1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * BSD LICENSE
5 *
6 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 #include <dev/isci/isci.h>
35
36 #include <sys/conf.h>
37 #include <sys/malloc.h>
38
39 #include <cam/cam_periph.h>
40 #include <cam/cam_xpt_periph.h>
41
42 #include <dev/isci/scil/sci_memory_descriptor_list.h>
43 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
44
45 #include <dev/isci/scil/scif_controller.h>
46 #include <dev/isci/scil/scif_library.h>
47 #include <dev/isci/scil/scif_io_request.h>
48 #include <dev/isci/scil/scif_task_request.h>
49 #include <dev/isci/scil/scif_remote_device.h>
50 #include <dev/isci/scil/scif_domain.h>
51 #include <dev/isci/scil/scif_user_callback.h>
52 #include <dev/isci/scil/scic_sgpio.h>
53
54 #include <dev/led/led.h>
55
56 void isci_action(struct cam_sim *sim, union ccb *ccb);
57 void isci_poll(struct cam_sim *sim);
58
59 #define ccb_sim_ptr sim_priv.entries[0].ptr
60
61 /**
62 * @brief This user callback will inform the user that the controller has
63 * had a serious unexpected error. The user should not the error,
64 * disable interrupts, and wait for current ongoing processing to
65 * complete. Subsequently, the user should reset the controller.
66 *
67 * @param[in] controller This parameter specifies the controller that had
68 * an error.
69 *
70 * @return none
71 */
scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,SCI_CONTROLLER_ERROR error)72 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
73 SCI_CONTROLLER_ERROR error)
74 {
75
76 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
77 error);
78 }
79
80 /**
81 * @brief This user callback will inform the user that the controller has
82 * finished the start process.
83 *
84 * @param[in] controller This parameter specifies the controller that was
85 * started.
86 * @param[in] completion_status This parameter specifies the results of
87 * the start operation. SCI_SUCCESS indicates successful
88 * completion.
89 *
90 * @return none
91 */
scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,SCI_STATUS completion_status)92 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
93 SCI_STATUS completion_status)
94 {
95 uint32_t index;
96 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
97 sci_object_get_association(controller);
98
99 isci_controller->is_started = TRUE;
100
101 /* Set bits for all domains. We will clear them one-by-one once
102 * the domains complete discovery, or return error when calling
103 * scif_domain_discover. Once all bits are clear, we will register
104 * the controller with CAM.
105 */
106 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
107
108 for(index = 0; index < SCI_MAX_DOMAINS; index++) {
109 SCI_STATUS status;
110 SCI_DOMAIN_HANDLE_T domain =
111 isci_controller->domain[index].sci_object;
112
113 status = scif_domain_discover(
114 domain,
115 scif_domain_get_suggested_discover_timeout(domain),
116 DEVICE_TIMEOUT
117 );
118
119 if (status != SCI_SUCCESS)
120 {
121 isci_controller_domain_discovery_complete(
122 isci_controller, &isci_controller->domain[index]);
123 }
124 }
125 }
126
127 /**
128 * @brief This user callback will inform the user that the controller has
129 * finished the stop process. Note, after user calls
130 * scif_controller_stop(), before user receives this controller stop
131 * complete callback, user should not expect any callback from
132 * framework, such like scif_cb_domain_change_notification().
133 *
134 * @param[in] controller This parameter specifies the controller that was
135 * stopped.
136 * @param[in] completion_status This parameter specifies the results of
137 * the stop operation. SCI_SUCCESS indicates successful
138 * completion.
139 *
140 * @return none
141 */
scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,SCI_STATUS completion_status)142 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
143 SCI_STATUS completion_status)
144 {
145 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
146 sci_object_get_association(controller);
147
148 isci_controller->is_started = FALSE;
149 }
150
151 static void
isci_single_map(void * arg,bus_dma_segment_t * seg,int nseg,int error)152 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
153 {
154 SCI_PHYSICAL_ADDRESS *phys_addr = arg;
155
156 *phys_addr = seg[0].ds_addr;
157 }
158
159 /**
160 * @brief This method will be invoked to allocate memory dynamically.
161 *
162 * @param[in] controller This parameter represents the controller
163 * object for which to allocate memory.
164 * @param[out] mde This parameter represents the memory descriptor to
165 * be filled in by the user that will reference the newly
166 * allocated memory.
167 *
168 * @return none
169 */
scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)170 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
171 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
172 {
173 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
174 sci_object_get_association(controller);
175
176 /*
177 * Note this routine is only used for buffers needed to translate
178 * SCSI UNMAP commands to ATA DSM commands for SATA disks.
179 *
180 * We first try to pull a buffer from the controller's pool, and only
181 * call contigmalloc if one isn't there.
182 */
183 if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
184 sci_pool_get(isci_controller->unmap_buffer_pool,
185 mde->virtual_address);
186 } else
187 mde->virtual_address = contigmalloc(PAGE_SIZE,
188 M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
189 mde->constant_memory_alignment, 0);
190
191 if (mde->virtual_address != NULL)
192 bus_dmamap_load(isci_controller->buffer_dma_tag,
193 NULL, mde->virtual_address, PAGE_SIZE,
194 isci_single_map, &mde->physical_address,
195 BUS_DMA_NOWAIT);
196 }
197
198 /**
199 * @brief This method will be invoked to allocate memory dynamically.
200 *
201 * @param[in] controller This parameter represents the controller
202 * object for which to allocate memory.
203 * @param[out] mde This parameter represents the memory descriptor to
204 * be filled in by the user that will reference the newly
205 * allocated memory.
206 *
207 * @return none
208 */
scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)209 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
210 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
211 {
212 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
213 sci_object_get_association(controller);
214
215 /*
216 * Put the buffer back into the controller's buffer pool, rather
217 * than invoking configfree. This helps reduce chance we won't
218 * have buffers available when system is under memory pressure.
219 */
220 sci_pool_put(isci_controller->unmap_buffer_pool,
221 mde->virtual_address);
222 }
223
isci_controller_construct(struct ISCI_CONTROLLER * controller,struct isci_softc * isci)224 void isci_controller_construct(struct ISCI_CONTROLLER *controller,
225 struct isci_softc *isci)
226 {
227 SCI_CONTROLLER_HANDLE_T scif_controller_handle;
228
229 scif_library_allocate_controller(isci->sci_library_handle,
230 &scif_controller_handle);
231
232 scif_controller_construct(isci->sci_library_handle,
233 scif_controller_handle, NULL);
234
235 controller->isci = isci;
236 controller->scif_controller_handle = scif_controller_handle;
237
238 /* This allows us to later use
239 * sci_object_get_association(scif_controller_handle)
240 * inside of a callback routine to get our struct ISCI_CONTROLLER object
241 */
242 sci_object_set_association(scif_controller_handle, (void *)controller);
243
244 controller->is_started = FALSE;
245 controller->is_frozen = FALSE;
246 controller->release_queued_ccbs = FALSE;
247 controller->sim = NULL;
248 controller->initial_discovery_mask = 0;
249
250 sci_fast_list_init(&controller->pending_device_reset_list);
251
252 mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
253
254 uint32_t domain_index;
255
256 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
257 isci_domain_construct( &controller->domain[domain_index],
258 domain_index, controller);
259 }
260
261 controller->timer_memory = malloc(
262 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
263 M_NOWAIT | M_ZERO);
264
265 sci_pool_initialize(controller->timer_pool);
266
267 struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
268 controller->timer_memory;
269
270 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
271 sci_pool_put(controller->timer_pool, timer++);
272 }
273
274 sci_pool_initialize(controller->unmap_buffer_pool);
275 }
276
isci_led_fault_func(void * priv,int onoff)277 static void isci_led_fault_func(void *priv, int onoff)
278 {
279 struct ISCI_PHY *phy = priv;
280
281 /* map onoff to the fault LED */
282 phy->led_fault = onoff;
283 scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
284 phy->led_fault, phy->led_locate, 0);
285 }
286
isci_led_locate_func(void * priv,int onoff)287 static void isci_led_locate_func(void *priv, int onoff)
288 {
289 struct ISCI_PHY *phy = priv;
290
291 /* map onoff to the locate LED */
292 phy->led_locate = onoff;
293 scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
294 phy->led_fault, phy->led_locate, 0);
295 }
296
isci_controller_initialize(struct ISCI_CONTROLLER * controller)297 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
298 {
299 SCIC_USER_PARAMETERS_T scic_user_parameters;
300 SCI_CONTROLLER_HANDLE_T scic_controller_handle;
301 char led_name[64];
302 unsigned long tunable;
303 uint32_t io_shortage;
304 uint32_t fail_on_timeout;
305 int i;
306
307 scic_controller_handle =
308 scif_controller_get_scic_handle(controller->scif_controller_handle);
309
310 if (controller->isci->oem_parameters_found == TRUE)
311 {
312 scic_oem_parameters_set(
313 scic_controller_handle,
314 &controller->oem_parameters,
315 (uint8_t)(controller->oem_parameters_version));
316 }
317
318 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
319
320 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
321 scic_user_parameters.sds1.no_outbound_task_timeout =
322 (uint8_t)tunable;
323
324 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
325 scic_user_parameters.sds1.ssp_max_occupancy_timeout =
326 (uint16_t)tunable;
327
328 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
329 scic_user_parameters.sds1.stp_max_occupancy_timeout =
330 (uint16_t)tunable;
331
332 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
333 scic_user_parameters.sds1.ssp_inactivity_timeout =
334 (uint16_t)tunable;
335
336 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
337 scic_user_parameters.sds1.stp_inactivity_timeout =
338 (uint16_t)tunable;
339
340 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
341 for (i = 0; i < SCI_MAX_PHYS; i++)
342 scic_user_parameters.sds1.phys[i].max_speed_generation =
343 (uint8_t)tunable;
344
345 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
346
347 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
348 * a workaround - one per domain.
349 */
350 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
351
352 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
353 &controller->queue_depth)) {
354 controller->queue_depth = max(1, min(controller->queue_depth,
355 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
356 }
357
358 /* Reserve one request so that we can ensure we have one available TC
359 * to do internal device resets.
360 */
361 controller->sim_queue_depth = controller->queue_depth - 1;
362
363 /* Although we save one TC to do internal device resets, it is possible
364 * we could end up using several TCs for simultaneous device resets
365 * while at the same time having CAM fill our controller queue. To
366 * simulate this condition, and how our driver handles it, we can set
367 * this io_shortage parameter, which will tell CAM that we have a
368 * large queue depth than we really do.
369 */
370 io_shortage = 0;
371 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
372 controller->sim_queue_depth += io_shortage;
373
374 fail_on_timeout = 1;
375 TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout);
376 controller->fail_on_task_timeout = fail_on_timeout;
377
378 /* Attach to CAM using xpt_bus_register now, then immediately freeze
379 * the simq. It will get released later when initial domain discovery
380 * is complete.
381 */
382 controller->has_been_scanned = FALSE;
383 mtx_lock(&controller->lock);
384 isci_controller_attach_to_cam(controller);
385 xpt_freeze_simq(controller->sim, 1);
386 mtx_unlock(&controller->lock);
387
388 for (i = 0; i < SCI_MAX_PHYS; i++) {
389 controller->phys[i].handle = scic_controller_handle;
390 controller->phys[i].index = i;
391
392 /* fault */
393 controller->phys[i].led_fault = 0;
394 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
395 controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
396 &controller->phys[i], led_name);
397
398 /* locate */
399 controller->phys[i].led_locate = 0;
400 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
401 controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
402 &controller->phys[i], led_name);
403 }
404
405 return (scif_controller_initialize(controller->scif_controller_handle));
406 }
407
isci_controller_allocate_memory(struct ISCI_CONTROLLER * controller)408 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
409 {
410 int error;
411 device_t device = controller->isci->device;
412 uint32_t max_segment_size = isci_io_request_get_max_io_size();
413 struct ISCI_MEMORY *uncached_controller_memory =
414 &controller->uncached_controller_memory;
415 struct ISCI_MEMORY *cached_controller_memory =
416 &controller->cached_controller_memory;
417 struct ISCI_MEMORY *request_memory =
418 &controller->request_memory;
419 POINTER_UINT virtual_address;
420 bus_addr_t physical_address;
421
422 controller->mdl = sci_controller_get_memory_descriptor_list_handle(
423 controller->scif_controller_handle);
424
425 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
426 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
427
428 error = isci_allocate_dma_buffer(device, controller,
429 uncached_controller_memory);
430
431 if (error != 0)
432 return (error);
433
434 sci_mdl_decorator_assign_memory( controller->mdl,
435 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
436 uncached_controller_memory->virtual_address,
437 uncached_controller_memory->physical_address);
438
439 cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
440 controller->mdl,
441 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
442 );
443
444 error = isci_allocate_dma_buffer(device, controller,
445 cached_controller_memory);
446
447 if (error != 0)
448 return (error);
449
450 sci_mdl_decorator_assign_memory(controller->mdl,
451 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
452 cached_controller_memory->virtual_address,
453 cached_controller_memory->physical_address);
454
455 request_memory->size =
456 controller->queue_depth * isci_io_request_get_object_size();
457
458 error = isci_allocate_dma_buffer(device, controller, request_memory);
459
460 if (error != 0)
461 return (error);
462
463 /* For STP PIO testing, we want to ensure we can force multiple SGLs
464 * since this has been a problem area in SCIL. This tunable parameter
465 * will allow us to force DMA segments to a smaller size, ensuring
466 * that even if a physically contiguous buffer is attached to this
467 * I/O, the DMA subsystem will pass us multiple segments in our DMA
468 * load callback.
469 */
470 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
471
472 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off
473 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This
474 * will enable better performance than creating the DMA maps every time we get
475 * an I/O.
476 */
477 error = bus_dma_tag_create(bus_get_dma_tag(device), 0x1,
478 ISCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
479 NULL, NULL, isci_io_request_get_max_io_size(),
480 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0,
481 busdma_lock_mutex, &controller->lock,
482 &controller->buffer_dma_tag);
483
484 if (error != 0)
485 return (error);
486
487 sci_pool_initialize(controller->request_pool);
488
489 virtual_address = request_memory->virtual_address;
490 physical_address = request_memory->physical_address;
491
492 for (int i = 0; i < controller->queue_depth; i++) {
493 struct ISCI_REQUEST *request =
494 (struct ISCI_REQUEST *)virtual_address;
495
496 isci_request_construct(request,
497 controller->scif_controller_handle,
498 controller->buffer_dma_tag, physical_address);
499
500 sci_pool_put(controller->request_pool, request);
501
502 virtual_address += isci_request_get_object_size();
503 physical_address += isci_request_get_object_size();
504 }
505
506 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
507 scif_remote_device_get_object_size();
508
509 controller->remote_device_memory = (uint8_t *) malloc(
510 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
511 M_NOWAIT | M_ZERO);
512
513 sci_pool_initialize(controller->remote_device_pool);
514
515 uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
516
517 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
518 struct ISCI_REMOTE_DEVICE *remote_device =
519 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
520
521 controller->remote_device[i] = NULL;
522 remote_device->index = i;
523 remote_device->is_resetting = FALSE;
524 remote_device->frozen_lun_mask = 0;
525 sci_fast_list_element_init(remote_device,
526 &remote_device->pending_device_reset_element);
527 TAILQ_INIT(&remote_device->queued_ccbs);
528 remote_device->release_queued_ccb = FALSE;
529 remote_device->queued_ccb_in_progress = NULL;
530
531 /*
532 * For the first SCI_MAX_DOMAINS device objects, do not put
533 * them in the pool, rather assign them to each domain. This
534 * ensures that any device attached directly to port "i" will
535 * always get CAM target id "i".
536 */
537 if (i < SCI_MAX_DOMAINS)
538 controller->domain[i].da_remote_device = remote_device;
539 else
540 sci_pool_put(controller->remote_device_pool,
541 remote_device);
542 remote_device_memory_ptr += remote_device_size;
543 }
544
545 return (0);
546 }
547
isci_controller_start(void * controller_handle)548 void isci_controller_start(void *controller_handle)
549 {
550 struct ISCI_CONTROLLER *controller =
551 (struct ISCI_CONTROLLER *)controller_handle;
552 SCI_CONTROLLER_HANDLE_T scif_controller_handle =
553 controller->scif_controller_handle;
554
555 scif_controller_start(scif_controller_handle,
556 scif_controller_get_suggested_start_timeout(scif_controller_handle));
557
558 scic_controller_enable_interrupts(
559 scif_controller_get_scic_handle(controller->scif_controller_handle));
560 }
561
isci_controller_domain_discovery_complete(struct ISCI_CONTROLLER * isci_controller,struct ISCI_DOMAIN * isci_domain)562 void isci_controller_domain_discovery_complete(
563 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
564 {
565 if (!isci_controller->has_been_scanned)
566 {
567 /* Controller has not been scanned yet. We'll clear
568 * the discovery bit for this domain, then check if all bits
569 * are now clear. That would indicate that all domains are
570 * done with discovery and we can then proceed with initial
571 * scan.
572 */
573
574 isci_controller->initial_discovery_mask &=
575 ~(1 << isci_domain->index);
576
577 if (isci_controller->initial_discovery_mask == 0) {
578 struct isci_softc *driver = isci_controller->isci;
579 uint8_t next_index = isci_controller->index + 1;
580
581 isci_controller->has_been_scanned = TRUE;
582
583 /* Unfreeze simq to allow initial scan to proceed. */
584 xpt_release_simq(isci_controller->sim, TRUE);
585
586 if (next_index < driver->controller_count) {
587 /* There are more controllers that need to
588 * start. So start the next one.
589 */
590 isci_controller_start(
591 &driver->controllers[next_index]);
592 }
593 else
594 {
595 /* All controllers have been started and completed discovery.
596 * Disestablish the config hook while will signal to the
597 * kernel during boot that it is safe to try to find and
598 * mount the root partition.
599 */
600 config_intrhook_disestablish(
601 &driver->config_hook);
602 }
603 }
604 }
605 }
606
isci_controller_attach_to_cam(struct ISCI_CONTROLLER * controller)607 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
608 {
609 struct isci_softc *isci = controller->isci;
610 device_t parent = device_get_parent(isci->device);
611 int unit = device_get_unit(isci->device);
612 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
613
614 if(isci_devq == NULL) {
615 isci_log_message(0, "ISCI", "isci_devq is NULL \n");
616 return (-1);
617 }
618
619 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
620 controller, unit, &controller->lock, controller->sim_queue_depth,
621 controller->sim_queue_depth, isci_devq);
622
623 if(controller->sim == NULL) {
624 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
625 cam_simq_free(isci_devq);
626 return (-1);
627 }
628
629 if(xpt_bus_register(controller->sim, parent, controller->index)
630 != CAM_SUCCESS) {
631 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
632 cam_sim_free(controller->sim, TRUE);
633 mtx_unlock(&controller->lock);
634 return (-1);
635 }
636
637 if(xpt_create_path(&controller->path, NULL,
638 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
639 CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
640 isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
641 xpt_bus_deregister(cam_sim_path(controller->sim));
642 cam_sim_free(controller->sim, TRUE);
643 mtx_unlock(&controller->lock);
644 return (-1);
645 }
646
647 return (0);
648 }
649
isci_poll(struct cam_sim * sim)650 void isci_poll(struct cam_sim *sim)
651 {
652 struct ISCI_CONTROLLER *controller =
653 (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
654
655 isci_interrupt_poll_handler(controller);
656 }
657
isci_action(struct cam_sim * sim,union ccb * ccb)658 void isci_action(struct cam_sim *sim, union ccb *ccb)
659 {
660 struct ISCI_CONTROLLER *controller =
661 (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
662
663 switch ( ccb->ccb_h.func_code ) {
664 case XPT_PATH_INQ:
665 {
666 struct ccb_pathinq *cpi = &ccb->cpi;
667 int bus = cam_sim_bus(sim);
668 ccb->ccb_h.ccb_sim_ptr = sim;
669 cpi->version_num = 1;
670 cpi->hba_inquiry = PI_TAG_ABLE;
671 cpi->target_sprt = 0;
672 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
673 PIM_UNMAPPED;
674 cpi->hba_eng_cnt = 0;
675 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
676 cpi->max_lun = ISCI_MAX_LUN;
677 cpi->maxio = isci_io_request_get_max_io_size();
678 cpi->unit_number = cam_sim_unit(sim);
679 cpi->bus_id = bus;
680 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
681 cpi->base_transfer_speed = 300000;
682 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
683 strlcpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
684 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
685 cpi->transport = XPORT_SAS;
686 cpi->transport_version = 0;
687 cpi->protocol = PROTO_SCSI;
688 cpi->protocol_version = SCSI_REV_SPC2;
689 cpi->ccb_h.status = CAM_REQ_CMP;
690 xpt_done(ccb);
691 }
692 break;
693 case XPT_GET_TRAN_SETTINGS:
694 {
695 struct ccb_trans_settings *general_settings = &ccb->cts;
696 struct ccb_trans_settings_sas *sas_settings =
697 &general_settings->xport_specific.sas;
698 struct ccb_trans_settings_scsi *scsi_settings =
699 &general_settings->proto_specific.scsi;
700 struct ISCI_REMOTE_DEVICE *remote_device;
701
702 remote_device = controller->remote_device[ccb->ccb_h.target_id];
703
704 if (remote_device == NULL) {
705 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
706 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
707 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
708 xpt_done(ccb);
709 break;
710 }
711
712 general_settings->protocol = PROTO_SCSI;
713 general_settings->transport = XPORT_SAS;
714 general_settings->protocol_version = SCSI_REV_SPC2;
715 general_settings->transport_version = 0;
716 scsi_settings->valid = CTS_SCSI_VALID_TQ;
717 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
718 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
719 ccb->ccb_h.status |= CAM_REQ_CMP;
720
721 sas_settings->bitrate =
722 isci_remote_device_get_bitrate(remote_device);
723
724 if (sas_settings->bitrate != 0)
725 sas_settings->valid = CTS_SAS_VALID_SPEED;
726
727 xpt_done(ccb);
728 }
729 break;
730 case XPT_SCSI_IO:
731 if (ccb->ccb_h.flags & CAM_CDB_PHYS) {
732 ccb->ccb_h.status = CAM_REQ_INVALID;
733 xpt_done(ccb);
734 break;
735 }
736 isci_io_request_execute_scsi_io(ccb, controller);
737 break;
738 case XPT_SMP_IO:
739 isci_io_request_execute_smp_io(ccb, controller);
740 break;
741 case XPT_SET_TRAN_SETTINGS:
742 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
743 ccb->ccb_h.status |= CAM_REQ_CMP;
744 xpt_done(ccb);
745 break;
746 case XPT_CALC_GEOMETRY:
747 cam_calc_geometry(&ccb->ccg, /*extended*/1);
748 xpt_done(ccb);
749 break;
750 case XPT_RESET_DEV:
751 {
752 struct ISCI_REMOTE_DEVICE *remote_device =
753 controller->remote_device[ccb->ccb_h.target_id];
754
755 if (remote_device != NULL)
756 isci_remote_device_reset(remote_device, ccb);
757 else {
758 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
759 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
760 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
761 xpt_done(ccb);
762 }
763 }
764 break;
765 case XPT_RESET_BUS:
766 ccb->ccb_h.status = CAM_REQ_CMP;
767 xpt_done(ccb);
768 break;
769 default:
770 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
771 ccb->ccb_h.func_code);
772 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
773 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
774 ccb->ccb_h.status |= CAM_REQ_INVALID;
775 xpt_done(ccb);
776 break;
777 }
778 }
779
780 /*
781 * Unfortunately, SCIL doesn't cleanly handle retry conditions.
782 * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So
783 * when SCIL denotes an I/O needs to be retried (typically because of mixing
784 * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
785 * these I/O internally. Once SCIL completes an I/O to this device, or we get
786 * a ready notification, we will retry the first I/O on the queue.
787 * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
788 * the context of the completion handler, so we need to retry these I/O after
789 * the completion handler is done executing.
790 */
791 void
isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER * controller)792 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
793 {
794 struct ISCI_REMOTE_DEVICE *dev;
795 struct ccb_hdr *ccb_h;
796 uint8_t *ptr;
797 int dev_idx;
798
799 KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
800
801 controller->release_queued_ccbs = FALSE;
802 for (dev_idx = 0;
803 dev_idx < SCI_MAX_REMOTE_DEVICES;
804 dev_idx++) {
805
806 dev = controller->remote_device[dev_idx];
807 if (dev != NULL &&
808 dev->release_queued_ccb == TRUE &&
809 dev->queued_ccb_in_progress == NULL) {
810 dev->release_queued_ccb = FALSE;
811 ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
812
813 if (ccb_h == NULL)
814 continue;
815
816 ptr = scsiio_cdb_ptr(&((union ccb *)ccb_h)->csio);
817 isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, *ptr);
818
819 dev->queued_ccb_in_progress = (union ccb *)ccb_h;
820 isci_io_request_execute_scsi_io(
821 (union ccb *)ccb_h, controller);
822 }
823 }
824 }
825