1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2016 Gary Mills
26 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28 * Copyright 2019 Joyent, Inc.
29 */
30
31 #include <sys/dsl_scan.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_prop.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dnode.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/arc_impl.h>
42 #include <sys/zap.h>
43 #include <sys/zio.h>
44 #include <sys/zfs_context.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/zfs_znode.h>
47 #include <sys/spa_impl.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/zil_impl.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/brt.h>
52 #include <sys/ddt.h>
53 #include <sys/sa.h>
54 #include <sys/sa_impl.h>
55 #include <sys/zfeature.h>
56 #include <sys/abd.h>
57 #include <sys/range_tree.h>
58 #include <sys/dbuf.h>
59 #ifdef _KERNEL
60 #include <sys/zfs_vfsops.h>
61 #endif
62
63 /*
64 * Grand theory statement on scan queue sorting
65 *
66 * Scanning is implemented by recursively traversing all indirection levels
67 * in an object and reading all blocks referenced from said objects. This
68 * results in us approximately traversing the object from lowest logical
69 * offset to the highest. For best performance, we would want the logical
70 * blocks to be physically contiguous. However, this is frequently not the
71 * case with pools given the allocation patterns of copy-on-write filesystems.
72 * So instead, we put the I/Os into a reordering queue and issue them in a
73 * way that will most benefit physical disks (LBA-order).
74 *
75 * Queue management:
76 *
77 * Ideally, we would want to scan all metadata and queue up all block I/O
78 * prior to starting to issue it, because that allows us to do an optimal
79 * sorting job. This can however consume large amounts of memory. Therefore
80 * we continuously monitor the size of the queues and constrain them to 5%
81 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
82 * limit, we clear out a few of the largest extents at the head of the queues
83 * to make room for more scanning. Hopefully, these extents will be fairly
84 * large and contiguous, allowing us to approach sequential I/O throughput
85 * even without a fully sorted tree.
86 *
87 * Metadata scanning takes place in dsl_scan_visit(), which is called from
88 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
89 * metadata on the pool, or we need to make room in memory because our
90 * queues are too large, dsl_scan_visit() is postponed and
91 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
92 * that metadata scanning and queued I/O issuing are mutually exclusive. This
93 * allows us to provide maximum sequential I/O throughput for the majority of
94 * I/O's issued since sequential I/O performance is significantly negatively
95 * impacted if it is interleaved with random I/O.
96 *
97 * Implementation Notes
98 *
99 * One side effect of the queued scanning algorithm is that the scanning code
100 * needs to be notified whenever a block is freed. This is needed to allow
101 * the scanning code to remove these I/Os from the issuing queue. Additionally,
102 * we do not attempt to queue gang blocks to be issued sequentially since this
103 * is very hard to do and would have an extremely limited performance benefit.
104 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
105 * algorithm.
106 *
107 * Backwards compatibility
108 *
109 * This new algorithm is backwards compatible with the legacy on-disk data
110 * structures (and therefore does not require a new feature flag).
111 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
112 * will stop scanning metadata (in logical order) and wait for all outstanding
113 * sorted I/O to complete. Once this is done, we write out a checkpoint
114 * bookmark, indicating that we have scanned everything logically before it.
115 * If the pool is imported on a machine without the new sorting algorithm,
116 * the scan simply resumes from the last checkpoint using the legacy algorithm.
117 */
118
119 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
120 const zbookmark_phys_t *);
121
122 static scan_cb_t dsl_scan_scrub_cb;
123
124 static int scan_ds_queue_compare(const void *a, const void *b);
125 static int scan_prefetch_queue_compare(const void *a, const void *b);
126 static void scan_ds_queue_clear(dsl_scan_t *scn);
127 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
128 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
129 uint64_t *txg);
130 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
131 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
132 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
133 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
134 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135
136 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
137 static int zfs_scan_blkstats = 0;
138
139 /*
140 * 'zpool status' uses bytes processed per pass to report throughput and
141 * estimate time remaining. We define a pass to start when the scanning
142 * phase completes for a sequential resilver. Optionally, this value
143 * may be used to reset the pass statistics every N txgs to provide an
144 * estimated completion time based on currently observed performance.
145 */
146 static uint_t zfs_scan_report_txgs = 0;
147
148 /*
149 * By default zfs will check to ensure it is not over the hard memory
150 * limit before each txg. If finer-grained control of this is needed
151 * this value can be set to 1 to enable checking before scanning each
152 * block.
153 */
154 static int zfs_scan_strict_mem_lim = B_FALSE;
155
156 /*
157 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
158 * to strike a balance here between keeping the vdev queues full of I/Os
159 * at all times and not overflowing the queues to cause long latency,
160 * which would cause long txg sync times. No matter what, we will not
161 * overload the drives with I/O, since that is protected by
162 * zfs_vdev_scrub_max_active.
163 */
164 static uint64_t zfs_scan_vdev_limit = 16 << 20;
165
166 static uint_t zfs_scan_issue_strategy = 0;
167
168 /* don't queue & sort zios, go direct */
169 static int zfs_scan_legacy = B_FALSE;
170 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
171
172 /*
173 * fill_weight is non-tunable at runtime, so we copy it at module init from
174 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
175 * break queue sorting.
176 */
177 static uint_t zfs_scan_fill_weight = 3;
178 static uint64_t fill_weight;
179
180 /* See dsl_scan_should_clear() for details on the memory limit tunables */
181 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
182 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
183
184
185 /* fraction of physmem */
186 static uint_t zfs_scan_mem_lim_fact = 20;
187
188 /* fraction of mem lim above */
189 static uint_t zfs_scan_mem_lim_soft_fact = 20;
190
191 /* minimum milliseconds to scrub per txg */
192 static uint_t zfs_scrub_min_time_ms = 1000;
193
194 /* minimum milliseconds to obsolete per txg */
195 static uint_t zfs_obsolete_min_time_ms = 500;
196
197 /* minimum milliseconds to free per txg */
198 static uint_t zfs_free_min_time_ms = 1000;
199
200 /* minimum milliseconds to resilver per txg */
201 static uint_t zfs_resilver_min_time_ms = 3000;
202
203 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
204 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
205 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
206 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
207 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
208 /* max number of blocks to free in a single TXG */
209 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
210 /* max number of dedup blocks to free in a single TXG */
211 static uint64_t zfs_max_async_dedup_frees = 100000;
212
213 /* set to disable resilver deferring */
214 static int zfs_resilver_disable_defer = B_FALSE;
215
216 /* Don't defer a resilver if the one in progress only got this far: */
217 static uint_t zfs_resilver_defer_percent = 10;
218
219 /*
220 * We wait a few txgs after importing a pool to begin scanning so that
221 * the import / mounting code isn't held up by scrub / resilver IO.
222 * Unfortunately, it is a bit difficult to determine exactly how long
223 * this will take since userspace will trigger fs mounts asynchronously
224 * and the kernel will create zvol minors asynchronously. As a result,
225 * the value provided here is a bit arbitrary, but represents a
226 * reasonable estimate of how many txgs it will take to finish fully
227 * importing a pool
228 */
229 #define SCAN_IMPORT_WAIT_TXGS 5
230
231 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
232 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
233 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
234
235 #define DSL_SCAN_IS_SCRUB(scn) \
236 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
237
238 #define DSL_SCAN_IS_RESILVER(scn) \
239 ((scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
240
241 /*
242 * Enable/disable the processing of the free_bpobj object.
243 */
244 static int zfs_free_bpobj_enabled = 1;
245
246 /* Error blocks to be scrubbed in one txg. */
247 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
248
249 /* the order has to match pool_scan_type */
250 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
251 NULL,
252 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
253 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
254 };
255
256 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
257 typedef struct {
258 uint64_t sds_dsobj;
259 uint64_t sds_txg;
260 avl_node_t sds_node;
261 } scan_ds_t;
262
263 /*
264 * This controls what conditions are placed on dsl_scan_sync_state():
265 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
266 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
267 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
268 * write out the scn_phys_cached version.
269 * See dsl_scan_sync_state for details.
270 */
271 typedef enum {
272 SYNC_OPTIONAL,
273 SYNC_MANDATORY,
274 SYNC_CACHED
275 } state_sync_type_t;
276
277 /*
278 * This struct represents the minimum information needed to reconstruct a
279 * zio for sequential scanning. This is useful because many of these will
280 * accumulate in the sequential IO queues before being issued, so saving
281 * memory matters here.
282 */
283 typedef struct scan_io {
284 /* fields from blkptr_t */
285 uint64_t sio_blk_prop;
286 uint64_t sio_phys_birth;
287 uint64_t sio_birth;
288 zio_cksum_t sio_cksum;
289 uint32_t sio_nr_dvas;
290
291 /* fields from zio_t */
292 uint32_t sio_flags;
293 zbookmark_phys_t sio_zb;
294
295 /* members for queue sorting */
296 union {
297 avl_node_t sio_addr_node; /* link into issuing queue */
298 list_node_t sio_list_node; /* link for issuing to disk */
299 } sio_nodes;
300
301 /*
302 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
303 * depending on how many were in the original bp. Only the
304 * first DVA is really used for sorting and issuing purposes.
305 * The other DVAs (if provided) simply exist so that the zio
306 * layer can find additional copies to repair from in the
307 * event of an error. This array must go at the end of the
308 * struct to allow this for the variable number of elements.
309 */
310 dva_t sio_dva[];
311 } scan_io_t;
312
313 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
314 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
315 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
316 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
317 #define SIO_GET_END_OFFSET(sio) \
318 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
319 #define SIO_GET_MUSED(sio) \
320 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
321
322 struct dsl_scan_io_queue {
323 dsl_scan_t *q_scn; /* associated dsl_scan_t */
324 vdev_t *q_vd; /* top-level vdev that this queue represents */
325 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
326
327 /* trees used for sorting I/Os and extents of I/Os */
328 zfs_range_tree_t *q_exts_by_addr;
329 zfs_btree_t q_exts_by_size;
330 avl_tree_t q_sios_by_addr;
331 uint64_t q_sio_memused;
332 uint64_t q_last_ext_addr;
333
334 /* members for zio rate limiting */
335 uint64_t q_maxinflight_bytes;
336 uint64_t q_inflight_bytes;
337 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
338
339 /* per txg statistics */
340 uint64_t q_total_seg_size_this_txg;
341 uint64_t q_segs_this_txg;
342 uint64_t q_total_zio_size_this_txg;
343 uint64_t q_zios_this_txg;
344 };
345
346 /* private data for dsl_scan_prefetch_cb() */
347 typedef struct scan_prefetch_ctx {
348 zfs_refcount_t spc_refcnt; /* refcount for memory management */
349 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
350 boolean_t spc_root; /* is this prefetch for an objset? */
351 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
352 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
353 } scan_prefetch_ctx_t;
354
355 /* private data for dsl_scan_prefetch() */
356 typedef struct scan_prefetch_issue_ctx {
357 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
358 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
359 blkptr_t spic_bp; /* bp to prefetch */
360 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
361 } scan_prefetch_issue_ctx_t;
362
363 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
364 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
365 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
366 scan_io_t *sio);
367
368 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
369 static void scan_io_queues_destroy(dsl_scan_t *scn);
370
371 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
372
373 /* sio->sio_nr_dvas must be set so we know which cache to free from */
374 static void
sio_free(scan_io_t * sio)375 sio_free(scan_io_t *sio)
376 {
377 ASSERT3U(sio->sio_nr_dvas, >, 0);
378 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
379
380 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
381 }
382
383 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
384 static scan_io_t *
sio_alloc(unsigned short nr_dvas)385 sio_alloc(unsigned short nr_dvas)
386 {
387 ASSERT3U(nr_dvas, >, 0);
388 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
389
390 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
391 }
392
393 void
scan_init(void)394 scan_init(void)
395 {
396 /*
397 * This is used in ext_size_compare() to weight segments
398 * based on how sparse they are. This cannot be changed
399 * mid-scan and the tree comparison functions don't currently
400 * have a mechanism for passing additional context to the
401 * compare functions. Thus we store this value globally and
402 * we only allow it to be set at module initialization time
403 */
404 fill_weight = zfs_scan_fill_weight;
405
406 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
407 char name[36];
408
409 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
410 sio_cache[i] = kmem_cache_create(name,
411 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
412 0, NULL, NULL, NULL, NULL, NULL, 0);
413 }
414 }
415
416 void
scan_fini(void)417 scan_fini(void)
418 {
419 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
420 kmem_cache_destroy(sio_cache[i]);
421 }
422 }
423
424 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)425 dsl_scan_is_running(const dsl_scan_t *scn)
426 {
427 return (scn->scn_phys.scn_state == DSS_SCANNING);
428 }
429
430 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)431 dsl_scan_resilvering(dsl_pool_t *dp)
432 {
433 return (dsl_scan_is_running(dp->dp_scan) &&
434 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
435 }
436
437 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)438 sio2bp(const scan_io_t *sio, blkptr_t *bp)
439 {
440 memset(bp, 0, sizeof (*bp));
441 bp->blk_prop = sio->sio_blk_prop;
442 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
443 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
444 bp->blk_fill = 1; /* we always only work with data pointers */
445 bp->blk_cksum = sio->sio_cksum;
446
447 ASSERT3U(sio->sio_nr_dvas, >, 0);
448 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
449
450 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
451 }
452
453 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)454 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
455 {
456 sio->sio_blk_prop = bp->blk_prop;
457 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
458 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
459 sio->sio_cksum = bp->blk_cksum;
460 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
461
462 /*
463 * Copy the DVAs to the sio. We need all copies of the block so
464 * that the self healing code can use the alternate copies if the
465 * first is corrupted. We want the DVA at index dva_i to be first
466 * in the sio since this is the primary one that we want to issue.
467 */
468 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
469 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
470 }
471 }
472
473 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)474 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
475 {
476 int err;
477 dsl_scan_t *scn;
478 spa_t *spa = dp->dp_spa;
479 uint64_t f;
480
481 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
482 scn->scn_dp = dp;
483
484 /*
485 * It's possible that we're resuming a scan after a reboot so
486 * make sure that the scan_async_destroying flag is initialized
487 * appropriately.
488 */
489 ASSERT(!scn->scn_async_destroying);
490 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
491 SPA_FEATURE_ASYNC_DESTROY);
492
493 /*
494 * Calculate the max number of in-flight bytes for pool-wide
495 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
496 * Limits for the issuing phase are done per top-level vdev and
497 * are handled separately.
498 */
499 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
500 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
501
502 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
503 offsetof(scan_ds_t, sds_node));
504 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
505 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
506 sizeof (scan_prefetch_issue_ctx_t),
507 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
508
509 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
510 "scrub_func", sizeof (uint64_t), 1, &f);
511 if (err == 0) {
512 /*
513 * There was an old-style scrub in progress. Restart a
514 * new-style scrub from the beginning.
515 */
516 scn->scn_restart_txg = txg;
517 zfs_dbgmsg("old-style scrub was in progress for %s; "
518 "restarting new-style scrub in txg %llu",
519 spa->spa_name,
520 (longlong_t)scn->scn_restart_txg);
521
522 /*
523 * Load the queue obj from the old location so that it
524 * can be freed by dsl_scan_done().
525 */
526 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 "scrub_queue", sizeof (uint64_t), 1,
528 &scn->scn_phys.scn_queue_obj);
529 } else {
530 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
531 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
532 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
533
534 if (err != 0 && err != ENOENT)
535 return (err);
536
537 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
538 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
539 &scn->scn_phys);
540
541 /*
542 * Detect if the pool contains the signature of #2094. If it
543 * does properly update the scn->scn_phys structure and notify
544 * the administrator by setting an errata for the pool.
545 */
546 if (err == EOVERFLOW) {
547 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
548 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
549 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
550 (23 * sizeof (uint64_t)));
551
552 err = zap_lookup(dp->dp_meta_objset,
553 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
554 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
555 if (err == 0) {
556 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
557
558 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
559 scn->scn_async_destroying) {
560 spa->spa_errata =
561 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
562 return (EOVERFLOW);
563 }
564
565 memcpy(&scn->scn_phys, zaptmp,
566 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
567 scn->scn_phys.scn_flags = overflow;
568
569 /* Required scrub already in progress. */
570 if (scn->scn_phys.scn_state == DSS_FINISHED ||
571 scn->scn_phys.scn_state == DSS_CANCELED)
572 spa->spa_errata =
573 ZPOOL_ERRATA_ZOL_2094_SCRUB;
574 }
575 }
576
577 if (err == ENOENT)
578 return (0);
579 else if (err)
580 return (err);
581
582 /*
583 * We might be restarting after a reboot, so jump the issued
584 * counter to how far we've scanned. We know we're consistent
585 * up to here.
586 */
587 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
588 scn->scn_phys.scn_skipped;
589
590 if (dsl_scan_is_running(scn) &&
591 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
592 /*
593 * A new-type scrub was in progress on an old
594 * pool, and the pool was accessed by old
595 * software. Restart from the beginning, since
596 * the old software may have changed the pool in
597 * the meantime.
598 */
599 scn->scn_restart_txg = txg;
600 zfs_dbgmsg("new-style scrub for %s was modified "
601 "by old software; restarting in txg %llu",
602 spa->spa_name,
603 (longlong_t)scn->scn_restart_txg);
604 } else if (dsl_scan_resilvering(dp)) {
605 /*
606 * If a resilver is in progress and there are already
607 * errors, restart it instead of finishing this scan and
608 * then restarting it. If there haven't been any errors
609 * then remember that the incore DTL is valid.
610 */
611 if (scn->scn_phys.scn_errors > 0) {
612 scn->scn_restart_txg = txg;
613 zfs_dbgmsg("resilver can't excise DTL_MISSING "
614 "when finished; restarting on %s in txg "
615 "%llu",
616 spa->spa_name,
617 (u_longlong_t)scn->scn_restart_txg);
618 } else {
619 /* it's safe to excise DTL when finished */
620 spa->spa_scrub_started = B_TRUE;
621 }
622 }
623 }
624
625 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
626
627 /* reload the queue into the in-core state */
628 if (scn->scn_phys.scn_queue_obj != 0) {
629 zap_cursor_t zc;
630 zap_attribute_t *za = zap_attribute_alloc();
631
632 for (zap_cursor_init(&zc, dp->dp_meta_objset,
633 scn->scn_phys.scn_queue_obj);
634 zap_cursor_retrieve(&zc, za) == 0;
635 (void) zap_cursor_advance(&zc)) {
636 scan_ds_queue_insert(scn,
637 zfs_strtonum(za->za_name, NULL),
638 za->za_first_integer);
639 }
640 zap_cursor_fini(&zc);
641 zap_attribute_free(za);
642 }
643
644 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
645
646 spa_scan_stat_init(spa);
647 vdev_scan_stat_init(spa->spa_root_vdev);
648
649 return (0);
650 }
651
652 void
dsl_scan_fini(dsl_pool_t * dp)653 dsl_scan_fini(dsl_pool_t *dp)
654 {
655 if (dp->dp_scan != NULL) {
656 dsl_scan_t *scn = dp->dp_scan;
657
658 if (scn->scn_taskq != NULL)
659 taskq_destroy(scn->scn_taskq);
660
661 scan_ds_queue_clear(scn);
662 avl_destroy(&scn->scn_queue);
663 mutex_destroy(&scn->scn_queue_lock);
664 scan_ds_prefetch_queue_clear(scn);
665 avl_destroy(&scn->scn_prefetch_queue);
666
667 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
668 dp->dp_scan = NULL;
669 }
670 }
671
672 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)673 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
674 {
675 return (scn->scn_restart_txg != 0 &&
676 scn->scn_restart_txg <= tx->tx_txg);
677 }
678
679 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)680 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
681 {
682 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
683 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
684 }
685
686 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)687 dsl_scan_scrubbing(const dsl_pool_t *dp)
688 {
689 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
690
691 return (scn_phys->scn_state == DSS_SCANNING &&
692 scn_phys->scn_func == POOL_SCAN_SCRUB);
693 }
694
695 boolean_t
dsl_errorscrubbing(const dsl_pool_t * dp)696 dsl_errorscrubbing(const dsl_pool_t *dp)
697 {
698 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
699
700 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
701 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
702 }
703
704 boolean_t
dsl_errorscrub_is_paused(const dsl_scan_t * scn)705 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
706 {
707 return (dsl_errorscrubbing(scn->scn_dp) &&
708 scn->errorscrub_phys.dep_paused_flags);
709 }
710
711 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)712 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
713 {
714 return (dsl_scan_scrubbing(scn->scn_dp) &&
715 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
716 }
717
718 static void
dsl_errorscrub_sync_state(dsl_scan_t * scn,dmu_tx_t * tx)719 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
720 {
721 scn->errorscrub_phys.dep_cursor =
722 zap_cursor_serialize(&scn->errorscrub_cursor);
723
724 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
725 DMU_POOL_DIRECTORY_OBJECT,
726 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
727 &scn->errorscrub_phys, tx));
728 }
729
730 static void
dsl_errorscrub_setup_sync(void * arg,dmu_tx_t * tx)731 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
732 {
733 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
734 pool_scan_func_t *funcp = arg;
735 dsl_pool_t *dp = scn->scn_dp;
736 spa_t *spa = dp->dp_spa;
737
738 ASSERT(!dsl_scan_is_running(scn));
739 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
740 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
741
742 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
743 scn->errorscrub_phys.dep_func = *funcp;
744 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
745 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
746 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
747 scn->errorscrub_phys.dep_examined = 0;
748 scn->errorscrub_phys.dep_errors = 0;
749 scn->errorscrub_phys.dep_cursor = 0;
750 zap_cursor_init_serialized(&scn->errorscrub_cursor,
751 spa->spa_meta_objset, spa->spa_errlog_last,
752 scn->errorscrub_phys.dep_cursor);
753
754 vdev_config_dirty(spa->spa_root_vdev);
755 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
756
757 dsl_errorscrub_sync_state(scn, tx);
758
759 spa_history_log_internal(spa, "error scrub setup", tx,
760 "func=%u mintxg=%u maxtxg=%llu",
761 *funcp, 0, (u_longlong_t)tx->tx_txg);
762 }
763
764 static int
dsl_errorscrub_setup_check(void * arg,dmu_tx_t * tx)765 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
766 {
767 (void) arg;
768 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
769
770 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
771 return (SET_ERROR(EBUSY));
772 }
773
774 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
775 return (ECANCELED);
776 }
777 return (0);
778 }
779
780 /*
781 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
782 * Because we can be running in the block sorting algorithm, we do not always
783 * want to write out the record, only when it is "safe" to do so. This safety
784 * condition is achieved by making sure that the sorting queues are empty
785 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
786 * is inconsistent with how much actual scanning progress has been made. The
787 * kind of sync to be performed is specified by the sync_type argument. If the
788 * sync is optional, we only sync if the queues are empty. If the sync is
789 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
790 * third possible state is a "cached" sync. This is done in response to:
791 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
792 * destroyed, so we wouldn't be able to restart scanning from it.
793 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
794 * superseded by a newer snapshot.
795 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
796 * swapped with its clone.
797 * In all cases, a cached sync simply rewrites the last record we've written,
798 * just slightly modified. For the modifications that are performed to the
799 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
800 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
801 */
802 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)803 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
804 {
805 int i;
806 spa_t *spa = scn->scn_dp->dp_spa;
807
808 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
809 if (scn->scn_queues_pending == 0) {
810 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
811 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
812 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
813
814 if (q == NULL)
815 continue;
816
817 mutex_enter(&vd->vdev_scan_io_queue_lock);
818 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
819 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
820 NULL);
821 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
822 NULL);
823 mutex_exit(&vd->vdev_scan_io_queue_lock);
824 }
825
826 if (scn->scn_phys.scn_queue_obj != 0)
827 scan_ds_queue_sync(scn, tx);
828 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
829 DMU_POOL_DIRECTORY_OBJECT,
830 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
831 &scn->scn_phys, tx));
832 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
833 sizeof (scn->scn_phys));
834
835 if (scn->scn_checkpointing)
836 zfs_dbgmsg("finish scan checkpoint for %s",
837 spa->spa_name);
838
839 scn->scn_checkpointing = B_FALSE;
840 scn->scn_last_checkpoint = ddi_get_lbolt();
841 } else if (sync_type == SYNC_CACHED) {
842 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
843 DMU_POOL_DIRECTORY_OBJECT,
844 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
845 &scn->scn_phys_cached, tx));
846 }
847 }
848
849 int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)850 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
851 {
852 (void) arg;
853 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
854 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
855
856 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
857 dsl_errorscrubbing(scn->scn_dp))
858 return (SET_ERROR(EBUSY));
859
860 return (0);
861 }
862
863 void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)864 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
865 {
866 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
867 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
868 dmu_object_type_t ot = 0;
869 dsl_pool_t *dp = scn->scn_dp;
870 spa_t *spa = dp->dp_spa;
871
872 ASSERT(!dsl_scan_is_running(scn));
873 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
874 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
875 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
876
877 /*
878 * If we are starting a fresh scrub, we erase the error scrub
879 * information from disk.
880 */
881 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
882 dsl_errorscrub_sync_state(scn, tx);
883
884 scn->scn_phys.scn_func = setup_sync_arg->func;
885 scn->scn_phys.scn_state = DSS_SCANNING;
886 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
887 if (setup_sync_arg->txgend == 0) {
888 scn->scn_phys.scn_max_txg = tx->tx_txg;
889 } else {
890 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
891 }
892 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
893 scn->scn_phys.scn_start_time = gethrestime_sec();
894 scn->scn_phys.scn_errors = 0;
895 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
896 scn->scn_issued_before_pass = 0;
897 scn->scn_restart_txg = 0;
898 scn->scn_done_txg = 0;
899 scn->scn_last_checkpoint = 0;
900 scn->scn_checkpointing = B_FALSE;
901 spa_scan_stat_init(spa);
902 vdev_scan_stat_init(spa->spa_root_vdev);
903
904 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
905 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
906
907 /* rewrite all disk labels */
908 vdev_config_dirty(spa->spa_root_vdev);
909
910 if (vdev_resilver_needed(spa->spa_root_vdev,
911 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
912 nvlist_t *aux = fnvlist_alloc();
913 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
914 "healing");
915 spa_event_notify(spa, NULL, aux,
916 ESC_ZFS_RESILVER_START);
917 nvlist_free(aux);
918 } else {
919 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
920 }
921
922 spa->spa_scrub_started = B_TRUE;
923 /*
924 * If this is an incremental scrub, limit the DDT scrub phase
925 * to just the auto-ditto class (for correctness); the rest
926 * of the scrub should go faster using top-down pruning.
927 */
928 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
929 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
930
931 /*
932 * When starting a resilver clear any existing rebuild state.
933 * This is required to prevent stale rebuild status from
934 * being reported when a rebuild is run, then a resilver and
935 * finally a scrub. In which case only the scrub status
936 * should be reported by 'zpool status'.
937 */
938 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
939 vdev_t *rvd = spa->spa_root_vdev;
940 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
941 vdev_t *vd = rvd->vdev_child[i];
942 vdev_rebuild_clear_sync(
943 (void *)(uintptr_t)vd->vdev_id, tx);
944 }
945 }
946 }
947
948 /* back to the generic stuff */
949
950 if (zfs_scan_blkstats) {
951 if (dp->dp_blkstats == NULL) {
952 dp->dp_blkstats =
953 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
954 }
955 memset(&dp->dp_blkstats->zab_type, 0,
956 sizeof (dp->dp_blkstats->zab_type));
957 } else {
958 if (dp->dp_blkstats) {
959 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
960 dp->dp_blkstats = NULL;
961 }
962 }
963
964 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
965 ot = DMU_OT_ZAP_OTHER;
966
967 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
968 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
969
970 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
971
972 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
973
974 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
975
976 spa_history_log_internal(spa, "scan setup", tx,
977 "func=%u mintxg=%llu maxtxg=%llu",
978 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
979 (u_longlong_t)scn->scn_phys.scn_max_txg);
980 }
981
982 /*
983 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
984 * error scrub or resilver. Can also be called to resume a paused scrub or
985 * error scrub.
986 */
987 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func,uint64_t txgstart,uint64_t txgend)988 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
989 uint64_t txgend)
990 {
991 spa_t *spa = dp->dp_spa;
992 dsl_scan_t *scn = dp->dp_scan;
993 setup_sync_arg_t setup_sync_arg;
994
995 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
996 return (EINVAL);
997 }
998
999 /*
1000 * Purge all vdev caches and probe all devices. We do this here
1001 * rather than in sync context because this requires a writer lock
1002 * on the spa_config lock, which we can't do from sync context. The
1003 * spa_scrub_reopen flag indicates that vdev_open() should not
1004 * attempt to start another scrub.
1005 */
1006 spa_vdev_state_enter(spa, SCL_NONE);
1007 spa->spa_scrub_reopen = B_TRUE;
1008 vdev_reopen(spa->spa_root_vdev);
1009 spa->spa_scrub_reopen = B_FALSE;
1010 (void) spa_vdev_state_exit(spa, NULL, 0);
1011
1012 if (func == POOL_SCAN_RESILVER) {
1013 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1014 return (0);
1015 }
1016
1017 if (func == POOL_SCAN_ERRORSCRUB) {
1018 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1019 /*
1020 * got error scrub start cmd, resume paused error scrub.
1021 */
1022 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1023 POOL_SCRUB_NORMAL);
1024 if (err == 0) {
1025 spa_event_notify(spa, NULL, NULL,
1026 ESC_ZFS_ERRORSCRUB_RESUME);
1027 return (0);
1028 }
1029 return (SET_ERROR(err));
1030 }
1031
1032 return (dsl_sync_task(spa_name(dp->dp_spa),
1033 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1034 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1035 }
1036
1037 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1038 /* got scrub start cmd, resume paused scrub */
1039 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1040 POOL_SCRUB_NORMAL);
1041 if (err == 0) {
1042 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1043 return (0);
1044 }
1045 return (SET_ERROR(err));
1046 }
1047
1048 setup_sync_arg.func = func;
1049 setup_sync_arg.txgstart = txgstart;
1050 setup_sync_arg.txgend = txgend;
1051
1052 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1053 dsl_scan_setup_sync, &setup_sync_arg, 0,
1054 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1055 }
1056
1057 static void
dsl_errorscrub_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1058 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1059 {
1060 dsl_pool_t *dp = scn->scn_dp;
1061 spa_t *spa = dp->dp_spa;
1062
1063 if (complete) {
1064 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1065 spa_history_log_internal(spa, "error scrub done", tx,
1066 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1067 } else {
1068 spa_history_log_internal(spa, "error scrub canceled", tx,
1069 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1070 }
1071
1072 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1073 spa->spa_scrub_active = B_FALSE;
1074 spa_errlog_rotate(spa);
1075 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1076 zap_cursor_fini(&scn->errorscrub_cursor);
1077
1078 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1079 spa->spa_errata = 0;
1080
1081 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1082 }
1083
1084 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1085 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1086 {
1087 static const char *old_names[] = {
1088 "scrub_bookmark",
1089 "scrub_ddt_bookmark",
1090 "scrub_ddt_class_max",
1091 "scrub_queue",
1092 "scrub_min_txg",
1093 "scrub_max_txg",
1094 "scrub_func",
1095 "scrub_errors",
1096 NULL
1097 };
1098
1099 dsl_pool_t *dp = scn->scn_dp;
1100 spa_t *spa = dp->dp_spa;
1101 int i;
1102
1103 /* Remove any remnants of an old-style scrub. */
1104 for (i = 0; old_names[i]; i++) {
1105 (void) zap_remove(dp->dp_meta_objset,
1106 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1107 }
1108
1109 if (scn->scn_phys.scn_queue_obj != 0) {
1110 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1111 scn->scn_phys.scn_queue_obj, tx));
1112 scn->scn_phys.scn_queue_obj = 0;
1113 }
1114 scan_ds_queue_clear(scn);
1115 scan_ds_prefetch_queue_clear(scn);
1116
1117 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1118
1119 /*
1120 * If we were "restarted" from a stopped state, don't bother
1121 * with anything else.
1122 */
1123 if (!dsl_scan_is_running(scn)) {
1124 ASSERT(!scn->scn_is_sorted);
1125 return;
1126 }
1127
1128 if (scn->scn_is_sorted) {
1129 scan_io_queues_destroy(scn);
1130 scn->scn_is_sorted = B_FALSE;
1131
1132 if (scn->scn_taskq != NULL) {
1133 taskq_destroy(scn->scn_taskq);
1134 scn->scn_taskq = NULL;
1135 }
1136 }
1137
1138 if (dsl_scan_restarting(scn, tx)) {
1139 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1140 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1141 } else if (!complete) {
1142 spa_history_log_internal(spa, "scan cancelled", tx,
1143 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1144 } else {
1145 spa_history_log_internal(spa, "scan done", tx,
1146 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1147 if (DSL_SCAN_IS_SCRUB(scn)) {
1148 VERIFY0(zap_update(dp->dp_meta_objset,
1149 DMU_POOL_DIRECTORY_OBJECT,
1150 DMU_POOL_LAST_SCRUBBED_TXG,
1151 sizeof (uint64_t), 1,
1152 &scn->scn_phys.scn_max_txg, tx));
1153 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1154 }
1155 }
1156
1157 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1158 spa->spa_scrub_active = B_FALSE;
1159
1160 /*
1161 * If the scrub/resilver completed, update all DTLs to
1162 * reflect this. Whether it succeeded or not, vacate
1163 * all temporary scrub DTLs.
1164 *
1165 * As the scrub does not currently support traversing
1166 * data that have been freed but are part of a checkpoint,
1167 * we don't mark the scrub as done in the DTLs as faults
1168 * may still exist in those vdevs.
1169 */
1170 if (complete &&
1171 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1172 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1173 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1174
1175 if (DSL_SCAN_IS_RESILVER(scn)) {
1176 nvlist_t *aux = fnvlist_alloc();
1177 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1178 "healing");
1179 spa_event_notify(spa, NULL, aux,
1180 ESC_ZFS_RESILVER_FINISH);
1181 nvlist_free(aux);
1182 } else {
1183 spa_event_notify(spa, NULL, NULL,
1184 ESC_ZFS_SCRUB_FINISH);
1185 }
1186 } else {
1187 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1188 0, B_TRUE, B_FALSE);
1189 }
1190 spa_errlog_rotate(spa);
1191
1192 /*
1193 * Don't clear flag until after vdev_dtl_reassess to ensure that
1194 * DTL_MISSING will get updated when possible.
1195 */
1196 scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1197 DSS_CANCELED;
1198 scn->scn_phys.scn_end_time = gethrestime_sec();
1199 spa->spa_scrub_started = B_FALSE;
1200
1201 /*
1202 * We may have finished replacing a device.
1203 * Let the async thread assess this and handle the detach.
1204 */
1205 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1206
1207 /*
1208 * Clear any resilver_deferred flags in the config.
1209 * If there are drives that need resilvering, kick
1210 * off an asynchronous request to start resilver.
1211 * vdev_clear_resilver_deferred() may update the config
1212 * before the resilver can restart. In the event of
1213 * a crash during this period, the spa loading code
1214 * will find the drives that need to be resilvered
1215 * and start the resilver then.
1216 */
1217 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1218 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1219 spa_history_log_internal(spa,
1220 "starting deferred resilver", tx, "errors=%llu",
1221 (u_longlong_t)spa_approx_errlog_size(spa));
1222 spa_async_request(spa, SPA_ASYNC_RESILVER);
1223 }
1224
1225 /* Clear recent error events (i.e. duplicate events tracking) */
1226 if (complete)
1227 zfs_ereport_clear(spa, NULL);
1228 } else {
1229 scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1230 DSS_CANCELED;
1231 scn->scn_phys.scn_end_time = gethrestime_sec();
1232 }
1233
1234 spa_notify_waiters(spa);
1235
1236 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1237 spa->spa_errata = 0;
1238
1239 ASSERT(!dsl_scan_is_running(scn));
1240 }
1241
1242 static int
dsl_errorscrub_pause_resume_check(void * arg,dmu_tx_t * tx)1243 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1244 {
1245 pool_scrub_cmd_t *cmd = arg;
1246 dsl_pool_t *dp = dmu_tx_pool(tx);
1247 dsl_scan_t *scn = dp->dp_scan;
1248
1249 if (*cmd == POOL_SCRUB_PAUSE) {
1250 /*
1251 * can't pause a error scrub when there is no in-progress
1252 * error scrub.
1253 */
1254 if (!dsl_errorscrubbing(dp))
1255 return (SET_ERROR(ENOENT));
1256
1257 /* can't pause a paused error scrub */
1258 if (dsl_errorscrub_is_paused(scn))
1259 return (SET_ERROR(EBUSY));
1260 } else if (*cmd != POOL_SCRUB_NORMAL) {
1261 return (SET_ERROR(ENOTSUP));
1262 }
1263
1264 return (0);
1265 }
1266
1267 static void
dsl_errorscrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1268 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1269 {
1270 pool_scrub_cmd_t *cmd = arg;
1271 dsl_pool_t *dp = dmu_tx_pool(tx);
1272 spa_t *spa = dp->dp_spa;
1273 dsl_scan_t *scn = dp->dp_scan;
1274
1275 if (*cmd == POOL_SCRUB_PAUSE) {
1276 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1277 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1278 dsl_errorscrub_sync_state(scn, tx);
1279 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1280 } else {
1281 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1282 if (dsl_errorscrub_is_paused(scn)) {
1283 /*
1284 * We need to keep track of how much time we spend
1285 * paused per pass so that we can adjust the error scrub
1286 * rate shown in the output of 'zpool status'.
1287 */
1288 spa->spa_scan_pass_errorscrub_spent_paused +=
1289 gethrestime_sec() -
1290 spa->spa_scan_pass_errorscrub_pause;
1291
1292 spa->spa_scan_pass_errorscrub_pause = 0;
1293 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1294
1295 zap_cursor_init_serialized(
1296 &scn->errorscrub_cursor,
1297 spa->spa_meta_objset, spa->spa_errlog_last,
1298 scn->errorscrub_phys.dep_cursor);
1299
1300 dsl_errorscrub_sync_state(scn, tx);
1301 }
1302 }
1303 }
1304
1305 static int
dsl_errorscrub_cancel_check(void * arg,dmu_tx_t * tx)1306 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1307 {
1308 (void) arg;
1309 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1310 /* can't cancel a error scrub when there is no one in-progress */
1311 if (!dsl_errorscrubbing(scn->scn_dp))
1312 return (SET_ERROR(ENOENT));
1313 return (0);
1314 }
1315
1316 static void
dsl_errorscrub_cancel_sync(void * arg,dmu_tx_t * tx)1317 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1318 {
1319 (void) arg;
1320 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1321
1322 dsl_errorscrub_done(scn, B_FALSE, tx);
1323 dsl_errorscrub_sync_state(scn, tx);
1324 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1325 ESC_ZFS_ERRORSCRUB_ABORT);
1326 }
1327
1328 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)1329 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1330 {
1331 (void) arg;
1332 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1333
1334 if (!dsl_scan_is_running(scn))
1335 return (SET_ERROR(ENOENT));
1336 return (0);
1337 }
1338
1339 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)1340 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1341 {
1342 (void) arg;
1343 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1344
1345 dsl_scan_done(scn, B_FALSE, tx);
1346 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1347 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1348 }
1349
1350 int
dsl_scan_cancel(dsl_pool_t * dp)1351 dsl_scan_cancel(dsl_pool_t *dp)
1352 {
1353 if (dsl_errorscrubbing(dp)) {
1354 return (dsl_sync_task(spa_name(dp->dp_spa),
1355 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1356 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1357 }
1358 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1359 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1360 }
1361
1362 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)1363 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1364 {
1365 pool_scrub_cmd_t *cmd = arg;
1366 dsl_pool_t *dp = dmu_tx_pool(tx);
1367 dsl_scan_t *scn = dp->dp_scan;
1368
1369 if (*cmd == POOL_SCRUB_PAUSE) {
1370 /* can't pause a scrub when there is no in-progress scrub */
1371 if (!dsl_scan_scrubbing(dp))
1372 return (SET_ERROR(ENOENT));
1373
1374 /* can't pause a paused scrub */
1375 if (dsl_scan_is_paused_scrub(scn))
1376 return (SET_ERROR(EBUSY));
1377 } else if (*cmd != POOL_SCRUB_NORMAL) {
1378 return (SET_ERROR(ENOTSUP));
1379 }
1380
1381 return (0);
1382 }
1383
1384 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1385 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1386 {
1387 pool_scrub_cmd_t *cmd = arg;
1388 dsl_pool_t *dp = dmu_tx_pool(tx);
1389 spa_t *spa = dp->dp_spa;
1390 dsl_scan_t *scn = dp->dp_scan;
1391
1392 if (*cmd == POOL_SCRUB_PAUSE) {
1393 /* can't pause a scrub when there is no in-progress scrub */
1394 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1395 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1396 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1397 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1398 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1399 spa_notify_waiters(spa);
1400 } else {
1401 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1402 if (dsl_scan_is_paused_scrub(scn)) {
1403 /*
1404 * We need to keep track of how much time we spend
1405 * paused per pass so that we can adjust the scrub rate
1406 * shown in the output of 'zpool status'
1407 */
1408 spa->spa_scan_pass_scrub_spent_paused +=
1409 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1410 spa->spa_scan_pass_scrub_pause = 0;
1411 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1412 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1413 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1414 }
1415 }
1416 }
1417
1418 /*
1419 * Set scrub pause/resume state if it makes sense to do so
1420 */
1421 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1422 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1423 {
1424 if (dsl_errorscrubbing(dp)) {
1425 return (dsl_sync_task(spa_name(dp->dp_spa),
1426 dsl_errorscrub_pause_resume_check,
1427 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1428 ZFS_SPACE_CHECK_RESERVED));
1429 }
1430 return (dsl_sync_task(spa_name(dp->dp_spa),
1431 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1432 ZFS_SPACE_CHECK_RESERVED));
1433 }
1434
1435
1436 /* start a new scan, or restart an existing one. */
1437 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1438 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1439 {
1440 if (txg == 0) {
1441 dmu_tx_t *tx;
1442 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1443 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1444
1445 txg = dmu_tx_get_txg(tx);
1446 dp->dp_scan->scn_restart_txg = txg;
1447 dmu_tx_commit(tx);
1448 } else {
1449 dp->dp_scan->scn_restart_txg = txg;
1450 }
1451 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1452 dp->dp_spa->spa_name, (longlong_t)txg);
1453 }
1454
1455 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1456 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1457 {
1458 zio_free(dp->dp_spa, txg, bp);
1459 }
1460
1461 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1462 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1463 {
1464 ASSERT(dsl_pool_sync_context(dp));
1465 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1466 }
1467
1468 static int
scan_ds_queue_compare(const void * a,const void * b)1469 scan_ds_queue_compare(const void *a, const void *b)
1470 {
1471 const scan_ds_t *sds_a = a, *sds_b = b;
1472
1473 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1474 return (-1);
1475 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1476 return (0);
1477 return (1);
1478 }
1479
1480 static void
scan_ds_queue_clear(dsl_scan_t * scn)1481 scan_ds_queue_clear(dsl_scan_t *scn)
1482 {
1483 void *cookie = NULL;
1484 scan_ds_t *sds;
1485 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1486 kmem_free(sds, sizeof (*sds));
1487 }
1488 }
1489
1490 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1491 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1492 {
1493 scan_ds_t srch, *sds;
1494
1495 srch.sds_dsobj = dsobj;
1496 sds = avl_find(&scn->scn_queue, &srch, NULL);
1497 if (sds != NULL && txg != NULL)
1498 *txg = sds->sds_txg;
1499 return (sds != NULL);
1500 }
1501
1502 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1503 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1504 {
1505 scan_ds_t *sds;
1506 avl_index_t where;
1507
1508 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1509 sds->sds_dsobj = dsobj;
1510 sds->sds_txg = txg;
1511
1512 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1513 avl_insert(&scn->scn_queue, sds, where);
1514 }
1515
1516 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1517 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1518 {
1519 scan_ds_t srch, *sds;
1520
1521 srch.sds_dsobj = dsobj;
1522
1523 sds = avl_find(&scn->scn_queue, &srch, NULL);
1524 VERIFY(sds != NULL);
1525 avl_remove(&scn->scn_queue, sds);
1526 kmem_free(sds, sizeof (*sds));
1527 }
1528
1529 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1530 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1531 {
1532 dsl_pool_t *dp = scn->scn_dp;
1533 spa_t *spa = dp->dp_spa;
1534 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1535 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1536
1537 ASSERT0(scn->scn_queues_pending);
1538 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1539
1540 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1541 scn->scn_phys.scn_queue_obj, tx));
1542 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1543 DMU_OT_NONE, 0, tx);
1544 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1545 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1546 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1547 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1548 sds->sds_txg, tx));
1549 }
1550 }
1551
1552 /*
1553 * Computes the memory limit state that we're currently in. A sorted scan
1554 * needs quite a bit of memory to hold the sorting queue, so we need to
1555 * reasonably constrain the size so it doesn't impact overall system
1556 * performance. We compute two limits:
1557 * 1) Hard memory limit: if the amount of memory used by the sorting
1558 * queues on a pool gets above this value, we stop the metadata
1559 * scanning portion and start issuing the queued up and sorted
1560 * I/Os to reduce memory usage.
1561 * This limit is calculated as a fraction of physmem (by default 5%).
1562 * We constrain the lower bound of the hard limit to an absolute
1563 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1564 * the upper bound to 5% of the total pool size - no chance we'll
1565 * ever need that much memory, but just to keep the value in check.
1566 * 2) Soft memory limit: once we hit the hard memory limit, we start
1567 * issuing I/O to reduce queue memory usage, but we don't want to
1568 * completely empty out the queues, since we might be able to find I/Os
1569 * that will fill in the gaps of our non-sequential IOs at some point
1570 * in the future. So we stop the issuing of I/Os once the amount of
1571 * memory used drops below the soft limit (at which point we stop issuing
1572 * I/O and start scanning metadata again).
1573 *
1574 * This limit is calculated by subtracting a fraction of the hard
1575 * limit from the hard limit. By default this fraction is 5%, so
1576 * the soft limit is 95% of the hard limit. We cap the size of the
1577 * difference between the hard and soft limits at an absolute
1578 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1579 * sufficient to not cause too frequent switching between the
1580 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1581 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1582 * that should take at least a decent fraction of a second).
1583 */
1584 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1585 dsl_scan_should_clear(dsl_scan_t *scn)
1586 {
1587 spa_t *spa = scn->scn_dp->dp_spa;
1588 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1589 uint64_t alloc, mlim_hard, mlim_soft, mused;
1590
1591 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1592 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1593 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1594
1595 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1596 zfs_scan_mem_lim_min);
1597 mlim_hard = MIN(mlim_hard, alloc / 20);
1598 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1599 zfs_scan_mem_lim_soft_max);
1600 mused = 0;
1601 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1602 vdev_t *tvd = rvd->vdev_child[i];
1603 dsl_scan_io_queue_t *queue;
1604
1605 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1606 queue = tvd->vdev_scan_io_queue;
1607 if (queue != NULL) {
1608 /*
1609 * # of extents in exts_by_addr = # in exts_by_size.
1610 * B-tree efficiency is ~75%, but can be as low as 50%.
1611 */
1612 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1613 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1614 3 / 2) + queue->q_sio_memused;
1615 }
1616 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1617 }
1618
1619 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1620
1621 if (mused == 0)
1622 ASSERT0(scn->scn_queues_pending);
1623
1624 /*
1625 * If we are above our hard limit, we need to clear out memory.
1626 * If we are below our soft limit, we need to accumulate sequential IOs.
1627 * Otherwise, we should keep doing whatever we are currently doing.
1628 */
1629 if (mused >= mlim_hard)
1630 return (B_TRUE);
1631 else if (mused < mlim_soft)
1632 return (B_FALSE);
1633 else
1634 return (scn->scn_clearing);
1635 }
1636
1637 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1638 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1639 {
1640 /* we never skip user/group accounting objects */
1641 if (zb && (int64_t)zb->zb_object < 0)
1642 return (B_FALSE);
1643
1644 if (scn->scn_suspending)
1645 return (B_TRUE); /* we're already suspending */
1646
1647 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1648 return (B_FALSE); /* we're resuming */
1649
1650 /* We only know how to resume from level-0 and objset blocks. */
1651 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1652 return (B_FALSE);
1653
1654 /*
1655 * We suspend if:
1656 * - we have scanned for at least the minimum time (default 1 sec
1657 * for scrub, 3 sec for resilver), and either we have sufficient
1658 * dirty data that we are starting to write more quickly
1659 * (default 30%), someone is explicitly waiting for this txg
1660 * to complete, or we have used up all of the time in the txg
1661 * timeout (default 5 sec).
1662 * or
1663 * - the spa is shutting down because this pool is being exported
1664 * or the machine is rebooting.
1665 * or
1666 * - the scan queue has reached its memory use limit
1667 */
1668 uint64_t curr_time_ns = gethrtime();
1669 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1670 uint64_t sync_time_ns = curr_time_ns -
1671 scn->scn_dp->dp_spa->spa_sync_starttime;
1672 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1673 zfs_vdev_async_write_active_min_dirty_percent / 100;
1674 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1675 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1676
1677 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1678 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1679 txg_sync_waiting(scn->scn_dp) ||
1680 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1681 spa_shutting_down(scn->scn_dp->dp_spa) ||
1682 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1683 !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1684 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1685 dprintf("suspending at first available bookmark "
1686 "%llx/%llx/%llx/%llx\n",
1687 (longlong_t)zb->zb_objset,
1688 (longlong_t)zb->zb_object,
1689 (longlong_t)zb->zb_level,
1690 (longlong_t)zb->zb_blkid);
1691 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1692 zb->zb_objset, 0, 0, 0);
1693 } else if (zb != NULL) {
1694 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1695 (longlong_t)zb->zb_objset,
1696 (longlong_t)zb->zb_object,
1697 (longlong_t)zb->zb_level,
1698 (longlong_t)zb->zb_blkid);
1699 scn->scn_phys.scn_bookmark = *zb;
1700 } else {
1701 #ifdef ZFS_DEBUG
1702 dsl_scan_phys_t *scnp = &scn->scn_phys;
1703 dprintf("suspending at at DDT bookmark "
1704 "%llx/%llx/%llx/%llx\n",
1705 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1706 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1707 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1708 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1709 #endif
1710 }
1711 scn->scn_suspending = B_TRUE;
1712 return (B_TRUE);
1713 }
1714 return (B_FALSE);
1715 }
1716
1717 static boolean_t
dsl_error_scrub_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1718 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1719 {
1720 /*
1721 * We suspend if:
1722 * - we have scrubbed for at least the minimum time (default 1 sec
1723 * for error scrub), someone is explicitly waiting for this txg
1724 * to complete, or we have used up all of the time in the txg
1725 * timeout (default 5 sec).
1726 * or
1727 * - the spa is shutting down because this pool is being exported
1728 * or the machine is rebooting.
1729 */
1730 uint64_t curr_time_ns = gethrtime();
1731 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1732 uint64_t sync_time_ns = curr_time_ns -
1733 scn->scn_dp->dp_spa->spa_sync_starttime;
1734 int mintime = zfs_scrub_min_time_ms;
1735
1736 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1737 (txg_sync_waiting(scn->scn_dp) ||
1738 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1739 spa_shutting_down(scn->scn_dp->dp_spa)) {
1740 if (zb) {
1741 dprintf("error scrub suspending at bookmark "
1742 "%llx/%llx/%llx/%llx\n",
1743 (longlong_t)zb->zb_objset,
1744 (longlong_t)zb->zb_object,
1745 (longlong_t)zb->zb_level,
1746 (longlong_t)zb->zb_blkid);
1747 }
1748 return (B_TRUE);
1749 }
1750 return (B_FALSE);
1751 }
1752
1753 typedef struct zil_scan_arg {
1754 dsl_pool_t *zsa_dp;
1755 zil_header_t *zsa_zh;
1756 } zil_scan_arg_t;
1757
1758 static int
dsl_scan_zil_block(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)1759 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1760 uint64_t claim_txg)
1761 {
1762 (void) zilog;
1763 zil_scan_arg_t *zsa = arg;
1764 dsl_pool_t *dp = zsa->zsa_dp;
1765 dsl_scan_t *scn = dp->dp_scan;
1766 zil_header_t *zh = zsa->zsa_zh;
1767 zbookmark_phys_t zb;
1768
1769 ASSERT(!BP_IS_REDACTED(bp));
1770 if (BP_IS_HOLE(bp) ||
1771 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1772 return (0);
1773
1774 /*
1775 * One block ("stubby") can be allocated a long time ago; we
1776 * want to visit that one because it has been allocated
1777 * (on-disk) even if it hasn't been claimed (even though for
1778 * scrub there's nothing to do to it).
1779 */
1780 if (claim_txg == 0 &&
1781 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1782 return (0);
1783
1784 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1785 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1786
1787 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1788 return (0);
1789 }
1790
1791 static int
dsl_scan_zil_record(zilog_t * zilog,const lr_t * lrc,void * arg,uint64_t claim_txg)1792 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1793 uint64_t claim_txg)
1794 {
1795 (void) zilog;
1796 if (lrc->lrc_txtype == TX_WRITE) {
1797 zil_scan_arg_t *zsa = arg;
1798 dsl_pool_t *dp = zsa->zsa_dp;
1799 dsl_scan_t *scn = dp->dp_scan;
1800 zil_header_t *zh = zsa->zsa_zh;
1801 const lr_write_t *lr = (const lr_write_t *)lrc;
1802 const blkptr_t *bp = &lr->lr_blkptr;
1803 zbookmark_phys_t zb;
1804
1805 ASSERT(!BP_IS_REDACTED(bp));
1806 if (BP_IS_HOLE(bp) ||
1807 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1808 return (0);
1809
1810 /*
1811 * birth can be < claim_txg if this record's txg is
1812 * already txg sync'ed (but this log block contains
1813 * other records that are not synced)
1814 */
1815 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1816 return (0);
1817
1818 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1819 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1820 lr->lr_foid, ZB_ZIL_LEVEL,
1821 lr->lr_offset / BP_GET_LSIZE(bp));
1822
1823 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1824 }
1825 return (0);
1826 }
1827
1828 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1829 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1830 {
1831 uint64_t claim_txg = zh->zh_claim_txg;
1832 zil_scan_arg_t zsa = { dp, zh };
1833 zilog_t *zilog;
1834
1835 ASSERT(spa_writeable(dp->dp_spa));
1836
1837 /*
1838 * We only want to visit blocks that have been claimed but not yet
1839 * replayed (or, in read-only mode, blocks that *would* be claimed).
1840 */
1841 if (claim_txg == 0)
1842 return;
1843
1844 zilog = zil_alloc(dp->dp_meta_objset, zh);
1845
1846 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1847 claim_txg, B_FALSE);
1848
1849 zil_free(zilog);
1850 }
1851
1852 /*
1853 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1854 * here is to sort the AVL tree by the order each block will be needed.
1855 */
1856 static int
scan_prefetch_queue_compare(const void * a,const void * b)1857 scan_prefetch_queue_compare(const void *a, const void *b)
1858 {
1859 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1860 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1861 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1862
1863 return (zbookmark_compare(spc_a->spc_datablkszsec,
1864 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1865 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1866 }
1867
1868 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,const void * tag)1869 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1870 {
1871 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1872 zfs_refcount_destroy(&spc->spc_refcnt);
1873 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1874 }
1875 }
1876
1877 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,const void * tag)1878 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1879 {
1880 scan_prefetch_ctx_t *spc;
1881
1882 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1883 zfs_refcount_create(&spc->spc_refcnt);
1884 zfs_refcount_add(&spc->spc_refcnt, tag);
1885 spc->spc_scn = scn;
1886 if (dnp != NULL) {
1887 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1888 spc->spc_indblkshift = dnp->dn_indblkshift;
1889 spc->spc_root = B_FALSE;
1890 } else {
1891 spc->spc_datablkszsec = 0;
1892 spc->spc_indblkshift = 0;
1893 spc->spc_root = B_TRUE;
1894 }
1895
1896 return (spc);
1897 }
1898
1899 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,const void * tag)1900 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1901 {
1902 zfs_refcount_add(&spc->spc_refcnt, tag);
1903 }
1904
1905 static void
scan_ds_prefetch_queue_clear(dsl_scan_t * scn)1906 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1907 {
1908 spa_t *spa = scn->scn_dp->dp_spa;
1909 void *cookie = NULL;
1910 scan_prefetch_issue_ctx_t *spic = NULL;
1911
1912 mutex_enter(&spa->spa_scrub_lock);
1913 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1914 &cookie)) != NULL) {
1915 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1916 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1917 }
1918 mutex_exit(&spa->spa_scrub_lock);
1919 }
1920
1921 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1922 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1923 const zbookmark_phys_t *zb)
1924 {
1925 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1926 dnode_phys_t tmp_dnp;
1927 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1928
1929 if (zb->zb_objset != last_zb->zb_objset)
1930 return (B_TRUE);
1931 if ((int64_t)zb->zb_object < 0)
1932 return (B_FALSE);
1933
1934 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1935 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1936
1937 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1938 return (B_TRUE);
1939
1940 return (B_FALSE);
1941 }
1942
1943 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1944 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1945 {
1946 avl_index_t idx;
1947 dsl_scan_t *scn = spc->spc_scn;
1948 spa_t *spa = scn->scn_dp->dp_spa;
1949 scan_prefetch_issue_ctx_t *spic;
1950
1951 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1952 return;
1953
1954 if (BP_IS_HOLE(bp) ||
1955 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1956 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1957 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1958 return;
1959
1960 if (dsl_scan_check_prefetch_resume(spc, zb))
1961 return;
1962
1963 scan_prefetch_ctx_add_ref(spc, scn);
1964 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1965 spic->spic_spc = spc;
1966 spic->spic_bp = *bp;
1967 spic->spic_zb = *zb;
1968
1969 /*
1970 * Add the IO to the queue of blocks to prefetch. This allows us to
1971 * prioritize blocks that we will need first for the main traversal
1972 * thread.
1973 */
1974 mutex_enter(&spa->spa_scrub_lock);
1975 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1976 /* this block is already queued for prefetch */
1977 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1978 scan_prefetch_ctx_rele(spc, scn);
1979 mutex_exit(&spa->spa_scrub_lock);
1980 return;
1981 }
1982
1983 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1984 cv_broadcast(&spa->spa_scrub_io_cv);
1985 mutex_exit(&spa->spa_scrub_lock);
1986 }
1987
1988 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1989 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1990 uint64_t objset, uint64_t object)
1991 {
1992 int i;
1993 zbookmark_phys_t zb;
1994 scan_prefetch_ctx_t *spc;
1995
1996 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1997 return;
1998
1999 SET_BOOKMARK(&zb, objset, object, 0, 0);
2000
2001 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
2002
2003 for (i = 0; i < dnp->dn_nblkptr; i++) {
2004 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
2005 zb.zb_blkid = i;
2006 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2007 }
2008
2009 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2010 zb.zb_level = 0;
2011 zb.zb_blkid = DMU_SPILL_BLKID;
2012 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2013 }
2014
2015 scan_prefetch_ctx_rele(spc, FTAG);
2016 }
2017
2018 static void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)2019 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2020 arc_buf_t *buf, void *private)
2021 {
2022 (void) zio;
2023 scan_prefetch_ctx_t *spc = private;
2024 dsl_scan_t *scn = spc->spc_scn;
2025 spa_t *spa = scn->scn_dp->dp_spa;
2026
2027 /* broadcast that the IO has completed for rate limiting purposes */
2028 mutex_enter(&spa->spa_scrub_lock);
2029 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2030 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2031 cv_broadcast(&spa->spa_scrub_io_cv);
2032 mutex_exit(&spa->spa_scrub_lock);
2033
2034 /* if there was an error or we are done prefetching, just cleanup */
2035 if (buf == NULL || scn->scn_prefetch_stop)
2036 goto out;
2037
2038 if (BP_GET_LEVEL(bp) > 0) {
2039 int i;
2040 blkptr_t *cbp;
2041 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2042 zbookmark_phys_t czb;
2043
2044 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2045 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2046 zb->zb_level - 1, zb->zb_blkid * epb + i);
2047 dsl_scan_prefetch(spc, cbp, &czb);
2048 }
2049 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2050 dnode_phys_t *cdnp;
2051 int i;
2052 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2053
2054 for (i = 0, cdnp = buf->b_data; i < epb;
2055 i += cdnp->dn_extra_slots + 1,
2056 cdnp += cdnp->dn_extra_slots + 1) {
2057 dsl_scan_prefetch_dnode(scn, cdnp,
2058 zb->zb_objset, zb->zb_blkid * epb + i);
2059 }
2060 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2061 objset_phys_t *osp = buf->b_data;
2062
2063 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2064 zb->zb_objset, DMU_META_DNODE_OBJECT);
2065
2066 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2067 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2068 dsl_scan_prefetch_dnode(scn,
2069 &osp->os_projectused_dnode, zb->zb_objset,
2070 DMU_PROJECTUSED_OBJECT);
2071 }
2072 dsl_scan_prefetch_dnode(scn,
2073 &osp->os_groupused_dnode, zb->zb_objset,
2074 DMU_GROUPUSED_OBJECT);
2075 dsl_scan_prefetch_dnode(scn,
2076 &osp->os_userused_dnode, zb->zb_objset,
2077 DMU_USERUSED_OBJECT);
2078 }
2079 }
2080
2081 out:
2082 if (buf != NULL)
2083 arc_buf_destroy(buf, private);
2084 scan_prefetch_ctx_rele(spc, scn);
2085 }
2086
2087 static void
dsl_scan_prefetch_thread(void * arg)2088 dsl_scan_prefetch_thread(void *arg)
2089 {
2090 dsl_scan_t *scn = arg;
2091 spa_t *spa = scn->scn_dp->dp_spa;
2092 scan_prefetch_issue_ctx_t *spic;
2093
2094 /* loop until we are told to stop */
2095 while (!scn->scn_prefetch_stop) {
2096 arc_flags_t flags = ARC_FLAG_NOWAIT |
2097 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2098 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2099
2100 mutex_enter(&spa->spa_scrub_lock);
2101
2102 /*
2103 * Wait until we have an IO to issue and are not above our
2104 * maximum in flight limit.
2105 */
2106 while (!scn->scn_prefetch_stop &&
2107 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2108 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2109 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2110 }
2111
2112 /* recheck if we should stop since we waited for the cv */
2113 if (scn->scn_prefetch_stop) {
2114 mutex_exit(&spa->spa_scrub_lock);
2115 break;
2116 }
2117
2118 /* remove the prefetch IO from the tree */
2119 spic = avl_first(&scn->scn_prefetch_queue);
2120 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2121 avl_remove(&scn->scn_prefetch_queue, spic);
2122
2123 mutex_exit(&spa->spa_scrub_lock);
2124
2125 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2126 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2127 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2128 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2129 zio_flags |= ZIO_FLAG_RAW;
2130 }
2131
2132 /* We don't need data L1 buffer since we do not prefetch L0. */
2133 blkptr_t *bp = &spic->spic_bp;
2134 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2135 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2136 flags |= ARC_FLAG_NO_BUF;
2137
2138 /* issue the prefetch asynchronously */
2139 (void) arc_read(scn->scn_zio_root, spa, bp,
2140 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2141 zio_flags, &flags, &spic->spic_zb);
2142
2143 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2144 }
2145
2146 ASSERT(scn->scn_prefetch_stop);
2147
2148 /* free any prefetches we didn't get to complete */
2149 mutex_enter(&spa->spa_scrub_lock);
2150 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2151 avl_remove(&scn->scn_prefetch_queue, spic);
2152 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2153 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2154 }
2155 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2156 mutex_exit(&spa->spa_scrub_lock);
2157 }
2158
2159 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)2160 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2161 const zbookmark_phys_t *zb)
2162 {
2163 /*
2164 * We never skip over user/group accounting objects (obj<0)
2165 */
2166 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2167 (int64_t)zb->zb_object >= 0) {
2168 /*
2169 * If we already visited this bp & everything below (in
2170 * a prior txg sync), don't bother doing it again.
2171 */
2172 if (zbookmark_subtree_completed(dnp, zb,
2173 &scn->scn_phys.scn_bookmark))
2174 return (B_TRUE);
2175
2176 /*
2177 * If we found the block we're trying to resume from, or
2178 * we went past it, zero it out to indicate that it's OK
2179 * to start checking for suspending again.
2180 */
2181 if (zbookmark_subtree_tbd(dnp, zb,
2182 &scn->scn_phys.scn_bookmark)) {
2183 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2184 (longlong_t)zb->zb_objset,
2185 (longlong_t)zb->zb_object,
2186 (longlong_t)zb->zb_level,
2187 (longlong_t)zb->zb_blkid);
2188 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2189 }
2190 }
2191 return (B_FALSE);
2192 }
2193
2194 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2195 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2196 dmu_objset_type_t ostype, dmu_tx_t *tx);
2197 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2198 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2199 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2200
2201 /*
2202 * Return nonzero on i/o error.
2203 * Return new buf to write out in *bufp.
2204 */
2205 inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)2206 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2207 dnode_phys_t *dnp, const blkptr_t *bp,
2208 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2209 {
2210 dsl_pool_t *dp = scn->scn_dp;
2211 spa_t *spa = dp->dp_spa;
2212 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2213 int err;
2214
2215 ASSERT(!BP_IS_REDACTED(bp));
2216
2217 /*
2218 * There is an unlikely case of encountering dnodes with contradicting
2219 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2220 * or modified before commit 4254acb was merged. As it is not possible
2221 * to know which of the two is correct, report an error.
2222 */
2223 if (dnp != NULL &&
2224 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2225 scn->scn_phys.scn_errors++;
2226 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2227 return (SET_ERROR(EINVAL));
2228 }
2229
2230 if (BP_GET_LEVEL(bp) > 0) {
2231 arc_flags_t flags = ARC_FLAG_WAIT;
2232 int i;
2233 blkptr_t *cbp;
2234 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2235 arc_buf_t *buf;
2236
2237 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2238 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2239 if (err) {
2240 scn->scn_phys.scn_errors++;
2241 return (err);
2242 }
2243 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2244 zbookmark_phys_t czb;
2245
2246 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2247 zb->zb_level - 1,
2248 zb->zb_blkid * epb + i);
2249 dsl_scan_visitbp(cbp, &czb, dnp,
2250 ds, scn, ostype, tx);
2251 }
2252 arc_buf_destroy(buf, &buf);
2253 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2254 arc_flags_t flags = ARC_FLAG_WAIT;
2255 dnode_phys_t *cdnp;
2256 int i;
2257 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2258 arc_buf_t *buf;
2259
2260 if (BP_IS_PROTECTED(bp)) {
2261 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2262 zio_flags |= ZIO_FLAG_RAW;
2263 }
2264
2265 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2266 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2267 if (err) {
2268 scn->scn_phys.scn_errors++;
2269 return (err);
2270 }
2271 for (i = 0, cdnp = buf->b_data; i < epb;
2272 i += cdnp->dn_extra_slots + 1,
2273 cdnp += cdnp->dn_extra_slots + 1) {
2274 dsl_scan_visitdnode(scn, ds, ostype,
2275 cdnp, zb->zb_blkid * epb + i, tx);
2276 }
2277
2278 arc_buf_destroy(buf, &buf);
2279 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2280 arc_flags_t flags = ARC_FLAG_WAIT;
2281 objset_phys_t *osp;
2282 arc_buf_t *buf;
2283
2284 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2285 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2286 if (err) {
2287 scn->scn_phys.scn_errors++;
2288 return (err);
2289 }
2290
2291 osp = buf->b_data;
2292
2293 dsl_scan_visitdnode(scn, ds, osp->os_type,
2294 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2295
2296 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2297 /*
2298 * We also always visit user/group/project accounting
2299 * objects, and never skip them, even if we are
2300 * suspending. This is necessary so that the
2301 * space deltas from this txg get integrated.
2302 */
2303 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2304 dsl_scan_visitdnode(scn, ds, osp->os_type,
2305 &osp->os_projectused_dnode,
2306 DMU_PROJECTUSED_OBJECT, tx);
2307 dsl_scan_visitdnode(scn, ds, osp->os_type,
2308 &osp->os_groupused_dnode,
2309 DMU_GROUPUSED_OBJECT, tx);
2310 dsl_scan_visitdnode(scn, ds, osp->os_type,
2311 &osp->os_userused_dnode,
2312 DMU_USERUSED_OBJECT, tx);
2313 }
2314 arc_buf_destroy(buf, &buf);
2315 } else if (zfs_blkptr_verify(spa, bp,
2316 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2317 /*
2318 * Sanity check the block pointer contents, this is handled
2319 * by arc_read() for the cases above.
2320 */
2321 scn->scn_phys.scn_errors++;
2322 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2323 return (SET_ERROR(EINVAL));
2324 }
2325
2326 return (0);
2327 }
2328
2329 inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)2330 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2331 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2332 uint64_t object, dmu_tx_t *tx)
2333 {
2334 int j;
2335
2336 for (j = 0; j < dnp->dn_nblkptr; j++) {
2337 zbookmark_phys_t czb;
2338
2339 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2340 dnp->dn_nlevels - 1, j);
2341 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2342 &czb, dnp, ds, scn, ostype, tx);
2343 }
2344
2345 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2346 zbookmark_phys_t czb;
2347 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2348 0, DMU_SPILL_BLKID);
2349 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2350 &czb, dnp, ds, scn, ostype, tx);
2351 }
2352 }
2353
2354 /*
2355 * The arguments are in this order because mdb can only print the
2356 * first 5; we want them to be useful.
2357 */
2358 static void
dsl_scan_visitbp(const blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)2359 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2360 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2361 dmu_objset_type_t ostype, dmu_tx_t *tx)
2362 {
2363 dsl_pool_t *dp = scn->scn_dp;
2364
2365 if (dsl_scan_check_suspend(scn, zb))
2366 return;
2367
2368 if (dsl_scan_check_resume(scn, dnp, zb))
2369 return;
2370
2371 scn->scn_visited_this_txg++;
2372
2373 if (BP_IS_HOLE(bp)) {
2374 scn->scn_holes_this_txg++;
2375 return;
2376 }
2377
2378 if (BP_IS_REDACTED(bp)) {
2379 ASSERT(dsl_dataset_feature_is_active(ds,
2380 SPA_FEATURE_REDACTED_DATASETS));
2381 return;
2382 }
2383
2384 /*
2385 * Check if this block contradicts any filesystem flags.
2386 */
2387 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2388 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2389 ASSERT(dsl_dataset_feature_is_active(ds, f));
2390
2391 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2392 if (f != SPA_FEATURE_NONE)
2393 ASSERT(dsl_dataset_feature_is_active(ds, f));
2394
2395 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2396 if (f != SPA_FEATURE_NONE)
2397 ASSERT(dsl_dataset_feature_is_active(ds, f));
2398
2399 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2400 scn->scn_lt_min_this_txg++;
2401 return;
2402 }
2403
2404 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2405 return;
2406
2407 /*
2408 * If dsl_scan_ddt() has already visited this block, it will have
2409 * already done any translations or scrubbing, so don't call the
2410 * callback again.
2411 */
2412 if (ddt_class_contains(dp->dp_spa,
2413 scn->scn_phys.scn_ddt_class_max, bp)) {
2414 scn->scn_ddt_contained_this_txg++;
2415 return;
2416 }
2417
2418 /*
2419 * If this block is from the future (after cur_max_txg), then we
2420 * are doing this on behalf of a deleted snapshot, and we will
2421 * revisit the future block on the next pass of this dataset.
2422 * Don't scan it now unless we need to because something
2423 * under it was modified.
2424 */
2425 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2426 scn->scn_gt_max_this_txg++;
2427 return;
2428 }
2429
2430 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2431 }
2432
2433 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)2434 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2435 dmu_tx_t *tx)
2436 {
2437 zbookmark_phys_t zb;
2438 scan_prefetch_ctx_t *spc;
2439
2440 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2441 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2442
2443 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2444 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2445 zb.zb_objset, 0, 0, 0);
2446 } else {
2447 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2448 }
2449
2450 scn->scn_objsets_visited_this_txg++;
2451
2452 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2453 dsl_scan_prefetch(spc, bp, &zb);
2454 scan_prefetch_ctx_rele(spc, FTAG);
2455
2456 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2457
2458 dprintf_ds(ds, "finished scan%s", "");
2459 }
2460
2461 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)2462 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2463 {
2464 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2465 if (ds->ds_is_snapshot) {
2466 /*
2467 * Note:
2468 * - scn_cur_{min,max}_txg stays the same.
2469 * - Setting the flag is not really necessary if
2470 * scn_cur_max_txg == scn_max_txg, because there
2471 * is nothing after this snapshot that we care
2472 * about. However, we set it anyway and then
2473 * ignore it when we retraverse it in
2474 * dsl_scan_visitds().
2475 */
2476 scn_phys->scn_bookmark.zb_objset =
2477 dsl_dataset_phys(ds)->ds_next_snap_obj;
2478 zfs_dbgmsg("destroying ds %llu on %s; currently "
2479 "traversing; reset zb_objset to %llu",
2480 (u_longlong_t)ds->ds_object,
2481 ds->ds_dir->dd_pool->dp_spa->spa_name,
2482 (u_longlong_t)dsl_dataset_phys(ds)->
2483 ds_next_snap_obj);
2484 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2485 } else {
2486 SET_BOOKMARK(&scn_phys->scn_bookmark,
2487 ZB_DESTROYED_OBJSET, 0, 0, 0);
2488 zfs_dbgmsg("destroying ds %llu on %s; currently "
2489 "traversing; reset bookmark to -1,0,0,0",
2490 (u_longlong_t)ds->ds_object,
2491 ds->ds_dir->dd_pool->dp_spa->spa_name);
2492 }
2493 }
2494 }
2495
2496 /*
2497 * Invoked when a dataset is destroyed. We need to make sure that:
2498 *
2499 * 1) If it is the dataset that was currently being scanned, we write
2500 * a new dsl_scan_phys_t and marking the objset reference in it
2501 * as destroyed.
2502 * 2) Remove it from the work queue, if it was present.
2503 *
2504 * If the dataset was actually a snapshot, instead of marking the dataset
2505 * as destroyed, we instead substitute the next snapshot in line.
2506 */
2507 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2508 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2509 {
2510 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2511 dsl_scan_t *scn = dp->dp_scan;
2512 uint64_t mintxg;
2513
2514 if (!dsl_scan_is_running(scn))
2515 return;
2516
2517 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2518 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2519
2520 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2521 scan_ds_queue_remove(scn, ds->ds_object);
2522 if (ds->ds_is_snapshot)
2523 scan_ds_queue_insert(scn,
2524 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2525 }
2526
2527 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2528 ds->ds_object, &mintxg) == 0) {
2529 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2530 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2531 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2532 if (ds->ds_is_snapshot) {
2533 /*
2534 * We keep the same mintxg; it could be >
2535 * ds_creation_txg if the previous snapshot was
2536 * deleted too.
2537 */
2538 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2539 scn->scn_phys.scn_queue_obj,
2540 dsl_dataset_phys(ds)->ds_next_snap_obj,
2541 mintxg, tx) == 0);
2542 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2543 "replacing with %llu",
2544 (u_longlong_t)ds->ds_object,
2545 dp->dp_spa->spa_name,
2546 (u_longlong_t)dsl_dataset_phys(ds)->
2547 ds_next_snap_obj);
2548 } else {
2549 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2550 "removing",
2551 (u_longlong_t)ds->ds_object,
2552 dp->dp_spa->spa_name);
2553 }
2554 }
2555
2556 /*
2557 * dsl_scan_sync() should be called after this, and should sync
2558 * out our changed state, but just to be safe, do it here.
2559 */
2560 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2561 }
2562
2563 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2564 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2565 {
2566 if (scn_bookmark->zb_objset == ds->ds_object) {
2567 scn_bookmark->zb_objset =
2568 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2569 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2570 "reset zb_objset to %llu",
2571 (u_longlong_t)ds->ds_object,
2572 ds->ds_dir->dd_pool->dp_spa->spa_name,
2573 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2574 }
2575 }
2576
2577 /*
2578 * Called when a dataset is snapshotted. If we were currently traversing
2579 * this snapshot, we reset our bookmark to point at the newly created
2580 * snapshot. We also modify our work queue to remove the old snapshot and
2581 * replace with the new one.
2582 */
2583 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2584 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2585 {
2586 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2587 dsl_scan_t *scn = dp->dp_scan;
2588 uint64_t mintxg;
2589
2590 if (!dsl_scan_is_running(scn))
2591 return;
2592
2593 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2594
2595 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2596 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2597
2598 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2599 scan_ds_queue_remove(scn, ds->ds_object);
2600 scan_ds_queue_insert(scn,
2601 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2602 }
2603
2604 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2605 ds->ds_object, &mintxg) == 0) {
2606 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2607 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2608 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2609 scn->scn_phys.scn_queue_obj,
2610 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2611 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2612 "replacing with %llu",
2613 (u_longlong_t)ds->ds_object,
2614 dp->dp_spa->spa_name,
2615 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2616 }
2617
2618 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2619 }
2620
2621 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2622 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2623 zbookmark_phys_t *scn_bookmark)
2624 {
2625 if (scn_bookmark->zb_objset == ds1->ds_object) {
2626 scn_bookmark->zb_objset = ds2->ds_object;
2627 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2628 "reset zb_objset to %llu",
2629 (u_longlong_t)ds1->ds_object,
2630 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2631 (u_longlong_t)ds2->ds_object);
2632 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2633 scn_bookmark->zb_objset = ds1->ds_object;
2634 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2635 "reset zb_objset to %llu",
2636 (u_longlong_t)ds2->ds_object,
2637 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2638 (u_longlong_t)ds1->ds_object);
2639 }
2640 }
2641
2642 /*
2643 * Called when an origin dataset and its clone are swapped. If we were
2644 * currently traversing the dataset, we need to switch to traversing the
2645 * newly promoted clone.
2646 */
2647 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2648 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2649 {
2650 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2651 dsl_scan_t *scn = dp->dp_scan;
2652 uint64_t mintxg1, mintxg2;
2653 boolean_t ds1_queued, ds2_queued;
2654
2655 if (!dsl_scan_is_running(scn))
2656 return;
2657
2658 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2659 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2660
2661 /*
2662 * Handle the in-memory scan queue.
2663 */
2664 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2665 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2666
2667 /* Sanity checking. */
2668 if (ds1_queued) {
2669 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2670 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2671 }
2672 if (ds2_queued) {
2673 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2674 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2675 }
2676
2677 if (ds1_queued && ds2_queued) {
2678 /*
2679 * If both are queued, we don't need to do anything.
2680 * The swapping code below would not handle this case correctly,
2681 * since we can't insert ds2 if it is already there. That's
2682 * because scan_ds_queue_insert() prohibits a duplicate insert
2683 * and panics.
2684 */
2685 } else if (ds1_queued) {
2686 scan_ds_queue_remove(scn, ds1->ds_object);
2687 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2688 } else if (ds2_queued) {
2689 scan_ds_queue_remove(scn, ds2->ds_object);
2690 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2691 }
2692
2693 /*
2694 * Handle the on-disk scan queue.
2695 * The on-disk state is an out-of-date version of the in-memory state,
2696 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2697 * be different. Therefore we need to apply the swap logic to the
2698 * on-disk state independently of the in-memory state.
2699 */
2700 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2701 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2702 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2703 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2704
2705 /* Sanity checking. */
2706 if (ds1_queued) {
2707 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2708 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2709 }
2710 if (ds2_queued) {
2711 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2712 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2713 }
2714
2715 if (ds1_queued && ds2_queued) {
2716 /*
2717 * If both are queued, we don't need to do anything.
2718 * Alternatively, we could check for EEXIST from
2719 * zap_add_int_key() and back out to the original state, but
2720 * that would be more work than checking for this case upfront.
2721 */
2722 } else if (ds1_queued) {
2723 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2724 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2725 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2726 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2727 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2728 "replacing with %llu",
2729 (u_longlong_t)ds1->ds_object,
2730 dp->dp_spa->spa_name,
2731 (u_longlong_t)ds2->ds_object);
2732 } else if (ds2_queued) {
2733 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2734 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2735 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2736 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2737 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2738 "replacing with %llu",
2739 (u_longlong_t)ds2->ds_object,
2740 dp->dp_spa->spa_name,
2741 (u_longlong_t)ds1->ds_object);
2742 }
2743
2744 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2745 }
2746
2747 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2748 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2749 {
2750 uint64_t originobj = *(uint64_t *)arg;
2751 dsl_dataset_t *ds;
2752 int err;
2753 dsl_scan_t *scn = dp->dp_scan;
2754
2755 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2756 return (0);
2757
2758 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2759 if (err)
2760 return (err);
2761
2762 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2763 dsl_dataset_t *prev;
2764 err = dsl_dataset_hold_obj(dp,
2765 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2766
2767 dsl_dataset_rele(ds, FTAG);
2768 if (err)
2769 return (err);
2770 ds = prev;
2771 }
2772 mutex_enter(&scn->scn_queue_lock);
2773 scan_ds_queue_insert(scn, ds->ds_object,
2774 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2775 mutex_exit(&scn->scn_queue_lock);
2776 dsl_dataset_rele(ds, FTAG);
2777 return (0);
2778 }
2779
2780 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2781 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2782 {
2783 dsl_pool_t *dp = scn->scn_dp;
2784 dsl_dataset_t *ds;
2785
2786 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2787
2788 if (scn->scn_phys.scn_cur_min_txg >=
2789 scn->scn_phys.scn_max_txg) {
2790 /*
2791 * This can happen if this snapshot was created after the
2792 * scan started, and we already completed a previous snapshot
2793 * that was created after the scan started. This snapshot
2794 * only references blocks with:
2795 *
2796 * birth < our ds_creation_txg
2797 * cur_min_txg is no less than ds_creation_txg.
2798 * We have already visited these blocks.
2799 * or
2800 * birth > scn_max_txg
2801 * The scan requested not to visit these blocks.
2802 *
2803 * Subsequent snapshots (and clones) can reference our
2804 * blocks, or blocks with even higher birth times.
2805 * Therefore we do not need to visit them either,
2806 * so we do not add them to the work queue.
2807 *
2808 * Note that checking for cur_min_txg >= cur_max_txg
2809 * is not sufficient, because in that case we may need to
2810 * visit subsequent snapshots. This happens when min_txg > 0,
2811 * which raises cur_min_txg. In this case we will visit
2812 * this dataset but skip all of its blocks, because the
2813 * rootbp's birth time is < cur_min_txg. Then we will
2814 * add the next snapshots/clones to the work queue.
2815 */
2816 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2817 dsl_dataset_name(ds, dsname);
2818 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2819 "cur_min_txg (%llu) >= max_txg (%llu)",
2820 (longlong_t)dsobj, dsname,
2821 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2822 (longlong_t)scn->scn_phys.scn_max_txg);
2823 kmem_free(dsname, MAXNAMELEN);
2824
2825 goto out;
2826 }
2827
2828 /*
2829 * Only the ZIL in the head (non-snapshot) is valid. Even though
2830 * snapshots can have ZIL block pointers (which may be the same
2831 * BP as in the head), they must be ignored. In addition, $ORIGIN
2832 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2833 * need to look for a ZIL in it either. So we traverse the ZIL here,
2834 * rather than in scan_recurse(), because the regular snapshot
2835 * block-sharing rules don't apply to it.
2836 */
2837 if (!dsl_dataset_is_snapshot(ds) &&
2838 (dp->dp_origin_snap == NULL ||
2839 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2840 objset_t *os;
2841 if (dmu_objset_from_ds(ds, &os) != 0) {
2842 goto out;
2843 }
2844 dsl_scan_zil(dp, &os->os_zil_header);
2845 }
2846
2847 /*
2848 * Iterate over the bps in this ds.
2849 */
2850 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2851 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2852 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2853 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2854
2855 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2856 dsl_dataset_name(ds, dsname);
2857 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2858 "suspending=%u",
2859 (longlong_t)dsobj, dsname,
2860 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2861 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2862 (int)scn->scn_suspending);
2863 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2864
2865 if (scn->scn_suspending)
2866 goto out;
2867
2868 /*
2869 * We've finished this pass over this dataset.
2870 */
2871
2872 /*
2873 * If we did not completely visit this dataset, do another pass.
2874 */
2875 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2876 zfs_dbgmsg("incomplete pass on %s; visiting again",
2877 dp->dp_spa->spa_name);
2878 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2879 scan_ds_queue_insert(scn, ds->ds_object,
2880 scn->scn_phys.scn_cur_max_txg);
2881 goto out;
2882 }
2883
2884 /*
2885 * Add descendant datasets to work queue.
2886 */
2887 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2888 scan_ds_queue_insert(scn,
2889 dsl_dataset_phys(ds)->ds_next_snap_obj,
2890 dsl_dataset_phys(ds)->ds_creation_txg);
2891 }
2892 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2893 boolean_t usenext = B_FALSE;
2894 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2895 uint64_t count;
2896 /*
2897 * A bug in a previous version of the code could
2898 * cause upgrade_clones_cb() to not set
2899 * ds_next_snap_obj when it should, leading to a
2900 * missing entry. Therefore we can only use the
2901 * next_clones_obj when its count is correct.
2902 */
2903 int err = zap_count(dp->dp_meta_objset,
2904 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2905 if (err == 0 &&
2906 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2907 usenext = B_TRUE;
2908 }
2909
2910 if (usenext) {
2911 zap_cursor_t zc;
2912 zap_attribute_t *za = zap_attribute_alloc();
2913 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2914 dsl_dataset_phys(ds)->ds_next_clones_obj);
2915 zap_cursor_retrieve(&zc, za) == 0;
2916 (void) zap_cursor_advance(&zc)) {
2917 scan_ds_queue_insert(scn,
2918 zfs_strtonum(za->za_name, NULL),
2919 dsl_dataset_phys(ds)->ds_creation_txg);
2920 }
2921 zap_cursor_fini(&zc);
2922 zap_attribute_free(za);
2923 } else {
2924 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2925 enqueue_clones_cb, &ds->ds_object,
2926 DS_FIND_CHILDREN));
2927 }
2928 }
2929
2930 out:
2931 dsl_dataset_rele(ds, FTAG);
2932 }
2933
2934 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2935 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2936 {
2937 (void) arg;
2938 dsl_dataset_t *ds;
2939 int err;
2940 dsl_scan_t *scn = dp->dp_scan;
2941
2942 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2943 if (err)
2944 return (err);
2945
2946 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2947 dsl_dataset_t *prev;
2948 err = dsl_dataset_hold_obj(dp,
2949 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2950 if (err) {
2951 dsl_dataset_rele(ds, FTAG);
2952 return (err);
2953 }
2954
2955 /*
2956 * If this is a clone, we don't need to worry about it for now.
2957 */
2958 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2959 dsl_dataset_rele(ds, FTAG);
2960 dsl_dataset_rele(prev, FTAG);
2961 return (0);
2962 }
2963 dsl_dataset_rele(ds, FTAG);
2964 ds = prev;
2965 }
2966
2967 mutex_enter(&scn->scn_queue_lock);
2968 scan_ds_queue_insert(scn, ds->ds_object,
2969 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2970 mutex_exit(&scn->scn_queue_lock);
2971 dsl_dataset_rele(ds, FTAG);
2972 return (0);
2973 }
2974
2975 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)2976 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2977 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2978 {
2979 (void) tx;
2980 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2981 blkptr_t bp;
2982 zbookmark_phys_t zb = { 0 };
2983
2984 if (!dsl_scan_is_running(scn))
2985 return;
2986
2987 /*
2988 * This function is special because it is the only thing
2989 * that can add scan_io_t's to the vdev scan queues from
2990 * outside dsl_scan_sync(). For the most part this is ok
2991 * as long as it is called from within syncing context.
2992 * However, dsl_scan_sync() expects that no new sio's will
2993 * be added between when all the work for a scan is done
2994 * and the next txg when the scan is actually marked as
2995 * completed. This check ensures we do not issue new sio's
2996 * during this period.
2997 */
2998 if (scn->scn_done_txg != 0)
2999 return;
3000
3001 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3002 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3003 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
3004
3005 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
3006 continue;
3007 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3008
3009 scn->scn_visited_this_txg++;
3010 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3011 }
3012 }
3013
3014 /*
3015 * Scrub/dedup interaction.
3016 *
3017 * If there are N references to a deduped block, we don't want to scrub it
3018 * N times -- ideally, we should scrub it exactly once.
3019 *
3020 * We leverage the fact that the dde's replication class (ddt_class_t)
3021 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3022 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3023 *
3024 * To prevent excess scrubbing, the scrub begins by walking the DDT
3025 * to find all blocks with refcnt > 1, and scrubs each of these once.
3026 * Since there are two replication classes which contain blocks with
3027 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3028 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3029 *
3030 * There would be nothing more to say if a block's refcnt couldn't change
3031 * during a scrub, but of course it can so we must account for changes
3032 * in a block's replication class.
3033 *
3034 * Here's an example of what can occur:
3035 *
3036 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3037 * when visited during the top-down scrub phase, it will be scrubbed twice.
3038 * This negates our scrub optimization, but is otherwise harmless.
3039 *
3040 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3041 * on each visit during the top-down scrub phase, it will never be scrubbed.
3042 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3043 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3044 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3045 * while a scrub is in progress, it scrubs the block right then.
3046 */
3047 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)3048 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3049 {
3050 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3051 ddt_lightweight_entry_t ddlwe = {0};
3052 int error;
3053 uint64_t n = 0;
3054
3055 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3056 ddt_t *ddt;
3057
3058 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3059 break;
3060 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3061 (longlong_t)ddb->ddb_class,
3062 (longlong_t)ddb->ddb_type,
3063 (longlong_t)ddb->ddb_checksum,
3064 (longlong_t)ddb->ddb_cursor);
3065
3066 /* There should be no pending changes to the dedup table */
3067 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3068 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3069
3070 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3071 n++;
3072
3073 if (dsl_scan_check_suspend(scn, NULL))
3074 break;
3075 }
3076
3077 if (error == EAGAIN) {
3078 dsl_scan_check_suspend(scn, NULL);
3079 error = 0;
3080
3081 zfs_dbgmsg("waiting for ddt to become ready for scan "
3082 "on %s with class_max = %u; suspending=%u",
3083 scn->scn_dp->dp_spa->spa_name,
3084 (int)scn->scn_phys.scn_ddt_class_max,
3085 (int)scn->scn_suspending);
3086 } else
3087 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3088 "class_max = %u; suspending=%u", (longlong_t)n,
3089 scn->scn_dp->dp_spa->spa_name,
3090 (int)scn->scn_phys.scn_ddt_class_max,
3091 (int)scn->scn_suspending);
3092
3093 ASSERT(error == 0 || error == ENOENT);
3094 ASSERT(error != ENOENT ||
3095 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3096 }
3097
3098 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)3099 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3100 {
3101 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3102 if (ds->ds_is_snapshot)
3103 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3104 return (smt);
3105 }
3106
3107 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)3108 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3109 {
3110 scan_ds_t *sds;
3111 dsl_pool_t *dp = scn->scn_dp;
3112
3113 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3114 scn->scn_phys.scn_ddt_class_max) {
3115 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3116 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3117 dsl_scan_ddt(scn, tx);
3118 if (scn->scn_suspending)
3119 return;
3120 }
3121
3122 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3123 /* First do the MOS & ORIGIN */
3124
3125 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3126 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3127 dsl_scan_visit_rootbp(scn, NULL,
3128 &dp->dp_meta_rootbp, tx);
3129 if (scn->scn_suspending)
3130 return;
3131
3132 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3133 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3134 enqueue_cb, NULL, DS_FIND_CHILDREN));
3135 } else {
3136 dsl_scan_visitds(scn,
3137 dp->dp_origin_snap->ds_object, tx);
3138 }
3139 ASSERT(!scn->scn_suspending);
3140 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3141 ZB_DESTROYED_OBJSET) {
3142 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3143 /*
3144 * If we were suspended, continue from here. Note if the
3145 * ds we were suspended on was deleted, the zb_objset may
3146 * be -1, so we will skip this and find a new objset
3147 * below.
3148 */
3149 dsl_scan_visitds(scn, dsobj, tx);
3150 if (scn->scn_suspending)
3151 return;
3152 }
3153
3154 /*
3155 * In case we suspended right at the end of the ds, zero the
3156 * bookmark so we don't think that we're still trying to resume.
3157 */
3158 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3159
3160 /*
3161 * Keep pulling things out of the dataset avl queue. Updates to the
3162 * persistent zap-object-as-queue happen only at checkpoints.
3163 */
3164 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3165 dsl_dataset_t *ds;
3166 uint64_t dsobj = sds->sds_dsobj;
3167 uint64_t txg = sds->sds_txg;
3168
3169 /* dequeue and free the ds from the queue */
3170 scan_ds_queue_remove(scn, dsobj);
3171 sds = NULL;
3172
3173 /* set up min / max txg */
3174 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3175 if (txg != 0) {
3176 scn->scn_phys.scn_cur_min_txg =
3177 MAX(scn->scn_phys.scn_min_txg, txg);
3178 } else {
3179 scn->scn_phys.scn_cur_min_txg =
3180 MAX(scn->scn_phys.scn_min_txg,
3181 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3182 }
3183 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3184 dsl_dataset_rele(ds, FTAG);
3185
3186 dsl_scan_visitds(scn, dsobj, tx);
3187 if (scn->scn_suspending)
3188 return;
3189 }
3190
3191 /* No more objsets to fetch, we're done */
3192 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3193 ASSERT0(scn->scn_suspending);
3194 }
3195
3196 static uint64_t
dsl_scan_count_data_disks(spa_t * spa)3197 dsl_scan_count_data_disks(spa_t *spa)
3198 {
3199 vdev_t *rvd = spa->spa_root_vdev;
3200 uint64_t i, leaves = 0;
3201
3202 for (i = 0; i < rvd->vdev_children; i++) {
3203 vdev_t *vd = rvd->vdev_child[i];
3204 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3205 continue;
3206 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3207 }
3208 return (leaves);
3209 }
3210
3211 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)3212 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3213 {
3214 int i;
3215 uint64_t cur_size = 0;
3216
3217 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3218 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3219 }
3220
3221 q->q_total_zio_size_this_txg += cur_size;
3222 q->q_zios_this_txg++;
3223 }
3224
3225 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)3226 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3227 uint64_t end)
3228 {
3229 q->q_total_seg_size_this_txg += end - start;
3230 q->q_segs_this_txg++;
3231 }
3232
3233 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)3234 scan_io_queue_check_suspend(dsl_scan_t *scn)
3235 {
3236 /* See comment in dsl_scan_check_suspend() */
3237 uint64_t curr_time_ns = gethrtime();
3238 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3239 uint64_t sync_time_ns = curr_time_ns -
3240 scn->scn_dp->dp_spa->spa_sync_starttime;
3241 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3242 zfs_vdev_async_write_active_min_dirty_percent / 100;
3243 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3244 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3245
3246 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3247 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3248 txg_sync_waiting(scn->scn_dp) ||
3249 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3250 spa_shutting_down(scn->scn_dp->dp_spa));
3251 }
3252
3253 /*
3254 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3255 * disk. This consumes the io_list and frees the scan_io_t's. This is
3256 * called when emptying queues, either when we're up against the memory
3257 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3258 * processing the list before we finished. Any sios that were not issued
3259 * will remain in the io_list.
3260 */
3261 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)3262 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3263 {
3264 dsl_scan_t *scn = queue->q_scn;
3265 scan_io_t *sio;
3266 boolean_t suspended = B_FALSE;
3267
3268 while ((sio = list_head(io_list)) != NULL) {
3269 blkptr_t bp;
3270
3271 if (scan_io_queue_check_suspend(scn)) {
3272 suspended = B_TRUE;
3273 break;
3274 }
3275
3276 sio2bp(sio, &bp);
3277 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3278 &sio->sio_zb, queue);
3279 (void) list_remove_head(io_list);
3280 scan_io_queues_update_zio_stats(queue, &bp);
3281 sio_free(sio);
3282 }
3283 return (suspended);
3284 }
3285
3286 /*
3287 * This function removes sios from an IO queue which reside within a given
3288 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3289 * we only ever return a maximum of 32 sios at once. If there are more sios
3290 * to process within this segment that did not make it onto the list we
3291 * return B_TRUE and otherwise B_FALSE.
3292 */
3293 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,zfs_range_seg_t * rs,list_t * list)3294 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3295 list_t *list)
3296 {
3297 scan_io_t *srch_sio, *sio, *next_sio;
3298 avl_index_t idx;
3299 uint_t num_sios = 0;
3300 int64_t bytes_issued = 0;
3301
3302 ASSERT(rs != NULL);
3303 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3304
3305 srch_sio = sio_alloc(1);
3306 srch_sio->sio_nr_dvas = 1;
3307 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3308
3309 /*
3310 * The exact start of the extent might not contain any matching zios,
3311 * so if that's the case, examine the next one in the tree.
3312 */
3313 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3314 sio_free(srch_sio);
3315
3316 if (sio == NULL)
3317 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3318
3319 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3320 queue->q_exts_by_addr) && num_sios <= 32) {
3321 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3322 queue->q_exts_by_addr));
3323 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3324 queue->q_exts_by_addr));
3325
3326 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3327 avl_remove(&queue->q_sios_by_addr, sio);
3328 if (avl_is_empty(&queue->q_sios_by_addr))
3329 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3330 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3331
3332 bytes_issued += SIO_GET_ASIZE(sio);
3333 num_sios++;
3334 list_insert_tail(list, sio);
3335 sio = next_sio;
3336 }
3337
3338 /*
3339 * We limit the number of sios we process at once to 32 to avoid
3340 * biting off more than we can chew. If we didn't take everything
3341 * in the segment we update it to reflect the work we were able to
3342 * complete. Otherwise, we remove it from the range tree entirely.
3343 */
3344 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3345 queue->q_exts_by_addr)) {
3346 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3347 -bytes_issued);
3348 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3349 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3350 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3351 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3352 return (B_TRUE);
3353 } else {
3354 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3355 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3356 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3357 rstart);
3358 queue->q_last_ext_addr = -1;
3359 return (B_FALSE);
3360 }
3361 }
3362
3363 /*
3364 * This is called from the queue emptying thread and selects the next
3365 * extent from which we are to issue I/Os. The behavior of this function
3366 * depends on the state of the scan, the current memory consumption and
3367 * whether or not we are performing a scan shutdown.
3368 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3369 * needs to perform a checkpoint
3370 * 2) We select the largest available extent if we are up against the
3371 * memory limit.
3372 * 3) Otherwise we don't select any extents.
3373 */
3374 static zfs_range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)3375 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3376 {
3377 dsl_scan_t *scn = queue->q_scn;
3378 zfs_range_tree_t *rt = queue->q_exts_by_addr;
3379
3380 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3381 ASSERT(scn->scn_is_sorted);
3382
3383 if (!scn->scn_checkpointing && !scn->scn_clearing)
3384 return (NULL);
3385
3386 /*
3387 * During normal clearing, we want to issue our largest segments
3388 * first, keeping IO as sequential as possible, and leaving the
3389 * smaller extents for later with the hope that they might eventually
3390 * grow to larger sequential segments. However, when the scan is
3391 * checkpointing, no new extents will be added to the sorting queue,
3392 * so the way we are sorted now is as good as it will ever get.
3393 * In this case, we instead switch to issuing extents in LBA order.
3394 */
3395 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3396 zfs_scan_issue_strategy == 1)
3397 return (zfs_range_tree_first(rt));
3398
3399 /*
3400 * Try to continue previous extent if it is not completed yet. After
3401 * shrink in scan_io_queue_gather() it may no longer be the best, but
3402 * otherwise we leave shorter remnant every txg.
3403 */
3404 uint64_t start;
3405 uint64_t size = 1ULL << rt->rt_shift;
3406 zfs_range_seg_t *addr_rs;
3407 if (queue->q_last_ext_addr != -1) {
3408 start = queue->q_last_ext_addr;
3409 addr_rs = zfs_range_tree_find(rt, start, size);
3410 if (addr_rs != NULL)
3411 return (addr_rs);
3412 }
3413
3414 /*
3415 * Nothing to continue, so find new best extent.
3416 */
3417 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3418 if (v == NULL)
3419 return (NULL);
3420 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3421
3422 /*
3423 * We need to get the original entry in the by_addr tree so we can
3424 * modify it.
3425 */
3426 addr_rs = zfs_range_tree_find(rt, start, size);
3427 ASSERT3P(addr_rs, !=, NULL);
3428 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3429 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3430 return (addr_rs);
3431 }
3432
3433 static void
scan_io_queues_run_one(void * arg)3434 scan_io_queues_run_one(void *arg)
3435 {
3436 dsl_scan_io_queue_t *queue = arg;
3437 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3438 boolean_t suspended = B_FALSE;
3439 zfs_range_seg_t *rs;
3440 scan_io_t *sio;
3441 zio_t *zio;
3442 list_t sio_list;
3443
3444 ASSERT(queue->q_scn->scn_is_sorted);
3445
3446 list_create(&sio_list, sizeof (scan_io_t),
3447 offsetof(scan_io_t, sio_nodes.sio_list_node));
3448 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3449 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3450 mutex_enter(q_lock);
3451 queue->q_zio = zio;
3452
3453 /* Calculate maximum in-flight bytes for this vdev. */
3454 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3455 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3456
3457 /* reset per-queue scan statistics for this txg */
3458 queue->q_total_seg_size_this_txg = 0;
3459 queue->q_segs_this_txg = 0;
3460 queue->q_total_zio_size_this_txg = 0;
3461 queue->q_zios_this_txg = 0;
3462
3463 /* loop until we run out of time or sios */
3464 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3465 uint64_t seg_start = 0, seg_end = 0;
3466 boolean_t more_left;
3467
3468 ASSERT(list_is_empty(&sio_list));
3469
3470 /* loop while we still have sios left to process in this rs */
3471 do {
3472 scan_io_t *first_sio, *last_sio;
3473
3474 /*
3475 * We have selected which extent needs to be
3476 * processed next. Gather up the corresponding sios.
3477 */
3478 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3479 ASSERT(!list_is_empty(&sio_list));
3480 first_sio = list_head(&sio_list);
3481 last_sio = list_tail(&sio_list);
3482
3483 seg_end = SIO_GET_END_OFFSET(last_sio);
3484 if (seg_start == 0)
3485 seg_start = SIO_GET_OFFSET(first_sio);
3486
3487 /*
3488 * Issuing sios can take a long time so drop the
3489 * queue lock. The sio queue won't be updated by
3490 * other threads since we're in syncing context so
3491 * we can be sure that our trees will remain exactly
3492 * as we left them.
3493 */
3494 mutex_exit(q_lock);
3495 suspended = scan_io_queue_issue(queue, &sio_list);
3496 mutex_enter(q_lock);
3497
3498 if (suspended)
3499 break;
3500 } while (more_left);
3501
3502 /* update statistics for debugging purposes */
3503 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3504
3505 if (suspended)
3506 break;
3507 }
3508
3509 /*
3510 * If we were suspended in the middle of processing,
3511 * requeue any unfinished sios and exit.
3512 */
3513 while ((sio = list_remove_head(&sio_list)) != NULL)
3514 scan_io_queue_insert_impl(queue, sio);
3515
3516 queue->q_zio = NULL;
3517 mutex_exit(q_lock);
3518 zio_nowait(zio);
3519 list_destroy(&sio_list);
3520 }
3521
3522 /*
3523 * Performs an emptying run on all scan queues in the pool. This just
3524 * punches out one thread per top-level vdev, each of which processes
3525 * only that vdev's scan queue. We can parallelize the I/O here because
3526 * we know that each queue's I/Os only affect its own top-level vdev.
3527 *
3528 * This function waits for the queue runs to complete, and must be
3529 * called from dsl_scan_sync (or in general, syncing context).
3530 */
3531 static void
scan_io_queues_run(dsl_scan_t * scn)3532 scan_io_queues_run(dsl_scan_t *scn)
3533 {
3534 spa_t *spa = scn->scn_dp->dp_spa;
3535
3536 ASSERT(scn->scn_is_sorted);
3537 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3538
3539 if (scn->scn_queues_pending == 0)
3540 return;
3541
3542 if (scn->scn_taskq == NULL) {
3543 int nthreads = spa->spa_root_vdev->vdev_children;
3544
3545 /*
3546 * We need to make this taskq *always* execute as many
3547 * threads in parallel as we have top-level vdevs and no
3548 * less, otherwise strange serialization of the calls to
3549 * scan_io_queues_run_one can occur during spa_sync runs
3550 * and that significantly impacts performance.
3551 */
3552 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3553 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3554 }
3555
3556 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3557 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3558
3559 mutex_enter(&vd->vdev_scan_io_queue_lock);
3560 if (vd->vdev_scan_io_queue != NULL) {
3561 VERIFY(taskq_dispatch(scn->scn_taskq,
3562 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3563 TQ_SLEEP) != TASKQID_INVALID);
3564 }
3565 mutex_exit(&vd->vdev_scan_io_queue_lock);
3566 }
3567
3568 /*
3569 * Wait for the queues to finish issuing their IOs for this run
3570 * before we return. There may still be IOs in flight at this
3571 * point.
3572 */
3573 taskq_wait(scn->scn_taskq);
3574 }
3575
3576 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3577 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3578 {
3579 uint64_t elapsed_nanosecs;
3580
3581 if (zfs_recover)
3582 return (B_FALSE);
3583
3584 if (zfs_async_block_max_blocks != 0 &&
3585 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3586 return (B_TRUE);
3587 }
3588
3589 if (zfs_max_async_dedup_frees != 0 &&
3590 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3591 return (B_TRUE);
3592 }
3593
3594 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3595 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3596 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3597 txg_sync_waiting(scn->scn_dp)) ||
3598 spa_shutting_down(scn->scn_dp->dp_spa));
3599 }
3600
3601 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3602 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3603 {
3604 dsl_scan_t *scn = arg;
3605
3606 if (!scn->scn_is_bptree ||
3607 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3608 if (dsl_scan_async_block_should_pause(scn))
3609 return (SET_ERROR(ERESTART));
3610 }
3611
3612 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3613 dmu_tx_get_txg(tx), bp, 0));
3614 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3615 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3616 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3617 scn->scn_visited_this_txg++;
3618 if (BP_GET_DEDUP(bp))
3619 scn->scn_dedup_frees_this_txg++;
3620 return (0);
3621 }
3622
3623 static void
dsl_scan_update_stats(dsl_scan_t * scn)3624 dsl_scan_update_stats(dsl_scan_t *scn)
3625 {
3626 spa_t *spa = scn->scn_dp->dp_spa;
3627 uint64_t i;
3628 uint64_t seg_size_total = 0, zio_size_total = 0;
3629 uint64_t seg_count_total = 0, zio_count_total = 0;
3630
3631 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3632 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3633 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3634
3635 if (queue == NULL)
3636 continue;
3637
3638 seg_size_total += queue->q_total_seg_size_this_txg;
3639 zio_size_total += queue->q_total_zio_size_this_txg;
3640 seg_count_total += queue->q_segs_this_txg;
3641 zio_count_total += queue->q_zios_this_txg;
3642 }
3643
3644 if (seg_count_total == 0 || zio_count_total == 0) {
3645 scn->scn_avg_seg_size_this_txg = 0;
3646 scn->scn_avg_zio_size_this_txg = 0;
3647 scn->scn_segs_this_txg = 0;
3648 scn->scn_zios_this_txg = 0;
3649 return;
3650 }
3651
3652 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3653 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3654 scn->scn_segs_this_txg = seg_count_total;
3655 scn->scn_zios_this_txg = zio_count_total;
3656 }
3657
3658 static int
bpobj_dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3659 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3660 dmu_tx_t *tx)
3661 {
3662 ASSERT(!bp_freed);
3663 return (dsl_scan_free_block_cb(arg, bp, tx));
3664 }
3665
3666 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3667 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3668 dmu_tx_t *tx)
3669 {
3670 ASSERT(!bp_freed);
3671 dsl_scan_t *scn = arg;
3672 const dva_t *dva = &bp->blk_dva[0];
3673
3674 if (dsl_scan_async_block_should_pause(scn))
3675 return (SET_ERROR(ERESTART));
3676
3677 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3678 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3679 DVA_GET_ASIZE(dva), tx);
3680 scn->scn_visited_this_txg++;
3681 return (0);
3682 }
3683
3684 boolean_t
dsl_scan_active(dsl_scan_t * scn)3685 dsl_scan_active(dsl_scan_t *scn)
3686 {
3687 spa_t *spa = scn->scn_dp->dp_spa;
3688 uint64_t used = 0, comp, uncomp;
3689 boolean_t clones_left;
3690
3691 if (spa->spa_load_state != SPA_LOAD_NONE)
3692 return (B_FALSE);
3693 if (spa_shutting_down(spa))
3694 return (B_FALSE);
3695 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3696 (scn->scn_async_destroying && !scn->scn_async_stalled))
3697 return (B_TRUE);
3698
3699 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3700 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3701 &used, &comp, &uncomp);
3702 }
3703 clones_left = spa_livelist_delete_check(spa);
3704 return ((used != 0) || (clones_left));
3705 }
3706
3707 boolean_t
dsl_errorscrub_active(dsl_scan_t * scn)3708 dsl_errorscrub_active(dsl_scan_t *scn)
3709 {
3710 spa_t *spa = scn->scn_dp->dp_spa;
3711 if (spa->spa_load_state != SPA_LOAD_NONE)
3712 return (B_FALSE);
3713 if (spa_shutting_down(spa))
3714 return (B_FALSE);
3715 if (dsl_errorscrubbing(scn->scn_dp))
3716 return (B_TRUE);
3717 return (B_FALSE);
3718 }
3719
3720 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3721 dsl_scan_check_deferred(vdev_t *vd)
3722 {
3723 boolean_t need_resilver = B_FALSE;
3724
3725 for (int c = 0; c < vd->vdev_children; c++) {
3726 need_resilver |=
3727 dsl_scan_check_deferred(vd->vdev_child[c]);
3728 }
3729
3730 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3731 !vd->vdev_ops->vdev_op_leaf)
3732 return (need_resilver);
3733
3734 if (!vd->vdev_resilver_deferred)
3735 need_resilver = B_TRUE;
3736
3737 return (need_resilver);
3738 }
3739
3740 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3741 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3742 uint64_t phys_birth)
3743 {
3744 vdev_t *vd;
3745
3746 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3747
3748 if (vd->vdev_ops == &vdev_indirect_ops) {
3749 /*
3750 * The indirect vdev can point to multiple
3751 * vdevs. For simplicity, always create
3752 * the resilver zio_t. zio_vdev_io_start()
3753 * will bypass the child resilver i/o's if
3754 * they are on vdevs that don't have DTL's.
3755 */
3756 return (B_TRUE);
3757 }
3758
3759 if (DVA_GET_GANG(dva)) {
3760 /*
3761 * Gang members may be spread across multiple
3762 * vdevs, so the best estimate we have is the
3763 * scrub range, which has already been checked.
3764 * XXX -- it would be better to change our
3765 * allocation policy to ensure that all
3766 * gang members reside on the same vdev.
3767 */
3768 return (B_TRUE);
3769 }
3770
3771 /*
3772 * Check if the top-level vdev must resilver this offset.
3773 * When the offset does not intersect with a dirty leaf DTL
3774 * then it may be possible to skip the resilver IO. The psize
3775 * is provided instead of asize to simplify the check for RAIDZ.
3776 */
3777 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3778 return (B_FALSE);
3779
3780 /*
3781 * Check that this top-level vdev has a device under it which
3782 * is resilvering and is not deferred.
3783 */
3784 if (!dsl_scan_check_deferred(vd))
3785 return (B_FALSE);
3786
3787 return (B_TRUE);
3788 }
3789
3790 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3791 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3792 {
3793 dsl_scan_t *scn = dp->dp_scan;
3794 spa_t *spa = dp->dp_spa;
3795 int err = 0;
3796
3797 if (spa_suspend_async_destroy(spa))
3798 return (0);
3799
3800 if (zfs_free_bpobj_enabled &&
3801 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3802 scn->scn_is_bptree = B_FALSE;
3803 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3804 scn->scn_zio_root = zio_root(spa, NULL,
3805 NULL, ZIO_FLAG_MUSTSUCCEED);
3806 err = bpobj_iterate(&dp->dp_free_bpobj,
3807 bpobj_dsl_scan_free_block_cb, scn, tx);
3808 VERIFY0(zio_wait(scn->scn_zio_root));
3809 scn->scn_zio_root = NULL;
3810
3811 if (err != 0 && err != ERESTART)
3812 zfs_panic_recover("error %u from bpobj_iterate()", err);
3813 }
3814
3815 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3816 ASSERT(scn->scn_async_destroying);
3817 scn->scn_is_bptree = B_TRUE;
3818 scn->scn_zio_root = zio_root(spa, NULL,
3819 NULL, ZIO_FLAG_MUSTSUCCEED);
3820 err = bptree_iterate(dp->dp_meta_objset,
3821 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3822 VERIFY0(zio_wait(scn->scn_zio_root));
3823 scn->scn_zio_root = NULL;
3824
3825 if (err == EIO || err == ECKSUM) {
3826 err = 0;
3827 } else if (err != 0 && err != ERESTART) {
3828 zfs_panic_recover("error %u from "
3829 "traverse_dataset_destroyed()", err);
3830 }
3831
3832 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3833 /* finished; deactivate async destroy feature */
3834 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3835 ASSERT(!spa_feature_is_active(spa,
3836 SPA_FEATURE_ASYNC_DESTROY));
3837 VERIFY0(zap_remove(dp->dp_meta_objset,
3838 DMU_POOL_DIRECTORY_OBJECT,
3839 DMU_POOL_BPTREE_OBJ, tx));
3840 VERIFY0(bptree_free(dp->dp_meta_objset,
3841 dp->dp_bptree_obj, tx));
3842 dp->dp_bptree_obj = 0;
3843 scn->scn_async_destroying = B_FALSE;
3844 scn->scn_async_stalled = B_FALSE;
3845 } else {
3846 /*
3847 * If we didn't make progress, mark the async
3848 * destroy as stalled, so that we will not initiate
3849 * a spa_sync() on its behalf. Note that we only
3850 * check this if we are not finished, because if the
3851 * bptree had no blocks for us to visit, we can
3852 * finish without "making progress".
3853 */
3854 scn->scn_async_stalled =
3855 (scn->scn_visited_this_txg == 0);
3856 }
3857 }
3858 if (scn->scn_visited_this_txg) {
3859 zfs_dbgmsg("freed %llu blocks in %llums from "
3860 "free_bpobj/bptree on %s in txg %llu; err=%u",
3861 (longlong_t)scn->scn_visited_this_txg,
3862 (longlong_t)
3863 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3864 spa->spa_name, (longlong_t)tx->tx_txg, err);
3865 scn->scn_visited_this_txg = 0;
3866 scn->scn_dedup_frees_this_txg = 0;
3867
3868 /*
3869 * Write out changes to the DDT and the BRT that may be required
3870 * as a result of the blocks freed. This ensures that the DDT
3871 * and the BRT are clean when a scrub/resilver runs.
3872 */
3873 ddt_sync(spa, tx->tx_txg);
3874 brt_sync(spa, tx->tx_txg);
3875 }
3876 if (err != 0)
3877 return (err);
3878 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3879 zfs_free_leak_on_eio &&
3880 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3881 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3882 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3883 /*
3884 * We have finished background destroying, but there is still
3885 * some space left in the dp_free_dir. Transfer this leaked
3886 * space to the dp_leak_dir.
3887 */
3888 if (dp->dp_leak_dir == NULL) {
3889 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3890 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3891 LEAK_DIR_NAME, tx);
3892 VERIFY0(dsl_pool_open_special_dir(dp,
3893 LEAK_DIR_NAME, &dp->dp_leak_dir));
3894 rrw_exit(&dp->dp_config_rwlock, FTAG);
3895 }
3896 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3897 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3898 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3899 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3900 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3901 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3902 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3903 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3904 }
3905
3906 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3907 !spa_livelist_delete_check(spa)) {
3908 /* finished; verify that space accounting went to zero */
3909 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3910 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3911 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3912 }
3913
3914 spa_notify_waiters(spa);
3915
3916 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3917 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3918 DMU_POOL_OBSOLETE_BPOBJ));
3919 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3920 ASSERT(spa_feature_is_active(dp->dp_spa,
3921 SPA_FEATURE_OBSOLETE_COUNTS));
3922
3923 scn->scn_is_bptree = B_FALSE;
3924 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3925 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3926 dsl_scan_obsolete_block_cb, scn, tx);
3927 if (err != 0 && err != ERESTART)
3928 zfs_panic_recover("error %u from bpobj_iterate()", err);
3929
3930 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3931 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3932 }
3933 return (0);
3934 }
3935
3936 static void
name_to_bookmark(char * buf,zbookmark_phys_t * zb)3937 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3938 {
3939 zb->zb_objset = zfs_strtonum(buf, &buf);
3940 ASSERT(*buf == ':');
3941 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3942 ASSERT(*buf == ':');
3943 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3944 ASSERT(*buf == ':');
3945 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3946 ASSERT(*buf == '\0');
3947 }
3948
3949 static void
name_to_object(char * buf,uint64_t * obj)3950 name_to_object(char *buf, uint64_t *obj)
3951 {
3952 *obj = zfs_strtonum(buf, &buf);
3953 ASSERT(*buf == '\0');
3954 }
3955
3956 static void
read_by_block_level(dsl_scan_t * scn,zbookmark_phys_t zb)3957 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3958 {
3959 dsl_pool_t *dp = scn->scn_dp;
3960 dsl_dataset_t *ds;
3961 objset_t *os;
3962 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3963 return;
3964
3965 if (dmu_objset_from_ds(ds, &os) != 0) {
3966 dsl_dataset_rele(ds, FTAG);
3967 return;
3968 }
3969
3970 /*
3971 * If the key is not loaded dbuf_dnode_findbp() will error out with
3972 * EACCES. However in that case dnode_hold() will eventually call
3973 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3974 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3975 * Avoid this by checking here if the keys are loaded, if not return.
3976 * If the keys are not loaded the head_errlog feature is meaningless
3977 * as we cannot figure out the birth txg of the block pointer.
3978 */
3979 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3980 ZFS_KEYSTATUS_UNAVAILABLE) {
3981 dsl_dataset_rele(ds, FTAG);
3982 return;
3983 }
3984
3985 dnode_t *dn;
3986 blkptr_t bp;
3987
3988 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3989 dsl_dataset_rele(ds, FTAG);
3990 return;
3991 }
3992
3993 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3994 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3995 NULL);
3996
3997 if (error) {
3998 rw_exit(&dn->dn_struct_rwlock);
3999 dnode_rele(dn, FTAG);
4000 dsl_dataset_rele(ds, FTAG);
4001 return;
4002 }
4003
4004 if (!error && BP_IS_HOLE(&bp)) {
4005 rw_exit(&dn->dn_struct_rwlock);
4006 dnode_rele(dn, FTAG);
4007 dsl_dataset_rele(ds, FTAG);
4008 return;
4009 }
4010
4011 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4012 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4013
4014 /* If it's an intent log block, failure is expected. */
4015 if (zb.zb_level == ZB_ZIL_LEVEL)
4016 zio_flags |= ZIO_FLAG_SPECULATIVE;
4017
4018 ASSERT(!BP_IS_EMBEDDED(&bp));
4019 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4020 rw_exit(&dn->dn_struct_rwlock);
4021 dnode_rele(dn, FTAG);
4022 dsl_dataset_rele(ds, FTAG);
4023 }
4024
4025 /*
4026 * We keep track of the scrubbed error blocks in "count". This will be used
4027 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4028 * function is modelled after check_filesystem().
4029 */
4030 static int
scrub_filesystem(spa_t * spa,uint64_t fs,zbookmark_err_phys_t * zep,int * count)4031 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4032 int *count)
4033 {
4034 dsl_dataset_t *ds;
4035 dsl_pool_t *dp = spa->spa_dsl_pool;
4036 dsl_scan_t *scn = dp->dp_scan;
4037
4038 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4039 if (error != 0)
4040 return (error);
4041
4042 uint64_t latest_txg;
4043 uint64_t txg_to_consider = spa->spa_syncing_txg;
4044 boolean_t check_snapshot = B_TRUE;
4045
4046 error = find_birth_txg(ds, zep, &latest_txg);
4047
4048 /*
4049 * If find_birth_txg() errors out, then err on the side of caution and
4050 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4051 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4052 * scrub all objects.
4053 */
4054 if (error == 0 && zep->zb_birth == latest_txg) {
4055 /* Block neither free nor re written. */
4056 zbookmark_phys_t zb;
4057 zep_to_zb(fs, zep, &zb);
4058 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4059 ZIO_FLAG_CANFAIL);
4060 /* We have already acquired the config lock for spa */
4061 read_by_block_level(scn, zb);
4062
4063 (void) zio_wait(scn->scn_zio_root);
4064 scn->scn_zio_root = NULL;
4065
4066 scn->errorscrub_phys.dep_examined++;
4067 scn->errorscrub_phys.dep_to_examine--;
4068 (*count)++;
4069 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4070 dsl_error_scrub_check_suspend(scn, &zb)) {
4071 dsl_dataset_rele(ds, FTAG);
4072 return (SET_ERROR(EFAULT));
4073 }
4074
4075 check_snapshot = B_FALSE;
4076 } else if (error == 0) {
4077 txg_to_consider = latest_txg;
4078 }
4079
4080 /*
4081 * Retrieve the number of snapshots if the dataset is not a snapshot.
4082 */
4083 uint64_t snap_count = 0;
4084 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4085
4086 error = zap_count(spa->spa_meta_objset,
4087 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4088
4089 if (error != 0) {
4090 dsl_dataset_rele(ds, FTAG);
4091 return (error);
4092 }
4093 }
4094
4095 if (snap_count == 0) {
4096 /* Filesystem without snapshots. */
4097 dsl_dataset_rele(ds, FTAG);
4098 return (0);
4099 }
4100
4101 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4102 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4103
4104 dsl_dataset_rele(ds, FTAG);
4105
4106 /* Check only snapshots created from this file system. */
4107 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4108 snap_obj_txg <= txg_to_consider) {
4109
4110 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4111 if (error != 0)
4112 return (error);
4113
4114 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4115 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4116 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4117 dsl_dataset_rele(ds, FTAG);
4118 continue;
4119 }
4120
4121 boolean_t affected = B_TRUE;
4122 if (check_snapshot) {
4123 uint64_t blk_txg;
4124 error = find_birth_txg(ds, zep, &blk_txg);
4125
4126 /*
4127 * Scrub the snapshot also when zb_birth == 0 or when
4128 * find_birth_txg() returns an error.
4129 */
4130 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4131 (error != 0) || (zep->zb_birth == 0);
4132 }
4133
4134 /* Scrub snapshots. */
4135 if (affected) {
4136 zbookmark_phys_t zb;
4137 zep_to_zb(snap_obj, zep, &zb);
4138 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4139 ZIO_FLAG_CANFAIL);
4140 /* We have already acquired the config lock for spa */
4141 read_by_block_level(scn, zb);
4142
4143 (void) zio_wait(scn->scn_zio_root);
4144 scn->scn_zio_root = NULL;
4145
4146 scn->errorscrub_phys.dep_examined++;
4147 scn->errorscrub_phys.dep_to_examine--;
4148 (*count)++;
4149 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4150 dsl_error_scrub_check_suspend(scn, &zb)) {
4151 dsl_dataset_rele(ds, FTAG);
4152 return (EFAULT);
4153 }
4154 }
4155 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4156 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4157 dsl_dataset_rele(ds, FTAG);
4158 }
4159 return (0);
4160 }
4161
4162 void
dsl_errorscrub_sync(dsl_pool_t * dp,dmu_tx_t * tx)4163 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4164 {
4165 spa_t *spa = dp->dp_spa;
4166 dsl_scan_t *scn = dp->dp_scan;
4167
4168 /*
4169 * Only process scans in sync pass 1.
4170 */
4171
4172 if (spa_sync_pass(spa) > 1)
4173 return;
4174
4175 /*
4176 * If the spa is shutting down, then stop scanning. This will
4177 * ensure that the scan does not dirty any new data during the
4178 * shutdown phase.
4179 */
4180 if (spa_shutting_down(spa))
4181 return;
4182
4183 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4184 return;
4185 }
4186
4187 if (dsl_scan_resilvering(scn->scn_dp)) {
4188 /* cancel the error scrub if resilver started */
4189 dsl_scan_cancel(scn->scn_dp);
4190 return;
4191 }
4192
4193 spa->spa_scrub_active = B_TRUE;
4194 scn->scn_sync_start_time = gethrtime();
4195
4196 /*
4197 * zfs_scan_suspend_progress can be set to disable scrub progress.
4198 * See more detailed comment in dsl_scan_sync().
4199 */
4200 if (zfs_scan_suspend_progress) {
4201 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4202 int mintime = zfs_scrub_min_time_ms;
4203
4204 while (zfs_scan_suspend_progress &&
4205 !txg_sync_waiting(scn->scn_dp) &&
4206 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4207 NSEC2MSEC(scan_time_ns) < mintime) {
4208 delay(hz);
4209 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4210 }
4211 return;
4212 }
4213
4214 int i = 0;
4215 zap_attribute_t *za;
4216 zbookmark_phys_t *zb;
4217 boolean_t limit_exceeded = B_FALSE;
4218
4219 za = zap_attribute_alloc();
4220 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4221
4222 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4223 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4224 zap_cursor_advance(&scn->errorscrub_cursor)) {
4225 name_to_bookmark(za->za_name, zb);
4226
4227 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4228 NULL, ZIO_FLAG_CANFAIL);
4229 dsl_pool_config_enter(dp, FTAG);
4230 read_by_block_level(scn, *zb);
4231 dsl_pool_config_exit(dp, FTAG);
4232
4233 (void) zio_wait(scn->scn_zio_root);
4234 scn->scn_zio_root = NULL;
4235
4236 scn->errorscrub_phys.dep_examined += 1;
4237 scn->errorscrub_phys.dep_to_examine -= 1;
4238 i++;
4239 if (i == zfs_scrub_error_blocks_per_txg ||
4240 dsl_error_scrub_check_suspend(scn, zb)) {
4241 limit_exceeded = B_TRUE;
4242 break;
4243 }
4244 }
4245
4246 if (!limit_exceeded)
4247 dsl_errorscrub_done(scn, B_TRUE, tx);
4248
4249 dsl_errorscrub_sync_state(scn, tx);
4250 zap_attribute_free(za);
4251 kmem_free(zb, sizeof (*zb));
4252 return;
4253 }
4254
4255 int error = 0;
4256 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4257 zap_cursor_advance(&scn->errorscrub_cursor)) {
4258
4259 zap_cursor_t *head_ds_cursor;
4260 zap_attribute_t *head_ds_attr;
4261 zbookmark_err_phys_t head_ds_block;
4262
4263 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4264 head_ds_attr = zap_attribute_alloc();
4265
4266 uint64_t head_ds_err_obj = za->za_first_integer;
4267 uint64_t head_ds;
4268 name_to_object(za->za_name, &head_ds);
4269 boolean_t config_held = B_FALSE;
4270 uint64_t top_affected_fs;
4271
4272 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4273 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4274 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4275
4276 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4277
4278 /*
4279 * In case we are called from spa_sync the pool
4280 * config is already held.
4281 */
4282 if (!dsl_pool_config_held(dp)) {
4283 dsl_pool_config_enter(dp, FTAG);
4284 config_held = B_TRUE;
4285 }
4286
4287 error = find_top_affected_fs(spa,
4288 head_ds, &head_ds_block, &top_affected_fs);
4289 if (error)
4290 break;
4291
4292 error = scrub_filesystem(spa, top_affected_fs,
4293 &head_ds_block, &i);
4294
4295 if (error == SET_ERROR(EFAULT)) {
4296 limit_exceeded = B_TRUE;
4297 break;
4298 }
4299 }
4300
4301 zap_cursor_fini(head_ds_cursor);
4302 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4303 zap_attribute_free(head_ds_attr);
4304
4305 if (config_held)
4306 dsl_pool_config_exit(dp, FTAG);
4307 }
4308
4309 zap_attribute_free(za);
4310 kmem_free(zb, sizeof (*zb));
4311 if (!limit_exceeded)
4312 dsl_errorscrub_done(scn, B_TRUE, tx);
4313
4314 dsl_errorscrub_sync_state(scn, tx);
4315 }
4316
4317 /*
4318 * This is the primary entry point for scans that is called from syncing
4319 * context. Scans must happen entirely during syncing context so that we
4320 * can guarantee that blocks we are currently scanning will not change out
4321 * from under us. While a scan is active, this function controls how quickly
4322 * transaction groups proceed, instead of the normal handling provided by
4323 * txg_sync_thread().
4324 */
4325 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)4326 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4327 {
4328 int err = 0;
4329 dsl_scan_t *scn = dp->dp_scan;
4330 spa_t *spa = dp->dp_spa;
4331 state_sync_type_t sync_type = SYNC_OPTIONAL;
4332 int restart_early = 0;
4333
4334 if (spa->spa_resilver_deferred) {
4335 uint64_t to_issue, issued;
4336
4337 if (!spa_feature_is_active(dp->dp_spa,
4338 SPA_FEATURE_RESILVER_DEFER))
4339 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4340
4341 /*
4342 * See print_scan_scrub_resilver_status() issued/total_i
4343 * @ cmd/zpool/zpool_main.c
4344 */
4345 to_issue =
4346 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4347 issued =
4348 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4349 restart_early =
4350 zfs_resilver_disable_defer ||
4351 (issued < (to_issue * zfs_resilver_defer_percent / 100));
4352 }
4353
4354 /*
4355 * Only process scans in sync pass 1.
4356 */
4357 if (spa_sync_pass(spa) > 1)
4358 return;
4359
4360
4361 /*
4362 * Check for scn_restart_txg before checking spa_load_state, so
4363 * that we can restart an old-style scan while the pool is being
4364 * imported (see dsl_scan_init). We also restart scans if there
4365 * is a deferred resilver and the user has manually disabled
4366 * deferred resilvers via zfs_resilver_disable_defer, or if the
4367 * current scan progress is below zfs_resilver_defer_percent.
4368 */
4369 if (dsl_scan_restarting(scn, tx) || restart_early) {
4370 setup_sync_arg_t setup_sync_arg = {
4371 .func = POOL_SCAN_SCRUB,
4372 .txgstart = 0,
4373 .txgend = 0,
4374 };
4375 dsl_scan_done(scn, B_FALSE, tx);
4376 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4377 setup_sync_arg.func = POOL_SCAN_RESILVER;
4378 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4379 setup_sync_arg.func, dp->dp_spa->spa_name,
4380 (longlong_t)tx->tx_txg, restart_early);
4381 dsl_scan_setup_sync(&setup_sync_arg, tx);
4382 }
4383
4384 /*
4385 * If the spa is shutting down, then stop scanning. This will
4386 * ensure that the scan does not dirty any new data during the
4387 * shutdown phase.
4388 */
4389 if (spa_shutting_down(spa))
4390 return;
4391
4392 /*
4393 * If the scan is inactive due to a stalled async destroy, try again.
4394 */
4395 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4396 return;
4397
4398 /* reset scan statistics */
4399 scn->scn_visited_this_txg = 0;
4400 scn->scn_dedup_frees_this_txg = 0;
4401 scn->scn_holes_this_txg = 0;
4402 scn->scn_lt_min_this_txg = 0;
4403 scn->scn_gt_max_this_txg = 0;
4404 scn->scn_ddt_contained_this_txg = 0;
4405 scn->scn_objsets_visited_this_txg = 0;
4406 scn->scn_avg_seg_size_this_txg = 0;
4407 scn->scn_segs_this_txg = 0;
4408 scn->scn_avg_zio_size_this_txg = 0;
4409 scn->scn_zios_this_txg = 0;
4410 scn->scn_suspending = B_FALSE;
4411 scn->scn_sync_start_time = gethrtime();
4412 spa->spa_scrub_active = B_TRUE;
4413
4414 /*
4415 * First process the async destroys. If we suspend, don't do
4416 * any scrubbing or resilvering. This ensures that there are no
4417 * async destroys while we are scanning, so the scan code doesn't
4418 * have to worry about traversing it. It is also faster to free the
4419 * blocks than to scrub them.
4420 */
4421 err = dsl_process_async_destroys(dp, tx);
4422 if (err != 0)
4423 return;
4424
4425 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4426 return;
4427
4428 /*
4429 * Wait a few txgs after importing to begin scanning so that
4430 * we can get the pool imported quickly.
4431 */
4432 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4433 return;
4434
4435 /*
4436 * zfs_scan_suspend_progress can be set to disable scan progress.
4437 * We don't want to spin the txg_sync thread, so we add a delay
4438 * here to simulate the time spent doing a scan. This is mostly
4439 * useful for testing and debugging.
4440 */
4441 if (zfs_scan_suspend_progress) {
4442 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4443 uint_t mintime = (scn->scn_phys.scn_func ==
4444 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4445 zfs_scrub_min_time_ms;
4446
4447 while (zfs_scan_suspend_progress &&
4448 !txg_sync_waiting(scn->scn_dp) &&
4449 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4450 NSEC2MSEC(scan_time_ns) < mintime) {
4451 delay(hz);
4452 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4453 }
4454 return;
4455 }
4456
4457 /*
4458 * Disabled by default, set zfs_scan_report_txgs to report
4459 * average performance over the last zfs_scan_report_txgs TXGs.
4460 */
4461 if (zfs_scan_report_txgs != 0 &&
4462 tx->tx_txg % zfs_scan_report_txgs == 0) {
4463 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4464 spa_scan_stat_init(spa);
4465 }
4466
4467 /*
4468 * It is possible to switch from unsorted to sorted at any time,
4469 * but afterwards the scan will remain sorted unless reloaded from
4470 * a checkpoint after a reboot.
4471 */
4472 if (!zfs_scan_legacy) {
4473 scn->scn_is_sorted = B_TRUE;
4474 if (scn->scn_last_checkpoint == 0)
4475 scn->scn_last_checkpoint = ddi_get_lbolt();
4476 }
4477
4478 /*
4479 * For sorted scans, determine what kind of work we will be doing
4480 * this txg based on our memory limitations and whether or not we
4481 * need to perform a checkpoint.
4482 */
4483 if (scn->scn_is_sorted) {
4484 /*
4485 * If we are over our checkpoint interval, set scn_clearing
4486 * so that we can begin checkpointing immediately. The
4487 * checkpoint allows us to save a consistent bookmark
4488 * representing how much data we have scrubbed so far.
4489 * Otherwise, use the memory limit to determine if we should
4490 * scan for metadata or start issue scrub IOs. We accumulate
4491 * metadata until we hit our hard memory limit at which point
4492 * we issue scrub IOs until we are at our soft memory limit.
4493 */
4494 if (scn->scn_checkpointing ||
4495 ddi_get_lbolt() - scn->scn_last_checkpoint >
4496 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4497 if (!scn->scn_checkpointing)
4498 zfs_dbgmsg("begin scan checkpoint for %s",
4499 spa->spa_name);
4500
4501 scn->scn_checkpointing = B_TRUE;
4502 scn->scn_clearing = B_TRUE;
4503 } else {
4504 boolean_t should_clear = dsl_scan_should_clear(scn);
4505 if (should_clear && !scn->scn_clearing) {
4506 zfs_dbgmsg("begin scan clearing for %s",
4507 spa->spa_name);
4508 scn->scn_clearing = B_TRUE;
4509 } else if (!should_clear && scn->scn_clearing) {
4510 zfs_dbgmsg("finish scan clearing for %s",
4511 spa->spa_name);
4512 scn->scn_clearing = B_FALSE;
4513 }
4514 }
4515 } else {
4516 ASSERT0(scn->scn_checkpointing);
4517 ASSERT0(scn->scn_clearing);
4518 }
4519
4520 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4521 /* Need to scan metadata for more blocks to scrub */
4522 dsl_scan_phys_t *scnp = &scn->scn_phys;
4523 taskqid_t prefetch_tqid;
4524
4525 /*
4526 * Calculate the max number of in-flight bytes for pool-wide
4527 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4528 * Limits for the issuing phase are done per top-level vdev and
4529 * are handled separately.
4530 */
4531 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4532 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4533
4534 if (scnp->scn_ddt_bookmark.ddb_class <=
4535 scnp->scn_ddt_class_max) {
4536 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4537 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4538 "ddt bm=%llu/%llu/%llu/%llx",
4539 spa->spa_name,
4540 (longlong_t)tx->tx_txg,
4541 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4542 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4543 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4544 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4545 } else {
4546 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4547 "bm=%llu/%llu/%llu/%llu",
4548 spa->spa_name,
4549 (longlong_t)tx->tx_txg,
4550 (longlong_t)scnp->scn_bookmark.zb_objset,
4551 (longlong_t)scnp->scn_bookmark.zb_object,
4552 (longlong_t)scnp->scn_bookmark.zb_level,
4553 (longlong_t)scnp->scn_bookmark.zb_blkid);
4554 }
4555
4556 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4557 NULL, ZIO_FLAG_CANFAIL);
4558
4559 scn->scn_prefetch_stop = B_FALSE;
4560 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4561 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4562 ASSERT(prefetch_tqid != TASKQID_INVALID);
4563
4564 dsl_pool_config_enter(dp, FTAG);
4565 dsl_scan_visit(scn, tx);
4566 dsl_pool_config_exit(dp, FTAG);
4567
4568 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4569 scn->scn_prefetch_stop = B_TRUE;
4570 cv_broadcast(&spa->spa_scrub_io_cv);
4571 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4572
4573 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4574 (void) zio_wait(scn->scn_zio_root);
4575 scn->scn_zio_root = NULL;
4576
4577 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4578 "(%llu os's, %llu holes, %llu < mintxg, "
4579 "%llu in ddt, %llu > maxtxg)",
4580 (longlong_t)scn->scn_visited_this_txg,
4581 spa->spa_name,
4582 (longlong_t)NSEC2MSEC(gethrtime() -
4583 scn->scn_sync_start_time),
4584 (longlong_t)scn->scn_objsets_visited_this_txg,
4585 (longlong_t)scn->scn_holes_this_txg,
4586 (longlong_t)scn->scn_lt_min_this_txg,
4587 (longlong_t)scn->scn_ddt_contained_this_txg,
4588 (longlong_t)scn->scn_gt_max_this_txg);
4589
4590 if (!scn->scn_suspending) {
4591 ASSERT0(avl_numnodes(&scn->scn_queue));
4592 scn->scn_done_txg = tx->tx_txg + 1;
4593 if (scn->scn_is_sorted) {
4594 scn->scn_checkpointing = B_TRUE;
4595 scn->scn_clearing = B_TRUE;
4596 scn->scn_issued_before_pass +=
4597 spa->spa_scan_pass_issued;
4598 spa_scan_stat_init(spa);
4599 }
4600 zfs_dbgmsg("scan complete for %s txg %llu",
4601 spa->spa_name,
4602 (longlong_t)tx->tx_txg);
4603 }
4604 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4605 ASSERT(scn->scn_clearing);
4606
4607 /* need to issue scrubbing IOs from per-vdev queues */
4608 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4609 NULL, ZIO_FLAG_CANFAIL);
4610 scan_io_queues_run(scn);
4611 (void) zio_wait(scn->scn_zio_root);
4612 scn->scn_zio_root = NULL;
4613
4614 /* calculate and dprintf the current memory usage */
4615 (void) dsl_scan_should_clear(scn);
4616 dsl_scan_update_stats(scn);
4617
4618 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4619 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4620 (longlong_t)scn->scn_zios_this_txg,
4621 spa->spa_name,
4622 (longlong_t)scn->scn_segs_this_txg,
4623 (longlong_t)NSEC2MSEC(gethrtime() -
4624 scn->scn_sync_start_time),
4625 (longlong_t)scn->scn_avg_zio_size_this_txg,
4626 (longlong_t)scn->scn_avg_seg_size_this_txg);
4627 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4628 /* Finished with everything. Mark the scrub as complete */
4629 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4630 (longlong_t)tx->tx_txg,
4631 spa->spa_name);
4632 ASSERT3U(scn->scn_done_txg, !=, 0);
4633 ASSERT0(spa->spa_scrub_inflight);
4634 ASSERT0(scn->scn_queues_pending);
4635 dsl_scan_done(scn, B_TRUE, tx);
4636 sync_type = SYNC_MANDATORY;
4637 }
4638
4639 dsl_scan_sync_state(scn, tx, sync_type);
4640 }
4641
4642 static void
count_block_issued(spa_t * spa,const blkptr_t * bp,boolean_t all)4643 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4644 {
4645 /*
4646 * Don't count embedded bp's, since we already did the work of
4647 * scanning these when we scanned the containing block.
4648 */
4649 if (BP_IS_EMBEDDED(bp))
4650 return;
4651
4652 /*
4653 * Update the spa's stats on how many bytes we have issued.
4654 * Sequential scrubs create a zio for each DVA of the bp. Each
4655 * of these will include all DVAs for repair purposes, but the
4656 * zio code will only try the first one unless there is an issue.
4657 * Therefore, we should only count the first DVA for these IOs.
4658 */
4659 atomic_add_64(&spa->spa_scan_pass_issued,
4660 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4661 }
4662
4663 static void
count_block_skipped(dsl_scan_t * scn,const blkptr_t * bp,boolean_t all)4664 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4665 {
4666 if (BP_IS_EMBEDDED(bp))
4667 return;
4668 atomic_add_64(&scn->scn_phys.scn_skipped,
4669 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4670 }
4671
4672 static void
count_block(zfs_all_blkstats_t * zab,const blkptr_t * bp)4673 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4674 {
4675 /*
4676 * If we resume after a reboot, zab will be NULL; don't record
4677 * incomplete stats in that case.
4678 */
4679 if (zab == NULL)
4680 return;
4681
4682 for (int i = 0; i < 4; i++) {
4683 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4684 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4685
4686 if (t & DMU_OT_NEWTYPE)
4687 t = DMU_OT_OTHER;
4688 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4689 int equal;
4690
4691 zb->zb_count++;
4692 zb->zb_asize += BP_GET_ASIZE(bp);
4693 zb->zb_lsize += BP_GET_LSIZE(bp);
4694 zb->zb_psize += BP_GET_PSIZE(bp);
4695 zb->zb_gangs += BP_COUNT_GANG(bp);
4696
4697 switch (BP_GET_NDVAS(bp)) {
4698 case 2:
4699 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4700 DVA_GET_VDEV(&bp->blk_dva[1]))
4701 zb->zb_ditto_2_of_2_samevdev++;
4702 break;
4703 case 3:
4704 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4705 DVA_GET_VDEV(&bp->blk_dva[1])) +
4706 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4707 DVA_GET_VDEV(&bp->blk_dva[2])) +
4708 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4709 DVA_GET_VDEV(&bp->blk_dva[2]));
4710 if (equal == 1)
4711 zb->zb_ditto_2_of_3_samevdev++;
4712 else if (equal == 3)
4713 zb->zb_ditto_3_of_3_samevdev++;
4714 break;
4715 }
4716 }
4717 }
4718
4719 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)4720 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4721 {
4722 avl_index_t idx;
4723 dsl_scan_t *scn = queue->q_scn;
4724
4725 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4726
4727 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4728 atomic_add_64(&scn->scn_queues_pending, 1);
4729 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4730 /* block is already scheduled for reading */
4731 sio_free(sio);
4732 return;
4733 }
4734 avl_insert(&queue->q_sios_by_addr, sio, idx);
4735 queue->q_sio_memused += SIO_GET_MUSED(sio);
4736 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4737 SIO_GET_ASIZE(sio));
4738 }
4739
4740 /*
4741 * Given all the info we got from our metadata scanning process, we
4742 * construct a scan_io_t and insert it into the scan sorting queue. The
4743 * I/O must already be suitable for us to process. This is controlled
4744 * by dsl_scan_enqueue().
4745 */
4746 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)4747 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4748 int zio_flags, const zbookmark_phys_t *zb)
4749 {
4750 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4751
4752 ASSERT0(BP_IS_GANG(bp));
4753 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4754
4755 bp2sio(bp, sio, dva_i);
4756 sio->sio_flags = zio_flags;
4757 sio->sio_zb = *zb;
4758
4759 queue->q_last_ext_addr = -1;
4760 scan_io_queue_insert_impl(queue, sio);
4761 }
4762
4763 /*
4764 * Given a set of I/O parameters as discovered by the metadata traversal
4765 * process, attempts to place the I/O into the sorted queues (if allowed),
4766 * or immediately executes the I/O.
4767 */
4768 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)4769 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4770 const zbookmark_phys_t *zb)
4771 {
4772 spa_t *spa = dp->dp_spa;
4773
4774 ASSERT(!BP_IS_EMBEDDED(bp));
4775
4776 /*
4777 * Gang blocks are hard to issue sequentially, so we just issue them
4778 * here immediately instead of queuing them.
4779 */
4780 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4781 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4782 return;
4783 }
4784
4785 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4786 dva_t dva;
4787 vdev_t *vdev;
4788
4789 dva = bp->blk_dva[i];
4790 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4791 ASSERT(vdev != NULL);
4792
4793 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4794 if (vdev->vdev_scan_io_queue == NULL)
4795 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4796 ASSERT(dp->dp_scan != NULL);
4797 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4798 i, zio_flags, zb);
4799 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4800 }
4801 }
4802
4803 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)4804 dsl_scan_scrub_cb(dsl_pool_t *dp,
4805 const blkptr_t *bp, const zbookmark_phys_t *zb)
4806 {
4807 dsl_scan_t *scn = dp->dp_scan;
4808 spa_t *spa = dp->dp_spa;
4809 uint64_t phys_birth = BP_GET_BIRTH(bp);
4810 size_t psize = BP_GET_PSIZE(bp);
4811 boolean_t needs_io = B_FALSE;
4812 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4813
4814 count_block(dp->dp_blkstats, bp);
4815 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4816 phys_birth >= scn->scn_phys.scn_max_txg) {
4817 count_block_skipped(scn, bp, B_TRUE);
4818 return (0);
4819 }
4820
4821 /* Embedded BP's have phys_birth==0, so we reject them above. */
4822 ASSERT(!BP_IS_EMBEDDED(bp));
4823
4824 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4825 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4826 zio_flags |= ZIO_FLAG_SCRUB;
4827 needs_io = B_TRUE;
4828 } else {
4829 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4830 zio_flags |= ZIO_FLAG_RESILVER;
4831 needs_io = B_FALSE;
4832 }
4833
4834 /* If it's an intent log block, failure is expected. */
4835 if (zb->zb_level == ZB_ZIL_LEVEL)
4836 zio_flags |= ZIO_FLAG_SPECULATIVE;
4837
4838 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4839 const dva_t *dva = &bp->blk_dva[d];
4840
4841 /*
4842 * Keep track of how much data we've examined so that
4843 * zpool(8) status can make useful progress reports.
4844 */
4845 uint64_t asize = DVA_GET_ASIZE(dva);
4846 scn->scn_phys.scn_examined += asize;
4847 spa->spa_scan_pass_exam += asize;
4848
4849 /* if it's a resilver, this may not be in the target range */
4850 if (!needs_io)
4851 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4852 phys_birth);
4853 }
4854
4855 if (needs_io && !zfs_no_scrub_io) {
4856 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4857 } else {
4858 count_block_skipped(scn, bp, B_TRUE);
4859 }
4860
4861 /* do not relocate this block */
4862 return (0);
4863 }
4864
4865 static void
dsl_scan_scrub_done(zio_t * zio)4866 dsl_scan_scrub_done(zio_t *zio)
4867 {
4868 spa_t *spa = zio->io_spa;
4869 blkptr_t *bp = zio->io_bp;
4870 dsl_scan_io_queue_t *queue = zio->io_private;
4871
4872 abd_free(zio->io_abd);
4873
4874 if (queue == NULL) {
4875 mutex_enter(&spa->spa_scrub_lock);
4876 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4877 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4878 cv_broadcast(&spa->spa_scrub_io_cv);
4879 mutex_exit(&spa->spa_scrub_lock);
4880 } else {
4881 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4882 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4883 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4884 cv_broadcast(&queue->q_zio_cv);
4885 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4886 }
4887
4888 if (zio->io_error && (zio->io_error != ECKSUM ||
4889 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4890 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4891 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4892 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4893 ->errorscrub_phys.dep_errors);
4894 } else {
4895 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4896 .scn_errors);
4897 }
4898 }
4899 }
4900
4901 /*
4902 * Given a scanning zio's information, executes the zio. The zio need
4903 * not necessarily be only sortable, this function simply executes the
4904 * zio, no matter what it is. The optional queue argument allows the
4905 * caller to specify that they want per top level vdev IO rate limiting
4906 * instead of the legacy global limiting.
4907 */
4908 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)4909 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4910 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4911 {
4912 spa_t *spa = dp->dp_spa;
4913 dsl_scan_t *scn = dp->dp_scan;
4914 size_t size = BP_GET_PSIZE(bp);
4915 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4916 zio_t *pio;
4917
4918 if (queue == NULL) {
4919 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4920 mutex_enter(&spa->spa_scrub_lock);
4921 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4922 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4923 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4924 mutex_exit(&spa->spa_scrub_lock);
4925 pio = scn->scn_zio_root;
4926 } else {
4927 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4928
4929 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4930 mutex_enter(q_lock);
4931 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4932 cv_wait(&queue->q_zio_cv, q_lock);
4933 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4934 pio = queue->q_zio;
4935 mutex_exit(q_lock);
4936 }
4937
4938 ASSERT(pio != NULL);
4939 count_block_issued(spa, bp, queue == NULL);
4940 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4941 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4942 }
4943
4944 /*
4945 * This is the primary extent sorting algorithm. We balance two parameters:
4946 * 1) how many bytes of I/O are in an extent
4947 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4948 * Since we allow extents to have gaps between their constituent I/Os, it's
4949 * possible to have a fairly large extent that contains the same amount of
4950 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4951 * The algorithm sorts based on a score calculated from the extent's size,
4952 * the relative fill volume (in %) and a "fill weight" parameter that controls
4953 * the split between whether we prefer larger extents or more well populated
4954 * extents:
4955 *
4956 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4957 *
4958 * Example:
4959 * 1) assume extsz = 64 MiB
4960 * 2) assume fill = 32 MiB (extent is half full)
4961 * 3) assume fill_weight = 3
4962 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4963 * SCORE = 32M + (50 * 3 * 32M) / 100
4964 * SCORE = 32M + (4800M / 100)
4965 * SCORE = 32M + 48M
4966 * ^ ^
4967 * | +--- final total relative fill-based score
4968 * +--------- final total fill-based score
4969 * SCORE = 80M
4970 *
4971 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4972 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4973 * Note that as an optimization, we replace multiplication and division by
4974 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4975 *
4976 * Since we do not care if one extent is only few percent better than another,
4977 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4978 * put into otherwise unused due to ashift high bits of offset. This allows
4979 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4980 * with single operation. Plus it makes scrubs more sequential and reduces
4981 * chances that minor extent change move it within the B-tree.
4982 */
4983 __attribute__((always_inline)) inline
4984 static int
ext_size_compare(const void * x,const void * y)4985 ext_size_compare(const void *x, const void *y)
4986 {
4987 const uint64_t *a = x, *b = y;
4988
4989 return (TREE_CMP(*a, *b));
4990 }
4991
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf,uint64_t,ext_size_compare)4992 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4993 ext_size_compare)
4994
4995 static void
4996 ext_size_create(zfs_range_tree_t *rt, void *arg)
4997 {
4998 (void) rt;
4999 zfs_btree_t *size_tree = arg;
5000
5001 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
5002 sizeof (uint64_t));
5003 }
5004
5005 static void
ext_size_destroy(zfs_range_tree_t * rt,void * arg)5006 ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5007 {
5008 (void) rt;
5009 zfs_btree_t *size_tree = arg;
5010 ASSERT0(zfs_btree_numnodes(size_tree));
5011
5012 zfs_btree_destroy(size_tree);
5013 }
5014
5015 static uint64_t
ext_size_value(zfs_range_tree_t * rt,zfs_range_seg_gap_t * rsg)5016 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5017 {
5018 (void) rt;
5019 uint64_t size = rsg->rs_end - rsg->rs_start;
5020 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5021 fill_weight * rsg->rs_fill) >> 7);
5022 ASSERT3U(rt->rt_shift, >=, 8);
5023 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5024 }
5025
5026 static void
ext_size_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5027 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5028 {
5029 zfs_btree_t *size_tree = arg;
5030 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5031 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5032 zfs_btree_add(size_tree, &v);
5033 }
5034
5035 static void
ext_size_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5036 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5037 {
5038 zfs_btree_t *size_tree = arg;
5039 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5040 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5041 zfs_btree_remove(size_tree, &v);
5042 }
5043
5044 static void
ext_size_vacate(zfs_range_tree_t * rt,void * arg)5045 ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5046 {
5047 zfs_btree_t *size_tree = arg;
5048 zfs_btree_clear(size_tree);
5049 zfs_btree_destroy(size_tree);
5050
5051 ext_size_create(rt, arg);
5052 }
5053
5054 static const zfs_range_tree_ops_t ext_size_ops = {
5055 .rtop_create = ext_size_create,
5056 .rtop_destroy = ext_size_destroy,
5057 .rtop_add = ext_size_add,
5058 .rtop_remove = ext_size_remove,
5059 .rtop_vacate = ext_size_vacate
5060 };
5061
5062 /*
5063 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5064 * based on LBA-order (from lowest to highest).
5065 */
5066 static int
sio_addr_compare(const void * x,const void * y)5067 sio_addr_compare(const void *x, const void *y)
5068 {
5069 const scan_io_t *a = x, *b = y;
5070
5071 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5072 }
5073
5074 /* IO queues are created on demand when they are needed. */
5075 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)5076 scan_io_queue_create(vdev_t *vd)
5077 {
5078 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5079 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5080
5081 q->q_scn = scn;
5082 q->q_vd = vd;
5083 q->q_sio_memused = 0;
5084 q->q_last_ext_addr = -1;
5085 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5086 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5087 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5088 zfs_scan_max_ext_gap);
5089 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5090 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5091
5092 return (q);
5093 }
5094
5095 /*
5096 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5097 * No further execution of I/O occurs, anything pending in the queue is
5098 * simply freed without being executed.
5099 */
5100 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)5101 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5102 {
5103 dsl_scan_t *scn = queue->q_scn;
5104 scan_io_t *sio;
5105 void *cookie = NULL;
5106
5107 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5108
5109 if (!avl_is_empty(&queue->q_sios_by_addr))
5110 atomic_add_64(&scn->scn_queues_pending, -1);
5111 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5112 NULL) {
5113 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5114 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5115 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5116 sio_free(sio);
5117 }
5118
5119 ASSERT0(queue->q_sio_memused);
5120 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5121 zfs_range_tree_destroy(queue->q_exts_by_addr);
5122 avl_destroy(&queue->q_sios_by_addr);
5123 cv_destroy(&queue->q_zio_cv);
5124
5125 kmem_free(queue, sizeof (*queue));
5126 }
5127
5128 /*
5129 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5130 * called on behalf of vdev_top_transfer when creating or destroying
5131 * a mirror vdev due to zpool attach/detach.
5132 */
5133 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)5134 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5135 {
5136 mutex_enter(&svd->vdev_scan_io_queue_lock);
5137 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5138
5139 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5140 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5141 svd->vdev_scan_io_queue = NULL;
5142 if (tvd->vdev_scan_io_queue != NULL)
5143 tvd->vdev_scan_io_queue->q_vd = tvd;
5144
5145 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5146 mutex_exit(&svd->vdev_scan_io_queue_lock);
5147 }
5148
5149 static void
scan_io_queues_destroy(dsl_scan_t * scn)5150 scan_io_queues_destroy(dsl_scan_t *scn)
5151 {
5152 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5153
5154 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5155 vdev_t *tvd = rvd->vdev_child[i];
5156
5157 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5158 if (tvd->vdev_scan_io_queue != NULL)
5159 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5160 tvd->vdev_scan_io_queue = NULL;
5161 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5162 }
5163 }
5164
5165 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)5166 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5167 {
5168 dsl_pool_t *dp = spa->spa_dsl_pool;
5169 dsl_scan_t *scn = dp->dp_scan;
5170 vdev_t *vdev;
5171 kmutex_t *q_lock;
5172 dsl_scan_io_queue_t *queue;
5173 scan_io_t *srch_sio, *sio;
5174 avl_index_t idx;
5175 uint64_t start, size;
5176
5177 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5178 ASSERT(vdev != NULL);
5179 q_lock = &vdev->vdev_scan_io_queue_lock;
5180 queue = vdev->vdev_scan_io_queue;
5181
5182 mutex_enter(q_lock);
5183 if (queue == NULL) {
5184 mutex_exit(q_lock);
5185 return;
5186 }
5187
5188 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5189 bp2sio(bp, srch_sio, dva_i);
5190 start = SIO_GET_OFFSET(srch_sio);
5191 size = SIO_GET_ASIZE(srch_sio);
5192
5193 /*
5194 * We can find the zio in two states:
5195 * 1) Cold, just sitting in the queue of zio's to be issued at
5196 * some point in the future. In this case, all we do is
5197 * remove the zio from the q_sios_by_addr tree, decrement
5198 * its data volume from the containing zfs_range_seg_t and
5199 * resort the q_exts_by_size tree to reflect that the
5200 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5201 * the zfs_range_seg_t - this is usually rare enough not to be
5202 * worth the extra hassle of trying keep track of precise
5203 * extent boundaries.
5204 * 2) Hot, where the zio is currently in-flight in
5205 * dsl_scan_issue_ios. In this case, we can't simply
5206 * reach in and stop the in-flight zio's, so we instead
5207 * block the caller. Eventually, dsl_scan_issue_ios will
5208 * be done with issuing the zio's it gathered and will
5209 * signal us.
5210 */
5211 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5212 sio_free(srch_sio);
5213
5214 if (sio != NULL) {
5215 blkptr_t tmpbp;
5216
5217 /* Got it while it was cold in the queue */
5218 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5219 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5220 avl_remove(&queue->q_sios_by_addr, sio);
5221 if (avl_is_empty(&queue->q_sios_by_addr))
5222 atomic_add_64(&scn->scn_queues_pending, -1);
5223 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5224
5225 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5226 size));
5227 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5228
5229 /* count the block as though we skipped it */
5230 sio2bp(sio, &tmpbp);
5231 count_block_skipped(scn, &tmpbp, B_FALSE);
5232
5233 sio_free(sio);
5234 }
5235 mutex_exit(q_lock);
5236 }
5237
5238 /*
5239 * Callback invoked when a zio_free() zio is executing. This needs to be
5240 * intercepted to prevent the zio from deallocating a particular portion
5241 * of disk space and it then getting reallocated and written to, while we
5242 * still have it queued up for processing.
5243 */
5244 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)5245 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5246 {
5247 dsl_pool_t *dp = spa->spa_dsl_pool;
5248 dsl_scan_t *scn = dp->dp_scan;
5249
5250 ASSERT(!BP_IS_EMBEDDED(bp));
5251 ASSERT(scn != NULL);
5252 if (!dsl_scan_is_running(scn))
5253 return;
5254
5255 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5256 dsl_scan_freed_dva(spa, bp, i);
5257 }
5258
5259 /*
5260 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5261 * not started, start it. Otherwise, only restart if max txg in DTL range is
5262 * greater than the max txg in the current scan. If the DTL max is less than
5263 * the scan max, then the vdev has not missed any new data since the resilver
5264 * started, so a restart is not needed.
5265 */
5266 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)5267 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5268 {
5269 uint64_t min, max;
5270
5271 if (!vdev_resilver_needed(vd, &min, &max))
5272 return;
5273
5274 if (!dsl_scan_resilvering(dp)) {
5275 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5276 return;
5277 }
5278
5279 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5280 return;
5281
5282 /* restart is needed, check if it can be deferred */
5283 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5284 vdev_defer_resilver(vd);
5285 else
5286 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5287 }
5288
5289 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5290 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5291
5292 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5293 "Min millisecs to scrub per txg");
5294
5295 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5296 "Min millisecs to obsolete per txg");
5297
5298 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5299 "Min millisecs to free per txg");
5300
5301 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5302 "Min millisecs to resilver per txg");
5303
5304 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5305 "Set to prevent scans from progressing");
5306
5307 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5308 "Set to disable scrub I/O");
5309
5310 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5311 "Set to disable scrub prefetching");
5312
5313 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5314 "Max number of blocks freed in one txg");
5315
5316 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5317 "Max number of dedup blocks freed in one txg");
5318
5319 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5320 "Enable processing of the free_bpobj");
5321
5322 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5323 "Enable block statistics calculation during scrub");
5324
5325 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5326 "Fraction of RAM for scan hard limit");
5327
5328 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5329 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5330
5331 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5332 "Scrub using legacy non-sequential method");
5333
5334 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5335 "Scan progress on-disk checkpointing interval");
5336
5337 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5338 "Max gap in bytes between sequential scrub / resilver I/Os");
5339
5340 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5341 "Fraction of hard limit used as soft limit");
5342
5343 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5344 "Tunable to attempt to reduce lock contention");
5345
5346 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5347 "Tunable to adjust bias towards more filled segments during scans");
5348
5349 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5350 "Tunable to report resilver performance over the last N txgs");
5351
5352 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5353 "Process all resilvers immediately");
5354
5355 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5356 "Issued IO percent complete after which resilvers are deferred");
5357
5358 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5359 "Error blocks to be scrubbed in one txg");
5360