 } else
8733 ata_cmd->device |= (lba >> 24) & 0x0f;
8734 ata_cmd->command = command;
8735 ata_cmd->control = control;
8736
8737 cam_fill_csio(csio,
8738 retries,
8739 cbfcnp,
8740 flags,
8741 tag_action,
8742 data_ptr,
8743 dxfer_len,
8744 sense_len,
8745 sizeof(*ata_cmd),
8746 timeout);
8747 }
8748
8749 void
scsi_unmap(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8750 scsi_unmap(struct ccb_scsiio *csio, uint32_t retries,
8751 void (*cbfcnp)(struct cam_periph *, union ccb *),
8752 uint8_t tag_action, uint8_t byte2,
8753 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8754 uint32_t timeout)
8755 {
8756 struct scsi_unmap *scsi_cmd;
8757
8758 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8759 scsi_cmd->opcode = UNMAP;
8760 scsi_cmd->byte2 = byte2;
8761 scsi_ulto4b(0, scsi_cmd->reserved);
8762 scsi_cmd->group = 0;
8763 scsi_ulto2b(dxfer_len, scsi_cmd->length);
8764 scsi_cmd->control = 0;
8765
8766 cam_fill_csio(csio,
8767 retries,
8768 cbfcnp,
8769 /*flags*/CAM_DIR_OUT,
8770 tag_action,
8771 data_ptr,
8772 dxfer_len,
8773 sense_len,
8774 sizeof(*scsi_cmd),
8775 timeout);
8776 }
8777
8778 void
scsi_receive_diagnostic_results(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int pcv,uint8_t page_code,uint8_t * data_ptr,uint16_t allocation_length,uint8_t sense_len,uint32_t timeout)8779 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries,
8780 void (*cbfcnp)(struct cam_periph *, union ccb*),
8781 uint8_t tag_action, int pcv, uint8_t page_code,
8782 uint8_t *data_ptr, uint16_t allocation_length,
8783 uint8_t sense_len, uint32_t timeout)
8784 {
8785 struct scsi_receive_diag *scsi_cmd;
8786
8787 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8788 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8789 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8790 if (pcv) {
8791 scsi_cmd->byte2 |= SRD_PCV;
8792 scsi_cmd->page_code = page_code;
8793 }
8794 scsi_ulto2b(allocation_length, scsi_cmd->length);
8795
8796 cam_fill_csio(csio,
8797 retries,
8798 cbfcnp,
8799 /*flags*/CAM_DIR_IN,
8800 tag_action,
8801 data_ptr,
8802 allocation_length,
8803 sense_len,
8804 sizeof(*scsi_cmd),
8805 timeout);
8806 }
8807
8808 void
scsi_send_diagnostic(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int unit_offline,int device_offline,int self_test,int page_format,int self_test_code,uint8_t * data_ptr,uint16_t param_list_length,uint8_t sense_len,uint32_t timeout)8809 scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries,
8810 void (*cbfcnp)(struct cam_periph *, union ccb *),
8811 uint8_t tag_action, int unit_offline, int device_offline,
8812 int self_test, int page_format, int self_test_code,
8813 uint8_t *data_ptr, uint16_t param_list_length,
8814 uint8_t sense_len, uint32_t timeout)
8815 {
8816 struct scsi_send_diag *scsi_cmd;
8817
8818 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8819 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8820 scsi_cmd->opcode = SEND_DIAGNOSTIC;
8821
8822 /*
8823 * The default self-test mode control and specific test
8824 * control are mutually exclusive.
8825 */
8826 if (self_test)
8827 self_test_code = SSD_SELF_TEST_CODE_NONE;
8828
8829 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8830 & SSD_SELF_TEST_CODE_MASK)
8831 | (unit_offline ? SSD_UNITOFFL : 0)
8832 | (device_offline ? SSD_DEVOFFL : 0)
8833 | (self_test ? SSD_SELFTEST : 0)
8834 | (page_format ? SSD_PF : 0);
8835 scsi_ulto2b(param_list_length, scsi_cmd->length);
8836
8837 cam_fill_csio(csio,
8838 retries,
8839 cbfcnp,
8840 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8841 tag_action,
8842 data_ptr,
8843 param_list_length,
8844 sense_len,
8845 sizeof(*scsi_cmd),
8846 timeout);
8847 }
8848
8849 void
scsi_get_physical_element_status(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t allocation_length,uint8_t report_type,uint32_t starting_element,uint8_t sense_len,uint32_t timeout)8850 scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries,
8851 void (*cbfcnp)(struct cam_periph *, union ccb *),
8852 uint8_t tag_action, uint8_t *data_ptr,
8853 uint16_t allocation_length, uint8_t report_type,
8854 uint32_t starting_element,
8855 uint8_t sense_len, uint32_t timeout)
8856 {
8857 struct scsi_get_physical_element_status *scsi_cmd;
8858
8859 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes;
8860 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8861 scsi_cmd->opcode = SERVICE_ACTION_IN;
8862 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS;
8863 scsi_ulto4b(starting_element, scsi_cmd->starting_element);
8864 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length);
8865
8866 cam_fill_csio(csio,
8867 retries,
8868 cbfcnp,
8869 /*flags*/ CAM_DIR_IN,
8870 tag_action,
8871 data_ptr,
8872 allocation_length,
8873 sense_len,
8874 sizeof(*scsi_cmd),
8875 timeout);
8876 }
8877
8878 void
scsi_remove_element_and_truncate(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t requested_capacity,uint32_t element_id,uint8_t sense_len,uint32_t timeout)8879 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries,
8880 void (*cbfcnp)(struct cam_periph *, union ccb *),
8881 uint8_t tag_action,
8882 uint64_t requested_capacity, uint32_t element_id,
8883 uint8_t sense_len, uint32_t timeout)
8884 {
8885 struct scsi_remove_element_and_truncate *scsi_cmd;
8886
8887 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes;
8888 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8889 scsi_cmd->opcode = SERVICE_ACTION_IN;
8890 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE;
8891 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity);
8892 scsi_ulto4b(element_id, scsi_cmd->element_identifier);
8893
8894 cam_fill_csio(csio,
8895 retries,
8896 cbfcnp,
8897 /*flags*/ CAM_DIR_OUT,
8898 tag_action,
8899 NULL,
8900 0,
8901 sense_len,
8902 sizeof(*scsi_cmd),
8903 timeout);
8904 }
8905
8906 void
scsi_restore_elements_and_rebuild(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)8907 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries,
8908 void (*cbfcnp)(struct cam_periph *, union ccb *),
8909 uint8_t tag_action,
8910 uint8_t sense_len, uint32_t timeout)
8911 {
8912 struct scsi_service_action_in *scsi_cmd;
8913
8914 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes;
8915 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8916 scsi_cmd->opcode = SERVICE_ACTION_IN;
8917 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD;
8918
8919 cam_fill_csio(csio,
8920 retries,
8921 cbfcnp,
8922 /*flags*/ CAM_DIR_OUT,
8923 tag_action,
8924 NULL,
8925 0,
8926 sense_len,
8927 sizeof(*scsi_cmd),
8928 timeout);
8929 }
8930
8931 void
scsi_read_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t allocation_length,uint8_t sense_len,uint32_t timeout)8932 scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries,
8933 void (*cbfcnp)(struct cam_periph *, union ccb*),
8934 uint8_t tag_action, int mode,
8935 uint8_t buffer_id, uint32_t offset,
8936 uint8_t *data_ptr, uint32_t allocation_length,
8937 uint8_t sense_len, uint32_t timeout)
8938 {
8939 struct scsi_read_buffer *scsi_cmd;
8940
8941 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8942 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8943 scsi_cmd->opcode = READ_BUFFER;
8944 scsi_cmd->byte2 = mode;
8945 scsi_cmd->buffer_id = buffer_id;
8946 scsi_ulto3b(offset, scsi_cmd->offset);
8947 scsi_ulto3b(allocation_length, scsi_cmd->length);
8948
8949 cam_fill_csio(csio,
8950 retries,
8951 cbfcnp,
8952 /*flags*/CAM_DIR_IN,
8953 tag_action,
8954 data_ptr,
8955 allocation_length,
8956 sense_len,
8957 sizeof(*scsi_cmd),
8958 timeout);
8959 }
8960
8961 void
scsi_write_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t param_list_length,uint8_t sense_len,uint32_t timeout)8962 scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries,
8963 void (*cbfcnp)(struct cam_periph *, union ccb *),
8964 uint8_t tag_action, int mode,
8965 uint8_t buffer_id, uint32_t offset,
8966 uint8_t *data_ptr, uint32_t param_list_length,
8967 uint8_t sense_len, uint32_t timeout)
8968 {
8969 struct scsi_write_buffer *scsi_cmd;
8970
8971 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8972 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8973 scsi_cmd->opcode = WRITE_BUFFER;
8974 scsi_cmd->byte2 = mode;
8975 scsi_cmd->buffer_id = buffer_id;
8976 scsi_ulto3b(offset, scsi_cmd->offset);
8977 scsi_ulto3b(param_list_length, scsi_cmd->length);
8978
8979 cam_fill_csio(csio,
8980 retries,
8981 cbfcnp,
8982 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8983 tag_action,
8984 data_ptr,
8985 param_list_length,
8986 sense_len,
8987 sizeof(*scsi_cmd),
8988 timeout);
8989 }
8990
8991 void
scsi_start_stop(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int start,int load_eject,int immediate,uint8_t sense_len,uint32_t timeout)8992 scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries,
8993 void (*cbfcnp)(struct cam_periph *, union ccb *),
8994 uint8_t tag_action, int start, int load_eject,
8995 int immediate, uint8_t sense_len, uint32_t timeout)
8996 {
8997 struct scsi_start_stop_unit *scsi_cmd;
8998 int extra_flags = 0;
8999
9000 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
9001 bzero(scsi_cmd, sizeof(*scsi_cmd));
9002 scsi_cmd->opcode = START_STOP_UNIT;
9003 if (start != 0) {
9004 scsi_cmd->how |= SSS_START;
9005 /* it takes a lot of power to start a drive */
9006 extra_flags |= CAM_HIGH_POWER;
9007 }
9008 if (load_eject != 0)
9009 scsi_cmd->how |= SSS_LOEJ;
9010 if (immediate != 0)
9011 scsi_cmd->byte2 |= SSS_IMMED;
9012
9013 cam_fill_csio(csio,
9014 retries,
9015 cbfcnp,
9016 /*flags*/CAM_DIR_NONE | extra_flags,
9017 tag_action,
9018 /*data_ptr*/NULL,
9019 /*dxfer_len*/0,
9020 sense_len,
9021 sizeof(*scsi_cmd),
9022 timeout);
9023 }
9024
9025 void
scsi_read_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t service_action,uint32_t element,uint8_t elem_type,int logical_volume,int partition,uint32_t first_attribute,int cache,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9026 scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries,
9027 void (*cbfcnp)(struct cam_periph *, union ccb *),
9028 uint8_t tag_action, uint8_t service_action,
9029 uint32_t element, uint8_t elem_type, int logical_volume,
9030 int partition, uint32_t first_attribute, int cache,
9031 uint8_t *data_ptr, uint32_t length, int sense_len,
9032 uint32_t timeout)
9033 {
9034 struct scsi_read_attribute *scsi_cmd;
9035
9036 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
9037 bzero(scsi_cmd, sizeof(*scsi_cmd));
9038
9039 scsi_cmd->opcode = READ_ATTRIBUTE;
9040 scsi_cmd->service_action = service_action;
9041 scsi_ulto2b(element, scsi_cmd->element);
9042 scsi_cmd->elem_type = elem_type;
9043 scsi_cmd->logical_volume = logical_volume;
9044 scsi_cmd->partition = partition;
9045 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
9046 scsi_ulto4b(length, scsi_cmd->length);
9047 if (cache != 0)
9048 scsi_cmd->cache |= SRA_CACHE;
9049
9050 cam_fill_csio(csio,
9051 retries,
9052 cbfcnp,
9053 /*flags*/CAM_DIR_IN,
9054 tag_action,
9055 /*data_ptr*/data_ptr,
9056 /*dxfer_len*/length,
9057 sense_len,
9058 sizeof(*scsi_cmd),
9059 timeout);
9060 }
9061
9062 void
scsi_write_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t element,int logical_volume,int partition,int wtc,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9063 scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries,
9064 void (*cbfcnp)(struct cam_periph *, union ccb *),
9065 uint8_t tag_action, uint32_t element, int logical_volume,
9066 int partition, int wtc, uint8_t *data_ptr,
9067 uint32_t length, int sense_len, uint32_t timeout)
9068 {
9069 struct scsi_write_attribute *scsi_cmd;
9070
9071 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
9072 bzero(scsi_cmd, sizeof(*scsi_cmd));
9073
9074 scsi_cmd->opcode = WRITE_ATTRIBUTE;
9075 if (wtc != 0)
9076 scsi_cmd->byte2 = SWA_WTC;
9077 scsi_ulto3b(element, scsi_cmd->element);
9078 scsi_cmd->logical_volume = logical_volume;
9079 scsi_cmd->partition = partition;
9080 scsi_ulto4b(length, scsi_cmd->length);
9081
9082 cam_fill_csio(csio,
9083 retries,
9084 cbfcnp,
9085 /*flags*/CAM_DIR_OUT,
9086 tag_action,
9087 /*data_ptr*/data_ptr,
9088 /*dxfer_len*/length,
9089 sense_len,
9090 sizeof(*scsi_cmd),
9091 timeout);
9092 }
9093
9094 void
scsi_persistent_reserve_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9095 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
9096 void (*cbfcnp)(struct cam_periph *, union ccb *),
9097 uint8_t tag_action, int service_action,
9098 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9099 int timeout)
9100 {
9101 struct scsi_per_res_in *scsi_cmd;
9102
9103 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
9104 bzero(scsi_cmd, sizeof(*scsi_cmd));
9105
9106 scsi_cmd->opcode = PERSISTENT_RES_IN;
9107 scsi_cmd->action = service_action;
9108 scsi_ulto2b(dxfer_len, scsi_cmd->length);
9109
9110 cam_fill_csio(csio,
9111 retries,
9112 cbfcnp,
9113 /*flags*/CAM_DIR_IN,
9114 tag_action,
9115 data_ptr,
9116 dxfer_len,
9117 sense_len,
9118 sizeof(*scsi_cmd),
9119 timeout);
9120 }
9121
9122 void
scsi_persistent_reserve_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,int scope,int res_type,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9123 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
9124 void (*cbfcnp)(struct cam_periph *, union ccb *),
9125 uint8_t tag_action, int service_action,
9126 int scope, int res_type, uint8_t *data_ptr,
9127 uint32_t dxfer_len, int sense_len, int timeout)
9128 {
9129 struct scsi_per_res_out *scsi_cmd;
9130
9131 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
9132 bzero(scsi_cmd, sizeof(*scsi_cmd));
9133
9134 scsi_cmd->opcode = PERSISTENT_RES_OUT;
9135 scsi_cmd->action = service_action;
9136 scsi_cmd->scope_type = scope | res_type;
9137 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9138
9139 cam_fill_csio(csio,
9140 retries,
9141 cbfcnp,
9142 /*flags*/CAM_DIR_OUT,
9143 tag_action,
9144 /*data_ptr*/data_ptr,
9145 /*dxfer_len*/dxfer_len,
9146 sense_len,
9147 sizeof(*scsi_cmd),
9148 timeout);
9149 }
9150
9151 void
scsi_security_protocol_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9152 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
9153 void (*cbfcnp)(struct cam_periph *, union ccb *),
9154 uint8_t tag_action, uint32_t security_protocol,
9155 uint32_t security_protocol_specific, int byte4,
9156 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9157 int timeout)
9158 {
9159 struct scsi_security_protocol_in *scsi_cmd;
9160
9161 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
9162 bzero(scsi_cmd, sizeof(*scsi_cmd));
9163
9164 scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
9165
9166 scsi_cmd->security_protocol = security_protocol;
9167 scsi_ulto2b(security_protocol_specific,
9168 scsi_cmd->security_protocol_specific);
9169 scsi_cmd->byte4 = byte4;
9170 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9171
9172 cam_fill_csio(csio,
9173 retries,
9174 cbfcnp,
9175 /*flags*/CAM_DIR_IN,
9176 tag_action,
9177 data_ptr,
9178 dxfer_len,
9179 sense_len,
9180 sizeof(*scsi_cmd),
9181 timeout);
9182 }
9183
9184 void
scsi_security_protocol_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9185 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
9186 void (*cbfcnp)(struct cam_periph *, union ccb *),
9187 uint8_t tag_action, uint32_t security_protocol,
9188 uint32_t security_protocol_specific, int byte4,
9189 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9190 int timeout)
9191 {
9192 struct scsi_security_protocol_out *scsi_cmd;
9193
9194 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
9195 bzero(scsi_cmd, sizeof(*scsi_cmd));
9196
9197 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
9198
9199 scsi_cmd->security_protocol = security_protocol;
9200 scsi_ulto2b(security_protocol_specific,
9201 scsi_cmd->security_protocol_specific);
9202 scsi_cmd->byte4 = byte4;
9203 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9204
9205 cam_fill_csio(csio,
9206 retries,
9207 cbfcnp,
9208 /*flags*/CAM_DIR_OUT,
9209 tag_action,
9210 data_ptr,
9211 dxfer_len,
9212 sense_len,
9213 sizeof(*scsi_cmd),
9214 timeout);
9215 }
9216
9217 void
scsi_report_supported_opcodes(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int options,int req_opcode,int req_service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9218 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9219 void (*cbfcnp)(struct cam_periph *, union ccb *),
9220 uint8_t tag_action, int options, int req_opcode,
9221 int req_service_action, uint8_t *data_ptr,
9222 uint32_t dxfer_len, int sense_len, int timeout)
9223 {
9224 struct scsi_report_supported_opcodes *scsi_cmd;
9225
9226 scsi_cmd = (struct scsi_report_supported_opcodes *)
9227 &csio->cdb_io.cdb_bytes;
9228 bzero(scsi_cmd, sizeof(*scsi_cmd));
9229
9230 scsi_cmd->opcode = MAINTENANCE_IN;
9231 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9232 scsi_cmd->options = options;
9233 scsi_cmd->requested_opcode = req_opcode;
9234 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9235 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9236
9237 cam_fill_csio(csio,
9238 retries,
9239 cbfcnp,
9240 /*flags*/CAM_DIR_IN,
9241 tag_action,
9242 data_ptr,
9243 dxfer_len,
9244 sense_len,
9245 sizeof(*scsi_cmd),
9246 timeout);
9247 }
9248
9249 /*
9250 * Try make as good a match as possible with
9251 * available sub drivers
9252 */
9253 int
scsi_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9254 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9255 {
9256 struct scsi_inquiry_pattern *entry;
9257 struct scsi_inquiry_data *inq;
9258
9259 entry = (struct scsi_inquiry_pattern *)table_entry;
9260 inq = (struct scsi_inquiry_data *)inqbuffer;
9261
9262 if (((SID_TYPE(inq) == entry->type)
9263 || (entry->type == T_ANY))
9264 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9265 : entry->media_type & SIP_MEDIA_FIXED)
9266 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9267 && (cam_strmatch(inq->product, entry->product,
9268 sizeof(inq->product)) == 0)
9269 && (cam_strmatch(inq->revision, entry->revision,
9270 sizeof(inq->revision)) == 0)) {
9271 return (0);
9272 }
9273 return (-1);
9274 }
9275
9276 /*
9277 * Try make as good a match as possible with
9278 * available sub drivers
9279 */
9280 int
scsi_static_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9281 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9282 {
9283 struct scsi_static_inquiry_pattern *entry;
9284 struct scsi_inquiry_data *inq;
9285
9286 entry = (struct scsi_static_inquiry_pattern *)table_entry;
9287 inq = (struct scsi_inquiry_data *)inqbuffer;
9288
9289 if (((SID_TYPE(inq) == entry->type)
9290 || (entry->type == T_ANY))
9291 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9292 : entry->media_type & SIP_MEDIA_FIXED)
9293 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9294 && (cam_strmatch(inq->product, entry->product,
9295 sizeof(inq->product)) == 0)
9296 && (cam_strmatch(inq->revision, entry->revision,
9297 sizeof(inq->revision)) == 0)) {
9298 return (0);
9299 }
9300 return (-1);
9301 }
9302
9303 /**
9304 * Compare two buffers of vpd device descriptors for a match.
9305 *
9306 * \param lhs Pointer to first buffer of descriptors to compare.
9307 * \param lhs_len The length of the first buffer.
9308 * \param rhs Pointer to second buffer of descriptors to compare.
9309 * \param rhs_len The length of the second buffer.
9310 *
9311 * \return 0 on a match, -1 otherwise.
9312 *
9313 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching
9314 * against each element in rhs until all data are exhausted or we have found
9315 * a match.
9316 */
9317 int
scsi_devid_match(uint8_t * lhs,size_t lhs_len,uint8_t * rhs,size_t rhs_len)9318 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9319 {
9320 struct scsi_vpd_id_descriptor *lhs_id;
9321 struct scsi_vpd_id_descriptor *lhs_last;
9322 struct scsi_vpd_id_descriptor *rhs_last;
9323 uint8_t *lhs_end;
9324 uint8_t *rhs_end;
9325
9326 lhs_end = lhs + lhs_len;
9327 rhs_end = rhs + rhs_len;
9328
9329 /*
9330 * rhs_last and lhs_last are the last possible position of a valid
9331 * descriptor assuming it had a zero length identifier. We use
9332 * these variables to insure we can safely dereference the length
9333 * field in our loop termination tests.
9334 */
9335 lhs_last = (struct scsi_vpd_id_descriptor *)
9336 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9337 rhs_last = (struct scsi_vpd_id_descriptor *)
9338 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9339
9340 lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9341 while (lhs_id <= lhs_last
9342 && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9343 struct scsi_vpd_id_descriptor *rhs_id;
9344
9345 rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9346 while (rhs_id <= rhs_last
9347 && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9348 if ((rhs_id->id_type &
9349 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9350 (lhs_id->id_type &
9351 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9352 && rhs_id->length == lhs_id->length
9353 && memcmp(rhs_id->identifier, lhs_id->identifier,
9354 rhs_id->length) == 0)
9355 return (0);
9356
9357 rhs_id = (struct scsi_vpd_id_descriptor *)
9358 (rhs_id->identifier + rhs_id->length);
9359 }
9360 lhs_id = (struct scsi_vpd_id_descriptor *)
9361 (lhs_id->identifier + lhs_id->length);
9362 }
9363 return (-1);
9364 }
9365
9366 #ifdef _KERNEL
9367 int
scsi_vpd_supported_page(struct cam_periph * periph,uint8_t page_id)9368 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9369 {
9370 struct cam_ed *device;
9371 struct scsi_vpd_supported_pages *vpds;
9372 int i, num_pages;
9373
9374 device = periph->path->device;
9375 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9376
9377 if (vpds != NULL) {
9378 num_pages = device->supported_vpds_len -
9379 SVPD_SUPPORTED_PAGES_HDR_LEN;
9380 for (i = 0; i < num_pages; i++) {
9381 if (vpds->page_list[i] == page_id)
9382 return (1);
9383 }
9384 }
9385
9386 return (0);
9387 }
9388
9389 static void
init_scsi_delay(void)9390 init_scsi_delay(void)
9391 {
9392 int delay;
9393
9394 delay = SCSI_DELAY;
9395 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9396
9397 if (set_scsi_delay(delay) != 0) {
9398 printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9399 set_scsi_delay(SCSI_DELAY);
9400 }
9401 }
9402 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9403
9404 static int
sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)9405 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9406 {
9407 int error, delay;
9408
9409 delay = scsi_delay;
9410 error = sysctl_handle_int(oidp, &delay, 0, req);
9411 if (error != 0 || req->newptr == NULL)
9412 return (error);
9413 return (set_scsi_delay(delay));
9414 }
9415 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
9416 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
9417 0, 0, sysctl_scsi_delay, "I",
9418 "Delay to allow devices to settle after a SCSI bus reset (ms)");
9419
9420 static int
set_scsi_delay(int delay)9421 set_scsi_delay(int delay)
9422 {
9423 /*
9424 * If someone sets this to 0, we assume that they want the
9425 * minimum allowable bus settle delay.
9426 */
9427 if (delay == 0) {
9428 printf("cam: using minimum scsi_delay (%dms)\n",
9429 SCSI_MIN_DELAY);
9430 delay = SCSI_MIN_DELAY;
9431 }
9432 if (delay < SCSI_MIN_DELAY)
9433 return (EINVAL);
9434 scsi_delay = delay;
9435 return (0);
9436 }
9437 #endif /* _KERNEL */
9438