1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_ddb.h" 43 #include "opt_watchdog.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/asan.h> 48 #include <sys/bio.h> 49 #include <sys/buf.h> 50 #include <sys/capsicum.h> 51 #include <sys/condvar.h> 52 #include <sys/conf.h> 53 #include <sys/counter.h> 54 #include <sys/dirent.h> 55 #include <sys/event.h> 56 #include <sys/eventhandler.h> 57 #include <sys/extattr.h> 58 #include <sys/file.h> 59 #include <sys/fcntl.h> 60 #include <sys/jail.h> 61 #include <sys/kdb.h> 62 #include <sys/kernel.h> 63 #include <sys/kthread.h> 64 #include <sys/ktr.h> 65 #include <sys/limits.h> 66 #include <sys/lockf.h> 67 #include <sys/malloc.h> 68 #include <sys/mount.h> 69 #include <sys/namei.h> 70 #include <sys/pctrie.h> 71 #include <sys/priv.h> 72 #include <sys/reboot.h> 73 #include <sys/refcount.h> 74 #include <sys/rwlock.h> 75 #include <sys/sched.h> 76 #include <sys/sleepqueue.h> 77 #include <sys/smr.h> 78 #include <sys/smp.h> 79 #include <sys/stat.h> 80 #include <sys/sysctl.h> 81 #include <sys/syslog.h> 82 #include <sys/user.h> 83 #include <sys/vmmeter.h> 84 #include <sys/vnode.h> 85 #include <sys/watchdog.h> 86 87 #include <machine/stdarg.h> 88 89 #include <security/mac/mac_framework.h> 90 91 #include <vm/vm.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_extern.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_page.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/uma.h> 100 101 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS)) 102 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS 103 #endif 104 105 #ifdef DDB 106 #include <ddb/ddb.h> 107 #endif 108 109 static void delmntque(struct vnode *vp); 110 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 111 int slpflag, int slptimeo); 112 static void syncer_shutdown(void *arg, int howto); 113 static int vtryrecycle(struct vnode *vp, bool isvnlru); 114 static void v_init_counters(struct vnode *); 115 static void vn_seqc_init(struct vnode *); 116 static void vn_seqc_write_end_free(struct vnode *vp); 117 static void vgonel(struct vnode *); 118 static bool vhold_recycle_free(struct vnode *); 119 static void vdropl_recycle(struct vnode *vp); 120 static void vdrop_recycle(struct vnode *vp); 121 static void vfs_knllock(void *arg); 122 static void vfs_knlunlock(void *arg); 123 static void vfs_knl_assert_lock(void *arg, int what); 124 static void destroy_vpollinfo(struct vpollinfo *vi); 125 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 126 daddr_t startlbn, daddr_t endlbn); 127 static void vnlru_recalc(void); 128 129 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 130 "vnode configuration and statistics"); 131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 132 "vnode configuration"); 133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 134 "vnode statistics"); 135 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 136 "vnode recycling"); 137 138 /* 139 * Number of vnodes in existence. Increased whenever getnewvnode() 140 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. 141 */ 142 static u_long __exclusive_cache_line numvnodes; 143 144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 145 "Number of vnodes in existence (legacy)"); 146 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0, 147 "Number of vnodes in existence"); 148 149 static counter_u64_t vnodes_created; 150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 151 "Number of vnodes created by getnewvnode (legacy)"); 152 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created, 153 "Number of vnodes created by getnewvnode"); 154 155 /* 156 * Conversion tables for conversion from vnode types to inode formats 157 * and back. 158 */ 159 __enum_uint8(vtype) iftovt_tab[16] = { 160 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 161 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 162 }; 163 int vttoif_tab[10] = { 164 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 165 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 166 }; 167 168 /* 169 * List of allocates vnodes in the system. 170 */ 171 static TAILQ_HEAD(freelst, vnode) vnode_list; 172 static struct vnode *vnode_list_free_marker; 173 static struct vnode *vnode_list_reclaim_marker; 174 175 /* 176 * "Free" vnode target. Free vnodes are rarely completely free, but are 177 * just ones that are cheap to recycle. Usually they are for files which 178 * have been stat'd but not read; these usually have inode and namecache 179 * data attached to them. This target is the preferred minimum size of a 180 * sub-cache consisting mostly of such files. The system balances the size 181 * of this sub-cache with its complement to try to prevent either from 182 * thrashing while the other is relatively inactive. The targets express 183 * a preference for the best balance. 184 * 185 * "Above" this target there are 2 further targets (watermarks) related 186 * to recyling of free vnodes. In the best-operating case, the cache is 187 * exactly full, the free list has size between vlowat and vhiwat above the 188 * free target, and recycling from it and normal use maintains this state. 189 * Sometimes the free list is below vlowat or even empty, but this state 190 * is even better for immediate use provided the cache is not full. 191 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 192 * ones) to reach one of these states. The watermarks are currently hard- 193 * coded as 4% and 9% of the available space higher. These and the default 194 * of 25% for wantfreevnodes are too large if the memory size is large. 195 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 196 * whenever vnlru_proc() becomes active. 197 */ 198 static long wantfreevnodes; 199 static long __exclusive_cache_line freevnodes; 200 static long freevnodes_old; 201 202 static u_long recycles_count; 203 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0, 204 "Number of vnodes recycled to meet vnode cache targets (legacy)"); 205 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, 206 &recycles_count, 0, 207 "Number of vnodes recycled to meet vnode cache targets"); 208 209 static u_long recycles_free_count; 210 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS, 211 &recycles_free_count, 0, 212 "Number of free vnodes recycled to meet vnode cache targets (legacy)"); 213 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS, 214 &recycles_free_count, 0, 215 "Number of free vnodes recycled to meet vnode cache targets"); 216 217 static counter_u64_t direct_recycles_free_count; 218 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD, 219 &direct_recycles_free_count, 220 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets"); 221 222 static counter_u64_t vnode_skipped_requeues; 223 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues, 224 "Number of times LRU requeue was skipped due to lock contention"); 225 226 static __read_mostly bool vnode_can_skip_requeue; 227 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW, 228 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable"); 229 230 static u_long deferred_inact; 231 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, 232 &deferred_inact, 0, "Number of times inactive processing was deferred"); 233 234 /* To keep more than one thread at a time from running vfs_getnewfsid */ 235 static struct mtx mntid_mtx; 236 237 /* 238 * Lock for any access to the following: 239 * vnode_list 240 * numvnodes 241 * freevnodes 242 */ 243 static struct mtx __exclusive_cache_line vnode_list_mtx; 244 245 /* Publicly exported FS */ 246 struct nfs_public nfs_pub; 247 248 static uma_zone_t buf_trie_zone; 249 static smr_t buf_trie_smr; 250 251 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 252 static uma_zone_t vnode_zone; 253 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll"); 254 255 __read_frequently smr_t vfs_smr; 256 257 /* 258 * The workitem queue. 259 * 260 * It is useful to delay writes of file data and filesystem metadata 261 * for tens of seconds so that quickly created and deleted files need 262 * not waste disk bandwidth being created and removed. To realize this, 263 * we append vnodes to a "workitem" queue. When running with a soft 264 * updates implementation, most pending metadata dependencies should 265 * not wait for more than a few seconds. Thus, mounted on block devices 266 * are delayed only about a half the time that file data is delayed. 267 * Similarly, directory updates are more critical, so are only delayed 268 * about a third the time that file data is delayed. Thus, there are 269 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 270 * one each second (driven off the filesystem syncer process). The 271 * syncer_delayno variable indicates the next queue that is to be processed. 272 * Items that need to be processed soon are placed in this queue: 273 * 274 * syncer_workitem_pending[syncer_delayno] 275 * 276 * A delay of fifteen seconds is done by placing the request fifteen 277 * entries later in the queue: 278 * 279 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 280 * 281 */ 282 static int syncer_delayno; 283 static long syncer_mask; 284 LIST_HEAD(synclist, bufobj); 285 static struct synclist *syncer_workitem_pending; 286 /* 287 * The sync_mtx protects: 288 * bo->bo_synclist 289 * sync_vnode_count 290 * syncer_delayno 291 * syncer_state 292 * syncer_workitem_pending 293 * syncer_worklist_len 294 * rushjob 295 */ 296 static struct mtx sync_mtx; 297 static struct cv sync_wakeup; 298 299 #define SYNCER_MAXDELAY 32 300 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 301 static int syncdelay = 30; /* max time to delay syncing data */ 302 static int filedelay = 30; /* time to delay syncing files */ 303 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 304 "Time to delay syncing files (in seconds)"); 305 static int dirdelay = 29; /* time to delay syncing directories */ 306 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 307 "Time to delay syncing directories (in seconds)"); 308 static int metadelay = 28; /* time to delay syncing metadata */ 309 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 310 "Time to delay syncing metadata (in seconds)"); 311 static int rushjob; /* number of slots to run ASAP */ 312 static int stat_rush_requests; /* number of times I/O speeded up */ 313 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 314 "Number of times I/O speeded up (rush requests)"); 315 316 #define VDBATCH_SIZE 8 317 struct vdbatch { 318 u_int index; 319 struct mtx lock; 320 struct vnode *tab[VDBATCH_SIZE]; 321 }; 322 DPCPU_DEFINE_STATIC(struct vdbatch, vd); 323 324 static void vdbatch_dequeue(struct vnode *vp); 325 326 /* 327 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown; 328 * we probably don't want to pause for the whole second each time. 329 */ 330 #define SYNCER_SHUTDOWN_SPEEDUP 32 331 static int sync_vnode_count; 332 static int syncer_worklist_len; 333 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 334 syncer_state; 335 336 /* Target for maximum number of vnodes. */ 337 u_long desiredvnodes; 338 static u_long gapvnodes; /* gap between wanted and desired */ 339 static u_long vhiwat; /* enough extras after expansion */ 340 static u_long vlowat; /* minimal extras before expansion */ 341 static bool vstir; /* nonzero to stir non-free vnodes */ 342 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 343 344 static u_long vnlru_read_freevnodes(void); 345 346 /* 347 * Note that no attempt is made to sanitize these parameters. 348 */ 349 static int sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)350 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) 351 { 352 u_long val; 353 int error; 354 355 val = desiredvnodes; 356 error = sysctl_handle_long(oidp, &val, 0, req); 357 if (error != 0 || req->newptr == NULL) 358 return (error); 359 360 if (val == desiredvnodes) 361 return (0); 362 mtx_lock(&vnode_list_mtx); 363 desiredvnodes = val; 364 wantfreevnodes = desiredvnodes / 4; 365 vnlru_recalc(); 366 mtx_unlock(&vnode_list_mtx); 367 /* 368 * XXX There is no protection against multiple threads changing 369 * desiredvnodes at the same time. Locking above only helps vnlru and 370 * getnewvnode. 371 */ 372 vfs_hash_changesize(desiredvnodes); 373 cache_changesize(desiredvnodes); 374 return (0); 375 } 376 377 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 378 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 379 "LU", "Target for maximum number of vnodes (legacy)"); 380 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit, 381 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 382 "LU", "Target for maximum number of vnodes"); 383 384 static int sysctl_freevnodes(SYSCTL_HANDLER_ARGS)385 sysctl_freevnodes(SYSCTL_HANDLER_ARGS) 386 { 387 u_long rfreevnodes; 388 389 rfreevnodes = vnlru_read_freevnodes(); 390 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req)); 391 } 392 393 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes, 394 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 395 "LU", "Number of \"free\" vnodes (legacy)"); 396 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free, 397 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 398 "LU", "Number of \"free\" vnodes"); 399 400 static int sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)401 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) 402 { 403 u_long val; 404 int error; 405 406 val = wantfreevnodes; 407 error = sysctl_handle_long(oidp, &val, 0, req); 408 if (error != 0 || req->newptr == NULL) 409 return (error); 410 411 if (val == wantfreevnodes) 412 return (0); 413 mtx_lock(&vnode_list_mtx); 414 wantfreevnodes = val; 415 vnlru_recalc(); 416 mtx_unlock(&vnode_list_mtx); 417 return (0); 418 } 419 420 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, 421 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 422 "LU", "Target for minimum number of \"free\" vnodes (legacy)"); 423 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree, 424 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 425 "LU", "Target for minimum number of \"free\" vnodes"); 426 427 static int vnlru_nowhere; 428 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS, 429 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 430 431 static int sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)432 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) 433 { 434 struct vnode *vp; 435 struct nameidata nd; 436 char *buf; 437 unsigned long ndflags; 438 int error; 439 440 if (req->newptr == NULL) 441 return (EINVAL); 442 if (req->newlen >= PATH_MAX) 443 return (E2BIG); 444 445 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); 446 error = SYSCTL_IN(req, buf, req->newlen); 447 if (error != 0) 448 goto out; 449 450 buf[req->newlen] = '\0'; 451 452 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1; 453 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf); 454 if ((error = namei(&nd)) != 0) 455 goto out; 456 vp = nd.ni_vp; 457 458 if (VN_IS_DOOMED(vp)) { 459 /* 460 * This vnode is being recycled. Return != 0 to let the caller 461 * know that the sysctl had no effect. Return EAGAIN because a 462 * subsequent call will likely succeed (since namei will create 463 * a new vnode if necessary) 464 */ 465 error = EAGAIN; 466 goto putvnode; 467 } 468 469 vgone(vp); 470 putvnode: 471 vput(vp); 472 NDFREE_PNBUF(&nd); 473 out: 474 free(buf, M_TEMP); 475 return (error); 476 } 477 478 static int sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)479 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) 480 { 481 struct thread *td = curthread; 482 struct vnode *vp; 483 struct file *fp; 484 int error; 485 int fd; 486 487 if (req->newptr == NULL) 488 return (EBADF); 489 490 error = sysctl_handle_int(oidp, &fd, 0, req); 491 if (error != 0) 492 return (error); 493 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); 494 if (error != 0) 495 return (error); 496 vp = fp->f_vnode; 497 498 error = vn_lock(vp, LK_EXCLUSIVE); 499 if (error != 0) 500 goto drop; 501 502 vgone(vp); 503 VOP_UNLOCK(vp); 504 drop: 505 fdrop(fp, td); 506 return (error); 507 } 508 509 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, 510 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 511 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); 512 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, 513 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 514 sysctl_ftry_reclaim_vnode, "I", 515 "Try to reclaim a vnode by its file descriptor"); 516 517 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 518 #define vnsz2log 8 519 #ifndef DEBUG_LOCKS 520 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log && 521 sizeof(struct vnode) < 1UL << (vnsz2log + 1), 522 "vnsz2log needs to be updated"); 523 #endif 524 525 /* 526 * Support for the bufobj clean & dirty pctrie. 527 */ 528 static void * buf_trie_alloc(struct pctrie * ptree)529 buf_trie_alloc(struct pctrie *ptree) 530 { 531 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT)); 532 } 533 534 static void buf_trie_free(struct pctrie * ptree,void * node)535 buf_trie_free(struct pctrie *ptree, void *node) 536 { 537 uma_zfree_smr(buf_trie_zone, node); 538 } 539 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, 540 buf_trie_smr); 541 542 /* 543 * Lookup the next element greater than or equal to lblkno, accounting for the 544 * fact that, for pctries, negative values are greater than nonnegative ones. 545 */ 546 static struct buf * buf_lookup_ge(struct bufv * bv,daddr_t lblkno)547 buf_lookup_ge(struct bufv *bv, daddr_t lblkno) 548 { 549 struct buf *bp; 550 551 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno); 552 if (bp == NULL && lblkno < 0) 553 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0); 554 if (bp != NULL && bp->b_lblkno < lblkno) 555 bp = NULL; 556 return (bp); 557 } 558 559 /* 560 * Insert bp, and find the next element smaller than bp, accounting for the fact 561 * that, for pctries, negative values are greater than nonnegative ones. 562 */ 563 static int buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)564 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n) 565 { 566 int error; 567 568 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n); 569 if (error != EEXIST) { 570 if (*n == NULL && bp->b_lblkno >= 0) 571 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L); 572 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno) 573 *n = NULL; 574 } 575 return (error); 576 } 577 578 /* 579 * Initialize the vnode management data structures. 580 * 581 * Reevaluate the following cap on the number of vnodes after the physical 582 * memory size exceeds 512GB. In the limit, as the physical memory size 583 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 584 */ 585 #ifndef MAXVNODES_MAX 586 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ 587 #endif 588 589 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 590 591 static struct vnode * vn_alloc_marker(struct mount * mp)592 vn_alloc_marker(struct mount *mp) 593 { 594 struct vnode *vp; 595 596 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 597 vp->v_type = VMARKER; 598 vp->v_mount = mp; 599 600 return (vp); 601 } 602 603 static void vn_free_marker(struct vnode * vp)604 vn_free_marker(struct vnode *vp) 605 { 606 607 MPASS(vp->v_type == VMARKER); 608 free(vp, M_VNODE_MARKER); 609 } 610 611 #ifdef KASAN 612 static int vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)613 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused) 614 { 615 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0); 616 return (0); 617 } 618 619 static void vnode_dtor(void * mem,int size,void * arg __unused)620 vnode_dtor(void *mem, int size, void *arg __unused) 621 { 622 size_t end1, end2, off1, off2; 623 624 _Static_assert(offsetof(struct vnode, v_vnodelist) < 625 offsetof(struct vnode, v_dbatchcpu), 626 "KASAN marks require updating"); 627 628 off1 = offsetof(struct vnode, v_vnodelist); 629 off2 = offsetof(struct vnode, v_dbatchcpu); 630 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist); 631 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu); 632 633 /* 634 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even 635 * after the vnode has been freed. Try to get some KASAN coverage by 636 * marking everything except those two fields as invalid. Because 637 * KASAN's tracking is not byte-granular, any preceding fields sharing 638 * the same 8-byte aligned word must also be marked valid. 639 */ 640 641 /* Handle the area from the start until v_vnodelist... */ 642 off1 = rounddown2(off1, KASAN_SHADOW_SCALE); 643 kasan_mark(mem, off1, off1, KASAN_UMA_FREED); 644 645 /* ... then the area between v_vnodelist and v_dbatchcpu ... */ 646 off1 = roundup2(end1, KASAN_SHADOW_SCALE); 647 off2 = rounddown2(off2, KASAN_SHADOW_SCALE); 648 if (off2 > off1) 649 kasan_mark((void *)((char *)mem + off1), off2 - off1, 650 off2 - off1, KASAN_UMA_FREED); 651 652 /* ... and finally the area from v_dbatchcpu to the end. */ 653 off2 = roundup2(end2, KASAN_SHADOW_SCALE); 654 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2, 655 KASAN_UMA_FREED); 656 } 657 #endif /* KASAN */ 658 659 /* 660 * Initialize a vnode as it first enters the zone. 661 */ 662 static int vnode_init(void * mem,int size,int flags)663 vnode_init(void *mem, int size, int flags) 664 { 665 struct vnode *vp; 666 667 vp = mem; 668 bzero(vp, size); 669 /* 670 * Setup locks. 671 */ 672 vp->v_vnlock = &vp->v_lock; 673 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 674 /* 675 * By default, don't allow shared locks unless filesystems opt-in. 676 */ 677 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 678 LK_NOSHARE | LK_IS_VNODE); 679 /* 680 * Initialize bufobj. 681 */ 682 bufobj_init(&vp->v_bufobj, vp); 683 /* 684 * Initialize namecache. 685 */ 686 cache_vnode_init(vp); 687 /* 688 * Initialize rangelocks. 689 */ 690 rangelock_init(&vp->v_rl); 691 692 vp->v_dbatchcpu = NOCPU; 693 694 vp->v_state = VSTATE_DEAD; 695 696 /* 697 * Check vhold_recycle_free for an explanation. 698 */ 699 vp->v_holdcnt = VHOLD_NO_SMR; 700 vp->v_type = VNON; 701 mtx_lock(&vnode_list_mtx); 702 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); 703 mtx_unlock(&vnode_list_mtx); 704 return (0); 705 } 706 707 /* 708 * Free a vnode when it is cleared from the zone. 709 */ 710 static void vnode_fini(void * mem,int size)711 vnode_fini(void *mem, int size) 712 { 713 struct vnode *vp; 714 struct bufobj *bo; 715 716 vp = mem; 717 vdbatch_dequeue(vp); 718 mtx_lock(&vnode_list_mtx); 719 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 720 mtx_unlock(&vnode_list_mtx); 721 rangelock_destroy(&vp->v_rl); 722 lockdestroy(vp->v_vnlock); 723 mtx_destroy(&vp->v_interlock); 724 bo = &vp->v_bufobj; 725 rw_destroy(BO_LOCKPTR(bo)); 726 727 kasan_mark(mem, size, size, 0); 728 } 729 730 /* 731 * Provide the size of NFS nclnode and NFS fh for calculation of the 732 * vnode memory consumption. The size is specified directly to 733 * eliminate dependency on NFS-private header. 734 * 735 * Other filesystems may use bigger or smaller (like UFS and ZFS) 736 * private inode data, but the NFS-based estimation is ample enough. 737 * Still, we care about differences in the size between 64- and 32-bit 738 * platforms. 739 * 740 * Namecache structure size is heuristically 741 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 742 */ 743 #ifdef _LP64 744 #define NFS_NCLNODE_SZ (528 + 64) 745 #define NC_SZ 148 746 #else 747 #define NFS_NCLNODE_SZ (360 + 32) 748 #define NC_SZ 92 749 #endif 750 751 static void vntblinit(void * dummy __unused)752 vntblinit(void *dummy __unused) 753 { 754 struct vdbatch *vd; 755 uma_ctor ctor; 756 uma_dtor dtor; 757 int cpu, physvnodes, virtvnodes; 758 759 /* 760 * Desiredvnodes is a function of the physical memory size and the 761 * kernel's heap size. Generally speaking, it scales with the 762 * physical memory size. The ratio of desiredvnodes to the physical 763 * memory size is 1:16 until desiredvnodes exceeds 98,304. 764 * Thereafter, the 765 * marginal ratio of desiredvnodes to the physical memory size is 766 * 1:64. However, desiredvnodes is limited by the kernel's heap 767 * size. The memory required by desiredvnodes vnodes and vm objects 768 * must not exceed 1/10th of the kernel's heap size. 769 */ 770 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 771 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 772 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 773 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 774 desiredvnodes = min(physvnodes, virtvnodes); 775 if (desiredvnodes > MAXVNODES_MAX) { 776 if (bootverbose) 777 printf("Reducing kern.maxvnodes %lu -> %lu\n", 778 desiredvnodes, MAXVNODES_MAX); 779 desiredvnodes = MAXVNODES_MAX; 780 } 781 wantfreevnodes = desiredvnodes / 4; 782 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 783 TAILQ_INIT(&vnode_list); 784 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); 785 /* 786 * The lock is taken to appease WITNESS. 787 */ 788 mtx_lock(&vnode_list_mtx); 789 vnlru_recalc(); 790 mtx_unlock(&vnode_list_mtx); 791 vnode_list_free_marker = vn_alloc_marker(NULL); 792 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); 793 vnode_list_reclaim_marker = vn_alloc_marker(NULL); 794 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); 795 796 #ifdef KASAN 797 ctor = vnode_ctor; 798 dtor = vnode_dtor; 799 #else 800 ctor = NULL; 801 dtor = NULL; 802 #endif 803 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor, 804 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN); 805 uma_zone_set_smr(vnode_zone, vfs_smr); 806 807 /* 808 * Preallocate enough nodes to support one-per buf so that 809 * we can not fail an insert. reassignbuf() callers can not 810 * tolerate the insertion failure. 811 */ 812 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 813 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 814 UMA_ZONE_NOFREE | UMA_ZONE_SMR); 815 buf_trie_smr = uma_zone_get_smr(buf_trie_zone); 816 uma_prealloc(buf_trie_zone, nbuf); 817 818 vnodes_created = counter_u64_alloc(M_WAITOK); 819 direct_recycles_free_count = counter_u64_alloc(M_WAITOK); 820 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK); 821 822 /* 823 * Initialize the filesystem syncer. 824 */ 825 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 826 &syncer_mask); 827 syncer_maxdelay = syncer_mask + 1; 828 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 829 cv_init(&sync_wakeup, "syncer"); 830 831 CPU_FOREACH(cpu) { 832 vd = DPCPU_ID_PTR((cpu), vd); 833 bzero(vd, sizeof(*vd)); 834 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); 835 } 836 } 837 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 838 839 /* 840 * Mark a mount point as busy. Used to synchronize access and to delay 841 * unmounting. Eventually, mountlist_mtx is not released on failure. 842 * 843 * vfs_busy() is a custom lock, it can block the caller. 844 * vfs_busy() only sleeps if the unmount is active on the mount point. 845 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 846 * vnode belonging to mp. 847 * 848 * Lookup uses vfs_busy() to traverse mount points. 849 * root fs var fs 850 * / vnode lock A / vnode lock (/var) D 851 * /var vnode lock B /log vnode lock(/var/log) E 852 * vfs_busy lock C vfs_busy lock F 853 * 854 * Within each file system, the lock order is C->A->B and F->D->E. 855 * 856 * When traversing across mounts, the system follows that lock order: 857 * 858 * C->A->B 859 * | 860 * +->F->D->E 861 * 862 * The lookup() process for namei("/var") illustrates the process: 863 * 1. VOP_LOOKUP() obtains B while A is held 864 * 2. vfs_busy() obtains a shared lock on F while A and B are held 865 * 3. vput() releases lock on B 866 * 4. vput() releases lock on A 867 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held 868 * 6. vfs_unbusy() releases shared lock on F 869 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 870 * Attempt to lock A (instead of vp_crossmp) while D is held would 871 * violate the global order, causing deadlocks. 872 * 873 * dounmount() locks B while F is drained. Note that for stacked 874 * filesystems, D and B in the example above may be the same lock, 875 * which introdues potential lock order reversal deadlock between 876 * dounmount() and step 5 above. These filesystems may avoid the LOR 877 * by setting VV_CROSSLOCK on the covered vnode so that lock B will 878 * remain held until after step 5. 879 */ 880 int vfs_busy(struct mount * mp,int flags)881 vfs_busy(struct mount *mp, int flags) 882 { 883 struct mount_pcpu *mpcpu; 884 885 MPASS((flags & ~MBF_MASK) == 0); 886 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 887 888 if (vfs_op_thread_enter(mp, mpcpu)) { 889 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 890 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); 891 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); 892 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 893 vfs_mp_count_add_pcpu(mpcpu, lockref, 1); 894 vfs_op_thread_exit(mp, mpcpu); 895 if (flags & MBF_MNTLSTLOCK) 896 mtx_unlock(&mountlist_mtx); 897 return (0); 898 } 899 900 MNT_ILOCK(mp); 901 vfs_assert_mount_counters(mp); 902 MNT_REF(mp); 903 /* 904 * If mount point is currently being unmounted, sleep until the 905 * mount point fate is decided. If thread doing the unmounting fails, 906 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 907 * that this mount point has survived the unmount attempt and vfs_busy 908 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 909 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 910 * about to be really destroyed. vfs_busy needs to release its 911 * reference on the mount point in this case and return with ENOENT, 912 * telling the caller the mount it tried to busy is no longer valid. 913 */ 914 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 915 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), 916 ("%s: non-empty upper mount list with pending unmount", 917 __func__)); 918 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 919 MNT_REL(mp); 920 MNT_IUNLOCK(mp); 921 CTR1(KTR_VFS, "%s: failed busying before sleeping", 922 __func__); 923 return (ENOENT); 924 } 925 if (flags & MBF_MNTLSTLOCK) 926 mtx_unlock(&mountlist_mtx); 927 mp->mnt_kern_flag |= MNTK_MWAIT; 928 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 929 if (flags & MBF_MNTLSTLOCK) 930 mtx_lock(&mountlist_mtx); 931 MNT_ILOCK(mp); 932 } 933 if (flags & MBF_MNTLSTLOCK) 934 mtx_unlock(&mountlist_mtx); 935 mp->mnt_lockref++; 936 MNT_IUNLOCK(mp); 937 return (0); 938 } 939 940 /* 941 * Free a busy filesystem. 942 */ 943 void vfs_unbusy(struct mount * mp)944 vfs_unbusy(struct mount *mp) 945 { 946 struct mount_pcpu *mpcpu; 947 int c; 948 949 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 950 951 if (vfs_op_thread_enter(mp, mpcpu)) { 952 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 953 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1); 954 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 955 vfs_op_thread_exit(mp, mpcpu); 956 return; 957 } 958 959 MNT_ILOCK(mp); 960 vfs_assert_mount_counters(mp); 961 MNT_REL(mp); 962 c = --mp->mnt_lockref; 963 if (mp->mnt_vfs_ops == 0) { 964 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 965 MNT_IUNLOCK(mp); 966 return; 967 } 968 if (c < 0) 969 vfs_dump_mount_counters(mp); 970 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 971 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 972 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 973 mp->mnt_kern_flag &= ~MNTK_DRAINING; 974 wakeup(&mp->mnt_lockref); 975 } 976 MNT_IUNLOCK(mp); 977 } 978 979 /* 980 * Lookup a mount point by filesystem identifier. 981 */ 982 struct mount * vfs_getvfs(fsid_t * fsid)983 vfs_getvfs(fsid_t *fsid) 984 { 985 struct mount *mp; 986 987 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 988 mtx_lock(&mountlist_mtx); 989 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 990 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 991 vfs_ref(mp); 992 mtx_unlock(&mountlist_mtx); 993 return (mp); 994 } 995 } 996 mtx_unlock(&mountlist_mtx); 997 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 998 return ((struct mount *) 0); 999 } 1000 1001 /* 1002 * Lookup a mount point by filesystem identifier, busying it before 1003 * returning. 1004 * 1005 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 1006 * cache for popular filesystem identifiers. The cache is lockess, using 1007 * the fact that struct mount's are never freed. In worst case we may 1008 * get pointer to unmounted or even different filesystem, so we have to 1009 * check what we got, and go slow way if so. 1010 */ 1011 struct mount * vfs_busyfs(fsid_t * fsid)1012 vfs_busyfs(fsid_t *fsid) 1013 { 1014 #define FSID_CACHE_SIZE 256 1015 typedef struct mount * volatile vmp_t; 1016 static vmp_t cache[FSID_CACHE_SIZE]; 1017 struct mount *mp; 1018 int error; 1019 uint32_t hash; 1020 1021 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 1022 hash = fsid->val[0] ^ fsid->val[1]; 1023 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 1024 mp = cache[hash]; 1025 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0) 1026 goto slow; 1027 if (vfs_busy(mp, 0) != 0) { 1028 cache[hash] = NULL; 1029 goto slow; 1030 } 1031 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) 1032 return (mp); 1033 else 1034 vfs_unbusy(mp); 1035 1036 slow: 1037 mtx_lock(&mountlist_mtx); 1038 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1039 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 1040 error = vfs_busy(mp, MBF_MNTLSTLOCK); 1041 if (error) { 1042 cache[hash] = NULL; 1043 mtx_unlock(&mountlist_mtx); 1044 return (NULL); 1045 } 1046 cache[hash] = mp; 1047 return (mp); 1048 } 1049 } 1050 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 1051 mtx_unlock(&mountlist_mtx); 1052 return ((struct mount *) 0); 1053 } 1054 1055 /* 1056 * Check if a user can access privileged mount options. 1057 */ 1058 int vfs_suser(struct mount * mp,struct thread * td)1059 vfs_suser(struct mount *mp, struct thread *td) 1060 { 1061 int error; 1062 1063 if (jailed(td->td_ucred)) { 1064 /* 1065 * If the jail of the calling thread lacks permission for 1066 * this type of file system, deny immediately. 1067 */ 1068 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) 1069 return (EPERM); 1070 1071 /* 1072 * If the file system was mounted outside the jail of the 1073 * calling thread, deny immediately. 1074 */ 1075 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 1076 return (EPERM); 1077 } 1078 1079 /* 1080 * If file system supports delegated administration, we don't check 1081 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 1082 * by the file system itself. 1083 * If this is not the user that did original mount, we check for 1084 * the PRIV_VFS_MOUNT_OWNER privilege. 1085 */ 1086 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 1087 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 1088 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 1089 return (error); 1090 } 1091 return (0); 1092 } 1093 1094 /* 1095 * Get a new unique fsid. Try to make its val[0] unique, since this value 1096 * will be used to create fake device numbers for stat(). Also try (but 1097 * not so hard) make its val[0] unique mod 2^16, since some emulators only 1098 * support 16-bit device numbers. We end up with unique val[0]'s for the 1099 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 1100 * 1101 * Keep in mind that several mounts may be running in parallel. Starting 1102 * the search one past where the previous search terminated is both a 1103 * micro-optimization and a defense against returning the same fsid to 1104 * different mounts. 1105 */ 1106 void vfs_getnewfsid(struct mount * mp)1107 vfs_getnewfsid(struct mount *mp) 1108 { 1109 static uint16_t mntid_base; 1110 struct mount *nmp; 1111 fsid_t tfsid; 1112 int mtype; 1113 1114 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 1115 mtx_lock(&mntid_mtx); 1116 mtype = mp->mnt_vfc->vfc_typenum; 1117 tfsid.val[1] = mtype; 1118 mtype = (mtype & 0xFF) << 24; 1119 for (;;) { 1120 tfsid.val[0] = makedev(255, 1121 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 1122 mntid_base++; 1123 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 1124 break; 1125 vfs_rel(nmp); 1126 } 1127 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 1128 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 1129 mtx_unlock(&mntid_mtx); 1130 } 1131 1132 /* 1133 * Knob to control the precision of file timestamps: 1134 * 1135 * 0 = seconds only; nanoseconds zeroed. 1136 * 1 = seconds and nanoseconds, accurate within 1/HZ. 1137 * 2 = seconds and nanoseconds, truncated to microseconds. 1138 * >=3 = seconds and nanoseconds, maximum precision. 1139 */ 1140 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 1141 1142 static int timestamp_precision = TSP_USEC; 1143 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 1144 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 1145 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 1146 "3+: sec + ns (max. precision))"); 1147 1148 /* 1149 * Get a current timestamp. 1150 */ 1151 void vfs_timestamp(struct timespec * tsp)1152 vfs_timestamp(struct timespec *tsp) 1153 { 1154 struct timeval tv; 1155 1156 switch (timestamp_precision) { 1157 case TSP_SEC: 1158 tsp->tv_sec = time_second; 1159 tsp->tv_nsec = 0; 1160 break; 1161 case TSP_HZ: 1162 getnanotime(tsp); 1163 break; 1164 case TSP_USEC: 1165 microtime(&tv); 1166 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1167 break; 1168 case TSP_NSEC: 1169 default: 1170 nanotime(tsp); 1171 break; 1172 } 1173 } 1174 1175 /* 1176 * Set vnode attributes to VNOVAL 1177 */ 1178 void vattr_null(struct vattr * vap)1179 vattr_null(struct vattr *vap) 1180 { 1181 1182 vap->va_type = VNON; 1183 vap->va_size = VNOVAL; 1184 vap->va_bytes = VNOVAL; 1185 vap->va_mode = VNOVAL; 1186 vap->va_nlink = VNOVAL; 1187 vap->va_uid = VNOVAL; 1188 vap->va_gid = VNOVAL; 1189 vap->va_fsid = VNOVAL; 1190 vap->va_fileid = VNOVAL; 1191 vap->va_blocksize = VNOVAL; 1192 vap->va_rdev = VNOVAL; 1193 vap->va_atime.tv_sec = VNOVAL; 1194 vap->va_atime.tv_nsec = VNOVAL; 1195 vap->va_mtime.tv_sec = VNOVAL; 1196 vap->va_mtime.tv_nsec = VNOVAL; 1197 vap->va_ctime.tv_sec = VNOVAL; 1198 vap->va_ctime.tv_nsec = VNOVAL; 1199 vap->va_birthtime.tv_sec = VNOVAL; 1200 vap->va_birthtime.tv_nsec = VNOVAL; 1201 vap->va_flags = VNOVAL; 1202 vap->va_gen = VNOVAL; 1203 vap->va_vaflags = 0; 1204 vap->va_filerev = VNOVAL; 1205 } 1206 1207 /* 1208 * Try to reduce the total number of vnodes. 1209 * 1210 * This routine (and its user) are buggy in at least the following ways: 1211 * - all parameters were picked years ago when RAM sizes were significantly 1212 * smaller 1213 * - it can pick vnodes based on pages used by the vm object, but filesystems 1214 * like ZFS don't use it making the pick broken 1215 * - since ZFS has its own aging policy it gets partially combated by this one 1216 * - a dedicated method should be provided for filesystems to let them decide 1217 * whether the vnode should be recycled 1218 * 1219 * This routine is called when we have too many vnodes. It attempts 1220 * to free <count> vnodes and will potentially free vnodes that still 1221 * have VM backing store (VM backing store is typically the cause 1222 * of a vnode blowout so we want to do this). Therefore, this operation 1223 * is not considered cheap. 1224 * 1225 * A number of conditions may prevent a vnode from being reclaimed. 1226 * the buffer cache may have references on the vnode, a directory 1227 * vnode may still have references due to the namei cache representing 1228 * underlying files, or the vnode may be in active use. It is not 1229 * desirable to reuse such vnodes. These conditions may cause the 1230 * number of vnodes to reach some minimum value regardless of what 1231 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 1232 * 1233 * @param reclaim_nc_src Only reclaim directories with outgoing namecache 1234 * entries if this argument is strue 1235 * @param trigger Only reclaim vnodes with fewer than this many resident 1236 * pages. 1237 * @param target How many vnodes to reclaim. 1238 * @return The number of vnodes that were reclaimed. 1239 */ 1240 static int vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1241 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) 1242 { 1243 struct vnode *vp, *mvp; 1244 struct mount *mp; 1245 struct vm_object *object; 1246 u_long done; 1247 bool retried; 1248 1249 mtx_assert(&vnode_list_mtx, MA_OWNED); 1250 1251 retried = false; 1252 done = 0; 1253 1254 mvp = vnode_list_reclaim_marker; 1255 restart: 1256 vp = mvp; 1257 while (done < target) { 1258 vp = TAILQ_NEXT(vp, v_vnodelist); 1259 if (__predict_false(vp == NULL)) 1260 break; 1261 1262 if (__predict_false(vp->v_type == VMARKER)) 1263 continue; 1264 1265 /* 1266 * If it's been deconstructed already, it's still 1267 * referenced, or it exceeds the trigger, skip it. 1268 * Also skip free vnodes. We are trying to make space 1269 * for more free vnodes, not reduce their count. 1270 */ 1271 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || 1272 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) 1273 goto next_iter; 1274 1275 if (vp->v_type == VBAD || vp->v_type == VNON) 1276 goto next_iter; 1277 1278 object = atomic_load_ptr(&vp->v_object); 1279 if (object == NULL || object->resident_page_count > trigger) { 1280 goto next_iter; 1281 } 1282 1283 /* 1284 * Handle races against vnode allocation. Filesystems lock the 1285 * vnode some time after it gets returned from getnewvnode, 1286 * despite type and hold count being manipulated earlier. 1287 * Resorting to checking v_mount restores guarantees present 1288 * before the global list was reworked to contain all vnodes. 1289 */ 1290 if (!VI_TRYLOCK(vp)) 1291 goto next_iter; 1292 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1293 VI_UNLOCK(vp); 1294 goto next_iter; 1295 } 1296 if (vp->v_mount == NULL) { 1297 VI_UNLOCK(vp); 1298 goto next_iter; 1299 } 1300 vholdl(vp); 1301 VI_UNLOCK(vp); 1302 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1303 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1304 mtx_unlock(&vnode_list_mtx); 1305 1306 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1307 vdrop_recycle(vp); 1308 goto next_iter_unlocked; 1309 } 1310 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { 1311 vdrop_recycle(vp); 1312 vn_finished_write(mp); 1313 goto next_iter_unlocked; 1314 } 1315 1316 VI_LOCK(vp); 1317 if (vp->v_usecount > 0 || 1318 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 1319 (vp->v_object != NULL && vp->v_object->handle == vp && 1320 vp->v_object->resident_page_count > trigger)) { 1321 VOP_UNLOCK(vp); 1322 vdropl_recycle(vp); 1323 vn_finished_write(mp); 1324 goto next_iter_unlocked; 1325 } 1326 recycles_count++; 1327 vgonel(vp); 1328 VOP_UNLOCK(vp); 1329 vdropl_recycle(vp); 1330 vn_finished_write(mp); 1331 done++; 1332 next_iter_unlocked: 1333 maybe_yield(); 1334 mtx_lock(&vnode_list_mtx); 1335 goto restart; 1336 next_iter: 1337 MPASS(vp->v_type != VMARKER); 1338 if (!should_yield()) 1339 continue; 1340 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1341 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1342 mtx_unlock(&vnode_list_mtx); 1343 kern_yield(PRI_USER); 1344 mtx_lock(&vnode_list_mtx); 1345 goto restart; 1346 } 1347 if (done == 0 && !retried) { 1348 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1349 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1350 retried = true; 1351 goto restart; 1352 } 1353 return (done); 1354 } 1355 1356 static int max_free_per_call = 10000; 1357 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0, 1358 "limit on vnode free requests per call to the vnlru_free routine (legacy)"); 1359 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW, 1360 &max_free_per_call, 0, 1361 "limit on vnode free requests per call to the vnlru_free routine"); 1362 1363 /* 1364 * Attempt to recycle requested amount of free vnodes. 1365 */ 1366 static int vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1367 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru) 1368 { 1369 struct vnode *vp; 1370 struct mount *mp; 1371 int ocount; 1372 bool retried; 1373 1374 mtx_assert(&vnode_list_mtx, MA_OWNED); 1375 if (count > max_free_per_call) 1376 count = max_free_per_call; 1377 if (count == 0) { 1378 mtx_unlock(&vnode_list_mtx); 1379 return (0); 1380 } 1381 ocount = count; 1382 retried = false; 1383 vp = mvp; 1384 for (;;) { 1385 vp = TAILQ_NEXT(vp, v_vnodelist); 1386 if (__predict_false(vp == NULL)) { 1387 /* 1388 * The free vnode marker can be past eligible vnodes: 1389 * 1. if vdbatch_process trylock failed 1390 * 2. if vtryrecycle failed 1391 * 1392 * If so, start the scan from scratch. 1393 */ 1394 if (!retried && vnlru_read_freevnodes() > 0) { 1395 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1396 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1397 vp = mvp; 1398 retried = true; 1399 continue; 1400 } 1401 1402 /* 1403 * Give up 1404 */ 1405 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1406 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); 1407 mtx_unlock(&vnode_list_mtx); 1408 break; 1409 } 1410 if (__predict_false(vp->v_type == VMARKER)) 1411 continue; 1412 if (vp->v_holdcnt > 0) 1413 continue; 1414 /* 1415 * Don't recycle if our vnode is from different type 1416 * of mount point. Note that mp is type-safe, the 1417 * check does not reach unmapped address even if 1418 * vnode is reclaimed. 1419 */ 1420 if (mnt_op != NULL && (mp = vp->v_mount) != NULL && 1421 mp->mnt_op != mnt_op) { 1422 continue; 1423 } 1424 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1425 continue; 1426 } 1427 if (!vhold_recycle_free(vp)) 1428 continue; 1429 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1430 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1431 mtx_unlock(&vnode_list_mtx); 1432 /* 1433 * FIXME: ignores the return value, meaning it may be nothing 1434 * got recycled but it claims otherwise to the caller. 1435 * 1436 * Originally the value started being ignored in 2005 with 1437 * 114a1006a8204aa156e1f9ad6476cdff89cada7f . 1438 * 1439 * Respecting the value can run into significant stalls if most 1440 * vnodes belong to one file system and it has writes 1441 * suspended. In presence of many threads and millions of 1442 * vnodes they keep contending on the vnode_list_mtx lock only 1443 * to find vnodes they can't recycle. 1444 * 1445 * The solution would be to pre-check if the vnode is likely to 1446 * be recycle-able, but it needs to happen with the 1447 * vnode_list_mtx lock held. This runs into a problem where 1448 * VOP_GETWRITEMOUNT (currently needed to find out about if 1449 * writes are frozen) can take locks which LOR against it. 1450 * 1451 * Check nullfs for one example (null_getwritemount). 1452 */ 1453 vtryrecycle(vp, isvnlru); 1454 count--; 1455 if (count == 0) { 1456 break; 1457 } 1458 mtx_lock(&vnode_list_mtx); 1459 vp = mvp; 1460 } 1461 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1462 return (ocount - count); 1463 } 1464 1465 /* 1466 * XXX: returns without vnode_list_mtx locked! 1467 */ 1468 static int vnlru_free_locked_direct(int count)1469 vnlru_free_locked_direct(int count) 1470 { 1471 int ret; 1472 1473 mtx_assert(&vnode_list_mtx, MA_OWNED); 1474 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false); 1475 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1476 return (ret); 1477 } 1478 1479 static int vnlru_free_locked_vnlru(int count)1480 vnlru_free_locked_vnlru(int count) 1481 { 1482 int ret; 1483 1484 mtx_assert(&vnode_list_mtx, MA_OWNED); 1485 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true); 1486 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1487 return (ret); 1488 } 1489 1490 static int vnlru_free_vnlru(int count)1491 vnlru_free_vnlru(int count) 1492 { 1493 1494 mtx_lock(&vnode_list_mtx); 1495 return (vnlru_free_locked_vnlru(count)); 1496 } 1497 1498 void vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1499 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp) 1500 { 1501 1502 MPASS(mnt_op != NULL); 1503 MPASS(mvp != NULL); 1504 VNPASS(mvp->v_type == VMARKER, mvp); 1505 mtx_lock(&vnode_list_mtx); 1506 vnlru_free_impl(count, mnt_op, mvp, true); 1507 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1508 } 1509 1510 struct vnode * vnlru_alloc_marker(void)1511 vnlru_alloc_marker(void) 1512 { 1513 struct vnode *mvp; 1514 1515 mvp = vn_alloc_marker(NULL); 1516 mtx_lock(&vnode_list_mtx); 1517 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist); 1518 mtx_unlock(&vnode_list_mtx); 1519 return (mvp); 1520 } 1521 1522 void vnlru_free_marker(struct vnode * mvp)1523 vnlru_free_marker(struct vnode *mvp) 1524 { 1525 mtx_lock(&vnode_list_mtx); 1526 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1527 mtx_unlock(&vnode_list_mtx); 1528 vn_free_marker(mvp); 1529 } 1530 1531 static void vnlru_recalc(void)1532 vnlru_recalc(void) 1533 { 1534 1535 mtx_assert(&vnode_list_mtx, MA_OWNED); 1536 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1537 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1538 vlowat = vhiwat / 2; 1539 } 1540 1541 /* 1542 * Attempt to recycle vnodes in a context that is always safe to block. 1543 * Calling vlrurecycle() from the bowels of filesystem code has some 1544 * interesting deadlock problems. 1545 */ 1546 static struct proc *vnlruproc; 1547 static int vnlruproc_sig; 1548 static u_long vnlruproc_kicks; 1549 1550 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0, 1551 "Number of times vnlru awakened due to vnode shortage"); 1552 1553 #define VNLRU_COUNT_SLOP 100 1554 1555 /* 1556 * The main freevnodes counter is only updated when a counter local to CPU 1557 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally 1558 * walked to compute a more accurate total. 1559 * 1560 * Note: the actual value at any given moment can still exceed slop, but it 1561 * should not be by significant margin in practice. 1562 */ 1563 #define VNLRU_FREEVNODES_SLOP 126 1564 1565 static void __noinline vfs_freevnodes_rollup(int8_t * lfreevnodes)1566 vfs_freevnodes_rollup(int8_t *lfreevnodes) 1567 { 1568 1569 atomic_add_long(&freevnodes, *lfreevnodes); 1570 *lfreevnodes = 0; 1571 critical_exit(); 1572 } 1573 1574 static __inline void vfs_freevnodes_inc(void)1575 vfs_freevnodes_inc(void) 1576 { 1577 int8_t *lfreevnodes; 1578 1579 critical_enter(); 1580 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1581 (*lfreevnodes)++; 1582 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP)) 1583 vfs_freevnodes_rollup(lfreevnodes); 1584 else 1585 critical_exit(); 1586 } 1587 1588 static __inline void vfs_freevnodes_dec(void)1589 vfs_freevnodes_dec(void) 1590 { 1591 int8_t *lfreevnodes; 1592 1593 critical_enter(); 1594 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1595 (*lfreevnodes)--; 1596 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP)) 1597 vfs_freevnodes_rollup(lfreevnodes); 1598 else 1599 critical_exit(); 1600 } 1601 1602 static u_long vnlru_read_freevnodes(void)1603 vnlru_read_freevnodes(void) 1604 { 1605 long slop, rfreevnodes, rfreevnodes_old; 1606 int cpu; 1607 1608 rfreevnodes = atomic_load_long(&freevnodes); 1609 rfreevnodes_old = atomic_load_long(&freevnodes_old); 1610 1611 if (rfreevnodes > rfreevnodes_old) 1612 slop = rfreevnodes - rfreevnodes_old; 1613 else 1614 slop = rfreevnodes_old - rfreevnodes; 1615 if (slop < VNLRU_FREEVNODES_SLOP) 1616 return (rfreevnodes >= 0 ? rfreevnodes : 0); 1617 CPU_FOREACH(cpu) { 1618 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes; 1619 } 1620 atomic_store_long(&freevnodes_old, rfreevnodes); 1621 return (freevnodes_old >= 0 ? freevnodes_old : 0); 1622 } 1623 1624 static bool vnlru_under(u_long rnumvnodes,u_long limit)1625 vnlru_under(u_long rnumvnodes, u_long limit) 1626 { 1627 u_long rfreevnodes, space; 1628 1629 if (__predict_false(rnumvnodes > desiredvnodes)) 1630 return (true); 1631 1632 space = desiredvnodes - rnumvnodes; 1633 if (space < limit) { 1634 rfreevnodes = vnlru_read_freevnodes(); 1635 if (rfreevnodes > wantfreevnodes) 1636 space += rfreevnodes - wantfreevnodes; 1637 } 1638 return (space < limit); 1639 } 1640 1641 static void vnlru_kick_locked(void)1642 vnlru_kick_locked(void) 1643 { 1644 1645 mtx_assert(&vnode_list_mtx, MA_OWNED); 1646 if (vnlruproc_sig == 0) { 1647 vnlruproc_sig = 1; 1648 vnlruproc_kicks++; 1649 wakeup(vnlruproc); 1650 } 1651 } 1652 1653 static void vnlru_kick_cond(void)1654 vnlru_kick_cond(void) 1655 { 1656 1657 if (vnlru_read_freevnodes() > wantfreevnodes) 1658 return; 1659 1660 if (vnlruproc_sig) 1661 return; 1662 mtx_lock(&vnode_list_mtx); 1663 vnlru_kick_locked(); 1664 mtx_unlock(&vnode_list_mtx); 1665 } 1666 1667 static void vnlru_proc_sleep(void)1668 vnlru_proc_sleep(void) 1669 { 1670 1671 if (vnlruproc_sig) { 1672 vnlruproc_sig = 0; 1673 wakeup(&vnlruproc_sig); 1674 } 1675 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz); 1676 } 1677 1678 /* 1679 * A lighter version of the machinery below. 1680 * 1681 * Tries to reach goals only by recycling free vnodes and does not invoke 1682 * uma_reclaim(UMA_RECLAIM_DRAIN). 1683 * 1684 * This works around pathological behavior in vnlru in presence of tons of free 1685 * vnodes, but without having to rewrite the machinery at this time. Said 1686 * behavior boils down to continuously trying to reclaim all kinds of vnodes 1687 * (cycling through all levels of "force") when the count is transiently above 1688 * limit. This happens a lot when all vnodes are used up and vn_alloc 1689 * speculatively increments the counter. 1690 * 1691 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with 1692 * 1 million files in total and 20 find(1) processes stating them in parallel 1693 * (one per each tree). 1694 * 1695 * On a kernel with only stock machinery this needs anywhere between 60 and 120 1696 * seconds to execute (time varies *wildly* between runs). With the workaround 1697 * it consistently stays around 20 seconds [it got further down with later 1698 * changes]. 1699 * 1700 * That is to say the entire thing needs a fundamental redesign (most notably 1701 * to accommodate faster recycling), the above only tries to get it ouf the way. 1702 * 1703 * Return values are: 1704 * -1 -- fallback to regular vnlru loop 1705 * 0 -- do nothing, go to sleep 1706 * >0 -- recycle this many vnodes 1707 */ 1708 static long vnlru_proc_light_pick(void)1709 vnlru_proc_light_pick(void) 1710 { 1711 u_long rnumvnodes, rfreevnodes; 1712 1713 if (vstir || vnlruproc_sig == 1) 1714 return (-1); 1715 1716 rnumvnodes = atomic_load_long(&numvnodes); 1717 rfreevnodes = vnlru_read_freevnodes(); 1718 1719 /* 1720 * vnode limit might have changed and now we may be at a significant 1721 * excess. Bail if we can't sort it out with free vnodes. 1722 * 1723 * Due to atomic updates the count can legitimately go above 1724 * the limit for a short period, don't bother doing anything in 1725 * that case. 1726 */ 1727 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) { 1728 if (rnumvnodes - rfreevnodes >= desiredvnodes || 1729 rfreevnodes <= wantfreevnodes) { 1730 return (-1); 1731 } 1732 1733 return (rnumvnodes - desiredvnodes); 1734 } 1735 1736 /* 1737 * Don't try to reach wantfreevnodes target if there are too few vnodes 1738 * to begin with. 1739 */ 1740 if (rnumvnodes < wantfreevnodes) { 1741 return (0); 1742 } 1743 1744 if (rfreevnodes < wantfreevnodes) { 1745 return (-1); 1746 } 1747 1748 return (0); 1749 } 1750 1751 static bool vnlru_proc_light(void)1752 vnlru_proc_light(void) 1753 { 1754 long freecount; 1755 1756 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1757 1758 freecount = vnlru_proc_light_pick(); 1759 if (freecount == -1) 1760 return (false); 1761 1762 if (freecount != 0) { 1763 vnlru_free_vnlru(freecount); 1764 } 1765 1766 mtx_lock(&vnode_list_mtx); 1767 vnlru_proc_sleep(); 1768 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1769 return (true); 1770 } 1771 1772 static u_long uma_reclaim_calls; 1773 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS, 1774 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim"); 1775 1776 static void vnlru_proc(void)1777 vnlru_proc(void) 1778 { 1779 u_long rnumvnodes, rfreevnodes, target; 1780 unsigned long onumvnodes; 1781 int done, force, trigger, usevnodes; 1782 bool reclaim_nc_src, want_reread; 1783 1784 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1785 SHUTDOWN_PRI_FIRST); 1786 1787 force = 0; 1788 want_reread = false; 1789 for (;;) { 1790 kproc_suspend_check(vnlruproc); 1791 1792 if (force == 0 && vnlru_proc_light()) 1793 continue; 1794 1795 mtx_lock(&vnode_list_mtx); 1796 rnumvnodes = atomic_load_long(&numvnodes); 1797 1798 if (want_reread) { 1799 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; 1800 want_reread = false; 1801 } 1802 1803 /* 1804 * If numvnodes is too large (due to desiredvnodes being 1805 * adjusted using its sysctl, or emergency growth), first 1806 * try to reduce it by discarding free vnodes. 1807 */ 1808 if (rnumvnodes > desiredvnodes + 10) { 1809 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes); 1810 mtx_lock(&vnode_list_mtx); 1811 rnumvnodes = atomic_load_long(&numvnodes); 1812 } 1813 /* 1814 * Sleep if the vnode cache is in a good state. This is 1815 * when it is not over-full and has space for about a 4% 1816 * or 9% expansion (by growing its size or inexcessively 1817 * reducing free vnode count). Otherwise, try to reclaim 1818 * space for a 10% expansion. 1819 */ 1820 if (vstir && force == 0) { 1821 force = 1; 1822 vstir = false; 1823 } 1824 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { 1825 vnlru_proc_sleep(); 1826 continue; 1827 } 1828 rfreevnodes = vnlru_read_freevnodes(); 1829 1830 onumvnodes = rnumvnodes; 1831 /* 1832 * Calculate parameters for recycling. These are the same 1833 * throughout the loop to give some semblance of fairness. 1834 * The trigger point is to avoid recycling vnodes with lots 1835 * of resident pages. We aren't trying to free memory; we 1836 * are trying to recycle or at least free vnodes. 1837 */ 1838 if (rnumvnodes <= desiredvnodes) 1839 usevnodes = rnumvnodes - rfreevnodes; 1840 else 1841 usevnodes = rnumvnodes; 1842 if (usevnodes <= 0) 1843 usevnodes = 1; 1844 /* 1845 * The trigger value is chosen to give a conservatively 1846 * large value to ensure that it alone doesn't prevent 1847 * making progress. The value can easily be so large that 1848 * it is effectively infinite in some congested and 1849 * misconfigured cases, and this is necessary. Normally 1850 * it is about 8 to 100 (pages), which is quite large. 1851 */ 1852 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1853 if (force < 2) 1854 trigger = vsmalltrigger; 1855 reclaim_nc_src = force >= 3; 1856 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); 1857 target = target / 10 + 1; 1858 done = vlrureclaim(reclaim_nc_src, trigger, target); 1859 mtx_unlock(&vnode_list_mtx); 1860 /* 1861 * Total number of vnodes can transiently go slightly above the 1862 * limit (see vn_alloc_hard), no need to call uma_reclaim if 1863 * this happens. 1864 */ 1865 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes && 1866 numvnodes <= desiredvnodes) { 1867 uma_reclaim_calls++; 1868 uma_reclaim(UMA_RECLAIM_DRAIN); 1869 } 1870 if (done == 0) { 1871 if (force == 0 || force == 1) { 1872 force = 2; 1873 continue; 1874 } 1875 if (force == 2) { 1876 force = 3; 1877 continue; 1878 } 1879 want_reread = true; 1880 force = 0; 1881 vnlru_nowhere++; 1882 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1883 } else { 1884 want_reread = true; 1885 kern_yield(PRI_USER); 1886 } 1887 } 1888 } 1889 1890 static struct kproc_desc vnlru_kp = { 1891 "vnlru", 1892 vnlru_proc, 1893 &vnlruproc 1894 }; 1895 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1896 &vnlru_kp); 1897 1898 /* 1899 * Routines having to do with the management of the vnode table. 1900 */ 1901 1902 /* 1903 * Try to recycle a freed vnode. 1904 */ 1905 static int vtryrecycle(struct vnode * vp,bool isvnlru)1906 vtryrecycle(struct vnode *vp, bool isvnlru) 1907 { 1908 struct mount *vnmp; 1909 1910 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1911 VNPASS(vp->v_holdcnt > 0, vp); 1912 /* 1913 * This vnode may found and locked via some other list, if so we 1914 * can't recycle it yet. 1915 */ 1916 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1917 CTR2(KTR_VFS, 1918 "%s: impossible to recycle, vp %p lock is already held", 1919 __func__, vp); 1920 vdrop_recycle(vp); 1921 return (EWOULDBLOCK); 1922 } 1923 /* 1924 * Don't recycle if its filesystem is being suspended. 1925 */ 1926 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1927 VOP_UNLOCK(vp); 1928 CTR2(KTR_VFS, 1929 "%s: impossible to recycle, cannot start the write for %p", 1930 __func__, vp); 1931 vdrop_recycle(vp); 1932 return (EBUSY); 1933 } 1934 /* 1935 * If we got this far, we need to acquire the interlock and see if 1936 * anyone picked up this vnode from another list. If not, we will 1937 * mark it with DOOMED via vgonel() so that anyone who does find it 1938 * will skip over it. 1939 */ 1940 VI_LOCK(vp); 1941 if (vp->v_usecount) { 1942 VOP_UNLOCK(vp); 1943 vdropl_recycle(vp); 1944 vn_finished_write(vnmp); 1945 CTR2(KTR_VFS, 1946 "%s: impossible to recycle, %p is already referenced", 1947 __func__, vp); 1948 return (EBUSY); 1949 } 1950 if (!VN_IS_DOOMED(vp)) { 1951 if (isvnlru) 1952 recycles_free_count++; 1953 else 1954 counter_u64_add(direct_recycles_free_count, 1); 1955 vgonel(vp); 1956 } 1957 VOP_UNLOCK(vp); 1958 vdropl_recycle(vp); 1959 vn_finished_write(vnmp); 1960 return (0); 1961 } 1962 1963 /* 1964 * Allocate a new vnode. 1965 * 1966 * The operation never returns an error. Returning an error was disabled 1967 * in r145385 (dated 2005) with the following comment: 1968 * 1969 * XXX Not all VFS_VGET/ffs_vget callers check returns. 1970 * 1971 * Given the age of this commit (almost 15 years at the time of writing this 1972 * comment) restoring the ability to fail requires a significant audit of 1973 * all codepaths. 1974 * 1975 * The routine can try to free a vnode or stall for up to 1 second waiting for 1976 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. 1977 */ 1978 static u_long vn_alloc_cyclecount; 1979 static u_long vn_alloc_sleeps; 1980 1981 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0, 1982 "Number of times vnode allocation blocked waiting on vnlru"); 1983 1984 static struct vnode * __noinline vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1985 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped) 1986 { 1987 u_long rfreevnodes; 1988 1989 if (bumped) { 1990 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) { 1991 atomic_subtract_long(&numvnodes, 1); 1992 bumped = false; 1993 } 1994 } 1995 1996 mtx_lock(&vnode_list_mtx); 1997 1998 rfreevnodes = vnlru_read_freevnodes(); 1999 if (vn_alloc_cyclecount++ >= rfreevnodes) { 2000 vn_alloc_cyclecount = 0; 2001 vstir = true; 2002 } 2003 /* 2004 * Grow the vnode cache if it will not be above its target max after 2005 * growing. Otherwise, if there is at least one free vnode, try to 2006 * reclaim 1 item from it before growing the cache (possibly above its 2007 * target max if the reclamation failed or is delayed). 2008 */ 2009 if (vnlru_free_locked_direct(1) > 0) 2010 goto alloc; 2011 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 2012 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2013 /* 2014 * Wait for space for a new vnode. 2015 */ 2016 if (bumped) { 2017 atomic_subtract_long(&numvnodes, 1); 2018 bumped = false; 2019 } 2020 mtx_lock(&vnode_list_mtx); 2021 vnlru_kick_locked(); 2022 vn_alloc_sleeps++; 2023 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); 2024 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && 2025 vnlru_read_freevnodes() > 1) 2026 vnlru_free_locked_direct(1); 2027 else 2028 mtx_unlock(&vnode_list_mtx); 2029 } 2030 alloc: 2031 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 2032 if (!bumped) 2033 atomic_add_long(&numvnodes, 1); 2034 vnlru_kick_cond(); 2035 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 2036 } 2037 2038 static struct vnode * vn_alloc(struct mount * mp)2039 vn_alloc(struct mount *mp) 2040 { 2041 u_long rnumvnodes; 2042 2043 if (__predict_false(vn_alloc_cyclecount != 0)) 2044 return (vn_alloc_hard(mp, 0, false)); 2045 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 2046 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) { 2047 return (vn_alloc_hard(mp, rnumvnodes, true)); 2048 } 2049 2050 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 2051 } 2052 2053 static void vn_free(struct vnode * vp)2054 vn_free(struct vnode *vp) 2055 { 2056 2057 atomic_subtract_long(&numvnodes, 1); 2058 uma_zfree_smr(vnode_zone, vp); 2059 } 2060 2061 /* 2062 * Allocate a new vnode. 2063 */ 2064 int getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2065 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 2066 struct vnode **vpp) 2067 { 2068 struct vnode *vp; 2069 struct thread *td; 2070 struct lock_object *lo; 2071 2072 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 2073 2074 KASSERT(vops->registered, 2075 ("%s: not registered vector op %p\n", __func__, vops)); 2076 cache_validate_vop_vector(mp, vops); 2077 2078 td = curthread; 2079 if (td->td_vp_reserved != NULL) { 2080 vp = td->td_vp_reserved; 2081 td->td_vp_reserved = NULL; 2082 } else { 2083 vp = vn_alloc(mp); 2084 } 2085 counter_u64_add(vnodes_created, 1); 2086 2087 vn_set_state(vp, VSTATE_UNINITIALIZED); 2088 2089 /* 2090 * Locks are given the generic name "vnode" when created. 2091 * Follow the historic practice of using the filesystem 2092 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 2093 * 2094 * Locks live in a witness group keyed on their name. Thus, 2095 * when a lock is renamed, it must also move from the witness 2096 * group of its old name to the witness group of its new name. 2097 * 2098 * The change only needs to be made when the vnode moves 2099 * from one filesystem type to another. We ensure that each 2100 * filesystem use a single static name pointer for its tag so 2101 * that we can compare pointers rather than doing a strcmp(). 2102 */ 2103 lo = &vp->v_vnlock->lock_object; 2104 #ifdef WITNESS 2105 if (lo->lo_name != tag) { 2106 #endif 2107 lo->lo_name = tag; 2108 #ifdef WITNESS 2109 WITNESS_DESTROY(lo); 2110 WITNESS_INIT(lo, tag); 2111 } 2112 #endif 2113 /* 2114 * By default, don't allow shared locks unless filesystems opt-in. 2115 */ 2116 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 2117 /* 2118 * Finalize various vnode identity bits. 2119 */ 2120 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 2121 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 2122 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 2123 vp->v_type = VNON; 2124 vp->v_op = vops; 2125 vp->v_irflag = 0; 2126 v_init_counters(vp); 2127 vn_seqc_init(vp); 2128 vp->v_bufobj.bo_ops = &buf_ops_bio; 2129 #ifdef DIAGNOSTIC 2130 if (mp == NULL && vops != &dead_vnodeops) 2131 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 2132 #endif 2133 #ifdef MAC 2134 mac_vnode_init(vp); 2135 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 2136 mac_vnode_associate_singlelabel(mp, vp); 2137 #endif 2138 if (mp != NULL) { 2139 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 2140 } 2141 2142 /* 2143 * For the filesystems which do not use vfs_hash_insert(), 2144 * still initialize v_hash to have vfs_hash_index() useful. 2145 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 2146 * its own hashing. 2147 */ 2148 vp->v_hash = (uintptr_t)vp >> vnsz2log; 2149 2150 *vpp = vp; 2151 return (0); 2152 } 2153 2154 void getnewvnode_reserve(void)2155 getnewvnode_reserve(void) 2156 { 2157 struct thread *td; 2158 2159 td = curthread; 2160 MPASS(td->td_vp_reserved == NULL); 2161 td->td_vp_reserved = vn_alloc(NULL); 2162 } 2163 2164 void getnewvnode_drop_reserve(void)2165 getnewvnode_drop_reserve(void) 2166 { 2167 struct thread *td; 2168 2169 td = curthread; 2170 if (td->td_vp_reserved != NULL) { 2171 vn_free(td->td_vp_reserved); 2172 td->td_vp_reserved = NULL; 2173 } 2174 } 2175 2176 static void __noinline freevnode(struct vnode * vp)2177 freevnode(struct vnode *vp) 2178 { 2179 struct bufobj *bo; 2180 2181 /* 2182 * The vnode has been marked for destruction, so free it. 2183 * 2184 * The vnode will be returned to the zone where it will 2185 * normally remain until it is needed for another vnode. We 2186 * need to cleanup (or verify that the cleanup has already 2187 * been done) any residual data left from its current use 2188 * so as not to contaminate the freshly allocated vnode. 2189 */ 2190 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2191 /* 2192 * Paired with vgone. 2193 */ 2194 vn_seqc_write_end_free(vp); 2195 2196 bo = &vp->v_bufobj; 2197 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2198 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp); 2199 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2200 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2201 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2202 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2203 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2204 ("clean blk trie not empty")); 2205 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2206 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2207 ("dirty blk trie not empty")); 2208 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp, 2209 ("Leaked inactivation")); 2210 VI_UNLOCK(vp); 2211 cache_assert_no_entries(vp); 2212 2213 #ifdef MAC 2214 mac_vnode_destroy(vp); 2215 #endif 2216 if (vp->v_pollinfo != NULL) { 2217 /* 2218 * Use LK_NOWAIT to shut up witness about the lock. We may get 2219 * here while having another vnode locked when trying to 2220 * satisfy a lookup and needing to recycle. 2221 */ 2222 VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT); 2223 destroy_vpollinfo(vp->v_pollinfo); 2224 VOP_UNLOCK(vp); 2225 vp->v_pollinfo = NULL; 2226 } 2227 vp->v_mountedhere = NULL; 2228 vp->v_unpcb = NULL; 2229 vp->v_rdev = NULL; 2230 vp->v_fifoinfo = NULL; 2231 vp->v_iflag = 0; 2232 vp->v_vflag = 0; 2233 bo->bo_flag = 0; 2234 vn_free(vp); 2235 } 2236 2237 /* 2238 * Delete from old mount point vnode list, if on one. 2239 */ 2240 static void delmntque(struct vnode * vp)2241 delmntque(struct vnode *vp) 2242 { 2243 struct mount *mp; 2244 2245 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 2246 2247 mp = vp->v_mount; 2248 MNT_ILOCK(mp); 2249 VI_LOCK(vp); 2250 vp->v_mount = NULL; 2251 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 2252 ("bad mount point vnode list size")); 2253 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2254 mp->mnt_nvnodelistsize--; 2255 MNT_REL(mp); 2256 MNT_IUNLOCK(mp); 2257 /* 2258 * The caller expects the interlock to be still held. 2259 */ 2260 ASSERT_VI_LOCKED(vp, __func__); 2261 } 2262 2263 static int insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2264 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr) 2265 { 2266 2267 KASSERT(vp->v_mount == NULL, 2268 ("insmntque: vnode already on per mount vnode list")); 2269 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 2270 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) { 2271 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 2272 } else { 2273 KASSERT(!dtr, 2274 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup", 2275 __func__)); 2276 } 2277 2278 /* 2279 * We acquire the vnode interlock early to ensure that the 2280 * vnode cannot be recycled by another process releasing a 2281 * holdcnt on it before we get it on both the vnode list 2282 * and the active vnode list. The mount mutex protects only 2283 * manipulation of the vnode list and the vnode freelist 2284 * mutex protects only manipulation of the active vnode list. 2285 * Hence the need to hold the vnode interlock throughout. 2286 */ 2287 MNT_ILOCK(mp); 2288 VI_LOCK(vp); 2289 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 2290 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 2291 mp->mnt_nvnodelistsize == 0)) && 2292 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 2293 VI_UNLOCK(vp); 2294 MNT_IUNLOCK(mp); 2295 if (dtr) { 2296 vp->v_data = NULL; 2297 vp->v_op = &dead_vnodeops; 2298 vgone(vp); 2299 vput(vp); 2300 } 2301 return (EBUSY); 2302 } 2303 vp->v_mount = mp; 2304 MNT_REF(mp); 2305 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2306 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 2307 ("neg mount point vnode list size")); 2308 mp->mnt_nvnodelistsize++; 2309 VI_UNLOCK(vp); 2310 MNT_IUNLOCK(mp); 2311 return (0); 2312 } 2313 2314 /* 2315 * Insert into list of vnodes for the new mount point, if available. 2316 * insmntque() reclaims the vnode on insertion failure, insmntque1() 2317 * leaves handling of the vnode to the caller. 2318 */ 2319 int insmntque(struct vnode * vp,struct mount * mp)2320 insmntque(struct vnode *vp, struct mount *mp) 2321 { 2322 return (insmntque1_int(vp, mp, true)); 2323 } 2324 2325 int insmntque1(struct vnode * vp,struct mount * mp)2326 insmntque1(struct vnode *vp, struct mount *mp) 2327 { 2328 return (insmntque1_int(vp, mp, false)); 2329 } 2330 2331 /* 2332 * Flush out and invalidate all buffers associated with a bufobj 2333 * Called with the underlying object locked. 2334 */ 2335 int bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2336 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 2337 { 2338 int error; 2339 2340 BO_LOCK(bo); 2341 if (flags & V_SAVE) { 2342 error = bufobj_wwait(bo, slpflag, slptimeo); 2343 if (error) { 2344 BO_UNLOCK(bo); 2345 return (error); 2346 } 2347 if (bo->bo_dirty.bv_cnt > 0) { 2348 BO_UNLOCK(bo); 2349 do { 2350 error = BO_SYNC(bo, MNT_WAIT); 2351 } while (error == ERELOOKUP); 2352 if (error != 0) 2353 return (error); 2354 BO_LOCK(bo); 2355 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 2356 BO_UNLOCK(bo); 2357 return (EBUSY); 2358 } 2359 } 2360 } 2361 /* 2362 * If you alter this loop please notice that interlock is dropped and 2363 * reacquired in flushbuflist. Special care is needed to ensure that 2364 * no race conditions occur from this. 2365 */ 2366 do { 2367 error = flushbuflist(&bo->bo_clean, 2368 flags, bo, slpflag, slptimeo); 2369 if (error == 0 && !(flags & V_CLEANONLY)) 2370 error = flushbuflist(&bo->bo_dirty, 2371 flags, bo, slpflag, slptimeo); 2372 if (error != 0 && error != EAGAIN) { 2373 BO_UNLOCK(bo); 2374 return (error); 2375 } 2376 } while (error != 0); 2377 2378 /* 2379 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 2380 * have write I/O in-progress but if there is a VM object then the 2381 * VM object can also have read-I/O in-progress. 2382 */ 2383 do { 2384 bufobj_wwait(bo, 0, 0); 2385 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { 2386 BO_UNLOCK(bo); 2387 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); 2388 BO_LOCK(bo); 2389 } 2390 } while (bo->bo_numoutput > 0); 2391 BO_UNLOCK(bo); 2392 2393 /* 2394 * Destroy the copy in the VM cache, too. 2395 */ 2396 if (bo->bo_object != NULL && 2397 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 2398 VM_OBJECT_WLOCK(bo->bo_object); 2399 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 2400 OBJPR_CLEANONLY : 0); 2401 VM_OBJECT_WUNLOCK(bo->bo_object); 2402 } 2403 2404 #ifdef INVARIANTS 2405 BO_LOCK(bo); 2406 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 2407 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 2408 bo->bo_clean.bv_cnt > 0)) 2409 panic("vinvalbuf: flush failed"); 2410 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 2411 bo->bo_dirty.bv_cnt > 0) 2412 panic("vinvalbuf: flush dirty failed"); 2413 BO_UNLOCK(bo); 2414 #endif 2415 return (0); 2416 } 2417 2418 /* 2419 * Flush out and invalidate all buffers associated with a vnode. 2420 * Called with the underlying object locked. 2421 */ 2422 int vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2423 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 2424 { 2425 2426 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2427 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 2428 if (vp->v_object != NULL && vp->v_object->handle != vp) 2429 return (0); 2430 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 2431 } 2432 2433 /* 2434 * Flush out buffers on the specified list. 2435 * 2436 */ 2437 static int flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2438 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 2439 int slptimeo) 2440 { 2441 struct buf *bp, *nbp; 2442 int retval, error; 2443 daddr_t lblkno; 2444 b_xflags_t xflags; 2445 2446 ASSERT_BO_WLOCKED(bo); 2447 2448 retval = 0; 2449 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 2450 /* 2451 * If we are flushing both V_NORMAL and V_ALT buffers then 2452 * do not skip any buffers. If we are flushing only V_NORMAL 2453 * buffers then skip buffers marked as BX_ALTDATA. If we are 2454 * flushing only V_ALT buffers then skip buffers not marked 2455 * as BX_ALTDATA. 2456 */ 2457 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && 2458 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || 2459 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { 2460 continue; 2461 } 2462 if (nbp != NULL) { 2463 lblkno = nbp->b_lblkno; 2464 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 2465 } 2466 retval = EAGAIN; 2467 error = BUF_TIMELOCK(bp, 2468 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 2469 "flushbuf", slpflag, slptimeo); 2470 if (error) { 2471 BO_LOCK(bo); 2472 return (error != ENOLCK ? error : EAGAIN); 2473 } 2474 KASSERT(bp->b_bufobj == bo, 2475 ("bp %p wrong b_bufobj %p should be %p", 2476 bp, bp->b_bufobj, bo)); 2477 /* 2478 * XXX Since there are no node locks for NFS, I 2479 * believe there is a slight chance that a delayed 2480 * write will occur while sleeping just above, so 2481 * check for it. 2482 */ 2483 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 2484 (flags & V_SAVE)) { 2485 bremfree(bp); 2486 bp->b_flags |= B_ASYNC; 2487 bwrite(bp); 2488 BO_LOCK(bo); 2489 return (EAGAIN); /* XXX: why not loop ? */ 2490 } 2491 bremfree(bp); 2492 bp->b_flags |= (B_INVAL | B_RELBUF); 2493 bp->b_flags &= ~B_ASYNC; 2494 brelse(bp); 2495 BO_LOCK(bo); 2496 if (nbp == NULL) 2497 break; 2498 nbp = gbincore(bo, lblkno); 2499 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2500 != xflags) 2501 break; /* nbp invalid */ 2502 } 2503 return (retval); 2504 } 2505 2506 int bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2507 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 2508 { 2509 struct buf *bp; 2510 int error; 2511 daddr_t lblkno; 2512 2513 ASSERT_BO_LOCKED(bo); 2514 2515 for (lblkno = startn;;) { 2516 again: 2517 bp = buf_lookup_ge(bufv, lblkno); 2518 if (bp == NULL || bp->b_lblkno >= endn) 2519 break; 2520 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 2521 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 2522 if (error != 0) { 2523 BO_RLOCK(bo); 2524 if (error == ENOLCK) 2525 goto again; 2526 return (error); 2527 } 2528 KASSERT(bp->b_bufobj == bo, 2529 ("bp %p wrong b_bufobj %p should be %p", 2530 bp, bp->b_bufobj, bo)); 2531 lblkno = bp->b_lblkno + 1; 2532 if ((bp->b_flags & B_MANAGED) == 0) 2533 bremfree(bp); 2534 bp->b_flags |= B_RELBUF; 2535 /* 2536 * In the VMIO case, use the B_NOREUSE flag to hint that the 2537 * pages backing each buffer in the range are unlikely to be 2538 * reused. Dirty buffers will have the hint applied once 2539 * they've been written. 2540 */ 2541 if ((bp->b_flags & B_VMIO) != 0) 2542 bp->b_flags |= B_NOREUSE; 2543 brelse(bp); 2544 BO_RLOCK(bo); 2545 } 2546 return (0); 2547 } 2548 2549 /* 2550 * Truncate a file's buffer and pages to a specified length. This 2551 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 2552 * sync activity. 2553 */ 2554 int vtruncbuf(struct vnode * vp,off_t length,int blksize)2555 vtruncbuf(struct vnode *vp, off_t length, int blksize) 2556 { 2557 struct buf *bp, *nbp; 2558 struct bufobj *bo; 2559 daddr_t startlbn; 2560 2561 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, 2562 vp, blksize, (uintmax_t)length); 2563 2564 /* 2565 * Round up to the *next* lbn. 2566 */ 2567 startlbn = howmany(length, blksize); 2568 2569 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 2570 2571 bo = &vp->v_bufobj; 2572 restart_unlocked: 2573 BO_LOCK(bo); 2574 2575 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) 2576 ; 2577 2578 if (length > 0) { 2579 /* 2580 * Write out vnode metadata, e.g. indirect blocks. 2581 */ 2582 restartsync: 2583 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2584 if (bp->b_lblkno >= 0) 2585 continue; 2586 /* 2587 * Since we hold the vnode lock this should only 2588 * fail if we're racing with the buf daemon. 2589 */ 2590 if (BUF_LOCK(bp, 2591 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2592 BO_LOCKPTR(bo)) == ENOLCK) 2593 goto restart_unlocked; 2594 2595 VNASSERT((bp->b_flags & B_DELWRI), vp, 2596 ("buf(%p) on dirty queue without DELWRI", bp)); 2597 2598 bremfree(bp); 2599 bawrite(bp); 2600 BO_LOCK(bo); 2601 goto restartsync; 2602 } 2603 } 2604 2605 bufobj_wwait(bo, 0, 0); 2606 BO_UNLOCK(bo); 2607 vnode_pager_setsize(vp, length); 2608 2609 return (0); 2610 } 2611 2612 /* 2613 * Invalidate the cached pages of a file's buffer within the range of block 2614 * numbers [startlbn, endlbn). 2615 */ 2616 void v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2617 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, 2618 int blksize) 2619 { 2620 struct bufobj *bo; 2621 off_t start, end; 2622 2623 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); 2624 2625 start = blksize * startlbn; 2626 end = blksize * endlbn; 2627 2628 bo = &vp->v_bufobj; 2629 BO_LOCK(bo); 2630 MPASS(blksize == bo->bo_bsize); 2631 2632 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) 2633 ; 2634 2635 BO_UNLOCK(bo); 2636 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); 2637 } 2638 2639 static int v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2640 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 2641 daddr_t startlbn, daddr_t endlbn) 2642 { 2643 struct bufv *bv; 2644 struct buf *bp, *nbp; 2645 uint8_t anyfreed; 2646 bool clean; 2647 2648 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); 2649 ASSERT_BO_LOCKED(bo); 2650 2651 anyfreed = 1; 2652 clean = true; 2653 do { 2654 bv = clean ? &bo->bo_clean : &bo->bo_dirty; 2655 bp = buf_lookup_ge(bv, startlbn); 2656 if (bp == NULL) 2657 continue; 2658 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) { 2659 if (bp->b_lblkno >= endlbn) 2660 break; 2661 if (BUF_LOCK(bp, 2662 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2663 BO_LOCKPTR(bo)) == ENOLCK) { 2664 BO_LOCK(bo); 2665 return (EAGAIN); 2666 } 2667 2668 bremfree(bp); 2669 bp->b_flags |= B_INVAL | B_RELBUF; 2670 bp->b_flags &= ~B_ASYNC; 2671 brelse(bp); 2672 anyfreed = 2; 2673 2674 BO_LOCK(bo); 2675 if (nbp != NULL && 2676 (((nbp->b_xflags & 2677 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) || 2678 nbp->b_vp != vp || 2679 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0))) 2680 return (EAGAIN); 2681 } 2682 } while (clean = !clean, anyfreed-- > 0); 2683 return (0); 2684 } 2685 2686 static void buf_vlist_remove(struct buf * bp)2687 buf_vlist_remove(struct buf *bp) 2688 { 2689 struct bufv *bv; 2690 b_xflags_t flags; 2691 2692 flags = bp->b_xflags; 2693 2694 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2695 ASSERT_BO_WLOCKED(bp->b_bufobj); 2696 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 && 2697 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN), 2698 ("%s: buffer %p has invalid queue state", __func__, bp)); 2699 2700 if ((flags & BX_VNDIRTY) != 0) 2701 bv = &bp->b_bufobj->bo_dirty; 2702 else 2703 bv = &bp->b_bufobj->bo_clean; 2704 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 2705 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 2706 bv->bv_cnt--; 2707 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 2708 } 2709 2710 /* 2711 * Add the buffer to the sorted clean or dirty block list. Return zero on 2712 * success, EEXIST if a buffer with this identity already exists, or another 2713 * error on allocation failure. 2714 */ 2715 static inline int buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2716 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2717 { 2718 struct bufv *bv; 2719 struct buf *n; 2720 int error; 2721 2722 ASSERT_BO_WLOCKED(bo); 2723 KASSERT((bo->bo_flag & BO_NOBUFS) == 0, 2724 ("buf_vlist_add: bo %p does not allow bufs", bo)); 2725 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 2726 ("dead bo %p", bo)); 2727 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags, 2728 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp)); 2729 2730 if (xflags & BX_VNDIRTY) 2731 bv = &bo->bo_dirty; 2732 else 2733 bv = &bo->bo_clean; 2734 2735 error = buf_insert_lookup_le(bv, bp, &n); 2736 if (n == NULL) { 2737 KASSERT(error != EEXIST, 2738 ("buf_vlist_add: EEXIST but no existing buf found: bp %p", 2739 bp)); 2740 } else { 2741 KASSERT(n->b_lblkno <= bp->b_lblkno, 2742 ("buf_vlist_add: out of order insert/lookup: bp %p n %p", 2743 bp, n)); 2744 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST), 2745 ("buf_vlist_add: inconsistent result for existing buf: " 2746 "error %d bp %p n %p", error, bp, n)); 2747 } 2748 if (error != 0) 2749 return (error); 2750 2751 /* Keep the list ordered. */ 2752 if (n == NULL) { 2753 KASSERT(TAILQ_EMPTY(&bv->bv_hd) || 2754 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno, 2755 ("buf_vlist_add: queue order: " 2756 "%p should be before first %p", 2757 bp, TAILQ_FIRST(&bv->bv_hd))); 2758 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 2759 } else { 2760 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL || 2761 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno, 2762 ("buf_vlist_add: queue order: " 2763 "%p should be before next %p", 2764 bp, TAILQ_NEXT(n, b_bobufs))); 2765 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 2766 } 2767 2768 bv->bv_cnt++; 2769 return (0); 2770 } 2771 2772 /* 2773 * Add the buffer to the sorted clean or dirty block list. 2774 * 2775 * NOTE: xflags is passed as a constant, optimizing this inline function! 2776 */ 2777 static void buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2778 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2779 { 2780 int error; 2781 2782 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0, 2783 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 2784 bp->b_xflags |= xflags; 2785 error = buf_vlist_find_or_add(bp, bo, xflags); 2786 if (error) 2787 panic("buf_vlist_add: error=%d", error); 2788 } 2789 2790 /* 2791 * Look up a buffer using the buffer tries. 2792 */ 2793 struct buf * gbincore(struct bufobj * bo,daddr_t lblkno)2794 gbincore(struct bufobj *bo, daddr_t lblkno) 2795 { 2796 struct buf *bp; 2797 2798 ASSERT_BO_LOCKED(bo); 2799 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2800 if (bp != NULL) 2801 return (bp); 2802 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno)); 2803 } 2804 2805 /* 2806 * Look up a buf using the buffer tries, without the bufobj lock. This relies 2807 * on SMR for safe lookup, and bufs being in a no-free zone to provide type 2808 * stability of the result. Like other lockless lookups, the found buf may 2809 * already be invalid by the time this function returns. 2810 */ 2811 struct buf * gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2812 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno) 2813 { 2814 struct buf *bp; 2815 2816 ASSERT_BO_UNLOCKED(bo); 2817 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno); 2818 if (bp != NULL) 2819 return (bp); 2820 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno)); 2821 } 2822 2823 /* 2824 * Associate a buffer with a vnode. 2825 */ 2826 int bgetvp(struct vnode * vp,struct buf * bp)2827 bgetvp(struct vnode *vp, struct buf *bp) 2828 { 2829 struct bufobj *bo; 2830 int error; 2831 2832 bo = &vp->v_bufobj; 2833 ASSERT_BO_UNLOCKED(bo); 2834 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2835 2836 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2837 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2838 ("bgetvp: bp already attached! %p", bp)); 2839 2840 /* 2841 * Add the buf to the vnode's clean list unless we lost a race and find 2842 * an existing buf in either dirty or clean. 2843 */ 2844 bp->b_vp = vp; 2845 bp->b_bufobj = bo; 2846 bp->b_xflags |= BX_VNCLEAN; 2847 error = EEXIST; 2848 BO_LOCK(bo); 2849 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL) 2850 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN); 2851 BO_UNLOCK(bo); 2852 if (__predict_true(error == 0)) { 2853 vhold(vp); 2854 return (0); 2855 } 2856 if (error != EEXIST) 2857 panic("bgetvp: buf_vlist_add error: %d", error); 2858 bp->b_vp = NULL; 2859 bp->b_bufobj = NULL; 2860 bp->b_xflags &= ~BX_VNCLEAN; 2861 return (error); 2862 } 2863 2864 /* 2865 * Disassociate a buffer from a vnode. 2866 */ 2867 void brelvp(struct buf * bp)2868 brelvp(struct buf *bp) 2869 { 2870 struct bufobj *bo; 2871 struct vnode *vp; 2872 2873 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2874 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2875 2876 /* 2877 * Delete from old vnode list, if on one. 2878 */ 2879 vp = bp->b_vp; /* XXX */ 2880 bo = bp->b_bufobj; 2881 BO_LOCK(bo); 2882 buf_vlist_remove(bp); 2883 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2884 bo->bo_flag &= ~BO_ONWORKLST; 2885 mtx_lock(&sync_mtx); 2886 LIST_REMOVE(bo, bo_synclist); 2887 syncer_worklist_len--; 2888 mtx_unlock(&sync_mtx); 2889 } 2890 bp->b_vp = NULL; 2891 bp->b_bufobj = NULL; 2892 BO_UNLOCK(bo); 2893 vdrop(vp); 2894 } 2895 2896 /* 2897 * Add an item to the syncer work queue. 2898 */ 2899 static void vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2900 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2901 { 2902 int slot; 2903 2904 ASSERT_BO_WLOCKED(bo); 2905 2906 mtx_lock(&sync_mtx); 2907 if (bo->bo_flag & BO_ONWORKLST) 2908 LIST_REMOVE(bo, bo_synclist); 2909 else { 2910 bo->bo_flag |= BO_ONWORKLST; 2911 syncer_worklist_len++; 2912 } 2913 2914 if (delay > syncer_maxdelay - 2) 2915 delay = syncer_maxdelay - 2; 2916 slot = (syncer_delayno + delay) & syncer_mask; 2917 2918 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2919 mtx_unlock(&sync_mtx); 2920 } 2921 2922 static int sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2923 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2924 { 2925 int error, len; 2926 2927 mtx_lock(&sync_mtx); 2928 len = syncer_worklist_len - sync_vnode_count; 2929 mtx_unlock(&sync_mtx); 2930 error = SYSCTL_OUT(req, &len, sizeof(len)); 2931 return (error); 2932 } 2933 2934 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, 2935 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, 2936 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2937 2938 static struct proc *updateproc; 2939 static void sched_sync(void); 2940 static struct kproc_desc up_kp = { 2941 "syncer", 2942 sched_sync, 2943 &updateproc 2944 }; 2945 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2946 2947 static int sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2948 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2949 { 2950 struct vnode *vp; 2951 struct mount *mp; 2952 2953 *bo = LIST_FIRST(slp); 2954 if (*bo == NULL) 2955 return (0); 2956 vp = bo2vnode(*bo); 2957 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2958 return (1); 2959 /* 2960 * We use vhold in case the vnode does not 2961 * successfully sync. vhold prevents the vnode from 2962 * going away when we unlock the sync_mtx so that 2963 * we can acquire the vnode interlock. 2964 */ 2965 vholdl(vp); 2966 mtx_unlock(&sync_mtx); 2967 VI_UNLOCK(vp); 2968 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2969 vdrop(vp); 2970 mtx_lock(&sync_mtx); 2971 return (*bo == LIST_FIRST(slp)); 2972 } 2973 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 || 2974 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp, 2975 ("suspended mp syncing vp %p", vp)); 2976 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2977 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2978 VOP_UNLOCK(vp); 2979 vn_finished_write(mp); 2980 BO_LOCK(*bo); 2981 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2982 /* 2983 * Put us back on the worklist. The worklist 2984 * routine will remove us from our current 2985 * position and then add us back in at a later 2986 * position. 2987 */ 2988 vn_syncer_add_to_worklist(*bo, syncdelay); 2989 } 2990 BO_UNLOCK(*bo); 2991 vdrop(vp); 2992 mtx_lock(&sync_mtx); 2993 return (0); 2994 } 2995 2996 static int first_printf = 1; 2997 2998 /* 2999 * System filesystem synchronizer daemon. 3000 */ 3001 static void sched_sync(void)3002 sched_sync(void) 3003 { 3004 struct synclist *next, *slp; 3005 struct bufobj *bo; 3006 long starttime; 3007 struct thread *td = curthread; 3008 int last_work_seen; 3009 int net_worklist_len; 3010 int syncer_final_iter; 3011 int error; 3012 3013 last_work_seen = 0; 3014 syncer_final_iter = 0; 3015 syncer_state = SYNCER_RUNNING; 3016 starttime = time_uptime; 3017 td->td_pflags |= TDP_NORUNNINGBUF; 3018 3019 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 3020 SHUTDOWN_PRI_LAST); 3021 3022 mtx_lock(&sync_mtx); 3023 for (;;) { 3024 if (syncer_state == SYNCER_FINAL_DELAY && 3025 syncer_final_iter == 0) { 3026 mtx_unlock(&sync_mtx); 3027 kproc_suspend_check(td->td_proc); 3028 mtx_lock(&sync_mtx); 3029 } 3030 net_worklist_len = syncer_worklist_len - sync_vnode_count; 3031 if (syncer_state != SYNCER_RUNNING && 3032 starttime != time_uptime) { 3033 if (first_printf) { 3034 printf("\nSyncing disks, vnodes remaining... "); 3035 first_printf = 0; 3036 } 3037 printf("%d ", net_worklist_len); 3038 } 3039 starttime = time_uptime; 3040 3041 /* 3042 * Push files whose dirty time has expired. Be careful 3043 * of interrupt race on slp queue. 3044 * 3045 * Skip over empty worklist slots when shutting down. 3046 */ 3047 do { 3048 slp = &syncer_workitem_pending[syncer_delayno]; 3049 syncer_delayno += 1; 3050 if (syncer_delayno == syncer_maxdelay) 3051 syncer_delayno = 0; 3052 next = &syncer_workitem_pending[syncer_delayno]; 3053 /* 3054 * If the worklist has wrapped since the 3055 * it was emptied of all but syncer vnodes, 3056 * switch to the FINAL_DELAY state and run 3057 * for one more second. 3058 */ 3059 if (syncer_state == SYNCER_SHUTTING_DOWN && 3060 net_worklist_len == 0 && 3061 last_work_seen == syncer_delayno) { 3062 syncer_state = SYNCER_FINAL_DELAY; 3063 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 3064 } 3065 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 3066 syncer_worklist_len > 0); 3067 3068 /* 3069 * Keep track of the last time there was anything 3070 * on the worklist other than syncer vnodes. 3071 * Return to the SHUTTING_DOWN state if any 3072 * new work appears. 3073 */ 3074 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 3075 last_work_seen = syncer_delayno; 3076 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 3077 syncer_state = SYNCER_SHUTTING_DOWN; 3078 while (!LIST_EMPTY(slp)) { 3079 error = sync_vnode(slp, &bo, td); 3080 if (error == 1) { 3081 LIST_REMOVE(bo, bo_synclist); 3082 LIST_INSERT_HEAD(next, bo, bo_synclist); 3083 continue; 3084 } 3085 3086 if (first_printf == 0) { 3087 /* 3088 * Drop the sync mutex, because some watchdog 3089 * drivers need to sleep while patting 3090 */ 3091 mtx_unlock(&sync_mtx); 3092 wdog_kern_pat(WD_LASTVAL); 3093 mtx_lock(&sync_mtx); 3094 } 3095 } 3096 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 3097 syncer_final_iter--; 3098 /* 3099 * The variable rushjob allows the kernel to speed up the 3100 * processing of the filesystem syncer process. A rushjob 3101 * value of N tells the filesystem syncer to process the next 3102 * N seconds worth of work on its queue ASAP. Currently rushjob 3103 * is used by the soft update code to speed up the filesystem 3104 * syncer process when the incore state is getting so far 3105 * ahead of the disk that the kernel memory pool is being 3106 * threatened with exhaustion. 3107 */ 3108 if (rushjob > 0) { 3109 rushjob -= 1; 3110 continue; 3111 } 3112 /* 3113 * Just sleep for a short period of time between 3114 * iterations when shutting down to allow some I/O 3115 * to happen. 3116 * 3117 * If it has taken us less than a second to process the 3118 * current work, then wait. Otherwise start right over 3119 * again. We can still lose time if any single round 3120 * takes more than two seconds, but it does not really 3121 * matter as we are just trying to generally pace the 3122 * filesystem activity. 3123 */ 3124 if (syncer_state != SYNCER_RUNNING || 3125 time_uptime == starttime) { 3126 thread_lock(td); 3127 sched_prio(td, PPAUSE); 3128 thread_unlock(td); 3129 } 3130 if (syncer_state != SYNCER_RUNNING) 3131 cv_timedwait(&sync_wakeup, &sync_mtx, 3132 hz / SYNCER_SHUTDOWN_SPEEDUP); 3133 else if (time_uptime == starttime) 3134 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 3135 } 3136 } 3137 3138 /* 3139 * Request the syncer daemon to speed up its work. 3140 * We never push it to speed up more than half of its 3141 * normal turn time, otherwise it could take over the cpu. 3142 */ 3143 int speedup_syncer(void)3144 speedup_syncer(void) 3145 { 3146 int ret = 0; 3147 3148 mtx_lock(&sync_mtx); 3149 if (rushjob < syncdelay / 2) { 3150 rushjob += 1; 3151 stat_rush_requests += 1; 3152 ret = 1; 3153 } 3154 mtx_unlock(&sync_mtx); 3155 cv_broadcast(&sync_wakeup); 3156 return (ret); 3157 } 3158 3159 /* 3160 * Tell the syncer to speed up its work and run though its work 3161 * list several times, then tell it to shut down. 3162 */ 3163 static void syncer_shutdown(void * arg,int howto)3164 syncer_shutdown(void *arg, int howto) 3165 { 3166 3167 if (howto & RB_NOSYNC) 3168 return; 3169 mtx_lock(&sync_mtx); 3170 syncer_state = SYNCER_SHUTTING_DOWN; 3171 rushjob = 0; 3172 mtx_unlock(&sync_mtx); 3173 cv_broadcast(&sync_wakeup); 3174 kproc_shutdown(arg, howto); 3175 } 3176 3177 void syncer_suspend(void)3178 syncer_suspend(void) 3179 { 3180 3181 syncer_shutdown(updateproc, 0); 3182 } 3183 3184 void syncer_resume(void)3185 syncer_resume(void) 3186 { 3187 3188 mtx_lock(&sync_mtx); 3189 first_printf = 1; 3190 syncer_state = SYNCER_RUNNING; 3191 mtx_unlock(&sync_mtx); 3192 cv_broadcast(&sync_wakeup); 3193 kproc_resume(updateproc); 3194 } 3195 3196 /* 3197 * Move the buffer between the clean and dirty lists of its vnode. 3198 */ 3199 void reassignbuf(struct buf * bp)3200 reassignbuf(struct buf *bp) 3201 { 3202 struct vnode *vp; 3203 struct bufobj *bo; 3204 int delay; 3205 #ifdef INVARIANTS 3206 struct bufv *bv; 3207 #endif 3208 3209 vp = bp->b_vp; 3210 bo = bp->b_bufobj; 3211 3212 KASSERT((bp->b_flags & B_PAGING) == 0, 3213 ("%s: cannot reassign paging buffer %p", __func__, bp)); 3214 3215 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 3216 bp, bp->b_vp, bp->b_flags); 3217 3218 BO_LOCK(bo); 3219 if ((bo->bo_flag & BO_NONSTERILE) == 0) { 3220 /* 3221 * Coordinate with getblk's unlocked lookup. Make 3222 * BO_NONSTERILE visible before the first reassignbuf produces 3223 * any side effect. This could be outside the bo lock if we 3224 * used a separate atomic flag field. 3225 */ 3226 bo->bo_flag |= BO_NONSTERILE; 3227 atomic_thread_fence_rel(); 3228 } 3229 buf_vlist_remove(bp); 3230 3231 /* 3232 * If dirty, put on list of dirty buffers; otherwise insert onto list 3233 * of clean buffers. 3234 */ 3235 if (bp->b_flags & B_DELWRI) { 3236 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 3237 switch (vp->v_type) { 3238 case VDIR: 3239 delay = dirdelay; 3240 break; 3241 case VCHR: 3242 delay = metadelay; 3243 break; 3244 default: 3245 delay = filedelay; 3246 } 3247 vn_syncer_add_to_worklist(bo, delay); 3248 } 3249 buf_vlist_add(bp, bo, BX_VNDIRTY); 3250 } else { 3251 buf_vlist_add(bp, bo, BX_VNCLEAN); 3252 3253 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 3254 mtx_lock(&sync_mtx); 3255 LIST_REMOVE(bo, bo_synclist); 3256 syncer_worklist_len--; 3257 mtx_unlock(&sync_mtx); 3258 bo->bo_flag &= ~BO_ONWORKLST; 3259 } 3260 } 3261 #ifdef INVARIANTS 3262 bv = &bo->bo_clean; 3263 bp = TAILQ_FIRST(&bv->bv_hd); 3264 KASSERT(bp == NULL || bp->b_bufobj == bo, 3265 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3266 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3267 KASSERT(bp == NULL || bp->b_bufobj == bo, 3268 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3269 bv = &bo->bo_dirty; 3270 bp = TAILQ_FIRST(&bv->bv_hd); 3271 KASSERT(bp == NULL || bp->b_bufobj == bo, 3272 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3273 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3274 KASSERT(bp == NULL || bp->b_bufobj == bo, 3275 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3276 #endif 3277 BO_UNLOCK(bo); 3278 } 3279 3280 static void v_init_counters(struct vnode * vp)3281 v_init_counters(struct vnode *vp) 3282 { 3283 3284 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 3285 vp, ("%s called for an initialized vnode", __FUNCTION__)); 3286 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 3287 3288 refcount_init(&vp->v_holdcnt, 1); 3289 refcount_init(&vp->v_usecount, 1); 3290 } 3291 3292 /* 3293 * Get a usecount on a vnode. 3294 * 3295 * vget and vget_finish may fail to lock the vnode if they lose a race against 3296 * it being doomed. LK_RETRY can be passed in flags to lock it anyway. 3297 * 3298 * Consumers which don't guarantee liveness of the vnode can use SMR to 3299 * try to get a reference. Note this operation can fail since the vnode 3300 * may be awaiting getting freed by the time they get to it. 3301 */ 3302 enum vgetstate vget_prep_smr(struct vnode * vp)3303 vget_prep_smr(struct vnode *vp) 3304 { 3305 enum vgetstate vs; 3306 3307 VFS_SMR_ASSERT_ENTERED(); 3308 3309 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3310 vs = VGET_USECOUNT; 3311 } else { 3312 if (vhold_smr(vp)) 3313 vs = VGET_HOLDCNT; 3314 else 3315 vs = VGET_NONE; 3316 } 3317 return (vs); 3318 } 3319 3320 enum vgetstate vget_prep(struct vnode * vp)3321 vget_prep(struct vnode *vp) 3322 { 3323 enum vgetstate vs; 3324 3325 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3326 vs = VGET_USECOUNT; 3327 } else { 3328 vhold(vp); 3329 vs = VGET_HOLDCNT; 3330 } 3331 return (vs); 3332 } 3333 3334 void vget_abort(struct vnode * vp,enum vgetstate vs)3335 vget_abort(struct vnode *vp, enum vgetstate vs) 3336 { 3337 3338 switch (vs) { 3339 case VGET_USECOUNT: 3340 vrele(vp); 3341 break; 3342 case VGET_HOLDCNT: 3343 vdrop(vp); 3344 break; 3345 default: 3346 __assert_unreachable(); 3347 } 3348 } 3349 3350 int vget(struct vnode * vp,int flags)3351 vget(struct vnode *vp, int flags) 3352 { 3353 enum vgetstate vs; 3354 3355 vs = vget_prep(vp); 3356 return (vget_finish(vp, flags, vs)); 3357 } 3358 3359 int vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3360 vget_finish(struct vnode *vp, int flags, enum vgetstate vs) 3361 { 3362 int error; 3363 3364 if ((flags & LK_INTERLOCK) != 0) 3365 ASSERT_VI_LOCKED(vp, __func__); 3366 else 3367 ASSERT_VI_UNLOCKED(vp, __func__); 3368 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3369 VNPASS(vp->v_holdcnt > 0, vp); 3370 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3371 3372 error = vn_lock(vp, flags); 3373 if (__predict_false(error != 0)) { 3374 vget_abort(vp, vs); 3375 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 3376 vp); 3377 return (error); 3378 } 3379 3380 vget_finish_ref(vp, vs); 3381 return (0); 3382 } 3383 3384 void vget_finish_ref(struct vnode * vp,enum vgetstate vs)3385 vget_finish_ref(struct vnode *vp, enum vgetstate vs) 3386 { 3387 int old; 3388 3389 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3390 VNPASS(vp->v_holdcnt > 0, vp); 3391 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3392 3393 if (vs == VGET_USECOUNT) 3394 return; 3395 3396 /* 3397 * We hold the vnode. If the usecount is 0 it will be utilized to keep 3398 * the vnode around. Otherwise someone else lended their hold count and 3399 * we have to drop ours. 3400 */ 3401 old = atomic_fetchadd_int(&vp->v_usecount, 1); 3402 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); 3403 if (old != 0) { 3404 #ifdef INVARIANTS 3405 old = atomic_fetchadd_int(&vp->v_holdcnt, -1); 3406 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); 3407 #else 3408 refcount_release(&vp->v_holdcnt); 3409 #endif 3410 } 3411 } 3412 3413 void vref(struct vnode * vp)3414 vref(struct vnode *vp) 3415 { 3416 enum vgetstate vs; 3417 3418 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3419 vs = vget_prep(vp); 3420 vget_finish_ref(vp, vs); 3421 } 3422 3423 void vrefact(struct vnode * vp)3424 vrefact(struct vnode *vp) 3425 { 3426 int old __diagused; 3427 3428 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3429 old = refcount_acquire(&vp->v_usecount); 3430 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); 3431 } 3432 3433 void vlazy(struct vnode * vp)3434 vlazy(struct vnode *vp) 3435 { 3436 struct mount *mp; 3437 3438 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); 3439 3440 if ((vp->v_mflag & VMP_LAZYLIST) != 0) 3441 return; 3442 /* 3443 * We may get here for inactive routines after the vnode got doomed. 3444 */ 3445 if (VN_IS_DOOMED(vp)) 3446 return; 3447 mp = vp->v_mount; 3448 mtx_lock(&mp->mnt_listmtx); 3449 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 3450 vp->v_mflag |= VMP_LAZYLIST; 3451 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3452 mp->mnt_lazyvnodelistsize++; 3453 } 3454 mtx_unlock(&mp->mnt_listmtx); 3455 } 3456 3457 static void vunlazy(struct vnode * vp)3458 vunlazy(struct vnode *vp) 3459 { 3460 struct mount *mp; 3461 3462 ASSERT_VI_LOCKED(vp, __func__); 3463 VNPASS(!VN_IS_DOOMED(vp), vp); 3464 3465 mp = vp->v_mount; 3466 mtx_lock(&mp->mnt_listmtx); 3467 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3468 /* 3469 * Don't remove the vnode from the lazy list if another thread 3470 * has increased the hold count. It may have re-enqueued the 3471 * vnode to the lazy list and is now responsible for its 3472 * removal. 3473 */ 3474 if (vp->v_holdcnt == 0) { 3475 vp->v_mflag &= ~VMP_LAZYLIST; 3476 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3477 mp->mnt_lazyvnodelistsize--; 3478 } 3479 mtx_unlock(&mp->mnt_listmtx); 3480 } 3481 3482 /* 3483 * This routine is only meant to be called from vgonel prior to dooming 3484 * the vnode. 3485 */ 3486 static void vunlazy_gone(struct vnode * vp)3487 vunlazy_gone(struct vnode *vp) 3488 { 3489 struct mount *mp; 3490 3491 ASSERT_VOP_ELOCKED(vp, __func__); 3492 ASSERT_VI_LOCKED(vp, __func__); 3493 VNPASS(!VN_IS_DOOMED(vp), vp); 3494 3495 if (vp->v_mflag & VMP_LAZYLIST) { 3496 mp = vp->v_mount; 3497 mtx_lock(&mp->mnt_listmtx); 3498 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3499 vp->v_mflag &= ~VMP_LAZYLIST; 3500 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3501 mp->mnt_lazyvnodelistsize--; 3502 mtx_unlock(&mp->mnt_listmtx); 3503 } 3504 } 3505 3506 static void vdefer_inactive(struct vnode * vp)3507 vdefer_inactive(struct vnode *vp) 3508 { 3509 3510 ASSERT_VI_LOCKED(vp, __func__); 3511 VNPASS(vp->v_holdcnt > 0, vp); 3512 if (VN_IS_DOOMED(vp)) { 3513 vdropl(vp); 3514 return; 3515 } 3516 if (vp->v_iflag & VI_DEFINACT) { 3517 VNPASS(vp->v_holdcnt > 1, vp); 3518 vdropl(vp); 3519 return; 3520 } 3521 if (vp->v_usecount > 0) { 3522 vp->v_iflag &= ~VI_OWEINACT; 3523 vdropl(vp); 3524 return; 3525 } 3526 vlazy(vp); 3527 vp->v_iflag |= VI_DEFINACT; 3528 VI_UNLOCK(vp); 3529 atomic_add_long(&deferred_inact, 1); 3530 } 3531 3532 static void vdefer_inactive_unlocked(struct vnode * vp)3533 vdefer_inactive_unlocked(struct vnode *vp) 3534 { 3535 3536 VI_LOCK(vp); 3537 if ((vp->v_iflag & VI_OWEINACT) == 0) { 3538 vdropl(vp); 3539 return; 3540 } 3541 vdefer_inactive(vp); 3542 } 3543 3544 enum vput_op { VRELE, VPUT, VUNREF }; 3545 3546 /* 3547 * Handle ->v_usecount transitioning to 0. 3548 * 3549 * By releasing the last usecount we take ownership of the hold count which 3550 * provides liveness of the vnode, meaning we have to vdrop. 3551 * 3552 * For all vnodes we may need to perform inactive processing. It requires an 3553 * exclusive lock on the vnode, while it is legal to call here with only a 3554 * shared lock (or no locks). If locking the vnode in an expected manner fails, 3555 * inactive processing gets deferred to the syncer. 3556 * 3557 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend 3558 * on the lock being held all the way until VOP_INACTIVE. This in particular 3559 * happens with UFS which adds half-constructed vnodes to the hash, where they 3560 * can be found by other code. 3561 */ 3562 static void vput_final(struct vnode * vp,enum vput_op func)3563 vput_final(struct vnode *vp, enum vput_op func) 3564 { 3565 int error; 3566 bool want_unlock; 3567 3568 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3569 VNPASS(vp->v_holdcnt > 0, vp); 3570 3571 VI_LOCK(vp); 3572 3573 /* 3574 * By the time we got here someone else might have transitioned 3575 * the count back to > 0. 3576 */ 3577 if (vp->v_usecount > 0) 3578 goto out; 3579 3580 /* 3581 * If the vnode is doomed vgone already performed inactive processing 3582 * (if needed). 3583 */ 3584 if (VN_IS_DOOMED(vp)) 3585 goto out; 3586 3587 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0)) 3588 goto out; 3589 3590 if (vp->v_iflag & VI_DOINGINACT) 3591 goto out; 3592 3593 /* 3594 * Locking operations here will drop the interlock and possibly the 3595 * vnode lock, opening a window where the vnode can get doomed all the 3596 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to 3597 * perform inactive. 3598 */ 3599 vp->v_iflag |= VI_OWEINACT; 3600 want_unlock = false; 3601 error = 0; 3602 switch (func) { 3603 case VRELE: 3604 switch (VOP_ISLOCKED(vp)) { 3605 case LK_EXCLUSIVE: 3606 break; 3607 case LK_EXCLOTHER: 3608 case 0: 3609 want_unlock = true; 3610 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 3611 VI_LOCK(vp); 3612 break; 3613 default: 3614 /* 3615 * The lock has at least one sharer, but we have no way 3616 * to conclude whether this is us. Play it safe and 3617 * defer processing. 3618 */ 3619 error = EAGAIN; 3620 break; 3621 } 3622 break; 3623 case VPUT: 3624 want_unlock = true; 3625 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3626 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 3627 LK_NOWAIT); 3628 VI_LOCK(vp); 3629 } 3630 break; 3631 case VUNREF: 3632 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3633 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 3634 VI_LOCK(vp); 3635 } 3636 break; 3637 } 3638 if (error == 0) { 3639 if (func == VUNREF) { 3640 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp, 3641 ("recursive vunref")); 3642 vp->v_vflag |= VV_UNREF; 3643 } 3644 for (;;) { 3645 error = vinactive(vp); 3646 if (want_unlock) 3647 VOP_UNLOCK(vp); 3648 if (error != ERELOOKUP || !want_unlock) 3649 break; 3650 VOP_LOCK(vp, LK_EXCLUSIVE); 3651 } 3652 if (func == VUNREF) 3653 vp->v_vflag &= ~VV_UNREF; 3654 vdropl(vp); 3655 } else { 3656 vdefer_inactive(vp); 3657 } 3658 return; 3659 out: 3660 if (func == VPUT) 3661 VOP_UNLOCK(vp); 3662 vdropl(vp); 3663 } 3664 3665 /* 3666 * Decrement ->v_usecount for a vnode. 3667 * 3668 * Releasing the last use count requires additional processing, see vput_final 3669 * above for details. 3670 * 3671 * Comment above each variant denotes lock state on entry and exit. 3672 */ 3673 3674 /* 3675 * in: any 3676 * out: same as passed in 3677 */ 3678 void vrele(struct vnode * vp)3679 vrele(struct vnode *vp) 3680 { 3681 3682 ASSERT_VI_UNLOCKED(vp, __func__); 3683 if (!refcount_release(&vp->v_usecount)) 3684 return; 3685 vput_final(vp, VRELE); 3686 } 3687 3688 /* 3689 * in: locked 3690 * out: unlocked 3691 */ 3692 void vput(struct vnode * vp)3693 vput(struct vnode *vp) 3694 { 3695 3696 ASSERT_VOP_LOCKED(vp, __func__); 3697 ASSERT_VI_UNLOCKED(vp, __func__); 3698 if (!refcount_release(&vp->v_usecount)) { 3699 VOP_UNLOCK(vp); 3700 return; 3701 } 3702 vput_final(vp, VPUT); 3703 } 3704 3705 /* 3706 * in: locked 3707 * out: locked 3708 */ 3709 void vunref(struct vnode * vp)3710 vunref(struct vnode *vp) 3711 { 3712 3713 ASSERT_VOP_LOCKED(vp, __func__); 3714 ASSERT_VI_UNLOCKED(vp, __func__); 3715 if (!refcount_release(&vp->v_usecount)) 3716 return; 3717 vput_final(vp, VUNREF); 3718 } 3719 3720 void vhold(struct vnode * vp)3721 vhold(struct vnode *vp) 3722 { 3723 int old; 3724 3725 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3726 old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3727 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3728 ("%s: wrong hold count %d", __func__, old)); 3729 if (old == 0) 3730 vfs_freevnodes_dec(); 3731 } 3732 3733 void vholdnz(struct vnode * vp)3734 vholdnz(struct vnode *vp) 3735 { 3736 3737 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3738 #ifdef INVARIANTS 3739 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3740 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3741 ("%s: wrong hold count %d", __func__, old)); 3742 #else 3743 atomic_add_int(&vp->v_holdcnt, 1); 3744 #endif 3745 } 3746 3747 /* 3748 * Grab a hold count unless the vnode is freed. 3749 * 3750 * Only use this routine if vfs smr is the only protection you have against 3751 * freeing the vnode. 3752 * 3753 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag 3754 * is not set. After the flag is set the vnode becomes immutable to anyone but 3755 * the thread which managed to set the flag. 3756 * 3757 * It may be tempting to replace the loop with: 3758 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3759 * if (count & VHOLD_NO_SMR) { 3760 * backpedal and error out; 3761 * } 3762 * 3763 * However, while this is more performant, it hinders debugging by eliminating 3764 * the previously mentioned invariant. 3765 */ 3766 bool vhold_smr(struct vnode * vp)3767 vhold_smr(struct vnode *vp) 3768 { 3769 int count; 3770 3771 VFS_SMR_ASSERT_ENTERED(); 3772 3773 count = atomic_load_int(&vp->v_holdcnt); 3774 for (;;) { 3775 if (count & VHOLD_NO_SMR) { 3776 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3777 ("non-zero hold count with flags %d\n", count)); 3778 return (false); 3779 } 3780 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3781 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3782 if (count == 0) 3783 vfs_freevnodes_dec(); 3784 return (true); 3785 } 3786 } 3787 } 3788 3789 /* 3790 * Hold a free vnode for recycling. 3791 * 3792 * Note: vnode_init references this comment. 3793 * 3794 * Attempts to recycle only need the global vnode list lock and have no use for 3795 * SMR. 3796 * 3797 * However, vnodes get inserted into the global list before they get fully 3798 * initialized and stay there until UMA decides to free the memory. This in 3799 * particular means the target can be found before it becomes usable and after 3800 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to 3801 * VHOLD_NO_SMR. 3802 * 3803 * Note: the vnode may gain more references after we transition the count 0->1. 3804 */ 3805 static bool vhold_recycle_free(struct vnode * vp)3806 vhold_recycle_free(struct vnode *vp) 3807 { 3808 int count; 3809 3810 mtx_assert(&vnode_list_mtx, MA_OWNED); 3811 3812 count = atomic_load_int(&vp->v_holdcnt); 3813 for (;;) { 3814 if (count & VHOLD_NO_SMR) { 3815 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3816 ("non-zero hold count with flags %d\n", count)); 3817 return (false); 3818 } 3819 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3820 if (count > 0) { 3821 return (false); 3822 } 3823 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3824 vfs_freevnodes_dec(); 3825 return (true); 3826 } 3827 } 3828 } 3829 3830 static void __noinline vdbatch_process(struct vdbatch * vd)3831 vdbatch_process(struct vdbatch *vd) 3832 { 3833 struct vnode *vp; 3834 int i; 3835 3836 mtx_assert(&vd->lock, MA_OWNED); 3837 MPASS(curthread->td_pinned > 0); 3838 MPASS(vd->index == VDBATCH_SIZE); 3839 3840 /* 3841 * Attempt to requeue the passed batch, but give up easily. 3842 * 3843 * Despite batching the mechanism is prone to transient *significant* 3844 * lock contention, where vnode_list_mtx becomes the primary bottleneck 3845 * if multiple CPUs get here (one real-world example is highly parallel 3846 * do-nothing make , which will stat *tons* of vnodes). Since it is 3847 * quasi-LRU (read: not that great even if fully honoured) provide an 3848 * option to just dodge the problem. Parties which don't like it are 3849 * welcome to implement something better. 3850 */ 3851 if (vnode_can_skip_requeue) { 3852 if (!mtx_trylock(&vnode_list_mtx)) { 3853 counter_u64_add(vnode_skipped_requeues, 1); 3854 critical_enter(); 3855 for (i = 0; i < VDBATCH_SIZE; i++) { 3856 vp = vd->tab[i]; 3857 vd->tab[i] = NULL; 3858 MPASS(vp->v_dbatchcpu != NOCPU); 3859 vp->v_dbatchcpu = NOCPU; 3860 } 3861 vd->index = 0; 3862 critical_exit(); 3863 return; 3864 3865 } 3866 /* fallthrough to locked processing */ 3867 } else { 3868 mtx_lock(&vnode_list_mtx); 3869 } 3870 3871 mtx_assert(&vnode_list_mtx, MA_OWNED); 3872 critical_enter(); 3873 for (i = 0; i < VDBATCH_SIZE; i++) { 3874 vp = vd->tab[i]; 3875 vd->tab[i] = NULL; 3876 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 3877 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); 3878 MPASS(vp->v_dbatchcpu != NOCPU); 3879 vp->v_dbatchcpu = NOCPU; 3880 } 3881 mtx_unlock(&vnode_list_mtx); 3882 vd->index = 0; 3883 critical_exit(); 3884 } 3885 3886 static void vdbatch_enqueue(struct vnode * vp)3887 vdbatch_enqueue(struct vnode *vp) 3888 { 3889 struct vdbatch *vd; 3890 3891 ASSERT_VI_LOCKED(vp, __func__); 3892 VNPASS(!VN_IS_DOOMED(vp), vp); 3893 3894 if (vp->v_dbatchcpu != NOCPU) { 3895 VI_UNLOCK(vp); 3896 return; 3897 } 3898 3899 sched_pin(); 3900 vd = DPCPU_PTR(vd); 3901 mtx_lock(&vd->lock); 3902 MPASS(vd->index < VDBATCH_SIZE); 3903 MPASS(vd->tab[vd->index] == NULL); 3904 /* 3905 * A hack: we depend on being pinned so that we know what to put in 3906 * ->v_dbatchcpu. 3907 */ 3908 vp->v_dbatchcpu = curcpu; 3909 vd->tab[vd->index] = vp; 3910 vd->index++; 3911 VI_UNLOCK(vp); 3912 if (vd->index == VDBATCH_SIZE) 3913 vdbatch_process(vd); 3914 mtx_unlock(&vd->lock); 3915 sched_unpin(); 3916 } 3917 3918 /* 3919 * This routine must only be called for vnodes which are about to be 3920 * deallocated. Supporting dequeue for arbitrary vndoes would require 3921 * validating that the locked batch matches. 3922 */ 3923 static void vdbatch_dequeue(struct vnode * vp)3924 vdbatch_dequeue(struct vnode *vp) 3925 { 3926 struct vdbatch *vd; 3927 int i; 3928 short cpu; 3929 3930 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp); 3931 3932 cpu = vp->v_dbatchcpu; 3933 if (cpu == NOCPU) 3934 return; 3935 3936 vd = DPCPU_ID_PTR(cpu, vd); 3937 mtx_lock(&vd->lock); 3938 for (i = 0; i < vd->index; i++) { 3939 if (vd->tab[i] != vp) 3940 continue; 3941 vp->v_dbatchcpu = NOCPU; 3942 vd->index--; 3943 vd->tab[i] = vd->tab[vd->index]; 3944 vd->tab[vd->index] = NULL; 3945 break; 3946 } 3947 mtx_unlock(&vd->lock); 3948 /* 3949 * Either we dequeued the vnode above or the target CPU beat us to it. 3950 */ 3951 MPASS(vp->v_dbatchcpu == NOCPU); 3952 } 3953 3954 /* 3955 * Drop the hold count of the vnode. 3956 * 3957 * It will only get freed if this is the last hold *and* it has been vgone'd. 3958 * 3959 * Because the vnode vm object keeps a hold reference on the vnode if 3960 * there is at least one resident non-cached page, the vnode cannot 3961 * leave the active list without the page cleanup done. 3962 */ 3963 static void __noinline vdropl_final(struct vnode * vp)3964 vdropl_final(struct vnode *vp) 3965 { 3966 3967 ASSERT_VI_LOCKED(vp, __func__); 3968 VNPASS(VN_IS_DOOMED(vp), vp); 3969 /* 3970 * Set the VHOLD_NO_SMR flag. 3971 * 3972 * We may be racing against vhold_smr. If they win we can just pretend 3973 * we never got this far, they will vdrop later. 3974 */ 3975 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) { 3976 vfs_freevnodes_inc(); 3977 VI_UNLOCK(vp); 3978 /* 3979 * We lost the aforementioned race. Any subsequent access is 3980 * invalid as they might have managed to vdropl on their own. 3981 */ 3982 return; 3983 } 3984 /* 3985 * Don't bump freevnodes as this one is going away. 3986 */ 3987 freevnode(vp); 3988 } 3989 3990 void vdrop(struct vnode * vp)3991 vdrop(struct vnode *vp) 3992 { 3993 3994 ASSERT_VI_UNLOCKED(vp, __func__); 3995 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3996 if (refcount_release_if_not_last(&vp->v_holdcnt)) 3997 return; 3998 VI_LOCK(vp); 3999 vdropl(vp); 4000 } 4001 4002 static __always_inline void vdropl_impl(struct vnode * vp,bool enqueue)4003 vdropl_impl(struct vnode *vp, bool enqueue) 4004 { 4005 4006 ASSERT_VI_LOCKED(vp, __func__); 4007 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4008 if (!refcount_release(&vp->v_holdcnt)) { 4009 VI_UNLOCK(vp); 4010 return; 4011 } 4012 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp); 4013 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 4014 if (VN_IS_DOOMED(vp)) { 4015 vdropl_final(vp); 4016 return; 4017 } 4018 4019 vfs_freevnodes_inc(); 4020 if (vp->v_mflag & VMP_LAZYLIST) { 4021 vunlazy(vp); 4022 } 4023 4024 if (!enqueue) { 4025 VI_UNLOCK(vp); 4026 return; 4027 } 4028 4029 /* 4030 * Also unlocks the interlock. We can't assert on it as we 4031 * released our hold and by now the vnode might have been 4032 * freed. 4033 */ 4034 vdbatch_enqueue(vp); 4035 } 4036 4037 void vdropl(struct vnode * vp)4038 vdropl(struct vnode *vp) 4039 { 4040 4041 vdropl_impl(vp, true); 4042 } 4043 4044 /* 4045 * vdrop a vnode when recycling 4046 * 4047 * This is a special case routine only to be used when recycling, differs from 4048 * regular vdrop by not requeieing the vnode on LRU. 4049 * 4050 * Consider a case where vtryrecycle continuously fails with all vnodes (due to 4051 * e.g., frozen writes on the filesystem), filling the batch and causing it to 4052 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a 4053 * loop which can last for as long as writes are frozen. 4054 */ 4055 static void vdropl_recycle(struct vnode * vp)4056 vdropl_recycle(struct vnode *vp) 4057 { 4058 4059 vdropl_impl(vp, false); 4060 } 4061 4062 static void vdrop_recycle(struct vnode * vp)4063 vdrop_recycle(struct vnode *vp) 4064 { 4065 4066 VI_LOCK(vp); 4067 vdropl_recycle(vp); 4068 } 4069 4070 /* 4071 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 4072 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 4073 */ 4074 static int vinactivef(struct vnode * vp)4075 vinactivef(struct vnode *vp) 4076 { 4077 int error; 4078 4079 ASSERT_VOP_ELOCKED(vp, "vinactive"); 4080 ASSERT_VI_LOCKED(vp, "vinactive"); 4081 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp); 4082 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4083 vp->v_iflag |= VI_DOINGINACT; 4084 vp->v_iflag &= ~VI_OWEINACT; 4085 VI_UNLOCK(vp); 4086 4087 /* 4088 * Before moving off the active list, we must be sure that any 4089 * modified pages are converted into the vnode's dirty 4090 * buffers, since these will no longer be checked once the 4091 * vnode is on the inactive list. 4092 * 4093 * The write-out of the dirty pages is asynchronous. At the 4094 * point that VOP_INACTIVE() is called, there could still be 4095 * pending I/O and dirty pages in the object. 4096 */ 4097 if ((vp->v_vflag & VV_NOSYNC) == 0) 4098 vnode_pager_clean_async(vp); 4099 4100 error = VOP_INACTIVE(vp); 4101 VI_LOCK(vp); 4102 VNPASS(vp->v_iflag & VI_DOINGINACT, vp); 4103 vp->v_iflag &= ~VI_DOINGINACT; 4104 return (error); 4105 } 4106 4107 int vinactive(struct vnode * vp)4108 vinactive(struct vnode *vp) 4109 { 4110 4111 ASSERT_VOP_ELOCKED(vp, "vinactive"); 4112 ASSERT_VI_LOCKED(vp, "vinactive"); 4113 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4114 4115 if ((vp->v_iflag & VI_OWEINACT) == 0) 4116 return (0); 4117 if (vp->v_iflag & VI_DOINGINACT) 4118 return (0); 4119 if (vp->v_usecount > 0) { 4120 vp->v_iflag &= ~VI_OWEINACT; 4121 return (0); 4122 } 4123 return (vinactivef(vp)); 4124 } 4125 4126 /* 4127 * Remove any vnodes in the vnode table belonging to mount point mp. 4128 * 4129 * If FORCECLOSE is not specified, there should not be any active ones, 4130 * return error if any are found (nb: this is a user error, not a 4131 * system error). If FORCECLOSE is specified, detach any active vnodes 4132 * that are found. 4133 * 4134 * If WRITECLOSE is set, only flush out regular file vnodes open for 4135 * writing. 4136 * 4137 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 4138 * 4139 * `rootrefs' specifies the base reference count for the root vnode 4140 * of this filesystem. The root vnode is considered busy if its 4141 * v_usecount exceeds this value. On a successful return, vflush(, td) 4142 * will call vrele() on the root vnode exactly rootrefs times. 4143 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 4144 * be zero. 4145 */ 4146 #ifdef DIAGNOSTIC 4147 static int busyprt = 0; /* print out busy vnodes */ 4148 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 4149 #endif 4150 4151 int vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4152 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 4153 { 4154 struct vnode *vp, *mvp, *rootvp = NULL; 4155 struct vattr vattr; 4156 int busy = 0, error; 4157 4158 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 4159 rootrefs, flags); 4160 if (rootrefs > 0) { 4161 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 4162 ("vflush: bad args")); 4163 /* 4164 * Get the filesystem root vnode. We can vput() it 4165 * immediately, since with rootrefs > 0, it won't go away. 4166 */ 4167 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 4168 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 4169 __func__, error); 4170 return (error); 4171 } 4172 vput(rootvp); 4173 } 4174 loop: 4175 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 4176 vholdl(vp); 4177 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 4178 if (error) { 4179 vdrop(vp); 4180 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 4181 goto loop; 4182 } 4183 /* 4184 * Skip over a vnodes marked VV_SYSTEM. 4185 */ 4186 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 4187 VOP_UNLOCK(vp); 4188 vdrop(vp); 4189 continue; 4190 } 4191 /* 4192 * If WRITECLOSE is set, flush out unlinked but still open 4193 * files (even if open only for reading) and regular file 4194 * vnodes open for writing. 4195 */ 4196 if (flags & WRITECLOSE) { 4197 vnode_pager_clean_async(vp); 4198 do { 4199 error = VOP_FSYNC(vp, MNT_WAIT, td); 4200 } while (error == ERELOOKUP); 4201 if (error != 0) { 4202 VOP_UNLOCK(vp); 4203 vdrop(vp); 4204 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 4205 return (error); 4206 } 4207 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 4208 VI_LOCK(vp); 4209 4210 if ((vp->v_type == VNON || 4211 (error == 0 && vattr.va_nlink > 0)) && 4212 (vp->v_writecount <= 0 || vp->v_type != VREG)) { 4213 VOP_UNLOCK(vp); 4214 vdropl(vp); 4215 continue; 4216 } 4217 } else 4218 VI_LOCK(vp); 4219 /* 4220 * With v_usecount == 0, all we need to do is clear out the 4221 * vnode data structures and we are done. 4222 * 4223 * If FORCECLOSE is set, forcibly close the vnode. 4224 */ 4225 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 4226 vgonel(vp); 4227 } else { 4228 busy++; 4229 #ifdef DIAGNOSTIC 4230 if (busyprt) 4231 vn_printf(vp, "vflush: busy vnode "); 4232 #endif 4233 } 4234 VOP_UNLOCK(vp); 4235 vdropl(vp); 4236 } 4237 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 4238 /* 4239 * If just the root vnode is busy, and if its refcount 4240 * is equal to `rootrefs', then go ahead and kill it. 4241 */ 4242 VI_LOCK(rootvp); 4243 KASSERT(busy > 0, ("vflush: not busy")); 4244 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 4245 ("vflush: usecount %d < rootrefs %d", 4246 rootvp->v_usecount, rootrefs)); 4247 if (busy == 1 && rootvp->v_usecount == rootrefs) { 4248 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 4249 vgone(rootvp); 4250 VOP_UNLOCK(rootvp); 4251 busy = 0; 4252 } else 4253 VI_UNLOCK(rootvp); 4254 } 4255 if (busy) { 4256 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 4257 busy); 4258 return (EBUSY); 4259 } 4260 for (; rootrefs > 0; rootrefs--) 4261 vrele(rootvp); 4262 return (0); 4263 } 4264 4265 /* 4266 * Recycle an unused vnode. 4267 */ 4268 int vrecycle(struct vnode * vp)4269 vrecycle(struct vnode *vp) 4270 { 4271 int recycled; 4272 4273 VI_LOCK(vp); 4274 recycled = vrecyclel(vp); 4275 VI_UNLOCK(vp); 4276 return (recycled); 4277 } 4278 4279 /* 4280 * vrecycle, with the vp interlock held. 4281 */ 4282 int vrecyclel(struct vnode * vp)4283 vrecyclel(struct vnode *vp) 4284 { 4285 int recycled; 4286 4287 ASSERT_VOP_ELOCKED(vp, __func__); 4288 ASSERT_VI_LOCKED(vp, __func__); 4289 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4290 recycled = 0; 4291 if (vp->v_usecount == 0) { 4292 recycled = 1; 4293 vgonel(vp); 4294 } 4295 return (recycled); 4296 } 4297 4298 /* 4299 * Eliminate all activity associated with a vnode 4300 * in preparation for reuse. 4301 */ 4302 void vgone(struct vnode * vp)4303 vgone(struct vnode *vp) 4304 { 4305 VI_LOCK(vp); 4306 vgonel(vp); 4307 VI_UNLOCK(vp); 4308 } 4309 4310 /* 4311 * Notify upper mounts about reclaimed or unlinked vnode. 4312 */ 4313 void vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4314 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event) 4315 { 4316 struct mount *mp; 4317 struct mount_upper_node *ump; 4318 4319 mp = atomic_load_ptr(&vp->v_mount); 4320 if (mp == NULL) 4321 return; 4322 if (TAILQ_EMPTY(&mp->mnt_notify)) 4323 return; 4324 4325 MNT_ILOCK(mp); 4326 mp->mnt_upper_pending++; 4327 KASSERT(mp->mnt_upper_pending > 0, 4328 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending)); 4329 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) { 4330 MNT_IUNLOCK(mp); 4331 switch (event) { 4332 case VFS_NOTIFY_UPPER_RECLAIM: 4333 VFS_RECLAIM_LOWERVP(ump->mp, vp); 4334 break; 4335 case VFS_NOTIFY_UPPER_UNLINK: 4336 VFS_UNLINK_LOWERVP(ump->mp, vp); 4337 break; 4338 } 4339 MNT_ILOCK(mp); 4340 } 4341 mp->mnt_upper_pending--; 4342 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 && 4343 mp->mnt_upper_pending == 0) { 4344 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER; 4345 wakeup(&mp->mnt_uppers); 4346 } 4347 MNT_IUNLOCK(mp); 4348 } 4349 4350 /* 4351 * vgone, with the vp interlock held. 4352 */ 4353 static void vgonel(struct vnode * vp)4354 vgonel(struct vnode *vp) 4355 { 4356 struct thread *td; 4357 struct mount *mp; 4358 vm_object_t object; 4359 bool active, doinginact, oweinact; 4360 4361 ASSERT_VOP_ELOCKED(vp, "vgonel"); 4362 ASSERT_VI_LOCKED(vp, "vgonel"); 4363 VNASSERT(vp->v_holdcnt, vp, 4364 ("vgonel: vp %p has no reference.", vp)); 4365 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4366 td = curthread; 4367 4368 /* 4369 * Don't vgonel if we're already doomed. 4370 */ 4371 if (VN_IS_DOOMED(vp)) { 4372 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \ 4373 vn_get_state(vp) == VSTATE_DEAD, vp); 4374 return; 4375 } 4376 /* 4377 * Paired with freevnode. 4378 */ 4379 vn_seqc_write_begin_locked(vp); 4380 vunlazy_gone(vp); 4381 vn_irflag_set_locked(vp, VIRF_DOOMED); 4382 vn_set_state(vp, VSTATE_DESTROYING); 4383 4384 /* 4385 * Check to see if the vnode is in use. If so, we have to 4386 * call VOP_CLOSE() and VOP_INACTIVE(). 4387 * 4388 * It could be that VOP_INACTIVE() requested reclamation, in 4389 * which case we should avoid recursion, so check 4390 * VI_DOINGINACT. This is not precise but good enough. 4391 */ 4392 active = vp->v_usecount > 0; 4393 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4394 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0; 4395 4396 /* 4397 * If we need to do inactive VI_OWEINACT will be set. 4398 */ 4399 if (vp->v_iflag & VI_DEFINACT) { 4400 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 4401 vp->v_iflag &= ~VI_DEFINACT; 4402 vdropl(vp); 4403 } else { 4404 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); 4405 VI_UNLOCK(vp); 4406 } 4407 cache_purge_vgone(vp); 4408 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 4409 4410 /* 4411 * If purging an active vnode, it must be closed and 4412 * deactivated before being reclaimed. 4413 */ 4414 if (active) 4415 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 4416 if (!doinginact) { 4417 do { 4418 if (oweinact || active) { 4419 VI_LOCK(vp); 4420 vinactivef(vp); 4421 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4422 VI_UNLOCK(vp); 4423 } 4424 } while (oweinact); 4425 } 4426 if (vp->v_type == VSOCK) 4427 vfs_unp_reclaim(vp); 4428 4429 /* 4430 * Clean out any buffers associated with the vnode. 4431 * If the flush fails, just toss the buffers. 4432 */ 4433 mp = NULL; 4434 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 4435 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 4436 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 4437 while (vinvalbuf(vp, 0, 0, 0) != 0) 4438 ; 4439 } 4440 4441 BO_LOCK(&vp->v_bufobj); 4442 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 4443 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 4444 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 4445 vp->v_bufobj.bo_clean.bv_cnt == 0, 4446 ("vp %p bufobj not invalidated", vp)); 4447 4448 /* 4449 * For VMIO bufobj, BO_DEAD is set later, or in 4450 * vm_object_terminate() after the object's page queue is 4451 * flushed. 4452 */ 4453 object = vp->v_bufobj.bo_object; 4454 if (object == NULL) 4455 vp->v_bufobj.bo_flag |= BO_DEAD; 4456 BO_UNLOCK(&vp->v_bufobj); 4457 4458 /* 4459 * Handle the VM part. Tmpfs handles v_object on its own (the 4460 * OBJT_VNODE check). Nullfs or other bypassing filesystems 4461 * should not touch the object borrowed from the lower vnode 4462 * (the handle check). 4463 */ 4464 if (object != NULL && object->type == OBJT_VNODE && 4465 object->handle == vp) 4466 vnode_destroy_vobject(vp); 4467 4468 /* 4469 * Reclaim the vnode. 4470 */ 4471 if (VOP_RECLAIM(vp)) 4472 panic("vgone: cannot reclaim"); 4473 if (mp != NULL) 4474 vn_finished_secondary_write(mp); 4475 VNASSERT(vp->v_object == NULL, vp, 4476 ("vop_reclaim left v_object vp=%p", vp)); 4477 /* 4478 * Clear the advisory locks and wake up waiting threads. 4479 */ 4480 if (vp->v_lockf != NULL) { 4481 (void)VOP_ADVLOCKPURGE(vp); 4482 vp->v_lockf = NULL; 4483 } 4484 /* 4485 * Delete from old mount point vnode list. 4486 */ 4487 if (vp->v_mount == NULL) { 4488 VI_LOCK(vp); 4489 } else { 4490 delmntque(vp); 4491 ASSERT_VI_LOCKED(vp, "vgonel 2"); 4492 } 4493 /* 4494 * Done with purge, reset to the standard lock and invalidate 4495 * the vnode. 4496 */ 4497 vp->v_vnlock = &vp->v_lock; 4498 vp->v_op = &dead_vnodeops; 4499 vp->v_type = VBAD; 4500 vn_set_state(vp, VSTATE_DEAD); 4501 } 4502 4503 /* 4504 * Print out a description of a vnode. 4505 */ 4506 static const char *const vtypename[] = { 4507 [VNON] = "VNON", 4508 [VREG] = "VREG", 4509 [VDIR] = "VDIR", 4510 [VBLK] = "VBLK", 4511 [VCHR] = "VCHR", 4512 [VLNK] = "VLNK", 4513 [VSOCK] = "VSOCK", 4514 [VFIFO] = "VFIFO", 4515 [VBAD] = "VBAD", 4516 [VMARKER] = "VMARKER", 4517 }; 4518 _Static_assert(nitems(vtypename) == VLASTTYPE + 1, 4519 "vnode type name not added to vtypename"); 4520 4521 static const char *const vstatename[] = { 4522 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED", 4523 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED", 4524 [VSTATE_DESTROYING] = "VSTATE_DESTROYING", 4525 [VSTATE_DEAD] = "VSTATE_DEAD", 4526 }; 4527 _Static_assert(nitems(vstatename) == VLASTSTATE + 1, 4528 "vnode state name not added to vstatename"); 4529 4530 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0, 4531 "new hold count flag not added to vn_printf"); 4532 4533 void vn_printf(struct vnode * vp,const char * fmt,...)4534 vn_printf(struct vnode *vp, const char *fmt, ...) 4535 { 4536 va_list ap; 4537 char buf[256], buf2[16]; 4538 u_long flags; 4539 u_int holdcnt; 4540 short irflag; 4541 4542 va_start(ap, fmt); 4543 vprintf(fmt, ap); 4544 va_end(ap); 4545 printf("%p: ", (void *)vp); 4546 printf("type %s state %s op %p\n", vtypename[vp->v_type], 4547 vstatename[vp->v_state], vp->v_op); 4548 holdcnt = atomic_load_int(&vp->v_holdcnt); 4549 printf(" usecount %d, writecount %d, refcount %d seqc users %d", 4550 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS, 4551 vp->v_seqc_users); 4552 switch (vp->v_type) { 4553 case VDIR: 4554 printf(" mountedhere %p\n", vp->v_mountedhere); 4555 break; 4556 case VCHR: 4557 printf(" rdev %p\n", vp->v_rdev); 4558 break; 4559 case VSOCK: 4560 printf(" socket %p\n", vp->v_unpcb); 4561 break; 4562 case VFIFO: 4563 printf(" fifoinfo %p\n", vp->v_fifoinfo); 4564 break; 4565 default: 4566 printf("\n"); 4567 break; 4568 } 4569 buf[0] = '\0'; 4570 buf[1] = '\0'; 4571 if (holdcnt & VHOLD_NO_SMR) 4572 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf)); 4573 printf(" hold count flags (%s)\n", buf + 1); 4574 4575 buf[0] = '\0'; 4576 buf[1] = '\0'; 4577 irflag = vn_irflag_read(vp); 4578 if (irflag & VIRF_DOOMED) 4579 strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); 4580 if (irflag & VIRF_PGREAD) 4581 strlcat(buf, "|VIRF_PGREAD", sizeof(buf)); 4582 if (irflag & VIRF_MOUNTPOINT) 4583 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf)); 4584 if (irflag & VIRF_TEXT_REF) 4585 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf)); 4586 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF); 4587 if (flags != 0) { 4588 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); 4589 strlcat(buf, buf2, sizeof(buf)); 4590 } 4591 if (vp->v_vflag & VV_ROOT) 4592 strlcat(buf, "|VV_ROOT", sizeof(buf)); 4593 if (vp->v_vflag & VV_ISTTY) 4594 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 4595 if (vp->v_vflag & VV_NOSYNC) 4596 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 4597 if (vp->v_vflag & VV_ETERNALDEV) 4598 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 4599 if (vp->v_vflag & VV_CACHEDLABEL) 4600 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 4601 if (vp->v_vflag & VV_VMSIZEVNLOCK) 4602 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); 4603 if (vp->v_vflag & VV_COPYONWRITE) 4604 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 4605 if (vp->v_vflag & VV_SYSTEM) 4606 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 4607 if (vp->v_vflag & VV_PROCDEP) 4608 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 4609 if (vp->v_vflag & VV_DELETED) 4610 strlcat(buf, "|VV_DELETED", sizeof(buf)); 4611 if (vp->v_vflag & VV_MD) 4612 strlcat(buf, "|VV_MD", sizeof(buf)); 4613 if (vp->v_vflag & VV_FORCEINSMQ) 4614 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 4615 if (vp->v_vflag & VV_READLINK) 4616 strlcat(buf, "|VV_READLINK", sizeof(buf)); 4617 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 4618 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM | 4619 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK); 4620 if (flags != 0) { 4621 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 4622 strlcat(buf, buf2, sizeof(buf)); 4623 } 4624 if (vp->v_iflag & VI_MOUNT) 4625 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 4626 if (vp->v_iflag & VI_DOINGINACT) 4627 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 4628 if (vp->v_iflag & VI_OWEINACT) 4629 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 4630 if (vp->v_iflag & VI_DEFINACT) 4631 strlcat(buf, "|VI_DEFINACT", sizeof(buf)); 4632 if (vp->v_iflag & VI_FOPENING) 4633 strlcat(buf, "|VI_FOPENING", sizeof(buf)); 4634 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT | 4635 VI_OWEINACT | VI_DEFINACT | VI_FOPENING); 4636 if (flags != 0) { 4637 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 4638 strlcat(buf, buf2, sizeof(buf)); 4639 } 4640 if (vp->v_mflag & VMP_LAZYLIST) 4641 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); 4642 flags = vp->v_mflag & ~(VMP_LAZYLIST); 4643 if (flags != 0) { 4644 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); 4645 strlcat(buf, buf2, sizeof(buf)); 4646 } 4647 printf(" flags (%s)", buf + 1); 4648 if (mtx_owned(VI_MTX(vp))) 4649 printf(" VI_LOCKed"); 4650 printf("\n"); 4651 if (vp->v_object != NULL) 4652 printf(" v_object %p ref %d pages %d " 4653 "cleanbuf %d dirtybuf %d\n", 4654 vp->v_object, vp->v_object->ref_count, 4655 vp->v_object->resident_page_count, 4656 vp->v_bufobj.bo_clean.bv_cnt, 4657 vp->v_bufobj.bo_dirty.bv_cnt); 4658 printf(" "); 4659 lockmgr_printinfo(vp->v_vnlock); 4660 if (vp->v_data != NULL) 4661 VOP_PRINT(vp); 4662 } 4663 4664 #ifdef DDB 4665 /* 4666 * List all of the locked vnodes in the system. 4667 * Called when debugging the kernel. 4668 */ DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4669 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE) 4670 { 4671 struct mount *mp; 4672 struct vnode *vp; 4673 4674 /* 4675 * Note: because this is DDB, we can't obey the locking semantics 4676 * for these structures, which means we could catch an inconsistent 4677 * state and dereference a nasty pointer. Not much to be done 4678 * about that. 4679 */ 4680 db_printf("Locked vnodes\n"); 4681 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4682 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4683 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 4684 vn_printf(vp, "vnode "); 4685 } 4686 } 4687 } 4688 4689 /* 4690 * Show details about the given vnode. 4691 */ DB_SHOW_COMMAND(vnode,db_show_vnode)4692 DB_SHOW_COMMAND(vnode, db_show_vnode) 4693 { 4694 struct vnode *vp; 4695 4696 if (!have_addr) 4697 return; 4698 vp = (struct vnode *)addr; 4699 vn_printf(vp, "vnode "); 4700 } 4701 4702 /* 4703 * Show details about the given mount point. 4704 */ DB_SHOW_COMMAND(mount,db_show_mount)4705 DB_SHOW_COMMAND(mount, db_show_mount) 4706 { 4707 struct mount *mp; 4708 struct vfsopt *opt; 4709 struct statfs *sp; 4710 struct vnode *vp; 4711 char buf[512]; 4712 uint64_t mflags; 4713 u_int flags; 4714 4715 if (!have_addr) { 4716 /* No address given, print short info about all mount points. */ 4717 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4718 db_printf("%p %s on %s (%s)\n", mp, 4719 mp->mnt_stat.f_mntfromname, 4720 mp->mnt_stat.f_mntonname, 4721 mp->mnt_stat.f_fstypename); 4722 if (db_pager_quit) 4723 break; 4724 } 4725 db_printf("\nMore info: show mount <addr>\n"); 4726 return; 4727 } 4728 4729 mp = (struct mount *)addr; 4730 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 4731 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 4732 4733 buf[0] = '\0'; 4734 mflags = mp->mnt_flag; 4735 #define MNT_FLAG(flag) do { \ 4736 if (mflags & (flag)) { \ 4737 if (buf[0] != '\0') \ 4738 strlcat(buf, ", ", sizeof(buf)); \ 4739 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 4740 mflags &= ~(flag); \ 4741 } \ 4742 } while (0) 4743 MNT_FLAG(MNT_RDONLY); 4744 MNT_FLAG(MNT_SYNCHRONOUS); 4745 MNT_FLAG(MNT_NOEXEC); 4746 MNT_FLAG(MNT_NOSUID); 4747 MNT_FLAG(MNT_NFS4ACLS); 4748 MNT_FLAG(MNT_UNION); 4749 MNT_FLAG(MNT_ASYNC); 4750 MNT_FLAG(MNT_SUIDDIR); 4751 MNT_FLAG(MNT_SOFTDEP); 4752 MNT_FLAG(MNT_NOSYMFOLLOW); 4753 MNT_FLAG(MNT_GJOURNAL); 4754 MNT_FLAG(MNT_MULTILABEL); 4755 MNT_FLAG(MNT_ACLS); 4756 MNT_FLAG(MNT_NOATIME); 4757 MNT_FLAG(MNT_NOCLUSTERR); 4758 MNT_FLAG(MNT_NOCLUSTERW); 4759 MNT_FLAG(MNT_SUJ); 4760 MNT_FLAG(MNT_EXRDONLY); 4761 MNT_FLAG(MNT_EXPORTED); 4762 MNT_FLAG(MNT_DEFEXPORTED); 4763 MNT_FLAG(MNT_EXPORTANON); 4764 MNT_FLAG(MNT_EXKERB); 4765 MNT_FLAG(MNT_EXPUBLIC); 4766 MNT_FLAG(MNT_LOCAL); 4767 MNT_FLAG(MNT_QUOTA); 4768 MNT_FLAG(MNT_ROOTFS); 4769 MNT_FLAG(MNT_USER); 4770 MNT_FLAG(MNT_IGNORE); 4771 MNT_FLAG(MNT_UPDATE); 4772 MNT_FLAG(MNT_DELEXPORT); 4773 MNT_FLAG(MNT_RELOAD); 4774 MNT_FLAG(MNT_FORCE); 4775 MNT_FLAG(MNT_SNAPSHOT); 4776 MNT_FLAG(MNT_BYFSID); 4777 #undef MNT_FLAG 4778 if (mflags != 0) { 4779 if (buf[0] != '\0') 4780 strlcat(buf, ", ", sizeof(buf)); 4781 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4782 "0x%016jx", mflags); 4783 } 4784 db_printf(" mnt_flag = %s\n", buf); 4785 4786 buf[0] = '\0'; 4787 flags = mp->mnt_kern_flag; 4788 #define MNT_KERN_FLAG(flag) do { \ 4789 if (flags & (flag)) { \ 4790 if (buf[0] != '\0') \ 4791 strlcat(buf, ", ", sizeof(buf)); \ 4792 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 4793 flags &= ~(flag); \ 4794 } \ 4795 } while (0) 4796 MNT_KERN_FLAG(MNTK_UNMOUNTF); 4797 MNT_KERN_FLAG(MNTK_ASYNC); 4798 MNT_KERN_FLAG(MNTK_SOFTDEP); 4799 MNT_KERN_FLAG(MNTK_NOMSYNC); 4800 MNT_KERN_FLAG(MNTK_DRAINING); 4801 MNT_KERN_FLAG(MNTK_REFEXPIRE); 4802 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 4803 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 4804 MNT_KERN_FLAG(MNTK_NO_IOPF); 4805 MNT_KERN_FLAG(MNTK_RECURSE); 4806 MNT_KERN_FLAG(MNTK_UPPER_WAITER); 4807 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE); 4808 MNT_KERN_FLAG(MNTK_USES_BCACHE); 4809 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG); 4810 MNT_KERN_FLAG(MNTK_FPLOOKUP); 4811 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER); 4812 MNT_KERN_FLAG(MNTK_NOASYNC); 4813 MNT_KERN_FLAG(MNTK_UNMOUNT); 4814 MNT_KERN_FLAG(MNTK_MWAIT); 4815 MNT_KERN_FLAG(MNTK_SUSPEND); 4816 MNT_KERN_FLAG(MNTK_SUSPEND2); 4817 MNT_KERN_FLAG(MNTK_SUSPENDED); 4818 MNT_KERN_FLAG(MNTK_NULL_NOCACHE); 4819 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 4820 #undef MNT_KERN_FLAG 4821 if (flags != 0) { 4822 if (buf[0] != '\0') 4823 strlcat(buf, ", ", sizeof(buf)); 4824 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4825 "0x%08x", flags); 4826 } 4827 db_printf(" mnt_kern_flag = %s\n", buf); 4828 4829 db_printf(" mnt_opt = "); 4830 opt = TAILQ_FIRST(mp->mnt_opt); 4831 if (opt != NULL) { 4832 db_printf("%s", opt->name); 4833 opt = TAILQ_NEXT(opt, link); 4834 while (opt != NULL) { 4835 db_printf(", %s", opt->name); 4836 opt = TAILQ_NEXT(opt, link); 4837 } 4838 } 4839 db_printf("\n"); 4840 4841 sp = &mp->mnt_stat; 4842 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 4843 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 4844 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 4845 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 4846 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 4847 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 4848 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 4849 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 4850 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 4851 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 4852 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 4853 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 4854 4855 db_printf(" mnt_cred = { uid=%u ruid=%u", 4856 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 4857 if (jailed(mp->mnt_cred)) 4858 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 4859 db_printf(" }\n"); 4860 db_printf(" mnt_ref = %d (with %d in the struct)\n", 4861 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); 4862 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 4863 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 4864 db_printf(" mnt_lazyvnodelistsize = %d\n", 4865 mp->mnt_lazyvnodelistsize); 4866 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", 4867 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); 4868 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 4869 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 4870 db_printf(" mnt_lockref = %d (with %d in the struct)\n", 4871 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); 4872 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 4873 db_printf(" mnt_secondary_accwrites = %d\n", 4874 mp->mnt_secondary_accwrites); 4875 db_printf(" mnt_gjprovider = %s\n", 4876 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 4877 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); 4878 4879 db_printf("\n\nList of active vnodes\n"); 4880 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4881 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { 4882 vn_printf(vp, "vnode "); 4883 if (db_pager_quit) 4884 break; 4885 } 4886 } 4887 db_printf("\n\nList of inactive vnodes\n"); 4888 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4889 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { 4890 vn_printf(vp, "vnode "); 4891 if (db_pager_quit) 4892 break; 4893 } 4894 } 4895 } 4896 #endif /* DDB */ 4897 4898 /* 4899 * Fill in a struct xvfsconf based on a struct vfsconf. 4900 */ 4901 static int vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4902 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 4903 { 4904 struct xvfsconf xvfsp; 4905 4906 bzero(&xvfsp, sizeof(xvfsp)); 4907 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4908 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4909 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4910 xvfsp.vfc_flags = vfsp->vfc_flags; 4911 /* 4912 * These are unused in userland, we keep them 4913 * to not break binary compatibility. 4914 */ 4915 xvfsp.vfc_vfsops = NULL; 4916 xvfsp.vfc_next = NULL; 4917 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4918 } 4919 4920 #ifdef COMPAT_FREEBSD32 4921 struct xvfsconf32 { 4922 uint32_t vfc_vfsops; 4923 char vfc_name[MFSNAMELEN]; 4924 int32_t vfc_typenum; 4925 int32_t vfc_refcount; 4926 int32_t vfc_flags; 4927 uint32_t vfc_next; 4928 }; 4929 4930 static int vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4931 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 4932 { 4933 struct xvfsconf32 xvfsp; 4934 4935 bzero(&xvfsp, sizeof(xvfsp)); 4936 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4937 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4938 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4939 xvfsp.vfc_flags = vfsp->vfc_flags; 4940 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4941 } 4942 #endif 4943 4944 /* 4945 * Top level filesystem related information gathering. 4946 */ 4947 static int sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4948 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 4949 { 4950 struct vfsconf *vfsp; 4951 int error; 4952 4953 error = 0; 4954 vfsconf_slock(); 4955 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4956 #ifdef COMPAT_FREEBSD32 4957 if (req->flags & SCTL_MASK32) 4958 error = vfsconf2x32(req, vfsp); 4959 else 4960 #endif 4961 error = vfsconf2x(req, vfsp); 4962 if (error) 4963 break; 4964 } 4965 vfsconf_sunlock(); 4966 return (error); 4967 } 4968 4969 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 4970 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 4971 "S,xvfsconf", "List of all configured filesystems"); 4972 4973 #ifndef BURN_BRIDGES 4974 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 4975 4976 static int vfs_sysctl(SYSCTL_HANDLER_ARGS)4977 vfs_sysctl(SYSCTL_HANDLER_ARGS) 4978 { 4979 int *name = (int *)arg1 - 1; /* XXX */ 4980 u_int namelen = arg2 + 1; /* XXX */ 4981 struct vfsconf *vfsp; 4982 4983 log(LOG_WARNING, "userland calling deprecated sysctl, " 4984 "please rebuild world\n"); 4985 4986 #if 1 || defined(COMPAT_PRELITE2) 4987 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 4988 if (namelen == 1) 4989 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 4990 #endif 4991 4992 switch (name[1]) { 4993 case VFS_MAXTYPENUM: 4994 if (namelen != 2) 4995 return (ENOTDIR); 4996 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 4997 case VFS_CONF: 4998 if (namelen != 3) 4999 return (ENOTDIR); /* overloaded */ 5000 vfsconf_slock(); 5001 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 5002 if (vfsp->vfc_typenum == name[2]) 5003 break; 5004 } 5005 vfsconf_sunlock(); 5006 if (vfsp == NULL) 5007 return (EOPNOTSUPP); 5008 #ifdef COMPAT_FREEBSD32 5009 if (req->flags & SCTL_MASK32) 5010 return (vfsconf2x32(req, vfsp)); 5011 else 5012 #endif 5013 return (vfsconf2x(req, vfsp)); 5014 } 5015 return (EOPNOTSUPP); 5016 } 5017 5018 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 5019 CTLFLAG_MPSAFE, vfs_sysctl, 5020 "Generic filesystem"); 5021 5022 #if 1 || defined(COMPAT_PRELITE2) 5023 5024 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5025 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 5026 { 5027 int error; 5028 struct vfsconf *vfsp; 5029 struct ovfsconf ovfs; 5030 5031 vfsconf_slock(); 5032 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 5033 bzero(&ovfs, sizeof(ovfs)); 5034 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 5035 strcpy(ovfs.vfc_name, vfsp->vfc_name); 5036 ovfs.vfc_index = vfsp->vfc_typenum; 5037 ovfs.vfc_refcount = vfsp->vfc_refcount; 5038 ovfs.vfc_flags = vfsp->vfc_flags; 5039 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 5040 if (error != 0) { 5041 vfsconf_sunlock(); 5042 return (error); 5043 } 5044 } 5045 vfsconf_sunlock(); 5046 return (0); 5047 } 5048 5049 #endif /* 1 || COMPAT_PRELITE2 */ 5050 #endif /* !BURN_BRIDGES */ 5051 5052 static void unmount_or_warn(struct mount * mp)5053 unmount_or_warn(struct mount *mp) 5054 { 5055 int error; 5056 5057 error = dounmount(mp, MNT_FORCE, curthread); 5058 if (error != 0) { 5059 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 5060 if (error == EBUSY) 5061 printf("BUSY)\n"); 5062 else 5063 printf("%d)\n", error); 5064 } 5065 } 5066 5067 /* 5068 * Unmount all filesystems. The list is traversed in reverse order 5069 * of mounting to avoid dependencies. 5070 */ 5071 void vfs_unmountall(void)5072 vfs_unmountall(void) 5073 { 5074 struct mount *mp, *tmp; 5075 5076 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 5077 5078 /* 5079 * Since this only runs when rebooting, it is not interlocked. 5080 */ 5081 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 5082 vfs_ref(mp); 5083 5084 /* 5085 * Forcibly unmounting "/dev" before "/" would prevent clean 5086 * unmount of the latter. 5087 */ 5088 if (mp == rootdevmp) 5089 continue; 5090 5091 unmount_or_warn(mp); 5092 } 5093 5094 if (rootdevmp != NULL) 5095 unmount_or_warn(rootdevmp); 5096 } 5097 5098 static void vfs_deferred_inactive(struct vnode * vp,int lkflags)5099 vfs_deferred_inactive(struct vnode *vp, int lkflags) 5100 { 5101 5102 ASSERT_VI_LOCKED(vp, __func__); 5103 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 5104 if ((vp->v_iflag & VI_OWEINACT) == 0) { 5105 vdropl(vp); 5106 return; 5107 } 5108 if (vn_lock(vp, lkflags) == 0) { 5109 VI_LOCK(vp); 5110 vinactive(vp); 5111 VOP_UNLOCK(vp); 5112 vdropl(vp); 5113 return; 5114 } 5115 vdefer_inactive_unlocked(vp); 5116 } 5117 5118 static int vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5119 vfs_periodic_inactive_filter(struct vnode *vp, void *arg) 5120 { 5121 5122 return (vp->v_iflag & VI_DEFINACT); 5123 } 5124 5125 static void __noinline vfs_periodic_inactive(struct mount * mp,int flags)5126 vfs_periodic_inactive(struct mount *mp, int flags) 5127 { 5128 struct vnode *vp, *mvp; 5129 int lkflags; 5130 5131 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 5132 if (flags != MNT_WAIT) 5133 lkflags |= LK_NOWAIT; 5134 5135 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { 5136 if ((vp->v_iflag & VI_DEFINACT) == 0) { 5137 VI_UNLOCK(vp); 5138 continue; 5139 } 5140 vp->v_iflag &= ~VI_DEFINACT; 5141 vfs_deferred_inactive(vp, lkflags); 5142 } 5143 } 5144 5145 static inline bool vfs_want_msync(struct vnode * vp)5146 vfs_want_msync(struct vnode *vp) 5147 { 5148 struct vm_object *obj; 5149 5150 /* 5151 * This test may be performed without any locks held. 5152 * We rely on vm_object's type stability. 5153 */ 5154 if (vp->v_vflag & VV_NOSYNC) 5155 return (false); 5156 obj = vp->v_object; 5157 return (obj != NULL && vm_object_mightbedirty(obj)); 5158 } 5159 5160 static int vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5161 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) 5162 { 5163 5164 if (vp->v_vflag & VV_NOSYNC) 5165 return (false); 5166 if (vp->v_iflag & VI_DEFINACT) 5167 return (true); 5168 return (vfs_want_msync(vp)); 5169 } 5170 5171 static void __noinline vfs_periodic_msync_inactive(struct mount * mp,int flags)5172 vfs_periodic_msync_inactive(struct mount *mp, int flags) 5173 { 5174 struct vnode *vp, *mvp; 5175 int lkflags; 5176 bool seen_defer; 5177 5178 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 5179 if (flags != MNT_WAIT) 5180 lkflags |= LK_NOWAIT; 5181 5182 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { 5183 seen_defer = false; 5184 if (vp->v_iflag & VI_DEFINACT) { 5185 vp->v_iflag &= ~VI_DEFINACT; 5186 seen_defer = true; 5187 } 5188 if (!vfs_want_msync(vp)) { 5189 if (seen_defer) 5190 vfs_deferred_inactive(vp, lkflags); 5191 else 5192 VI_UNLOCK(vp); 5193 continue; 5194 } 5195 if (vget(vp, lkflags) == 0) { 5196 if ((vp->v_vflag & VV_NOSYNC) == 0) { 5197 if (flags == MNT_WAIT) 5198 vnode_pager_clean_sync(vp); 5199 else 5200 vnode_pager_clean_async(vp); 5201 } 5202 vput(vp); 5203 if (seen_defer) 5204 vdrop(vp); 5205 } else { 5206 if (seen_defer) 5207 vdefer_inactive_unlocked(vp); 5208 } 5209 } 5210 } 5211 5212 void vfs_periodic(struct mount * mp,int flags)5213 vfs_periodic(struct mount *mp, int flags) 5214 { 5215 5216 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 5217 5218 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) 5219 vfs_periodic_inactive(mp, flags); 5220 else 5221 vfs_periodic_msync_inactive(mp, flags); 5222 } 5223 5224 static void destroy_vpollinfo_free(struct vpollinfo * vi)5225 destroy_vpollinfo_free(struct vpollinfo *vi) 5226 { 5227 5228 knlist_destroy(&vi->vpi_selinfo.si_note); 5229 mtx_destroy(&vi->vpi_lock); 5230 free(vi, M_VNODEPOLL); 5231 } 5232 5233 static void destroy_vpollinfo(struct vpollinfo * vi)5234 destroy_vpollinfo(struct vpollinfo *vi) 5235 { 5236 5237 knlist_clear(&vi->vpi_selinfo.si_note, 1); 5238 seldrain(&vi->vpi_selinfo); 5239 destroy_vpollinfo_free(vi); 5240 } 5241 5242 /* 5243 * Initialize per-vnode helper structure to hold poll-related state. 5244 */ 5245 void v_addpollinfo(struct vnode * vp)5246 v_addpollinfo(struct vnode *vp) 5247 { 5248 struct vpollinfo *vi; 5249 5250 if (vp->v_pollinfo != NULL) 5251 return; 5252 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO); 5253 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 5254 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 5255 vfs_knlunlock, vfs_knl_assert_lock); 5256 VI_LOCK(vp); 5257 if (vp->v_pollinfo != NULL) { 5258 VI_UNLOCK(vp); 5259 destroy_vpollinfo_free(vi); 5260 return; 5261 } 5262 vp->v_pollinfo = vi; 5263 VI_UNLOCK(vp); 5264 } 5265 5266 /* 5267 * Record a process's interest in events which might happen to 5268 * a vnode. Because poll uses the historic select-style interface 5269 * internally, this routine serves as both the ``check for any 5270 * pending events'' and the ``record my interest in future events'' 5271 * functions. (These are done together, while the lock is held, 5272 * to avoid race conditions.) 5273 */ 5274 int vn_pollrecord(struct vnode * vp,struct thread * td,int events)5275 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 5276 { 5277 5278 v_addpollinfo(vp); 5279 mtx_lock(&vp->v_pollinfo->vpi_lock); 5280 if (vp->v_pollinfo->vpi_revents & events) { 5281 /* 5282 * This leaves events we are not interested 5283 * in available for the other process which 5284 * which presumably had requested them 5285 * (otherwise they would never have been 5286 * recorded). 5287 */ 5288 events &= vp->v_pollinfo->vpi_revents; 5289 vp->v_pollinfo->vpi_revents &= ~events; 5290 5291 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5292 return (events); 5293 } 5294 vp->v_pollinfo->vpi_events |= events; 5295 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 5296 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5297 return (0); 5298 } 5299 5300 /* 5301 * Routine to create and manage a filesystem syncer vnode. 5302 */ 5303 #define sync_close ((int (*)(struct vop_close_args *))nullop) 5304 static int sync_fsync(struct vop_fsync_args *); 5305 static int sync_inactive(struct vop_inactive_args *); 5306 static int sync_reclaim(struct vop_reclaim_args *); 5307 5308 static struct vop_vector sync_vnodeops = { 5309 .vop_bypass = VOP_EOPNOTSUPP, 5310 .vop_close = sync_close, 5311 .vop_fsync = sync_fsync, 5312 .vop_getwritemount = vop_stdgetwritemount, 5313 .vop_inactive = sync_inactive, 5314 .vop_need_inactive = vop_stdneed_inactive, 5315 .vop_reclaim = sync_reclaim, 5316 .vop_lock1 = vop_stdlock, 5317 .vop_unlock = vop_stdunlock, 5318 .vop_islocked = vop_stdislocked, 5319 .vop_fplookup_vexec = VOP_EAGAIN, 5320 .vop_fplookup_symlink = VOP_EAGAIN, 5321 }; 5322 VFS_VOP_VECTOR_REGISTER(sync_vnodeops); 5323 5324 /* 5325 * Create a new filesystem syncer vnode for the specified mount point. 5326 */ 5327 void vfs_allocate_syncvnode(struct mount * mp)5328 vfs_allocate_syncvnode(struct mount *mp) 5329 { 5330 struct vnode *vp; 5331 struct bufobj *bo; 5332 static long start, incr, next; 5333 int error; 5334 5335 /* Allocate a new vnode */ 5336 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 5337 if (error != 0) 5338 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 5339 vp->v_type = VNON; 5340 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5341 vp->v_vflag |= VV_FORCEINSMQ; 5342 error = insmntque1(vp, mp); 5343 if (error != 0) 5344 panic("vfs_allocate_syncvnode: insmntque() failed"); 5345 vp->v_vflag &= ~VV_FORCEINSMQ; 5346 vn_set_state(vp, VSTATE_CONSTRUCTED); 5347 VOP_UNLOCK(vp); 5348 /* 5349 * Place the vnode onto the syncer worklist. We attempt to 5350 * scatter them about on the list so that they will go off 5351 * at evenly distributed times even if all the filesystems 5352 * are mounted at once. 5353 */ 5354 next += incr; 5355 if (next == 0 || next > syncer_maxdelay) { 5356 start /= 2; 5357 incr /= 2; 5358 if (start == 0) { 5359 start = syncer_maxdelay / 2; 5360 incr = syncer_maxdelay; 5361 } 5362 next = start; 5363 } 5364 bo = &vp->v_bufobj; 5365 BO_LOCK(bo); 5366 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 5367 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 5368 mtx_lock(&sync_mtx); 5369 sync_vnode_count++; 5370 if (mp->mnt_syncer == NULL) { 5371 mp->mnt_syncer = vp; 5372 vp = NULL; 5373 } 5374 mtx_unlock(&sync_mtx); 5375 BO_UNLOCK(bo); 5376 if (vp != NULL) { 5377 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5378 vgone(vp); 5379 vput(vp); 5380 } 5381 } 5382 5383 void vfs_deallocate_syncvnode(struct mount * mp)5384 vfs_deallocate_syncvnode(struct mount *mp) 5385 { 5386 struct vnode *vp; 5387 5388 mtx_lock(&sync_mtx); 5389 vp = mp->mnt_syncer; 5390 if (vp != NULL) 5391 mp->mnt_syncer = NULL; 5392 mtx_unlock(&sync_mtx); 5393 if (vp != NULL) 5394 vrele(vp); 5395 } 5396 5397 /* 5398 * Do a lazy sync of the filesystem. 5399 */ 5400 static int sync_fsync(struct vop_fsync_args * ap)5401 sync_fsync(struct vop_fsync_args *ap) 5402 { 5403 struct vnode *syncvp = ap->a_vp; 5404 struct mount *mp = syncvp->v_mount; 5405 int error, save; 5406 struct bufobj *bo; 5407 5408 /* 5409 * We only need to do something if this is a lazy evaluation. 5410 */ 5411 if (ap->a_waitfor != MNT_LAZY) 5412 return (0); 5413 5414 /* 5415 * Move ourselves to the back of the sync list. 5416 */ 5417 bo = &syncvp->v_bufobj; 5418 BO_LOCK(bo); 5419 vn_syncer_add_to_worklist(bo, syncdelay); 5420 BO_UNLOCK(bo); 5421 5422 /* 5423 * Walk the list of vnodes pushing all that are dirty and 5424 * not already on the sync list. 5425 */ 5426 if (vfs_busy(mp, MBF_NOWAIT) != 0) 5427 return (0); 5428 VOP_UNLOCK(syncvp); 5429 save = curthread_pflags_set(TDP_SYNCIO); 5430 /* 5431 * The filesystem at hand may be idle with free vnodes stored in the 5432 * batch. Return them instead of letting them stay there indefinitely. 5433 */ 5434 vfs_periodic(mp, MNT_NOWAIT); 5435 error = VFS_SYNC(mp, MNT_LAZY); 5436 curthread_pflags_restore(save); 5437 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY); 5438 vfs_unbusy(mp); 5439 return (error); 5440 } 5441 5442 /* 5443 * The syncer vnode is no referenced. 5444 */ 5445 static int sync_inactive(struct vop_inactive_args * ap)5446 sync_inactive(struct vop_inactive_args *ap) 5447 { 5448 5449 vgone(ap->a_vp); 5450 return (0); 5451 } 5452 5453 /* 5454 * The syncer vnode is no longer needed and is being decommissioned. 5455 * 5456 * Modifications to the worklist must be protected by sync_mtx. 5457 */ 5458 static int sync_reclaim(struct vop_reclaim_args * ap)5459 sync_reclaim(struct vop_reclaim_args *ap) 5460 { 5461 struct vnode *vp = ap->a_vp; 5462 struct bufobj *bo; 5463 5464 bo = &vp->v_bufobj; 5465 BO_LOCK(bo); 5466 mtx_lock(&sync_mtx); 5467 if (vp->v_mount->mnt_syncer == vp) 5468 vp->v_mount->mnt_syncer = NULL; 5469 if (bo->bo_flag & BO_ONWORKLST) { 5470 LIST_REMOVE(bo, bo_synclist); 5471 syncer_worklist_len--; 5472 sync_vnode_count--; 5473 bo->bo_flag &= ~BO_ONWORKLST; 5474 } 5475 mtx_unlock(&sync_mtx); 5476 BO_UNLOCK(bo); 5477 5478 return (0); 5479 } 5480 5481 int vn_need_pageq_flush(struct vnode * vp)5482 vn_need_pageq_flush(struct vnode *vp) 5483 { 5484 struct vm_object *obj; 5485 5486 obj = vp->v_object; 5487 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 5488 vm_object_mightbedirty(obj)); 5489 } 5490 5491 /* 5492 * Check if vnode represents a disk device 5493 */ 5494 bool vn_isdisk_error(struct vnode * vp,int * errp)5495 vn_isdisk_error(struct vnode *vp, int *errp) 5496 { 5497 int error; 5498 5499 if (vp->v_type != VCHR) { 5500 error = ENOTBLK; 5501 goto out; 5502 } 5503 error = 0; 5504 dev_lock(); 5505 if (vp->v_rdev == NULL) 5506 error = ENXIO; 5507 else if (vp->v_rdev->si_devsw == NULL) 5508 error = ENXIO; 5509 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 5510 error = ENOTBLK; 5511 dev_unlock(); 5512 out: 5513 *errp = error; 5514 return (error == 0); 5515 } 5516 5517 bool vn_isdisk(struct vnode * vp)5518 vn_isdisk(struct vnode *vp) 5519 { 5520 int error; 5521 5522 return (vn_isdisk_error(vp, &error)); 5523 } 5524 5525 /* 5526 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 5527 * the comment above cache_fplookup for details. 5528 */ 5529 int vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5530 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred) 5531 { 5532 int error; 5533 5534 VFS_SMR_ASSERT_ENTERED(); 5535 5536 /* Check the owner. */ 5537 if (cred->cr_uid == file_uid) { 5538 if (file_mode & S_IXUSR) 5539 return (0); 5540 goto out_error; 5541 } 5542 5543 /* Otherwise, check the groups (first match) */ 5544 if (groupmember(file_gid, cred)) { 5545 if (file_mode & S_IXGRP) 5546 return (0); 5547 goto out_error; 5548 } 5549 5550 /* Otherwise, check everyone else. */ 5551 if (file_mode & S_IXOTH) 5552 return (0); 5553 out_error: 5554 /* 5555 * Permission check failed, but it is possible denial will get overwritten 5556 * (e.g., when root is traversing through a 700 directory owned by someone 5557 * else). 5558 * 5559 * vaccess() calls priv_check_cred which in turn can descent into MAC 5560 * modules overriding this result. It's quite unclear what semantics 5561 * are allowed for them to operate, thus for safety we don't call them 5562 * from within the SMR section. This also means if any such modules 5563 * are present, we have to let the regular lookup decide. 5564 */ 5565 error = priv_check_cred_vfs_lookup_nomac(cred); 5566 switch (error) { 5567 case 0: 5568 return (0); 5569 case EAGAIN: 5570 /* 5571 * MAC modules present. 5572 */ 5573 return (EAGAIN); 5574 case EPERM: 5575 return (EACCES); 5576 default: 5577 return (error); 5578 } 5579 } 5580 5581 /* 5582 * Common filesystem object access control check routine. Accepts a 5583 * vnode's type, "mode", uid and gid, requested access mode, and credentials. 5584 * Returns 0 on success, or an errno on failure. 5585 */ 5586 int vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5587 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 5588 accmode_t accmode, struct ucred *cred) 5589 { 5590 accmode_t dac_granted; 5591 accmode_t priv_granted; 5592 5593 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 5594 ("invalid bit in accmode")); 5595 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 5596 ("VAPPEND without VWRITE")); 5597 5598 /* 5599 * Look for a normal, non-privileged way to access the file/directory 5600 * as requested. If it exists, go with that. 5601 */ 5602 5603 dac_granted = 0; 5604 5605 /* Check the owner. */ 5606 if (cred->cr_uid == file_uid) { 5607 dac_granted |= VADMIN; 5608 if (file_mode & S_IXUSR) 5609 dac_granted |= VEXEC; 5610 if (file_mode & S_IRUSR) 5611 dac_granted |= VREAD; 5612 if (file_mode & S_IWUSR) 5613 dac_granted |= (VWRITE | VAPPEND); 5614 5615 if ((accmode & dac_granted) == accmode) 5616 return (0); 5617 5618 goto privcheck; 5619 } 5620 5621 /* Otherwise, check the groups (first match) */ 5622 if (groupmember(file_gid, cred)) { 5623 if (file_mode & S_IXGRP) 5624 dac_granted |= VEXEC; 5625 if (file_mode & S_IRGRP) 5626 dac_granted |= VREAD; 5627 if (file_mode & S_IWGRP) 5628 dac_granted |= (VWRITE | VAPPEND); 5629 5630 if ((accmode & dac_granted) == accmode) 5631 return (0); 5632 5633 goto privcheck; 5634 } 5635 5636 /* Otherwise, check everyone else. */ 5637 if (file_mode & S_IXOTH) 5638 dac_granted |= VEXEC; 5639 if (file_mode & S_IROTH) 5640 dac_granted |= VREAD; 5641 if (file_mode & S_IWOTH) 5642 dac_granted |= (VWRITE | VAPPEND); 5643 if ((accmode & dac_granted) == accmode) 5644 return (0); 5645 5646 privcheck: 5647 /* 5648 * Build a privilege mask to determine if the set of privileges 5649 * satisfies the requirements when combined with the granted mask 5650 * from above. For each privilege, if the privilege is required, 5651 * bitwise or the request type onto the priv_granted mask. 5652 */ 5653 priv_granted = 0; 5654 5655 if (type == VDIR) { 5656 /* 5657 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 5658 * requests, instead of PRIV_VFS_EXEC. 5659 */ 5660 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5661 !priv_check_cred(cred, PRIV_VFS_LOOKUP)) 5662 priv_granted |= VEXEC; 5663 } else { 5664 /* 5665 * Ensure that at least one execute bit is on. Otherwise, 5666 * a privileged user will always succeed, and we don't want 5667 * this to happen unless the file really is executable. 5668 */ 5669 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5670 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 5671 !priv_check_cred(cred, PRIV_VFS_EXEC)) 5672 priv_granted |= VEXEC; 5673 } 5674 5675 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 5676 !priv_check_cred(cred, PRIV_VFS_READ)) 5677 priv_granted |= VREAD; 5678 5679 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 5680 !priv_check_cred(cred, PRIV_VFS_WRITE)) 5681 priv_granted |= (VWRITE | VAPPEND); 5682 5683 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 5684 !priv_check_cred(cred, PRIV_VFS_ADMIN)) 5685 priv_granted |= VADMIN; 5686 5687 if ((accmode & (priv_granted | dac_granted)) == accmode) { 5688 return (0); 5689 } 5690 5691 return ((accmode & VADMIN) ? EPERM : EACCES); 5692 } 5693 5694 /* 5695 * Credential check based on process requesting service, and per-attribute 5696 * permissions. 5697 */ 5698 int extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5699 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 5700 struct thread *td, accmode_t accmode) 5701 { 5702 5703 /* 5704 * Kernel-invoked always succeeds. 5705 */ 5706 if (cred == NOCRED) 5707 return (0); 5708 5709 /* 5710 * Do not allow privileged processes in jail to directly manipulate 5711 * system attributes. 5712 */ 5713 switch (attrnamespace) { 5714 case EXTATTR_NAMESPACE_SYSTEM: 5715 /* Potentially should be: return (EPERM); */ 5716 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); 5717 case EXTATTR_NAMESPACE_USER: 5718 return (VOP_ACCESS(vp, accmode, cred, td)); 5719 default: 5720 return (EPERM); 5721 } 5722 } 5723 5724 #ifdef DEBUG_VFS_LOCKS 5725 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 5726 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 5727 "Drop into debugger on lock violation"); 5728 5729 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 5730 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 5731 0, "Check for interlock across VOPs"); 5732 5733 int vfs_badlock_print = 1; /* Print lock violations. */ 5734 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 5735 0, "Print lock violations"); 5736 5737 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 5738 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 5739 0, "Print vnode details on lock violations"); 5740 5741 #ifdef KDB 5742 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 5743 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 5744 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 5745 #endif 5746 5747 static void vfs_badlock(const char * msg,const char * str,struct vnode * vp)5748 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 5749 { 5750 5751 #ifdef KDB 5752 if (vfs_badlock_backtrace) 5753 kdb_backtrace(); 5754 #endif 5755 if (vfs_badlock_vnode) 5756 vn_printf(vp, "vnode "); 5757 if (vfs_badlock_print) 5758 printf("%s: %p %s\n", str, (void *)vp, msg); 5759 if (vfs_badlock_ddb) 5760 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5761 } 5762 5763 void assert_vi_locked(struct vnode * vp,const char * str)5764 assert_vi_locked(struct vnode *vp, const char *str) 5765 { 5766 5767 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 5768 vfs_badlock("interlock is not locked but should be", str, vp); 5769 } 5770 5771 void assert_vi_unlocked(struct vnode * vp,const char * str)5772 assert_vi_unlocked(struct vnode *vp, const char *str) 5773 { 5774 5775 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 5776 vfs_badlock("interlock is locked but should not be", str, vp); 5777 } 5778 5779 void assert_vop_locked(struct vnode * vp,const char * str)5780 assert_vop_locked(struct vnode *vp, const char *str) 5781 { 5782 if (KERNEL_PANICKED() || vp == NULL) 5783 return; 5784 5785 #ifdef WITNESS 5786 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5787 witness_is_owned(&vp->v_vnlock->lock_object) == -1) 5788 #else 5789 int locked = VOP_ISLOCKED(vp); 5790 if (locked == 0 || locked == LK_EXCLOTHER) 5791 #endif 5792 vfs_badlock("is not locked but should be", str, vp); 5793 } 5794 5795 void assert_vop_unlocked(struct vnode * vp,const char * str)5796 assert_vop_unlocked(struct vnode *vp, const char *str) 5797 { 5798 if (KERNEL_PANICKED() || vp == NULL) 5799 return; 5800 5801 #ifdef WITNESS 5802 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5803 witness_is_owned(&vp->v_vnlock->lock_object) == 1) 5804 #else 5805 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 5806 #endif 5807 vfs_badlock("is locked but should not be", str, vp); 5808 } 5809 5810 void assert_vop_elocked(struct vnode * vp,const char * str)5811 assert_vop_elocked(struct vnode *vp, const char *str) 5812 { 5813 if (KERNEL_PANICKED() || vp == NULL) 5814 return; 5815 5816 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 5817 vfs_badlock("is not exclusive locked but should be", str, vp); 5818 } 5819 #endif /* DEBUG_VFS_LOCKS */ 5820 5821 void vop_rename_fail(struct vop_rename_args * ap)5822 vop_rename_fail(struct vop_rename_args *ap) 5823 { 5824 5825 if (ap->a_tvp != NULL) 5826 vput(ap->a_tvp); 5827 if (ap->a_tdvp == ap->a_tvp) 5828 vrele(ap->a_tdvp); 5829 else 5830 vput(ap->a_tdvp); 5831 vrele(ap->a_fdvp); 5832 vrele(ap->a_fvp); 5833 } 5834 5835 void vop_rename_pre(void * ap)5836 vop_rename_pre(void *ap) 5837 { 5838 struct vop_rename_args *a = ap; 5839 5840 #ifdef DEBUG_VFS_LOCKS 5841 if (a->a_tvp) 5842 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 5843 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 5844 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 5845 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 5846 5847 /* Check the source (from). */ 5848 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 5849 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 5850 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 5851 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 5852 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 5853 5854 /* Check the target. */ 5855 if (a->a_tvp) 5856 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 5857 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 5858 #endif 5859 /* 5860 * It may be tempting to add vn_seqc_write_begin/end calls here and 5861 * in vop_rename_post but that's not going to work out since some 5862 * filesystems relookup vnodes mid-rename. This is probably a bug. 5863 * 5864 * For now filesystems are expected to do the relevant calls after they 5865 * decide what vnodes to operate on. 5866 */ 5867 if (a->a_tdvp != a->a_fdvp) 5868 vhold(a->a_fdvp); 5869 if (a->a_tvp != a->a_fvp) 5870 vhold(a->a_fvp); 5871 vhold(a->a_tdvp); 5872 if (a->a_tvp) 5873 vhold(a->a_tvp); 5874 } 5875 5876 #ifdef DEBUG_VFS_LOCKS 5877 void vop_fplookup_vexec_debugpre(void * ap __unused)5878 vop_fplookup_vexec_debugpre(void *ap __unused) 5879 { 5880 5881 VFS_SMR_ASSERT_ENTERED(); 5882 } 5883 5884 void vop_fplookup_vexec_debugpost(void * ap,int rc)5885 vop_fplookup_vexec_debugpost(void *ap, int rc) 5886 { 5887 struct vop_fplookup_vexec_args *a; 5888 struct vnode *vp; 5889 5890 a = ap; 5891 vp = a->a_vp; 5892 5893 VFS_SMR_ASSERT_ENTERED(); 5894 if (rc == EOPNOTSUPP) 5895 VNPASS(VN_IS_DOOMED(vp), vp); 5896 } 5897 5898 void vop_fplookup_symlink_debugpre(void * ap __unused)5899 vop_fplookup_symlink_debugpre(void *ap __unused) 5900 { 5901 5902 VFS_SMR_ASSERT_ENTERED(); 5903 } 5904 5905 void vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5906 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused) 5907 { 5908 5909 VFS_SMR_ASSERT_ENTERED(); 5910 } 5911 5912 static void vop_fsync_debugprepost(struct vnode * vp,const char * name)5913 vop_fsync_debugprepost(struct vnode *vp, const char *name) 5914 { 5915 if (vp->v_type == VCHR) 5916 ; 5917 /* 5918 * The shared vs. exclusive locking policy for fsync() 5919 * is actually determined by vp's write mount as indicated 5920 * by VOP_GETWRITEMOUNT(), which for stacked filesystems 5921 * may not be the same as vp->v_mount. However, if the 5922 * underlying filesystem which really handles the fsync() 5923 * supports shared locking, the stacked filesystem must also 5924 * be prepared for its VOP_FSYNC() operation to be called 5925 * with only a shared lock. On the other hand, if the 5926 * stacked filesystem claims support for shared write 5927 * locking but the underlying filesystem does not, and the 5928 * caller incorrectly uses a shared lock, this condition 5929 * should still be caught when the stacked filesystem 5930 * invokes VOP_FSYNC() on the underlying filesystem. 5931 */ 5932 else if (MNT_SHARED_WRITES(vp->v_mount)) 5933 ASSERT_VOP_LOCKED(vp, name); 5934 else 5935 ASSERT_VOP_ELOCKED(vp, name); 5936 } 5937 5938 void vop_fsync_debugpre(void * a)5939 vop_fsync_debugpre(void *a) 5940 { 5941 struct vop_fsync_args *ap; 5942 5943 ap = a; 5944 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5945 } 5946 5947 void vop_fsync_debugpost(void * a,int rc __unused)5948 vop_fsync_debugpost(void *a, int rc __unused) 5949 { 5950 struct vop_fsync_args *ap; 5951 5952 ap = a; 5953 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5954 } 5955 5956 void vop_fdatasync_debugpre(void * a)5957 vop_fdatasync_debugpre(void *a) 5958 { 5959 struct vop_fdatasync_args *ap; 5960 5961 ap = a; 5962 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5963 } 5964 5965 void vop_fdatasync_debugpost(void * a,int rc __unused)5966 vop_fdatasync_debugpost(void *a, int rc __unused) 5967 { 5968 struct vop_fdatasync_args *ap; 5969 5970 ap = a; 5971 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5972 } 5973 5974 void vop_strategy_debugpre(void * ap)5975 vop_strategy_debugpre(void *ap) 5976 { 5977 struct vop_strategy_args *a; 5978 struct buf *bp; 5979 5980 a = ap; 5981 bp = a->a_bp; 5982 5983 /* 5984 * Cluster ops lock their component buffers but not the IO container. 5985 */ 5986 if ((bp->b_flags & B_CLUSTER) != 0) 5987 return; 5988 5989 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { 5990 if (vfs_badlock_print) 5991 printf( 5992 "VOP_STRATEGY: bp is not locked but should be\n"); 5993 if (vfs_badlock_ddb) 5994 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5995 } 5996 } 5997 5998 void vop_lock_debugpre(void * ap)5999 vop_lock_debugpre(void *ap) 6000 { 6001 struct vop_lock1_args *a = ap; 6002 6003 if ((a->a_flags & LK_INTERLOCK) == 0) 6004 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 6005 else 6006 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 6007 } 6008 6009 void vop_lock_debugpost(void * ap,int rc)6010 vop_lock_debugpost(void *ap, int rc) 6011 { 6012 struct vop_lock1_args *a = ap; 6013 6014 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 6015 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 6016 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 6017 } 6018 6019 void vop_unlock_debugpre(void * ap)6020 vop_unlock_debugpre(void *ap) 6021 { 6022 struct vop_unlock_args *a = ap; 6023 struct vnode *vp = a->a_vp; 6024 6025 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp); 6026 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK"); 6027 } 6028 6029 void vop_need_inactive_debugpre(void * ap)6030 vop_need_inactive_debugpre(void *ap) 6031 { 6032 struct vop_need_inactive_args *a = ap; 6033 6034 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 6035 } 6036 6037 void vop_need_inactive_debugpost(void * ap,int rc)6038 vop_need_inactive_debugpost(void *ap, int rc) 6039 { 6040 struct vop_need_inactive_args *a = ap; 6041 6042 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 6043 } 6044 #endif 6045 6046 void vop_create_pre(void * ap)6047 vop_create_pre(void *ap) 6048 { 6049 struct vop_create_args *a; 6050 struct vnode *dvp; 6051 6052 a = ap; 6053 dvp = a->a_dvp; 6054 vn_seqc_write_begin(dvp); 6055 } 6056 6057 void vop_create_post(void * ap,int rc)6058 vop_create_post(void *ap, int rc) 6059 { 6060 struct vop_create_args *a; 6061 struct vnode *dvp; 6062 6063 a = ap; 6064 dvp = a->a_dvp; 6065 vn_seqc_write_end(dvp); 6066 if (!rc) 6067 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6068 } 6069 6070 void vop_whiteout_pre(void * ap)6071 vop_whiteout_pre(void *ap) 6072 { 6073 struct vop_whiteout_args *a; 6074 struct vnode *dvp; 6075 6076 a = ap; 6077 dvp = a->a_dvp; 6078 vn_seqc_write_begin(dvp); 6079 } 6080 6081 void vop_whiteout_post(void * ap,int rc)6082 vop_whiteout_post(void *ap, int rc) 6083 { 6084 struct vop_whiteout_args *a; 6085 struct vnode *dvp; 6086 6087 a = ap; 6088 dvp = a->a_dvp; 6089 vn_seqc_write_end(dvp); 6090 } 6091 6092 void vop_deleteextattr_pre(void * ap)6093 vop_deleteextattr_pre(void *ap) 6094 { 6095 struct vop_deleteextattr_args *a; 6096 struct vnode *vp; 6097 6098 a = ap; 6099 vp = a->a_vp; 6100 vn_seqc_write_begin(vp); 6101 } 6102 6103 void vop_deleteextattr_post(void * ap,int rc)6104 vop_deleteextattr_post(void *ap, int rc) 6105 { 6106 struct vop_deleteextattr_args *a; 6107 struct vnode *vp; 6108 6109 a = ap; 6110 vp = a->a_vp; 6111 vn_seqc_write_end(vp); 6112 if (!rc) 6113 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 6114 } 6115 6116 void vop_link_pre(void * ap)6117 vop_link_pre(void *ap) 6118 { 6119 struct vop_link_args *a; 6120 struct vnode *vp, *tdvp; 6121 6122 a = ap; 6123 vp = a->a_vp; 6124 tdvp = a->a_tdvp; 6125 vn_seqc_write_begin(vp); 6126 vn_seqc_write_begin(tdvp); 6127 } 6128 6129 void vop_link_post(void * ap,int rc)6130 vop_link_post(void *ap, int rc) 6131 { 6132 struct vop_link_args *a; 6133 struct vnode *vp, *tdvp; 6134 6135 a = ap; 6136 vp = a->a_vp; 6137 tdvp = a->a_tdvp; 6138 vn_seqc_write_end(vp); 6139 vn_seqc_write_end(tdvp); 6140 if (!rc) { 6141 VFS_KNOTE_LOCKED(vp, NOTE_LINK); 6142 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE); 6143 } 6144 } 6145 6146 void vop_mkdir_pre(void * ap)6147 vop_mkdir_pre(void *ap) 6148 { 6149 struct vop_mkdir_args *a; 6150 struct vnode *dvp; 6151 6152 a = ap; 6153 dvp = a->a_dvp; 6154 vn_seqc_write_begin(dvp); 6155 } 6156 6157 void vop_mkdir_post(void * ap,int rc)6158 vop_mkdir_post(void *ap, int rc) 6159 { 6160 struct vop_mkdir_args *a; 6161 struct vnode *dvp; 6162 6163 a = ap; 6164 dvp = a->a_dvp; 6165 vn_seqc_write_end(dvp); 6166 if (!rc) 6167 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 6168 } 6169 6170 #ifdef DEBUG_VFS_LOCKS 6171 void vop_mkdir_debugpost(void * ap,int rc)6172 vop_mkdir_debugpost(void *ap, int rc) 6173 { 6174 struct vop_mkdir_args *a; 6175 6176 a = ap; 6177 if (!rc) 6178 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp); 6179 } 6180 #endif 6181 6182 void vop_mknod_pre(void * ap)6183 vop_mknod_pre(void *ap) 6184 { 6185 struct vop_mknod_args *a; 6186 struct vnode *dvp; 6187 6188 a = ap; 6189 dvp = a->a_dvp; 6190 vn_seqc_write_begin(dvp); 6191 } 6192 6193 void vop_mknod_post(void * ap,int rc)6194 vop_mknod_post(void *ap, int rc) 6195 { 6196 struct vop_mknod_args *a; 6197 struct vnode *dvp; 6198 6199 a = ap; 6200 dvp = a->a_dvp; 6201 vn_seqc_write_end(dvp); 6202 if (!rc) 6203 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6204 } 6205 6206 void vop_reclaim_post(void * ap,int rc)6207 vop_reclaim_post(void *ap, int rc) 6208 { 6209 struct vop_reclaim_args *a; 6210 struct vnode *vp; 6211 6212 a = ap; 6213 vp = a->a_vp; 6214 ASSERT_VOP_IN_SEQC(vp); 6215 if (!rc) 6216 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE); 6217 } 6218 6219 void vop_remove_pre(void * ap)6220 vop_remove_pre(void *ap) 6221 { 6222 struct vop_remove_args *a; 6223 struct vnode *dvp, *vp; 6224 6225 a = ap; 6226 dvp = a->a_dvp; 6227 vp = a->a_vp; 6228 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK); 6229 vn_seqc_write_begin(dvp); 6230 vn_seqc_write_begin(vp); 6231 } 6232 6233 void vop_remove_post(void * ap,int rc)6234 vop_remove_post(void *ap, int rc) 6235 { 6236 struct vop_remove_args *a; 6237 struct vnode *dvp, *vp; 6238 6239 a = ap; 6240 dvp = a->a_dvp; 6241 vp = a->a_vp; 6242 vn_seqc_write_end(dvp); 6243 vn_seqc_write_end(vp); 6244 if (!rc) { 6245 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6246 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6247 } 6248 } 6249 6250 void vop_rename_post(void * ap,int rc)6251 vop_rename_post(void *ap, int rc) 6252 { 6253 struct vop_rename_args *a = ap; 6254 long hint; 6255 6256 if (!rc) { 6257 hint = NOTE_WRITE; 6258 if (a->a_fdvp == a->a_tdvp) { 6259 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 6260 hint |= NOTE_LINK; 6261 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6262 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6263 } else { 6264 hint |= NOTE_EXTEND; 6265 if (a->a_fvp->v_type == VDIR) 6266 hint |= NOTE_LINK; 6267 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6268 6269 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 6270 a->a_tvp->v_type == VDIR) 6271 hint &= ~NOTE_LINK; 6272 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6273 } 6274 6275 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 6276 if (a->a_tvp) 6277 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 6278 } 6279 if (a->a_tdvp != a->a_fdvp) 6280 vdrop(a->a_fdvp); 6281 if (a->a_tvp != a->a_fvp) 6282 vdrop(a->a_fvp); 6283 vdrop(a->a_tdvp); 6284 if (a->a_tvp) 6285 vdrop(a->a_tvp); 6286 } 6287 6288 void vop_rmdir_pre(void * ap)6289 vop_rmdir_pre(void *ap) 6290 { 6291 struct vop_rmdir_args *a; 6292 struct vnode *dvp, *vp; 6293 6294 a = ap; 6295 dvp = a->a_dvp; 6296 vp = a->a_vp; 6297 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK); 6298 vn_seqc_write_begin(dvp); 6299 vn_seqc_write_begin(vp); 6300 } 6301 6302 void vop_rmdir_post(void * ap,int rc)6303 vop_rmdir_post(void *ap, int rc) 6304 { 6305 struct vop_rmdir_args *a; 6306 struct vnode *dvp, *vp; 6307 6308 a = ap; 6309 dvp = a->a_dvp; 6310 vp = a->a_vp; 6311 vn_seqc_write_end(dvp); 6312 vn_seqc_write_end(vp); 6313 if (!rc) { 6314 vp->v_vflag |= VV_UNLINKED; 6315 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 6316 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6317 } 6318 } 6319 6320 void vop_setattr_pre(void * ap)6321 vop_setattr_pre(void *ap) 6322 { 6323 struct vop_setattr_args *a; 6324 struct vnode *vp; 6325 6326 a = ap; 6327 vp = a->a_vp; 6328 vn_seqc_write_begin(vp); 6329 } 6330 6331 void vop_setattr_post(void * ap,int rc)6332 vop_setattr_post(void *ap, int rc) 6333 { 6334 struct vop_setattr_args *a; 6335 struct vnode *vp; 6336 6337 a = ap; 6338 vp = a->a_vp; 6339 vn_seqc_write_end(vp); 6340 if (!rc) 6341 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6342 } 6343 6344 void vop_setacl_pre(void * ap)6345 vop_setacl_pre(void *ap) 6346 { 6347 struct vop_setacl_args *a; 6348 struct vnode *vp; 6349 6350 a = ap; 6351 vp = a->a_vp; 6352 vn_seqc_write_begin(vp); 6353 } 6354 6355 void vop_setacl_post(void * ap,int rc __unused)6356 vop_setacl_post(void *ap, int rc __unused) 6357 { 6358 struct vop_setacl_args *a; 6359 struct vnode *vp; 6360 6361 a = ap; 6362 vp = a->a_vp; 6363 vn_seqc_write_end(vp); 6364 } 6365 6366 void vop_setextattr_pre(void * ap)6367 vop_setextattr_pre(void *ap) 6368 { 6369 struct vop_setextattr_args *a; 6370 struct vnode *vp; 6371 6372 a = ap; 6373 vp = a->a_vp; 6374 vn_seqc_write_begin(vp); 6375 } 6376 6377 void vop_setextattr_post(void * ap,int rc)6378 vop_setextattr_post(void *ap, int rc) 6379 { 6380 struct vop_setextattr_args *a; 6381 struct vnode *vp; 6382 6383 a = ap; 6384 vp = a->a_vp; 6385 vn_seqc_write_end(vp); 6386 if (!rc) 6387 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6388 } 6389 6390 void vop_symlink_pre(void * ap)6391 vop_symlink_pre(void *ap) 6392 { 6393 struct vop_symlink_args *a; 6394 struct vnode *dvp; 6395 6396 a = ap; 6397 dvp = a->a_dvp; 6398 vn_seqc_write_begin(dvp); 6399 } 6400 6401 void vop_symlink_post(void * ap,int rc)6402 vop_symlink_post(void *ap, int rc) 6403 { 6404 struct vop_symlink_args *a; 6405 struct vnode *dvp; 6406 6407 a = ap; 6408 dvp = a->a_dvp; 6409 vn_seqc_write_end(dvp); 6410 if (!rc) 6411 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6412 } 6413 6414 void vop_open_post(void * ap,int rc)6415 vop_open_post(void *ap, int rc) 6416 { 6417 struct vop_open_args *a = ap; 6418 6419 if (!rc) 6420 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 6421 } 6422 6423 void vop_close_post(void * ap,int rc)6424 vop_close_post(void *ap, int rc) 6425 { 6426 struct vop_close_args *a = ap; 6427 6428 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 6429 !VN_IS_DOOMED(a->a_vp))) { 6430 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 6431 NOTE_CLOSE_WRITE : NOTE_CLOSE); 6432 } 6433 } 6434 6435 void vop_read_post(void * ap,int rc)6436 vop_read_post(void *ap, int rc) 6437 { 6438 struct vop_read_args *a = ap; 6439 6440 if (!rc) 6441 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6442 } 6443 6444 void vop_read_pgcache_post(void * ap,int rc)6445 vop_read_pgcache_post(void *ap, int rc) 6446 { 6447 struct vop_read_pgcache_args *a = ap; 6448 6449 if (!rc) 6450 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ); 6451 } 6452 6453 void vop_readdir_post(void * ap,int rc)6454 vop_readdir_post(void *ap, int rc) 6455 { 6456 struct vop_readdir_args *a = ap; 6457 6458 if (!rc) 6459 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6460 } 6461 6462 static struct knlist fs_knlist; 6463 6464 static void vfs_event_init(void * arg)6465 vfs_event_init(void *arg) 6466 { 6467 knlist_init_mtx(&fs_knlist, NULL); 6468 } 6469 /* XXX - correct order? */ 6470 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 6471 6472 void vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6473 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 6474 { 6475 6476 KNOTE_UNLOCKED(&fs_knlist, event); 6477 } 6478 6479 static int filt_fsattach(struct knote *kn); 6480 static void filt_fsdetach(struct knote *kn); 6481 static int filt_fsevent(struct knote *kn, long hint); 6482 6483 const struct filterops fs_filtops = { 6484 .f_isfd = 0, 6485 .f_attach = filt_fsattach, 6486 .f_detach = filt_fsdetach, 6487 .f_event = filt_fsevent, 6488 }; 6489 6490 static int filt_fsattach(struct knote * kn)6491 filt_fsattach(struct knote *kn) 6492 { 6493 6494 kn->kn_flags |= EV_CLEAR; 6495 knlist_add(&fs_knlist, kn, 0); 6496 return (0); 6497 } 6498 6499 static void filt_fsdetach(struct knote * kn)6500 filt_fsdetach(struct knote *kn) 6501 { 6502 6503 knlist_remove(&fs_knlist, kn, 0); 6504 } 6505 6506 static int filt_fsevent(struct knote * kn,long hint)6507 filt_fsevent(struct knote *kn, long hint) 6508 { 6509 6510 kn->kn_fflags |= kn->kn_sfflags & hint; 6511 6512 return (kn->kn_fflags != 0); 6513 } 6514 6515 static int sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6516 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 6517 { 6518 struct vfsidctl vc; 6519 int error; 6520 struct mount *mp; 6521 6522 if (req->newptr == NULL) 6523 return (EINVAL); 6524 error = SYSCTL_IN(req, &vc, sizeof(vc)); 6525 if (error) 6526 return (error); 6527 if (vc.vc_vers != VFS_CTL_VERS1) 6528 return (EINVAL); 6529 mp = vfs_getvfs(&vc.vc_fsid); 6530 if (mp == NULL) 6531 return (ENOENT); 6532 /* ensure that a specific sysctl goes to the right filesystem. */ 6533 if (strcmp(vc.vc_fstypename, "*") != 0 && 6534 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 6535 vfs_rel(mp); 6536 return (EINVAL); 6537 } 6538 VCTLTOREQ(&vc, req); 6539 error = VFS_SYSCTL(mp, vc.vc_op, req); 6540 vfs_rel(mp); 6541 return (error); 6542 } 6543 6544 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, 6545 NULL, 0, sysctl_vfs_ctl, "", 6546 "Sysctl by fsid"); 6547 6548 /* 6549 * Function to initialize a va_filerev field sensibly. 6550 * XXX: Wouldn't a random number make a lot more sense ?? 6551 */ 6552 u_quad_t init_va_filerev(void)6553 init_va_filerev(void) 6554 { 6555 struct bintime bt; 6556 6557 getbinuptime(&bt); 6558 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 6559 } 6560 6561 static int filt_vfsread(struct knote *kn, long hint); 6562 static int filt_vfswrite(struct knote *kn, long hint); 6563 static int filt_vfsvnode(struct knote *kn, long hint); 6564 static void filt_vfsdetach(struct knote *kn); 6565 static int filt_vfsdump(struct proc *p, struct knote *kn, 6566 struct kinfo_knote *kin); 6567 6568 static const struct filterops vfsread_filtops = { 6569 .f_isfd = 1, 6570 .f_detach = filt_vfsdetach, 6571 .f_event = filt_vfsread, 6572 .f_userdump = filt_vfsdump, 6573 }; 6574 static const struct filterops vfswrite_filtops = { 6575 .f_isfd = 1, 6576 .f_detach = filt_vfsdetach, 6577 .f_event = filt_vfswrite, 6578 .f_userdump = filt_vfsdump, 6579 }; 6580 static const struct filterops vfsvnode_filtops = { 6581 .f_isfd = 1, 6582 .f_detach = filt_vfsdetach, 6583 .f_event = filt_vfsvnode, 6584 .f_userdump = filt_vfsdump, 6585 }; 6586 6587 static void vfs_knllock(void * arg)6588 vfs_knllock(void *arg) 6589 { 6590 struct vnode *vp = arg; 6591 6592 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 6593 } 6594 6595 static void vfs_knlunlock(void * arg)6596 vfs_knlunlock(void *arg) 6597 { 6598 struct vnode *vp = arg; 6599 6600 VOP_UNLOCK(vp); 6601 } 6602 6603 static void vfs_knl_assert_lock(void * arg,int what)6604 vfs_knl_assert_lock(void *arg, int what) 6605 { 6606 #ifdef DEBUG_VFS_LOCKS 6607 struct vnode *vp = arg; 6608 6609 if (what == LA_LOCKED) 6610 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 6611 else 6612 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 6613 #endif 6614 } 6615 6616 int vfs_kqfilter(struct vop_kqfilter_args * ap)6617 vfs_kqfilter(struct vop_kqfilter_args *ap) 6618 { 6619 struct vnode *vp = ap->a_vp; 6620 struct knote *kn = ap->a_kn; 6621 struct knlist *knl; 6622 6623 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ && 6624 kn->kn_filter != EVFILT_WRITE), 6625 ("READ/WRITE filter on a FIFO leaked through")); 6626 switch (kn->kn_filter) { 6627 case EVFILT_READ: 6628 kn->kn_fop = &vfsread_filtops; 6629 break; 6630 case EVFILT_WRITE: 6631 kn->kn_fop = &vfswrite_filtops; 6632 break; 6633 case EVFILT_VNODE: 6634 kn->kn_fop = &vfsvnode_filtops; 6635 break; 6636 default: 6637 return (EINVAL); 6638 } 6639 6640 kn->kn_hook = (caddr_t)vp; 6641 6642 v_addpollinfo(vp); 6643 if (vp->v_pollinfo == NULL) 6644 return (ENOMEM); 6645 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 6646 vhold(vp); 6647 knlist_add(knl, kn, 0); 6648 6649 return (0); 6650 } 6651 6652 /* 6653 * Detach knote from vnode 6654 */ 6655 static void filt_vfsdetach(struct knote * kn)6656 filt_vfsdetach(struct knote *kn) 6657 { 6658 struct vnode *vp = (struct vnode *)kn->kn_hook; 6659 6660 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 6661 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 6662 vdrop(vp); 6663 } 6664 6665 /*ARGSUSED*/ 6666 static int filt_vfsread(struct knote * kn,long hint)6667 filt_vfsread(struct knote *kn, long hint) 6668 { 6669 struct vnode *vp = (struct vnode *)kn->kn_hook; 6670 off_t size; 6671 int res; 6672 6673 /* 6674 * filesystem is gone, so set the EOF flag and schedule 6675 * the knote for deletion. 6676 */ 6677 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6678 VI_LOCK(vp); 6679 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6680 VI_UNLOCK(vp); 6681 return (1); 6682 } 6683 6684 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0) 6685 return (0); 6686 6687 VI_LOCK(vp); 6688 kn->kn_data = size - kn->kn_fp->f_offset; 6689 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 6690 VI_UNLOCK(vp); 6691 return (res); 6692 } 6693 6694 /*ARGSUSED*/ 6695 static int filt_vfswrite(struct knote * kn,long hint)6696 filt_vfswrite(struct knote *kn, long hint) 6697 { 6698 struct vnode *vp = (struct vnode *)kn->kn_hook; 6699 6700 VI_LOCK(vp); 6701 6702 /* 6703 * filesystem is gone, so set the EOF flag and schedule 6704 * the knote for deletion. 6705 */ 6706 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 6707 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6708 6709 kn->kn_data = 0; 6710 VI_UNLOCK(vp); 6711 return (1); 6712 } 6713 6714 static int filt_vfsvnode(struct knote * kn,long hint)6715 filt_vfsvnode(struct knote *kn, long hint) 6716 { 6717 struct vnode *vp = (struct vnode *)kn->kn_hook; 6718 int res; 6719 6720 VI_LOCK(vp); 6721 if (kn->kn_sfflags & hint) 6722 kn->kn_fflags |= hint; 6723 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6724 kn->kn_flags |= EV_EOF; 6725 VI_UNLOCK(vp); 6726 return (1); 6727 } 6728 res = (kn->kn_fflags != 0); 6729 VI_UNLOCK(vp); 6730 return (res); 6731 } 6732 6733 static int filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6734 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin) 6735 { 6736 struct vattr va; 6737 struct vnode *vp; 6738 char *fullpath, *freepath; 6739 int error; 6740 6741 kin->knt_extdata = KNOTE_EXTDATA_VNODE; 6742 6743 vp = kn->kn_fp->f_vnode; 6744 kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type); 6745 6746 va.va_fsid = VNOVAL; 6747 vn_lock(vp, LK_SHARED | LK_RETRY); 6748 error = VOP_GETATTR(vp, &va, curthread->td_ucred); 6749 VOP_UNLOCK(vp); 6750 if (error != 0) 6751 return (error); 6752 kin->knt_vnode.knt_vnode_fsid = va.va_fsid; 6753 kin->knt_vnode.knt_vnode_fileid = va.va_fileid; 6754 6755 freepath = NULL; 6756 fullpath = "-"; 6757 error = vn_fullpath(vp, &fullpath, &freepath); 6758 if (error == 0) { 6759 strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath, 6760 sizeof(kin->knt_vnode.knt_vnode_fullpath)); 6761 } 6762 if (freepath != NULL) 6763 free(freepath, M_TEMP); 6764 6765 return (0); 6766 } 6767 6768 int vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6769 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 6770 { 6771 int error; 6772 6773 if (dp->d_reclen > ap->a_uio->uio_resid) 6774 return (ENAMETOOLONG); 6775 error = uiomove(dp, dp->d_reclen, ap->a_uio); 6776 if (error) { 6777 if (ap->a_ncookies != NULL) { 6778 if (ap->a_cookies != NULL) 6779 free(ap->a_cookies, M_TEMP); 6780 ap->a_cookies = NULL; 6781 *ap->a_ncookies = 0; 6782 } 6783 return (error); 6784 } 6785 if (ap->a_ncookies == NULL) 6786 return (0); 6787 6788 KASSERT(ap->a_cookies, 6789 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 6790 6791 *ap->a_cookies = realloc(*ap->a_cookies, 6792 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO); 6793 (*ap->a_cookies)[*ap->a_ncookies] = off; 6794 *ap->a_ncookies += 1; 6795 return (0); 6796 } 6797 6798 /* 6799 * The purpose of this routine is to remove granularity from accmode_t, 6800 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 6801 * VADMIN and VAPPEND. 6802 * 6803 * If it returns 0, the caller is supposed to continue with the usual 6804 * access checks using 'accmode' as modified by this routine. If it 6805 * returns nonzero value, the caller is supposed to return that value 6806 * as errno. 6807 * 6808 * Note that after this routine runs, accmode may be zero. 6809 */ 6810 int vfs_unixify_accmode(accmode_t * accmode)6811 vfs_unixify_accmode(accmode_t *accmode) 6812 { 6813 /* 6814 * There is no way to specify explicit "deny" rule using 6815 * file mode or POSIX.1e ACLs. 6816 */ 6817 if (*accmode & VEXPLICIT_DENY) { 6818 *accmode = 0; 6819 return (0); 6820 } 6821 6822 /* 6823 * None of these can be translated into usual access bits. 6824 * Also, the common case for NFSv4 ACLs is to not contain 6825 * either of these bits. Caller should check for VWRITE 6826 * on the containing directory instead. 6827 */ 6828 if (*accmode & (VDELETE_CHILD | VDELETE)) 6829 return (EPERM); 6830 6831 if (*accmode & VADMIN_PERMS) { 6832 *accmode &= ~VADMIN_PERMS; 6833 *accmode |= VADMIN; 6834 } 6835 6836 /* 6837 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 6838 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 6839 */ 6840 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 6841 6842 return (0); 6843 } 6844 6845 /* 6846 * Clear out a doomed vnode (if any) and replace it with a new one as long 6847 * as the fs is not being unmounted. Return the root vnode to the caller. 6848 */ 6849 static int __noinline vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6850 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) 6851 { 6852 struct vnode *vp; 6853 int error; 6854 6855 restart: 6856 if (mp->mnt_rootvnode != NULL) { 6857 MNT_ILOCK(mp); 6858 vp = mp->mnt_rootvnode; 6859 if (vp != NULL) { 6860 if (!VN_IS_DOOMED(vp)) { 6861 vrefact(vp); 6862 MNT_IUNLOCK(mp); 6863 error = vn_lock(vp, flags); 6864 if (error == 0) { 6865 *vpp = vp; 6866 return (0); 6867 } 6868 vrele(vp); 6869 goto restart; 6870 } 6871 /* 6872 * Clear the old one. 6873 */ 6874 mp->mnt_rootvnode = NULL; 6875 } 6876 MNT_IUNLOCK(mp); 6877 if (vp != NULL) { 6878 vfs_op_barrier_wait(mp); 6879 vrele(vp); 6880 } 6881 } 6882 error = VFS_CACHEDROOT(mp, flags, vpp); 6883 if (error != 0) 6884 return (error); 6885 if (mp->mnt_vfs_ops == 0) { 6886 MNT_ILOCK(mp); 6887 if (mp->mnt_vfs_ops != 0) { 6888 MNT_IUNLOCK(mp); 6889 return (0); 6890 } 6891 if (mp->mnt_rootvnode == NULL) { 6892 vrefact(*vpp); 6893 mp->mnt_rootvnode = *vpp; 6894 } else { 6895 if (mp->mnt_rootvnode != *vpp) { 6896 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { 6897 panic("%s: mismatch between vnode returned " 6898 " by VFS_CACHEDROOT and the one cached " 6899 " (%p != %p)", 6900 __func__, *vpp, mp->mnt_rootvnode); 6901 } 6902 } 6903 } 6904 MNT_IUNLOCK(mp); 6905 } 6906 return (0); 6907 } 6908 6909 int vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6910 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) 6911 { 6912 struct mount_pcpu *mpcpu; 6913 struct vnode *vp; 6914 int error; 6915 6916 if (!vfs_op_thread_enter(mp, mpcpu)) 6917 return (vfs_cache_root_fallback(mp, flags, vpp)); 6918 vp = atomic_load_ptr(&mp->mnt_rootvnode); 6919 if (vp == NULL || VN_IS_DOOMED(vp)) { 6920 vfs_op_thread_exit(mp, mpcpu); 6921 return (vfs_cache_root_fallback(mp, flags, vpp)); 6922 } 6923 vrefact(vp); 6924 vfs_op_thread_exit(mp, mpcpu); 6925 error = vn_lock(vp, flags); 6926 if (error != 0) { 6927 vrele(vp); 6928 return (vfs_cache_root_fallback(mp, flags, vpp)); 6929 } 6930 *vpp = vp; 6931 return (0); 6932 } 6933 6934 struct vnode * vfs_cache_root_clear(struct mount * mp)6935 vfs_cache_root_clear(struct mount *mp) 6936 { 6937 struct vnode *vp; 6938 6939 /* 6940 * ops > 0 guarantees there is nobody who can see this vnode 6941 */ 6942 MPASS(mp->mnt_vfs_ops > 0); 6943 vp = mp->mnt_rootvnode; 6944 if (vp != NULL) 6945 vn_seqc_write_begin(vp); 6946 mp->mnt_rootvnode = NULL; 6947 return (vp); 6948 } 6949 6950 void vfs_cache_root_set(struct mount * mp,struct vnode * vp)6951 vfs_cache_root_set(struct mount *mp, struct vnode *vp) 6952 { 6953 6954 MPASS(mp->mnt_vfs_ops > 0); 6955 vrefact(vp); 6956 mp->mnt_rootvnode = vp; 6957 } 6958 6959 /* 6960 * These are helper functions for filesystems to traverse all 6961 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 6962 * 6963 * This interface replaces MNT_VNODE_FOREACH. 6964 */ 6965 6966 struct vnode * __mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)6967 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 6968 { 6969 struct vnode *vp; 6970 6971 maybe_yield(); 6972 MNT_ILOCK(mp); 6973 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6974 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 6975 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 6976 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6977 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6978 continue; 6979 VI_LOCK(vp); 6980 if (VN_IS_DOOMED(vp)) { 6981 VI_UNLOCK(vp); 6982 continue; 6983 } 6984 break; 6985 } 6986 if (vp == NULL) { 6987 __mnt_vnode_markerfree_all(mvp, mp); 6988 /* MNT_IUNLOCK(mp); -- done in above function */ 6989 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 6990 return (NULL); 6991 } 6992 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6993 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6994 MNT_IUNLOCK(mp); 6995 return (vp); 6996 } 6997 6998 struct vnode * __mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)6999 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 7000 { 7001 struct vnode *vp; 7002 7003 *mvp = vn_alloc_marker(mp); 7004 MNT_ILOCK(mp); 7005 MNT_REF(mp); 7006 7007 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 7008 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 7009 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 7010 continue; 7011 VI_LOCK(vp); 7012 if (VN_IS_DOOMED(vp)) { 7013 VI_UNLOCK(vp); 7014 continue; 7015 } 7016 break; 7017 } 7018 if (vp == NULL) { 7019 MNT_REL(mp); 7020 MNT_IUNLOCK(mp); 7021 vn_free_marker(*mvp); 7022 *mvp = NULL; 7023 return (NULL); 7024 } 7025 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 7026 MNT_IUNLOCK(mp); 7027 return (vp); 7028 } 7029 7030 void __mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7031 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 7032 { 7033 7034 if (*mvp == NULL) { 7035 MNT_IUNLOCK(mp); 7036 return; 7037 } 7038 7039 mtx_assert(MNT_MTX(mp), MA_OWNED); 7040 7041 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 7042 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 7043 MNT_REL(mp); 7044 MNT_IUNLOCK(mp); 7045 vn_free_marker(*mvp); 7046 *mvp = NULL; 7047 } 7048 7049 /* 7050 * These are helper functions for filesystems to traverse their 7051 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h 7052 */ 7053 static void mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7054 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 7055 { 7056 7057 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 7058 7059 MNT_ILOCK(mp); 7060 MNT_REL(mp); 7061 MNT_IUNLOCK(mp); 7062 vn_free_marker(*mvp); 7063 *mvp = NULL; 7064 } 7065 7066 /* 7067 * Relock the mp mount vnode list lock with the vp vnode interlock in the 7068 * conventional lock order during mnt_vnode_next_lazy iteration. 7069 * 7070 * On entry, the mount vnode list lock is held and the vnode interlock is not. 7071 * The list lock is dropped and reacquired. On success, both locks are held. 7072 * On failure, the mount vnode list lock is held but the vnode interlock is 7073 * not, and the procedure may have yielded. 7074 */ 7075 static bool mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7076 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, 7077 struct vnode *vp) 7078 { 7079 7080 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 7081 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, 7082 ("%s: bad marker", __func__)); 7083 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 7084 ("%s: inappropriate vnode", __func__)); 7085 ASSERT_VI_UNLOCKED(vp, __func__); 7086 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 7087 7088 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); 7089 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); 7090 7091 /* 7092 * Note we may be racing against vdrop which transitioned the hold 7093 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine, 7094 * if we are the only user after we get the interlock we will just 7095 * vdrop. 7096 */ 7097 vhold(vp); 7098 mtx_unlock(&mp->mnt_listmtx); 7099 VI_LOCK(vp); 7100 if (VN_IS_DOOMED(vp)) { 7101 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 7102 goto out_lost; 7103 } 7104 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 7105 /* 7106 * There is nothing to do if we are the last user. 7107 */ 7108 if (!refcount_release_if_not_last(&vp->v_holdcnt)) 7109 goto out_lost; 7110 mtx_lock(&mp->mnt_listmtx); 7111 return (true); 7112 out_lost: 7113 vdropl(vp); 7114 maybe_yield(); 7115 mtx_lock(&mp->mnt_listmtx); 7116 return (false); 7117 } 7118 7119 static struct vnode * mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7120 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7121 void *cbarg) 7122 { 7123 struct vnode *vp; 7124 7125 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 7126 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 7127 restart: 7128 vp = TAILQ_NEXT(*mvp, v_lazylist); 7129 while (vp != NULL) { 7130 if (vp->v_type == VMARKER) { 7131 vp = TAILQ_NEXT(vp, v_lazylist); 7132 continue; 7133 } 7134 /* 7135 * See if we want to process the vnode. Note we may encounter a 7136 * long string of vnodes we don't care about and hog the list 7137 * as a result. Check for it and requeue the marker. 7138 */ 7139 VNPASS(!VN_IS_DOOMED(vp), vp); 7140 if (!cb(vp, cbarg)) { 7141 if (!should_yield()) { 7142 vp = TAILQ_NEXT(vp, v_lazylist); 7143 continue; 7144 } 7145 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, 7146 v_lazylist); 7147 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, 7148 v_lazylist); 7149 mtx_unlock(&mp->mnt_listmtx); 7150 kern_yield(PRI_USER); 7151 mtx_lock(&mp->mnt_listmtx); 7152 goto restart; 7153 } 7154 /* 7155 * Try-lock because this is the wrong lock order. 7156 */ 7157 if (!VI_TRYLOCK(vp) && 7158 !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) 7159 goto restart; 7160 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 7161 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 7162 ("alien vnode on the lazy list %p %p", vp, mp)); 7163 VNPASS(vp->v_mount == mp, vp); 7164 VNPASS(!VN_IS_DOOMED(vp), vp); 7165 break; 7166 } 7167 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 7168 7169 /* Check if we are done */ 7170 if (vp == NULL) { 7171 mtx_unlock(&mp->mnt_listmtx); 7172 mnt_vnode_markerfree_lazy(mvp, mp); 7173 return (NULL); 7174 } 7175 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); 7176 mtx_unlock(&mp->mnt_listmtx); 7177 ASSERT_VI_LOCKED(vp, "lazy iter"); 7178 return (vp); 7179 } 7180 7181 struct vnode * __mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7182 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7183 void *cbarg) 7184 { 7185 7186 maybe_yield(); 7187 mtx_lock(&mp->mnt_listmtx); 7188 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 7189 } 7190 7191 struct vnode * __mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7192 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7193 void *cbarg) 7194 { 7195 struct vnode *vp; 7196 7197 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) 7198 return (NULL); 7199 7200 *mvp = vn_alloc_marker(mp); 7201 MNT_ILOCK(mp); 7202 MNT_REF(mp); 7203 MNT_IUNLOCK(mp); 7204 7205 mtx_lock(&mp->mnt_listmtx); 7206 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); 7207 if (vp == NULL) { 7208 mtx_unlock(&mp->mnt_listmtx); 7209 mnt_vnode_markerfree_lazy(mvp, mp); 7210 return (NULL); 7211 } 7212 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); 7213 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 7214 } 7215 7216 void __mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7217 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 7218 { 7219 7220 if (*mvp == NULL) 7221 return; 7222 7223 mtx_lock(&mp->mnt_listmtx); 7224 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 7225 mtx_unlock(&mp->mnt_listmtx); 7226 mnt_vnode_markerfree_lazy(mvp, mp); 7227 } 7228 7229 int vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7230 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp) 7231 { 7232 7233 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 7234 cnp->cn_flags &= ~NOEXECCHECK; 7235 return (0); 7236 } 7237 7238 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread)); 7239 } 7240 7241 /* 7242 * Do not use this variant unless you have means other than the hold count 7243 * to prevent the vnode from getting freed. 7244 */ 7245 void vn_seqc_write_begin_locked(struct vnode * vp)7246 vn_seqc_write_begin_locked(struct vnode *vp) 7247 { 7248 7249 ASSERT_VI_LOCKED(vp, __func__); 7250 VNPASS(vp->v_holdcnt > 0, vp); 7251 VNPASS(vp->v_seqc_users >= 0, vp); 7252 vp->v_seqc_users++; 7253 if (vp->v_seqc_users == 1) 7254 seqc_sleepable_write_begin(&vp->v_seqc); 7255 } 7256 7257 void vn_seqc_write_begin(struct vnode * vp)7258 vn_seqc_write_begin(struct vnode *vp) 7259 { 7260 7261 VI_LOCK(vp); 7262 vn_seqc_write_begin_locked(vp); 7263 VI_UNLOCK(vp); 7264 } 7265 7266 void vn_seqc_write_end_locked(struct vnode * vp)7267 vn_seqc_write_end_locked(struct vnode *vp) 7268 { 7269 7270 ASSERT_VI_LOCKED(vp, __func__); 7271 VNPASS(vp->v_seqc_users > 0, vp); 7272 vp->v_seqc_users--; 7273 if (vp->v_seqc_users == 0) 7274 seqc_sleepable_write_end(&vp->v_seqc); 7275 } 7276 7277 void vn_seqc_write_end(struct vnode * vp)7278 vn_seqc_write_end(struct vnode *vp) 7279 { 7280 7281 VI_LOCK(vp); 7282 vn_seqc_write_end_locked(vp); 7283 VI_UNLOCK(vp); 7284 } 7285 7286 /* 7287 * Special case handling for allocating and freeing vnodes. 7288 * 7289 * The counter remains unchanged on free so that a doomed vnode will 7290 * keep testing as in modify as long as it is accessible with SMR. 7291 */ 7292 static void vn_seqc_init(struct vnode * vp)7293 vn_seqc_init(struct vnode *vp) 7294 { 7295 7296 vp->v_seqc = 0; 7297 vp->v_seqc_users = 0; 7298 } 7299 7300 static void vn_seqc_write_end_free(struct vnode * vp)7301 vn_seqc_write_end_free(struct vnode *vp) 7302 { 7303 7304 VNPASS(seqc_in_modify(vp->v_seqc), vp); 7305 VNPASS(vp->v_seqc_users == 1, vp); 7306 } 7307 7308 void vn_irflag_set_locked(struct vnode * vp,short toset)7309 vn_irflag_set_locked(struct vnode *vp, short toset) 7310 { 7311 short flags; 7312 7313 ASSERT_VI_LOCKED(vp, __func__); 7314 flags = vn_irflag_read(vp); 7315 VNASSERT((flags & toset) == 0, vp, 7316 ("%s: some of the passed flags already set (have %d, passed %d)\n", 7317 __func__, flags, toset)); 7318 atomic_store_short(&vp->v_irflag, flags | toset); 7319 } 7320 7321 void vn_irflag_set(struct vnode * vp,short toset)7322 vn_irflag_set(struct vnode *vp, short toset) 7323 { 7324 7325 VI_LOCK(vp); 7326 vn_irflag_set_locked(vp, toset); 7327 VI_UNLOCK(vp); 7328 } 7329 7330 void vn_irflag_set_cond_locked(struct vnode * vp,short toset)7331 vn_irflag_set_cond_locked(struct vnode *vp, short toset) 7332 { 7333 short flags; 7334 7335 ASSERT_VI_LOCKED(vp, __func__); 7336 flags = vn_irflag_read(vp); 7337 atomic_store_short(&vp->v_irflag, flags | toset); 7338 } 7339 7340 void vn_irflag_set_cond(struct vnode * vp,short toset)7341 vn_irflag_set_cond(struct vnode *vp, short toset) 7342 { 7343 7344 VI_LOCK(vp); 7345 vn_irflag_set_cond_locked(vp, toset); 7346 VI_UNLOCK(vp); 7347 } 7348 7349 void vn_irflag_unset_locked(struct vnode * vp,short tounset)7350 vn_irflag_unset_locked(struct vnode *vp, short tounset) 7351 { 7352 short flags; 7353 7354 ASSERT_VI_LOCKED(vp, __func__); 7355 flags = vn_irflag_read(vp); 7356 VNASSERT((flags & tounset) == tounset, vp, 7357 ("%s: some of the passed flags not set (have %d, passed %d)\n", 7358 __func__, flags, tounset)); 7359 atomic_store_short(&vp->v_irflag, flags & ~tounset); 7360 } 7361 7362 void vn_irflag_unset(struct vnode * vp,short tounset)7363 vn_irflag_unset(struct vnode *vp, short tounset) 7364 { 7365 7366 VI_LOCK(vp); 7367 vn_irflag_unset_locked(vp, tounset); 7368 VI_UNLOCK(vp); 7369 } 7370 7371 int vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7372 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred) 7373 { 7374 struct vattr vattr; 7375 int error; 7376 7377 ASSERT_VOP_LOCKED(vp, __func__); 7378 error = VOP_GETATTR(vp, &vattr, cred); 7379 if (__predict_true(error == 0)) { 7380 if (vattr.va_size <= OFF_MAX) 7381 *size = vattr.va_size; 7382 else 7383 error = EFBIG; 7384 } 7385 return (error); 7386 } 7387 7388 int vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7389 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred) 7390 { 7391 int error; 7392 7393 VOP_LOCK(vp, LK_SHARED); 7394 error = vn_getsize_locked(vp, size, cred); 7395 VOP_UNLOCK(vp); 7396 return (error); 7397 } 7398 7399 #ifdef INVARIANTS 7400 void vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7401 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state) 7402 { 7403 7404 switch (vp->v_state) { 7405 case VSTATE_UNINITIALIZED: 7406 switch (state) { 7407 case VSTATE_CONSTRUCTED: 7408 case VSTATE_DESTROYING: 7409 return; 7410 default: 7411 break; 7412 } 7413 break; 7414 case VSTATE_CONSTRUCTED: 7415 ASSERT_VOP_ELOCKED(vp, __func__); 7416 switch (state) { 7417 case VSTATE_DESTROYING: 7418 return; 7419 default: 7420 break; 7421 } 7422 break; 7423 case VSTATE_DESTROYING: 7424 ASSERT_VOP_ELOCKED(vp, __func__); 7425 switch (state) { 7426 case VSTATE_DEAD: 7427 return; 7428 default: 7429 break; 7430 } 7431 break; 7432 case VSTATE_DEAD: 7433 switch (state) { 7434 case VSTATE_UNINITIALIZED: 7435 return; 7436 default: 7437 break; 7438 } 7439 break; 7440 } 7441 7442 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state); 7443 panic("invalid state transition %d -> %d\n", vp->v_state, state); 7444 } 7445 #endif 7446