1 /*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/stdint.h>
35
36 #ifdef _KERNEL
37 #include "opt_scsi.h"
38
39 #include <sys/systm.h>
40 #include <sys/libkern.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/sysctl.h>
46 #include <sys/ctype.h>
47 #else
48 #include <errno.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <ctype.h>
53 #endif
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_queue.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/scsi/scsi_all.h>
60 #include <sys/ata.h>
61 #include <sys/sbuf.h>
62
63 #ifdef _KERNEL
64 #include <cam/cam_periph.h>
65 #include <cam/cam_xpt_sim.h>
66 #include <cam/cam_xpt_periph.h>
67 #include <cam/cam_xpt_internal.h>
68 #else
69 #include <camlib.h>
70 #include <stddef.h>
71
72 #ifndef FALSE
73 #define FALSE 0
74 #endif /* FALSE */
75 #ifndef TRUE
76 #define TRUE 1
77 #endif /* TRUE */
78 #define ERESTART -1 /* restart syscall */
79 #define EJUSTRETURN -2 /* don't modify regs, just return */
80 #endif /* !_KERNEL */
81
82 /*
83 * This is the default number of milliseconds we wait for devices to settle
84 * after a SCSI bus reset.
85 */
86 #ifndef SCSI_DELAY
87 #define SCSI_DELAY 2000
88 #endif
89 /*
90 * All devices need _some_ sort of bus settle delay, so we'll set it to
91 * a minimum value of 100ms. Note that this is pertinent only for SPI-
92 * not transport like Fibre Channel or iSCSI where 'delay' is completely
93 * meaningless.
94 */
95 #ifndef SCSI_MIN_DELAY
96 #define SCSI_MIN_DELAY 100
97 #endif
98 /*
99 * Make sure the user isn't using seconds instead of milliseconds.
100 */
101 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
102 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value"
103 #endif
104
105 int scsi_delay;
106
107 static int ascentrycomp(const void *key, const void *member);
108 static int senseentrycomp(const void *key, const void *member);
109 static void fetchtableentries(int sense_key, int asc, int ascq,
110 struct scsi_inquiry_data *,
111 const struct sense_key_table_entry **,
112 const struct asc_table_entry **);
113
114 #ifdef _KERNEL
115 static void init_scsi_delay(void *);
116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117 static int set_scsi_delay(int delay);
118 #endif
119
120 #if !defined(SCSI_NO_OP_STRINGS)
121
122 #define D (1 << T_DIRECT)
123 #define T (1 << T_SEQUENTIAL)
124 #define L (1 << T_PRINTER)
125 #define P (1 << T_PROCESSOR)
126 #define W (1 << T_WORM)
127 #define R (1 << T_CDROM)
128 #define O (1 << T_OPTICAL)
129 #define M (1 << T_CHANGER)
130 #define A (1 << T_STORARRAY)
131 #define E (1 << T_ENCLOSURE)
132 #define B (1 << T_RBC)
133 #define K (1 << T_OCRW)
134 #define V (1 << T_ADC)
135 #define F (1 << T_OSD)
136 #define S (1 << T_SCANNER)
137 #define C (1 << T_COMM)
138
139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140
141 static struct op_table_entry plextor_cd_ops[] = {
142 { 0xD8, R, "CD-DA READ" }
143 };
144
145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146 {
147 /*
148 * I believe that 0xD8 is the Plextor proprietary command
149 * to read CD-DA data. I'm not sure which Plextor CDROM
150 * models support the command, though. I know for sure
151 * that the 4X, 8X, and 12X models do, and presumably the
152 * 12-20X does. I don't know about any earlier models,
153 * though. If anyone has any more complete information,
154 * feel free to change this quirk entry.
155 */
156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157 nitems(plextor_cd_ops),
158 plextor_cd_ops
159 }
160 };
161
162 static struct op_table_entry scsi_op_codes[] = {
163 /*
164 * From: http://www.t10.org/lists/op-num.txt
165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166 * and Jung-uk Kim (jkim@FreeBSD.org)
167 *
168 * Note: order is important in this table, scsi_op_desc() currently
169 * depends on the opcodes in the table being in order to save
170 * search time.
171 * Note: scanner and comm. devices are carried over from the previous
172 * version because they were removed in the latest spec.
173 */
174 /* File: OP-NUM.TXT
175 *
176 * SCSI Operation Codes
177 * Numeric Sorted Listing
178 * as of 5/26/15
179 *
180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) -----------------
182 * . L - PRINTER DEVICE (SSC) M = Mandatory
183 * . P - PROCESSOR DEVICE (SPC) O = Optional
184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete
186 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
187 * . . .M - MEDIA CHANGER DEVICE (SMC-2)
188 * . . . A - STORAGE ARRAY DEVICE (SCC-2)
189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES)
190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
193 * . . . . .F - OBJECT-BASED STORAGE (OSD)
194 * OP DTLPWROMAEBKVF Description
195 * -- -------------- ---------------------------------------------- */
196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */
197 { 0x00, ALL, "TEST UNIT READY" },
198 /* 01 M REWIND */
199 { 0x01, T, "REWIND" },
200 /* 01 Z V ZZZZ REZERO UNIT */
201 { 0x01, D | W | R | O | M, "REZERO UNIT" },
202 /* 02 VVVVVV V */
203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */
204 { 0x03, ALL, "REQUEST SENSE" },
205 /* 04 M OO FORMAT UNIT */
206 { 0x04, D | R | O, "FORMAT UNIT" },
207 /* 04 O FORMAT MEDIUM */
208 { 0x04, T, "FORMAT MEDIUM" },
209 /* 04 O FORMAT */
210 { 0x04, L, "FORMAT" },
211 /* 05 VMVVVV V READ BLOCK LIMITS */
212 { 0x05, T, "READ BLOCK LIMITS" },
213 /* 06 VVVVVV V */
214 /* 07 OVV O OV REASSIGN BLOCKS */
215 { 0x07, D | W | O, "REASSIGN BLOCKS" },
216 /* 07 O INITIALIZE ELEMENT STATUS */
217 { 0x07, M, "INITIALIZE ELEMENT STATUS" },
218 /* 08 MOV O OV READ(6) */
219 { 0x08, D | T | W | O, "READ(6)" },
220 /* 08 O RECEIVE */
221 { 0x08, P, "RECEIVE" },
222 /* 08 GET MESSAGE(6) */
223 { 0x08, C, "GET MESSAGE(6)" },
224 /* 09 VVVVVV V */
225 /* 0A OO O OV WRITE(6) */
226 { 0x0A, D | T | W | O, "WRITE(6)" },
227 /* 0A M SEND(6) */
228 { 0x0A, P, "SEND(6)" },
229 /* 0A SEND MESSAGE(6) */
230 { 0x0A, C, "SEND MESSAGE(6)" },
231 /* 0A M PRINT */
232 { 0x0A, L, "PRINT" },
233 /* 0B Z ZOZV SEEK(6) */
234 { 0x0B, D | W | R | O, "SEEK(6)" },
235 /* 0B O SET CAPACITY */
236 { 0x0B, T, "SET CAPACITY" },
237 /* 0B O SLEW AND PRINT */
238 { 0x0B, L, "SLEW AND PRINT" },
239 /* 0C VVVVVV V */
240 /* 0D VVVVVV V */
241 /* 0E VVVVVV V */
242 /* 0F VOVVVV V READ REVERSE(6) */
243 { 0x0F, T, "READ REVERSE(6)" },
244 /* 10 VM VVV WRITE FILEMARKS(6) */
245 { 0x10, T, "WRITE FILEMARKS(6)" },
246 /* 10 O SYNCHRONIZE BUFFER */
247 { 0x10, L, "SYNCHRONIZE BUFFER" },
248 /* 11 VMVVVV SPACE(6) */
249 { 0x11, T, "SPACE(6)" },
250 /* 12 MMMMMMMMMMMMMM INQUIRY */
251 { 0x12, ALL, "INQUIRY" },
252 /* 13 V VVVV */
253 /* 13 O VERIFY(6) */
254 { 0x13, T, "VERIFY(6)" },
255 /* 14 VOOVVV RECOVER BUFFERED DATA */
256 { 0x14, T | L, "RECOVER BUFFERED DATA" },
257 /* 15 OMO O OOOO OO MODE SELECT(6) */
258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259 /* 16 ZZMZO OOOZ O RESERVE(6) */
260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261 /* 16 Z RESERVE ELEMENT(6) */
262 { 0x16, M, "RESERVE ELEMENT(6)" },
263 /* 17 ZZMZO OOOZ O RELEASE(6) */
264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265 /* 17 Z RELEASE ELEMENT(6) */
266 { 0x17, M, "RELEASE ELEMENT(6)" },
267 /* 18 ZZZZOZO Z COPY */
268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" },
269 /* 19 VMVVVV ERASE(6) */
270 { 0x19, T, "ERASE(6)" },
271 /* 1A OMO O OOOO OO MODE SENSE(6) */
272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273 /* 1B O OOO O MO O START STOP UNIT */
274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" },
275 /* 1B O M LOAD UNLOAD */
276 { 0x1B, T | V, "LOAD UNLOAD" },
277 /* 1B SCAN */
278 { 0x1B, S, "SCAN" },
279 /* 1B O STOP PRINT */
280 { 0x1B, L, "STOP PRINT" },
281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */
284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */
286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" },
287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */
288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289 /* 1F */
290 /* 20 V VVV V */
291 /* 21 V VVV V */
292 /* 22 V VVV V */
293 /* 23 V V V V */
294 /* 23 O READ FORMAT CAPACITIES */
295 { 0x23, R, "READ FORMAT CAPACITIES" },
296 /* 24 V VV SET WINDOW */
297 { 0x24, S, "SET WINDOW" },
298 /* 25 M M M M READ CAPACITY(10) */
299 { 0x25, D | W | O | B, "READ CAPACITY(10)" },
300 /* 25 O READ CAPACITY */
301 { 0x25, R, "READ CAPACITY" },
302 /* 25 M READ CARD CAPACITY */
303 { 0x25, K, "READ CARD CAPACITY" },
304 /* 25 GET WINDOW */
305 { 0x25, S, "GET WINDOW" },
306 /* 26 V VV */
307 /* 27 V VV */
308 /* 28 M MOM MM READ(10) */
309 { 0x28, D | W | R | O | B | K | S, "READ(10)" },
310 /* 28 GET MESSAGE(10) */
311 { 0x28, C, "GET MESSAGE(10)" },
312 /* 29 V VVO READ GENERATION */
313 { 0x29, O, "READ GENERATION" },
314 /* 2A O MOM MO WRITE(10) */
315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" },
316 /* 2A SEND(10) */
317 { 0x2A, S, "SEND(10)" },
318 /* 2A SEND MESSAGE(10) */
319 { 0x2A, C, "SEND MESSAGE(10)" },
320 /* 2B Z OOO O SEEK(10) */
321 { 0x2B, D | W | R | O | K, "SEEK(10)" },
322 /* 2B O LOCATE(10) */
323 { 0x2B, T, "LOCATE(10)" },
324 /* 2B O POSITION TO ELEMENT */
325 { 0x2B, M, "POSITION TO ELEMENT" },
326 /* 2C V OO ERASE(10) */
327 { 0x2C, R | O, "ERASE(10)" },
328 /* 2D O READ UPDATED BLOCK */
329 { 0x2D, O, "READ UPDATED BLOCK" },
330 /* 2D V */
331 /* 2E O OOO MO WRITE AND VERIFY(10) */
332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333 /* 2F O OOO VERIFY(10) */
334 { 0x2F, D | W | R | O, "VERIFY(10)" },
335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */
336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" },
337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */
338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" },
339 /* 31 OBJECT POSITION */
340 { 0x31, S, "OBJECT POSITION" },
341 /* 32 Z ZZZ SEARCH DATA LOW(10) */
342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" },
343 /* 33 Z OZO SET LIMITS(10) */
344 { 0x33, D | W | R | O, "SET LIMITS(10)" },
345 /* 34 O O O O PRE-FETCH(10) */
346 { 0x34, D | W | O | K, "PRE-FETCH(10)" },
347 /* 34 M READ POSITION */
348 { 0x34, T, "READ POSITION" },
349 /* 34 GET DATA BUFFER STATUS */
350 { 0x34, S, "GET DATA BUFFER STATUS" },
351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */
352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */
354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355 /* 37 O O READ DEFECT DATA(10) */
356 { 0x37, D | O, "READ DEFECT DATA(10)" },
357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */
358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359 /* 38 O O O MEDIUM SCAN */
360 { 0x38, W | O | K, "MEDIUM SCAN" },
361 /* 39 ZZZZOZO Z COMPARE */
362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" },
363 /* 3A ZZZZOZO Z COPY AND VERIFY */
364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */
366 { 0x3B, ALL, "WRITE BUFFER" },
367 /* 3C OOOOOOOOOO OOO READ BUFFER */
368 { 0x3C, ALL & ~(B), "READ BUFFER" },
369 /* 3D O UPDATE BLOCK */
370 { 0x3D, O, "UPDATE BLOCK" },
371 /* 3E O O O READ LONG(10) */
372 { 0x3E, D | W | O, "READ LONG(10)" },
373 /* 3F O O O WRITE LONG(10) */
374 { 0x3F, D | W | O, "WRITE LONG(10)" },
375 /* 40 ZZZZOZOZ CHANGE DEFINITION */
376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377 /* 41 O WRITE SAME(10) */
378 { 0x41, D, "WRITE SAME(10)" },
379 /* 42 O UNMAP */
380 { 0x42, D, "UNMAP" },
381 /* 42 O READ SUB-CHANNEL */
382 { 0x42, R, "READ SUB-CHANNEL" },
383 /* 43 O READ TOC/PMA/ATIP */
384 { 0x43, R, "READ TOC/PMA/ATIP" },
385 /* 44 M M REPORT DENSITY SUPPORT */
386 { 0x44, T | V, "REPORT DENSITY SUPPORT" },
387 /* 44 READ HEADER */
388 /* 45 O PLAY AUDIO(10) */
389 { 0x45, R, "PLAY AUDIO(10)" },
390 /* 46 M GET CONFIGURATION */
391 { 0x46, R, "GET CONFIGURATION" },
392 /* 47 O PLAY AUDIO MSF */
393 { 0x47, R, "PLAY AUDIO MSF" },
394 /* 48 O SANITIZE */
395 { 0x48, D, "SANITIZE" },
396 /* 49 */
397 /* 4A M GET EVENT STATUS NOTIFICATION */
398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" },
399 /* 4B O PAUSE/RESUME */
400 { 0x4B, R, "PAUSE/RESUME" },
401 /* 4C OOOOO OOOO OOO LOG SELECT */
402 { 0x4C, ALL & ~(R | B), "LOG SELECT" },
403 /* 4D OOOOO OOOO OMO LOG SENSE */
404 { 0x4D, ALL & ~(R | B), "LOG SENSE" },
405 /* 4E O STOP PLAY/SCAN */
406 { 0x4E, R, "STOP PLAY/SCAN" },
407 /* 4F */
408 /* 50 O XDWRITE(10) */
409 { 0x50, D, "XDWRITE(10)" },
410 /* 51 O XPWRITE(10) */
411 { 0x51, D, "XPWRITE(10)" },
412 /* 51 O READ DISC INFORMATION */
413 { 0x51, R, "READ DISC INFORMATION" },
414 /* 52 O XDREAD(10) */
415 { 0x52, D, "XDREAD(10)" },
416 /* 52 O READ TRACK INFORMATION */
417 { 0x52, R, "READ TRACK INFORMATION" },
418 /* 53 O XDWRITEREAD(10) */
419 { 0x53, D, "XDWRITEREAD(10)" },
420 /* 53 O RESERVE TRACK */
421 { 0x53, R, "RESERVE TRACK" },
422 /* 54 O SEND OPC INFORMATION */
423 { 0x54, R, "SEND OPC INFORMATION" },
424 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */
425 { 0x55, ALL & ~(P), "MODE SELECT(10)" },
426 /* 56 ZZMZO OOOZ RESERVE(10) */
427 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
428 /* 56 Z RESERVE ELEMENT(10) */
429 { 0x56, M, "RESERVE ELEMENT(10)" },
430 /* 57 ZZMZO OOOZ RELEASE(10) */
431 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
432 /* 57 Z RELEASE ELEMENT(10) */
433 { 0x57, M, "RELEASE ELEMENT(10)" },
434 /* 58 O REPAIR TRACK */
435 { 0x58, R, "REPAIR TRACK" },
436 /* 59 */
437 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */
438 { 0x5A, ALL & ~(P), "MODE SENSE(10)" },
439 /* 5B O CLOSE TRACK/SESSION */
440 { 0x5B, R, "CLOSE TRACK/SESSION" },
441 /* 5C O READ BUFFER CAPACITY */
442 { 0x5C, R, "READ BUFFER CAPACITY" },
443 /* 5D O SEND CUE SHEET */
444 { 0x5D, R, "SEND CUE SHEET" },
445 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */
446 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
447 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */
448 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
449 /* 7E OO O OOOO O extended CDB */
450 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" },
451 /* 7F O M variable length CDB (more than 16 bytes) */
452 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" },
453 /* 80 Z XDWRITE EXTENDED(16) */
454 { 0x80, D, "XDWRITE EXTENDED(16)" },
455 /* 80 M WRITE FILEMARKS(16) */
456 { 0x80, T, "WRITE FILEMARKS(16)" },
457 /* 81 Z REBUILD(16) */
458 { 0x81, D, "REBUILD(16)" },
459 /* 81 O READ REVERSE(16) */
460 { 0x81, T, "READ REVERSE(16)" },
461 /* 82 Z REGENERATE(16) */
462 { 0x82, D, "REGENERATE(16)" },
463 /* 82 O ALLOW OVERWRITE */
464 { 0x82, T, "ALLOW OVERWRITE" },
465 /* 83 OOOOO O OO EXTENDED COPY */
466 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" },
467 /* 84 OOOOO O OO RECEIVE COPY RESULTS */
468 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
469 /* 85 O O O ATA COMMAND PASS THROUGH(16) */
470 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" },
471 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */
472 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" },
473 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */
474 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
475 /* 88 MM O O O READ(16) */
476 { 0x88, D | T | W | O | B, "READ(16)" },
477 /* 89 O COMPARE AND WRITE*/
478 { 0x89, D, "COMPARE AND WRITE" },
479 /* 8A OM O O O WRITE(16) */
480 { 0x8A, D | T | W | O | B, "WRITE(16)" },
481 /* 8B O ORWRITE */
482 { 0x8B, D, "ORWRITE" },
483 /* 8C OO O OO O M READ ATTRIBUTE */
484 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" },
485 /* 8D OO O OO O O WRITE ATTRIBUTE */
486 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
487 /* 8E O O O O WRITE AND VERIFY(16) */
488 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" },
489 /* 8F OO O O O VERIFY(16) */
490 { 0x8F, D | T | W | O | B, "VERIFY(16)" },
491 /* 90 O O O O PRE-FETCH(16) */
492 { 0x90, D | W | O | B, "PRE-FETCH(16)" },
493 /* 91 O O O O SYNCHRONIZE CACHE(16) */
494 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" },
495 /* 91 O SPACE(16) */
496 { 0x91, T, "SPACE(16)" },
497 /* 92 Z O O LOCK UNLOCK CACHE(16) */
498 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" },
499 /* 92 O LOCATE(16) */
500 { 0x92, T, "LOCATE(16)" },
501 /* 93 O WRITE SAME(16) */
502 { 0x93, D, "WRITE SAME(16)" },
503 /* 93 M ERASE(16) */
504 { 0x93, T, "ERASE(16)" },
505 /* 94 O ZBC OUT */
506 { 0x94, ALL, "ZBC OUT" },
507 /* 95 O ZBC IN */
508 { 0x95, ALL, "ZBC IN" },
509 /* 96 */
510 /* 97 */
511 /* 98 */
512 /* 99 */
513 /* 9A O WRITE STREAM(16) */
514 { 0x9A, D, "WRITE STREAM(16)" },
515 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */
516 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" },
517 /* 9C O WRITE ATOMIC(16) */
518 { 0x9C, D, "WRITE ATOMIC(16)" },
519 /* 9D SERVICE ACTION BIDIRECTIONAL */
520 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
521 /* XXX KDM ALL for this? op-num.txt defines it for none.. */
522 /* 9E SERVICE ACTION IN(16) */
523 { 0x9E, ALL, "SERVICE ACTION IN(16)" },
524 /* 9F M SERVICE ACTION OUT(16) */
525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" },
526 /* A0 MMOOO OMMM OMO REPORT LUNS */
527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" },
528 /* A1 O BLANK */
529 { 0xA1, R, "BLANK" },
530 /* A1 O O ATA COMMAND PASS THROUGH(12) */
531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" },
532 /* A2 OO O O SECURITY PROTOCOL IN */
533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" },
534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */
535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536 /* A3 O SEND KEY */
537 { 0xA3, R, "SEND KEY" },
538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */
539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540 /* A4 O REPORT KEY */
541 { 0xA4, R, "REPORT KEY" },
542 /* A5 O O OM MOVE MEDIUM */
543 { 0xA5, T | W | O | M, "MOVE MEDIUM" },
544 /* A5 O PLAY AUDIO(12) */
545 { 0xA5, R, "PLAY AUDIO(12)" },
546 /* A6 O EXCHANGE MEDIUM */
547 { 0xA6, M, "EXCHANGE MEDIUM" },
548 /* A6 O LOAD/UNLOAD C/DVD */
549 { 0xA6, R, "LOAD/UNLOAD C/DVD" },
550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */
551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" },
552 /* A7 O SET READ AHEAD */
553 { 0xA7, R, "SET READ AHEAD" },
554 /* A8 O OOO READ(12) */
555 { 0xA8, D | W | R | O, "READ(12)" },
556 /* A8 GET MESSAGE(12) */
557 { 0xA8, C, "GET MESSAGE(12)" },
558 /* A9 O SERVICE ACTION OUT(12) */
559 { 0xA9, V, "SERVICE ACTION OUT(12)" },
560 /* AA O OOO WRITE(12) */
561 { 0xAA, D | W | R | O, "WRITE(12)" },
562 /* AA SEND MESSAGE(12) */
563 { 0xAA, C, "SEND MESSAGE(12)" },
564 /* AB O O SERVICE ACTION IN(12) */
565 { 0xAB, R | V, "SERVICE ACTION IN(12)" },
566 /* AC O ERASE(12) */
567 { 0xAC, O, "ERASE(12)" },
568 /* AC O GET PERFORMANCE */
569 { 0xAC, R, "GET PERFORMANCE" },
570 /* AD O READ DVD STRUCTURE */
571 { 0xAD, R, "READ DVD STRUCTURE" },
572 /* AE O O O WRITE AND VERIFY(12) */
573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" },
574 /* AF O OZO VERIFY(12) */
575 { 0xAF, D | W | R | O, "VERIFY(12)" },
576 /* B0 ZZZ SEARCH DATA HIGH(12) */
577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" },
578 /* B1 ZZZ SEARCH DATA EQUAL(12) */
579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" },
580 /* B2 ZZZ SEARCH DATA LOW(12) */
581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" },
582 /* B3 Z OZO SET LIMITS(12) */
583 { 0xB3, D | W | R | O, "SET LIMITS(12)" },
584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */
585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586 /* B5 OO O O SECURITY PROTOCOL OUT */
587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" },
588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */
589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" },
590 /* B6 O SEND VOLUME TAG */
591 { 0xB6, M, "SEND VOLUME TAG" },
592 /* B6 O SET STREAMING */
593 { 0xB6, R, "SET STREAMING" },
594 /* B7 O O READ DEFECT DATA(12) */
595 { 0xB7, D | O, "READ DEFECT DATA(12)" },
596 /* B8 O OZOM READ ELEMENT STATUS */
597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" },
598 /* B9 O READ CD MSF */
599 { 0xB9, R, "READ CD MSF" },
600 /* BA O O OOMO REDUNDANCY GROUP (IN) */
601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602 /* BA O SCAN */
603 { 0xBA, R, "SCAN" },
604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */
605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606 /* BB O SET CD SPEED */
607 { 0xBB, R, "SET CD SPEED" },
608 /* BC O O OOMO SPARE (IN) */
609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" },
610 /* BD O O OOOO SPARE (OUT) */
611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" },
612 /* BD O MECHANISM STATUS */
613 { 0xBD, R, "MECHANISM STATUS" },
614 /* BE O O OOMO VOLUME SET (IN) */
615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" },
616 /* BE O READ CD */
617 { 0xBE, R, "READ CD" },
618 /* BF O O OOOO VOLUME SET (OUT) */
619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" },
620 /* BF O SEND DVD STRUCTURE */
621 { 0xBF, R, "SEND DVD STRUCTURE" }
622 };
623
624 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)625 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
626 {
627 caddr_t match;
628 int i, j;
629 uint32_t opmask;
630 uint16_t pd_type;
631 int num_ops[2];
632 struct op_table_entry *table[2];
633 int num_tables;
634
635 /*
636 * If we've got inquiry data, use it to determine what type of
637 * device we're dealing with here. Otherwise, assume direct
638 * access.
639 */
640 if (inq_data == NULL) {
641 pd_type = T_DIRECT;
642 match = NULL;
643 } else {
644 pd_type = SID_TYPE(inq_data);
645
646 match = cam_quirkmatch((caddr_t)inq_data,
647 (caddr_t)scsi_op_quirk_table,
648 nitems(scsi_op_quirk_table),
649 sizeof(*scsi_op_quirk_table),
650 scsi_inquiry_match);
651 }
652
653 if (match != NULL) {
654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656 table[1] = scsi_op_codes;
657 num_ops[1] = nitems(scsi_op_codes);
658 num_tables = 2;
659 } else {
660 /*
661 * If this is true, we have a vendor specific opcode that
662 * wasn't covered in the quirk table.
663 */
664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665 return("Vendor Specific Command");
666
667 table[0] = scsi_op_codes;
668 num_ops[0] = nitems(scsi_op_codes);
669 num_tables = 1;
670 }
671
672 /* RBC is 'Simplified' Direct Access Device */
673 if (pd_type == T_RBC)
674 pd_type = T_DIRECT;
675
676 /*
677 * Host managed drives are direct access for the most part.
678 */
679 if (pd_type == T_ZBC_HM)
680 pd_type = T_DIRECT;
681
682 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
683 if (pd_type == T_NODEVICE)
684 pd_type = T_DIRECT;
685
686 opmask = 1 << pd_type;
687
688 for (j = 0; j < num_tables; j++) {
689 for (i = 0; i < num_ops[j] && table[j][i].opcode <= opcode; i++) {
690 if ((table[j][i].opcode == opcode)
691 && ((table[j][i].opmask & opmask) != 0))
692 return(table[j][i].desc);
693 }
694 }
695
696 /*
697 * If we can't find a match for the command in the table, we just
698 * assume it's a vendor specifc command.
699 */
700 return("Vendor Specific Command");
701
702 }
703
704 #else /* SCSI_NO_OP_STRINGS */
705
706 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)707 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
708 {
709 return("");
710 }
711
712 #endif
713
714 #if !defined(SCSI_NO_SENSE_STRINGS)
715 #define SST(asc, ascq, action, desc) \
716 asc, ascq, action, desc
717 #else
718 const char empty_string[] = "";
719
720 #define SST(asc, ascq, action, desc) \
721 asc, ascq, action, empty_string
722 #endif
723
724 const struct sense_key_table_entry sense_key_table[] =
725 {
726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
742 };
743
744 static struct asc_table_entry quantum_fireball_entries[] = {
745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
746 "Logical unit not ready, initializing cmd. required") }
747 };
748
749 static struct asc_table_entry sony_mo_entries[] = {
750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
751 "Logical unit not ready, cause not reportable") }
752 };
753
754 static struct asc_table_entry hgst_entries[] = {
755 { SST(0x04, 0xF0, SS_RDEF,
756 "Vendor Unique - Logical Unit Not Ready") },
757 { SST(0x0A, 0x01, SS_RDEF,
758 "Unrecovered Super Certification Log Write Error") },
759 { SST(0x0A, 0x02, SS_RDEF,
760 "Unrecovered Super Certification Log Read Error") },
761 { SST(0x15, 0x03, SS_RDEF,
762 "Unrecovered Sector Error") },
763 { SST(0x3E, 0x04, SS_RDEF,
764 "Unrecovered Self-Test Hard-Cache Test Fail") },
765 { SST(0x3E, 0x05, SS_RDEF,
766 "Unrecovered Self-Test OTF-Cache Fail") },
767 { SST(0x40, 0x00, SS_RDEF,
768 "Unrecovered SAT No Buffer Overflow Error") },
769 { SST(0x40, 0x01, SS_RDEF,
770 "Unrecovered SAT Buffer Overflow Error") },
771 { SST(0x40, 0x02, SS_RDEF,
772 "Unrecovered SAT No Buffer Overflow With ECS Fault") },
773 { SST(0x40, 0x03, SS_RDEF,
774 "Unrecovered SAT Buffer Overflow With ECS Fault") },
775 { SST(0x40, 0x81, SS_RDEF,
776 "DRAM Failure") },
777 { SST(0x44, 0x0B, SS_RDEF,
778 "Vendor Unique - Internal Target Failure") },
779 { SST(0x44, 0xF2, SS_RDEF,
780 "Vendor Unique - Internal Target Failure") },
781 { SST(0x44, 0xF6, SS_RDEF,
782 "Vendor Unique - Internal Target Failure") },
783 { SST(0x44, 0xF9, SS_RDEF,
784 "Vendor Unique - Internal Target Failure") },
785 { SST(0x44, 0xFA, SS_RDEF,
786 "Vendor Unique - Internal Target Failure") },
787 { SST(0x5D, 0x22, SS_RDEF,
788 "Extreme Over-Temperature Warning") },
789 { SST(0x5D, 0x50, SS_RDEF,
790 "Load/Unload cycle Count Warning") },
791 { SST(0x81, 0x00, SS_RDEF,
792 "Vendor Unique - Internal Logic Error") },
793 { SST(0x85, 0x00, SS_RDEF,
794 "Vendor Unique - Internal Key Seed Error") },
795 };
796
797 static struct asc_table_entry seagate_entries[] = {
798 { SST(0x04, 0xF0, SS_RDEF,
799 "Logical Unit Not Ready, super certify in Progress") },
800 { SST(0x08, 0x86, SS_RDEF,
801 "Write Fault Data Corruption") },
802 { SST(0x09, 0x0D, SS_RDEF,
803 "Tracking Failure") },
804 { SST(0x09, 0x0E, SS_RDEF,
805 "ETF Failure") },
806 { SST(0x0B, 0x5D, SS_RDEF,
807 "Pre-SMART Warning") },
808 { SST(0x0B, 0x85, SS_RDEF,
809 "5V Voltage Warning") },
810 { SST(0x0B, 0x8C, SS_RDEF,
811 "12V Voltage Warning") },
812 { SST(0x0C, 0xFF, SS_RDEF,
813 "Write Error - Too many error recovery revs") },
814 { SST(0x11, 0xFF, SS_RDEF,
815 "Unrecovered Read Error - Too many error recovery revs") },
816 { SST(0x19, 0x0E, SS_RDEF,
817 "Fewer than 1/2 defect list copies") },
818 { SST(0x20, 0xF3, SS_RDEF,
819 "Illegal CDB linked to skip mask cmd") },
820 { SST(0x24, 0xF0, SS_RDEF,
821 "Illegal byte in CDB, LBA not matching") },
822 { SST(0x24, 0xF1, SS_RDEF,
823 "Illegal byte in CDB, LEN not matching") },
824 { SST(0x24, 0xF2, SS_RDEF,
825 "Mask not matching transfer length") },
826 { SST(0x24, 0xF3, SS_RDEF,
827 "Drive formatted without plist") },
828 { SST(0x26, 0x95, SS_RDEF,
829 "Invalid Field Parameter - CAP File") },
830 { SST(0x26, 0x96, SS_RDEF,
831 "Invalid Field Parameter - RAP File") },
832 { SST(0x26, 0x97, SS_RDEF,
833 "Invalid Field Parameter - TMS Firmware Tag") },
834 { SST(0x26, 0x98, SS_RDEF,
835 "Invalid Field Parameter - Check Sum") },
836 { SST(0x26, 0x99, SS_RDEF,
837 "Invalid Field Parameter - Firmware Tag") },
838 { SST(0x29, 0x08, SS_RDEF,
839 "Write Log Dump data") },
840 { SST(0x29, 0x09, SS_RDEF,
841 "Write Log Dump data") },
842 { SST(0x29, 0x0A, SS_RDEF,
843 "Reserved disk space") },
844 { SST(0x29, 0x0B, SS_RDEF,
845 "SDBP") },
846 { SST(0x29, 0x0C, SS_RDEF,
847 "SDBP") },
848 { SST(0x31, 0x91, SS_RDEF,
849 "Format Corrupted World Wide Name (WWN) is Invalid") },
850 { SST(0x32, 0x03, SS_RDEF,
851 "Defect List - Length exceeds Command Allocated Length") },
852 { SST(0x33, 0x00, SS_RDEF,
853 "Flash not ready for access") },
854 { SST(0x3F, 0x70, SS_RDEF,
855 "Invalid RAP block") },
856 { SST(0x3F, 0x71, SS_RDEF,
857 "RAP/ETF mismatch") },
858 { SST(0x3F, 0x90, SS_RDEF,
859 "Invalid CAP block") },
860 { SST(0x3F, 0x91, SS_RDEF,
861 "World Wide Name (WWN) Mismatch") },
862 { SST(0x40, 0x01, SS_RDEF,
863 "DRAM Parity Error") },
864 { SST(0x40, 0x02, SS_RDEF,
865 "DRAM Parity Error") },
866 { SST(0x42, 0x0A, SS_RDEF,
867 "Loopback Test") },
868 { SST(0x42, 0x0B, SS_RDEF,
869 "Loopback Test") },
870 { SST(0x44, 0xF2, SS_RDEF,
871 "Compare error during data integrity check") },
872 { SST(0x44, 0xF6, SS_RDEF,
873 "Unrecoverable error during data integrity check") },
874 { SST(0x47, 0x80, SS_RDEF,
875 "Fibre Channel Sequence Error") },
876 { SST(0x4E, 0x01, SS_RDEF,
877 "Information Unit Too Short") },
878 { SST(0x80, 0x00, SS_RDEF,
879 "General Firmware Error / Command Timeout") },
880 { SST(0x80, 0x01, SS_RDEF,
881 "Command Timeout") },
882 { SST(0x80, 0x02, SS_RDEF,
883 "Command Timeout") },
884 { SST(0x80, 0x80, SS_RDEF,
885 "FC FIFO Error During Read Transfer") },
886 { SST(0x80, 0x81, SS_RDEF,
887 "FC FIFO Error During Write Transfer") },
888 { SST(0x80, 0x82, SS_RDEF,
889 "DISC FIFO Error During Read Transfer") },
890 { SST(0x80, 0x83, SS_RDEF,
891 "DISC FIFO Error During Write Transfer") },
892 { SST(0x80, 0x84, SS_RDEF,
893 "LBA Seeded LRC Error on Read") },
894 { SST(0x80, 0x85, SS_RDEF,
895 "LBA Seeded LRC Error on Write") },
896 { SST(0x80, 0x86, SS_RDEF,
897 "IOEDC Error on Read") },
898 { SST(0x80, 0x87, SS_RDEF,
899 "IOEDC Error on Write") },
900 { SST(0x80, 0x88, SS_RDEF,
901 "Host Parity Check Failed") },
902 { SST(0x80, 0x89, SS_RDEF,
903 "IOEDC error on read detected by formatter") },
904 { SST(0x80, 0x8A, SS_RDEF,
905 "Host Parity Errors / Host FIFO Initialization Failed") },
906 { SST(0x80, 0x8B, SS_RDEF,
907 "Host Parity Errors") },
908 { SST(0x80, 0x8C, SS_RDEF,
909 "Host Parity Errors") },
910 { SST(0x80, 0x8D, SS_RDEF,
911 "Host Parity Errors") },
912 { SST(0x81, 0x00, SS_RDEF,
913 "LA Check Failed") },
914 { SST(0x82, 0x00, SS_RDEF,
915 "Internal client detected insufficient buffer") },
916 { SST(0x84, 0x00, SS_RDEF,
917 "Scheduled Diagnostic And Repair") },
918 };
919
920 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
921 {
922 /*
923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
924 * when they really should return 0x04 0x02.
925 */
926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
927 /*num_sense_keys*/0,
928 nitems(quantum_fireball_entries),
929 /*sense key entries*/NULL,
930 quantum_fireball_entries
931 },
932 {
933 /*
934 * This Sony MO drive likes to return 0x04, 0x00 when it
935 * isn't spun up.
936 */
937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
938 /*num_sense_keys*/0,
939 nitems(sony_mo_entries),
940 /*sense key entries*/NULL,
941 sony_mo_entries
942 },
943 {
944 /*
945 * HGST vendor-specific error codes
946 */
947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
948 /*num_sense_keys*/0,
949 nitems(hgst_entries),
950 /*sense key entries*/NULL,
951 hgst_entries
952 },
953 {
954 /*
955 * SEAGATE vendor-specific error codes
956 */
957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
958 /*num_sense_keys*/0,
959 nitems(seagate_entries),
960 /*sense key entries*/NULL,
961 seagate_entries
962 }
963 };
964
965 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
966
967 static struct asc_table_entry asc_table[] = {
968 /*
969 * From: http://www.t10.org/lists/asc-num.txt
970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
971 */
972 /*
973 * File: ASC-NUM.TXT
974 *
975 * SCSI ASC/ASCQ Assignments
976 * Numeric Sorted Listing
977 * as of Sat Mar 25 2023 at 04:30 (using old columns)
978 *
979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) -------------------
981 * . L - PRINTER DEVICE (SSC) blank = reserved
982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed
983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
984 * . . R - CD DEVICE (MMC)
985 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
986 * . . .M - MEDIA CHANGER DEVICE (SMC)
987 * . . . A - STORAGE ARRAY DEVICE (SCC)
988 * . . . E - ENCLOSURE SERVICES DEVICE (SES)
989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
992 * . . . . .F - OBJECT-BASED STORAGE (OSD)
993 * DTLPWROMAEBKVF
994 * ASC ASCQ Action
995 * Description
996 */
997 /* DTLPWROMAEBKVF */
998 { SST(0x00, 0x00, SS_NOP,
999 "No additional sense information") },
1000 /* T */
1001 { SST(0x00, 0x01, SS_RDEF,
1002 "Filemark detected") },
1003 /* T */
1004 { SST(0x00, 0x02, SS_RDEF,
1005 "End-of-partition/medium detected") },
1006 /* T */
1007 { SST(0x00, 0x03, SS_RDEF,
1008 "Setmark detected") },
1009 /* T */
1010 { SST(0x00, 0x04, SS_RDEF,
1011 "Beginning-of-partition/medium detected") },
1012 /* TL */
1013 { SST(0x00, 0x05, SS_RDEF,
1014 "End-of-data detected") },
1015 /* DTLPWROMAEBKVF */
1016 { SST(0x00, 0x06, SS_RDEF,
1017 "I/O process terminated") },
1018 /* T */
1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */
1020 "Programmable early warning detected") },
1021 /* R */
1022 { SST(0x00, 0x11, SS_FATAL | EBUSY,
1023 "Audio play operation in progress") },
1024 /* R */
1025 { SST(0x00, 0x12, SS_NOP,
1026 "Audio play operation paused") },
1027 /* R */
1028 { SST(0x00, 0x13, SS_NOP,
1029 "Audio play operation successfully completed") },
1030 /* R */
1031 { SST(0x00, 0x14, SS_RDEF,
1032 "Audio play operation stopped due to error") },
1033 /* R */
1034 { SST(0x00, 0x15, SS_NOP,
1035 "No current audio status to return") },
1036 /* DTLPWROMAEBKVF */
1037 { SST(0x00, 0x16, SS_FATAL | EBUSY,
1038 "Operation in progress") },
1039 /* DTL WROMAEBKVF */
1040 { SST(0x00, 0x17, SS_RDEF,
1041 "Cleaning requested") },
1042 /* T */
1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */
1044 "Erase operation in progress") },
1045 /* T */
1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */
1047 "Locate operation in progress") },
1048 /* T */
1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */
1050 "Rewind operation in progress") },
1051 /* T */
1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */
1053 "Set capacity operation in progress") },
1054 /* T */
1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */
1056 "Verify operation in progress") },
1057 /* DT B */
1058 { SST(0x00, 0x1D, SS_NOP,
1059 "ATA pass through information available") },
1060 /* DT R MAEBKV */
1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */
1062 "Conflicting SA creation request") },
1063 /* DT B */
1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */
1065 "Logical unit transitioning to another power condition") },
1066 /* DT P B */
1067 { SST(0x00, 0x20, SS_NOP,
1068 "Extended copy information available") },
1069 /* D */
1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */
1071 "Atomic command aborted due to ACA") },
1072 /* D */
1073 { SST(0x00, 0x22, SS_RDEF, /* XXX TBD */
1074 "Deferred microcode is pending") },
1075 /* D */
1076 { SST(0x00, 0x23, SS_RDEF, /* XXX TBD */
1077 "Overlapping atomic command in progress") },
1078 /* D W O BK */
1079 { SST(0x01, 0x00, SS_RDEF,
1080 "No index/sector signal") },
1081 /* D WRO BK */
1082 { SST(0x02, 0x00, SS_FATAL | EIO,
1083 "No seek complete") },
1084 /* DTL W O BK */
1085 { SST(0x03, 0x00, SS_RDEF,
1086 "Peripheral device write fault") },
1087 /* T */
1088 { SST(0x03, 0x01, SS_RDEF,
1089 "No write current") },
1090 /* T */
1091 { SST(0x03, 0x02, SS_RDEF,
1092 "Excessive write errors") },
1093 /* DTLPWROMAEBKVF */
1094 { SST(0x04, 0x00, SS_RDEF,
1095 "Logical unit not ready, cause not reportable") },
1096 /* DTLPWROMAEBKVF */
1097 { SST(0x04, 0x01, SS_WAIT | EBUSY,
1098 "Logical unit is in process of becoming ready") },
1099 /* DTLPWROMAEBKVF */
1100 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1101 "Logical unit not ready, initializing command required") },
1102 /* DTLPWROMAEBKVF */
1103 { SST(0x04, 0x03, SS_FATAL | ENXIO,
1104 "Logical unit not ready, manual intervention required") },
1105 /* DTL RO B */
1106 { SST(0x04, 0x04, SS_FATAL | EBUSY,
1107 "Logical unit not ready, format in progress") },
1108 /* DT W O A BK F */
1109 { SST(0x04, 0x05, SS_FATAL | EBUSY,
1110 "Logical unit not ready, rebuild in progress") },
1111 /* DT W O A BK */
1112 { SST(0x04, 0x06, SS_FATAL | EBUSY,
1113 "Logical unit not ready, recalculation in progress") },
1114 /* DTLPWROMAEBKVF */
1115 { SST(0x04, 0x07, SS_FATAL | EBUSY,
1116 "Logical unit not ready, operation in progress") },
1117 /* R */
1118 { SST(0x04, 0x08, SS_FATAL | EBUSY,
1119 "Logical unit not ready, long write in progress") },
1120 /* DTLPWROMAEBKVF */
1121 { SST(0x04, 0x09, SS_FATAL | EBUSY,
1122 "Logical unit not ready, self-test in progress") },
1123 /* DTLPWROMAEBKVF */
1124 { SST(0x04, 0x0A, SS_WAIT | ENXIO,
1125 "Logical unit not accessible, asymmetric access state transition")},
1126 /* DTLPWROMAEBKVF */
1127 { SST(0x04, 0x0B, SS_FATAL | ENXIO,
1128 "Logical unit not accessible, target port in standby state") },
1129 /* DTLPWROMAEBKVF */
1130 { SST(0x04, 0x0C, SS_FATAL | ENXIO,
1131 "Logical unit not accessible, target port in unavailable state") },
1132 /* F */
1133 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */
1134 "Logical unit not ready, structure check required") },
1135 /* DTL WR MAEBKVF */
1136 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */
1137 "Logical unit not ready, security session in progress") },
1138 /* DT WROM B */
1139 { SST(0x04, 0x10, SS_FATAL | ENODEV,
1140 "Logical unit not ready, auxiliary memory not accessible") },
1141 /* DT WRO AEB VF */
1142 { SST(0x04, 0x11, SS_WAIT | ENXIO,
1143 "Logical unit not ready, notify (enable spinup) required") },
1144 /* M V */
1145 { SST(0x04, 0x12, SS_FATAL | ENXIO,
1146 "Logical unit not ready, offline") },
1147 /* DT R MAEBKV */
1148 { SST(0x04, 0x13, SS_WAIT | EBUSY,
1149 "Logical unit not ready, SA creation in progress") },
1150 /* D B */
1151 { SST(0x04, 0x14, SS_WAIT | ENOSPC,
1152 "Logical unit not ready, space allocation in progress") },
1153 /* M */
1154 { SST(0x04, 0x15, SS_FATAL | ENXIO,
1155 "Logical unit not ready, robotics disabled") },
1156 /* M */
1157 { SST(0x04, 0x16, SS_FATAL | ENXIO,
1158 "Logical unit not ready, configuration required") },
1159 /* M */
1160 { SST(0x04, 0x17, SS_FATAL | ENXIO,
1161 "Logical unit not ready, calibration required") },
1162 /* M */
1163 { SST(0x04, 0x18, SS_FATAL | ENXIO,
1164 "Logical unit not ready, a door is open") },
1165 /* M */
1166 { SST(0x04, 0x19, SS_FATAL | ENODEV,
1167 "Logical unit not ready, operating in sequential mode") },
1168 /* DT B */
1169 { SST(0x04, 0x1A, SS_WAIT | EBUSY,
1170 "Logical unit not ready, START/STOP UNIT command in progress") },
1171 /* D B */
1172 { SST(0x04, 0x1B, SS_WAIT | EBUSY,
1173 "Logical unit not ready, sanitize in progress") },
1174 /* DT MAEB */
1175 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1176 "Logical unit not ready, additional power use not yet granted") },
1177 /* D */
1178 { SST(0x04, 0x1D, SS_WAIT | EBUSY,
1179 "Logical unit not ready, configuration in progress") },
1180 /* D */
1181 { SST(0x04, 0x1E, SS_FATAL | ENXIO,
1182 "Logical unit not ready, microcode activation required") },
1183 /* DTLPWROMAEBKVF */
1184 { SST(0x04, 0x1F, SS_FATAL | ENXIO,
1185 "Logical unit not ready, microcode download required") },
1186 /* DTLPWROMAEBKVF */
1187 { SST(0x04, 0x20, SS_FATAL | ENXIO,
1188 "Logical unit not ready, logical unit reset required") },
1189 /* DTLPWROMAEBKVF */
1190 { SST(0x04, 0x21, SS_FATAL | ENXIO,
1191 "Logical unit not ready, hard reset required") },
1192 /* DTLPWROMAEBKVF */
1193 { SST(0x04, 0x22, SS_FATAL | ENXIO,
1194 "Logical unit not ready, power cycle required") },
1195 /* D */
1196 { SST(0x04, 0x23, SS_FATAL | ENXIO,
1197 "Logical unit not ready, affiliation required") },
1198 /* D */
1199 { SST(0x04, 0x24, SS_FATAL | EBUSY,
1200 "Depopulation in progress") },
1201 /* D */
1202 { SST(0x04, 0x25, SS_FATAL | EBUSY,
1203 "Depopulation restoration in progress") },
1204 /* DTL WROMAEBKVF */
1205 { SST(0x05, 0x00, SS_RDEF,
1206 "Logical unit does not respond to selection") },
1207 /* D WROM BK */
1208 { SST(0x06, 0x00, SS_RDEF,
1209 "No reference position found") },
1210 /* DTL WROM BK */
1211 { SST(0x07, 0x00, SS_RDEF,
1212 "Multiple peripheral devices selected") },
1213 /* DTL WROMAEBKVF */
1214 { SST(0x08, 0x00, SS_RDEF,
1215 "Logical unit communication failure") },
1216 /* DTL WROMAEBKVF */
1217 { SST(0x08, 0x01, SS_RDEF,
1218 "Logical unit communication time-out") },
1219 /* DTL WROMAEBKVF */
1220 { SST(0x08, 0x02, SS_RDEF,
1221 "Logical unit communication parity error") },
1222 /* DT ROM BK */
1223 { SST(0x08, 0x03, SS_RDEF,
1224 "Logical unit communication CRC error (Ultra-DMA/32)") },
1225 /* DTLPWRO K */
1226 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */
1227 "Unreachable copy target") },
1228 /* DT WRO B */
1229 { SST(0x09, 0x00, SS_RDEF,
1230 "Track following error") },
1231 /* WRO K */
1232 { SST(0x09, 0x01, SS_RDEF,
1233 "Tracking servo failure") },
1234 /* WRO K */
1235 { SST(0x09, 0x02, SS_RDEF,
1236 "Focus servo failure") },
1237 /* WRO */
1238 { SST(0x09, 0x03, SS_RDEF,
1239 "Spindle servo failure") },
1240 /* DT WRO B */
1241 { SST(0x09, 0x04, SS_RDEF,
1242 "Head select fault") },
1243 /* DT RO B */
1244 { SST(0x09, 0x05, SS_RDEF,
1245 "Vibration induced tracking error") },
1246 /* DTLPWROMAEBKVF */
1247 { SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1248 "Error log overflow") },
1249 /* DTLPWROMAEBKVF */
1250 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1251 "Warning") },
1252 /* DTLPWROMAEBKVF */
1253 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1254 "Warning - specified temperature exceeded") },
1255 /* DTLPWROMAEBKVF */
1256 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1257 "Warning - enclosure degraded") },
1258 /* DTLPWROMAEBKVF */
1259 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1260 "Warning - background self-test failed") },
1261 /* DTLPWRO AEBKVF */
1262 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1263 "Warning - background pre-scan detected medium error") },
1264 /* DTLPWRO AEBKVF */
1265 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1266 "Warning - background medium scan detected medium error") },
1267 /* DTLPWROMAEBKVF */
1268 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1269 "Warning - non-volatile cache now volatile") },
1270 /* DTLPWROMAEBKVF */
1271 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1272 "Warning - degraded power to non-volatile cache") },
1273 /* DTLPWROMAEBKVF */
1274 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1275 "Warning - power loss expected") },
1276 /* D */
1277 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1278 "Warning - device statistics notification available") },
1279 /* DTLPWROMAEBKV */
1280 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1281 "Warning - High critical temperature limit exceeded") },
1282 /* DTLPWROMAEBKV */
1283 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1284 "Warning - Low critical temperature limit exceeded") },
1285 /* DTLPWROMAEBKV */
1286 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1287 "Warning - High operating temperature limit exceeded") },
1288 /* DTLPWROMAEBKV */
1289 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1290 "Warning - Low operating temperature limit exceeded") },
1291 /* DTLPWROMAEBKV */
1292 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1293 "Warning - High citical humidity limit exceeded") },
1294 /* DTLPWROMAEBKV */
1295 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1296 "Warning - Low citical humidity limit exceeded") },
1297 /* DTLPWROMAEBKV */
1298 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1299 "Warning - High operating humidity limit exceeded") },
1300 /* DTLPWROMAEBKV */
1301 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1302 "Warning - Low operating humidity limit exceeded") },
1303 /* DTLPWROMAEBKVF */
1304 { SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE,
1305 "Warning - Microcode security at risk") },
1306 /* DTLPWROMAEBKVF */
1307 { SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE,
1308 "Warning - Microcode digital signature validation failure") },
1309 /* D */
1310 { SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE,
1311 "Warning - Physical element status change") },
1312 /* T R */
1313 { SST(0x0C, 0x00, SS_RDEF,
1314 "Write error") },
1315 /* K */
1316 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1317 "Write error - recovered with auto reallocation") },
1318 /* D W O BK */
1319 { SST(0x0C, 0x02, SS_RDEF,
1320 "Write error - auto reallocation failed") },
1321 /* D W O BK */
1322 { SST(0x0C, 0x03, SS_RDEF,
1323 "Write error - recommend reassignment") },
1324 /* DT W O B */
1325 { SST(0x0C, 0x04, SS_RDEF,
1326 "Compression check miscompare error") },
1327 /* DT W O B */
1328 { SST(0x0C, 0x05, SS_RDEF,
1329 "Data expansion occurred during compression") },
1330 /* DT W O B */
1331 { SST(0x0C, 0x06, SS_RDEF,
1332 "Block not compressible") },
1333 /* R */
1334 { SST(0x0C, 0x07, SS_RDEF,
1335 "Write error - recovery needed") },
1336 /* R */
1337 { SST(0x0C, 0x08, SS_RDEF,
1338 "Write error - recovery failed") },
1339 /* R */
1340 { SST(0x0C, 0x09, SS_RDEF,
1341 "Write error - loss of streaming") },
1342 /* R */
1343 { SST(0x0C, 0x0A, SS_RDEF,
1344 "Write error - padding blocks added") },
1345 /* DT WROM B */
1346 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */
1347 "Auxiliary memory write error") },
1348 /* DTLPWRO AEBKVF */
1349 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */
1350 "Write error - unexpected unsolicited data") },
1351 /* DTLPWRO AEBKVF */
1352 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */
1353 "Write error - not enough unsolicited data") },
1354 /* DT W O BK */
1355 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */
1356 "Multiple write errors") },
1357 /* R */
1358 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */
1359 "Defects in error window") },
1360 /* D */
1361 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */
1362 "Incomplete multiple atomic write operations") },
1363 /* D */
1364 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */
1365 "Write error - recovery scan needed") },
1366 /* D */
1367 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */
1368 "Write error - insufficient zone resources") },
1369 /* DTLPWRO A K */
1370 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */
1371 "Error detected by third party temporary initiator") },
1372 /* DTLPWRO A K */
1373 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */
1374 "Third party device failure") },
1375 /* DTLPWRO A K */
1376 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */
1377 "Copy target device not reachable") },
1378 /* DTLPWRO A K */
1379 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */
1380 "Incorrect copy target device type") },
1381 /* DTLPWRO A K */
1382 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */
1383 "Copy target device data underrun") },
1384 /* DTLPWRO A K */
1385 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */
1386 "Copy target device data overrun") },
1387 /* DT PWROMAEBK F */
1388 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */
1389 "Invalid information unit") },
1390 /* DT PWROMAEBK F */
1391 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */
1392 "Information unit too short") },
1393 /* DT PWROMAEBK F */
1394 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */
1395 "Information unit too long") },
1396 /* DT P R MAEBK F */
1397 { SST(0x0E, 0x03, SS_FATAL | EINVAL,
1398 "Invalid field in command information unit") },
1399 /* D W O BK */
1400 { SST(0x10, 0x00, SS_RDEF,
1401 "ID CRC or ECC error") },
1402 /* DT W O */
1403 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */
1404 "Logical block guard check failed") },
1405 /* DT W O */
1406 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */
1407 "Logical block application tag check failed") },
1408 /* DT W O */
1409 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */
1410 "Logical block reference tag check failed") },
1411 /* T */
1412 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */
1413 "Logical block protection error on recovered buffer data") },
1414 /* T */
1415 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */
1416 "Logical block protection method error") },
1417 /* DT WRO BK */
1418 { SST(0x11, 0x00, SS_FATAL|EIO,
1419 "Unrecovered read error") },
1420 /* DT WRO BK */
1421 { SST(0x11, 0x01, SS_FATAL|EIO,
1422 "Read retries exhausted") },
1423 /* DT WRO BK */
1424 { SST(0x11, 0x02, SS_FATAL|EIO,
1425 "Error too long to correct") },
1426 /* DT W O BK */
1427 { SST(0x11, 0x03, SS_FATAL|EIO,
1428 "Multiple read errors") },
1429 /* D W O BK */
1430 { SST(0x11, 0x04, SS_FATAL|EIO,
1431 "Unrecovered read error - auto reallocate failed") },
1432 /* WRO B */
1433 { SST(0x11, 0x05, SS_FATAL|EIO,
1434 "L-EC uncorrectable error") },
1435 /* WRO B */
1436 { SST(0x11, 0x06, SS_FATAL|EIO,
1437 "CIRC unrecovered error") },
1438 /* W O B */
1439 { SST(0x11, 0x07, SS_RDEF,
1440 "Data re-synchronization error") },
1441 /* T */
1442 { SST(0x11, 0x08, SS_RDEF,
1443 "Incomplete block read") },
1444 /* T */
1445 { SST(0x11, 0x09, SS_RDEF,
1446 "No gap found") },
1447 /* DT O BK */
1448 { SST(0x11, 0x0A, SS_RDEF,
1449 "Miscorrected error") },
1450 /* D W O BK */
1451 { SST(0x11, 0x0B, SS_FATAL|EIO,
1452 "Unrecovered read error - recommend reassignment") },
1453 /* D W O BK */
1454 { SST(0x11, 0x0C, SS_FATAL|EIO,
1455 "Unrecovered read error - recommend rewrite the data") },
1456 /* DT WRO B */
1457 { SST(0x11, 0x0D, SS_RDEF,
1458 "De-compression CRC error") },
1459 /* DT WRO B */
1460 { SST(0x11, 0x0E, SS_RDEF,
1461 "Cannot decompress using declared algorithm") },
1462 /* R */
1463 { SST(0x11, 0x0F, SS_RDEF,
1464 "Error reading UPC/EAN number") },
1465 /* R */
1466 { SST(0x11, 0x10, SS_RDEF,
1467 "Error reading ISRC number") },
1468 /* R */
1469 { SST(0x11, 0x11, SS_RDEF,
1470 "Read error - loss of streaming") },
1471 /* DT WROM B */
1472 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */
1473 "Auxiliary memory read error") },
1474 /* DTLPWRO AEBKVF */
1475 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */
1476 "Read error - failed retransmission request") },
1477 /* D */
1478 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */
1479 "Read error - LBA marked bad by application client") },
1480 /* D */
1481 { SST(0x11, 0x15, SS_FATAL | EIO,
1482 "Write after sanitize required") },
1483 /* D W O BK */
1484 { SST(0x12, 0x00, SS_RDEF,
1485 "Address mark not found for ID field") },
1486 /* D W O BK */
1487 { SST(0x13, 0x00, SS_RDEF,
1488 "Address mark not found for data field") },
1489 /* DTL WRO BK */
1490 { SST(0x14, 0x00, SS_RDEF,
1491 "Recorded entity not found") },
1492 /* DT WRO BK */
1493 { SST(0x14, 0x01, SS_RDEF,
1494 "Record not found") },
1495 /* T */
1496 { SST(0x14, 0x02, SS_RDEF,
1497 "Filemark or setmark not found") },
1498 /* T */
1499 { SST(0x14, 0x03, SS_RDEF,
1500 "End-of-data not found") },
1501 /* T */
1502 { SST(0x14, 0x04, SS_RDEF,
1503 "Block sequence error") },
1504 /* DT W O BK */
1505 { SST(0x14, 0x05, SS_RDEF,
1506 "Record not found - recommend reassignment") },
1507 /* DT W O BK */
1508 { SST(0x14, 0x06, SS_RDEF,
1509 "Record not found - data auto-reallocated") },
1510 /* T */
1511 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */
1512 "Locate operation failure") },
1513 /* DTL WROM BK */
1514 { SST(0x15, 0x00, SS_RDEF,
1515 "Random positioning error") },
1516 /* DTL WROM BK */
1517 { SST(0x15, 0x01, SS_RDEF,
1518 "Mechanical positioning error") },
1519 /* DT WRO BK */
1520 { SST(0x15, 0x02, SS_RDEF,
1521 "Positioning error detected by read of medium") },
1522 /* D W O BK */
1523 { SST(0x16, 0x00, SS_RDEF,
1524 "Data synchronization mark error") },
1525 /* D W O BK */
1526 { SST(0x16, 0x01, SS_RDEF,
1527 "Data sync error - data rewritten") },
1528 /* D W O BK */
1529 { SST(0x16, 0x02, SS_RDEF,
1530 "Data sync error - recommend rewrite") },
1531 /* D W O BK */
1532 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1533 "Data sync error - data auto-reallocated") },
1534 /* D W O BK */
1535 { SST(0x16, 0x04, SS_RDEF,
1536 "Data sync error - recommend reassignment") },
1537 /* DT WRO BK */
1538 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1539 "Recovered data with no error correction applied") },
1540 /* DT WRO BK */
1541 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1542 "Recovered data with retries") },
1543 /* DT WRO BK */
1544 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1545 "Recovered data with positive head offset") },
1546 /* DT WRO BK */
1547 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1548 "Recovered data with negative head offset") },
1549 /* WRO B */
1550 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1551 "Recovered data with retries and/or CIRC applied") },
1552 /* D WRO BK */
1553 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1554 "Recovered data using previous sector ID") },
1555 /* D W O BK */
1556 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1557 "Recovered data without ECC - data auto-reallocated") },
1558 /* D WRO BK */
1559 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1560 "Recovered data without ECC - recommend reassignment") },
1561 /* D WRO BK */
1562 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1563 "Recovered data without ECC - recommend rewrite") },
1564 /* D WRO BK */
1565 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1566 "Recovered data without ECC - data rewritten") },
1567 /* DT WRO BK */
1568 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1569 "Recovered data with error correction applied") },
1570 /* D WRO BK */
1571 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1572 "Recovered data with error corr. & retries applied") },
1573 /* D WRO BK */
1574 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1575 "Recovered data - data auto-reallocated") },
1576 /* R */
1577 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1578 "Recovered data with CIRC") },
1579 /* R */
1580 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1581 "Recovered data with L-EC") },
1582 /* D WRO BK */
1583 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1584 "Recovered data - recommend reassignment") },
1585 /* D WRO BK */
1586 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1587 "Recovered data - recommend rewrite") },
1588 /* D W O BK */
1589 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1590 "Recovered data with ECC - data rewritten") },
1591 /* R */
1592 { SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1593 "Recovered data with linking") },
1594 /* D O K */
1595 { SST(0x19, 0x00, SS_RDEF,
1596 "Defect list error") },
1597 /* D O K */
1598 { SST(0x19, 0x01, SS_RDEF,
1599 "Defect list not available") },
1600 /* D O K */
1601 { SST(0x19, 0x02, SS_RDEF,
1602 "Defect list error in primary list") },
1603 /* D O K */
1604 { SST(0x19, 0x03, SS_RDEF,
1605 "Defect list error in grown list") },
1606 /* DTLPWROMAEBKVF */
1607 { SST(0x1A, 0x00, SS_RDEF,
1608 "Parameter list length error") },
1609 /* DTLPWROMAEBKVF */
1610 { SST(0x1B, 0x00, SS_RDEF,
1611 "Synchronous data transfer error") },
1612 /* D O BK */
1613 { SST(0x1C, 0x00, SS_RDEF,
1614 "Defect list not found") },
1615 /* D O BK */
1616 { SST(0x1C, 0x01, SS_RDEF,
1617 "Primary defect list not found") },
1618 /* D O BK */
1619 { SST(0x1C, 0x02, SS_RDEF,
1620 "Grown defect list not found") },
1621 /* DT WRO BK */
1622 { SST(0x1D, 0x00, SS_FATAL,
1623 "Miscompare during verify operation") },
1624 /* D B */
1625 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */
1626 "Miscomparable verify of unmapped LBA") },
1627 /* D W O BK */
1628 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1629 "Recovered ID with ECC correction") },
1630 /* D O K */
1631 { SST(0x1F, 0x00, SS_RDEF,
1632 "Partial defect list transfer") },
1633 /* DTLPWROMAEBKVF */
1634 { SST(0x20, 0x00, SS_FATAL | EINVAL,
1635 "Invalid command operation code") },
1636 /* DT PWROMAEBK */
1637 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */
1638 "Access denied - initiator pending-enrolled") },
1639 /* DT PWROMAEBK */
1640 { SST(0x20, 0x02, SS_FATAL | EPERM,
1641 "Access denied - no access rights") },
1642 /* DT PWROMAEBK */
1643 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */
1644 "Access denied - invalid mgmt ID key") },
1645 /* T */
1646 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */
1647 "Illegal command while in write capable state") },
1648 /* T */
1649 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */
1650 "Obsolete") },
1651 /* T */
1652 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */
1653 "Illegal command while in explicit address mode") },
1654 /* T */
1655 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */
1656 "Illegal command while in implicit address mode") },
1657 /* DT PWROMAEBK */
1658 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */
1659 "Access denied - enrollment conflict") },
1660 /* DT PWROMAEBK */
1661 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */
1662 "Access denied - invalid LU identifier") },
1663 /* DT PWROMAEBK */
1664 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */
1665 "Access denied - invalid proxy token") },
1666 /* DT PWROMAEBK */
1667 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */
1668 "Access denied - ACL LUN conflict") },
1669 /* T */
1670 { SST(0x20, 0x0C, SS_FATAL | EINVAL,
1671 "Illegal command when not in append-only mode") },
1672 /* D */
1673 { SST(0x20, 0x0D, SS_FATAL | EINVAL,
1674 "Not an administrative logical unit") },
1675 /* D */
1676 { SST(0x20, 0x0E, SS_FATAL | EINVAL,
1677 "Not a subsidiary logical unit") },
1678 /* D */
1679 { SST(0x20, 0x0F, SS_FATAL | EINVAL,
1680 "Not a conglomerate logical unit") },
1681 /* DT WRO BK */
1682 { SST(0x21, 0x00, SS_FATAL | EINVAL,
1683 "Logical block address out of range") },
1684 /* DT WROM BK */
1685 { SST(0x21, 0x01, SS_FATAL | EINVAL,
1686 "Invalid element address") },
1687 /* R */
1688 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */
1689 "Invalid address for write") },
1690 /* R */
1691 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */
1692 "Invalid write crossing layer jump") },
1693 /* D */
1694 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */
1695 "Unaligned write command") },
1696 /* D */
1697 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */
1698 "Write boundary violation") },
1699 /* D */
1700 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */
1701 "Attempt to read invalid data") },
1702 /* D */
1703 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */
1704 "Read boundary violation") },
1705 /* D */
1706 { SST(0x21, 0x08, SS_FATAL | EINVAL,
1707 "Misaligned write command") },
1708 /* D */
1709 { SST(0x21, 0x09, SS_FATAL | EINVAL,
1710 "Attempt to access gap zone") },
1711 /* D */
1712 { SST(0x22, 0x00, SS_FATAL | EINVAL,
1713 "Illegal function (use 20 00, 24 00, or 26 00)") },
1714 /* DT P B */
1715 { SST(0x23, 0x00, SS_FATAL | EINVAL,
1716 "Invalid token operation, cause not reportable") },
1717 /* DT P B */
1718 { SST(0x23, 0x01, SS_FATAL | EINVAL,
1719 "Invalid token operation, unsupported token type") },
1720 /* DT P B */
1721 { SST(0x23, 0x02, SS_FATAL | EINVAL,
1722 "Invalid token operation, remote token usage not supported") },
1723 /* DT P B */
1724 { SST(0x23, 0x03, SS_FATAL | EINVAL,
1725 "Invalid token operation, remote ROD token creation not supported") },
1726 /* DT P B */
1727 { SST(0x23, 0x04, SS_FATAL | EINVAL,
1728 "Invalid token operation, token unknown") },
1729 /* DT P B */
1730 { SST(0x23, 0x05, SS_FATAL | EINVAL,
1731 "Invalid token operation, token corrupt") },
1732 /* DT P B */
1733 { SST(0x23, 0x06, SS_FATAL | EINVAL,
1734 "Invalid token operation, token revoked") },
1735 /* DT P B */
1736 { SST(0x23, 0x07, SS_FATAL | EINVAL,
1737 "Invalid token operation, token expired") },
1738 /* DT P B */
1739 { SST(0x23, 0x08, SS_FATAL | EINVAL,
1740 "Invalid token operation, token cancelled") },
1741 /* DT P B */
1742 { SST(0x23, 0x09, SS_FATAL | EINVAL,
1743 "Invalid token operation, token deleted") },
1744 /* DT P B */
1745 { SST(0x23, 0x0A, SS_FATAL | EINVAL,
1746 "Invalid token operation, invalid token length") },
1747 /* DTLPWROMAEBKVF */
1748 { SST(0x24, 0x00, SS_FATAL | EINVAL,
1749 "Invalid field in CDB") },
1750 /* DTLPWRO AEBKVF */
1751 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */
1752 "CDB decryption error") },
1753 /* T */
1754 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */
1755 "Obsolete") },
1756 /* T */
1757 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */
1758 "Obsolete") },
1759 /* F */
1760 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */
1761 "Security audit value frozen") },
1762 /* F */
1763 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */
1764 "Security working key frozen") },
1765 /* F */
1766 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */
1767 "NONCE not unique") },
1768 /* F */
1769 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */
1770 "NONCE timestamp out of range") },
1771 /* DT R MAEBKV */
1772 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */
1773 "Invalid XCDB") },
1774 /* D */
1775 { SST(0x24, 0x09, SS_FATAL | EINVAL,
1776 "Invalid fast format") },
1777 /* DTLPWROMAEBKVF */
1778 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1779 "Logical unit not supported") },
1780 /* DTLPWROMAEBKVF */
1781 { SST(0x26, 0x00, SS_FATAL | EINVAL,
1782 "Invalid field in parameter list") },
1783 /* DTLPWROMAEBKVF */
1784 { SST(0x26, 0x01, SS_FATAL | EINVAL,
1785 "Parameter not supported") },
1786 /* DTLPWROMAEBKVF */
1787 { SST(0x26, 0x02, SS_FATAL | EINVAL,
1788 "Parameter value invalid") },
1789 /* DTLPWROMAE K */
1790 { SST(0x26, 0x03, SS_FATAL | EINVAL,
1791 "Threshold parameters not supported") },
1792 /* DTLPWROMAEBKVF */
1793 { SST(0x26, 0x04, SS_FATAL | EINVAL,
1794 "Invalid release of persistent reservation") },
1795 /* DTLPWRO A BK */
1796 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */
1797 "Data decryption error") },
1798 /* DTLPWRO K */
1799 { SST(0x26, 0x06, SS_FATAL | EINVAL,
1800 "Too many target descriptors") },
1801 /* DTLPWRO K */
1802 { SST(0x26, 0x07, SS_FATAL | EINVAL,
1803 "Unsupported target descriptor type code") },
1804 /* DTLPWRO K */
1805 { SST(0x26, 0x08, SS_FATAL | EINVAL,
1806 "Too many segment descriptors") },
1807 /* DTLPWRO K */
1808 { SST(0x26, 0x09, SS_FATAL | EINVAL,
1809 "Unsupported segment descriptor type code") },
1810 /* DTLPWRO K */
1811 { SST(0x26, 0x0A, SS_FATAL | EINVAL,
1812 "Unexpected inexact segment") },
1813 /* DTLPWRO K */
1814 { SST(0x26, 0x0B, SS_FATAL | EINVAL,
1815 "Inline data length exceeded") },
1816 /* DTLPWRO K */
1817 { SST(0x26, 0x0C, SS_FATAL | EINVAL,
1818 "Invalid operation for copy source or destination") },
1819 /* DTLPWRO K */
1820 { SST(0x26, 0x0D, SS_FATAL | EINVAL,
1821 "Copy segment granularity violation") },
1822 /* DT PWROMAEBK */
1823 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */
1824 "Invalid parameter while port is enabled") },
1825 /* F */
1826 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */
1827 "Invalid data-out buffer integrity check value") },
1828 /* T */
1829 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */
1830 "Data decryption key fail limit reached") },
1831 /* T */
1832 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */
1833 "Incomplete key-associated data set") },
1834 /* T */
1835 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */
1836 "Vendor specific key reference not found") },
1837 /* D */
1838 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */
1839 "Application tag mode page is invalid") },
1840 /* T */
1841 { SST(0x26, 0x14, SS_RDEF, /* XXX TBD */
1842 "Tape stream mirroring prevented") },
1843 /* T */
1844 { SST(0x26, 0x15, SS_FATAL | EINVAL,
1845 "Copy source or copy destination not authorized") },
1846 /* D */
1847 { SST(0x26, 0x16, SS_FATAL | EINVAL,
1848 "Fast copy not possible") },
1849 /* DT WRO BK */
1850 { SST(0x27, 0x00, SS_FATAL | EACCES,
1851 "Write protected") },
1852 /* DT WRO BK */
1853 { SST(0x27, 0x01, SS_FATAL | EACCES,
1854 "Hardware write protected") },
1855 /* DT WRO BK */
1856 { SST(0x27, 0x02, SS_FATAL | EACCES,
1857 "Logical unit software write protected") },
1858 /* T R */
1859 { SST(0x27, 0x03, SS_FATAL | EACCES,
1860 "Associated write protect") },
1861 /* T R */
1862 { SST(0x27, 0x04, SS_FATAL | EACCES,
1863 "Persistent write protect") },
1864 /* T R */
1865 { SST(0x27, 0x05, SS_FATAL | EACCES,
1866 "Permanent write protect") },
1867 /* R F */
1868 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */
1869 "Conditional write protect") },
1870 /* D B */
1871 { SST(0x27, 0x07, SS_FATAL | ENOSPC,
1872 "Space allocation failed write protect") },
1873 /* D */
1874 { SST(0x27, 0x08, SS_FATAL | EACCES,
1875 "Zone is read only") },
1876 /* DTLPWROMAEBKVF */
1877 { SST(0x28, 0x00, SS_FATAL | ENXIO,
1878 "Not ready to ready change, medium may have changed") },
1879 /* DT WROM B */
1880 { SST(0x28, 0x01, SS_FATAL | ENXIO,
1881 "Import or export element accessed") },
1882 /* R */
1883 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */
1884 "Format-layer may have changed") },
1885 /* M */
1886 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */
1887 "Import/export element accessed, medium changed") },
1888 /*
1889 * XXX JGibbs - All of these should use the same errno, but I don't
1890 * think ENXIO is the correct choice. Should we borrow from
1891 * the networking errnos? ECONNRESET anyone?
1892 */
1893 /* DTLPWROMAEBKVF */
1894 { SST(0x29, 0x00, SS_FATAL | ENXIO,
1895 "Power on, reset, or bus device reset occurred") },
1896 /* DTLPWROMAEBKVF */
1897 { SST(0x29, 0x01, SS_RDEF,
1898 "Power on occurred") },
1899 /* DTLPWROMAEBKVF */
1900 { SST(0x29, 0x02, SS_RDEF,
1901 "SCSI bus reset occurred") },
1902 /* DTLPWROMAEBKVF */
1903 { SST(0x29, 0x03, SS_RDEF,
1904 "Bus device reset function occurred") },
1905 /* DTLPWROMAEBKVF */
1906 { SST(0x29, 0x04, SS_RDEF,
1907 "Device internal reset") },
1908 /* DTLPWROMAEBKVF */
1909 { SST(0x29, 0x05, SS_RDEF,
1910 "Transceiver mode changed to single-ended") },
1911 /* DTLPWROMAEBKVF */
1912 { SST(0x29, 0x06, SS_RDEF,
1913 "Transceiver mode changed to LVD") },
1914 /* DTLPWROMAEBKVF */
1915 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */
1916 "I_T nexus loss occurred") },
1917 /* DTL WROMAEBKVF */
1918 { SST(0x2A, 0x00, SS_RDEF,
1919 "Parameters changed") },
1920 /* DTL WROMAEBKVF */
1921 { SST(0x2A, 0x01, SS_RDEF,
1922 "Mode parameters changed") },
1923 /* DTL WROMAE K */
1924 { SST(0x2A, 0x02, SS_RDEF,
1925 "Log parameters changed") },
1926 /* DTLPWROMAE K */
1927 { SST(0x2A, 0x03, SS_RDEF,
1928 "Reservations preempted") },
1929 /* DTLPWROMAE */
1930 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */
1931 "Reservations released") },
1932 /* DTLPWROMAE */
1933 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */
1934 "Registrations preempted") },
1935 /* DTLPWROMAEBKVF */
1936 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */
1937 "Asymmetric access state changed") },
1938 /* DTLPWROMAEBKVF */
1939 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */
1940 "Implicit asymmetric access state transition failed") },
1941 /* DT WROMAEBKVF */
1942 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */
1943 "Priority changed") },
1944 /* D */
1945 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */
1946 "Capacity data has changed") },
1947 /* DT */
1948 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */
1949 "Error history I_T nexus cleared") },
1950 /* DT */
1951 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */
1952 "Error history snapshot released") },
1953 /* F */
1954 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */
1955 "Error recovery attributes have changed") },
1956 /* T */
1957 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */
1958 "Data encryption capabilities changed") },
1959 /* DT M E V */
1960 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */
1961 "Timestamp changed") },
1962 /* T */
1963 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */
1964 "Data encryption parameters changed by another I_T nexus") },
1965 /* T */
1966 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */
1967 "Data encryption parameters changed by vendor specific event") },
1968 /* T */
1969 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */
1970 "Data encryption key instance counter has changed") },
1971 /* DT R MAEBKV */
1972 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */
1973 "SA creation capabilities data has changed") },
1974 /* T M V */
1975 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */
1976 "Medium removal prevention preempted") },
1977 /* D */
1978 { SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */
1979 "Zone reset write pointer recommended") },
1980 /* DTLPWRO K */
1981 { SST(0x2B, 0x00, SS_RDEF,
1982 "Copy cannot execute since host cannot disconnect") },
1983 /* DTLPWROMAEBKVF */
1984 { SST(0x2C, 0x00, SS_RDEF,
1985 "Command sequence error") },
1986 /* */
1987 { SST(0x2C, 0x01, SS_RDEF,
1988 "Too many windows specified") },
1989 /* */
1990 { SST(0x2C, 0x02, SS_RDEF,
1991 "Invalid combination of windows specified") },
1992 /* R */
1993 { SST(0x2C, 0x03, SS_RDEF,
1994 "Current program area is not empty") },
1995 /* R */
1996 { SST(0x2C, 0x04, SS_RDEF,
1997 "Current program area is empty") },
1998 /* B */
1999 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */
2000 "Illegal power condition request") },
2001 /* R */
2002 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */
2003 "Persistent prevent conflict") },
2004 /* DTLPWROMAEBKVF */
2005 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */
2006 "Previous busy status") },
2007 /* DTLPWROMAEBKVF */
2008 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */
2009 "Previous task set full status") },
2010 /* DTLPWROM EBKVF */
2011 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */
2012 "Previous reservation conflict status") },
2013 /* F */
2014 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */
2015 "Partition or collection contains user objects") },
2016 /* T */
2017 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */
2018 "Not reserved") },
2019 /* D */
2020 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */
2021 "ORWRITE generation does not match") },
2022 /* D */
2023 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */
2024 "Reset write pointer not allowed") },
2025 /* D */
2026 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */
2027 "Zone is offline") },
2028 /* D */
2029 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */
2030 "Stream not open") },
2031 /* D */
2032 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */
2033 "Unwritten data in zone") },
2034 /* D */
2035 { SST(0x2C, 0x11, SS_FATAL | EINVAL,
2036 "Descriptor format sense data required") },
2037 /* D */
2038 { SST(0x2C, 0x12, SS_FATAL | EINVAL,
2039 "Zone is inactive") },
2040 /* DTPEROMAEBKVF */
2041 { SST(0x2C, 0x13, SS_FATAL | EINVAL,
2042 "Well known logical unit access required") },
2043 /* T */
2044 { SST(0x2D, 0x00, SS_RDEF,
2045 "Overwrite error on update in place") },
2046 /* R */
2047 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */
2048 "Insufficient time for operation") },
2049 /* D */
2050 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */
2051 "Command timeout before processing") },
2052 /* D */
2053 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */
2054 "Command timeout during processing") },
2055 /* D */
2056 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */
2057 "Command timeout during processing due to error recovery") },
2058 /* DTLPWROMAEBKVF */
2059 { SST(0x2F, 0x00, SS_RDEF,
2060 "Commands cleared by another initiator") },
2061 /* D */
2062 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */
2063 "Commands cleared by power loss notification") },
2064 /* DTLPWROMAEBKVF */
2065 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */
2066 "Commands cleared by device server") },
2067 /* DTLPWROMAEBKVF */
2068 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */
2069 "Some commands cleared by queuing layer event") },
2070 /* DT WROM BK */
2071 { SST(0x30, 0x00, SS_RDEF,
2072 "Incompatible medium installed") },
2073 /* DT WRO BK */
2074 { SST(0x30, 0x01, SS_RDEF,
2075 "Cannot read medium - unknown format") },
2076 /* DT WRO BK */
2077 { SST(0x30, 0x02, SS_RDEF,
2078 "Cannot read medium - incompatible format") },
2079 /* DT R K */
2080 { SST(0x30, 0x03, SS_RDEF,
2081 "Cleaning cartridge installed") },
2082 /* DT WRO BK */
2083 { SST(0x30, 0x04, SS_RDEF,
2084 "Cannot write medium - unknown format") },
2085 /* DT WRO BK */
2086 { SST(0x30, 0x05, SS_RDEF,
2087 "Cannot write medium - incompatible format") },
2088 /* DT WRO B */
2089 { SST(0x30, 0x06, SS_RDEF,
2090 "Cannot format medium - incompatible medium") },
2091 /* DTL WROMAEBKVF */
2092 { SST(0x30, 0x07, SS_RDEF,
2093 "Cleaning failure") },
2094 /* R */
2095 { SST(0x30, 0x08, SS_RDEF,
2096 "Cannot write - application code mismatch") },
2097 /* R */
2098 { SST(0x30, 0x09, SS_RDEF,
2099 "Current session not fixated for append") },
2100 /* DT WRO AEBK */
2101 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */
2102 "Cleaning request rejected") },
2103 /* T */
2104 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */
2105 "WORM medium - overwrite attempted") },
2106 /* T */
2107 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */
2108 "WORM medium - integrity check") },
2109 /* R */
2110 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */
2111 "Medium not formatted") },
2112 /* M */
2113 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */
2114 "Incompatible volume type") },
2115 /* M */
2116 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */
2117 "Incompatible volume qualifier") },
2118 /* M */
2119 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */
2120 "Cleaning volume expired") },
2121 /* DT WRO BK */
2122 { SST(0x31, 0x00, SS_FATAL | ENXIO,
2123 "Medium format corrupted") },
2124 /* D L RO B */
2125 { SST(0x31, 0x01, SS_RDEF,
2126 "Format command failed") },
2127 /* R */
2128 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */
2129 "Zoned formatting failed due to spare linking") },
2130 /* D B */
2131 { SST(0x31, 0x03, SS_FATAL | EIO,
2132 "SANITIZE command failed") },
2133 /* D */
2134 { SST(0x31, 0x04, SS_FATAL | EIO,
2135 "Depopulation failed") },
2136 /* D */
2137 { SST(0x31, 0x05, SS_FATAL | EIO,
2138 "Depopulation restoration failed") },
2139 /* D W O BK */
2140 { SST(0x32, 0x00, SS_RDEF,
2141 "No defect spare location available") },
2142 /* D W O BK */
2143 { SST(0x32, 0x01, SS_RDEF,
2144 "Defect list update failure") },
2145 /* T */
2146 { SST(0x33, 0x00, SS_RDEF,
2147 "Tape length error") },
2148 /* DTLPWROMAEBKVF */
2149 { SST(0x34, 0x00, SS_RDEF,
2150 "Enclosure failure") },
2151 /* DTLPWROMAEBKVF */
2152 { SST(0x35, 0x00, SS_RDEF,
2153 "Enclosure services failure") },
2154 /* DTLPWROMAEBKVF */
2155 { SST(0x35, 0x01, SS_RDEF,
2156 "Unsupported enclosure function") },
2157 /* DTLPWROMAEBKVF */
2158 { SST(0x35, 0x02, SS_RDEF,
2159 "Enclosure services unavailable") },
2160 /* DTLPWROMAEBKVF */
2161 { SST(0x35, 0x03, SS_RDEF,
2162 "Enclosure services transfer failure") },
2163 /* DTLPWROMAEBKVF */
2164 { SST(0x35, 0x04, SS_RDEF,
2165 "Enclosure services transfer refused") },
2166 /* DTL WROMAEBKVF */
2167 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */
2168 "Enclosure services checksum error") },
2169 /* L */
2170 { SST(0x36, 0x00, SS_RDEF,
2171 "Ribbon, ink, or toner failure") },
2172 /* DTL WROMAEBKVF */
2173 { SST(0x37, 0x00, SS_RDEF,
2174 "Rounded parameter") },
2175 /* B */
2176 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */
2177 "Event status notification") },
2178 /* B */
2179 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */
2180 "ESN - power management class event") },
2181 /* B */
2182 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */
2183 "ESN - media class event") },
2184 /* B */
2185 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */
2186 "ESN - device busy class event") },
2187 /* D */
2188 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */
2189 "Thin provisioning soft threshold reached") },
2190 /* D */
2191 { SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE,
2192 "Depopulation interrupted") },
2193 /* DTL WROMAE K */
2194 { SST(0x39, 0x00, SS_RDEF,
2195 "Saving parameters not supported") },
2196 /* DTL WROM BK */
2197 { SST(0x3A, 0x00, SS_FATAL | ENXIO,
2198 "Medium not present") },
2199 /* DT WROM BK */
2200 { SST(0x3A, 0x01, SS_FATAL | ENXIO,
2201 "Medium not present - tray closed") },
2202 /* DT WROM BK */
2203 { SST(0x3A, 0x02, SS_FATAL | ENXIO,
2204 "Medium not present - tray open") },
2205 /* DT WROM B */
2206 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */
2207 "Medium not present - loadable") },
2208 /* DT WRO B */
2209 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */
2210 "Medium not present - medium auxiliary memory accessible") },
2211 /* TL */
2212 { SST(0x3B, 0x00, SS_RDEF,
2213 "Sequential positioning error") },
2214 /* T */
2215 { SST(0x3B, 0x01, SS_RDEF,
2216 "Tape position error at beginning-of-medium") },
2217 /* T */
2218 { SST(0x3B, 0x02, SS_RDEF,
2219 "Tape position error at end-of-medium") },
2220 /* L */
2221 { SST(0x3B, 0x03, SS_RDEF,
2222 "Tape or electronic vertical forms unit not ready") },
2223 /* L */
2224 { SST(0x3B, 0x04, SS_RDEF,
2225 "Slew failure") },
2226 /* L */
2227 { SST(0x3B, 0x05, SS_RDEF,
2228 "Paper jam") },
2229 /* L */
2230 { SST(0x3B, 0x06, SS_RDEF,
2231 "Failed to sense top-of-form") },
2232 /* L */
2233 { SST(0x3B, 0x07, SS_RDEF,
2234 "Failed to sense bottom-of-form") },
2235 /* T */
2236 { SST(0x3B, 0x08, SS_RDEF,
2237 "Reposition error") },
2238 /* */
2239 { SST(0x3B, 0x09, SS_RDEF,
2240 "Read past end of medium") },
2241 /* */
2242 { SST(0x3B, 0x0A, SS_RDEF,
2243 "Read past beginning of medium") },
2244 /* */
2245 { SST(0x3B, 0x0B, SS_RDEF,
2246 "Position past end of medium") },
2247 /* T */
2248 { SST(0x3B, 0x0C, SS_RDEF,
2249 "Position past beginning of medium") },
2250 /* DT WROM BK */
2251 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2252 "Medium destination element full") },
2253 /* DT WROM BK */
2254 { SST(0x3B, 0x0E, SS_RDEF,
2255 "Medium source element empty") },
2256 /* R */
2257 { SST(0x3B, 0x0F, SS_RDEF,
2258 "End of medium reached") },
2259 /* DT WROM BK */
2260 { SST(0x3B, 0x11, SS_RDEF,
2261 "Medium magazine not accessible") },
2262 /* DT WROM BK */
2263 { SST(0x3B, 0x12, SS_RDEF,
2264 "Medium magazine removed") },
2265 /* DT WROM BK */
2266 { SST(0x3B, 0x13, SS_RDEF,
2267 "Medium magazine inserted") },
2268 /* DT WROM BK */
2269 { SST(0x3B, 0x14, SS_RDEF,
2270 "Medium magazine locked") },
2271 /* DT WROM BK */
2272 { SST(0x3B, 0x15, SS_RDEF,
2273 "Medium magazine unlocked") },
2274 /* R */
2275 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */
2276 "Mechanical positioning or changer error") },
2277 /* F */
2278 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */
2279 "Read past end of user object") },
2280 /* M */
2281 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */
2282 "Element disabled") },
2283 /* M */
2284 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */
2285 "Element enabled") },
2286 /* M */
2287 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */
2288 "Data transfer device removed") },
2289 /* M */
2290 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */
2291 "Data transfer device inserted") },
2292 /* T */
2293 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */
2294 "Too many logical objects on partition to support operation") },
2295 /* M */
2296 { SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */
2297 "Element static information changed") },
2298 /* DTLPWROMAE K */
2299 { SST(0x3D, 0x00, SS_RDEF,
2300 "Invalid bits in IDENTIFY message") },
2301 /* DTLPWROMAEBKVF */
2302 { SST(0x3E, 0x00, SS_RDEF,
2303 "Logical unit has not self-configured yet") },
2304 /* DTLPWROMAEBKVF */
2305 { SST(0x3E, 0x01, SS_RDEF,
2306 "Logical unit failure") },
2307 /* DTLPWROMAEBKVF */
2308 { SST(0x3E, 0x02, SS_RDEF,
2309 "Timeout on logical unit") },
2310 /* DTLPWROMAEBKVF */
2311 { SST(0x3E, 0x03, SS_FATAL | ENXIO,
2312 "Logical unit failed self-test") },
2313 /* DTLPWROMAEBKVF */
2314 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */
2315 "Logical unit unable to update self-test log") },
2316 /* DTLPWROMAEBKVF */
2317 { SST(0x3F, 0x00, SS_RDEF,
2318 "Target operating conditions have changed") },
2319 /* DTLPWROMAEBKVF */
2320 { SST(0x3F, 0x01, SS_RDEF,
2321 "Microcode has been changed") },
2322 /* DTLPWROM BK */
2323 { SST(0x3F, 0x02, SS_RDEF,
2324 "Changed operating definition") },
2325 /* DTLPWROMAEBKVF */
2326 { SST(0x3F, 0x03, SS_RDEF,
2327 "INQUIRY data has changed") },
2328 /* DT WROMAEBK */
2329 { SST(0x3F, 0x04, SS_RDEF,
2330 "Component device attached") },
2331 /* DT WROMAEBK */
2332 { SST(0x3F, 0x05, SS_RDEF,
2333 "Device identifier changed") },
2334 /* DT WROMAEB */
2335 { SST(0x3F, 0x06, SS_RDEF,
2336 "Redundancy group created or modified") },
2337 /* DT WROMAEB */
2338 { SST(0x3F, 0x07, SS_RDEF,
2339 "Redundancy group deleted") },
2340 /* DT WROMAEB */
2341 { SST(0x3F, 0x08, SS_RDEF,
2342 "Spare created or modified") },
2343 /* DT WROMAEB */
2344 { SST(0x3F, 0x09, SS_RDEF,
2345 "Spare deleted") },
2346 /* DT WROMAEBK */
2347 { SST(0x3F, 0x0A, SS_RDEF,
2348 "Volume set created or modified") },
2349 /* DT WROMAEBK */
2350 { SST(0x3F, 0x0B, SS_RDEF,
2351 "Volume set deleted") },
2352 /* DT WROMAEBK */
2353 { SST(0x3F, 0x0C, SS_RDEF,
2354 "Volume set deassigned") },
2355 /* DT WROMAEBK */
2356 { SST(0x3F, 0x0D, SS_RDEF,
2357 "Volume set reassigned") },
2358 /* DTLPWROMAE */
2359 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2360 "Reported LUNs data has changed") },
2361 /* DTLPWROMAEBKVF */
2362 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */
2363 "Echo buffer overwritten") },
2364 /* DT WROM B */
2365 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */
2366 "Medium loadable") },
2367 /* DT WROM B */
2368 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */
2369 "Medium auxiliary memory accessible") },
2370 /* DTLPWR MAEBK F */
2371 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */
2372 "iSCSI IP address added") },
2373 /* DTLPWR MAEBK F */
2374 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */
2375 "iSCSI IP address removed") },
2376 /* DTLPWR MAEBK F */
2377 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */
2378 "iSCSI IP address changed") },
2379 /* DTLPWR MAEBK */
2380 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */
2381 "Inspect referrals sense descriptors") },
2382 /* DTLPWROMAEBKVF */
2383 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */
2384 "Microcode has been changed without reset") },
2385 /* D */
2386 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */
2387 "Zone transition to full") },
2388 /* D */
2389 { SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */
2390 "Bind completed") },
2391 /* D */
2392 { SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */
2393 "Bind redirected") },
2394 /* D */
2395 { SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */
2396 "Subsidiary binding changed") },
2397 { SST(0x40, 0x00, SS_FATAL | ENXIO,
2398 "RAM failure") }, /* deprecated - use 40 NN instead */
2399 /* DTLPWROMAEBKVF */
2400 { SST(0x40, 0x80, SS_FATAL | ENXIO,
2401 "Diagnostic failure: ASCQ = Component ID") },
2402 /* DTLPWROMAEBKVF */
2403 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2404 NULL) }, /* Range 0x80->0xFF */
2405 /* D */
2406 { SST(0x41, 0x00, SS_RDEF,
2407 "Data path failure") }, /* deprecated - use 40 NN instead */
2408 /* D */
2409 { SST(0x42, 0x00, SS_RDEF,
2410 "Power-on or self-test failure") },
2411 /* deprecated - use 40 NN instead */
2412 /* DTLPWROMAEBKVF */
2413 { SST(0x43, 0x00, SS_RDEF,
2414 "Message error") },
2415 /* DTLPWROMAEBKVF */
2416 { SST(0x44, 0x00, SS_FATAL | ENXIO,
2417 "Internal target failure") },
2418 /* DT P MAEBKVF */
2419 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */
2420 "Persistent reservation information lost") },
2421 /* DT B */
2422 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */
2423 "ATA device failed set features") },
2424 /* DTLPWROMAEBKVF */
2425 { SST(0x45, 0x00, SS_RDEF,
2426 "Select or reselect failure") },
2427 /* DTLPWROM BK */
2428 { SST(0x46, 0x00, SS_RDEF,
2429 "Unsuccessful soft reset") },
2430 /* DTLPWROMAEBKVF */
2431 { SST(0x47, 0x00, SS_RDEF,
2432 "SCSI parity error") },
2433 /* DTLPWROMAEBKVF */
2434 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */
2435 "Data phase CRC error detected") },
2436 /* DTLPWROMAEBKVF */
2437 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */
2438 "SCSI parity error detected during ST data phase") },
2439 /* DTLPWROMAEBKVF */
2440 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */
2441 "Information unit iuCRC error detected") },
2442 /* DTLPWROMAEBKVF */
2443 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */
2444 "Asynchronous information protection error detected") },
2445 /* DTLPWROMAEBKVF */
2446 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */
2447 "Protocol service CRC error") },
2448 /* DT MAEBKVF */
2449 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */
2450 "PHY test function in progress") },
2451 /* DT PWROMAEBK */
2452 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */
2453 "Some commands cleared by iSCSI protocol event") },
2454 /* DTLPWROMAEBKVF */
2455 { SST(0x48, 0x00, SS_RDEF,
2456 "Initiator detected error message received") },
2457 /* DTLPWROMAEBKVF */
2458 { SST(0x49, 0x00, SS_RDEF,
2459 "Invalid message error") },
2460 /* DTLPWROMAEBKVF */
2461 { SST(0x4A, 0x00, SS_RDEF,
2462 "Command phase error") },
2463 /* DTLPWROMAEBKVF */
2464 { SST(0x4B, 0x00, SS_RDEF,
2465 "Data phase error") },
2466 /* DT PWROMAEBK */
2467 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */
2468 "Invalid target port transfer tag received") },
2469 /* DT PWROMAEBK */
2470 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */
2471 "Too much write data") },
2472 /* DT PWROMAEBK */
2473 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */
2474 "ACK/NAK timeout") },
2475 /* DT PWROMAEBK */
2476 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */
2477 "NAK received") },
2478 /* DT PWROMAEBK */
2479 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */
2480 "Data offset error") },
2481 /* DT PWROMAEBK */
2482 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */
2483 "Initiator response timeout") },
2484 /* DT PWROMAEBK F */
2485 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */
2486 "Connection lost") },
2487 /* DT PWROMAEBK F */
2488 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */
2489 "Data-in buffer overflow - data buffer size") },
2490 /* DT PWROMAEBK F */
2491 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */
2492 "Data-in buffer overflow - data buffer descriptor area") },
2493 /* DT PWROMAEBK F */
2494 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */
2495 "Data-in buffer error") },
2496 /* DT PWROMAEBK F */
2497 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */
2498 "Data-out buffer overflow - data buffer size") },
2499 /* DT PWROMAEBK F */
2500 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */
2501 "Data-out buffer overflow - data buffer descriptor area") },
2502 /* DT PWROMAEBK F */
2503 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */
2504 "Data-out buffer error") },
2505 /* DT PWROMAEBK F */
2506 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */
2507 "PCIe fabric error") },
2508 /* DT PWROMAEBK F */
2509 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */
2510 "PCIe completion timeout") },
2511 /* DT PWROMAEBK F */
2512 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */
2513 "PCIe completer abort") },
2514 /* DT PWROMAEBK F */
2515 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */
2516 "PCIe poisoned TLP received") },
2517 /* DT PWROMAEBK F */
2518 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */
2519 "PCIe ECRC check failed") },
2520 /* DT PWROMAEBK F */
2521 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */
2522 "PCIe unsupported request") },
2523 /* DT PWROMAEBK F */
2524 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */
2525 "PCIe ACS violation") },
2526 /* DT PWROMAEBK F */
2527 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */
2528 "PCIe TLP prefix blocket") },
2529 /* DTLPWROMAEBKVF */
2530 { SST(0x4C, 0x00, SS_RDEF,
2531 "Logical unit failed self-configuration") },
2532 /* DTLPWROMAEBKVF */
2533 { SST(0x4D, 0x00, SS_RDEF,
2534 "Tagged overlapped commands: ASCQ = Queue tag ID") },
2535 /* DTLPWROMAEBKVF */
2536 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2537 NULL) }, /* Range 0x00->0xFF */
2538 /* DTLPWROMAEBKVF */
2539 { SST(0x4E, 0x00, SS_RDEF,
2540 "Overlapped commands attempted") },
2541 /* T */
2542 { SST(0x50, 0x00, SS_RDEF,
2543 "Write append error") },
2544 /* T */
2545 { SST(0x50, 0x01, SS_RDEF,
2546 "Write append position error") },
2547 /* T */
2548 { SST(0x50, 0x02, SS_RDEF,
2549 "Position error related to timing") },
2550 /* T RO */
2551 { SST(0x51, 0x00, SS_RDEF,
2552 "Erase failure") },
2553 /* R */
2554 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */
2555 "Erase failure - incomplete erase operation detected") },
2556 /* T */
2557 { SST(0x52, 0x00, SS_RDEF,
2558 "Cartridge fault") },
2559 /* DTL WROM BK */
2560 { SST(0x53, 0x00, SS_RDEF,
2561 "Media load or eject failed") },
2562 /* T */
2563 { SST(0x53, 0x01, SS_RDEF,
2564 "Unload tape failure") },
2565 /* DT WROM BK */
2566 { SST(0x53, 0x02, SS_RDEF,
2567 "Medium removal prevented") },
2568 /* M */
2569 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */
2570 "Medium removal prevented by data transfer element") },
2571 /* T */
2572 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */
2573 "Medium thread or unthread failure") },
2574 /* M */
2575 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */
2576 "Volume identifier invalid") },
2577 /* T */
2578 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */
2579 "Volume identifier missing") },
2580 /* M */
2581 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */
2582 "Duplicate volume identifier") },
2583 /* M */
2584 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */
2585 "Element status unknown") },
2586 /* M */
2587 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */
2588 "Data transfer device error - load failed") },
2589 /* M */
2590 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */
2591 "Data transfer device error - unload failed") },
2592 /* M */
2593 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */
2594 "Data transfer device error - unload missing") },
2595 /* M */
2596 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */
2597 "Data transfer device error - eject failed") },
2598 /* M */
2599 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */
2600 "Data transfer device error - library communication failed") },
2601 /* P */
2602 { SST(0x54, 0x00, SS_RDEF,
2603 "SCSI to host system interface failure") },
2604 /* P */
2605 { SST(0x55, 0x00, SS_RDEF,
2606 "System resource failure") },
2607 /* D O BK */
2608 { SST(0x55, 0x01, SS_FATAL | ENOSPC,
2609 "System buffer full") },
2610 /* DTLPWROMAE K */
2611 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */
2612 "Insufficient reservation resources") },
2613 /* DTLPWROMAE K */
2614 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */
2615 "Insufficient resources") },
2616 /* DTLPWROMAE K */
2617 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */
2618 "Insufficient registration resources") },
2619 /* DT PWROMAEBK */
2620 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */
2621 "Insufficient access control resources") },
2622 /* DT WROM B */
2623 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */
2624 "Auxiliary memory out of space") },
2625 /* F */
2626 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */
2627 "Quota error") },
2628 /* T */
2629 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */
2630 "Maximum number of supplemental decryption keys exceeded") },
2631 /* M */
2632 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */
2633 "Medium auxiliary memory not accessible") },
2634 /* M */
2635 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */
2636 "Data currently unavailable") },
2637 /* DTLPWROMAEBKVF */
2638 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */
2639 "Insufficient power for operation") },
2640 /* DT P B */
2641 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */
2642 "Insufficient resources to create ROD") },
2643 /* DT P B */
2644 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */
2645 "Insufficient resources to create ROD token") },
2646 /* D */
2647 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */
2648 "Insufficient zone resources") },
2649 /* D */
2650 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */
2651 "Insufficient zone resources to complete write") },
2652 /* D */
2653 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */
2654 "Maximum number of streams open") },
2655 /* D */
2656 { SST(0x55, 0x11, SS_RDEF, /* XXX TBD */
2657 "Insufficient resources to bind") },
2658 /* R */
2659 { SST(0x57, 0x00, SS_RDEF,
2660 "Unable to recover table-of-contents") },
2661 /* O */
2662 { SST(0x58, 0x00, SS_RDEF,
2663 "Generation does not exist") },
2664 /* O */
2665 { SST(0x59, 0x00, SS_RDEF,
2666 "Updated block read") },
2667 /* DTLPWRO BK */
2668 { SST(0x5A, 0x00, SS_RDEF,
2669 "Operator request or state change input") },
2670 /* DT WROM BK */
2671 { SST(0x5A, 0x01, SS_RDEF,
2672 "Operator medium removal request") },
2673 /* DT WRO A BK */
2674 { SST(0x5A, 0x02, SS_RDEF,
2675 "Operator selected write protect") },
2676 /* DT WRO A BK */
2677 { SST(0x5A, 0x03, SS_RDEF,
2678 "Operator selected write permit") },
2679 /* DTLPWROM K */
2680 { SST(0x5B, 0x00, SS_RDEF,
2681 "Log exception") },
2682 /* DTLPWROM K */
2683 { SST(0x5B, 0x01, SS_RDEF,
2684 "Threshold condition met") },
2685 /* DTLPWROM K */
2686 { SST(0x5B, 0x02, SS_RDEF,
2687 "Log counter at maximum") },
2688 /* DTLPWROM K */
2689 { SST(0x5B, 0x03, SS_RDEF,
2690 "Log list codes exhausted") },
2691 /* D O */
2692 { SST(0x5C, 0x00, SS_RDEF,
2693 "RPL status change") },
2694 /* D O */
2695 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2696 "Spindles synchronized") },
2697 /* D O */
2698 { SST(0x5C, 0x02, SS_RDEF,
2699 "Spindles not synchronized") },
2700 /* DTLPWROMAEBKVF */
2701 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2702 "Failure prediction threshold exceeded") },
2703 /* R B */
2704 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2705 "Media failure prediction threshold exceeded") },
2706 /* R */
2707 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2708 "Logical unit failure prediction threshold exceeded") },
2709 /* R */
2710 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2711 "Spare area exhaustion prediction threshold exceeded") },
2712 /* D B */
2713 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2714 "Hardware impending failure general hard drive failure") },
2715 /* D B */
2716 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2717 "Hardware impending failure drive error rate too high") },
2718 /* D B */
2719 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2720 "Hardware impending failure data error rate too high") },
2721 /* D B */
2722 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2723 "Hardware impending failure seek error rate too high") },
2724 /* D B */
2725 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2726 "Hardware impending failure too many block reassigns") },
2727 /* D B */
2728 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2729 "Hardware impending failure access times too high") },
2730 /* D B */
2731 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2732 "Hardware impending failure start unit times too high") },
2733 /* D B */
2734 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2735 "Hardware impending failure channel parametrics") },
2736 /* D B */
2737 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2738 "Hardware impending failure controller detected") },
2739 /* D B */
2740 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2741 "Hardware impending failure throughput performance") },
2742 /* D B */
2743 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2744 "Hardware impending failure seek time performance") },
2745 /* D B */
2746 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2747 "Hardware impending failure spin-up retry count") },
2748 /* D B */
2749 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2750 "Hardware impending failure drive calibration retry count") },
2751 /* D B */
2752 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2753 "Hardware impending failure power loss protection circuit") },
2754 /* D B */
2755 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2756 "Controller impending failure general hard drive failure") },
2757 /* D B */
2758 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2759 "Controller impending failure drive error rate too high") },
2760 /* D B */
2761 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2762 "Controller impending failure data error rate too high") },
2763 /* D B */
2764 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2765 "Controller impending failure seek error rate too high") },
2766 /* D B */
2767 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2768 "Controller impending failure too many block reassigns") },
2769 /* D B */
2770 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2771 "Controller impending failure access times too high") },
2772 /* D B */
2773 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2774 "Controller impending failure start unit times too high") },
2775 /* D B */
2776 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2777 "Controller impending failure channel parametrics") },
2778 /* D B */
2779 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2780 "Controller impending failure controller detected") },
2781 /* D B */
2782 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2783 "Controller impending failure throughput performance") },
2784 /* D B */
2785 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2786 "Controller impending failure seek time performance") },
2787 /* D B */
2788 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2789 "Controller impending failure spin-up retry count") },
2790 /* D B */
2791 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2792 "Controller impending failure drive calibration retry count") },
2793 /* D B */
2794 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2795 "Data channel impending failure general hard drive failure") },
2796 /* D B */
2797 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2798 "Data channel impending failure drive error rate too high") },
2799 /* D B */
2800 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2801 "Data channel impending failure data error rate too high") },
2802 /* D B */
2803 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2804 "Data channel impending failure seek error rate too high") },
2805 /* D B */
2806 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2807 "Data channel impending failure too many block reassigns") },
2808 /* D B */
2809 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2810 "Data channel impending failure access times too high") },
2811 /* D B */
2812 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2813 "Data channel impending failure start unit times too high") },
2814 /* D B */
2815 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2816 "Data channel impending failure channel parametrics") },
2817 /* D B */
2818 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2819 "Data channel impending failure controller detected") },
2820 /* D B */
2821 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2822 "Data channel impending failure throughput performance") },
2823 /* D B */
2824 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2825 "Data channel impending failure seek time performance") },
2826 /* D B */
2827 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2828 "Data channel impending failure spin-up retry count") },
2829 /* D B */
2830 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2831 "Data channel impending failure drive calibration retry count") },
2832 /* D B */
2833 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2834 "Servo impending failure general hard drive failure") },
2835 /* D B */
2836 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2837 "Servo impending failure drive error rate too high") },
2838 /* D B */
2839 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2840 "Servo impending failure data error rate too high") },
2841 /* D B */
2842 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2843 "Servo impending failure seek error rate too high") },
2844 /* D B */
2845 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2846 "Servo impending failure too many block reassigns") },
2847 /* D B */
2848 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2849 "Servo impending failure access times too high") },
2850 /* D B */
2851 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2852 "Servo impending failure start unit times too high") },
2853 /* D B */
2854 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2855 "Servo impending failure channel parametrics") },
2856 /* D B */
2857 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2858 "Servo impending failure controller detected") },
2859 /* D B */
2860 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2861 "Servo impending failure throughput performance") },
2862 /* D B */
2863 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2864 "Servo impending failure seek time performance") },
2865 /* D B */
2866 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2867 "Servo impending failure spin-up retry count") },
2868 /* D B */
2869 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2870 "Servo impending failure drive calibration retry count") },
2871 /* D B */
2872 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2873 "Spindle impending failure general hard drive failure") },
2874 /* D B */
2875 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2876 "Spindle impending failure drive error rate too high") },
2877 /* D B */
2878 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2879 "Spindle impending failure data error rate too high") },
2880 /* D B */
2881 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2882 "Spindle impending failure seek error rate too high") },
2883 /* D B */
2884 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2885 "Spindle impending failure too many block reassigns") },
2886 /* D B */
2887 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2888 "Spindle impending failure access times too high") },
2889 /* D B */
2890 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2891 "Spindle impending failure start unit times too high") },
2892 /* D B */
2893 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2894 "Spindle impending failure channel parametrics") },
2895 /* D B */
2896 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2897 "Spindle impending failure controller detected") },
2898 /* D B */
2899 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2900 "Spindle impending failure throughput performance") },
2901 /* D B */
2902 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2903 "Spindle impending failure seek time performance") },
2904 /* D B */
2905 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2906 "Spindle impending failure spin-up retry count") },
2907 /* D B */
2908 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2909 "Spindle impending failure drive calibration retry count") },
2910 /* D B */
2911 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2912 "Firmware impending failure general hard drive failure") },
2913 /* D B */
2914 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2915 "Firmware impending failure drive error rate too high") },
2916 /* D B */
2917 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2918 "Firmware impending failure data error rate too high") },
2919 /* D B */
2920 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2921 "Firmware impending failure seek error rate too high") },
2922 /* D B */
2923 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2924 "Firmware impending failure too many block reassigns") },
2925 /* D B */
2926 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2927 "Firmware impending failure access times too high") },
2928 /* D B */
2929 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2930 "Firmware impending failure start unit times too high") },
2931 /* D B */
2932 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2933 "Firmware impending failure channel parametrics") },
2934 /* D B */
2935 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2936 "Firmware impending failure controller detected") },
2937 /* D B */
2938 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2939 "Firmware impending failure throughput performance") },
2940 /* D B */
2941 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2942 "Firmware impending failure seek time performance") },
2943 /* D B */
2944 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2945 "Firmware impending failure spin-up retry count") },
2946 /* D B */
2947 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2948 "Firmware impending failure drive calibration retry count") },
2949 /* D B */
2950 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2951 "Media impending failure endurance limit met") },
2952 /* DTLPWROMAEBKVF */
2953 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2954 "Failure prediction threshold exceeded (false)") },
2955 /* DTLPWRO A K */
2956 { SST(0x5E, 0x00, SS_RDEF,
2957 "Low power condition on") },
2958 /* DTLPWRO A K */
2959 { SST(0x5E, 0x01, SS_RDEF,
2960 "Idle condition activated by timer") },
2961 /* DTLPWRO A K */
2962 { SST(0x5E, 0x02, SS_RDEF,
2963 "Standby condition activated by timer") },
2964 /* DTLPWRO A K */
2965 { SST(0x5E, 0x03, SS_RDEF,
2966 "Idle condition activated by command") },
2967 /* DTLPWRO A K */
2968 { SST(0x5E, 0x04, SS_RDEF,
2969 "Standby condition activated by command") },
2970 /* DTLPWRO A K */
2971 { SST(0x5E, 0x05, SS_RDEF,
2972 "Idle-B condition activated by timer") },
2973 /* DTLPWRO A K */
2974 { SST(0x5E, 0x06, SS_RDEF,
2975 "Idle-B condition activated by command") },
2976 /* DTLPWRO A K */
2977 { SST(0x5E, 0x07, SS_RDEF,
2978 "Idle-C condition activated by timer") },
2979 /* DTLPWRO A K */
2980 { SST(0x5E, 0x08, SS_RDEF,
2981 "Idle-C condition activated by command") },
2982 /* DTLPWRO A K */
2983 { SST(0x5E, 0x09, SS_RDEF,
2984 "Standby-Y condition activated by timer") },
2985 /* DTLPWRO A K */
2986 { SST(0x5E, 0x0A, SS_RDEF,
2987 "Standby-Y condition activated by command") },
2988 /* B */
2989 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */
2990 "Power state change to active") },
2991 /* B */
2992 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */
2993 "Power state change to idle") },
2994 /* B */
2995 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */
2996 "Power state change to standby") },
2997 /* B */
2998 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */
2999 "Power state change to sleep") },
3000 /* BK */
3001 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */
3002 "Power state change to device control") },
3003 /* */
3004 { SST(0x60, 0x00, SS_RDEF,
3005 "Lamp failure") },
3006 /* */
3007 { SST(0x61, 0x00, SS_RDEF,
3008 "Video acquisition error") },
3009 /* */
3010 { SST(0x61, 0x01, SS_RDEF,
3011 "Unable to acquire video") },
3012 /* */
3013 { SST(0x61, 0x02, SS_RDEF,
3014 "Out of focus") },
3015 /* */
3016 { SST(0x62, 0x00, SS_RDEF,
3017 "Scan head positioning error") },
3018 /* R */
3019 { SST(0x63, 0x00, SS_RDEF,
3020 "End of user area encountered on this track") },
3021 /* R */
3022 { SST(0x63, 0x01, SS_FATAL | ENOSPC,
3023 "Packet does not fit in available space") },
3024 /* R */
3025 { SST(0x64, 0x00, SS_FATAL | ENXIO,
3026 "Illegal mode for this track") },
3027 /* R */
3028 { SST(0x64, 0x01, SS_RDEF,
3029 "Invalid packet size") },
3030 /* DTLPWROMAEBKVF */
3031 { SST(0x65, 0x00, SS_RDEF,
3032 "Voltage fault") },
3033 /* */
3034 { SST(0x66, 0x00, SS_RDEF,
3035 "Automatic document feeder cover up") },
3036 /* */
3037 { SST(0x66, 0x01, SS_RDEF,
3038 "Automatic document feeder lift up") },
3039 /* */
3040 { SST(0x66, 0x02, SS_RDEF,
3041 "Document jam in automatic document feeder") },
3042 /* */
3043 { SST(0x66, 0x03, SS_RDEF,
3044 "Document miss feed automatic in document feeder") },
3045 /* A */
3046 { SST(0x67, 0x00, SS_RDEF,
3047 "Configuration failure") },
3048 /* A */
3049 { SST(0x67, 0x01, SS_RDEF,
3050 "Configuration of incapable logical units failed") },
3051 /* A */
3052 { SST(0x67, 0x02, SS_RDEF,
3053 "Add logical unit failed") },
3054 /* A */
3055 { SST(0x67, 0x03, SS_RDEF,
3056 "Modification of logical unit failed") },
3057 /* A */
3058 { SST(0x67, 0x04, SS_RDEF,
3059 "Exchange of logical unit failed") },
3060 /* A */
3061 { SST(0x67, 0x05, SS_RDEF,
3062 "Remove of logical unit failed") },
3063 /* A */
3064 { SST(0x67, 0x06, SS_RDEF,
3065 "Attachment of logical unit failed") },
3066 /* A */
3067 { SST(0x67, 0x07, SS_RDEF,
3068 "Creation of logical unit failed") },
3069 /* A */
3070 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */
3071 "Assign failure occurred") },
3072 /* A */
3073 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */
3074 "Multiply assigned logical unit") },
3075 /* DTLPWROMAEBKVF */
3076 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */
3077 "Set target port groups command failed") },
3078 /* DT B */
3079 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */
3080 "ATA device feature not enabled") },
3081 /* D */
3082 { SST(0x67, 0x0C, SS_FATAL | EIO,
3083 "Command rejected") },
3084 /* D */
3085 { SST(0x67, 0x0D, SS_FATAL | EINVAL,
3086 "Explicit bind not allowed") },
3087 /* A */
3088 { SST(0x68, 0x00, SS_RDEF,
3089 "Logical unit not configured") },
3090 /* D */
3091 { SST(0x68, 0x01, SS_RDEF,
3092 "Subsidiary logical unit not configured") },
3093 /* A */
3094 { SST(0x69, 0x00, SS_RDEF,
3095 "Data loss on logical unit") },
3096 /* A */
3097 { SST(0x69, 0x01, SS_RDEF,
3098 "Multiple logical unit failures") },
3099 /* A */
3100 { SST(0x69, 0x02, SS_RDEF,
3101 "Parity/data mismatch") },
3102 /* A */
3103 { SST(0x6A, 0x00, SS_RDEF,
3104 "Informational, refer to log") },
3105 /* A */
3106 { SST(0x6B, 0x00, SS_RDEF,
3107 "State change has occurred") },
3108 /* A */
3109 { SST(0x6B, 0x01, SS_RDEF,
3110 "Redundancy level got better") },
3111 /* A */
3112 { SST(0x6B, 0x02, SS_RDEF,
3113 "Redundancy level got worse") },
3114 /* A */
3115 { SST(0x6C, 0x00, SS_RDEF,
3116 "Rebuild failure occurred") },
3117 /* A */
3118 { SST(0x6D, 0x00, SS_RDEF,
3119 "Recalculate failure occurred") },
3120 /* A */
3121 { SST(0x6E, 0x00, SS_RDEF,
3122 "Command to logical unit failed") },
3123 /* R */
3124 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */
3125 "Copy protection key exchange failure - authentication failure") },
3126 /* R */
3127 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */
3128 "Copy protection key exchange failure - key not present") },
3129 /* R */
3130 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */
3131 "Copy protection key exchange failure - key not established") },
3132 /* R */
3133 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */
3134 "Read of scrambled sector without authentication") },
3135 /* R */
3136 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */
3137 "Media region code is mismatched to logical unit region") },
3138 /* R */
3139 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */
3140 "Drive region must be permanent/region reset count error") },
3141 /* R */
3142 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */
3143 "Insufficient block count for binding NONCE recording") },
3144 /* R */
3145 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */
3146 "Conflict in binding NONCE recording") },
3147 /* R */
3148 { SST(0x6F, 0x08, SS_FATAL | EPERM,
3149 "Insufficient permission") },
3150 /* R */
3151 { SST(0x6F, 0x09, SS_FATAL | EINVAL,
3152 "Invalid drive-host pairing server") },
3153 /* R */
3154 { SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */
3155 "Drive-host pairing suspended") },
3156 /* T */
3157 { SST(0x70, 0x00, SS_RDEF,
3158 "Decompression exception short: ASCQ = Algorithm ID") },
3159 /* T */
3160 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3161 NULL) }, /* Range 0x00 -> 0xFF */
3162 /* T */
3163 { SST(0x71, 0x00, SS_RDEF,
3164 "Decompression exception long: ASCQ = Algorithm ID") },
3165 /* T */
3166 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3167 NULL) }, /* Range 0x00 -> 0xFF */
3168 /* R */
3169 { SST(0x72, 0x00, SS_RDEF,
3170 "Session fixation error") },
3171 /* R */
3172 { SST(0x72, 0x01, SS_RDEF,
3173 "Session fixation error writing lead-in") },
3174 /* R */
3175 { SST(0x72, 0x02, SS_RDEF,
3176 "Session fixation error writing lead-out") },
3177 /* R */
3178 { SST(0x72, 0x03, SS_RDEF,
3179 "Session fixation error - incomplete track in session") },
3180 /* R */
3181 { SST(0x72, 0x04, SS_RDEF,
3182 "Empty or partially written reserved track") },
3183 /* R */
3184 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */
3185 "No more track reservations allowed") },
3186 /* R */
3187 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */
3188 "RMZ extension is not allowed") },
3189 /* R */
3190 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */
3191 "No more test zone extensions are allowed") },
3192 /* R */
3193 { SST(0x73, 0x00, SS_RDEF,
3194 "CD control error") },
3195 /* R */
3196 { SST(0x73, 0x01, SS_RDEF,
3197 "Power calibration area almost full") },
3198 /* R */
3199 { SST(0x73, 0x02, SS_FATAL | ENOSPC,
3200 "Power calibration area is full") },
3201 /* R */
3202 { SST(0x73, 0x03, SS_RDEF,
3203 "Power calibration area error") },
3204 /* R */
3205 { SST(0x73, 0x04, SS_RDEF,
3206 "Program memory area update failure") },
3207 /* R */
3208 { SST(0x73, 0x05, SS_RDEF,
3209 "Program memory area is full") },
3210 /* R */
3211 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */
3212 "RMA/PMA is almost full") },
3213 /* R */
3214 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */
3215 "Current power calibration area almost full") },
3216 /* R */
3217 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */
3218 "Current power calibration area is full") },
3219 /* R */
3220 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */
3221 "RDZ is full") },
3222 /* T */
3223 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */
3224 "Security error") },
3225 /* T */
3226 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */
3227 "Unable to decrypt data") },
3228 /* T */
3229 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */
3230 "Unencrypted data encountered while decrypting") },
3231 /* T */
3232 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */
3233 "Incorrect data encryption key") },
3234 /* T */
3235 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */
3236 "Cryptographic integrity validation failed") },
3237 /* T */
3238 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */
3239 "Error decrypting data") },
3240 /* T */
3241 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */
3242 "Unknown signature verification key") },
3243 /* T */
3244 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */
3245 "Encryption parameters not useable") },
3246 /* DT R M E VF */
3247 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */
3248 "Digital signature validation failure") },
3249 /* T */
3250 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */
3251 "Encryption mode mismatch on read") },
3252 /* T */
3253 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */
3254 "Encrypted block not raw read enabled") },
3255 /* T */
3256 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */
3257 "Incorrect encryption parameters") },
3258 /* DT R MAEBKV */
3259 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */
3260 "Unable to decrypt parameter list") },
3261 /* T */
3262 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */
3263 "Encryption algorithm disabled") },
3264 /* DT R MAEBKV */
3265 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */
3266 "SA creation parameter value invalid") },
3267 /* DT R MAEBKV */
3268 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */
3269 "SA creation parameter value rejected") },
3270 /* DT R MAEBKV */
3271 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */
3272 "Invalid SA usage") },
3273 /* T */
3274 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */
3275 "Data encryption configuration prevented") },
3276 /* DT R MAEBKV */
3277 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */
3278 "SA creation parameter not supported") },
3279 /* DT R MAEBKV */
3280 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */
3281 "Authentication failed") },
3282 /* V */
3283 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */
3284 "External data encryption key manager access error") },
3285 /* V */
3286 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */
3287 "External data encryption key manager error") },
3288 /* V */
3289 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */
3290 "External data encryption key not found") },
3291 /* V */
3292 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */
3293 "External data encryption request not authorized") },
3294 /* T */
3295 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */
3296 "External data encryption control timeout") },
3297 /* T */
3298 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */
3299 "External data encryption control error") },
3300 /* DT R M E V */
3301 { SST(0x74, 0x71, SS_FATAL | EACCES,
3302 "Logical unit access not authorized") },
3303 /* D */
3304 { SST(0x74, 0x79, SS_FATAL | EACCES,
3305 "Security conflict in translated device") }
3306 };
3307
3308 const u_int asc_table_size = nitems(asc_table);
3309
3310 struct asc_key
3311 {
3312 int asc;
3313 int ascq;
3314 };
3315
3316 static int
ascentrycomp(const void * key,const void * member)3317 ascentrycomp(const void *key, const void *member)
3318 {
3319 int asc;
3320 int ascq;
3321 const struct asc_table_entry *table_entry;
3322
3323 asc = ((const struct asc_key *)key)->asc;
3324 ascq = ((const struct asc_key *)key)->ascq;
3325 table_entry = (const struct asc_table_entry *)member;
3326
3327 if (asc >= table_entry->asc) {
3328 if (asc > table_entry->asc)
3329 return (1);
3330
3331 if (ascq <= table_entry->ascq) {
3332 /* Check for ranges */
3333 if (ascq == table_entry->ascq
3334 || ((table_entry->action & SSQ_RANGE) != 0
3335 && ascq >= (table_entry - 1)->ascq))
3336 return (0);
3337 return (-1);
3338 }
3339 return (1);
3340 }
3341 return (-1);
3342 }
3343
3344 static int
senseentrycomp(const void * key,const void * member)3345 senseentrycomp(const void *key, const void *member)
3346 {
3347 int sense_key;
3348 const struct sense_key_table_entry *table_entry;
3349
3350 sense_key = *((const int *)key);
3351 table_entry = (const struct sense_key_table_entry *)member;
3352
3353 if (sense_key >= table_entry->sense_key) {
3354 if (sense_key == table_entry->sense_key)
3355 return (0);
3356 return (1);
3357 }
3358 return (-1);
3359 }
3360
3361 static void
fetchtableentries(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const struct sense_key_table_entry ** sense_entry,const struct asc_table_entry ** asc_entry)3362 fetchtableentries(int sense_key, int asc, int ascq,
3363 struct scsi_inquiry_data *inq_data,
3364 const struct sense_key_table_entry **sense_entry,
3365 const struct asc_table_entry **asc_entry)
3366 {
3367 caddr_t match;
3368 const struct asc_table_entry *asc_tables[2];
3369 const struct sense_key_table_entry *sense_tables[2];
3370 struct asc_key asc_ascq;
3371 size_t asc_tables_size[2];
3372 size_t sense_tables_size[2];
3373 int num_asc_tables;
3374 int num_sense_tables;
3375 int i;
3376
3377 /* Default to failure */
3378 *sense_entry = NULL;
3379 *asc_entry = NULL;
3380 match = NULL;
3381 if (inq_data != NULL)
3382 match = cam_quirkmatch((caddr_t)inq_data,
3383 (caddr_t)sense_quirk_table,
3384 sense_quirk_table_size,
3385 sizeof(*sense_quirk_table),
3386 scsi_inquiry_match);
3387
3388 if (match != NULL) {
3389 struct scsi_sense_quirk_entry *quirk;
3390
3391 quirk = (struct scsi_sense_quirk_entry *)match;
3392 asc_tables[0] = quirk->asc_info;
3393 asc_tables_size[0] = quirk->num_ascs;
3394 asc_tables[1] = asc_table;
3395 asc_tables_size[1] = asc_table_size;
3396 num_asc_tables = 2;
3397 sense_tables[0] = quirk->sense_key_info;
3398 sense_tables_size[0] = quirk->num_sense_keys;
3399 sense_tables[1] = sense_key_table;
3400 sense_tables_size[1] = nitems(sense_key_table);
3401 num_sense_tables = 2;
3402 } else {
3403 asc_tables[0] = asc_table;
3404 asc_tables_size[0] = asc_table_size;
3405 num_asc_tables = 1;
3406 sense_tables[0] = sense_key_table;
3407 sense_tables_size[0] = nitems(sense_key_table);
3408 num_sense_tables = 1;
3409 }
3410
3411 asc_ascq.asc = asc;
3412 asc_ascq.ascq = ascq;
3413 for (i = 0; i < num_asc_tables; i++) {
3414 void *found_entry;
3415
3416 found_entry = bsearch(&asc_ascq, asc_tables[i],
3417 asc_tables_size[i],
3418 sizeof(**asc_tables),
3419 ascentrycomp);
3420
3421 if (found_entry) {
3422 /*
3423 * If we get to the SSQ_RANGE entry, we're one too
3424 * far. The prior entry is the interesting one, since it
3425 * contains the string to print, etc. Only the top end
3426 * range is interesting in this entry.
3427 */
3428 *asc_entry = (struct asc_table_entry *)found_entry;
3429 if (((*asc_entry)->action & SSQ_RANGE) != 0)
3430 (*asc_entry)--;
3431 break;
3432 }
3433 }
3434
3435 for (i = 0; i < num_sense_tables; i++) {
3436 void *found_entry;
3437
3438 found_entry = bsearch(&sense_key, sense_tables[i],
3439 sense_tables_size[i],
3440 sizeof(**sense_tables),
3441 senseentrycomp);
3442
3443 if (found_entry) {
3444 *sense_entry =
3445 (struct sense_key_table_entry *)found_entry;
3446 break;
3447 }
3448 }
3449 }
3450
3451 void
scsi_sense_desc(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const char ** sense_key_desc,const char ** asc_desc)3452 scsi_sense_desc(int sense_key, int asc, int ascq,
3453 struct scsi_inquiry_data *inq_data,
3454 const char **sense_key_desc, const char **asc_desc)
3455 {
3456 const struct asc_table_entry *asc_entry;
3457 const struct sense_key_table_entry *sense_entry;
3458
3459 fetchtableentries(sense_key, asc, ascq,
3460 inq_data,
3461 &sense_entry,
3462 &asc_entry);
3463
3464 if (sense_entry != NULL)
3465 *sense_key_desc = sense_entry->desc;
3466 else
3467 *sense_key_desc = "Invalid Sense Key";
3468
3469 if (asc_entry != NULL)
3470 *asc_desc = asc_entry->desc;
3471 else if (asc >= 0x80 && asc <= 0xff)
3472 *asc_desc = "Vendor Specific ASC";
3473 else if (ascq >= 0x80 && ascq <= 0xff)
3474 *asc_desc = "Vendor Specific ASCQ";
3475 else
3476 *asc_desc = "Reserved ASC/ASCQ pair";
3477 }
3478
3479 /*
3480 * Given sense and device type information, return the appropriate action.
3481 * If we do not understand the specific error as identified by the ASC/ASCQ
3482 * pair, fall back on the more generic actions derived from the sense key.
3483 */
3484 scsi_sense_action
scsi_error_action(struct ccb_scsiio * csio,struct scsi_inquiry_data * inq_data,uint32_t sense_flags)3485 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3486 uint32_t sense_flags)
3487 {
3488 const struct asc_table_entry *asc_entry;
3489 const struct sense_key_table_entry *sense_entry;
3490 int error_code, sense_key, asc, ascq;
3491 scsi_sense_action action;
3492
3493 if (!scsi_extract_sense_ccb((union ccb *)csio,
3494 &error_code, &sense_key, &asc, &ascq)) {
3495 action = SS_RDEF;
3496 } else if ((error_code == SSD_DEFERRED_ERROR)
3497 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3498 /*
3499 * XXX dufault@FreeBSD.org
3500 * This error doesn't relate to the command associated
3501 * with this request sense. A deferred error is an error
3502 * for a command that has already returned GOOD status
3503 * (see SCSI2 8.2.14.2).
3504 *
3505 * By my reading of that section, it looks like the current
3506 * command has been cancelled, we should now clean things up
3507 * (hopefully recovering any lost data) and then retry the
3508 * current command. There are two easy choices, both wrong:
3509 *
3510 * 1. Drop through (like we had been doing), thus treating
3511 * this as if the error were for the current command and
3512 * return and stop the current command.
3513 *
3514 * 2. Issue a retry (like I made it do) thus hopefully
3515 * recovering the current transfer, and ignoring the
3516 * fact that we've dropped a command.
3517 *
3518 * These should probably be handled in a device specific
3519 * sense handler or punted back up to a user mode daemon
3520 */
3521 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3522 } else {
3523 fetchtableentries(sense_key, asc, ascq,
3524 inq_data,
3525 &sense_entry,
3526 &asc_entry);
3527
3528 /*
3529 * Override the 'No additional Sense' entry (0,0)
3530 * with the error action of the sense key.
3531 */
3532 if (asc_entry != NULL
3533 && (asc != 0 || ascq != 0))
3534 action = asc_entry->action;
3535 else if (sense_entry != NULL)
3536 action = sense_entry->action;
3537 else
3538 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3539
3540 if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3541 /*
3542 * The action succeeded but the device wants
3543 * the user to know that some recovery action
3544 * was required.
3545 */
3546 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3547 action |= SS_NOP|SSQ_PRINT_SENSE;
3548 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3549 if ((sense_flags & SF_QUIET_IR) != 0)
3550 action &= ~SSQ_PRINT_SENSE;
3551 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3552 if ((sense_flags & SF_RETRY_UA) != 0
3553 && (action & SS_MASK) == SS_FAIL) {
3554 action &= ~(SS_MASK|SSQ_MASK);
3555 action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3556 SSQ_PRINT_SENSE;
3557 }
3558 action |= SSQ_UA;
3559 }
3560 }
3561 if ((action & SS_MASK) >= SS_START &&
3562 (sense_flags & SF_NO_RECOVERY)) {
3563 action &= ~SS_MASK;
3564 action |= SS_FAIL;
3565 } else if ((action & SS_MASK) == SS_RETRY &&
3566 (sense_flags & SF_NO_RETRY)) {
3567 action &= ~SS_MASK;
3568 action |= SS_FAIL;
3569 }
3570 if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3571 action |= SSQ_PRINT_SENSE;
3572 else if ((sense_flags & SF_NO_PRINT) != 0)
3573 action &= ~SSQ_PRINT_SENSE;
3574
3575 return (action);
3576 }
3577
3578 char *
scsi_cdb_string(uint8_t * cdb_ptr,char * cdb_string,size_t len)3579 scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len)
3580 {
3581 struct sbuf sb;
3582 int error;
3583
3584 if (len == 0)
3585 return ("");
3586
3587 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3588
3589 scsi_cdb_sbuf(cdb_ptr, &sb);
3590
3591 /* ENOMEM just means that the fixed buffer is full, OK to ignore */
3592 error = sbuf_finish(&sb);
3593 if (error != 0 &&
3594 #ifdef _KERNEL
3595 error != ENOMEM)
3596 #else
3597 errno != ENOMEM)
3598 #endif
3599 return ("");
3600
3601 return(sbuf_data(&sb));
3602 }
3603
3604 void
scsi_cdb_sbuf(uint8_t * cdb_ptr,struct sbuf * sb)3605 scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb)
3606 {
3607 uint8_t cdb_len;
3608 int i;
3609
3610 if (cdb_ptr == NULL)
3611 return;
3612
3613 /*
3614 * This is taken from the SCSI-3 draft spec.
3615 * (T10/1157D revision 0.3)
3616 * The top 3 bits of an opcode are the group code. The next 5 bits
3617 * are the command code.
3618 * Group 0: six byte commands
3619 * Group 1: ten byte commands
3620 * Group 2: ten byte commands
3621 * Group 3: reserved
3622 * Group 4: sixteen byte commands
3623 * Group 5: twelve byte commands
3624 * Group 6: vendor specific
3625 * Group 7: vendor specific
3626 */
3627 switch((*cdb_ptr >> 5) & 0x7) {
3628 case 0:
3629 cdb_len = 6;
3630 break;
3631 case 1:
3632 case 2:
3633 cdb_len = 10;
3634 break;
3635 case 3:
3636 case 6:
3637 case 7:
3638 /* in this case, just print out the opcode */
3639 cdb_len = 1;
3640 break;
3641 case 4:
3642 cdb_len = 16;
3643 break;
3644 case 5:
3645 cdb_len = 12;
3646 break;
3647 }
3648
3649 for (i = 0; i < cdb_len; i++)
3650 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3651
3652 return;
3653 }
3654
3655 const char *
scsi_status_string(struct ccb_scsiio * csio)3656 scsi_status_string(struct ccb_scsiio *csio)
3657 {
3658 switch(csio->scsi_status) {
3659 case SCSI_STATUS_OK:
3660 return("OK");
3661 case SCSI_STATUS_CHECK_COND:
3662 return("Check Condition");
3663 case SCSI_STATUS_BUSY:
3664 return("Busy");
3665 case SCSI_STATUS_INTERMED:
3666 return("Intermediate");
3667 case SCSI_STATUS_INTERMED_COND_MET:
3668 return("Intermediate-Condition Met");
3669 case SCSI_STATUS_RESERV_CONFLICT:
3670 return("Reservation Conflict");
3671 case SCSI_STATUS_CMD_TERMINATED:
3672 return("Command Terminated");
3673 case SCSI_STATUS_QUEUE_FULL:
3674 return("Queue Full");
3675 case SCSI_STATUS_ACA_ACTIVE:
3676 return("ACA Active");
3677 case SCSI_STATUS_TASK_ABORTED:
3678 return("Task Aborted");
3679 default: {
3680 static char unkstr[64];
3681 snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3682 csio->scsi_status);
3683 return(unkstr);
3684 }
3685 }
3686 }
3687
3688 /*
3689 * scsi_command_string() returns 0 for success and -1 for failure.
3690 */
3691 #ifdef _KERNEL
3692 int
scsi_command_string(struct ccb_scsiio * csio,struct sbuf * sb)3693 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3694 #else /* !_KERNEL */
3695 int
3696 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3697 struct sbuf *sb)
3698 #endif /* _KERNEL/!_KERNEL */
3699 {
3700 struct scsi_inquiry_data *inq_data;
3701 #ifdef _KERNEL
3702 struct ccb_getdev *cgd;
3703 #endif /* _KERNEL */
3704
3705 #ifdef _KERNEL
3706 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3707 return(-1);
3708 /*
3709 * Get the device information.
3710 */
3711 xpt_gdev_type(cgd, csio->ccb_h.path);
3712
3713 /*
3714 * If the device is unconfigured, just pretend that it is a hard
3715 * drive. scsi_op_desc() needs this.
3716 */
3717 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3718 cgd->inq_data.device = T_DIRECT;
3719
3720 inq_data = &cgd->inq_data;
3721
3722 #else /* !_KERNEL */
3723
3724 inq_data = &device->inq_data;
3725
3726 #endif /* _KERNEL/!_KERNEL */
3727
3728 sbuf_printf(sb, "%s. CDB: ",
3729 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3730 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3731
3732 #ifdef _KERNEL
3733 xpt_free_ccb((union ccb *)cgd);
3734 #endif
3735
3736 return(0);
3737 }
3738
3739 /*
3740 * Iterate over sense descriptors. Each descriptor is passed into iter_func().
3741 * If iter_func() returns 0, list traversal continues. If iter_func()
3742 * returns non-zero, list traversal is stopped.
3743 */
3744 void
scsi_desc_iterate(struct scsi_sense_data_desc * sense,u_int sense_len,int (* iter_func)(struct scsi_sense_data_desc * sense,u_int,struct scsi_sense_desc_header *,void *),void * arg)3745 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3746 int (*iter_func)(struct scsi_sense_data_desc *sense,
3747 u_int, struct scsi_sense_desc_header *,
3748 void *), void *arg)
3749 {
3750 int cur_pos;
3751 int desc_len;
3752
3753 /*
3754 * First make sure the extra length field is present.
3755 */
3756 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3757 return;
3758
3759 /*
3760 * The length of data actually returned may be different than the
3761 * extra_len recorded in the structure.
3762 */
3763 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3764
3765 /*
3766 * Limit this further by the extra length reported, and the maximum
3767 * allowed extra length.
3768 */
3769 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3770
3771 /*
3772 * Subtract the size of the header from the descriptor length.
3773 * This is to ensure that we have at least the header left, so we
3774 * don't have to check that inside the loop. This can wind up
3775 * being a negative value.
3776 */
3777 desc_len -= sizeof(struct scsi_sense_desc_header);
3778
3779 for (cur_pos = 0; cur_pos < desc_len;) {
3780 struct scsi_sense_desc_header *header;
3781
3782 header = (struct scsi_sense_desc_header *)
3783 &sense->sense_desc[cur_pos];
3784
3785 /*
3786 * Check to make sure we have the entire descriptor. We
3787 * don't call iter_func() unless we do.
3788 *
3789 * Note that although cur_pos is at the beginning of the
3790 * descriptor, desc_len already has the header length
3791 * subtracted. So the comparison of the length in the
3792 * header (which does not include the header itself) to
3793 * desc_len - cur_pos is correct.
3794 */
3795 if (header->length > (desc_len - cur_pos))
3796 break;
3797
3798 if (iter_func(sense, sense_len, header, arg) != 0)
3799 break;
3800
3801 cur_pos += sizeof(*header) + header->length;
3802 }
3803 }
3804
3805 struct scsi_find_desc_info {
3806 uint8_t desc_type;
3807 struct scsi_sense_desc_header *header;
3808 };
3809
3810 static int
scsi_find_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)3811 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3812 struct scsi_sense_desc_header *header, void *arg)
3813 {
3814 struct scsi_find_desc_info *desc_info;
3815
3816 desc_info = (struct scsi_find_desc_info *)arg;
3817
3818 if (header->desc_type == desc_info->desc_type) {
3819 desc_info->header = header;
3820
3821 /* We found the descriptor, tell the iterator to stop. */
3822 return (1);
3823 } else
3824 return (0);
3825 }
3826
3827 /*
3828 * Given a descriptor type, return a pointer to it if it is in the sense
3829 * data and not truncated. Avoiding truncating sense data will simplify
3830 * things significantly for the caller.
3831 */
3832 uint8_t *
scsi_find_desc(struct scsi_sense_data_desc * sense,u_int sense_len,uint8_t desc_type)3833 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3834 uint8_t desc_type)
3835 {
3836 struct scsi_find_desc_info desc_info;
3837
3838 desc_info.desc_type = desc_type;
3839 desc_info.header = NULL;
3840
3841 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3842
3843 return ((uint8_t *)desc_info.header);
3844 }
3845
3846 /*
3847 * Fill in SCSI descriptor sense data with the specified parameters.
3848 */
3849 static void
scsi_set_sense_data_desc_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)3850 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3851 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3852 int sense_key, int asc, int ascq, va_list ap)
3853 {
3854 struct scsi_sense_data_desc *sense;
3855 scsi_sense_elem_type elem_type;
3856 int space, len;
3857 uint8_t *desc, *data;
3858
3859 memset(sense_data, 0, sizeof(*sense_data));
3860 sense = (struct scsi_sense_data_desc *)sense_data;
3861 if (current_error != 0)
3862 sense->error_code = SSD_DESC_CURRENT_ERROR;
3863 else
3864 sense->error_code = SSD_DESC_DEFERRED_ERROR;
3865 sense->sense_key = sense_key;
3866 sense->add_sense_code = asc;
3867 sense->add_sense_code_qual = ascq;
3868 sense->flags = 0;
3869
3870 desc = &sense->sense_desc[0];
3871 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3872 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3873 SSD_ELEM_NONE) {
3874 if (elem_type >= SSD_ELEM_MAX) {
3875 printf("%s: invalid sense type %d\n", __func__,
3876 elem_type);
3877 break;
3878 }
3879 len = va_arg(ap, int);
3880 data = va_arg(ap, uint8_t *);
3881
3882 switch (elem_type) {
3883 case SSD_ELEM_SKIP:
3884 break;
3885 case SSD_ELEM_DESC:
3886 if (space < len) {
3887 sense->flags |= SSDD_SDAT_OVFL;
3888 break;
3889 }
3890 bcopy(data, desc, len);
3891 desc += len;
3892 space -= len;
3893 break;
3894 case SSD_ELEM_SKS: {
3895 struct scsi_sense_sks *sks = (void *)desc;
3896
3897 if (len > sizeof(sks->sense_key_spec))
3898 break;
3899 if (space < sizeof(*sks)) {
3900 sense->flags |= SSDD_SDAT_OVFL;
3901 break;
3902 }
3903 sks->desc_type = SSD_DESC_SKS;
3904 sks->length = sizeof(*sks) -
3905 (offsetof(struct scsi_sense_sks, length) + 1);
3906 bcopy(data, &sks->sense_key_spec, len);
3907 desc += sizeof(*sks);
3908 space -= sizeof(*sks);
3909 break;
3910 }
3911 case SSD_ELEM_COMMAND: {
3912 struct scsi_sense_command *cmd = (void *)desc;
3913
3914 if (len > sizeof(cmd->command_info))
3915 break;
3916 if (space < sizeof(*cmd)) {
3917 sense->flags |= SSDD_SDAT_OVFL;
3918 break;
3919 }
3920 cmd->desc_type = SSD_DESC_COMMAND;
3921 cmd->length = sizeof(*cmd) -
3922 (offsetof(struct scsi_sense_command, length) + 1);
3923 bcopy(data, &cmd->command_info[
3924 sizeof(cmd->command_info) - len], len);
3925 desc += sizeof(*cmd);
3926 space -= sizeof(*cmd);
3927 break;
3928 }
3929 case SSD_ELEM_INFO: {
3930 struct scsi_sense_info *info = (void *)desc;
3931
3932 if (len > sizeof(info->info))
3933 break;
3934 if (space < sizeof(*info)) {
3935 sense->flags |= SSDD_SDAT_OVFL;
3936 break;
3937 }
3938 info->desc_type = SSD_DESC_INFO;
3939 info->length = sizeof(*info) -
3940 (offsetof(struct scsi_sense_info, length) + 1);
3941 info->byte2 = SSD_INFO_VALID;
3942 bcopy(data, &info->info[sizeof(info->info) - len], len);
3943 desc += sizeof(*info);
3944 space -= sizeof(*info);
3945 break;
3946 }
3947 case SSD_ELEM_FRU: {
3948 struct scsi_sense_fru *fru = (void *)desc;
3949
3950 if (len > sizeof(fru->fru))
3951 break;
3952 if (space < sizeof(*fru)) {
3953 sense->flags |= SSDD_SDAT_OVFL;
3954 break;
3955 }
3956 fru->desc_type = SSD_DESC_FRU;
3957 fru->length = sizeof(*fru) -
3958 (offsetof(struct scsi_sense_fru, length) + 1);
3959 fru->fru = *data;
3960 desc += sizeof(*fru);
3961 space -= sizeof(*fru);
3962 break;
3963 }
3964 case SSD_ELEM_STREAM: {
3965 struct scsi_sense_stream *stream = (void *)desc;
3966
3967 if (len > sizeof(stream->byte3))
3968 break;
3969 if (space < sizeof(*stream)) {
3970 sense->flags |= SSDD_SDAT_OVFL;
3971 break;
3972 }
3973 stream->desc_type = SSD_DESC_STREAM;
3974 stream->length = sizeof(*stream) -
3975 (offsetof(struct scsi_sense_stream, length) + 1);
3976 stream->byte3 = *data;
3977 desc += sizeof(*stream);
3978 space -= sizeof(*stream);
3979 break;
3980 }
3981 default:
3982 /*
3983 * We shouldn't get here, but if we do, do nothing.
3984 * We've already consumed the arguments above.
3985 */
3986 break;
3987 }
3988 }
3989 sense->extra_len = desc - &sense->sense_desc[0];
3990 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3991 sense->extra_len;
3992 }
3993
3994 /*
3995 * Fill in SCSI fixed sense data with the specified parameters.
3996 */
3997 static void
scsi_set_sense_data_fixed_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)3998 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3999 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
4000 int sense_key, int asc, int ascq, va_list ap)
4001 {
4002 struct scsi_sense_data_fixed *sense;
4003 scsi_sense_elem_type elem_type;
4004 uint8_t *data;
4005 int len;
4006
4007 memset(sense_data, 0, sizeof(*sense_data));
4008 sense = (struct scsi_sense_data_fixed *)sense_data;
4009 if (current_error != 0)
4010 sense->error_code = SSD_CURRENT_ERROR;
4011 else
4012 sense->error_code = SSD_DEFERRED_ERROR;
4013 sense->flags = sense_key & SSD_KEY;
4014 sense->extra_len = 0;
4015 if (*sense_len >= 13) {
4016 sense->add_sense_code = asc;
4017 sense->extra_len = MAX(sense->extra_len, 5);
4018 } else
4019 sense->flags |= SSD_SDAT_OVFL;
4020 if (*sense_len >= 14) {
4021 sense->add_sense_code_qual = ascq;
4022 sense->extra_len = MAX(sense->extra_len, 6);
4023 } else
4024 sense->flags |= SSD_SDAT_OVFL;
4025
4026 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
4027 SSD_ELEM_NONE) {
4028 if (elem_type >= SSD_ELEM_MAX) {
4029 printf("%s: invalid sense type %d\n", __func__,
4030 elem_type);
4031 break;
4032 }
4033 len = va_arg(ap, int);
4034 data = va_arg(ap, uint8_t *);
4035
4036 switch (elem_type) {
4037 case SSD_ELEM_SKIP:
4038 break;
4039 case SSD_ELEM_SKS:
4040 if (len > sizeof(sense->sense_key_spec))
4041 break;
4042 if (*sense_len < 18) {
4043 sense->flags |= SSD_SDAT_OVFL;
4044 break;
4045 }
4046 bcopy(data, &sense->sense_key_spec[0], len);
4047 sense->extra_len = MAX(sense->extra_len, 10);
4048 break;
4049 case SSD_ELEM_COMMAND:
4050 if (*sense_len < 12) {
4051 sense->flags |= SSD_SDAT_OVFL;
4052 break;
4053 }
4054 if (len > sizeof(sense->cmd_spec_info)) {
4055 data += len - sizeof(sense->cmd_spec_info);
4056 len = sizeof(sense->cmd_spec_info);
4057 }
4058 bcopy(data, &sense->cmd_spec_info[
4059 sizeof(sense->cmd_spec_info) - len], len);
4060 sense->extra_len = MAX(sense->extra_len, 4);
4061 break;
4062 case SSD_ELEM_INFO:
4063 /* Set VALID bit only if no overflow. */
4064 sense->error_code |= SSD_ERRCODE_VALID;
4065 while (len > sizeof(sense->info)) {
4066 if (data[0] != 0)
4067 sense->error_code &= ~SSD_ERRCODE_VALID;
4068 data ++;
4069 len --;
4070 }
4071 bcopy(data, &sense->info[sizeof(sense->info) - len], len);
4072 break;
4073 case SSD_ELEM_FRU:
4074 if (*sense_len < 15) {
4075 sense->flags |= SSD_SDAT_OVFL;
4076 break;
4077 }
4078 sense->fru = *data;
4079 sense->extra_len = MAX(sense->extra_len, 7);
4080 break;
4081 case SSD_ELEM_STREAM:
4082 sense->flags |= *data &
4083 (SSD_ILI | SSD_EOM | SSD_FILEMARK);
4084 break;
4085 default:
4086
4087 /*
4088 * We can't handle that in fixed format. Skip it.
4089 */
4090 break;
4091 }
4092 }
4093 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
4094 sense->extra_len;
4095 }
4096
4097 /*
4098 * Fill in SCSI sense data with the specified parameters. This routine can
4099 * fill in either fixed or descriptor type sense data.
4100 */
4101 void
scsi_set_sense_data_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)4102 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
4103 scsi_sense_data_type sense_format, int current_error,
4104 int sense_key, int asc, int ascq, va_list ap)
4105 {
4106
4107 if (*sense_len > SSD_FULL_SIZE)
4108 *sense_len = SSD_FULL_SIZE;
4109 if (sense_format == SSD_TYPE_DESC)
4110 scsi_set_sense_data_desc_va(sense_data, sense_len,
4111 sense_format, current_error, sense_key, asc, ascq, ap);
4112 else
4113 scsi_set_sense_data_fixed_va(sense_data, sense_len,
4114 sense_format, current_error, sense_key, asc, ascq, ap);
4115 }
4116
4117 void
scsi_set_sense_data(struct scsi_sense_data * sense_data,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4118 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4119 scsi_sense_data_type sense_format, int current_error,
4120 int sense_key, int asc, int ascq, ...)
4121 {
4122 va_list ap;
4123 u_int sense_len = SSD_FULL_SIZE;
4124
4125 va_start(ap, ascq);
4126 scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4127 current_error, sense_key, asc, ascq, ap);
4128 va_end(ap);
4129 }
4130
4131 void
scsi_set_sense_data_len(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4132 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4133 scsi_sense_data_type sense_format, int current_error,
4134 int sense_key, int asc, int ascq, ...)
4135 {
4136 va_list ap;
4137
4138 va_start(ap, ascq);
4139 scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4140 current_error, sense_key, asc, ascq, ap);
4141 va_end(ap);
4142 }
4143
4144 /*
4145 * Get sense information for three similar sense data types.
4146 */
4147 int
scsi_get_sense_info(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t info_type,uint64_t * info,int64_t * signed_info)4148 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4149 uint8_t info_type, uint64_t *info, int64_t *signed_info)
4150 {
4151 scsi_sense_data_type sense_type;
4152
4153 if (sense_len == 0)
4154 goto bailout;
4155
4156 sense_type = scsi_sense_type(sense_data);
4157
4158 switch (sense_type) {
4159 case SSD_TYPE_DESC: {
4160 struct scsi_sense_data_desc *sense;
4161 uint8_t *desc;
4162
4163 sense = (struct scsi_sense_data_desc *)sense_data;
4164
4165 desc = scsi_find_desc(sense, sense_len, info_type);
4166 if (desc == NULL)
4167 goto bailout;
4168
4169 switch (info_type) {
4170 case SSD_DESC_INFO: {
4171 struct scsi_sense_info *info_desc;
4172
4173 info_desc = (struct scsi_sense_info *)desc;
4174
4175 if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
4176 goto bailout;
4177
4178 *info = scsi_8btou64(info_desc->info);
4179 if (signed_info != NULL)
4180 *signed_info = *info;
4181 break;
4182 }
4183 case SSD_DESC_COMMAND: {
4184 struct scsi_sense_command *cmd_desc;
4185
4186 cmd_desc = (struct scsi_sense_command *)desc;
4187
4188 *info = scsi_8btou64(cmd_desc->command_info);
4189 if (signed_info != NULL)
4190 *signed_info = *info;
4191 break;
4192 }
4193 case SSD_DESC_FRU: {
4194 struct scsi_sense_fru *fru_desc;
4195
4196 fru_desc = (struct scsi_sense_fru *)desc;
4197
4198 if (fru_desc->fru == 0)
4199 goto bailout;
4200
4201 *info = fru_desc->fru;
4202 if (signed_info != NULL)
4203 *signed_info = (int8_t)fru_desc->fru;
4204 break;
4205 }
4206 default:
4207 goto bailout;
4208 break;
4209 }
4210 break;
4211 }
4212 case SSD_TYPE_FIXED: {
4213 struct scsi_sense_data_fixed *sense;
4214
4215 sense = (struct scsi_sense_data_fixed *)sense_data;
4216
4217 switch (info_type) {
4218 case SSD_DESC_INFO: {
4219 uint32_t info_val;
4220
4221 if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4222 goto bailout;
4223
4224 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4225 goto bailout;
4226
4227 info_val = scsi_4btoul(sense->info);
4228
4229 *info = info_val;
4230 if (signed_info != NULL)
4231 *signed_info = (int32_t)info_val;
4232 break;
4233 }
4234 case SSD_DESC_COMMAND: {
4235 uint32_t cmd_val;
4236
4237 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4238 cmd_spec_info) == 0)
4239 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4240 goto bailout;
4241
4242 cmd_val = scsi_4btoul(sense->cmd_spec_info);
4243 if (cmd_val == 0)
4244 goto bailout;
4245
4246 *info = cmd_val;
4247 if (signed_info != NULL)
4248 *signed_info = (int32_t)cmd_val;
4249 break;
4250 }
4251 case SSD_DESC_FRU:
4252 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4253 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4254 goto bailout;
4255
4256 if (sense->fru == 0)
4257 goto bailout;
4258
4259 *info = sense->fru;
4260 if (signed_info != NULL)
4261 *signed_info = (int8_t)sense->fru;
4262 break;
4263 default:
4264 goto bailout;
4265 break;
4266 }
4267 break;
4268 }
4269 default:
4270 goto bailout;
4271 break;
4272 }
4273
4274 return (0);
4275 bailout:
4276 return (1);
4277 }
4278
4279 int
scsi_get_sks(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t * sks)4280 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4281 {
4282 scsi_sense_data_type sense_type;
4283
4284 if (sense_len == 0)
4285 goto bailout;
4286
4287 sense_type = scsi_sense_type(sense_data);
4288
4289 switch (sense_type) {
4290 case SSD_TYPE_DESC: {
4291 struct scsi_sense_data_desc *sense;
4292 struct scsi_sense_sks *desc;
4293
4294 sense = (struct scsi_sense_data_desc *)sense_data;
4295
4296 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4297 SSD_DESC_SKS);
4298 if (desc == NULL)
4299 goto bailout;
4300
4301 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4302 goto bailout;
4303
4304 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4305 break;
4306 }
4307 case SSD_TYPE_FIXED: {
4308 struct scsi_sense_data_fixed *sense;
4309
4310 sense = (struct scsi_sense_data_fixed *)sense_data;
4311
4312 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4313 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4314 goto bailout;
4315
4316 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4317 goto bailout;
4318
4319 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4320 break;
4321 }
4322 default:
4323 goto bailout;
4324 break;
4325 }
4326 return (0);
4327 bailout:
4328 return (1);
4329 }
4330
4331 /*
4332 * Provide a common interface for fixed and descriptor sense to detect
4333 * whether we have block-specific sense information. It is clear by the
4334 * presence of the block descriptor in descriptor mode, but we have to
4335 * infer from the inquiry data and ILI bit in fixed mode.
4336 */
4337 int
scsi_get_block_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * block_bits)4338 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4339 struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4340 {
4341 scsi_sense_data_type sense_type;
4342
4343 if (inq_data != NULL) {
4344 switch (SID_TYPE(inq_data)) {
4345 case T_DIRECT:
4346 case T_RBC:
4347 case T_ZBC_HM:
4348 break;
4349 default:
4350 goto bailout;
4351 break;
4352 }
4353 }
4354
4355 sense_type = scsi_sense_type(sense_data);
4356
4357 switch (sense_type) {
4358 case SSD_TYPE_DESC: {
4359 struct scsi_sense_data_desc *sense;
4360 struct scsi_sense_block *block;
4361
4362 sense = (struct scsi_sense_data_desc *)sense_data;
4363
4364 block = (struct scsi_sense_block *)scsi_find_desc(sense,
4365 sense_len, SSD_DESC_BLOCK);
4366 if (block == NULL)
4367 goto bailout;
4368
4369 *block_bits = block->byte3;
4370 break;
4371 }
4372 case SSD_TYPE_FIXED: {
4373 struct scsi_sense_data_fixed *sense;
4374
4375 sense = (struct scsi_sense_data_fixed *)sense_data;
4376
4377 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4378 goto bailout;
4379
4380 *block_bits = sense->flags & SSD_ILI;
4381 break;
4382 }
4383 default:
4384 goto bailout;
4385 break;
4386 }
4387 return (0);
4388 bailout:
4389 return (1);
4390 }
4391
4392 int
scsi_get_stream_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * stream_bits)4393 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4394 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4395 {
4396 scsi_sense_data_type sense_type;
4397
4398 if (inq_data != NULL) {
4399 switch (SID_TYPE(inq_data)) {
4400 case T_SEQUENTIAL:
4401 break;
4402 default:
4403 goto bailout;
4404 break;
4405 }
4406 }
4407
4408 sense_type = scsi_sense_type(sense_data);
4409
4410 switch (sense_type) {
4411 case SSD_TYPE_DESC: {
4412 struct scsi_sense_data_desc *sense;
4413 struct scsi_sense_stream *stream;
4414
4415 sense = (struct scsi_sense_data_desc *)sense_data;
4416
4417 stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4418 sense_len, SSD_DESC_STREAM);
4419 if (stream == NULL)
4420 goto bailout;
4421
4422 *stream_bits = stream->byte3;
4423 break;
4424 }
4425 case SSD_TYPE_FIXED: {
4426 struct scsi_sense_data_fixed *sense;
4427
4428 sense = (struct scsi_sense_data_fixed *)sense_data;
4429
4430 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4431 goto bailout;
4432
4433 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4434 break;
4435 }
4436 default:
4437 goto bailout;
4438 break;
4439 }
4440 return (0);
4441 bailout:
4442 return (1);
4443 }
4444
4445 void
scsi_info_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t info)4446 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4447 struct scsi_inquiry_data *inq_data, uint64_t info)
4448 {
4449 sbuf_printf(sb, "Info: %#jx", info);
4450 }
4451
4452 void
scsi_command_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t csi)4453 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4454 struct scsi_inquiry_data *inq_data, uint64_t csi)
4455 {
4456 sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4457 }
4458
4459 void
scsi_progress_sbuf(struct sbuf * sb,uint16_t progress)4460 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4461 {
4462 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4463 (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4464 progress, SSD_SKS_PROGRESS_DENOM);
4465 }
4466
4467 /*
4468 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4469 */
4470 int
scsi_sks_sbuf(struct sbuf * sb,int sense_key,uint8_t * sks)4471 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4472 {
4473
4474 switch (sense_key) {
4475 case SSD_KEY_ILLEGAL_REQUEST: {
4476 struct scsi_sense_sks_field *field;
4477 int bad_command;
4478 char tmpstr[40];
4479
4480 /*Field Pointer*/
4481 field = (struct scsi_sense_sks_field *)sks;
4482
4483 if (field->byte0 & SSD_SKS_FIELD_CMD)
4484 bad_command = 1;
4485 else
4486 bad_command = 0;
4487
4488 tmpstr[0] = '\0';
4489
4490 /* Bit pointer is valid */
4491 if (field->byte0 & SSD_SKS_BPV)
4492 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4493 field->byte0 & SSD_SKS_BIT_VALUE);
4494
4495 sbuf_printf(sb, "%s byte %d %sis invalid",
4496 bad_command ? "Command" : "Data",
4497 scsi_2btoul(field->field), tmpstr);
4498 break;
4499 }
4500 case SSD_KEY_UNIT_ATTENTION: {
4501 struct scsi_sense_sks_overflow *overflow;
4502
4503 overflow = (struct scsi_sense_sks_overflow *)sks;
4504
4505 /*UA Condition Queue Overflow*/
4506 sbuf_printf(sb, "Unit Attention Condition Queue %s",
4507 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4508 "Overflowed" : "Did Not Overflow??");
4509 break;
4510 }
4511 case SSD_KEY_RECOVERED_ERROR:
4512 case SSD_KEY_HARDWARE_ERROR:
4513 case SSD_KEY_MEDIUM_ERROR: {
4514 struct scsi_sense_sks_retry *retry;
4515
4516 /*Actual Retry Count*/
4517 retry = (struct scsi_sense_sks_retry *)sks;
4518
4519 sbuf_printf(sb, "Actual Retry Count: %d",
4520 scsi_2btoul(retry->actual_retry_count));
4521 break;
4522 }
4523 case SSD_KEY_NO_SENSE:
4524 case SSD_KEY_NOT_READY: {
4525 struct scsi_sense_sks_progress *progress;
4526 int progress_val;
4527
4528 /*Progress Indication*/
4529 progress = (struct scsi_sense_sks_progress *)sks;
4530 progress_val = scsi_2btoul(progress->progress);
4531
4532 scsi_progress_sbuf(sb, progress_val);
4533 break;
4534 }
4535 case SSD_KEY_COPY_ABORTED: {
4536 struct scsi_sense_sks_segment *segment;
4537 char tmpstr[40];
4538
4539 /*Segment Pointer*/
4540 segment = (struct scsi_sense_sks_segment *)sks;
4541
4542 tmpstr[0] = '\0';
4543
4544 if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4545 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4546 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4547
4548 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4549 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4550 scsi_2btoul(segment->field), tmpstr);
4551 break;
4552 }
4553 default:
4554 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4555 scsi_2btoul(&sks[1]));
4556 break;
4557 }
4558
4559 return (0);
4560 }
4561
4562 void
scsi_fru_sbuf(struct sbuf * sb,uint64_t fru)4563 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4564 {
4565 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4566 }
4567
4568 void
scsi_stream_sbuf(struct sbuf * sb,uint8_t stream_bits)4569 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
4570 {
4571 int need_comma;
4572
4573 need_comma = 0;
4574 /*
4575 * XXX KDM this needs more descriptive decoding.
4576 */
4577 sbuf_cat(sb, "Stream Command Sense Data: ");
4578 if (stream_bits & SSD_DESC_STREAM_FM) {
4579 sbuf_cat(sb, "Filemark");
4580 need_comma = 1;
4581 }
4582
4583 if (stream_bits & SSD_DESC_STREAM_EOM) {
4584 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4585 need_comma = 1;
4586 }
4587
4588 if (stream_bits & SSD_DESC_STREAM_ILI)
4589 sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4590 }
4591
4592 void
scsi_block_sbuf(struct sbuf * sb,uint8_t block_bits)4593 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
4594 {
4595
4596 sbuf_cat(sb, "Block Command Sense Data: ");
4597 if (block_bits & SSD_DESC_BLOCK_ILI)
4598 sbuf_cat(sb, "ILI");
4599 }
4600
4601 void
scsi_sense_info_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4602 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4603 u_int sense_len, uint8_t *cdb, int cdb_len,
4604 struct scsi_inquiry_data *inq_data,
4605 struct scsi_sense_desc_header *header)
4606 {
4607 struct scsi_sense_info *info;
4608
4609 info = (struct scsi_sense_info *)header;
4610
4611 if ((info->byte2 & SSD_INFO_VALID) == 0)
4612 return;
4613
4614 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4615 }
4616
4617 void
scsi_sense_command_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4618 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4619 u_int sense_len, uint8_t *cdb, int cdb_len,
4620 struct scsi_inquiry_data *inq_data,
4621 struct scsi_sense_desc_header *header)
4622 {
4623 struct scsi_sense_command *command;
4624
4625 command = (struct scsi_sense_command *)header;
4626
4627 scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4628 scsi_8btou64(command->command_info));
4629 }
4630
4631 void
scsi_sense_sks_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4632 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4633 u_int sense_len, uint8_t *cdb, int cdb_len,
4634 struct scsi_inquiry_data *inq_data,
4635 struct scsi_sense_desc_header *header)
4636 {
4637 struct scsi_sense_sks *sks;
4638 int error_code, sense_key, asc, ascq;
4639
4640 sks = (struct scsi_sense_sks *)header;
4641
4642 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4643 return;
4644
4645 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4646 &asc, &ascq, /*show_errors*/ 1);
4647
4648 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4649 }
4650
4651 void
scsi_sense_fru_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4652 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4653 u_int sense_len, uint8_t *cdb, int cdb_len,
4654 struct scsi_inquiry_data *inq_data,
4655 struct scsi_sense_desc_header *header)
4656 {
4657 struct scsi_sense_fru *fru;
4658
4659 fru = (struct scsi_sense_fru *)header;
4660
4661 if (fru->fru == 0)
4662 return;
4663
4664 scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4665 }
4666
4667 void
scsi_sense_stream_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4668 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4669 u_int sense_len, uint8_t *cdb, int cdb_len,
4670 struct scsi_inquiry_data *inq_data,
4671 struct scsi_sense_desc_header *header)
4672 {
4673 struct scsi_sense_stream *stream;
4674
4675 stream = (struct scsi_sense_stream *)header;
4676 scsi_stream_sbuf(sb, stream->byte3);
4677 }
4678
4679 void
scsi_sense_block_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4680 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4681 u_int sense_len, uint8_t *cdb, int cdb_len,
4682 struct scsi_inquiry_data *inq_data,
4683 struct scsi_sense_desc_header *header)
4684 {
4685 struct scsi_sense_block *block;
4686
4687 block = (struct scsi_sense_block *)header;
4688 scsi_block_sbuf(sb, block->byte3);
4689 }
4690
4691 void
scsi_sense_progress_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4692 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4693 u_int sense_len, uint8_t *cdb, int cdb_len,
4694 struct scsi_inquiry_data *inq_data,
4695 struct scsi_sense_desc_header *header)
4696 {
4697 struct scsi_sense_progress *progress;
4698 const char *sense_key_desc;
4699 const char *asc_desc;
4700 int progress_val;
4701
4702 progress = (struct scsi_sense_progress *)header;
4703
4704 /*
4705 * Get descriptions for the sense key, ASC, and ASCQ in the
4706 * progress descriptor. These could be different than the values
4707 * in the overall sense data.
4708 */
4709 scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4710 progress->add_sense_code_qual, inq_data,
4711 &sense_key_desc, &asc_desc);
4712
4713 progress_val = scsi_2btoul(progress->progress);
4714
4715 /*
4716 * The progress indicator is for the operation described by the
4717 * sense key, ASC, and ASCQ in the descriptor.
4718 */
4719 sbuf_cat(sb, sense_key_desc);
4720 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4721 progress->add_sense_code_qual, asc_desc);
4722 scsi_progress_sbuf(sb, progress_val);
4723 }
4724
4725 void
scsi_sense_ata_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4726 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4727 u_int sense_len, uint8_t *cdb, int cdb_len,
4728 struct scsi_inquiry_data *inq_data,
4729 struct scsi_sense_desc_header *header)
4730 {
4731 struct scsi_sense_ata_ret_desc *res;
4732
4733 res = (struct scsi_sense_ata_ret_desc *)header;
4734
4735 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4736 res->status,
4737 (res->status & 0x80) ? "BSY " : "",
4738 (res->status & 0x40) ? "DRDY " : "",
4739 (res->status & 0x20) ? "DF " : "",
4740 (res->status & 0x10) ? "SERV " : "",
4741 (res->status & 0x08) ? "DRQ " : "",
4742 (res->status & 0x04) ? "CORR " : "",
4743 (res->status & 0x02) ? "IDX " : "",
4744 (res->status & 0x01) ? "ERR" : "");
4745 if (res->status & 1) {
4746 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4747 res->error,
4748 (res->error & 0x80) ? "ICRC " : "",
4749 (res->error & 0x40) ? "UNC " : "",
4750 (res->error & 0x20) ? "MC " : "",
4751 (res->error & 0x10) ? "IDNF " : "",
4752 (res->error & 0x08) ? "MCR " : "",
4753 (res->error & 0x04) ? "ABRT " : "",
4754 (res->error & 0x02) ? "NM " : "",
4755 (res->error & 0x01) ? "ILI" : "");
4756 }
4757
4758 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4759 sbuf_printf(sb, "count: %02x%02x, ",
4760 res->count_15_8, res->count_7_0);
4761 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4762 res->lba_47_40, res->lba_39_32, res->lba_31_24,
4763 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4764 } else {
4765 sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4766 sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4767 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4768 }
4769 sbuf_printf(sb, "device: %02x, ", res->device);
4770 }
4771
4772 void
scsi_sense_forwarded_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4773 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4774 u_int sense_len, uint8_t *cdb, int cdb_len,
4775 struct scsi_inquiry_data *inq_data,
4776 struct scsi_sense_desc_header *header)
4777 {
4778 struct scsi_sense_forwarded *forwarded;
4779 const char *sense_key_desc;
4780 const char *asc_desc;
4781 int error_code, sense_key, asc, ascq;
4782
4783 forwarded = (struct scsi_sense_forwarded *)header;
4784 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4785 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4786 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4787
4788 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4789 sense_key_desc, asc, ascq, asc_desc);
4790 }
4791
4792 void
scsi_sense_dabd_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4793 scsi_sense_dabd_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4794 u_int sense_len, uint8_t *cdb, int cdb_len,
4795 struct scsi_inquiry_data *inq_data,
4796 struct scsi_sense_desc_header *header)
4797 {
4798 struct scsi_sense_direct_access_block_device *dabd;
4799 int error_code, sense_key, asc, ascq;
4800
4801 dabd = (struct scsi_sense_direct_access_block_device *)header;
4802
4803 sbuf_printf(sb, "Direct Access Block Device: fru: %d ",
4804 dabd->fru);
4805 if (dabd->sks_byte & SSD_DESC_DABD_SKS_VALID) {
4806 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4807 &asc, &ascq, /*show_errors*/ 1);
4808 scsi_sks_sbuf(sb, sense_key, dabd->data);
4809 }
4810 if (dabd->byte2 & SSD_DESC_DABD_VALID) {
4811 scsi_info_sbuf(sb, cdb, cdb_len, inq_data,
4812 scsi_8btou64(dabd->info));
4813 scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4814 scsi_8btou64(dabd->command_info));
4815 }
4816 }
4817
4818 /*
4819 * Generic sense descriptor printing routine. This is used when we have
4820 * not yet implemented a specific printing routine for this descriptor.
4821 */
4822 void
scsi_sense_generic_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4823 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4824 u_int sense_len, uint8_t *cdb, int cdb_len,
4825 struct scsi_inquiry_data *inq_data,
4826 struct scsi_sense_desc_header *header)
4827 {
4828 int i;
4829 uint8_t *buf_ptr;
4830
4831 sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4832
4833 buf_ptr = (uint8_t *)&header[1];
4834
4835 for (i = 0; i < header->length; i++, buf_ptr++)
4836 sbuf_printf(sb, " %02x", *buf_ptr);
4837 }
4838
4839 /*
4840 * Keep this list in numeric order. This speeds the array traversal.
4841 */
4842 struct scsi_sense_desc_printer {
4843 uint8_t desc_type;
4844 /*
4845 * The function arguments here are the superset of what is needed
4846 * to print out various different descriptors. Command and
4847 * information descriptors need inquiry data and command type.
4848 * Sense key specific descriptors need the sense key.
4849 *
4850 * The sense, cdb, and inquiry data arguments may be NULL, but the
4851 * information printed may not be fully decoded as a result.
4852 */
4853 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4854 u_int sense_len, uint8_t *cdb, int cdb_len,
4855 struct scsi_inquiry_data *inq_data,
4856 struct scsi_sense_desc_header *header);
4857 } scsi_sense_printers[] = {
4858 {SSD_DESC_INFO, scsi_sense_info_sbuf},
4859 {SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4860 {SSD_DESC_SKS, scsi_sense_sks_sbuf},
4861 {SSD_DESC_FRU, scsi_sense_fru_sbuf},
4862 {SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4863 {SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4864 {SSD_DESC_ATA, scsi_sense_ata_sbuf},
4865 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4866 {SSD_DESC_DABD, scsi_sense_dabd_sbuf},
4867 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf},
4868 };
4869
4870 void
scsi_sense_desc_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4871 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4872 u_int sense_len, uint8_t *cdb, int cdb_len,
4873 struct scsi_inquiry_data *inq_data,
4874 struct scsi_sense_desc_header *header)
4875 {
4876 u_int i;
4877
4878 for (i = 0; i < nitems(scsi_sense_printers); i++) {
4879 struct scsi_sense_desc_printer *printer;
4880
4881 printer = &scsi_sense_printers[i];
4882
4883 /*
4884 * The list is sorted, so quit if we've passed our
4885 * descriptor number.
4886 */
4887 if (printer->desc_type > header->desc_type)
4888 break;
4889
4890 if (printer->desc_type != header->desc_type)
4891 continue;
4892
4893 printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4894 inq_data, header);
4895
4896 return;
4897 }
4898
4899 /*
4900 * No specific printing routine, so use the generic routine.
4901 */
4902 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4903 inq_data, header);
4904 }
4905
4906 scsi_sense_data_type
scsi_sense_type(struct scsi_sense_data * sense_data)4907 scsi_sense_type(struct scsi_sense_data *sense_data)
4908 {
4909 switch (sense_data->error_code & SSD_ERRCODE) {
4910 case SSD_DESC_CURRENT_ERROR:
4911 case SSD_DESC_DEFERRED_ERROR:
4912 return (SSD_TYPE_DESC);
4913 break;
4914 case SSD_CURRENT_ERROR:
4915 case SSD_DEFERRED_ERROR:
4916 return (SSD_TYPE_FIXED);
4917 break;
4918 default:
4919 break;
4920 }
4921
4922 return (SSD_TYPE_NONE);
4923 }
4924
4925 struct scsi_print_sense_info {
4926 struct sbuf *sb;
4927 char *path_str;
4928 uint8_t *cdb;
4929 int cdb_len;
4930 struct scsi_inquiry_data *inq_data;
4931 };
4932
4933 static int
scsi_print_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)4934 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4935 struct scsi_sense_desc_header *header, void *arg)
4936 {
4937 struct scsi_print_sense_info *print_info;
4938
4939 print_info = (struct scsi_print_sense_info *)arg;
4940
4941 switch (header->desc_type) {
4942 case SSD_DESC_INFO:
4943 case SSD_DESC_FRU:
4944 case SSD_DESC_COMMAND:
4945 case SSD_DESC_SKS:
4946 case SSD_DESC_BLOCK:
4947 case SSD_DESC_STREAM:
4948 /*
4949 * We have already printed these descriptors, if they are
4950 * present.
4951 */
4952 break;
4953 default: {
4954 sbuf_printf(print_info->sb, "%s", print_info->path_str);
4955 scsi_sense_desc_sbuf(print_info->sb,
4956 (struct scsi_sense_data *)sense, sense_len,
4957 print_info->cdb, print_info->cdb_len,
4958 print_info->inq_data, header);
4959 sbuf_putc(print_info->sb, '\n');
4960 break;
4961 }
4962 }
4963
4964 /*
4965 * Tell the iterator that we want to see more descriptors if they
4966 * are present.
4967 */
4968 return (0);
4969 }
4970
4971 void
scsi_sense_only_sbuf(struct scsi_sense_data * sense,u_int sense_len,struct sbuf * sb,char * path_str,struct scsi_inquiry_data * inq_data,uint8_t * cdb,int cdb_len)4972 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4973 struct sbuf *sb, char *path_str,
4974 struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4975 int cdb_len)
4976 {
4977 int error_code, sense_key, asc, ascq;
4978
4979 sbuf_cat(sb, path_str);
4980
4981 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4982 &asc, &ascq, /*show_errors*/ 1);
4983
4984 sbuf_cat(sb, "SCSI sense: ");
4985 switch (error_code) {
4986 case SSD_DEFERRED_ERROR:
4987 case SSD_DESC_DEFERRED_ERROR:
4988 sbuf_cat(sb, "Deferred error: ");
4989
4990 /* FALLTHROUGH */
4991 case SSD_CURRENT_ERROR:
4992 case SSD_DESC_CURRENT_ERROR:
4993 {
4994 struct scsi_sense_data_desc *desc_sense;
4995 struct scsi_print_sense_info print_info;
4996 const char *sense_key_desc;
4997 const char *asc_desc;
4998 uint8_t sks[3];
4999 uint64_t val;
5000 uint8_t bits;
5001
5002 /*
5003 * Get descriptions for the sense key, ASC, and ASCQ. If
5004 * these aren't present in the sense data (i.e. the sense
5005 * data isn't long enough), the -1 values that
5006 * scsi_extract_sense_len() returns will yield default
5007 * or error descriptions.
5008 */
5009 scsi_sense_desc(sense_key, asc, ascq, inq_data,
5010 &sense_key_desc, &asc_desc);
5011
5012 /*
5013 * We first print the sense key and ASC/ASCQ.
5014 */
5015 sbuf_cat(sb, sense_key_desc);
5016 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
5017
5018 /*
5019 * Print any block or stream device-specific information.
5020 */
5021 if (scsi_get_block_info(sense, sense_len, inq_data,
5022 &bits) == 0 && bits != 0) {
5023 sbuf_cat(sb, path_str);
5024 scsi_block_sbuf(sb, bits);
5025 sbuf_putc(sb, '\n');
5026 } else if (scsi_get_stream_info(sense, sense_len, inq_data,
5027 &bits) == 0 && bits != 0) {
5028 sbuf_cat(sb, path_str);
5029 scsi_stream_sbuf(sb, bits);
5030 sbuf_putc(sb, '\n');
5031 }
5032
5033 /*
5034 * Print the info field.
5035 */
5036 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
5037 &val, NULL) == 0) {
5038 sbuf_cat(sb, path_str);
5039 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
5040 sbuf_putc(sb, '\n');
5041 }
5042
5043 /*
5044 * Print the FRU.
5045 */
5046 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
5047 &val, NULL) == 0) {
5048 sbuf_cat(sb, path_str);
5049 scsi_fru_sbuf(sb, val);
5050 sbuf_putc(sb, '\n');
5051 }
5052
5053 /*
5054 * Print any command-specific information.
5055 */
5056 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
5057 &val, NULL) == 0) {
5058 sbuf_cat(sb, path_str);
5059 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
5060 sbuf_putc(sb, '\n');
5061 }
5062
5063 /*
5064 * Print out any sense-key-specific information.
5065 */
5066 if (scsi_get_sks(sense, sense_len, sks) == 0) {
5067 sbuf_cat(sb, path_str);
5068 scsi_sks_sbuf(sb, sense_key, sks);
5069 sbuf_putc(sb, '\n');
5070 }
5071
5072 /*
5073 * If this is fixed sense, we're done. If we have
5074 * descriptor sense, we might have more information
5075 * available.
5076 */
5077 if (scsi_sense_type(sense) != SSD_TYPE_DESC)
5078 break;
5079
5080 desc_sense = (struct scsi_sense_data_desc *)sense;
5081
5082 print_info.sb = sb;
5083 print_info.path_str = path_str;
5084 print_info.cdb = cdb;
5085 print_info.cdb_len = cdb_len;
5086 print_info.inq_data = inq_data;
5087
5088 /*
5089 * Print any sense descriptors that we have not already printed.
5090 */
5091 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
5092 &print_info);
5093 break;
5094 }
5095 case -1:
5096 /*
5097 * scsi_extract_sense_len() sets values to -1 if the
5098 * show_errors flag is set and they aren't present in the
5099 * sense data. This means that sense_len is 0.
5100 */
5101 sbuf_cat(sb, "No sense data present\n");
5102 break;
5103 default: {
5104 sbuf_printf(sb, "Error code 0x%x", error_code);
5105 if (sense->error_code & SSD_ERRCODE_VALID) {
5106 struct scsi_sense_data_fixed *fixed_sense;
5107
5108 fixed_sense = (struct scsi_sense_data_fixed *)sense;
5109
5110 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
5111 uint32_t info;
5112
5113 info = scsi_4btoul(fixed_sense->info);
5114
5115 sbuf_printf(sb, " at block no. %d (decimal)",
5116 info);
5117 }
5118 }
5119 sbuf_putc(sb, '\n');
5120 break;
5121 }
5122 }
5123 }
5124
5125 /*
5126 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5127 */
5128 #ifdef _KERNEL
5129 int
scsi_sense_sbuf(struct ccb_scsiio * csio,struct sbuf * sb,scsi_sense_string_flags flags)5130 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5131 scsi_sense_string_flags flags)
5132 #else /* !_KERNEL */
5133 int
5134 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5135 struct sbuf *sb, scsi_sense_string_flags flags)
5136 #endif /* _KERNEL/!_KERNEL */
5137 {
5138 struct scsi_sense_data *sense;
5139 struct scsi_inquiry_data *inq_data;
5140 #ifdef _KERNEL
5141 struct ccb_getdev *cgd;
5142 #endif /* _KERNEL */
5143 char path_str[64];
5144
5145 #ifndef _KERNEL
5146 if (device == NULL)
5147 return(-1);
5148 #endif /* !_KERNEL */
5149 if ((csio == NULL) || (sb == NULL))
5150 return(-1);
5151
5152 /*
5153 * If the CDB is a physical address, we can't deal with it..
5154 */
5155 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5156 flags &= ~SSS_FLAG_PRINT_COMMAND;
5157
5158 #ifdef _KERNEL
5159 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5160 #else /* !_KERNEL */
5161 cam_path_string(device, path_str, sizeof(path_str));
5162 #endif /* _KERNEL/!_KERNEL */
5163
5164 #ifdef _KERNEL
5165 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5166 return(-1);
5167 /*
5168 * Get the device information.
5169 */
5170 xpt_gdev_type(cgd, csio->ccb_h.path);
5171
5172 /*
5173 * If the device is unconfigured, just pretend that it is a hard
5174 * drive. scsi_op_desc() needs this.
5175 */
5176 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5177 cgd->inq_data.device = T_DIRECT;
5178
5179 inq_data = &cgd->inq_data;
5180
5181 #else /* !_KERNEL */
5182
5183 inq_data = &device->inq_data;
5184
5185 #endif /* _KERNEL/!_KERNEL */
5186
5187 sense = NULL;
5188
5189 if (flags & SSS_FLAG_PRINT_COMMAND) {
5190 sbuf_cat(sb, path_str);
5191
5192 #ifdef _KERNEL
5193 scsi_command_string(csio, sb);
5194 #else /* !_KERNEL */
5195 scsi_command_string(device, csio, sb);
5196 #endif /* _KERNEL/!_KERNEL */
5197 sbuf_putc(sb, '\n');
5198 }
5199
5200 /*
5201 * If the sense data is a physical pointer, forget it.
5202 */
5203 if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5204 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5205 #ifdef _KERNEL
5206 xpt_free_ccb((union ccb*)cgd);
5207 #endif /* _KERNEL/!_KERNEL */
5208 return(-1);
5209 } else {
5210 /*
5211 * bcopy the pointer to avoid unaligned access
5212 * errors on finicky architectures. We don't
5213 * ensure that the sense data is pointer aligned.
5214 */
5215 bcopy((struct scsi_sense_data **)&csio->sense_data,
5216 &sense, sizeof(struct scsi_sense_data *));
5217 }
5218 } else {
5219 /*
5220 * If the physical sense flag is set, but the sense pointer
5221 * is not also set, we assume that the user is an idiot and
5222 * return. (Well, okay, it could be that somehow, the
5223 * entire csio is physical, but we would have probably core
5224 * dumped on one of the bogus pointer deferences above
5225 * already.)
5226 */
5227 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5228 #ifdef _KERNEL
5229 xpt_free_ccb((union ccb*)cgd);
5230 #endif /* _KERNEL/!_KERNEL */
5231 return(-1);
5232 } else
5233 sense = &csio->sense_data;
5234 }
5235
5236 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5237 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5238
5239 #ifdef _KERNEL
5240 xpt_free_ccb((union ccb*)cgd);
5241 #endif /* _KERNEL/!_KERNEL */
5242 return(0);
5243 }
5244
5245 #ifdef _KERNEL
5246 char *
scsi_sense_string(struct ccb_scsiio * csio,char * str,int str_len)5247 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5248 #else /* !_KERNEL */
5249 char *
5250 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5251 char *str, int str_len)
5252 #endif /* _KERNEL/!_KERNEL */
5253 {
5254 struct sbuf sb;
5255
5256 sbuf_new(&sb, str, str_len, 0);
5257
5258 #ifdef _KERNEL
5259 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5260 #else /* !_KERNEL */
5261 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5262 #endif /* _KERNEL/!_KERNEL */
5263
5264 sbuf_finish(&sb);
5265
5266 return(sbuf_data(&sb));
5267 }
5268
5269 #ifdef _KERNEL
5270 void
scsi_sense_print(struct ccb_scsiio * csio)5271 scsi_sense_print(struct ccb_scsiio *csio)
5272 {
5273 struct sbuf sb;
5274 char str[512];
5275
5276 sbuf_new(&sb, str, sizeof(str), 0);
5277
5278 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5279
5280 sbuf_finish(&sb);
5281
5282 sbuf_putbuf(&sb);
5283 }
5284
5285 #else /* !_KERNEL */
5286 void
scsi_sense_print(struct cam_device * device,struct ccb_scsiio * csio,FILE * ofile)5287 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5288 FILE *ofile)
5289 {
5290 struct sbuf sb;
5291 char str[512];
5292
5293 if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5294 return;
5295
5296 sbuf_new(&sb, str, sizeof(str), 0);
5297
5298 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5299
5300 sbuf_finish(&sb);
5301
5302 fprintf(ofile, "%s", sbuf_data(&sb));
5303 }
5304
5305 #endif /* _KERNEL/!_KERNEL */
5306
5307 /*
5308 * Extract basic sense information. This is backward-compatible with the
5309 * previous implementation. For new implementations,
5310 * scsi_extract_sense_len() is recommended.
5311 */
5312 void
scsi_extract_sense(struct scsi_sense_data * sense_data,int * error_code,int * sense_key,int * asc,int * ascq)5313 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5314 int *sense_key, int *asc, int *ascq)
5315 {
5316 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5317 sense_key, asc, ascq, /*show_errors*/ 0);
5318 }
5319
5320 /*
5321 * Extract basic sense information from SCSI I/O CCB structure.
5322 */
5323 int
scsi_extract_sense_ccb(union ccb * ccb,int * error_code,int * sense_key,int * asc,int * ascq)5324 scsi_extract_sense_ccb(union ccb *ccb,
5325 int *error_code, int *sense_key, int *asc, int *ascq)
5326 {
5327 struct scsi_sense_data *sense_data;
5328
5329 /* Make sure there are some sense data we can access. */
5330 if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5331 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5332 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5333 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5334 (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5335 return (0);
5336
5337 if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5338 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5339 &sense_data, sizeof(struct scsi_sense_data *));
5340 else
5341 sense_data = &ccb->csio.sense_data;
5342 scsi_extract_sense_len(sense_data,
5343 ccb->csio.sense_len - ccb->csio.sense_resid,
5344 error_code, sense_key, asc, ascq, 1);
5345 if (*error_code == -1)
5346 return (0);
5347 return (1);
5348 }
5349
5350 /*
5351 * Extract basic sense information. If show_errors is set, sense values
5352 * will be set to -1 if they are not present.
5353 */
5354 void
scsi_extract_sense_len(struct scsi_sense_data * sense_data,u_int sense_len,int * error_code,int * sense_key,int * asc,int * ascq,int show_errors)5355 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5356 int *error_code, int *sense_key, int *asc, int *ascq,
5357 int show_errors)
5358 {
5359 /*
5360 * If we have no length, we have no sense.
5361 */
5362 if (sense_len == 0) {
5363 if (show_errors == 0) {
5364 *error_code = 0;
5365 *sense_key = 0;
5366 *asc = 0;
5367 *ascq = 0;
5368 } else {
5369 *error_code = -1;
5370 *sense_key = -1;
5371 *asc = -1;
5372 *ascq = -1;
5373 }
5374 return;
5375 }
5376
5377 *error_code = sense_data->error_code & SSD_ERRCODE;
5378
5379 switch (*error_code) {
5380 case SSD_DESC_CURRENT_ERROR:
5381 case SSD_DESC_DEFERRED_ERROR: {
5382 struct scsi_sense_data_desc *sense;
5383
5384 sense = (struct scsi_sense_data_desc *)sense_data;
5385
5386 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5387 *sense_key = sense->sense_key & SSD_KEY;
5388 else
5389 *sense_key = (show_errors) ? -1 : 0;
5390
5391 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5392 *asc = sense->add_sense_code;
5393 else
5394 *asc = (show_errors) ? -1 : 0;
5395
5396 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5397 *ascq = sense->add_sense_code_qual;
5398 else
5399 *ascq = (show_errors) ? -1 : 0;
5400 break;
5401 }
5402 case SSD_CURRENT_ERROR:
5403 case SSD_DEFERRED_ERROR:
5404 default: {
5405 struct scsi_sense_data_fixed *sense;
5406
5407 sense = (struct scsi_sense_data_fixed *)sense_data;
5408
5409 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5410 *sense_key = sense->flags & SSD_KEY;
5411 else
5412 *sense_key = (show_errors) ? -1 : 0;
5413
5414 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5415 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5416 *asc = sense->add_sense_code;
5417 else
5418 *asc = (show_errors) ? -1 : 0;
5419
5420 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5421 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5422 *ascq = sense->add_sense_code_qual;
5423 else
5424 *ascq = (show_errors) ? -1 : 0;
5425 break;
5426 }
5427 }
5428 }
5429
5430 int
scsi_get_sense_key(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5431 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5432 int show_errors)
5433 {
5434 int error_code, sense_key, asc, ascq;
5435
5436 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5437 &sense_key, &asc, &ascq, show_errors);
5438
5439 return (sense_key);
5440 }
5441
5442 int
scsi_get_asc(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5443 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5444 int show_errors)
5445 {
5446 int error_code, sense_key, asc, ascq;
5447
5448 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5449 &sense_key, &asc, &ascq, show_errors);
5450
5451 return (asc);
5452 }
5453
5454 int
scsi_get_ascq(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5455 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5456 int show_errors)
5457 {
5458 int error_code, sense_key, asc, ascq;
5459
5460 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5461 &sense_key, &asc, &ascq, show_errors);
5462
5463 return (ascq);
5464 }
5465
5466 /*
5467 * This function currently requires at least 36 bytes, or
5468 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this
5469 * function needs more or less data in the future, another length should be
5470 * defined in scsi_all.h to indicate the minimum amount of data necessary
5471 * for this routine to function properly.
5472 */
5473 void
scsi_print_inquiry_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5474 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5475 {
5476 uint8_t type;
5477 char *dtype, *qtype;
5478
5479 type = SID_TYPE(inq_data);
5480
5481 /*
5482 * Figure out basic device type and qualifier.
5483 */
5484 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5485 qtype = " (vendor-unique qualifier)";
5486 } else {
5487 switch (SID_QUAL(inq_data)) {
5488 case SID_QUAL_LU_CONNECTED:
5489 qtype = "";
5490 break;
5491
5492 case SID_QUAL_LU_OFFLINE:
5493 qtype = " (offline)";
5494 break;
5495
5496 case SID_QUAL_RSVD:
5497 qtype = " (reserved qualifier)";
5498 break;
5499 default:
5500 case SID_QUAL_BAD_LU:
5501 qtype = " (LUN not supported)";
5502 break;
5503 }
5504 }
5505
5506 switch (type) {
5507 case T_DIRECT:
5508 dtype = "Direct Access";
5509 break;
5510 case T_SEQUENTIAL:
5511 dtype = "Sequential Access";
5512 break;
5513 case T_PRINTER:
5514 dtype = "Printer";
5515 break;
5516 case T_PROCESSOR:
5517 dtype = "Processor";
5518 break;
5519 case T_WORM:
5520 dtype = "WORM";
5521 break;
5522 case T_CDROM:
5523 dtype = "CD-ROM";
5524 break;
5525 case T_SCANNER:
5526 dtype = "Scanner";
5527 break;
5528 case T_OPTICAL:
5529 dtype = "Optical";
5530 break;
5531 case T_CHANGER:
5532 dtype = "Changer";
5533 break;
5534 case T_COMM:
5535 dtype = "Communication";
5536 break;
5537 case T_STORARRAY:
5538 dtype = "Storage Array";
5539 break;
5540 case T_ENCLOSURE:
5541 dtype = "Enclosure Services";
5542 break;
5543 case T_RBC:
5544 dtype = "Simplified Direct Access";
5545 break;
5546 case T_OCRW:
5547 dtype = "Optical Card Read/Write";
5548 break;
5549 case T_OSD:
5550 dtype = "Object-Based Storage";
5551 break;
5552 case T_ADC:
5553 dtype = "Automation/Drive Interface";
5554 break;
5555 case T_ZBC_HM:
5556 dtype = "Host Managed Zoned Block";
5557 break;
5558 case T_NODEVICE:
5559 dtype = "Uninstalled";
5560 break;
5561 default:
5562 dtype = "unknown";
5563 break;
5564 }
5565
5566 scsi_print_inquiry_short_sbuf(sb, inq_data);
5567
5568 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5569
5570 if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5571 sbuf_cat(sb, "SCSI ");
5572 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5573 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5574 } else {
5575 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5576 }
5577 sbuf_printf(sb, "device%s\n", qtype);
5578 }
5579
5580 void
scsi_print_inquiry(struct scsi_inquiry_data * inq_data)5581 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5582 {
5583 struct sbuf sb;
5584 char buffer[120];
5585
5586 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5587 scsi_print_inquiry_sbuf(&sb, inq_data);
5588 sbuf_finish(&sb);
5589 sbuf_putbuf(&sb);
5590 }
5591
5592 void
scsi_print_inquiry_short_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5593 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5594 {
5595
5596 sbuf_putc(sb, '<');
5597 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5598 sbuf_putc(sb, ' ');
5599 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5600 sbuf_putc(sb, ' ');
5601 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5602 sbuf_cat(sb, "> ");
5603 }
5604
5605 void
scsi_print_inquiry_short(struct scsi_inquiry_data * inq_data)5606 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5607 {
5608 struct sbuf sb;
5609 char buffer[84];
5610
5611 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5612 scsi_print_inquiry_short_sbuf(&sb, inq_data);
5613 sbuf_finish(&sb);
5614 sbuf_putbuf(&sb);
5615 }
5616
5617 /*
5618 * Table of syncrates that don't follow the "divisible by 4"
5619 * rule. This table will be expanded in future SCSI specs.
5620 */
5621 static struct {
5622 u_int period_factor;
5623 u_int period; /* in 100ths of ns */
5624 } scsi_syncrates[] = {
5625 { 0x08, 625 }, /* FAST-160 */
5626 { 0x09, 1250 }, /* FAST-80 */
5627 { 0x0a, 2500 }, /* FAST-40 40MHz */
5628 { 0x0b, 3030 }, /* FAST-40 33MHz */
5629 { 0x0c, 5000 } /* FAST-20 */
5630 };
5631
5632 /*
5633 * Return the frequency in kHz corresponding to the given
5634 * sync period factor.
5635 */
5636 u_int
scsi_calc_syncsrate(u_int period_factor)5637 scsi_calc_syncsrate(u_int period_factor)
5638 {
5639 u_int i;
5640 u_int num_syncrates;
5641
5642 /*
5643 * It's a bug if period is zero, but if it is anyway, don't
5644 * die with a divide fault- instead return something which
5645 * 'approximates' async
5646 */
5647 if (period_factor == 0) {
5648 return (3300);
5649 }
5650
5651 num_syncrates = nitems(scsi_syncrates);
5652 /* See if the period is in the "exception" table */
5653 for (i = 0; i < num_syncrates; i++) {
5654 if (period_factor == scsi_syncrates[i].period_factor) {
5655 /* Period in kHz */
5656 return (100000000 / scsi_syncrates[i].period);
5657 }
5658 }
5659
5660 /*
5661 * Wasn't in the table, so use the standard
5662 * 4 times conversion.
5663 */
5664 return (10000000 / (period_factor * 4 * 10));
5665 }
5666
5667 /*
5668 * Return the SCSI sync parameter that corresponds to
5669 * the passed in period in 10ths of ns.
5670 */
5671 u_int
scsi_calc_syncparam(u_int period)5672 scsi_calc_syncparam(u_int period)
5673 {
5674 u_int i;
5675 u_int num_syncrates;
5676
5677 if (period == 0)
5678 return (~0); /* Async */
5679
5680 /* Adjust for exception table being in 100ths. */
5681 period *= 10;
5682 num_syncrates = nitems(scsi_syncrates);
5683 /* See if the period is in the "exception" table */
5684 for (i = 0; i < num_syncrates; i++) {
5685 if (period <= scsi_syncrates[i].period) {
5686 /* Period in 100ths of ns */
5687 return (scsi_syncrates[i].period_factor);
5688 }
5689 }
5690
5691 /*
5692 * Wasn't in the table, so use the standard
5693 * 1/4 period in ns conversion.
5694 */
5695 return (period/400);
5696 }
5697
5698 int
scsi_devid_is_naa_ieee_reg(uint8_t * bufp)5699 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5700 {
5701 struct scsi_vpd_id_descriptor *descr;
5702 struct scsi_vpd_id_naa_basic *naa;
5703 int n;
5704
5705 descr = (struct scsi_vpd_id_descriptor *)bufp;
5706 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5707 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5708 return 0;
5709 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5710 return 0;
5711 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
5712 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
5713 return 0;
5714 return 1;
5715 }
5716
5717 int
scsi_devid_is_sas_target(uint8_t * bufp)5718 scsi_devid_is_sas_target(uint8_t *bufp)
5719 {
5720 struct scsi_vpd_id_descriptor *descr;
5721
5722 descr = (struct scsi_vpd_id_descriptor *)bufp;
5723 if (!scsi_devid_is_naa_ieee_reg(bufp))
5724 return 0;
5725 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5726 return 0;
5727 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5728 return 0;
5729 return 1;
5730 }
5731
5732 int
scsi_devid_is_lun_eui64(uint8_t * bufp)5733 scsi_devid_is_lun_eui64(uint8_t *bufp)
5734 {
5735 struct scsi_vpd_id_descriptor *descr;
5736
5737 descr = (struct scsi_vpd_id_descriptor *)bufp;
5738 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5739 return 0;
5740 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5741 return 0;
5742 return 1;
5743 }
5744
5745 int
scsi_devid_is_lun_naa(uint8_t * bufp)5746 scsi_devid_is_lun_naa(uint8_t *bufp)
5747 {
5748 struct scsi_vpd_id_descriptor *descr;
5749
5750 descr = (struct scsi_vpd_id_descriptor *)bufp;
5751 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5752 return 0;
5753 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5754 return 0;
5755 return 1;
5756 }
5757
5758 int
scsi_devid_is_lun_t10(uint8_t * bufp)5759 scsi_devid_is_lun_t10(uint8_t *bufp)
5760 {
5761 struct scsi_vpd_id_descriptor *descr;
5762
5763 descr = (struct scsi_vpd_id_descriptor *)bufp;
5764 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5765 return 0;
5766 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5767 return 0;
5768 return 1;
5769 }
5770
5771 int
scsi_devid_is_lun_name(uint8_t * bufp)5772 scsi_devid_is_lun_name(uint8_t *bufp)
5773 {
5774 struct scsi_vpd_id_descriptor *descr;
5775
5776 descr = (struct scsi_vpd_id_descriptor *)bufp;
5777 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5778 return 0;
5779 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5780 return 0;
5781 return 1;
5782 }
5783
5784 int
scsi_devid_is_lun_md5(uint8_t * bufp)5785 scsi_devid_is_lun_md5(uint8_t *bufp)
5786 {
5787 struct scsi_vpd_id_descriptor *descr;
5788
5789 descr = (struct scsi_vpd_id_descriptor *)bufp;
5790 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5791 return 0;
5792 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5793 return 0;
5794 return 1;
5795 }
5796
5797 int
scsi_devid_is_lun_uuid(uint8_t * bufp)5798 scsi_devid_is_lun_uuid(uint8_t *bufp)
5799 {
5800 struct scsi_vpd_id_descriptor *descr;
5801
5802 descr = (struct scsi_vpd_id_descriptor *)bufp;
5803 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5804 return 0;
5805 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5806 return 0;
5807 return 1;
5808 }
5809
5810 int
scsi_devid_is_port_naa(uint8_t * bufp)5811 scsi_devid_is_port_naa(uint8_t *bufp)
5812 {
5813 struct scsi_vpd_id_descriptor *descr;
5814
5815 descr = (struct scsi_vpd_id_descriptor *)bufp;
5816 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5817 return 0;
5818 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5819 return 0;
5820 return 1;
5821 }
5822
5823 struct scsi_vpd_id_descriptor *
scsi_get_devid_desc(struct scsi_vpd_id_descriptor * desc,uint32_t len,scsi_devid_checkfn_t ck_fn)5824 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5825 scsi_devid_checkfn_t ck_fn)
5826 {
5827 uint8_t *desc_buf_end;
5828
5829 desc_buf_end = (uint8_t *)desc + len;
5830
5831 for (; desc->identifier <= desc_buf_end &&
5832 desc->identifier + desc->length <= desc_buf_end;
5833 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5834 + desc->length)) {
5835 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5836 return (desc);
5837 }
5838 return (NULL);
5839 }
5840
5841 struct scsi_vpd_id_descriptor *
scsi_get_devid(struct scsi_vpd_device_id * id,uint32_t page_len,scsi_devid_checkfn_t ck_fn)5842 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5843 scsi_devid_checkfn_t ck_fn)
5844 {
5845 uint32_t len;
5846
5847 if (page_len < sizeof(*id))
5848 return (NULL);
5849 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5850 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5851 id->desc_list, len, ck_fn));
5852 }
5853
5854 int
scsi_transportid_sbuf(struct sbuf * sb,struct scsi_transportid_header * hdr,uint32_t valid_len)5855 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5856 uint32_t valid_len)
5857 {
5858 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5859 case SCSI_PROTO_FC: {
5860 struct scsi_transportid_fcp *fcp;
5861 uint64_t n_port_name;
5862
5863 fcp = (struct scsi_transportid_fcp *)hdr;
5864
5865 n_port_name = scsi_8btou64(fcp->n_port_name);
5866
5867 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5868 break;
5869 }
5870 case SCSI_PROTO_SPI: {
5871 struct scsi_transportid_spi *spi;
5872
5873 spi = (struct scsi_transportid_spi *)hdr;
5874
5875 sbuf_printf(sb, "SPI address: %u,%u",
5876 scsi_2btoul(spi->scsi_addr),
5877 scsi_2btoul(spi->rel_trgt_port_id));
5878 break;
5879 }
5880 case SCSI_PROTO_SSA:
5881 /*
5882 * XXX KDM there is no transport ID defined in SPC-4 for
5883 * SSA.
5884 */
5885 break;
5886 case SCSI_PROTO_1394: {
5887 struct scsi_transportid_1394 *sbp;
5888 uint64_t eui64;
5889
5890 sbp = (struct scsi_transportid_1394 *)hdr;
5891
5892 eui64 = scsi_8btou64(sbp->eui64);
5893 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5894 break;
5895 }
5896 case SCSI_PROTO_RDMA: {
5897 struct scsi_transportid_rdma *rdma;
5898 unsigned int i;
5899
5900 rdma = (struct scsi_transportid_rdma *)hdr;
5901
5902 sbuf_cat(sb, "RDMA address: 0x");
5903 for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5904 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5905 break;
5906 }
5907 case SCSI_PROTO_ISCSI: {
5908 uint32_t add_len, i;
5909 uint8_t *iscsi_name = NULL;
5910 int nul_found = 0;
5911
5912 sbuf_cat(sb, "iSCSI address: ");
5913 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5914 SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5915 struct scsi_transportid_iscsi_device *dev;
5916
5917 dev = (struct scsi_transportid_iscsi_device *)hdr;
5918
5919 /*
5920 * Verify how much additional data we really have.
5921 */
5922 add_len = scsi_2btoul(dev->additional_length);
5923 add_len = MIN(add_len, valid_len -
5924 __offsetof(struct scsi_transportid_iscsi_device,
5925 iscsi_name));
5926 iscsi_name = &dev->iscsi_name[0];
5927
5928 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5929 SCSI_TRN_ISCSI_FORMAT_PORT) {
5930 struct scsi_transportid_iscsi_port *port;
5931
5932 port = (struct scsi_transportid_iscsi_port *)hdr;
5933
5934 add_len = scsi_2btoul(port->additional_length);
5935 add_len = MIN(add_len, valid_len -
5936 __offsetof(struct scsi_transportid_iscsi_port,
5937 iscsi_name));
5938 iscsi_name = &port->iscsi_name[0];
5939 } else {
5940 sbuf_printf(sb, "unknown format %x",
5941 (hdr->format_protocol &
5942 SCSI_TRN_FORMAT_MASK) >>
5943 SCSI_TRN_FORMAT_SHIFT);
5944 break;
5945 }
5946 if (add_len == 0) {
5947 sbuf_cat(sb, "not enough data");
5948 break;
5949 }
5950 /*
5951 * This is supposed to be a NUL-terminated ASCII
5952 * string, but you never know. So we're going to
5953 * check. We need to do this because there is no
5954 * sbuf equivalent of strncat().
5955 */
5956 for (i = 0; i < add_len; i++) {
5957 if (iscsi_name[i] == '\0') {
5958 nul_found = 1;
5959 break;
5960 }
5961 }
5962 /*
5963 * If there is a NUL in the name, we can just use
5964 * sbuf_cat(). Otherwise we need to use sbuf_bcat().
5965 */
5966 if (nul_found != 0)
5967 sbuf_cat(sb, iscsi_name);
5968 else
5969 sbuf_bcat(sb, iscsi_name, add_len);
5970 break;
5971 }
5972 case SCSI_PROTO_SAS: {
5973 struct scsi_transportid_sas *sas;
5974 uint64_t sas_addr;
5975
5976 sas = (struct scsi_transportid_sas *)hdr;
5977
5978 sas_addr = scsi_8btou64(sas->sas_address);
5979 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5980 break;
5981 }
5982 case SCSI_PROTO_ADITP:
5983 case SCSI_PROTO_ATA:
5984 case SCSI_PROTO_UAS:
5985 /*
5986 * No Transport ID format for ADI, ATA or USB is defined in
5987 * SPC-4.
5988 */
5989 sbuf_printf(sb, "No known Transport ID format for protocol "
5990 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5991 break;
5992 case SCSI_PROTO_SOP: {
5993 struct scsi_transportid_sop *sop;
5994 struct scsi_sop_routing_id_norm *rid;
5995
5996 sop = (struct scsi_transportid_sop *)hdr;
5997 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5998
5999 /*
6000 * Note that there is no alternate format specified in SPC-4
6001 * for the PCIe routing ID, so we don't really have a way
6002 * to know whether the second byte of the routing ID is
6003 * a device and function or just a function. So we just
6004 * assume bus,device,function.
6005 */
6006 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
6007 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
6008 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
6009 break;
6010 }
6011 case SCSI_PROTO_NONE:
6012 default:
6013 sbuf_printf(sb, "Unknown protocol %#x",
6014 hdr->format_protocol & SCSI_TRN_PROTO_MASK);
6015 break;
6016 }
6017
6018 return (0);
6019 }
6020
6021 struct scsi_nv scsi_proto_map[] = {
6022 { "fcp", SCSI_PROTO_FC },
6023 { "spi", SCSI_PROTO_SPI },
6024 { "ssa", SCSI_PROTO_SSA },
6025 { "sbp", SCSI_PROTO_1394 },
6026 { "1394", SCSI_PROTO_1394 },
6027 { "srp", SCSI_PROTO_RDMA },
6028 { "rdma", SCSI_PROTO_RDMA },
6029 { "iscsi", SCSI_PROTO_ISCSI },
6030 { "iqn", SCSI_PROTO_ISCSI },
6031 { "sas", SCSI_PROTO_SAS },
6032 { "aditp", SCSI_PROTO_ADITP },
6033 { "ata", SCSI_PROTO_ATA },
6034 { "uas", SCSI_PROTO_UAS },
6035 { "usb", SCSI_PROTO_UAS },
6036 { "sop", SCSI_PROTO_SOP }
6037 };
6038
6039 const char *
scsi_nv_to_str(struct scsi_nv * table,int num_table_entries,uint64_t value)6040 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
6041 {
6042 int i;
6043
6044 for (i = 0; i < num_table_entries; i++) {
6045 if (table[i].value == value)
6046 return (table[i].name);
6047 }
6048
6049 return (NULL);
6050 }
6051
6052 /*
6053 * Given a name/value table, find a value matching the given name.
6054 * Return values:
6055 * SCSI_NV_FOUND - match found
6056 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact
6057 * SCSI_NV_NOT_FOUND - no match found
6058 */
6059 scsi_nv_status
scsi_get_nv(struct scsi_nv * table,int num_table_entries,char * name,int * table_entry,scsi_nv_flags flags)6060 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
6061 char *name, int *table_entry, scsi_nv_flags flags)
6062 {
6063 int i, num_matches = 0;
6064
6065 for (i = 0; i < num_table_entries; i++) {
6066 size_t table_len, name_len;
6067
6068 table_len = strlen(table[i].name);
6069 name_len = strlen(name);
6070
6071 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
6072 && (strncasecmp(table[i].name, name, name_len) == 0))
6073 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
6074 && (strncmp(table[i].name, name, name_len) == 0))) {
6075 *table_entry = i;
6076
6077 /*
6078 * Check for an exact match. If we have the same
6079 * number of characters in the table as the argument,
6080 * and we already know they're the same, we have
6081 * an exact match.
6082 */
6083 if (table_len == name_len)
6084 return (SCSI_NV_FOUND);
6085
6086 /*
6087 * Otherwise, bump up the number of matches. We'll
6088 * see later how many we have.
6089 */
6090 num_matches++;
6091 }
6092 }
6093
6094 if (num_matches > 1)
6095 return (SCSI_NV_AMBIGUOUS);
6096 else if (num_matches == 1)
6097 return (SCSI_NV_FOUND);
6098 else
6099 return (SCSI_NV_NOT_FOUND);
6100 }
6101
6102 /*
6103 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are
6104 * all 64-bit numbers, the code is similar.
6105 */
6106 int
scsi_parse_transportid_64bit(int proto_id,char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6107 scsi_parse_transportid_64bit(int proto_id, char *id_str,
6108 struct scsi_transportid_header **hdr,
6109 unsigned int *alloc_len,
6110 #ifdef _KERNEL
6111 struct malloc_type *type, int flags,
6112 #endif
6113 char *error_str, int error_str_len)
6114 {
6115 uint64_t value;
6116 char *endptr;
6117 int retval;
6118 size_t alloc_size;
6119
6120 retval = 0;
6121
6122 value = strtouq(id_str, &endptr, 0);
6123 if (*endptr != '\0') {
6124 if (error_str != NULL) {
6125 snprintf(error_str, error_str_len, "%s: error "
6126 "parsing ID %s, 64-bit number required",
6127 __func__, id_str);
6128 }
6129 retval = 1;
6130 goto bailout;
6131 }
6132
6133 switch (proto_id) {
6134 case SCSI_PROTO_FC:
6135 alloc_size = sizeof(struct scsi_transportid_fcp);
6136 break;
6137 case SCSI_PROTO_1394:
6138 alloc_size = sizeof(struct scsi_transportid_1394);
6139 break;
6140 case SCSI_PROTO_SAS:
6141 alloc_size = sizeof(struct scsi_transportid_sas);
6142 break;
6143 default:
6144 if (error_str != NULL) {
6145 snprintf(error_str, error_str_len, "%s: unsupported "
6146 "protocol %d", __func__, proto_id);
6147 }
6148 retval = 1;
6149 goto bailout;
6150 break; /* NOTREACHED */
6151 }
6152 #ifdef _KERNEL
6153 *hdr = malloc(alloc_size, type, flags);
6154 #else /* _KERNEL */
6155 *hdr = malloc(alloc_size);
6156 #endif /*_KERNEL */
6157 if (*hdr == NULL) {
6158 if (error_str != NULL) {
6159 snprintf(error_str, error_str_len, "%s: unable to "
6160 "allocate %zu bytes", __func__, alloc_size);
6161 }
6162 retval = 1;
6163 goto bailout;
6164 }
6165
6166 *alloc_len = alloc_size;
6167
6168 bzero(*hdr, alloc_size);
6169
6170 switch (proto_id) {
6171 case SCSI_PROTO_FC: {
6172 struct scsi_transportid_fcp *fcp;
6173
6174 fcp = (struct scsi_transportid_fcp *)(*hdr);
6175 fcp->format_protocol = SCSI_PROTO_FC |
6176 SCSI_TRN_FCP_FORMAT_DEFAULT;
6177 scsi_u64to8b(value, fcp->n_port_name);
6178 break;
6179 }
6180 case SCSI_PROTO_1394: {
6181 struct scsi_transportid_1394 *sbp;
6182
6183 sbp = (struct scsi_transportid_1394 *)(*hdr);
6184 sbp->format_protocol = SCSI_PROTO_1394 |
6185 SCSI_TRN_1394_FORMAT_DEFAULT;
6186 scsi_u64to8b(value, sbp->eui64);
6187 break;
6188 }
6189 case SCSI_PROTO_SAS: {
6190 struct scsi_transportid_sas *sas;
6191
6192 sas = (struct scsi_transportid_sas *)(*hdr);
6193 sas->format_protocol = SCSI_PROTO_SAS |
6194 SCSI_TRN_SAS_FORMAT_DEFAULT;
6195 scsi_u64to8b(value, sas->sas_address);
6196 break;
6197 }
6198 default:
6199 break;
6200 }
6201 bailout:
6202 return (retval);
6203 }
6204
6205 /*
6206 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6207 */
6208 int
scsi_parse_transportid_spi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6209 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6210 unsigned int *alloc_len,
6211 #ifdef _KERNEL
6212 struct malloc_type *type, int flags,
6213 #endif
6214 char *error_str, int error_str_len)
6215 {
6216 unsigned long scsi_addr, target_port;
6217 struct scsi_transportid_spi *spi;
6218 char *tmpstr, *endptr;
6219 int retval;
6220
6221 retval = 0;
6222
6223 tmpstr = strsep(&id_str, ",");
6224 if (tmpstr == NULL) {
6225 if (error_str != NULL) {
6226 snprintf(error_str, error_str_len,
6227 "%s: no ID found", __func__);
6228 }
6229 retval = 1;
6230 goto bailout;
6231 }
6232 scsi_addr = strtoul(tmpstr, &endptr, 0);
6233 if (*endptr != '\0') {
6234 if (error_str != NULL) {
6235 snprintf(error_str, error_str_len, "%s: error "
6236 "parsing SCSI ID %s, number required",
6237 __func__, tmpstr);
6238 }
6239 retval = 1;
6240 goto bailout;
6241 }
6242
6243 if (id_str == NULL) {
6244 if (error_str != NULL) {
6245 snprintf(error_str, error_str_len, "%s: no relative "
6246 "target port found", __func__);
6247 }
6248 retval = 1;
6249 goto bailout;
6250 }
6251
6252 target_port = strtoul(id_str, &endptr, 0);
6253 if (*endptr != '\0') {
6254 if (error_str != NULL) {
6255 snprintf(error_str, error_str_len, "%s: error "
6256 "parsing relative target port %s, number "
6257 "required", __func__, id_str);
6258 }
6259 retval = 1;
6260 goto bailout;
6261 }
6262 #ifdef _KERNEL
6263 spi = malloc(sizeof(*spi), type, flags);
6264 #else
6265 spi = malloc(sizeof(*spi));
6266 #endif
6267 if (spi == NULL) {
6268 if (error_str != NULL) {
6269 snprintf(error_str, error_str_len, "%s: unable to "
6270 "allocate %zu bytes", __func__,
6271 sizeof(*spi));
6272 }
6273 retval = 1;
6274 goto bailout;
6275 }
6276 *alloc_len = sizeof(*spi);
6277 bzero(spi, sizeof(*spi));
6278
6279 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6280 scsi_ulto2b(scsi_addr, spi->scsi_addr);
6281 scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6282
6283 *hdr = (struct scsi_transportid_header *)spi;
6284 bailout:
6285 return (retval);
6286 }
6287
6288 /*
6289 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits,
6290 * optionally prefixed by "0x" or "0X".
6291 */
6292 int
scsi_parse_transportid_rdma(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6293 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6294 unsigned int *alloc_len,
6295 #ifdef _KERNEL
6296 struct malloc_type *type, int flags,
6297 #endif
6298 char *error_str, int error_str_len)
6299 {
6300 struct scsi_transportid_rdma *rdma;
6301 int retval;
6302 size_t id_len, rdma_id_size;
6303 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6304 char *tmpstr;
6305 unsigned int i, j;
6306
6307 retval = 0;
6308 id_len = strlen(id_str);
6309 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6310
6311 /*
6312 * Check the size. It needs to be either 32 or 34 characters long.
6313 */
6314 if ((id_len != (rdma_id_size * 2))
6315 && (id_len != ((rdma_id_size * 2) + 2))) {
6316 if (error_str != NULL) {
6317 snprintf(error_str, error_str_len, "%s: RDMA ID "
6318 "must be 32 hex digits (0x prefix "
6319 "optional), only %zu seen", __func__, id_len);
6320 }
6321 retval = 1;
6322 goto bailout;
6323 }
6324
6325 tmpstr = id_str;
6326 /*
6327 * If the user gave us 34 characters, the string needs to start
6328 * with '0x'.
6329 */
6330 if (id_len == ((rdma_id_size * 2) + 2)) {
6331 if ((tmpstr[0] == '0')
6332 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6333 tmpstr += 2;
6334 } else {
6335 if (error_str != NULL) {
6336 snprintf(error_str, error_str_len, "%s: RDMA "
6337 "ID prefix, if used, must be \"0x\", "
6338 "got %s", __func__, tmpstr);
6339 }
6340 retval = 1;
6341 goto bailout;
6342 }
6343 }
6344 bzero(rdma_id, sizeof(rdma_id));
6345
6346 /*
6347 * Convert ASCII hex into binary bytes. There is no standard
6348 * 128-bit integer type, and so no strtou128t() routine to convert
6349 * from hex into a large integer. In the end, we're not going to
6350 * an integer, but rather to a byte array, so that and the fact
6351 * that we require the user to give us 32 hex digits simplifies the
6352 * logic.
6353 */
6354 for (i = 0; i < (rdma_id_size * 2); i++) {
6355 int cur_shift;
6356 unsigned char c;
6357
6358 /* Increment the byte array one for every 2 hex digits */
6359 j = i >> 1;
6360
6361 /*
6362 * The first digit in every pair is the most significant
6363 * 4 bits. The second is the least significant 4 bits.
6364 */
6365 if ((i % 2) == 0)
6366 cur_shift = 4;
6367 else
6368 cur_shift = 0;
6369
6370 c = tmpstr[i];
6371 /* Convert the ASCII hex character into a number */
6372 if (isdigit(c))
6373 c -= '0';
6374 else if (isalpha(c))
6375 c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6376 else {
6377 if (error_str != NULL) {
6378 snprintf(error_str, error_str_len, "%s: "
6379 "RDMA ID must be hex digits, got "
6380 "invalid character %c", __func__,
6381 tmpstr[i]);
6382 }
6383 retval = 1;
6384 goto bailout;
6385 }
6386 /*
6387 * The converted number can't be less than 0; the type is
6388 * unsigned, and the subtraction logic will not give us
6389 * a negative number. So we only need to make sure that
6390 * the value is not greater than 0xf. (i.e. make sure the
6391 * user didn't give us a value like "0x12jklmno").
6392 */
6393 if (c > 0xf) {
6394 if (error_str != NULL) {
6395 snprintf(error_str, error_str_len, "%s: "
6396 "RDMA ID must be hex digits, got "
6397 "invalid character %c", __func__,
6398 tmpstr[i]);
6399 }
6400 retval = 1;
6401 goto bailout;
6402 }
6403
6404 rdma_id[j] |= c << cur_shift;
6405 }
6406
6407 #ifdef _KERNEL
6408 rdma = malloc(sizeof(*rdma), type, flags);
6409 #else
6410 rdma = malloc(sizeof(*rdma));
6411 #endif
6412 if (rdma == NULL) {
6413 if (error_str != NULL) {
6414 snprintf(error_str, error_str_len, "%s: unable to "
6415 "allocate %zu bytes", __func__,
6416 sizeof(*rdma));
6417 }
6418 retval = 1;
6419 goto bailout;
6420 }
6421 *alloc_len = sizeof(*rdma);
6422 bzero(rdma, *alloc_len);
6423
6424 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6425 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6426
6427 *hdr = (struct scsi_transportid_header *)rdma;
6428
6429 bailout:
6430 return (retval);
6431 }
6432
6433 /*
6434 * Parse an iSCSI name. The format is either just the name:
6435 *
6436 * iqn.2012-06.com.example:target0
6437 * or the name, separator and initiator session ID:
6438 *
6439 * iqn.2012-06.com.example:target0,i,0x123
6440 *
6441 * The separator format is exact.
6442 */
6443 int
scsi_parse_transportid_iscsi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6444 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6445 unsigned int *alloc_len,
6446 #ifdef _KERNEL
6447 struct malloc_type *type, int flags,
6448 #endif
6449 char *error_str, int error_str_len)
6450 {
6451 size_t id_len, sep_len, id_size, name_len;
6452 int retval;
6453 unsigned int i, sep_pos, sep_found;
6454 const char *sep_template = ",i,0x";
6455 const char *iqn_prefix = "iqn.";
6456 struct scsi_transportid_iscsi_device *iscsi;
6457
6458 retval = 0;
6459 sep_found = 0;
6460
6461 id_len = strlen(id_str);
6462 sep_len = strlen(sep_template);
6463
6464 /*
6465 * The separator is defined as exactly ',i,0x'. Any other commas,
6466 * or any other form, is an error. So look for a comma, and once
6467 * we find that, the next few characters must match the separator
6468 * exactly. Once we get through the separator, there should be at
6469 * least one character.
6470 */
6471 for (i = 0, sep_pos = 0; i < id_len; i++) {
6472 if (sep_pos == 0) {
6473 if (id_str[i] == sep_template[sep_pos])
6474 sep_pos++;
6475
6476 continue;
6477 }
6478 if (sep_pos < sep_len) {
6479 if (id_str[i] == sep_template[sep_pos]) {
6480 sep_pos++;
6481 continue;
6482 }
6483 if (error_str != NULL) {
6484 snprintf(error_str, error_str_len, "%s: "
6485 "invalid separator in iSCSI name "
6486 "\"%s\"",
6487 __func__, id_str);
6488 }
6489 retval = 1;
6490 goto bailout;
6491 } else {
6492 sep_found = 1;
6493 break;
6494 }
6495 }
6496
6497 /*
6498 * Check to see whether we have a separator but no digits after it.
6499 */
6500 if ((sep_pos != 0)
6501 && (sep_found == 0)) {
6502 if (error_str != NULL) {
6503 snprintf(error_str, error_str_len, "%s: no digits "
6504 "found after separator in iSCSI name \"%s\"",
6505 __func__, id_str);
6506 }
6507 retval = 1;
6508 goto bailout;
6509 }
6510
6511 /*
6512 * The incoming ID string has the "iqn." prefix stripped off. We
6513 * need enough space for the base structure (the structures are the
6514 * same for the two iSCSI forms), the prefix, the ID string and a
6515 * terminating NUL.
6516 */
6517 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6518
6519 #ifdef _KERNEL
6520 iscsi = malloc(id_size, type, flags);
6521 #else
6522 iscsi = malloc(id_size);
6523 #endif
6524 if (iscsi == NULL) {
6525 if (error_str != NULL) {
6526 snprintf(error_str, error_str_len, "%s: unable to "
6527 "allocate %zu bytes", __func__, id_size);
6528 }
6529 retval = 1;
6530 goto bailout;
6531 }
6532 *alloc_len = id_size;
6533 bzero(iscsi, id_size);
6534
6535 iscsi->format_protocol = SCSI_PROTO_ISCSI;
6536 if (sep_found == 0)
6537 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6538 else
6539 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6540 name_len = id_size - sizeof(*iscsi);
6541 scsi_ulto2b(name_len, iscsi->additional_length);
6542 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6543
6544 *hdr = (struct scsi_transportid_header *)iscsi;
6545
6546 bailout:
6547 return (retval);
6548 }
6549
6550 /*
6551 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be
6552 * of the form 'bus,device,function' or 'bus,function'.
6553 */
6554 int
scsi_parse_transportid_sop(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6555 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6556 unsigned int *alloc_len,
6557 #ifdef _KERNEL
6558 struct malloc_type *type, int flags,
6559 #endif
6560 char *error_str, int error_str_len)
6561 {
6562 struct scsi_transportid_sop *sop;
6563 unsigned long bus, device, function;
6564 char *tmpstr, *endptr;
6565 int retval, device_spec;
6566
6567 retval = 0;
6568 device_spec = 0;
6569 device = 0;
6570
6571 tmpstr = strsep(&id_str, ",");
6572 if ((tmpstr == NULL)
6573 || (*tmpstr == '\0')) {
6574 if (error_str != NULL) {
6575 snprintf(error_str, error_str_len, "%s: no ID found",
6576 __func__);
6577 }
6578 retval = 1;
6579 goto bailout;
6580 }
6581 bus = strtoul(tmpstr, &endptr, 0);
6582 if (*endptr != '\0') {
6583 if (error_str != NULL) {
6584 snprintf(error_str, error_str_len, "%s: error "
6585 "parsing PCIe bus %s, number required",
6586 __func__, tmpstr);
6587 }
6588 retval = 1;
6589 goto bailout;
6590 }
6591 if ((id_str == NULL)
6592 || (*id_str == '\0')) {
6593 if (error_str != NULL) {
6594 snprintf(error_str, error_str_len, "%s: no PCIe "
6595 "device or function found", __func__);
6596 }
6597 retval = 1;
6598 goto bailout;
6599 }
6600 tmpstr = strsep(&id_str, ",");
6601 function = strtoul(tmpstr, &endptr, 0);
6602 if (*endptr != '\0') {
6603 if (error_str != NULL) {
6604 snprintf(error_str, error_str_len, "%s: error "
6605 "parsing PCIe device/function %s, number "
6606 "required", __func__, tmpstr);
6607 }
6608 retval = 1;
6609 goto bailout;
6610 }
6611 /*
6612 * Check to see whether the user specified a third value. If so,
6613 * the second is the device.
6614 */
6615 if (id_str != NULL) {
6616 if (*id_str == '\0') {
6617 if (error_str != NULL) {
6618 snprintf(error_str, error_str_len, "%s: "
6619 "no PCIe function found", __func__);
6620 }
6621 retval = 1;
6622 goto bailout;
6623 }
6624 device = function;
6625 device_spec = 1;
6626 function = strtoul(id_str, &endptr, 0);
6627 if (*endptr != '\0') {
6628 if (error_str != NULL) {
6629 snprintf(error_str, error_str_len, "%s: "
6630 "error parsing PCIe function %s, "
6631 "number required", __func__, id_str);
6632 }
6633 retval = 1;
6634 goto bailout;
6635 }
6636 }
6637 if (bus > SCSI_TRN_SOP_BUS_MAX) {
6638 if (error_str != NULL) {
6639 snprintf(error_str, error_str_len, "%s: bus value "
6640 "%lu greater than maximum %u", __func__,
6641 bus, SCSI_TRN_SOP_BUS_MAX);
6642 }
6643 retval = 1;
6644 goto bailout;
6645 }
6646
6647 if ((device_spec != 0)
6648 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6649 if (error_str != NULL) {
6650 snprintf(error_str, error_str_len, "%s: device value "
6651 "%lu greater than maximum %u", __func__,
6652 device, SCSI_TRN_SOP_DEV_MAX);
6653 }
6654 retval = 1;
6655 goto bailout;
6656 }
6657
6658 if (((device_spec != 0)
6659 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6660 || ((device_spec == 0)
6661 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6662 if (error_str != NULL) {
6663 snprintf(error_str, error_str_len, "%s: function value "
6664 "%lu greater than maximum %u", __func__,
6665 function, (device_spec == 0) ?
6666 SCSI_TRN_SOP_FUNC_ALT_MAX :
6667 SCSI_TRN_SOP_FUNC_NORM_MAX);
6668 }
6669 retval = 1;
6670 goto bailout;
6671 }
6672
6673 #ifdef _KERNEL
6674 sop = malloc(sizeof(*sop), type, flags);
6675 #else
6676 sop = malloc(sizeof(*sop));
6677 #endif
6678 if (sop == NULL) {
6679 if (error_str != NULL) {
6680 snprintf(error_str, error_str_len, "%s: unable to "
6681 "allocate %zu bytes", __func__, sizeof(*sop));
6682 }
6683 retval = 1;
6684 goto bailout;
6685 }
6686 *alloc_len = sizeof(*sop);
6687 bzero(sop, sizeof(*sop));
6688 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6689 if (device_spec != 0) {
6690 struct scsi_sop_routing_id_norm rid;
6691
6692 rid.bus = bus;
6693 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6694 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6695 sizeof(sop->routing_id)));
6696 } else {
6697 struct scsi_sop_routing_id_alt rid;
6698
6699 rid.bus = bus;
6700 rid.function = function;
6701 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6702 sizeof(sop->routing_id)));
6703 }
6704
6705 *hdr = (struct scsi_transportid_header *)sop;
6706 bailout:
6707 return (retval);
6708 }
6709
6710 /*
6711 * transportid_str: NUL-terminated string with format: protcol,id
6712 * The ID is protocol specific.
6713 * hdr: Storage will be allocated for the transport ID.
6714 * alloc_len: The amount of memory allocated is returned here.
6715 * type: Malloc bucket (kernel only).
6716 * flags: Malloc flags (kernel only).
6717 * error_str: If non-NULL, it will contain error information (without
6718 * a terminating newline) if an error is returned.
6719 * error_str_len: Allocated length of the error string.
6720 *
6721 * Returns 0 for success, non-zero for failure.
6722 */
6723 int
scsi_parse_transportid(char * transportid_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6724 scsi_parse_transportid(char *transportid_str,
6725 struct scsi_transportid_header **hdr,
6726 unsigned int *alloc_len,
6727 #ifdef _KERNEL
6728 struct malloc_type *type, int flags,
6729 #endif
6730 char *error_str, int error_str_len)
6731 {
6732 char *tmpstr;
6733 scsi_nv_status status;
6734 u_int num_proto_entries;
6735 int retval, table_entry;
6736
6737 retval = 0;
6738 table_entry = 0;
6739
6740 /*
6741 * We do allow a period as well as a comma to separate the protocol
6742 * from the ID string. This is to accommodate iSCSI names, which
6743 * start with "iqn.".
6744 */
6745 tmpstr = strsep(&transportid_str, ",.");
6746 if (tmpstr == NULL) {
6747 if (error_str != NULL) {
6748 snprintf(error_str, error_str_len,
6749 "%s: transportid_str is NULL", __func__);
6750 }
6751 retval = 1;
6752 goto bailout;
6753 }
6754
6755 num_proto_entries = nitems(scsi_proto_map);
6756 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6757 &table_entry, SCSI_NV_FLAG_IG_CASE);
6758 if (status != SCSI_NV_FOUND) {
6759 if (error_str != NULL) {
6760 snprintf(error_str, error_str_len, "%s: %s protocol "
6761 "name %s", __func__,
6762 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6763 "invalid", tmpstr);
6764 }
6765 retval = 1;
6766 goto bailout;
6767 }
6768 switch (scsi_proto_map[table_entry].value) {
6769 case SCSI_PROTO_FC:
6770 case SCSI_PROTO_1394:
6771 case SCSI_PROTO_SAS:
6772 retval = scsi_parse_transportid_64bit(
6773 scsi_proto_map[table_entry].value, transportid_str, hdr,
6774 alloc_len,
6775 #ifdef _KERNEL
6776 type, flags,
6777 #endif
6778 error_str, error_str_len);
6779 break;
6780 case SCSI_PROTO_SPI:
6781 retval = scsi_parse_transportid_spi(transportid_str, hdr,
6782 alloc_len,
6783 #ifdef _KERNEL
6784 type, flags,
6785 #endif
6786 error_str, error_str_len);
6787 break;
6788 case SCSI_PROTO_RDMA:
6789 retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6790 alloc_len,
6791 #ifdef _KERNEL
6792 type, flags,
6793 #endif
6794 error_str, error_str_len);
6795 break;
6796 case SCSI_PROTO_ISCSI:
6797 retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6798 alloc_len,
6799 #ifdef _KERNEL
6800 type, flags,
6801 #endif
6802 error_str, error_str_len);
6803 break;
6804 case SCSI_PROTO_SOP:
6805 retval = scsi_parse_transportid_sop(transportid_str, hdr,
6806 alloc_len,
6807 #ifdef _KERNEL
6808 type, flags,
6809 #endif
6810 error_str, error_str_len);
6811 break;
6812 case SCSI_PROTO_SSA:
6813 case SCSI_PROTO_ADITP:
6814 case SCSI_PROTO_ATA:
6815 case SCSI_PROTO_UAS:
6816 case SCSI_PROTO_NONE:
6817 default:
6818 /*
6819 * There is no format defined for a Transport ID for these
6820 * protocols. So even if the user gives us something, we
6821 * have no way to turn it into a standard SCSI Transport ID.
6822 */
6823 retval = 1;
6824 if (error_str != NULL) {
6825 snprintf(error_str, error_str_len, "%s: no Transport "
6826 "ID format exists for protocol %s",
6827 __func__, tmpstr);
6828 }
6829 goto bailout;
6830 break; /* NOTREACHED */
6831 }
6832 bailout:
6833 return (retval);
6834 }
6835
6836 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6837 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6838 "Remaining Capacity in Partition",
6839 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6840 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6841 "Maximum Capacity in Partition",
6842 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6843 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6844 "TapeAlert Flags",
6845 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6846 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6847 "Load Count",
6848 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6849 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6850 "MAM Space Remaining",
6851 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6852 /*parse_str*/ NULL },
6853 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6854 "Assigning Organization",
6855 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6856 /*parse_str*/ NULL },
6857 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6858 "Format Density Code",
6859 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6860 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6861 "Initialization Count",
6862 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6863 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6864 "Volume Identifier",
6865 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6866 /*parse_str*/ NULL },
6867 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6868 "Volume Change Reference",
6869 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6870 /*parse_str*/ NULL },
6871 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6872 "Device Vendor/Serial at Last Load",
6873 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6874 /*parse_str*/ NULL },
6875 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6876 "Device Vendor/Serial at Last Load - 1",
6877 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6878 /*parse_str*/ NULL },
6879 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6880 "Device Vendor/Serial at Last Load - 2",
6881 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6882 /*parse_str*/ NULL },
6883 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6884 "Device Vendor/Serial at Last Load - 3",
6885 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6886 /*parse_str*/ NULL },
6887 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6888 "Total MB Written in Medium Life",
6889 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6890 /*parse_str*/ NULL },
6891 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6892 "Total MB Read in Medium Life",
6893 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6894 /*parse_str*/ NULL },
6895 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6896 "Total MB Written in Current/Last Load",
6897 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6898 /*parse_str*/ NULL },
6899 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6900 "Total MB Read in Current/Last Load",
6901 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6902 /*parse_str*/ NULL },
6903 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6904 "Logical Position of First Encrypted Block",
6905 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6906 /*parse_str*/ NULL },
6907 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6908 "Logical Position of First Unencrypted Block after First "
6909 "Encrypted Block",
6910 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6911 /*parse_str*/ NULL },
6912 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6913 "Medium Usage History",
6914 /*suffix*/ NULL, /*to_str*/ NULL,
6915 /*parse_str*/ NULL },
6916 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6917 "Partition Usage History",
6918 /*suffix*/ NULL, /*to_str*/ NULL,
6919 /*parse_str*/ NULL },
6920 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6921 "Medium Manufacturer",
6922 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6923 /*parse_str*/ NULL },
6924 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6925 "Medium Serial Number",
6926 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6927 /*parse_str*/ NULL },
6928 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6929 "Medium Length",
6930 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6931 /*parse_str*/ NULL },
6932 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6933 SCSI_ATTR_FLAG_FP_1DIGIT,
6934 "Medium Width",
6935 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6936 /*parse_str*/ NULL },
6937 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6938 "Assigning Organization",
6939 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6940 /*parse_str*/ NULL },
6941 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6942 "Medium Density Code",
6943 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6944 /*parse_str*/ NULL },
6945 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6946 "Medium Manufacture Date",
6947 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6948 /*parse_str*/ NULL },
6949 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6950 "MAM Capacity",
6951 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6952 /*parse_str*/ NULL },
6953 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6954 "Medium Type",
6955 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6956 /*parse_str*/ NULL },
6957 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6958 "Medium Type Information",
6959 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6960 /*parse_str*/ NULL },
6961 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6962 "Medium Serial Number",
6963 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6964 /*parse_str*/ NULL },
6965 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6966 "Application Vendor",
6967 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6968 /*parse_str*/ NULL },
6969 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6970 "Application Name",
6971 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6972 /*parse_str*/ NULL },
6973 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6974 "Application Version",
6975 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6976 /*parse_str*/ NULL },
6977 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6978 "User Medium Text Label",
6979 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6980 /*parse_str*/ NULL },
6981 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6982 "Date and Time Last Written",
6983 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6984 /*parse_str*/ NULL },
6985 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6986 "Text Localization Identifier",
6987 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6988 /*parse_str*/ NULL },
6989 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6990 "Barcode",
6991 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6992 /*parse_str*/ NULL },
6993 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6994 "Owning Host Textual Name",
6995 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6996 /*parse_str*/ NULL },
6997 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6998 "Media Pool",
6999 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
7000 /*parse_str*/ NULL },
7001 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
7002 "Partition User Text Label",
7003 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
7004 /*parse_str*/ NULL },
7005 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
7006 "Load/Unload at Partition",
7007 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
7008 /*parse_str*/ NULL },
7009 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
7010 "Application Format Version",
7011 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
7012 /*parse_str*/ NULL },
7013 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
7014 "Volume Coherency Information",
7015 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
7016 /*parse_str*/ NULL },
7017 { 0x0ff1, SCSI_ATTR_FLAG_NONE,
7018 "Spectra MLM Creation",
7019 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7020 /*parse_str*/ NULL },
7021 { 0x0ff2, SCSI_ATTR_FLAG_NONE,
7022 "Spectra MLM C3",
7023 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7024 /*parse_str*/ NULL },
7025 { 0x0ff3, SCSI_ATTR_FLAG_NONE,
7026 "Spectra MLM RW",
7027 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7028 /*parse_str*/ NULL },
7029 { 0x0ff4, SCSI_ATTR_FLAG_NONE,
7030 "Spectra MLM SDC List",
7031 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7032 /*parse_str*/ NULL },
7033 { 0x0ff7, SCSI_ATTR_FLAG_NONE,
7034 "Spectra MLM Post Scan",
7035 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7036 /*parse_str*/ NULL },
7037 { 0x0ffe, SCSI_ATTR_FLAG_NONE,
7038 "Spectra MLM Checksum",
7039 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7040 /*parse_str*/ NULL },
7041 { 0x17f1, SCSI_ATTR_FLAG_NONE,
7042 "Spectra MLM Creation",
7043 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7044 /*parse_str*/ NULL },
7045 { 0x17f2, SCSI_ATTR_FLAG_NONE,
7046 "Spectra MLM C3",
7047 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7048 /*parse_str*/ NULL },
7049 { 0x17f3, SCSI_ATTR_FLAG_NONE,
7050 "Spectra MLM RW",
7051 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7052 /*parse_str*/ NULL },
7053 { 0x17f4, SCSI_ATTR_FLAG_NONE,
7054 "Spectra MLM SDC List",
7055 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7056 /*parse_str*/ NULL },
7057 { 0x17f7, SCSI_ATTR_FLAG_NONE,
7058 "Spectra MLM Post Scan",
7059 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7060 /*parse_str*/ NULL },
7061 { 0x17ff, SCSI_ATTR_FLAG_NONE,
7062 "Spectra MLM Checksum",
7063 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7064 /*parse_str*/ NULL },
7065 };
7066
7067 /*
7068 * Print out Volume Coherency Information (Attribute 0x080c).
7069 * This field has two variable length members, including one at the
7070 * beginning, so it isn't practical to have a fixed structure definition.
7071 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
7072 * 2013.
7073 */
7074 int
scsi_attrib_volcoh_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7075 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7076 uint32_t valid_len, uint32_t flags,
7077 uint32_t output_flags, char *error_str,
7078 int error_str_len)
7079 {
7080 size_t avail_len;
7081 uint32_t field_size;
7082 uint64_t tmp_val;
7083 uint8_t *cur_ptr;
7084 int retval;
7085 int vcr_len, as_len;
7086
7087 retval = 0;
7088 tmp_val = 0;
7089
7090 field_size = scsi_2btoul(hdr->length);
7091 avail_len = valid_len - sizeof(*hdr);
7092 if (field_size > avail_len) {
7093 if (error_str != NULL) {
7094 snprintf(error_str, error_str_len, "Available "
7095 "length of attribute ID 0x%.4x %zu < field "
7096 "length %u", scsi_2btoul(hdr->id), avail_len,
7097 field_size);
7098 }
7099 retval = 1;
7100 goto bailout;
7101 } else if (field_size == 0) {
7102 /*
7103 * It isn't clear from the spec whether a field length of
7104 * 0 is invalid here. It probably is, but be lenient here
7105 * to avoid inconveniencing the user.
7106 */
7107 goto bailout;
7108 }
7109 cur_ptr = hdr->attribute;
7110 vcr_len = *cur_ptr;
7111 cur_ptr++;
7112
7113 sbuf_cat(sb, "\n\tVolume Change Reference Value:");
7114
7115 switch (vcr_len) {
7116 case 0:
7117 if (error_str != NULL) {
7118 snprintf(error_str, error_str_len, "Volume Change "
7119 "Reference value has length of 0");
7120 }
7121 retval = 1;
7122 goto bailout;
7123 break; /*NOTREACHED*/
7124 case 1:
7125 tmp_val = *cur_ptr;
7126 break;
7127 case 2:
7128 tmp_val = scsi_2btoul(cur_ptr);
7129 break;
7130 case 3:
7131 tmp_val = scsi_3btoul(cur_ptr);
7132 break;
7133 case 4:
7134 tmp_val = scsi_4btoul(cur_ptr);
7135 break;
7136 case 8:
7137 tmp_val = scsi_8btou64(cur_ptr);
7138 break;
7139 default:
7140 sbuf_putc(sb, '\n');
7141 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7142 break;
7143 }
7144 if (vcr_len <= 8)
7145 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7146
7147 cur_ptr += vcr_len;
7148 tmp_val = scsi_8btou64(cur_ptr);
7149 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7150
7151 cur_ptr += sizeof(tmp_val);
7152 tmp_val = scsi_8btou64(cur_ptr);
7153 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7154 (uintmax_t)tmp_val);
7155
7156 /*
7157 * Figure out how long the Application Client Specific Information
7158 * is and produce a hexdump.
7159 */
7160 cur_ptr += sizeof(tmp_val);
7161 as_len = scsi_2btoul(cur_ptr);
7162 cur_ptr += sizeof(uint16_t);
7163 sbuf_cat(sb, "\tApplication Client Specific Information: ");
7164 if (((as_len == SCSI_LTFS_VER0_LEN)
7165 || (as_len == SCSI_LTFS_VER1_LEN))
7166 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7167 sbuf_cat(sb, "LTFS\n");
7168 cur_ptr += SCSI_LTFS_STR_LEN + 1;
7169 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7170 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7171 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7172 cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7173 /* XXX KDM check the length */
7174 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7175 } else {
7176 sbuf_cat(sb, "Unknown\n");
7177 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7178 }
7179
7180 bailout:
7181 return (retval);
7182 }
7183
7184 int
scsi_attrib_vendser_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7185 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7186 uint32_t valid_len, uint32_t flags,
7187 uint32_t output_flags, char *error_str,
7188 int error_str_len)
7189 {
7190 size_t avail_len;
7191 uint32_t field_size;
7192 struct scsi_attrib_vendser *vendser;
7193 cam_strvis_flags strvis_flags;
7194 int retval = 0;
7195
7196 field_size = scsi_2btoul(hdr->length);
7197 avail_len = valid_len - sizeof(*hdr);
7198 if (field_size > avail_len) {
7199 if (error_str != NULL) {
7200 snprintf(error_str, error_str_len, "Available "
7201 "length of attribute ID 0x%.4x %zu < field "
7202 "length %u", scsi_2btoul(hdr->id), avail_len,
7203 field_size);
7204 }
7205 retval = 1;
7206 goto bailout;
7207 } else if (field_size == 0) {
7208 /*
7209 * A field size of 0 doesn't make sense here. The device
7210 * can at least give you the vendor ID, even if it can't
7211 * give you the serial number.
7212 */
7213 if (error_str != NULL) {
7214 snprintf(error_str, error_str_len, "The length of "
7215 "attribute ID 0x%.4x is 0",
7216 scsi_2btoul(hdr->id));
7217 }
7218 retval = 1;
7219 goto bailout;
7220 }
7221 vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7222
7223 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7224 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7225 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7226 break;
7227 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7228 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7229 break;
7230 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7231 default:
7232 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7233 break;
7234 }
7235 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7236 strvis_flags);
7237 sbuf_putc(sb, ' ');
7238 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7239 strvis_flags);
7240 bailout:
7241 return (retval);
7242 }
7243
7244 int
scsi_attrib_hexdump_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7245 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7246 uint32_t valid_len, uint32_t flags,
7247 uint32_t output_flags, char *error_str,
7248 int error_str_len)
7249 {
7250 uint32_t field_size;
7251 ssize_t avail_len;
7252 uint32_t print_len;
7253 uint8_t *num_ptr;
7254 int retval = 0;
7255
7256 field_size = scsi_2btoul(hdr->length);
7257 avail_len = valid_len - sizeof(*hdr);
7258 print_len = MIN(avail_len, field_size);
7259 num_ptr = hdr->attribute;
7260
7261 if (print_len > 0) {
7262 sbuf_putc(sb, '\n');
7263 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7264 }
7265
7266 return (retval);
7267 }
7268
7269 int
scsi_attrib_int_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7270 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7271 uint32_t valid_len, uint32_t flags,
7272 uint32_t output_flags, char *error_str,
7273 int error_str_len)
7274 {
7275 uint64_t print_number;
7276 size_t avail_len;
7277 uint32_t number_size;
7278 int retval = 0;
7279
7280 number_size = scsi_2btoul(hdr->length);
7281
7282 avail_len = valid_len - sizeof(*hdr);
7283 if (avail_len < number_size) {
7284 if (error_str != NULL) {
7285 snprintf(error_str, error_str_len, "Available "
7286 "length of attribute ID 0x%.4x %zu < field "
7287 "length %u", scsi_2btoul(hdr->id), avail_len,
7288 number_size);
7289 }
7290 retval = 1;
7291 goto bailout;
7292 }
7293
7294 switch (number_size) {
7295 case 0:
7296 /*
7297 * We don't treat this as an error, since there may be
7298 * scenarios where a device reports a field but then gives
7299 * a length of 0. See the note in scsi_attrib_ascii_sbuf().
7300 */
7301 goto bailout;
7302 break; /*NOTREACHED*/
7303 case 1:
7304 print_number = hdr->attribute[0];
7305 break;
7306 case 2:
7307 print_number = scsi_2btoul(hdr->attribute);
7308 break;
7309 case 3:
7310 print_number = scsi_3btoul(hdr->attribute);
7311 break;
7312 case 4:
7313 print_number = scsi_4btoul(hdr->attribute);
7314 break;
7315 case 8:
7316 print_number = scsi_8btou64(hdr->attribute);
7317 break;
7318 default:
7319 /*
7320 * If we wind up here, the number is too big to print
7321 * normally, so just do a hexdump.
7322 */
7323 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7324 flags, output_flags,
7325 error_str, error_str_len);
7326 goto bailout;
7327 break;
7328 }
7329
7330 if (flags & SCSI_ATTR_FLAG_FP) {
7331 #ifndef _KERNEL
7332 long double num_float;
7333
7334 num_float = (long double)print_number;
7335
7336 if (flags & SCSI_ATTR_FLAG_DIV_10)
7337 num_float /= 10;
7338
7339 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7340 1 : 0, num_float);
7341 #else /* _KERNEL */
7342 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7343 (print_number / 10) : print_number);
7344 #endif /* _KERNEL */
7345 } else if (flags & SCSI_ATTR_FLAG_HEX) {
7346 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7347 } else
7348 sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7349
7350 bailout:
7351 return (retval);
7352 }
7353
7354 int
scsi_attrib_ascii_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7355 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7356 uint32_t valid_len, uint32_t flags,
7357 uint32_t output_flags, char *error_str,
7358 int error_str_len)
7359 {
7360 size_t avail_len;
7361 uint32_t field_size, print_size;
7362 int retval = 0;
7363
7364 avail_len = valid_len - sizeof(*hdr);
7365 field_size = scsi_2btoul(hdr->length);
7366 print_size = MIN(avail_len, field_size);
7367
7368 if (print_size > 0) {
7369 cam_strvis_flags strvis_flags;
7370
7371 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7372 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7373 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7374 break;
7375 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7376 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7377 break;
7378 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7379 default:
7380 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7381 break;
7382 }
7383 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7384 } else if (avail_len < field_size) {
7385 /*
7386 * We only report an error if the user didn't allocate
7387 * enough space to hold the full value of this field. If
7388 * the field length is 0, that is allowed by the spec.
7389 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7390 * "This attribute indicates the current volume identifier
7391 * (see SMC-3) of the medium. If the device server supports
7392 * this attribute but does not have access to the volume
7393 * identifier, the device server shall report this attribute
7394 * with an attribute length value of zero."
7395 */
7396 if (error_str != NULL) {
7397 snprintf(error_str, error_str_len, "Available "
7398 "length of attribute ID 0x%.4x %zu < field "
7399 "length %u", scsi_2btoul(hdr->id), avail_len,
7400 field_size);
7401 }
7402 retval = 1;
7403 }
7404
7405 return (retval);
7406 }
7407
7408 int
scsi_attrib_text_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7409 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7410 uint32_t valid_len, uint32_t flags,
7411 uint32_t output_flags, char *error_str,
7412 int error_str_len)
7413 {
7414 size_t avail_len;
7415 uint32_t field_size, print_size;
7416 int retval = 0;
7417 int esc_text = 1;
7418
7419 avail_len = valid_len - sizeof(*hdr);
7420 field_size = scsi_2btoul(hdr->length);
7421 print_size = MIN(avail_len, field_size);
7422
7423 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7424 SCSI_ATTR_OUTPUT_TEXT_RAW)
7425 esc_text = 0;
7426
7427 if (print_size > 0) {
7428 uint32_t i;
7429
7430 for (i = 0; i < print_size; i++) {
7431 if (hdr->attribute[i] == '\0')
7432 continue;
7433 else if (((unsigned char)hdr->attribute[i] < 0x80)
7434 || (esc_text == 0))
7435 sbuf_putc(sb, hdr->attribute[i]);
7436 else
7437 sbuf_printf(sb, "%%%02x",
7438 (unsigned char)hdr->attribute[i]);
7439 }
7440 } else if (avail_len < field_size) {
7441 /*
7442 * We only report an error if the user didn't allocate
7443 * enough space to hold the full value of this field.
7444 */
7445 if (error_str != NULL) {
7446 snprintf(error_str, error_str_len, "Available "
7447 "length of attribute ID 0x%.4x %zu < field "
7448 "length %u", scsi_2btoul(hdr->id), avail_len,
7449 field_size);
7450 }
7451 retval = 1;
7452 }
7453
7454 return (retval);
7455 }
7456
7457 struct scsi_attrib_table_entry *
scsi_find_attrib_entry(struct scsi_attrib_table_entry * table,size_t num_table_entries,uint32_t id)7458 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7459 size_t num_table_entries, uint32_t id)
7460 {
7461 uint32_t i;
7462
7463 for (i = 0; i < num_table_entries; i++) {
7464 if (table[i].id == id)
7465 return (&table[i]);
7466 }
7467
7468 return (NULL);
7469 }
7470
7471 struct scsi_attrib_table_entry *
scsi_get_attrib_entry(uint32_t id)7472 scsi_get_attrib_entry(uint32_t id)
7473 {
7474 return (scsi_find_attrib_entry(scsi_mam_attr_table,
7475 nitems(scsi_mam_attr_table), id));
7476 }
7477
7478 int
scsi_attrib_value_sbuf(struct sbuf * sb,uint32_t valid_len,struct scsi_mam_attribute_header * hdr,uint32_t output_flags,char * error_str,size_t error_str_len)7479 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7480 struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7481 char *error_str, size_t error_str_len)
7482 {
7483 int retval;
7484
7485 switch (hdr->byte2 & SMA_FORMAT_MASK) {
7486 case SMA_FORMAT_ASCII:
7487 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7488 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7489 break;
7490 case SMA_FORMAT_BINARY:
7491 if (scsi_2btoul(hdr->length) <= 8)
7492 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7493 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7494 error_str_len);
7495 else
7496 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7497 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7498 error_str_len);
7499 break;
7500 case SMA_FORMAT_TEXT:
7501 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7502 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7503 error_str_len);
7504 break;
7505 default:
7506 if (error_str != NULL) {
7507 snprintf(error_str, error_str_len, "Unknown attribute "
7508 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7509 }
7510 retval = 1;
7511 goto bailout;
7512 break; /*NOTREACHED*/
7513 }
7514
7515 sbuf_trim(sb);
7516
7517 bailout:
7518
7519 return (retval);
7520 }
7521
7522 void
scsi_attrib_prefix_sbuf(struct sbuf * sb,uint32_t output_flags,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,const char * desc)7523 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7524 struct scsi_mam_attribute_header *hdr,
7525 uint32_t valid_len, const char *desc)
7526 {
7527 int need_space = 0;
7528 uint32_t len;
7529 uint32_t id;
7530
7531 /*
7532 * We can't do anything if we don't have enough valid data for the
7533 * header.
7534 */
7535 if (valid_len < sizeof(*hdr))
7536 return;
7537
7538 id = scsi_2btoul(hdr->id);
7539 /*
7540 * Note that we print out the value of the attribute listed in the
7541 * header, regardless of whether we actually got that many bytes
7542 * back from the device through the controller. A truncated result
7543 * could be the result of a failure to ask for enough data; the
7544 * header indicates how many bytes are allocated for this attribute
7545 * in the MAM.
7546 */
7547 len = scsi_2btoul(hdr->length);
7548
7549 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7550 SCSI_ATTR_OUTPUT_FIELD_NONE)
7551 return;
7552
7553 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7554 && (desc != NULL)) {
7555 sbuf_cat(sb, desc);
7556 need_space = 1;
7557 }
7558
7559 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7560 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7561 need_space = 0;
7562 }
7563
7564 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7565 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7566 need_space = 0;
7567 }
7568 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7569 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7570 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7571 }
7572 sbuf_cat(sb, ": ");
7573 }
7574
7575 int
scsi_attrib_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,struct scsi_attrib_table_entry * user_table,size_t num_user_entries,int prefer_user_table,uint32_t output_flags,char * error_str,int error_str_len)7576 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7577 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7578 size_t num_user_entries, int prefer_user_table,
7579 uint32_t output_flags, char *error_str, int error_str_len)
7580 {
7581 int retval;
7582 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7583 struct scsi_attrib_table_entry *entry = NULL;
7584 size_t table1_size = 0, table2_size = 0;
7585 uint32_t id;
7586
7587 retval = 0;
7588
7589 if (valid_len < sizeof(*hdr)) {
7590 retval = 1;
7591 goto bailout;
7592 }
7593
7594 id = scsi_2btoul(hdr->id);
7595
7596 if (user_table != NULL) {
7597 if (prefer_user_table != 0) {
7598 table1 = user_table;
7599 table1_size = num_user_entries;
7600 table2 = scsi_mam_attr_table;
7601 table2_size = nitems(scsi_mam_attr_table);
7602 } else {
7603 table1 = scsi_mam_attr_table;
7604 table1_size = nitems(scsi_mam_attr_table);
7605 table2 = user_table;
7606 table2_size = num_user_entries;
7607 }
7608 } else {
7609 table1 = scsi_mam_attr_table;
7610 table1_size = nitems(scsi_mam_attr_table);
7611 }
7612
7613 entry = scsi_find_attrib_entry(table1, table1_size, id);
7614 if (entry != NULL) {
7615 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7616 entry->desc);
7617 if (entry->to_str == NULL)
7618 goto print_default;
7619 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7620 output_flags, error_str, error_str_len);
7621 goto bailout;
7622 }
7623 if (table2 != NULL) {
7624 entry = scsi_find_attrib_entry(table2, table2_size, id);
7625 if (entry != NULL) {
7626 if (entry->to_str == NULL)
7627 goto print_default;
7628
7629 scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7630 valid_len, entry->desc);
7631 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7632 output_flags, error_str,
7633 error_str_len);
7634 goto bailout;
7635 }
7636 }
7637
7638 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7639
7640 print_default:
7641 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7642 error_str, error_str_len);
7643 bailout:
7644 if (retval == 0) {
7645 if ((entry != NULL)
7646 && (entry->suffix != NULL))
7647 sbuf_printf(sb, " %s", entry->suffix);
7648
7649 sbuf_trim(sb);
7650 sbuf_putc(sb, '\n');
7651 }
7652
7653 return (retval);
7654 }
7655
7656 void
scsi_test_unit_ready(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7657 scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries,
7658 void (*cbfcnp)(struct cam_periph *, union ccb *),
7659 uint8_t tag_action, uint8_t sense_len, uint32_t timeout)
7660 {
7661 struct scsi_test_unit_ready *scsi_cmd;
7662
7663 cam_fill_csio(csio,
7664 retries,
7665 cbfcnp,
7666 CAM_DIR_NONE,
7667 tag_action,
7668 /*data_ptr*/NULL,
7669 /*dxfer_len*/0,
7670 sense_len,
7671 sizeof(*scsi_cmd),
7672 timeout);
7673
7674 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7675 bzero(scsi_cmd, sizeof(*scsi_cmd));
7676 scsi_cmd->opcode = TEST_UNIT_READY;
7677 }
7678
7679 void
scsi_request_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),void * data_ptr,uint8_t dxfer_len,uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7680 scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries,
7681 void (*cbfcnp)(struct cam_periph *, union ccb *),
7682 void *data_ptr, uint8_t dxfer_len, uint8_t tag_action,
7683 uint8_t sense_len, uint32_t timeout)
7684 {
7685 struct scsi_request_sense *scsi_cmd;
7686
7687 cam_fill_csio(csio,
7688 retries,
7689 cbfcnp,
7690 CAM_DIR_IN,
7691 tag_action,
7692 data_ptr,
7693 dxfer_len,
7694 sense_len,
7695 sizeof(*scsi_cmd),
7696 timeout);
7697
7698 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7699 bzero(scsi_cmd, sizeof(*scsi_cmd));
7700 scsi_cmd->opcode = REQUEST_SENSE;
7701 scsi_cmd->length = dxfer_len;
7702 }
7703
7704 void
scsi_inquiry(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * inq_buf,uint32_t inq_len,int evpd,uint8_t page_code,uint8_t sense_len,uint32_t timeout)7705 scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries,
7706 void (*cbfcnp)(struct cam_periph *, union ccb *),
7707 uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len,
7708 int evpd, uint8_t page_code, uint8_t sense_len,
7709 uint32_t timeout)
7710 {
7711 struct scsi_inquiry *scsi_cmd;
7712
7713 cam_fill_csio(csio,
7714 retries,
7715 cbfcnp,
7716 /*flags*/CAM_DIR_IN,
7717 tag_action,
7718 /*data_ptr*/inq_buf,
7719 /*dxfer_len*/inq_len,
7720 sense_len,
7721 sizeof(*scsi_cmd),
7722 timeout);
7723
7724 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7725 bzero(scsi_cmd, sizeof(*scsi_cmd));
7726 scsi_cmd->opcode = INQUIRY;
7727 if (evpd) {
7728 scsi_cmd->byte2 |= SI_EVPD;
7729 scsi_cmd->page_code = page_code;
7730 }
7731 scsi_ulto2b(inq_len, scsi_cmd->length);
7732 }
7733
7734 void
scsi_mode_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7735 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7736 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7737 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7738 uint8_t sense_len, uint32_t timeout)
7739 {
7740
7741 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7742 pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7743 }
7744
7745 void
scsi_mode_sense_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7746 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7747 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7748 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7749 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7750 {
7751
7752 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7753 pc, page, 0, param_buf, param_len, minimum_cmd_size,
7754 sense_len, timeout);
7755 }
7756
7757 void
scsi_mode_sense_subpage(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t subpage,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7758 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7759 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7760 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7761 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7762 uint32_t timeout)
7763 {
7764 uint8_t cdb_len;
7765
7766 /*
7767 * Use the smallest possible command to perform the operation.
7768 */
7769 if ((param_len < 256)
7770 && (minimum_cmd_size < 10)) {
7771 /*
7772 * We can fit in a 6 byte cdb.
7773 */
7774 struct scsi_mode_sense_6 *scsi_cmd;
7775
7776 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7777 bzero(scsi_cmd, sizeof(*scsi_cmd));
7778 scsi_cmd->opcode = MODE_SENSE_6;
7779 if (dbd != 0)
7780 scsi_cmd->byte2 |= SMS_DBD;
7781 scsi_cmd->page = pc | page;
7782 scsi_cmd->subpage = subpage;
7783 scsi_cmd->length = param_len;
7784 cdb_len = sizeof(*scsi_cmd);
7785 } else {
7786 /*
7787 * Need a 10 byte cdb.
7788 */
7789 struct scsi_mode_sense_10 *scsi_cmd;
7790
7791 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7792 bzero(scsi_cmd, sizeof(*scsi_cmd));
7793 scsi_cmd->opcode = MODE_SENSE_10;
7794 if (dbd != 0)
7795 scsi_cmd->byte2 |= SMS_DBD;
7796 scsi_cmd->page = pc | page;
7797 scsi_cmd->subpage = subpage;
7798 scsi_ulto2b(param_len, scsi_cmd->length);
7799 cdb_len = sizeof(*scsi_cmd);
7800 }
7801 cam_fill_csio(csio,
7802 retries,
7803 cbfcnp,
7804 CAM_DIR_IN,
7805 tag_action,
7806 param_buf,
7807 param_len,
7808 sense_len,
7809 cdb_len,
7810 timeout);
7811 }
7812
7813 void
scsi_mode_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7814 scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries,
7815 void (*cbfcnp)(struct cam_periph *, union ccb *),
7816 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7817 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7818 uint32_t timeout)
7819 {
7820 scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7821 scsi_page_fmt, save_pages, param_buf,
7822 param_len, 0, sense_len, timeout);
7823 }
7824
7825 void
scsi_mode_select_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7826 scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries,
7827 void (*cbfcnp)(struct cam_periph *, union ccb *),
7828 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7829 uint8_t *param_buf, uint32_t param_len,
7830 int minimum_cmd_size, uint8_t sense_len,
7831 uint32_t timeout)
7832 {
7833 uint8_t cdb_len;
7834
7835 /*
7836 * Use the smallest possible command to perform the operation.
7837 */
7838 if ((param_len < 256)
7839 && (minimum_cmd_size < 10)) {
7840 /*
7841 * We can fit in a 6 byte cdb.
7842 */
7843 struct scsi_mode_select_6 *scsi_cmd;
7844
7845 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7846 bzero(scsi_cmd, sizeof(*scsi_cmd));
7847 scsi_cmd->opcode = MODE_SELECT_6;
7848 if (scsi_page_fmt != 0)
7849 scsi_cmd->byte2 |= SMS_PF;
7850 if (save_pages != 0)
7851 scsi_cmd->byte2 |= SMS_SP;
7852 scsi_cmd->length = param_len;
7853 cdb_len = sizeof(*scsi_cmd);
7854 } else {
7855 /*
7856 * Need a 10 byte cdb.
7857 */
7858 struct scsi_mode_select_10 *scsi_cmd;
7859
7860 scsi_cmd =
7861 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7862 bzero(scsi_cmd, sizeof(*scsi_cmd));
7863 scsi_cmd->opcode = MODE_SELECT_10;
7864 if (scsi_page_fmt != 0)
7865 scsi_cmd->byte2 |= SMS_PF;
7866 if (save_pages != 0)
7867 scsi_cmd->byte2 |= SMS_SP;
7868 scsi_ulto2b(param_len, scsi_cmd->length);
7869 cdb_len = sizeof(*scsi_cmd);
7870 }
7871 cam_fill_csio(csio,
7872 retries,
7873 cbfcnp,
7874 CAM_DIR_OUT,
7875 tag_action,
7876 param_buf,
7877 param_len,
7878 sense_len,
7879 cdb_len,
7880 timeout);
7881 }
7882
7883 void
scsi_log_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,uint8_t page,int save_pages,int ppc,uint32_t paramptr,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7884 scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries,
7885 void (*cbfcnp)(struct cam_periph *, union ccb *),
7886 uint8_t tag_action, uint8_t page_code, uint8_t page,
7887 int save_pages, int ppc, uint32_t paramptr,
7888 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7889 uint32_t timeout)
7890 {
7891 struct scsi_log_sense *scsi_cmd;
7892 uint8_t cdb_len;
7893
7894 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7895 bzero(scsi_cmd, sizeof(*scsi_cmd));
7896 scsi_cmd->opcode = LOG_SENSE;
7897 scsi_cmd->page = page_code | page;
7898 if (save_pages != 0)
7899 scsi_cmd->byte2 |= SLS_SP;
7900 if (ppc != 0)
7901 scsi_cmd->byte2 |= SLS_PPC;
7902 scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7903 scsi_ulto2b(param_len, scsi_cmd->length);
7904 cdb_len = sizeof(*scsi_cmd);
7905
7906 cam_fill_csio(csio,
7907 retries,
7908 cbfcnp,
7909 /*flags*/CAM_DIR_IN,
7910 tag_action,
7911 /*data_ptr*/param_buf,
7912 /*dxfer_len*/param_len,
7913 sense_len,
7914 cdb_len,
7915 timeout);
7916 }
7917
7918 void
scsi_log_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,int save_pages,int pc_reset,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7919 scsi_log_select(struct ccb_scsiio *csio, uint32_t retries,
7920 void (*cbfcnp)(struct cam_periph *, union ccb *),
7921 uint8_t tag_action, uint8_t page_code, int save_pages,
7922 int pc_reset, uint8_t *param_buf, uint32_t param_len,
7923 uint8_t sense_len, uint32_t timeout)
7924 {
7925 struct scsi_log_select *scsi_cmd;
7926 uint8_t cdb_len;
7927
7928 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7929 bzero(scsi_cmd, sizeof(*scsi_cmd));
7930 scsi_cmd->opcode = LOG_SELECT;
7931 scsi_cmd->page = page_code & SLS_PAGE_CODE;
7932 if (save_pages != 0)
7933 scsi_cmd->byte2 |= SLS_SP;
7934 if (pc_reset != 0)
7935 scsi_cmd->byte2 |= SLS_PCR;
7936 scsi_ulto2b(param_len, scsi_cmd->length);
7937 cdb_len = sizeof(*scsi_cmd);
7938
7939 cam_fill_csio(csio,
7940 retries,
7941 cbfcnp,
7942 /*flags*/CAM_DIR_OUT,
7943 tag_action,
7944 /*data_ptr*/param_buf,
7945 /*dxfer_len*/param_len,
7946 sense_len,
7947 cdb_len,
7948 timeout);
7949 }
7950
7951 /*
7952 * Prevent or allow the user to remove the media
7953 */
7954 void
scsi_prevent(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t action,uint8_t sense_len,uint32_t timeout)7955 scsi_prevent(struct ccb_scsiio *csio, uint32_t retries,
7956 void (*cbfcnp)(struct cam_periph *, union ccb *),
7957 uint8_t tag_action, uint8_t action,
7958 uint8_t sense_len, uint32_t timeout)
7959 {
7960 struct scsi_prevent *scsi_cmd;
7961
7962 cam_fill_csio(csio,
7963 retries,
7964 cbfcnp,
7965 /*flags*/CAM_DIR_NONE,
7966 tag_action,
7967 /*data_ptr*/NULL,
7968 /*dxfer_len*/0,
7969 sense_len,
7970 sizeof(*scsi_cmd),
7971 timeout);
7972
7973 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7974 bzero(scsi_cmd, sizeof(*scsi_cmd));
7975 scsi_cmd->opcode = PREVENT_ALLOW;
7976 scsi_cmd->how = action;
7977 }
7978
7979 /* XXX allow specification of address and PMI bit and LBA */
7980 void
scsi_read_capacity(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,struct scsi_read_capacity_data * rcap_buf,uint8_t sense_len,uint32_t timeout)7981 scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries,
7982 void (*cbfcnp)(struct cam_periph *, union ccb *),
7983 uint8_t tag_action,
7984 struct scsi_read_capacity_data *rcap_buf,
7985 uint8_t sense_len, uint32_t timeout)
7986 {
7987 struct scsi_read_capacity *scsi_cmd;
7988
7989 cam_fill_csio(csio,
7990 retries,
7991 cbfcnp,
7992 /*flags*/CAM_DIR_IN,
7993 tag_action,
7994 /*data_ptr*/(uint8_t *)rcap_buf,
7995 /*dxfer_len*/sizeof(*rcap_buf),
7996 sense_len,
7997 sizeof(*scsi_cmd),
7998 timeout);
7999
8000 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
8001 bzero(scsi_cmd, sizeof(*scsi_cmd));
8002 scsi_cmd->opcode = READ_CAPACITY;
8003 }
8004
8005 void
scsi_read_capacity_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t lba,int reladr,int pmi,uint8_t * rcap_buf,int rcap_buf_len,uint8_t sense_len,uint32_t timeout)8006 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
8007 void (*cbfcnp)(struct cam_periph *, union ccb *),
8008 uint8_t tag_action, uint64_t lba, int reladr, int pmi,
8009 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
8010 uint32_t timeout)
8011 {
8012 struct scsi_read_capacity_16 *scsi_cmd;
8013
8014 cam_fill_csio(csio,
8015 retries,
8016 cbfcnp,
8017 /*flags*/CAM_DIR_IN,
8018 tag_action,
8019 /*data_ptr*/(uint8_t *)rcap_buf,
8020 /*dxfer_len*/rcap_buf_len,
8021 sense_len,
8022 sizeof(*scsi_cmd),
8023 timeout);
8024 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
8025 bzero(scsi_cmd, sizeof(*scsi_cmd));
8026 scsi_cmd->opcode = SERVICE_ACTION_IN;
8027 scsi_cmd->service_action = SRC16_SERVICE_ACTION;
8028 scsi_u64to8b(lba, scsi_cmd->addr);
8029 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
8030 if (pmi)
8031 scsi_cmd->reladr |= SRC16_PMI;
8032 if (reladr)
8033 scsi_cmd->reladr |= SRC16_RELADR;
8034 }
8035
8036 void
scsi_report_luns(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t select_report,struct scsi_report_luns_data * rpl_buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8037 scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries,
8038 void (*cbfcnp)(struct cam_periph *, union ccb *),
8039 uint8_t tag_action, uint8_t select_report,
8040 struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len,
8041 uint8_t sense_len, uint32_t timeout)
8042 {
8043 struct scsi_report_luns *scsi_cmd;
8044
8045 cam_fill_csio(csio,
8046 retries,
8047 cbfcnp,
8048 /*flags*/CAM_DIR_IN,
8049 tag_action,
8050 /*data_ptr*/(uint8_t *)rpl_buf,
8051 /*dxfer_len*/alloc_len,
8052 sense_len,
8053 sizeof(*scsi_cmd),
8054 timeout);
8055 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
8056 bzero(scsi_cmd, sizeof(*scsi_cmd));
8057 scsi_cmd->opcode = REPORT_LUNS;
8058 scsi_cmd->select_report = select_report;
8059 scsi_ulto4b(alloc_len, scsi_cmd->length);
8060 }
8061
8062 void
scsi_report_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8063 scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries,
8064 void (*cbfcnp)(struct cam_periph *, union ccb *),
8065 uint8_t tag_action, uint8_t pdf,
8066 void *buf, uint32_t alloc_len,
8067 uint8_t sense_len, uint32_t timeout)
8068 {
8069 struct scsi_target_group *scsi_cmd;
8070
8071 cam_fill_csio(csio,
8072 retries,
8073 cbfcnp,
8074 /*flags*/CAM_DIR_IN,
8075 tag_action,
8076 /*data_ptr*/(uint8_t *)buf,
8077 /*dxfer_len*/alloc_len,
8078 sense_len,
8079 sizeof(*scsi_cmd),
8080 timeout);
8081 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8082 bzero(scsi_cmd, sizeof(*scsi_cmd));
8083 scsi_cmd->opcode = MAINTENANCE_IN;
8084 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
8085 scsi_ulto4b(alloc_len, scsi_cmd->length);
8086 }
8087
8088 void
scsi_report_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8089 scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8090 void (*cbfcnp)(struct cam_periph *, union ccb *),
8091 uint8_t tag_action, uint8_t pdf,
8092 void *buf, uint32_t alloc_len,
8093 uint8_t sense_len, uint32_t timeout)
8094 {
8095 struct scsi_timestamp *scsi_cmd;
8096
8097 cam_fill_csio(csio,
8098 retries,
8099 cbfcnp,
8100 /*flags*/CAM_DIR_IN,
8101 tag_action,
8102 /*data_ptr*/(uint8_t *)buf,
8103 /*dxfer_len*/alloc_len,
8104 sense_len,
8105 sizeof(*scsi_cmd),
8106 timeout);
8107 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8108 bzero(scsi_cmd, sizeof(*scsi_cmd));
8109 scsi_cmd->opcode = MAINTENANCE_IN;
8110 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
8111 scsi_ulto4b(alloc_len, scsi_cmd->length);
8112 }
8113
8114 void
scsi_set_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8115 scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries,
8116 void (*cbfcnp)(struct cam_periph *, union ccb *),
8117 uint8_t tag_action, void *buf, uint32_t alloc_len,
8118 uint8_t sense_len, uint32_t timeout)
8119 {
8120 struct scsi_target_group *scsi_cmd;
8121
8122 cam_fill_csio(csio,
8123 retries,
8124 cbfcnp,
8125 /*flags*/CAM_DIR_OUT,
8126 tag_action,
8127 /*data_ptr*/(uint8_t *)buf,
8128 /*dxfer_len*/alloc_len,
8129 sense_len,
8130 sizeof(*scsi_cmd),
8131 timeout);
8132 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8133 bzero(scsi_cmd, sizeof(*scsi_cmd));
8134 scsi_cmd->opcode = MAINTENANCE_OUT;
8135 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8136 scsi_ulto4b(alloc_len, scsi_cmd->length);
8137 }
8138
8139 void
scsi_create_timestamp(uint8_t * timestamp_6b_buf,uint64_t timestamp)8140 scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8141 uint64_t timestamp)
8142 {
8143 uint8_t buf[8];
8144 scsi_u64to8b(timestamp, buf);
8145 /*
8146 * Using memcopy starting at buf[2] because the set timestamp parameters
8147 * only has six bytes for the timestamp to fit into, and we don't have a
8148 * scsi_u64to6b function.
8149 */
8150 memcpy(timestamp_6b_buf, &buf[2], 6);
8151 }
8152
8153 void
scsi_set_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8154 scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8155 void (*cbfcnp)(struct cam_periph *, union ccb *),
8156 uint8_t tag_action, void *buf, uint32_t alloc_len,
8157 uint8_t sense_len, uint32_t timeout)
8158 {
8159 struct scsi_timestamp *scsi_cmd;
8160
8161 cam_fill_csio(csio,
8162 retries,
8163 cbfcnp,
8164 /*flags*/CAM_DIR_OUT,
8165 tag_action,
8166 /*data_ptr*/(uint8_t *) buf,
8167 /*dxfer_len*/alloc_len,
8168 sense_len,
8169 sizeof(*scsi_cmd),
8170 timeout);
8171 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8172 bzero(scsi_cmd, sizeof(*scsi_cmd));
8173 scsi_cmd->opcode = MAINTENANCE_OUT;
8174 scsi_cmd->service_action = SET_TIMESTAMP;
8175 scsi_ulto4b(alloc_len, scsi_cmd->length);
8176 }
8177
8178 /*
8179 * Syncronize the media to the contents of the cache for
8180 * the given lba/count pair. Specifying 0/0 means sync
8181 * the whole cache.
8182 */
8183 void
scsi_synchronize_cache(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t begin_lba,uint16_t lb_count,uint8_t sense_len,uint32_t timeout)8184 scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries,
8185 void (*cbfcnp)(struct cam_periph *, union ccb *),
8186 uint8_t tag_action, uint32_t begin_lba,
8187 uint16_t lb_count, uint8_t sense_len,
8188 uint32_t timeout)
8189 {
8190 struct scsi_sync_cache *scsi_cmd;
8191
8192 cam_fill_csio(csio,
8193 retries,
8194 cbfcnp,
8195 /*flags*/CAM_DIR_NONE,
8196 tag_action,
8197 /*data_ptr*/NULL,
8198 /*dxfer_len*/0,
8199 sense_len,
8200 sizeof(*scsi_cmd),
8201 timeout);
8202
8203 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8204 bzero(scsi_cmd, sizeof(*scsi_cmd));
8205 scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8206 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8207 scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8208 }
8209
8210 void
scsi_read_write(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int readop,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8211 scsi_read_write(struct ccb_scsiio *csio, uint32_t retries,
8212 void (*cbfcnp)(struct cam_periph *, union ccb *),
8213 uint8_t tag_action, int readop, uint8_t byte2,
8214 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8215 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8216 uint32_t timeout)
8217 {
8218 int read;
8219 uint8_t cdb_len;
8220
8221 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8222
8223 /*
8224 * Use the smallest possible command to perform the operation
8225 * as some legacy hardware does not support the 10 byte commands.
8226 * If any of the bits in byte2 is set, we have to go with a larger
8227 * command.
8228 */
8229 if ((minimum_cmd_size < 10)
8230 && ((lba & 0x1fffff) == lba)
8231 && ((block_count & 0xff) == block_count)
8232 && (byte2 == 0)) {
8233 /*
8234 * We can fit in a 6 byte cdb.
8235 */
8236 struct scsi_rw_6 *scsi_cmd;
8237
8238 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8239 scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8240 scsi_ulto3b(lba, scsi_cmd->addr);
8241 scsi_cmd->length = block_count & 0xff;
8242 scsi_cmd->control = 0;
8243 cdb_len = sizeof(*scsi_cmd);
8244
8245 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8246 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8247 scsi_cmd->addr[1], scsi_cmd->addr[2],
8248 scsi_cmd->length, dxfer_len));
8249 } else if ((minimum_cmd_size < 12)
8250 && ((block_count & 0xffff) == block_count)
8251 && ((lba & 0xffffffff) == lba)) {
8252 /*
8253 * Need a 10 byte cdb.
8254 */
8255 struct scsi_rw_10 *scsi_cmd;
8256
8257 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8258 scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8259 scsi_cmd->byte2 = byte2;
8260 scsi_ulto4b(lba, scsi_cmd->addr);
8261 scsi_cmd->reserved = 0;
8262 scsi_ulto2b(block_count, scsi_cmd->length);
8263 scsi_cmd->control = 0;
8264 cdb_len = sizeof(*scsi_cmd);
8265
8266 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8267 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8268 scsi_cmd->addr[1], scsi_cmd->addr[2],
8269 scsi_cmd->addr[3], scsi_cmd->length[0],
8270 scsi_cmd->length[1], dxfer_len));
8271 } else if ((minimum_cmd_size < 16)
8272 && ((block_count & 0xffffffff) == block_count)
8273 && ((lba & 0xffffffff) == lba)) {
8274 /*
8275 * The block count is too big for a 10 byte CDB, use a 12
8276 * byte CDB.
8277 */
8278 struct scsi_rw_12 *scsi_cmd;
8279
8280 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8281 scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8282 scsi_cmd->byte2 = byte2;
8283 scsi_ulto4b(lba, scsi_cmd->addr);
8284 scsi_cmd->reserved = 0;
8285 scsi_ulto4b(block_count, scsi_cmd->length);
8286 scsi_cmd->control = 0;
8287 cdb_len = sizeof(*scsi_cmd);
8288
8289 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8290 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8291 scsi_cmd->addr[1], scsi_cmd->addr[2],
8292 scsi_cmd->addr[3], scsi_cmd->length[0],
8293 scsi_cmd->length[1], scsi_cmd->length[2],
8294 scsi_cmd->length[3], dxfer_len));
8295 } else {
8296 /*
8297 * 16 byte CDB. We'll only get here if the LBA is larger
8298 * than 2^32, or if the user asks for a 16 byte command.
8299 */
8300 struct scsi_rw_16 *scsi_cmd;
8301
8302 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8303 scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8304 scsi_cmd->byte2 = byte2;
8305 scsi_u64to8b(lba, scsi_cmd->addr);
8306 scsi_cmd->reserved = 0;
8307 scsi_ulto4b(block_count, scsi_cmd->length);
8308 scsi_cmd->control = 0;
8309 cdb_len = sizeof(*scsi_cmd);
8310 }
8311 cam_fill_csio(csio,
8312 retries,
8313 cbfcnp,
8314 (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8315 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8316 tag_action,
8317 data_ptr,
8318 dxfer_len,
8319 sense_len,
8320 cdb_len,
8321 timeout);
8322 }
8323
8324 void
scsi_write_same(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8325 scsi_write_same(struct ccb_scsiio *csio, uint32_t retries,
8326 void (*cbfcnp)(struct cam_periph *, union ccb *),
8327 uint8_t tag_action, uint8_t byte2,
8328 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8329 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8330 uint32_t timeout)
8331 {
8332 uint8_t cdb_len;
8333 if ((minimum_cmd_size < 16) &&
8334 ((block_count & 0xffff) == block_count) &&
8335 ((lba & 0xffffffff) == lba)) {
8336 /*
8337 * Need a 10 byte cdb.
8338 */
8339 struct scsi_write_same_10 *scsi_cmd;
8340
8341 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8342 scsi_cmd->opcode = WRITE_SAME_10;
8343 scsi_cmd->byte2 = byte2;
8344 scsi_ulto4b(lba, scsi_cmd->addr);
8345 scsi_cmd->group = 0;
8346 scsi_ulto2b(block_count, scsi_cmd->length);
8347 scsi_cmd->control = 0;
8348 cdb_len = sizeof(*scsi_cmd);
8349
8350 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8351 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8352 scsi_cmd->addr[1], scsi_cmd->addr[2],
8353 scsi_cmd->addr[3], scsi_cmd->length[0],
8354 scsi_cmd->length[1], dxfer_len));
8355 } else {
8356 /*
8357 * 16 byte CDB. We'll only get here if the LBA is larger
8358 * than 2^32, or if the user asks for a 16 byte command.
8359 */
8360 struct scsi_write_same_16 *scsi_cmd;
8361
8362 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8363 scsi_cmd->opcode = WRITE_SAME_16;
8364 scsi_cmd->byte2 = byte2;
8365 scsi_u64to8b(lba, scsi_cmd->addr);
8366 scsi_ulto4b(block_count, scsi_cmd->length);
8367 scsi_cmd->group = 0;
8368 scsi_cmd->control = 0;
8369 cdb_len = sizeof(*scsi_cmd);
8370
8371 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8372 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8373 scsi_cmd->addr[0], scsi_cmd->addr[1],
8374 scsi_cmd->addr[2], scsi_cmd->addr[3],
8375 scsi_cmd->addr[4], scsi_cmd->addr[5],
8376 scsi_cmd->addr[6], scsi_cmd->addr[7],
8377 scsi_cmd->length[0], scsi_cmd->length[1],
8378 scsi_cmd->length[2], scsi_cmd->length[3],
8379 dxfer_len));
8380 }
8381 cam_fill_csio(csio,
8382 retries,
8383 cbfcnp,
8384 /*flags*/CAM_DIR_OUT,
8385 tag_action,
8386 data_ptr,
8387 dxfer_len,
8388 sense_len,
8389 cdb_len,
8390 timeout);
8391 }
8392
8393 void
scsi_ata_identify(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8394 scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries,
8395 void (*cbfcnp)(struct cam_periph *, union ccb *),
8396 uint8_t tag_action, uint8_t *data_ptr,
8397 uint16_t dxfer_len, uint8_t sense_len,
8398 uint32_t timeout)
8399 {
8400 scsi_ata_pass(csio,
8401 retries,
8402 cbfcnp,
8403 /*flags*/CAM_DIR_IN,
8404 tag_action,
8405 /*protocol*/AP_PROTO_PIO_IN,
8406 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8407 AP_FLAG_BYT_BLOK_BLOCKS |
8408 AP_FLAG_TLEN_SECT_CNT,
8409 /*features*/0,
8410 /*sector_count*/dxfer_len / 512,
8411 /*lba*/0,
8412 /*command*/ATA_ATA_IDENTIFY,
8413 /*device*/ 0,
8414 /*icc*/ 0,
8415 /*auxiliary*/ 0,
8416 /*control*/0,
8417 data_ptr,
8418 dxfer_len,
8419 /*cdb_storage*/ NULL,
8420 /*cdb_storage_len*/ 0,
8421 /*minimum_cmd_size*/ 0,
8422 sense_len,
8423 timeout);
8424 }
8425
8426 void
scsi_ata_trim(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint16_t block_count,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8427 scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries,
8428 void (*cbfcnp)(struct cam_periph *, union ccb *),
8429 uint8_t tag_action, uint16_t block_count,
8430 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8431 uint32_t timeout)
8432 {
8433 scsi_ata_pass_16(csio,
8434 retries,
8435 cbfcnp,
8436 /*flags*/CAM_DIR_OUT,
8437 tag_action,
8438 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8439 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8440 /*features*/ATA_DSM_TRIM,
8441 /*sector_count*/block_count,
8442 /*lba*/0,
8443 /*command*/ATA_DATA_SET_MANAGEMENT,
8444 /*control*/0,
8445 data_ptr,
8446 dxfer_len,
8447 sense_len,
8448 timeout);
8449 }
8450
8451 int
scsi_ata_read_log(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t log_address,uint32_t page_number,uint16_t block_count,uint8_t protocol,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8452 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8453 void (*cbfcnp)(struct cam_periph *, union ccb *),
8454 uint8_t tag_action, uint32_t log_address,
8455 uint32_t page_number, uint16_t block_count,
8456 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8457 uint8_t sense_len, uint32_t timeout)
8458 {
8459 uint8_t command, protocol_out;
8460 uint16_t count_out;
8461 uint64_t lba;
8462 int retval;
8463
8464 retval = 0;
8465
8466 switch (protocol) {
8467 case AP_PROTO_DMA:
8468 count_out = block_count;
8469 command = ATA_READ_LOG_DMA_EXT;
8470 protocol_out = AP_PROTO_DMA;
8471 break;
8472 case AP_PROTO_PIO_IN:
8473 default:
8474 count_out = block_count;
8475 command = ATA_READ_LOG_EXT;
8476 protocol_out = AP_PROTO_PIO_IN;
8477 break;
8478 }
8479
8480 lba = (((uint64_t)page_number & 0xff00) << 32) |
8481 ((page_number & 0x00ff) << 8) |
8482 (log_address & 0xff);
8483
8484 protocol_out |= AP_EXTEND;
8485
8486 retval = scsi_ata_pass(csio,
8487 retries,
8488 cbfcnp,
8489 /*flags*/CAM_DIR_IN,
8490 tag_action,
8491 /*protocol*/ protocol_out,
8492 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8493 AP_FLAG_BYT_BLOK_BLOCKS |
8494 AP_FLAG_TDIR_FROM_DEV,
8495 /*feature*/ 0,
8496 /*sector_count*/ count_out,
8497 /*lba*/ lba,
8498 /*command*/ command,
8499 /*device*/ 0,
8500 /*icc*/ 0,
8501 /*auxiliary*/ 0,
8502 /*control*/0,
8503 data_ptr,
8504 dxfer_len,
8505 /*cdb_storage*/ NULL,
8506 /*cdb_storage_len*/ 0,
8507 /*minimum_cmd_size*/ 0,
8508 sense_len,
8509 timeout);
8510
8511 return (retval);
8512 }
8513
scsi_ata_setfeatures(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t feature,uint64_t lba,uint32_t count,uint8_t sense_len,uint32_t timeout)8514 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
8515 void (*cbfcnp)(struct cam_periph *, union ccb *),
8516 uint8_t tag_action, uint8_t feature,
8517 uint64_t lba, uint32_t count,
8518 uint8_t sense_len, uint32_t timeout)
8519 {
8520 return (scsi_ata_pass(csio,
8521 retries,
8522 cbfcnp,
8523 /*flags*/CAM_DIR_NONE,
8524 tag_action,
8525 /*protocol*/AP_PROTO_PIO_IN,
8526 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8527 AP_FLAG_BYT_BLOK_BYTES |
8528 AP_FLAG_TLEN_SECT_CNT,
8529 /*features*/feature,
8530 /*sector_count*/count,
8531 /*lba*/lba,
8532 /*command*/ATA_SETFEATURES,
8533 /*device*/ 0,
8534 /*icc*/ 0,
8535 /*auxiliary*/0,
8536 /*control*/0,
8537 /*data_ptr*/NULL,
8538 /*dxfer_len*/0,
8539 /*cdb_storage*/NULL,
8540 /*cdb_storage_len*/0,
8541 /*minimum_cmd_size*/0,
8542 sense_len,
8543 timeout));
8544 }
8545
8546 /*
8547 * Note! This is an unusual CDB building function because it can return
8548 * an error in the event that the command in question requires a variable
8549 * length CDB, but the caller has not given storage space for one or has not
8550 * given enough storage space. If there is enough space available in the
8551 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8552 */
8553 int
scsi_ata_pass(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t device,uint8_t icc,uint32_t auxiliary,uint8_t control,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t * cdb_storage,size_t cdb_storage_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)8554 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8555 void (*cbfcnp)(struct cam_periph *, union ccb *),
8556 uint32_t flags, uint8_t tag_action,
8557 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8558 uint16_t sector_count, uint64_t lba, uint8_t command,
8559 uint8_t device, uint8_t icc, uint32_t auxiliary,
8560 uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len,
8561 uint8_t *cdb_storage, size_t cdb_storage_len,
8562 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
8563 {
8564 uint32_t cam_flags;
8565 uint8_t *cdb_ptr;
8566 int cmd_size;
8567 int retval;
8568 uint8_t cdb_len;
8569
8570 retval = 0;
8571 cam_flags = flags;
8572
8573 /*
8574 * Round the user's request to the nearest command size that is at
8575 * least as big as what he requested.
8576 */
8577 if (minimum_cmd_size <= 12)
8578 cmd_size = 12;
8579 else if (minimum_cmd_size > 16)
8580 cmd_size = 32;
8581 else
8582 cmd_size = 16;
8583
8584 /*
8585 * If we have parameters that require a 48-bit ATA command, we have to
8586 * use the 16 byte ATA PASS-THROUGH command at least.
8587 */
8588 if (((lba > ATA_MAX_28BIT_LBA)
8589 || (sector_count > 255)
8590 || (features > 255)
8591 || (protocol & AP_EXTEND))
8592 && ((cmd_size < 16)
8593 || ((protocol & AP_EXTEND) == 0))) {
8594 if (cmd_size < 16)
8595 cmd_size = 16;
8596 protocol |= AP_EXTEND;
8597 }
8598
8599 /*
8600 * The icc and auxiliary ATA registers are only supported in the
8601 * 32-byte version of the ATA PASS-THROUGH command.
8602 */
8603 if ((icc != 0)
8604 || (auxiliary != 0)) {
8605 cmd_size = 32;
8606 protocol |= AP_EXTEND;
8607 }
8608
8609 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8610 && ((cdb_storage == NULL)
8611 || (cdb_storage_len < cmd_size))) {
8612 retval = 1;
8613 goto bailout;
8614 }
8615
8616 /*
8617 * At this point we know we have enough space to store the command
8618 * in one place or another. We prefer the built-in array, but used
8619 * the passed in storage if necessary.
8620 */
8621 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8622 cdb_ptr = csio->cdb_io.cdb_bytes;
8623 else {
8624 cdb_ptr = cdb_storage;
8625 cam_flags |= CAM_CDB_POINTER;
8626 }
8627
8628 if (cmd_size <= 12) {
8629 struct ata_pass_12 *cdb;
8630
8631 cdb = (struct ata_pass_12 *)cdb_ptr;
8632 cdb_len = sizeof(*cdb);
8633 bzero(cdb, cdb_len);
8634
8635 cdb->opcode = ATA_PASS_12;
8636 cdb->protocol = protocol;
8637 cdb->flags = ata_flags;
8638 cdb->features = features;
8639 cdb->sector_count = sector_count;
8640 cdb->lba_low = lba & 0xff;
8641 cdb->lba_mid = (lba >> 8) & 0xff;
8642 cdb->lba_high = (lba >> 16) & 0xff;
8643 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8644 cdb->command = command;
8645 cdb->control = control;
8646 } else if (cmd_size <= 16) {
8647 struct ata_pass_16 *cdb;
8648
8649 cdb = (struct ata_pass_16 *)cdb_ptr;
8650 cdb_len = sizeof(*cdb);
8651 bzero(cdb, cdb_len);
8652
8653 cdb->opcode = ATA_PASS_16;
8654 cdb->protocol = protocol;
8655 cdb->flags = ata_flags;
8656 cdb->features = features & 0xff;
8657 cdb->sector_count = sector_count & 0xff;
8658 cdb->lba_low = lba & 0xff;
8659 cdb->lba_mid = (lba >> 8) & 0xff;
8660 cdb->lba_high = (lba >> 16) & 0xff;
8661 /*
8662 * If AP_EXTEND is set, we're sending a 48-bit command.
8663 * Otherwise it's a 28-bit command.
8664 */
8665 if (protocol & AP_EXTEND) {
8666 cdb->lba_low_ext = (lba >> 24) & 0xff;
8667 cdb->lba_mid_ext = (lba >> 32) & 0xff;
8668 cdb->lba_high_ext = (lba >> 40) & 0xff;
8669 cdb->features_ext = (features >> 8) & 0xff;
8670 cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8671 cdb->device = device | ATA_DEV_LBA;
8672 } else {
8673 cdb->lba_low_ext = (lba >> 24) & 0xf;
8674 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8675 }
8676 cdb->command = command;
8677 cdb->control = control;
8678 } else {
8679 struct ata_pass_32 *cdb;
8680 uint8_t tmp_lba[8];
8681
8682 cdb = (struct ata_pass_32 *)cdb_ptr;
8683 cdb_len = sizeof(*cdb);
8684 bzero(cdb, cdb_len);
8685 cdb->opcode = VARIABLE_LEN_CDB;
8686 cdb->control = control;
8687 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8688 service_action);
8689 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8690 cdb->protocol = protocol;
8691 cdb->flags = ata_flags;
8692
8693 if ((protocol & AP_EXTEND) == 0) {
8694 lba &= 0x0fffffff;
8695 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8696 features &= 0xff;
8697 sector_count &= 0xff;
8698 } else {
8699 cdb->device = device | ATA_DEV_LBA;
8700 }
8701 scsi_u64to8b(lba, tmp_lba);
8702 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8703 scsi_ulto2b(features, cdb->features);
8704 scsi_ulto2b(sector_count, cdb->count);
8705 cdb->command = command;
8706 cdb->icc = icc;
8707 scsi_ulto4b(auxiliary, cdb->auxiliary);
8708 }
8709
8710 cam_fill_csio(csio,
8711 retries,
8712 cbfcnp,
8713 cam_flags,
8714 tag_action,
8715 data_ptr,
8716 dxfer_len,
8717 sense_len,
8718 cmd_size,
8719 timeout);
8720 bailout:
8721 return (retval);
8722 }
8723
8724 void
scsi_ata_pass_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t control,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8725 scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries,
8726 void (*cbfcnp)(struct cam_periph *, union ccb *),
8727 uint32_t flags, uint8_t tag_action,
8728 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8729 uint16_t sector_count, uint64_t lba, uint8_t command,
8730 uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len,
8731 uint8_t sense_len, uint32_t timeout)
8732 {
8733 struct ata_pass_16 *ata_cmd;
8734
8735 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8736 ata_cmd->opcode = ATA_PASS_16;
8737 ata_cmd->protocol = protocol;
8738 ata_cmd->flags = ata_flags;
8739 ata_cmd->features_ext = features >> 8;
8740 ata_cmd->features = features;
8741 ata_cmd->sector_count_ext = sector_count >> 8;
8742 ata_cmd->sector_count = sector_count;
8743 ata_cmd->lba_low = lba;
8744 ata_cmd->lba_mid = lba >> 8;
8745 ata_cmd->lba_high = lba >> 16;
8746 ata_cmd->device = ATA_DEV_LBA;
8747 if (protocol & AP_EXTEND) {
8748 ata_cmd->lba_low_ext = lba >> 24;
8749 ata_cmd->lba_mid_ext = lba >> 32;
8750 ata_cmd->lba_high_ext = lba >> 40;
8751 } else
8752 ata_cmd->device |= (lba >> 24) & 0x0f;
8753 ata_cmd->command = command;
8754 ata_cmd->control = control;
8755
8756 cam_fill_csio(csio,
8757 retries,
8758 cbfcnp,
8759 flags,
8760 tag_action,
8761 data_ptr,
8762 dxfer_len,
8763 sense_len,
8764 sizeof(*ata_cmd),
8765 timeout);
8766 }
8767
8768 void
scsi_unmap(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8769 scsi_unmap(struct ccb_scsiio *csio, uint32_t retries,
8770 void (*cbfcnp)(struct cam_periph *, union ccb *),
8771 uint8_t tag_action, uint8_t byte2,
8772 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8773 uint32_t timeout)
8774 {
8775 struct scsi_unmap *scsi_cmd;
8776
8777 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8778 scsi_cmd->opcode = UNMAP;
8779 scsi_cmd->byte2 = byte2;
8780 scsi_ulto4b(0, scsi_cmd->reserved);
8781 scsi_cmd->group = 0;
8782 scsi_ulto2b(dxfer_len, scsi_cmd->length);
8783 scsi_cmd->control = 0;
8784
8785 cam_fill_csio(csio,
8786 retries,
8787 cbfcnp,
8788 /*flags*/CAM_DIR_OUT,
8789 tag_action,
8790 data_ptr,
8791 dxfer_len,
8792 sense_len,
8793 sizeof(*scsi_cmd),
8794 timeout);
8795 }
8796
8797 void
scsi_receive_diagnostic_results(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int pcv,uint8_t page_code,uint8_t * data_ptr,uint16_t allocation_length,uint8_t sense_len,uint32_t timeout)8798 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries,
8799 void (*cbfcnp)(struct cam_periph *, union ccb*),
8800 uint8_t tag_action, int pcv, uint8_t page_code,
8801 uint8_t *data_ptr, uint16_t allocation_length,
8802 uint8_t sense_len, uint32_t timeout)
8803 {
8804 struct scsi_receive_diag *scsi_cmd;
8805
8806 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8807 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8808 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8809 if (pcv) {
8810 scsi_cmd->byte2 |= SRD_PCV;
8811 scsi_cmd->page_code = page_code;
8812 }
8813 scsi_ulto2b(allocation_length, scsi_cmd->length);
8814
8815 cam_fill_csio(csio,
8816 retries,
8817 cbfcnp,
8818 /*flags*/CAM_DIR_IN,
8819 tag_action,
8820 data_ptr,
8821 allocation_length,
8822 sense_len,
8823 sizeof(*scsi_cmd),
8824 timeout);
8825 }
8826
8827 void
scsi_send_diagnostic(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int unit_offline,int device_offline,int self_test,int page_format,int self_test_code,uint8_t * data_ptr,uint16_t param_list_length,uint8_t sense_len,uint32_t timeout)8828 scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries,
8829 void (*cbfcnp)(struct cam_periph *, union ccb *),
8830 uint8_t tag_action, int unit_offline, int device_offline,
8831 int self_test, int page_format, int self_test_code,
8832 uint8_t *data_ptr, uint16_t param_list_length,
8833 uint8_t sense_len, uint32_t timeout)
8834 {
8835 struct scsi_send_diag *scsi_cmd;
8836
8837 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8838 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8839 scsi_cmd->opcode = SEND_DIAGNOSTIC;
8840
8841 /*
8842 * The default self-test mode control and specific test
8843 * control are mutually exclusive.
8844 */
8845 if (self_test)
8846 self_test_code = SSD_SELF_TEST_CODE_NONE;
8847
8848 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8849 & SSD_SELF_TEST_CODE_MASK)
8850 | (unit_offline ? SSD_UNITOFFL : 0)
8851 | (device_offline ? SSD_DEVOFFL : 0)
8852 | (self_test ? SSD_SELFTEST : 0)
8853 | (page_format ? SSD_PF : 0);
8854 scsi_ulto2b(param_list_length, scsi_cmd->length);
8855
8856 cam_fill_csio(csio,
8857 retries,
8858 cbfcnp,
8859 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8860 tag_action,
8861 data_ptr,
8862 param_list_length,
8863 sense_len,
8864 sizeof(*scsi_cmd),
8865 timeout);
8866 }
8867
8868 void
scsi_get_physical_element_status(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t allocation_length,uint8_t report_type,uint32_t starting_element,uint8_t sense_len,uint32_t timeout)8869 scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries,
8870 void (*cbfcnp)(struct cam_periph *, union ccb *),
8871 uint8_t tag_action, uint8_t *data_ptr,
8872 uint16_t allocation_length, uint8_t report_type,
8873 uint32_t starting_element,
8874 uint8_t sense_len, uint32_t timeout)
8875 {
8876 struct scsi_get_physical_element_status *scsi_cmd;
8877
8878 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes;
8879 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8880 scsi_cmd->opcode = SERVICE_ACTION_IN;
8881 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS;
8882 scsi_ulto4b(starting_element, scsi_cmd->starting_element);
8883 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length);
8884
8885 cam_fill_csio(csio,
8886 retries,
8887 cbfcnp,
8888 /*flags*/ CAM_DIR_IN,
8889 tag_action,
8890 data_ptr,
8891 allocation_length,
8892 sense_len,
8893 sizeof(*scsi_cmd),
8894 timeout);
8895 }
8896
8897 void
scsi_remove_element_and_truncate(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t requested_capacity,uint32_t element_id,uint8_t sense_len,uint32_t timeout)8898 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries,
8899 void (*cbfcnp)(struct cam_periph *, union ccb *),
8900 uint8_t tag_action,
8901 uint64_t requested_capacity, uint32_t element_id,
8902 uint8_t sense_len, uint32_t timeout)
8903 {
8904 struct scsi_remove_element_and_truncate *scsi_cmd;
8905
8906 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes;
8907 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8908 scsi_cmd->opcode = SERVICE_ACTION_IN;
8909 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE;
8910 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity);
8911 scsi_ulto4b(element_id, scsi_cmd->element_identifier);
8912
8913 cam_fill_csio(csio,
8914 retries,
8915 cbfcnp,
8916 /*flags*/ CAM_DIR_OUT,
8917 tag_action,
8918 NULL,
8919 0,
8920 sense_len,
8921 sizeof(*scsi_cmd),
8922 timeout);
8923 }
8924
8925 void
scsi_restore_elements_and_rebuild(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)8926 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries,
8927 void (*cbfcnp)(struct cam_periph *, union ccb *),
8928 uint8_t tag_action,
8929 uint8_t sense_len, uint32_t timeout)
8930 {
8931 struct scsi_service_action_in *scsi_cmd;
8932
8933 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes;
8934 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8935 scsi_cmd->opcode = SERVICE_ACTION_IN;
8936 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD;
8937
8938 cam_fill_csio(csio,
8939 retries,
8940 cbfcnp,
8941 /*flags*/ CAM_DIR_OUT,
8942 tag_action,
8943 NULL,
8944 0,
8945 sense_len,
8946 sizeof(*scsi_cmd),
8947 timeout);
8948 }
8949
8950 void
scsi_read_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t allocation_length,uint8_t sense_len,uint32_t timeout)8951 scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries,
8952 void (*cbfcnp)(struct cam_periph *, union ccb*),
8953 uint8_t tag_action, int mode,
8954 uint8_t buffer_id, uint32_t offset,
8955 uint8_t *data_ptr, uint32_t allocation_length,
8956 uint8_t sense_len, uint32_t timeout)
8957 {
8958 struct scsi_read_buffer *scsi_cmd;
8959
8960 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8961 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8962 scsi_cmd->opcode = READ_BUFFER;
8963 scsi_cmd->byte2 = mode;
8964 scsi_cmd->buffer_id = buffer_id;
8965 scsi_ulto3b(offset, scsi_cmd->offset);
8966 scsi_ulto3b(allocation_length, scsi_cmd->length);
8967
8968 cam_fill_csio(csio,
8969 retries,
8970 cbfcnp,
8971 /*flags*/CAM_DIR_IN,
8972 tag_action,
8973 data_ptr,
8974 allocation_length,
8975 sense_len,
8976 sizeof(*scsi_cmd),
8977 timeout);
8978 }
8979
8980 void
scsi_write_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t param_list_length,uint8_t sense_len,uint32_t timeout)8981 scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries,
8982 void (*cbfcnp)(struct cam_periph *, union ccb *),
8983 uint8_t tag_action, int mode,
8984 uint8_t buffer_id, uint32_t offset,
8985 uint8_t *data_ptr, uint32_t param_list_length,
8986 uint8_t sense_len, uint32_t timeout)
8987 {
8988 struct scsi_write_buffer *scsi_cmd;
8989
8990 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8991 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8992 scsi_cmd->opcode = WRITE_BUFFER;
8993 scsi_cmd->byte2 = mode;
8994 scsi_cmd->buffer_id = buffer_id;
8995 scsi_ulto3b(offset, scsi_cmd->offset);
8996 scsi_ulto3b(param_list_length, scsi_cmd->length);
8997
8998 cam_fill_csio(csio,
8999 retries,
9000 cbfcnp,
9001 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
9002 tag_action,
9003 data_ptr,
9004 param_list_length,
9005 sense_len,
9006 sizeof(*scsi_cmd),
9007 timeout);
9008 }
9009
9010 void
scsi_start_stop(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int start,int load_eject,int immediate,uint8_t power_condition,uint8_t sense_len,uint32_t timeout)9011 scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries,
9012 void (*cbfcnp)(struct cam_periph *, union ccb *),
9013 uint8_t tag_action, int start, int load_eject,
9014 int immediate, uint8_t power_condition, uint8_t sense_len,
9015 uint32_t timeout)
9016 {
9017 struct scsi_start_stop_unit *scsi_cmd;
9018 int extra_flags = 0;
9019
9020 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
9021 bzero(scsi_cmd, sizeof(*scsi_cmd));
9022 scsi_cmd->opcode = START_STOP_UNIT;
9023 if (start != 0) {
9024 scsi_cmd->how |= SSS_START;
9025 /* it takes a lot of power to start a drive */
9026 extra_flags |= CAM_HIGH_POWER;
9027 }
9028 if (load_eject != 0)
9029 scsi_cmd->how |= SSS_LOEJ;
9030 scsi_cmd->how |= power_condition;
9031 if (immediate != 0)
9032 scsi_cmd->byte2 |= SSS_IMMED;
9033
9034 cam_fill_csio(csio,
9035 retries,
9036 cbfcnp,
9037 /*flags*/CAM_DIR_NONE | extra_flags,
9038 tag_action,
9039 /*data_ptr*/NULL,
9040 /*dxfer_len*/0,
9041 sense_len,
9042 sizeof(*scsi_cmd),
9043 timeout);
9044 }
9045
9046 void
scsi_read_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t service_action,uint32_t element,uint8_t elem_type,int logical_volume,int partition,uint32_t first_attribute,int cache,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9047 scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries,
9048 void (*cbfcnp)(struct cam_periph *, union ccb *),
9049 uint8_t tag_action, uint8_t service_action,
9050 uint32_t element, uint8_t elem_type, int logical_volume,
9051 int partition, uint32_t first_attribute, int cache,
9052 uint8_t *data_ptr, uint32_t length, int sense_len,
9053 uint32_t timeout)
9054 {
9055 struct scsi_read_attribute *scsi_cmd;
9056
9057 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
9058 bzero(scsi_cmd, sizeof(*scsi_cmd));
9059
9060 scsi_cmd->opcode = READ_ATTRIBUTE;
9061 scsi_cmd->service_action = service_action;
9062 scsi_ulto2b(element, scsi_cmd->element);
9063 scsi_cmd->elem_type = elem_type;
9064 scsi_cmd->logical_volume = logical_volume;
9065 scsi_cmd->partition = partition;
9066 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
9067 scsi_ulto4b(length, scsi_cmd->length);
9068 if (cache != 0)
9069 scsi_cmd->cache |= SRA_CACHE;
9070
9071 cam_fill_csio(csio,
9072 retries,
9073 cbfcnp,
9074 /*flags*/CAM_DIR_IN,
9075 tag_action,
9076 /*data_ptr*/data_ptr,
9077 /*dxfer_len*/length,
9078 sense_len,
9079 sizeof(*scsi_cmd),
9080 timeout);
9081 }
9082
9083 void
scsi_write_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t element,int logical_volume,int partition,int wtc,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9084 scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries,
9085 void (*cbfcnp)(struct cam_periph *, union ccb *),
9086 uint8_t tag_action, uint32_t element, int logical_volume,
9087 int partition, int wtc, uint8_t *data_ptr,
9088 uint32_t length, int sense_len, uint32_t timeout)
9089 {
9090 struct scsi_write_attribute *scsi_cmd;
9091
9092 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
9093 bzero(scsi_cmd, sizeof(*scsi_cmd));
9094
9095 scsi_cmd->opcode = WRITE_ATTRIBUTE;
9096 if (wtc != 0)
9097 scsi_cmd->byte2 = SWA_WTC;
9098 scsi_ulto3b(element, scsi_cmd->element);
9099 scsi_cmd->logical_volume = logical_volume;
9100 scsi_cmd->partition = partition;
9101 scsi_ulto4b(length, scsi_cmd->length);
9102
9103 cam_fill_csio(csio,
9104 retries,
9105 cbfcnp,
9106 /*flags*/CAM_DIR_OUT,
9107 tag_action,
9108 /*data_ptr*/data_ptr,
9109 /*dxfer_len*/length,
9110 sense_len,
9111 sizeof(*scsi_cmd),
9112 timeout);
9113 }
9114
9115 void
scsi_persistent_reserve_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9116 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
9117 void (*cbfcnp)(struct cam_periph *, union ccb *),
9118 uint8_t tag_action, int service_action,
9119 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9120 int timeout)
9121 {
9122 struct scsi_per_res_in *scsi_cmd;
9123
9124 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
9125 bzero(scsi_cmd, sizeof(*scsi_cmd));
9126
9127 scsi_cmd->opcode = PERSISTENT_RES_IN;
9128 scsi_cmd->action = service_action;
9129 scsi_ulto2b(dxfer_len, scsi_cmd->length);
9130
9131 cam_fill_csio(csio,
9132 retries,
9133 cbfcnp,
9134 /*flags*/CAM_DIR_IN,
9135 tag_action,
9136 data_ptr,
9137 dxfer_len,
9138 sense_len,
9139 sizeof(*scsi_cmd),
9140 timeout);
9141 }
9142
9143 void
scsi_persistent_reserve_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,int scope,int res_type,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9144 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
9145 void (*cbfcnp)(struct cam_periph *, union ccb *),
9146 uint8_t tag_action, int service_action,
9147 int scope, int res_type, uint8_t *data_ptr,
9148 uint32_t dxfer_len, int sense_len, int timeout)
9149 {
9150 struct scsi_per_res_out *scsi_cmd;
9151
9152 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
9153 bzero(scsi_cmd, sizeof(*scsi_cmd));
9154
9155 scsi_cmd->opcode = PERSISTENT_RES_OUT;
9156 scsi_cmd->action = service_action;
9157 scsi_cmd->scope_type = scope | res_type;
9158 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9159
9160 cam_fill_csio(csio,
9161 retries,
9162 cbfcnp,
9163 /*flags*/CAM_DIR_OUT,
9164 tag_action,
9165 /*data_ptr*/data_ptr,
9166 /*dxfer_len*/dxfer_len,
9167 sense_len,
9168 sizeof(*scsi_cmd),
9169 timeout);
9170 }
9171
9172 void
scsi_security_protocol_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9173 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
9174 void (*cbfcnp)(struct cam_periph *, union ccb *),
9175 uint8_t tag_action, uint32_t security_protocol,
9176 uint32_t security_protocol_specific, int byte4,
9177 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9178 int timeout)
9179 {
9180 struct scsi_security_protocol_in *scsi_cmd;
9181
9182 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
9183 bzero(scsi_cmd, sizeof(*scsi_cmd));
9184
9185 scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
9186
9187 scsi_cmd->security_protocol = security_protocol;
9188 scsi_ulto2b(security_protocol_specific,
9189 scsi_cmd->security_protocol_specific);
9190 scsi_cmd->byte4 = byte4;
9191 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9192
9193 cam_fill_csio(csio,
9194 retries,
9195 cbfcnp,
9196 /*flags*/CAM_DIR_IN,
9197 tag_action,
9198 data_ptr,
9199 dxfer_len,
9200 sense_len,
9201 sizeof(*scsi_cmd),
9202 timeout);
9203 }
9204
9205 void
scsi_security_protocol_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9206 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
9207 void (*cbfcnp)(struct cam_periph *, union ccb *),
9208 uint8_t tag_action, uint32_t security_protocol,
9209 uint32_t security_protocol_specific, int byte4,
9210 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9211 int timeout)
9212 {
9213 struct scsi_security_protocol_out *scsi_cmd;
9214
9215 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
9216 bzero(scsi_cmd, sizeof(*scsi_cmd));
9217
9218 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
9219
9220 scsi_cmd->security_protocol = security_protocol;
9221 scsi_ulto2b(security_protocol_specific,
9222 scsi_cmd->security_protocol_specific);
9223 scsi_cmd->byte4 = byte4;
9224 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9225
9226 cam_fill_csio(csio,
9227 retries,
9228 cbfcnp,
9229 /*flags*/CAM_DIR_OUT,
9230 tag_action,
9231 data_ptr,
9232 dxfer_len,
9233 sense_len,
9234 sizeof(*scsi_cmd),
9235 timeout);
9236 }
9237
9238 void
scsi_report_supported_opcodes(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int options,int req_opcode,int req_service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9239 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9240 void (*cbfcnp)(struct cam_periph *, union ccb *),
9241 uint8_t tag_action, int options, int req_opcode,
9242 int req_service_action, uint8_t *data_ptr,
9243 uint32_t dxfer_len, int sense_len, int timeout)
9244 {
9245 struct scsi_report_supported_opcodes *scsi_cmd;
9246
9247 scsi_cmd = (struct scsi_report_supported_opcodes *)
9248 &csio->cdb_io.cdb_bytes;
9249 bzero(scsi_cmd, sizeof(*scsi_cmd));
9250
9251 scsi_cmd->opcode = MAINTENANCE_IN;
9252 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9253 scsi_cmd->options = options;
9254 scsi_cmd->requested_opcode = req_opcode;
9255 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9256 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9257
9258 cam_fill_csio(csio,
9259 retries,
9260 cbfcnp,
9261 /*flags*/CAM_DIR_IN,
9262 tag_action,
9263 data_ptr,
9264 dxfer_len,
9265 sense_len,
9266 sizeof(*scsi_cmd),
9267 timeout);
9268 }
9269
9270 /*
9271 * Try make as good a match as possible with
9272 * available sub drivers
9273 */
9274 int
scsi_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9275 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9276 {
9277 struct scsi_inquiry_pattern *entry;
9278 struct scsi_inquiry_data *inq;
9279
9280 entry = (struct scsi_inquiry_pattern *)table_entry;
9281 inq = (struct scsi_inquiry_data *)inqbuffer;
9282
9283 if (((SID_TYPE(inq) == entry->type)
9284 || (entry->type == T_ANY))
9285 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9286 : entry->media_type & SIP_MEDIA_FIXED)
9287 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9288 && (cam_strmatch(inq->product, entry->product,
9289 sizeof(inq->product)) == 0)
9290 && (cam_strmatch(inq->revision, entry->revision,
9291 sizeof(inq->revision)) == 0)) {
9292 return (0);
9293 }
9294 return (-1);
9295 }
9296
9297 /*
9298 * Try make as good a match as possible with
9299 * available sub drivers
9300 */
9301 int
scsi_static_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9302 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9303 {
9304 struct scsi_static_inquiry_pattern *entry;
9305 struct scsi_inquiry_data *inq;
9306
9307 entry = (struct scsi_static_inquiry_pattern *)table_entry;
9308 inq = (struct scsi_inquiry_data *)inqbuffer;
9309
9310 if (((SID_TYPE(inq) == entry->type)
9311 || (entry->type == T_ANY))
9312 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9313 : entry->media_type & SIP_MEDIA_FIXED)
9314 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9315 && (cam_strmatch(inq->product, entry->product,
9316 sizeof(inq->product)) == 0)
9317 && (cam_strmatch(inq->revision, entry->revision,
9318 sizeof(inq->revision)) == 0)) {
9319 return (0);
9320 }
9321 return (-1);
9322 }
9323
9324 /**
9325 * Compare two buffers of vpd device descriptors for a match.
9326 *
9327 * \param lhs Pointer to first buffer of descriptors to compare.
9328 * \param lhs_len The length of the first buffer.
9329 * \param rhs Pointer to second buffer of descriptors to compare.
9330 * \param rhs_len The length of the second buffer.
9331 *
9332 * \return 0 on a match, -1 otherwise.
9333 *
9334 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching
9335 * against each element in rhs until all data are exhausted or we have found
9336 * a match.
9337 */
9338 int
scsi_devid_match(uint8_t * lhs,size_t lhs_len,uint8_t * rhs,size_t rhs_len)9339 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9340 {
9341 struct scsi_vpd_id_descriptor *lhs_id;
9342 struct scsi_vpd_id_descriptor *lhs_last;
9343 struct scsi_vpd_id_descriptor *rhs_last;
9344 uint8_t *lhs_end;
9345 uint8_t *rhs_end;
9346
9347 lhs_end = lhs + lhs_len;
9348 rhs_end = rhs + rhs_len;
9349
9350 /*
9351 * rhs_last and lhs_last are the last possible position of a valid
9352 * descriptor assuming it had a zero length identifier. We use
9353 * these variables to insure we can safely dereference the length
9354 * field in our loop termination tests.
9355 */
9356 lhs_last = (struct scsi_vpd_id_descriptor *)
9357 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9358 rhs_last = (struct scsi_vpd_id_descriptor *)
9359 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9360
9361 lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9362 while (lhs_id <= lhs_last
9363 && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9364 struct scsi_vpd_id_descriptor *rhs_id;
9365
9366 rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9367 while (rhs_id <= rhs_last
9368 && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9369 if ((rhs_id->id_type &
9370 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9371 (lhs_id->id_type &
9372 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9373 && rhs_id->length == lhs_id->length
9374 && memcmp(rhs_id->identifier, lhs_id->identifier,
9375 rhs_id->length) == 0)
9376 return (0);
9377
9378 rhs_id = (struct scsi_vpd_id_descriptor *)
9379 (rhs_id->identifier + rhs_id->length);
9380 }
9381 lhs_id = (struct scsi_vpd_id_descriptor *)
9382 (lhs_id->identifier + lhs_id->length);
9383 }
9384 return (-1);
9385 }
9386
9387 #ifdef _KERNEL
9388 int
scsi_vpd_supported_page(struct cam_periph * periph,uint8_t page_id)9389 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9390 {
9391 struct cam_ed *device;
9392 struct scsi_vpd_supported_pages *vpds;
9393 int i, num_pages;
9394
9395 device = periph->path->device;
9396 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9397
9398 if (vpds != NULL) {
9399 num_pages = device->supported_vpds_len -
9400 SVPD_SUPPORTED_PAGES_HDR_LEN;
9401 for (i = 0; i < num_pages; i++) {
9402 if (vpds->page_list[i] == page_id)
9403 return (1);
9404 }
9405 }
9406
9407 return (0);
9408 }
9409
9410 static void
decode_sks(struct sbuf * sb,int sk,uint8_t * sks)9411 decode_sks(struct sbuf *sb, int sk, uint8_t *sks)
9412 {
9413 /*
9414 * The format of the sense key specific info varies based on key types.
9415 * The valid bit should be checked by the caller for fixed formats and
9416 * is always one for variable formats since it's mere presence signals
9417 * validity. SPC7 4.4.2.4.1 and 4.4.3.
9418 */
9419 switch (sk) {
9420 case SSD_KEY_ILLEGAL_REQUEST:
9421 {
9422 const char *type;
9423
9424 type = sks[0] & SSD_FIELDPTR_CMD ? "CDB" : "buffer";
9425 sbuf_printf(sb, "error_in=\"%s\" ", type);
9426 if (sks[0] & SSD_BITPTR_VALID) {
9427 sbuf_printf(sb, "bit_ptr=%d ", sks[0] & SSD_BITPTR_VALUE);
9428 }
9429 sbuf_printf(sb, "byte=%d ", scsi_2btoul(sks + 1));
9430 break;
9431 }
9432 case SSD_KEY_HARDWARE_ERROR:
9433 case SSD_KEY_MEDIUM_ERROR:
9434 case SSD_KEY_RECOVERED_ERROR:
9435 sbuf_printf(sb, "retry_count=%d ", scsi_2btoul(sks + 1));
9436 break;
9437 case SSD_KEY_NO_SENSE:
9438 case SSD_KEY_NOT_READY:
9439 sbuf_printf(sb, "progress=%d ", scsi_2btoul(sks + 1));
9440 break;
9441 case SSD_KEY_COPY_ABORTED:
9442 {
9443 const char *type;
9444
9445 /* Note: segment number in cmd_info if SD=1 */
9446 type = sks[0] & SSD_SD_VALID ? "rel" : "abs";
9447 sbuf_printf(sb, "segment=\"%s\" ", type);
9448 if (sks[0] & SSD_BITPTR_VALID) {
9449 sbuf_printf(sb, "bit_ptr=%d ", sks[0] & SSD_BITPTR_VALUE);
9450 }
9451 sbuf_printf(sb, "byte=%d ", scsi_2btoul(sks + 1));
9452 break;
9453 }
9454 case SSD_KEY_UNIT_ATTENTION:
9455 sbuf_printf(sb, "overflow=%d ", sks[0] & 0x1);
9456 break;
9457 default:
9458 /*
9459 * NO DATA - SKSV should be zero, but no
9460 * reported data on 1 either.
9461 */
9462 break;
9463 }
9464 }
9465
9466 /*
9467 * Decode the sense buffer we get back from the drive. See SPC7 4.4
9468 * for details.
9469 */
9470 void
scsi_format_sense_devd(struct ccb_scsiio * csio,struct sbuf * sb)9471 scsi_format_sense_devd(struct ccb_scsiio *csio, struct sbuf *sb)
9472 {
9473 int serr, sk, asc, ascq, slen;
9474 struct scsi_sense_data *sense_data;
9475 uint8_t *walker, *ep;
9476 union ccb *ccb = (union ccb *)csio;
9477
9478 sbuf_printf(sb, "scsi_status=%d ", csio->scsi_status);
9479 if (scsi_extract_sense_ccb(ccb, &serr, &sk, &asc, &ascq))
9480 sbuf_printf(sb, "scsi_sense=\"%02x %02x %02x %02x\" ",
9481 serr, sk, asc, ascq);
9482 if (csio->ccb_h.flags & CAM_SENSE_PTR)
9483 bcopy((struct scsi_sense_data **)&csio->sense_data,
9484 &sense_data, sizeof(struct scsi_sense_data *));
9485 else
9486 sense_data = &csio->sense_data;
9487 /*
9488 * Decode the rest of the sense buffer
9489 */
9490 slen = csio->sense_len - csio->sense_resid;
9491 walker = (uint8_t *)sense_data;
9492 ep = walker + slen;
9493 switch (*walker) {
9494 case SSD_DESC_CURRENT_ERROR:
9495 case SSD_DESC_DEFERRED_ERROR:
9496 {
9497 struct scsi_sense_data_desc *sdesc = (struct scsi_sense_data_desc *)walker;
9498
9499 walker = sdesc->sense_desc;
9500 if (walker + sdesc->extra_len > ep)
9501 return; /* more data than buffer, just punt */
9502 ep = walker + sdesc->extra_len;
9503 while (walker < ep) {
9504 struct scsi_sense_desc_header *hdr =
9505 (struct scsi_sense_desc_header *)walker;
9506
9507 switch (hdr->desc_type) {
9508 case SSD_DESC_INFO:
9509 {
9510 struct scsi_sense_info *info;
9511
9512 info = (struct scsi_sense_info *)hdr;
9513 if ((info->byte2 & SSD_INFO_VALID) == 0)
9514 break;
9515 sbuf_printf(sb, "info=0x%jx ",
9516 scsi_8btou64(info->info));
9517 break;
9518 }
9519 case SSD_DESC_COMMAND:
9520 {
9521 struct scsi_sense_command *command;
9522
9523 command = (struct scsi_sense_command *)hdr;
9524 sbuf_printf(sb, "cmd_info=0x%jx ",
9525 scsi_8btou64(command->command_info));
9526 break;
9527 }
9528 case SSD_DESC_SKS:
9529 /* len sanity */
9530 decode_sks(sb, sk, walker + 2);
9531 break;
9532 case SSD_DESC_FRU:
9533 {
9534 struct scsi_sense_fru *fru;
9535
9536 fru = (struct scsi_sense_fru *)hdr;
9537 sbuf_printf(sb, "fru=%u ", fru->fru);
9538 break;
9539 }
9540 case SSD_DESC_ATA:
9541 {
9542 struct scsi_sense_ata_ret_desc *res;
9543 uint16_t count;
9544 uint64_t lba;
9545
9546 res = (struct scsi_sense_ata_ret_desc *)hdr;
9547 sbuf_printf(sb, "ata_status=0x%02x ata_error=0x%02x ",
9548 res->status, res->error);
9549 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
9550 count = ((uint16_t)res->count_15_8 << 8) | res->count_7_0;
9551 lba = ((uint64_t)res->lba_47_40 << 40) |
9552 ((uint64_t)res->lba_39_32 << 32) |
9553 ((uint64_t)res->lba_31_24 << 24) |
9554 ((uint64_t)res->lba_23_16 << 16) |
9555 ((uint64_t)res->lba_15_8 << 8) |
9556 res->lba_7_0;
9557 } else {
9558 count = res->count_7_0;
9559 lba = ((uint64_t)res->lba_23_16 << 16) |
9560 ((uint64_t)res->lba_15_8 << 8) |
9561 res->lba_7_0;
9562 }
9563 sbuf_printf(sb, "count=%d lba=0x%jx ", count, (uintmax_t)lba);
9564 break;
9565 }
9566 case SSD_DESC_DABD:
9567 {
9568 struct scsi_sense_direct_access_block_device *dabd;
9569
9570 dabd = (struct scsi_sense_direct_access_block_device *)hdr;
9571
9572 if (dabd->sks_byte & SSD_DESC_DABD_SKS_VALID)
9573 decode_sks(sb, sk, dabd->data);
9574 sbuf_printf(sb, "fru=%u ", dabd->fru);
9575 if (dabd->byte2 & SSD_DESC_DABD_VALID) {
9576 sbuf_printf(sb, "info=0x%jx ",
9577 scsi_8btou64(dabd->info));
9578 sbuf_printf(sb, "cmd_info=0x%jx ",
9579 scsi_8btou64(dabd->command_info));
9580 }
9581 }
9582 default:
9583 {
9584 uint8_t *cp;
9585
9586 if (hdr->desc_type >= SSD_DESC_VENDOR_MIN && hdr->desc_type <= SSD_DESC_VENDOR_MAX)
9587 sbuf_printf(sb, "ven%02x=\"", hdr->desc_type);
9588 else
9589 sbuf_printf(sb, "desc%02x=\"", hdr->desc_type);
9590 cp = (uint8_t *)&hdr[1];
9591 for (int i = 0; i < hdr->length; i++, cp++)
9592 sbuf_printf(sb, "%02x ", *cp);
9593 sbuf_printf(sb, "\" ");
9594 break;
9595 }
9596 } /* switch */
9597
9598 walker += sizeof(*hdr) + hdr->length;
9599 }
9600 }
9601 case SSD_CURRENT_ERROR:
9602 case SSD_DEFERRED_ERROR:
9603 {
9604 struct scsi_sense_data_fixed *sfixed = (struct scsi_sense_data_fixed *)walker;
9605
9606 if (sfixed->error_code & SSD_ERRCODE_VALID) {
9607 uint32_t val = scsi_4btoul(sfixed->info);
9608
9609 sbuf_printf(sb, "info=0x%x ", val);
9610 }
9611 if (SSD_FIXED_IS_PRESENT(sfixed, slen, cmd_spec_info) &&
9612 SSD_FIXED_IS_FILLED(sfixed, cmd_spec_info)) {
9613 uint32_t val = scsi_4btoul(sfixed->cmd_spec_info);
9614
9615 sbuf_printf(sb, "cmd_info=0x%x ", val);
9616 }
9617 if (SSD_FIXED_IS_PRESENT(sfixed, slen, fru) &&
9618 SSD_FIXED_IS_FILLED(sfixed, fru)) {
9619
9620 sbuf_printf(sb, "fru=0x%x ", sfixed->fru);
9621 }
9622 if (SSD_FIXED_IS_PRESENT(sfixed, slen, sense_key_spec) &&
9623 SSD_FIXED_IS_FILLED(sfixed, sense_key_spec) &&
9624 (sfixed->sense_key_spec[0] & SSD_SCS_VALID) != 0) {
9625 decode_sks(sb, sk, sfixed->sense_key_spec);
9626 }
9627 /* Additional bytes not reported -- vendor specific */
9628 /* Report the bytes present ? but can't use macros since it's at most 14 bytes */
9629 }
9630 } /* switch */
9631 }
9632
9633 static void
init_scsi_delay(void * dummy __unused)9634 init_scsi_delay(void *dummy __unused)
9635 {
9636 int delay;
9637
9638 delay = SCSI_DELAY;
9639 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9640
9641 if (set_scsi_delay(delay) != 0) {
9642 printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9643 set_scsi_delay(SCSI_DELAY);
9644 }
9645 }
9646 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9647
9648 static int
sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)9649 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9650 {
9651 int error, delay;
9652
9653 delay = scsi_delay;
9654 error = sysctl_handle_int(oidp, &delay, 0, req);
9655 if (error != 0 || req->newptr == NULL)
9656 return (error);
9657 return (set_scsi_delay(delay));
9658 }
9659 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
9660 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
9661 0, 0, sysctl_scsi_delay, "I",
9662 "Delay to allow devices to settle after a SCSI bus reset (ms)");
9663
9664 static int
set_scsi_delay(int delay)9665 set_scsi_delay(int delay)
9666 {
9667 /*
9668 * If someone sets this to 0, we assume that they want the
9669 * minimum allowable bus settle delay.
9670 */
9671 if (delay == 0) {
9672 printf("cam: using minimum scsi_delay (%dms)\n",
9673 SCSI_MIN_DELAY);
9674 delay = SCSI_MIN_DELAY;
9675 }
9676 if (delay < SCSI_MIN_DELAY)
9677 return (EINVAL);
9678 scsi_delay = delay;
9679 return (0);
9680 }
9681 #endif /* _KERNEL */
9682