1 // SPDX-License-Identifier: GPL-2.0 or MIT 2 /* Copyright 2023 Collabora ltd. */ 3 4 #include <drm/drm_drv.h> 5 #include <drm/drm_exec.h> 6 #include <drm/drm_gem_shmem_helper.h> 7 #include <drm/drm_managed.h> 8 #include <drm/gpu_scheduler.h> 9 #include <drm/panthor_drm.h> 10 11 #include <linux/build_bug.h> 12 #include <linux/cleanup.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dma-resv.h> 17 #include <linux/firmware.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/iopoll.h> 21 #include <linux/iosys-map.h> 22 #include <linux/module.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 26 #include "panthor_devfreq.h" 27 #include "panthor_device.h" 28 #include "panthor_fw.h" 29 #include "panthor_gem.h" 30 #include "panthor_gpu.h" 31 #include "panthor_heap.h" 32 #include "panthor_mmu.h" 33 #include "panthor_regs.h" 34 #include "panthor_sched.h" 35 36 /** 37 * DOC: Scheduler 38 * 39 * Mali CSF hardware adopts a firmware-assisted scheduling model, where 40 * the firmware takes care of scheduling aspects, to some extent. 41 * 42 * The scheduling happens at the scheduling group level, each group 43 * contains 1 to N queues (N is FW/hardware dependent, and exposed 44 * through the firmware interface). Each queue is assigned a command 45 * stream ring buffer, which serves as a way to get jobs submitted to 46 * the GPU, among other things. 47 * 48 * The firmware can schedule a maximum of M groups (M is FW/hardware 49 * dependent, and exposed through the firmware interface). Passed 50 * this maximum number of groups, the kernel must take care of 51 * rotating the groups passed to the firmware so every group gets 52 * a chance to have his queues scheduled for execution. 53 * 54 * The current implementation only supports with kernel-mode queues. 55 * In other terms, userspace doesn't have access to the ring-buffer. 56 * Instead, userspace passes indirect command stream buffers that are 57 * called from the queue ring-buffer by the kernel using a pre-defined 58 * sequence of command stream instructions to ensure the userspace driver 59 * always gets consistent results (cache maintenance, 60 * synchronization, ...). 61 * 62 * We rely on the drm_gpu_scheduler framework to deal with job 63 * dependencies and submission. As any other driver dealing with a 64 * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each 65 * entity has its own job scheduler. When a job is ready to be executed 66 * (all its dependencies are met), it is pushed to the appropriate 67 * queue ring-buffer, and the group is scheduled for execution if it 68 * wasn't already active. 69 * 70 * Kernel-side group scheduling is timeslice-based. When we have less 71 * groups than there are slots, the periodic tick is disabled and we 72 * just let the FW schedule the active groups. When there are more 73 * groups than slots, we let each group a chance to execute stuff for 74 * a given amount of time, and then re-evaluate and pick new groups 75 * to schedule. The group selection algorithm is based on 76 * priority+round-robin. 77 * 78 * Even though user-mode queues is out of the scope right now, the 79 * current design takes them into account by avoiding any guess on the 80 * group/queue state that would be based on information we wouldn't have 81 * if userspace was in charge of the ring-buffer. That's also one of the 82 * reason we don't do 'cooperative' scheduling (encoding FW group slot 83 * reservation as dma_fence that would be returned from the 84 * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as 85 * a queue of waiters, ordered by job submission order). This approach 86 * would work for kernel-mode queues, but would make user-mode queues a 87 * lot more complicated to retrofit. 88 */ 89 90 #define JOB_TIMEOUT_MS 5000 91 92 #define MAX_CSG_PRIO 0xf 93 94 #define NUM_INSTRS_PER_CACHE_LINE (64 / sizeof(u64)) 95 #define MAX_INSTRS_PER_JOB 24 96 97 struct panthor_group; 98 99 /** 100 * struct panthor_csg_slot - Command stream group slot 101 * 102 * This represents a FW slot for a scheduling group. 103 */ 104 struct panthor_csg_slot { 105 /** @group: Scheduling group bound to this slot. */ 106 struct panthor_group *group; 107 108 /** @priority: Group priority. */ 109 u8 priority; 110 111 /** 112 * @idle: True if the group bound to this slot is idle. 113 * 114 * A group is idle when it has nothing waiting for execution on 115 * all its queues, or when queues are blocked waiting for something 116 * to happen (synchronization object). 117 */ 118 bool idle; 119 }; 120 121 /** 122 * enum panthor_csg_priority - Group priority 123 */ 124 enum panthor_csg_priority { 125 /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ 126 PANTHOR_CSG_PRIORITY_LOW = 0, 127 128 /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ 129 PANTHOR_CSG_PRIORITY_MEDIUM, 130 131 /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ 132 PANTHOR_CSG_PRIORITY_HIGH, 133 134 /** 135 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. 136 * 137 * Real-time priority allows one to preempt scheduling of other 138 * non-real-time groups. When such a group becomes executable, 139 * it will evict the group with the lowest non-rt priority if 140 * there's no free group slot available. 141 */ 142 PANTHOR_CSG_PRIORITY_RT, 143 144 /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ 145 PANTHOR_CSG_PRIORITY_COUNT, 146 }; 147 148 /** 149 * struct panthor_scheduler - Object used to manage the scheduler 150 */ 151 struct panthor_scheduler { 152 /** @ptdev: Device. */ 153 struct panthor_device *ptdev; 154 155 /** 156 * @wq: Workqueue used by our internal scheduler logic and 157 * drm_gpu_scheduler. 158 * 159 * Used for the scheduler tick, group update or other kind of FW 160 * event processing that can't be handled in the threaded interrupt 161 * path. Also passed to the drm_gpu_scheduler instances embedded 162 * in panthor_queue. 163 */ 164 struct workqueue_struct *wq; 165 166 /** 167 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. 168 * 169 * We have a queue dedicated to heap chunk allocation works to avoid 170 * blocking the rest of the scheduler if the allocation tries to 171 * reclaim memory. 172 */ 173 struct workqueue_struct *heap_alloc_wq; 174 175 /** @tick_work: Work executed on a scheduling tick. */ 176 struct delayed_work tick_work; 177 178 /** 179 * @sync_upd_work: Work used to process synchronization object updates. 180 * 181 * We use this work to unblock queues/groups that were waiting on a 182 * synchronization object. 183 */ 184 struct work_struct sync_upd_work; 185 186 /** 187 * @fw_events_work: Work used to process FW events outside the interrupt path. 188 * 189 * Even if the interrupt is threaded, we need any event processing 190 * that require taking the panthor_scheduler::lock to be processed 191 * outside the interrupt path so we don't block the tick logic when 192 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the 193 * event processing requires taking this lock, we just delegate all 194 * FW event processing to the scheduler workqueue. 195 */ 196 struct work_struct fw_events_work; 197 198 /** 199 * @fw_events: Bitmask encoding pending FW events. 200 */ 201 atomic_t fw_events; 202 203 /** 204 * @resched_target: When the next tick should occur. 205 * 206 * Expressed in jiffies. 207 */ 208 u64 resched_target; 209 210 /** 211 * @last_tick: When the last tick occurred. 212 * 213 * Expressed in jiffies. 214 */ 215 u64 last_tick; 216 217 /** @tick_period: Tick period in jiffies. */ 218 u64 tick_period; 219 220 /** 221 * @lock: Lock protecting access to all the scheduler fields. 222 * 223 * Should be taken in the tick work, the irq handler, and anywhere the @groups 224 * fields are touched. 225 */ 226 struct mutex lock; 227 228 /** @groups: Various lists used to classify groups. */ 229 struct { 230 /** 231 * @runnable: Runnable group lists. 232 * 233 * When a group has queues that want to execute something, 234 * its panthor_group::run_node should be inserted here. 235 * 236 * One list per-priority. 237 */ 238 struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; 239 240 /** 241 * @idle: Idle group lists. 242 * 243 * When all queues of a group are idle (either because they 244 * have nothing to execute, or because they are blocked), the 245 * panthor_group::run_node field should be inserted here. 246 * 247 * One list per-priority. 248 */ 249 struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; 250 251 /** 252 * @waiting: List of groups whose queues are blocked on a 253 * synchronization object. 254 * 255 * Insert panthor_group::wait_node here when a group is waiting 256 * for synchronization objects to be signaled. 257 * 258 * This list is evaluated in the @sync_upd_work work. 259 */ 260 struct list_head waiting; 261 } groups; 262 263 /** 264 * @csg_slots: FW command stream group slots. 265 */ 266 struct panthor_csg_slot csg_slots[MAX_CSGS]; 267 268 /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ 269 u32 csg_slot_count; 270 271 /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ 272 u32 cs_slot_count; 273 274 /** @as_slot_count: Number of address space slots supported by the MMU. */ 275 u32 as_slot_count; 276 277 /** @used_csg_slot_count: Number of command stream group slot currently used. */ 278 u32 used_csg_slot_count; 279 280 /** @sb_slot_count: Number of scoreboard slots. */ 281 u32 sb_slot_count; 282 283 /** 284 * @might_have_idle_groups: True if an active group might have become idle. 285 * 286 * This will force a tick, so other runnable groups can be scheduled if one 287 * or more active groups became idle. 288 */ 289 bool might_have_idle_groups; 290 291 /** @pm: Power management related fields. */ 292 struct { 293 /** @has_ref: True if the scheduler owns a runtime PM reference. */ 294 bool has_ref; 295 } pm; 296 297 /** @reset: Reset related fields. */ 298 struct { 299 /** @lock: Lock protecting the other reset fields. */ 300 struct mutex lock; 301 302 /** 303 * @in_progress: True if a reset is in progress. 304 * 305 * Set to true in panthor_sched_pre_reset() and back to false in 306 * panthor_sched_post_reset(). 307 */ 308 atomic_t in_progress; 309 310 /** 311 * @stopped_groups: List containing all groups that were stopped 312 * before a reset. 313 * 314 * Insert panthor_group::run_node in the pre_reset path. 315 */ 316 struct list_head stopped_groups; 317 } reset; 318 }; 319 320 /** 321 * struct panthor_syncobj_32b - 32-bit FW synchronization object 322 */ 323 struct panthor_syncobj_32b { 324 /** @seqno: Sequence number. */ 325 u32 seqno; 326 327 /** 328 * @status: Status. 329 * 330 * Not zero on failure. 331 */ 332 u32 status; 333 }; 334 335 /** 336 * struct panthor_syncobj_64b - 64-bit FW synchronization object 337 */ 338 struct panthor_syncobj_64b { 339 /** @seqno: Sequence number. */ 340 u64 seqno; 341 342 /** 343 * @status: Status. 344 * 345 * Not zero on failure. 346 */ 347 u32 status; 348 349 /** @pad: MBZ. */ 350 u32 pad; 351 }; 352 353 /** 354 * struct panthor_queue - Execution queue 355 */ 356 struct panthor_queue { 357 /** @scheduler: DRM scheduler used for this queue. */ 358 struct drm_gpu_scheduler scheduler; 359 360 /** @entity: DRM scheduling entity used for this queue. */ 361 struct drm_sched_entity entity; 362 363 /** 364 * @remaining_time: Time remaining before the job timeout expires. 365 * 366 * The job timeout is suspended when the queue is not scheduled by the 367 * FW. Every time we suspend the timer, we need to save the remaining 368 * time so we can restore it later on. 369 */ 370 unsigned long remaining_time; 371 372 /** @timeout_suspended: True if the job timeout was suspended. */ 373 bool timeout_suspended; 374 375 /** 376 * @doorbell_id: Doorbell assigned to this queue. 377 * 378 * Right now, all groups share the same doorbell, and the doorbell ID 379 * is assigned to group_slot + 1 when the group is assigned a slot. But 380 * we might decide to provide fine grained doorbell assignment at some 381 * point, so don't have to wake up all queues in a group every time one 382 * of them is updated. 383 */ 384 u8 doorbell_id; 385 386 /** 387 * @priority: Priority of the queue inside the group. 388 * 389 * Must be less than 16 (Only 4 bits available). 390 */ 391 u8 priority; 392 #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) 393 394 /** @ringbuf: Command stream ring-buffer. */ 395 struct panthor_kernel_bo *ringbuf; 396 397 /** @iface: Firmware interface. */ 398 struct { 399 /** @mem: FW memory allocated for this interface. */ 400 struct panthor_kernel_bo *mem; 401 402 /** @input: Input interface. */ 403 struct panthor_fw_ringbuf_input_iface *input; 404 405 /** @output: Output interface. */ 406 const struct panthor_fw_ringbuf_output_iface *output; 407 408 /** @input_fw_va: FW virtual address of the input interface buffer. */ 409 u32 input_fw_va; 410 411 /** @output_fw_va: FW virtual address of the output interface buffer. */ 412 u32 output_fw_va; 413 } iface; 414 415 /** 416 * @syncwait: Stores information about the synchronization object this 417 * queue is waiting on. 418 */ 419 struct { 420 /** @gpu_va: GPU address of the synchronization object. */ 421 u64 gpu_va; 422 423 /** @ref: Reference value to compare against. */ 424 u64 ref; 425 426 /** @gt: True if this is a greater-than test. */ 427 bool gt; 428 429 /** @sync64: True if this is a 64-bit sync object. */ 430 bool sync64; 431 432 /** @bo: Buffer object holding the synchronization object. */ 433 struct drm_gem_object *obj; 434 435 /** @offset: Offset of the synchronization object inside @bo. */ 436 u64 offset; 437 438 /** 439 * @kmap: Kernel mapping of the buffer object holding the 440 * synchronization object. 441 */ 442 void *kmap; 443 } syncwait; 444 445 /** @fence_ctx: Fence context fields. */ 446 struct { 447 /** @lock: Used to protect access to all fences allocated by this context. */ 448 spinlock_t lock; 449 450 /** 451 * @id: Fence context ID. 452 * 453 * Allocated with dma_fence_context_alloc(). 454 */ 455 u64 id; 456 457 /** @seqno: Sequence number of the last initialized fence. */ 458 atomic64_t seqno; 459 460 /** 461 * @last_fence: Fence of the last submitted job. 462 * 463 * We return this fence when we get an empty command stream. 464 * This way, we are guaranteed that all earlier jobs have completed 465 * when drm_sched_job::s_fence::finished without having to feed 466 * the CS ring buffer with a dummy job that only signals the fence. 467 */ 468 struct dma_fence *last_fence; 469 470 /** 471 * @in_flight_jobs: List containing all in-flight jobs. 472 * 473 * Used to keep track and signal panthor_job::done_fence when the 474 * synchronization object attached to the queue is signaled. 475 */ 476 struct list_head in_flight_jobs; 477 } fence_ctx; 478 479 /** @profiling: Job profiling data slots and access information. */ 480 struct { 481 /** @slots: Kernel BO holding the slots. */ 482 struct panthor_kernel_bo *slots; 483 484 /** @slot_count: Number of jobs ringbuffer can hold at once. */ 485 u32 slot_count; 486 487 /** @seqno: Index of the next available profiling information slot. */ 488 u32 seqno; 489 } profiling; 490 }; 491 492 /** 493 * enum panthor_group_state - Scheduling group state. 494 */ 495 enum panthor_group_state { 496 /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ 497 PANTHOR_CS_GROUP_CREATED, 498 499 /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ 500 PANTHOR_CS_GROUP_ACTIVE, 501 502 /** 503 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is 504 * inactive/suspended right now. 505 */ 506 PANTHOR_CS_GROUP_SUSPENDED, 507 508 /** 509 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. 510 * 511 * Can no longer be scheduled. The only allowed action is a destruction. 512 */ 513 PANTHOR_CS_GROUP_TERMINATED, 514 515 /** 516 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. 517 * 518 * The FW returned an inconsistent state. The group is flagged unusable 519 * and can no longer be scheduled. The only allowed action is a 520 * destruction. 521 * 522 * When that happens, we also schedule a FW reset, to start from a fresh 523 * state. 524 */ 525 PANTHOR_CS_GROUP_UNKNOWN_STATE, 526 }; 527 528 /** 529 * struct panthor_group - Scheduling group object 530 */ 531 struct panthor_group { 532 /** @refcount: Reference count */ 533 struct kref refcount; 534 535 /** @ptdev: Device. */ 536 struct panthor_device *ptdev; 537 538 /** @vm: VM bound to the group. */ 539 struct panthor_vm *vm; 540 541 /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ 542 u64 compute_core_mask; 543 544 /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ 545 u64 fragment_core_mask; 546 547 /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ 548 u64 tiler_core_mask; 549 550 /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ 551 u8 max_compute_cores; 552 553 /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ 554 u8 max_fragment_cores; 555 556 /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ 557 u8 max_tiler_cores; 558 559 /** @priority: Group priority (check panthor_csg_priority). */ 560 u8 priority; 561 562 /** @blocked_queues: Bitmask reflecting the blocked queues. */ 563 u32 blocked_queues; 564 565 /** @idle_queues: Bitmask reflecting the idle queues. */ 566 u32 idle_queues; 567 568 /** @fatal_lock: Lock used to protect access to fatal fields. */ 569 spinlock_t fatal_lock; 570 571 /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ 572 u32 fatal_queues; 573 574 /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ 575 atomic_t tiler_oom; 576 577 /** @queue_count: Number of queues in this group. */ 578 u32 queue_count; 579 580 /** @queues: Queues owned by this group. */ 581 struct panthor_queue *queues[MAX_CS_PER_CSG]; 582 583 /** 584 * @csg_id: ID of the FW group slot. 585 * 586 * -1 when the group is not scheduled/active. 587 */ 588 int csg_id; 589 590 /** 591 * @destroyed: True when the group has been destroyed. 592 * 593 * If a group is destroyed it becomes useless: no further jobs can be submitted 594 * to its queues. We simply wait for all references to be dropped so we can 595 * release the group object. 596 */ 597 bool destroyed; 598 599 /** 600 * @timedout: True when a timeout occurred on any of the queues owned by 601 * this group. 602 * 603 * Timeouts can be reported by drm_sched or by the FW. If a reset is required, 604 * and the group can't be suspended, this also leads to a timeout. In any case, 605 * any timeout situation is unrecoverable, and the group becomes useless. We 606 * simply wait for all references to be dropped so we can release the group 607 * object. 608 */ 609 bool timedout; 610 611 /** 612 * @innocent: True when the group becomes unusable because the group suspension 613 * failed during a reset. 614 * 615 * Sometimes the FW was put in a bad state by other groups, causing the group 616 * suspension happening in the reset path to fail. In that case, we consider the 617 * group innocent. 618 */ 619 bool innocent; 620 621 /** 622 * @syncobjs: Pool of per-queue synchronization objects. 623 * 624 * One sync object per queue. The position of the sync object is 625 * determined by the queue index. 626 */ 627 struct panthor_kernel_bo *syncobjs; 628 629 /** @fdinfo: Per-file info exposed through /proc/<process>/fdinfo */ 630 struct { 631 /** @data: Total sampled values for jobs in queues from this group. */ 632 struct panthor_gpu_usage data; 633 634 /** 635 * @fdinfo.lock: Spinlock to govern concurrent access from drm file's fdinfo 636 * callback and job post-completion processing function 637 */ 638 spinlock_t lock; 639 640 /** @fdinfo.kbo_sizes: Aggregate size of private kernel BO's held by the group. */ 641 size_t kbo_sizes; 642 } fdinfo; 643 644 /** @state: Group state. */ 645 enum panthor_group_state state; 646 647 /** 648 * @suspend_buf: Suspend buffer. 649 * 650 * Stores the state of the group and its queues when a group is suspended. 651 * Used at resume time to restore the group in its previous state. 652 * 653 * The size of the suspend buffer is exposed through the FW interface. 654 */ 655 struct panthor_kernel_bo *suspend_buf; 656 657 /** 658 * @protm_suspend_buf: Protection mode suspend buffer. 659 * 660 * Stores the state of the group and its queues when a group that's in 661 * protection mode is suspended. 662 * 663 * Used at resume time to restore the group in its previous state. 664 * 665 * The size of the protection mode suspend buffer is exposed through the 666 * FW interface. 667 */ 668 struct panthor_kernel_bo *protm_suspend_buf; 669 670 /** @sync_upd_work: Work used to check/signal job fences. */ 671 struct work_struct sync_upd_work; 672 673 /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ 674 struct work_struct tiler_oom_work; 675 676 /** @term_work: Work used to finish the group termination procedure. */ 677 struct work_struct term_work; 678 679 /** 680 * @release_work: Work used to release group resources. 681 * 682 * We need to postpone the group release to avoid a deadlock when 683 * the last ref is released in the tick work. 684 */ 685 struct work_struct release_work; 686 687 /** 688 * @run_node: Node used to insert the group in the 689 * panthor_group::groups::{runnable,idle} and 690 * panthor_group::reset.stopped_groups lists. 691 */ 692 struct list_head run_node; 693 694 /** 695 * @wait_node: Node used to insert the group in the 696 * panthor_group::groups::waiting list. 697 */ 698 struct list_head wait_node; 699 }; 700 701 struct panthor_job_profiling_data { 702 struct { 703 u64 before; 704 u64 after; 705 } cycles; 706 707 struct { 708 u64 before; 709 u64 after; 710 } time; 711 }; 712 713 /** 714 * group_queue_work() - Queue a group work 715 * @group: Group to queue the work for. 716 * @wname: Work name. 717 * 718 * Grabs a ref and queue a work item to the scheduler workqueue. If 719 * the work was already queued, we release the reference we grabbed. 720 * 721 * Work callbacks must release the reference we grabbed here. 722 */ 723 #define group_queue_work(group, wname) \ 724 do { \ 725 group_get(group); \ 726 if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ 727 group_put(group); \ 728 } while (0) 729 730 /** 731 * sched_queue_work() - Queue a scheduler work. 732 * @sched: Scheduler object. 733 * @wname: Work name. 734 * 735 * Conditionally queues a scheduler work if no reset is pending/in-progress. 736 */ 737 #define sched_queue_work(sched, wname) \ 738 do { \ 739 if (!atomic_read(&(sched)->reset.in_progress) && \ 740 !panthor_device_reset_is_pending((sched)->ptdev)) \ 741 queue_work((sched)->wq, &(sched)->wname ## _work); \ 742 } while (0) 743 744 /** 745 * sched_queue_delayed_work() - Queue a scheduler delayed work. 746 * @sched: Scheduler object. 747 * @wname: Work name. 748 * @delay: Work delay in jiffies. 749 * 750 * Conditionally queues a scheduler delayed work if no reset is 751 * pending/in-progress. 752 */ 753 #define sched_queue_delayed_work(sched, wname, delay) \ 754 do { \ 755 if (!atomic_read(&sched->reset.in_progress) && \ 756 !panthor_device_reset_is_pending((sched)->ptdev)) \ 757 mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ 758 } while (0) 759 760 /* 761 * We currently set the maximum of groups per file to an arbitrary low value. 762 * But this can be updated if we need more. 763 */ 764 #define MAX_GROUPS_PER_POOL 128 765 766 /** 767 * struct panthor_group_pool - Group pool 768 * 769 * Each file get assigned a group pool. 770 */ 771 struct panthor_group_pool { 772 /** @xa: Xarray used to manage group handles. */ 773 struct xarray xa; 774 }; 775 776 /** 777 * struct panthor_job - Used to manage GPU job 778 */ 779 struct panthor_job { 780 /** @base: Inherit from drm_sched_job. */ 781 struct drm_sched_job base; 782 783 /** @refcount: Reference count. */ 784 struct kref refcount; 785 786 /** @group: Group of the queue this job will be pushed to. */ 787 struct panthor_group *group; 788 789 /** @queue_idx: Index of the queue inside @group. */ 790 u32 queue_idx; 791 792 /** @call_info: Information about the userspace command stream call. */ 793 struct { 794 /** @start: GPU address of the userspace command stream. */ 795 u64 start; 796 797 /** @size: Size of the userspace command stream. */ 798 u32 size; 799 800 /** 801 * @latest_flush: Flush ID at the time the userspace command 802 * stream was built. 803 * 804 * Needed for the flush reduction mechanism. 805 */ 806 u32 latest_flush; 807 } call_info; 808 809 /** @ringbuf: Position of this job is in the ring buffer. */ 810 struct { 811 /** @start: Start offset. */ 812 u64 start; 813 814 /** @end: End offset. */ 815 u64 end; 816 } ringbuf; 817 818 /** 819 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs 820 * list. 821 */ 822 struct list_head node; 823 824 /** @done_fence: Fence signaled when the job is finished or cancelled. */ 825 struct dma_fence *done_fence; 826 827 /** @profiling: Job profiling information. */ 828 struct { 829 /** @mask: Current device job profiling enablement bitmask. */ 830 u32 mask; 831 832 /** @slot: Job index in the profiling slots BO. */ 833 u32 slot; 834 } profiling; 835 }; 836 837 static void 838 panthor_queue_put_syncwait_obj(struct panthor_queue *queue) 839 { 840 if (queue->syncwait.kmap) { 841 struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); 842 843 drm_gem_vunmap_unlocked(queue->syncwait.obj, &map); 844 queue->syncwait.kmap = NULL; 845 } 846 847 drm_gem_object_put(queue->syncwait.obj); 848 queue->syncwait.obj = NULL; 849 } 850 851 static void * 852 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) 853 { 854 struct panthor_device *ptdev = group->ptdev; 855 struct panthor_gem_object *bo; 856 struct iosys_map map; 857 int ret; 858 859 if (queue->syncwait.kmap) 860 return queue->syncwait.kmap + queue->syncwait.offset; 861 862 bo = panthor_vm_get_bo_for_va(group->vm, 863 queue->syncwait.gpu_va, 864 &queue->syncwait.offset); 865 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) 866 goto err_put_syncwait_obj; 867 868 queue->syncwait.obj = &bo->base.base; 869 ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map); 870 if (drm_WARN_ON(&ptdev->base, ret)) 871 goto err_put_syncwait_obj; 872 873 queue->syncwait.kmap = map.vaddr; 874 if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) 875 goto err_put_syncwait_obj; 876 877 return queue->syncwait.kmap + queue->syncwait.offset; 878 879 err_put_syncwait_obj: 880 panthor_queue_put_syncwait_obj(queue); 881 return NULL; 882 } 883 884 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) 885 { 886 if (IS_ERR_OR_NULL(queue)) 887 return; 888 889 if (queue->entity.fence_context) 890 drm_sched_entity_destroy(&queue->entity); 891 892 if (queue->scheduler.ops) 893 drm_sched_fini(&queue->scheduler); 894 895 panthor_queue_put_syncwait_obj(queue); 896 897 panthor_kernel_bo_destroy(queue->ringbuf); 898 panthor_kernel_bo_destroy(queue->iface.mem); 899 panthor_kernel_bo_destroy(queue->profiling.slots); 900 901 /* Release the last_fence we were holding, if any. */ 902 dma_fence_put(queue->fence_ctx.last_fence); 903 904 kfree(queue); 905 } 906 907 static void group_release_work(struct work_struct *work) 908 { 909 struct panthor_group *group = container_of(work, 910 struct panthor_group, 911 release_work); 912 u32 i; 913 914 for (i = 0; i < group->queue_count; i++) 915 group_free_queue(group, group->queues[i]); 916 917 panthor_kernel_bo_destroy(group->suspend_buf); 918 panthor_kernel_bo_destroy(group->protm_suspend_buf); 919 panthor_kernel_bo_destroy(group->syncobjs); 920 921 panthor_vm_put(group->vm); 922 kfree(group); 923 } 924 925 static void group_release(struct kref *kref) 926 { 927 struct panthor_group *group = container_of(kref, 928 struct panthor_group, 929 refcount); 930 struct panthor_device *ptdev = group->ptdev; 931 932 drm_WARN_ON(&ptdev->base, group->csg_id >= 0); 933 drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); 934 drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); 935 936 queue_work(panthor_cleanup_wq, &group->release_work); 937 } 938 939 static void group_put(struct panthor_group *group) 940 { 941 if (group) 942 kref_put(&group->refcount, group_release); 943 } 944 945 static struct panthor_group * 946 group_get(struct panthor_group *group) 947 { 948 if (group) 949 kref_get(&group->refcount); 950 951 return group; 952 } 953 954 /** 955 * group_bind_locked() - Bind a group to a group slot 956 * @group: Group. 957 * @csg_id: Slot. 958 * 959 * Return: 0 on success, a negative error code otherwise. 960 */ 961 static int 962 group_bind_locked(struct panthor_group *group, u32 csg_id) 963 { 964 struct panthor_device *ptdev = group->ptdev; 965 struct panthor_csg_slot *csg_slot; 966 int ret; 967 968 lockdep_assert_held(&ptdev->scheduler->lock); 969 970 if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || 971 ptdev->scheduler->csg_slots[csg_id].group)) 972 return -EINVAL; 973 974 ret = panthor_vm_active(group->vm); 975 if (ret) 976 return ret; 977 978 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 979 group_get(group); 980 group->csg_id = csg_id; 981 982 /* Dummy doorbell allocation: doorbell is assigned to the group and 983 * all queues use the same doorbell. 984 * 985 * TODO: Implement LRU-based doorbell assignment, so the most often 986 * updated queues get their own doorbell, thus avoiding useless checks 987 * on queues belonging to the same group that are rarely updated. 988 */ 989 for (u32 i = 0; i < group->queue_count; i++) 990 group->queues[i]->doorbell_id = csg_id + 1; 991 992 csg_slot->group = group; 993 994 return 0; 995 } 996 997 /** 998 * group_unbind_locked() - Unbind a group from a slot. 999 * @group: Group to unbind. 1000 * 1001 * Return: 0 on success, a negative error code otherwise. 1002 */ 1003 static int 1004 group_unbind_locked(struct panthor_group *group) 1005 { 1006 struct panthor_device *ptdev = group->ptdev; 1007 struct panthor_csg_slot *slot; 1008 1009 lockdep_assert_held(&ptdev->scheduler->lock); 1010 1011 if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) 1012 return -EINVAL; 1013 1014 if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) 1015 return -EINVAL; 1016 1017 slot = &ptdev->scheduler->csg_slots[group->csg_id]; 1018 panthor_vm_idle(group->vm); 1019 group->csg_id = -1; 1020 1021 /* Tiler OOM events will be re-issued next time the group is scheduled. */ 1022 atomic_set(&group->tiler_oom, 0); 1023 cancel_work(&group->tiler_oom_work); 1024 1025 for (u32 i = 0; i < group->queue_count; i++) 1026 group->queues[i]->doorbell_id = -1; 1027 1028 slot->group = NULL; 1029 1030 group_put(group); 1031 return 0; 1032 } 1033 1034 /** 1035 * cs_slot_prog_locked() - Program a queue slot 1036 * @ptdev: Device. 1037 * @csg_id: Group slot ID. 1038 * @cs_id: Queue slot ID. 1039 * 1040 * Program a queue slot with the queue information so things can start being 1041 * executed on this queue. 1042 * 1043 * The group slot must have a group bound to it already (group_bind_locked()). 1044 */ 1045 static void 1046 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1047 { 1048 struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; 1049 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1050 1051 lockdep_assert_held(&ptdev->scheduler->lock); 1052 1053 queue->iface.input->extract = queue->iface.output->extract; 1054 drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); 1055 1056 cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); 1057 cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 1058 cs_iface->input->ringbuf_input = queue->iface.input_fw_va; 1059 cs_iface->input->ringbuf_output = queue->iface.output_fw_va; 1060 cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | 1061 CS_CONFIG_DOORBELL(queue->doorbell_id); 1062 cs_iface->input->ack_irq_mask = ~0; 1063 panthor_fw_update_reqs(cs_iface, req, 1064 CS_IDLE_SYNC_WAIT | 1065 CS_IDLE_EMPTY | 1066 CS_STATE_START | 1067 CS_EXTRACT_EVENT, 1068 CS_IDLE_SYNC_WAIT | 1069 CS_IDLE_EMPTY | 1070 CS_STATE_MASK | 1071 CS_EXTRACT_EVENT); 1072 if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { 1073 drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); 1074 queue->timeout_suspended = false; 1075 } 1076 } 1077 1078 /** 1079 * cs_slot_reset_locked() - Reset a queue slot 1080 * @ptdev: Device. 1081 * @csg_id: Group slot. 1082 * @cs_id: Queue slot. 1083 * 1084 * Change the queue slot state to STOP and suspend the queue timeout if 1085 * the queue is not blocked. 1086 * 1087 * The group slot must have a group bound to it (group_bind_locked()). 1088 */ 1089 static int 1090 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1091 { 1092 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1093 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1094 struct panthor_queue *queue = group->queues[cs_id]; 1095 1096 lockdep_assert_held(&ptdev->scheduler->lock); 1097 1098 panthor_fw_update_reqs(cs_iface, req, 1099 CS_STATE_STOP, 1100 CS_STATE_MASK); 1101 1102 /* If the queue is blocked, we want to keep the timeout running, so 1103 * we can detect unbounded waits and kill the group when that happens. 1104 */ 1105 if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { 1106 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 1107 queue->timeout_suspended = true; 1108 WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); 1109 } 1110 1111 return 0; 1112 } 1113 1114 /** 1115 * csg_slot_sync_priority_locked() - Synchronize the group slot priority 1116 * @ptdev: Device. 1117 * @csg_id: Group slot ID. 1118 * 1119 * Group slot priority update happens asynchronously. When we receive a 1120 * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can 1121 * reflect it to our panthor_csg_slot object. 1122 */ 1123 static void 1124 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) 1125 { 1126 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1127 struct panthor_fw_csg_iface *csg_iface; 1128 1129 lockdep_assert_held(&ptdev->scheduler->lock); 1130 1131 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1132 csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; 1133 } 1134 1135 /** 1136 * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority 1137 * @ptdev: Device. 1138 * @csg_id: Group slot. 1139 * @cs_id: Queue slot. 1140 * 1141 * Queue state is updated on group suspend or STATUS_UPDATE event. 1142 */ 1143 static void 1144 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) 1145 { 1146 struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; 1147 struct panthor_queue *queue = group->queues[cs_id]; 1148 struct panthor_fw_cs_iface *cs_iface = 1149 panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); 1150 1151 u32 status_wait_cond; 1152 1153 switch (cs_iface->output->status_blocked_reason) { 1154 case CS_STATUS_BLOCKED_REASON_UNBLOCKED: 1155 if (queue->iface.input->insert == queue->iface.output->extract && 1156 cs_iface->output->status_scoreboards == 0) 1157 group->idle_queues |= BIT(cs_id); 1158 break; 1159 1160 case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: 1161 if (list_empty(&group->wait_node)) { 1162 list_move_tail(&group->wait_node, 1163 &group->ptdev->scheduler->groups.waiting); 1164 } 1165 1166 /* The queue is only blocked if there's no deferred operation 1167 * pending, which can be checked through the scoreboard status. 1168 */ 1169 if (!cs_iface->output->status_scoreboards) 1170 group->blocked_queues |= BIT(cs_id); 1171 1172 queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; 1173 queue->syncwait.ref = cs_iface->output->status_wait_sync_value; 1174 status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; 1175 queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; 1176 if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { 1177 u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; 1178 1179 queue->syncwait.sync64 = true; 1180 queue->syncwait.ref |= sync_val_hi << 32; 1181 } else { 1182 queue->syncwait.sync64 = false; 1183 } 1184 break; 1185 1186 default: 1187 /* Other reasons are not blocking. Consider the queue as runnable 1188 * in those cases. 1189 */ 1190 break; 1191 } 1192 } 1193 1194 static void 1195 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) 1196 { 1197 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1198 struct panthor_group *group = csg_slot->group; 1199 u32 i; 1200 1201 lockdep_assert_held(&ptdev->scheduler->lock); 1202 1203 group->idle_queues = 0; 1204 group->blocked_queues = 0; 1205 1206 for (i = 0; i < group->queue_count; i++) { 1207 if (group->queues[i]) 1208 cs_slot_sync_queue_state_locked(ptdev, csg_id, i); 1209 } 1210 } 1211 1212 static void 1213 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) 1214 { 1215 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1216 struct panthor_fw_csg_iface *csg_iface; 1217 struct panthor_group *group; 1218 enum panthor_group_state new_state, old_state; 1219 u32 csg_state; 1220 1221 lockdep_assert_held(&ptdev->scheduler->lock); 1222 1223 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1224 group = csg_slot->group; 1225 1226 if (!group) 1227 return; 1228 1229 old_state = group->state; 1230 csg_state = csg_iface->output->ack & CSG_STATE_MASK; 1231 switch (csg_state) { 1232 case CSG_STATE_START: 1233 case CSG_STATE_RESUME: 1234 new_state = PANTHOR_CS_GROUP_ACTIVE; 1235 break; 1236 case CSG_STATE_TERMINATE: 1237 new_state = PANTHOR_CS_GROUP_TERMINATED; 1238 break; 1239 case CSG_STATE_SUSPEND: 1240 new_state = PANTHOR_CS_GROUP_SUSPENDED; 1241 break; 1242 default: 1243 /* The unknown state might be caused by a FW state corruption, 1244 * which means the group metadata can't be trusted anymore, and 1245 * the SUSPEND operation might propagate the corruption to the 1246 * suspend buffers. Flag the group state as unknown to make 1247 * sure it's unusable after that point. 1248 */ 1249 drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", 1250 csg_id, csg_state); 1251 new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; 1252 break; 1253 } 1254 1255 if (old_state == new_state) 1256 return; 1257 1258 /* The unknown state might be caused by a FW issue, reset the FW to 1259 * take a fresh start. 1260 */ 1261 if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) 1262 panthor_device_schedule_reset(ptdev); 1263 1264 if (new_state == PANTHOR_CS_GROUP_SUSPENDED) 1265 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1266 1267 if (old_state == PANTHOR_CS_GROUP_ACTIVE) { 1268 u32 i; 1269 1270 /* Reset the queue slots so we start from a clean 1271 * state when starting/resuming a new group on this 1272 * CSG slot. No wait needed here, and no ringbell 1273 * either, since the CS slot will only be re-used 1274 * on the next CSG start operation. 1275 */ 1276 for (i = 0; i < group->queue_count; i++) { 1277 if (group->queues[i]) 1278 cs_slot_reset_locked(ptdev, csg_id, i); 1279 } 1280 } 1281 1282 group->state = new_state; 1283 } 1284 1285 static int 1286 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) 1287 { 1288 struct panthor_fw_csg_iface *csg_iface; 1289 struct panthor_csg_slot *csg_slot; 1290 struct panthor_group *group; 1291 u32 queue_mask = 0, i; 1292 1293 lockdep_assert_held(&ptdev->scheduler->lock); 1294 1295 if (priority > MAX_CSG_PRIO) 1296 return -EINVAL; 1297 1298 if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) 1299 return -EINVAL; 1300 1301 csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1302 group = csg_slot->group; 1303 if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) 1304 return 0; 1305 1306 csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); 1307 1308 for (i = 0; i < group->queue_count; i++) { 1309 if (group->queues[i]) { 1310 cs_slot_prog_locked(ptdev, csg_id, i); 1311 queue_mask |= BIT(i); 1312 } 1313 } 1314 1315 csg_iface->input->allow_compute = group->compute_core_mask; 1316 csg_iface->input->allow_fragment = group->fragment_core_mask; 1317 csg_iface->input->allow_other = group->tiler_core_mask; 1318 csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | 1319 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | 1320 CSG_EP_REQ_TILER(group->max_tiler_cores) | 1321 CSG_EP_REQ_PRIORITY(priority); 1322 csg_iface->input->config = panthor_vm_as(group->vm); 1323 1324 if (group->suspend_buf) 1325 csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); 1326 else 1327 csg_iface->input->suspend_buf = 0; 1328 1329 if (group->protm_suspend_buf) { 1330 csg_iface->input->protm_suspend_buf = 1331 panthor_kernel_bo_gpuva(group->protm_suspend_buf); 1332 } else { 1333 csg_iface->input->protm_suspend_buf = 0; 1334 } 1335 1336 csg_iface->input->ack_irq_mask = ~0; 1337 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); 1338 return 0; 1339 } 1340 1341 static void 1342 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, 1343 u32 csg_id, u32 cs_id) 1344 { 1345 struct panthor_scheduler *sched = ptdev->scheduler; 1346 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1347 struct panthor_group *group = csg_slot->group; 1348 struct panthor_fw_cs_iface *cs_iface; 1349 u32 fatal; 1350 u64 info; 1351 1352 lockdep_assert_held(&sched->lock); 1353 1354 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1355 fatal = cs_iface->output->fatal; 1356 info = cs_iface->output->fatal_info; 1357 1358 if (group) 1359 group->fatal_queues |= BIT(cs_id); 1360 1361 if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { 1362 /* If this exception is unrecoverable, queue a reset, and make 1363 * sure we stop scheduling groups until the reset has happened. 1364 */ 1365 panthor_device_schedule_reset(ptdev); 1366 cancel_delayed_work(&sched->tick_work); 1367 } else { 1368 sched_queue_delayed_work(sched, tick, 0); 1369 } 1370 1371 drm_warn(&ptdev->base, 1372 "CSG slot %d CS slot: %d\n" 1373 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" 1374 "CS_FATAL.EXCEPTION_DATA: 0x%x\n" 1375 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", 1376 csg_id, cs_id, 1377 (unsigned int)CS_EXCEPTION_TYPE(fatal), 1378 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), 1379 (unsigned int)CS_EXCEPTION_DATA(fatal), 1380 info); 1381 } 1382 1383 static void 1384 cs_slot_process_fault_event_locked(struct panthor_device *ptdev, 1385 u32 csg_id, u32 cs_id) 1386 { 1387 struct panthor_scheduler *sched = ptdev->scheduler; 1388 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1389 struct panthor_group *group = csg_slot->group; 1390 struct panthor_queue *queue = group && cs_id < group->queue_count ? 1391 group->queues[cs_id] : NULL; 1392 struct panthor_fw_cs_iface *cs_iface; 1393 u32 fault; 1394 u64 info; 1395 1396 lockdep_assert_held(&sched->lock); 1397 1398 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1399 fault = cs_iface->output->fault; 1400 info = cs_iface->output->fault_info; 1401 1402 if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { 1403 u64 cs_extract = queue->iface.output->extract; 1404 struct panthor_job *job; 1405 1406 spin_lock(&queue->fence_ctx.lock); 1407 list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { 1408 if (cs_extract >= job->ringbuf.end) 1409 continue; 1410 1411 if (cs_extract < job->ringbuf.start) 1412 break; 1413 1414 dma_fence_set_error(job->done_fence, -EINVAL); 1415 } 1416 spin_unlock(&queue->fence_ctx.lock); 1417 } 1418 1419 drm_warn(&ptdev->base, 1420 "CSG slot %d CS slot: %d\n" 1421 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" 1422 "CS_FAULT.EXCEPTION_DATA: 0x%x\n" 1423 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", 1424 csg_id, cs_id, 1425 (unsigned int)CS_EXCEPTION_TYPE(fault), 1426 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), 1427 (unsigned int)CS_EXCEPTION_DATA(fault), 1428 info); 1429 } 1430 1431 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) 1432 { 1433 struct panthor_device *ptdev = group->ptdev; 1434 struct panthor_scheduler *sched = ptdev->scheduler; 1435 u32 renderpasses_in_flight, pending_frag_count; 1436 struct panthor_heap_pool *heaps = NULL; 1437 u64 heap_address, new_chunk_va = 0; 1438 u32 vt_start, vt_end, frag_end; 1439 int ret, csg_id; 1440 1441 mutex_lock(&sched->lock); 1442 csg_id = group->csg_id; 1443 if (csg_id >= 0) { 1444 struct panthor_fw_cs_iface *cs_iface; 1445 1446 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1447 heaps = panthor_vm_get_heap_pool(group->vm, false); 1448 heap_address = cs_iface->output->heap_address; 1449 vt_start = cs_iface->output->heap_vt_start; 1450 vt_end = cs_iface->output->heap_vt_end; 1451 frag_end = cs_iface->output->heap_frag_end; 1452 renderpasses_in_flight = vt_start - frag_end; 1453 pending_frag_count = vt_end - frag_end; 1454 } 1455 mutex_unlock(&sched->lock); 1456 1457 /* The group got scheduled out, we stop here. We will get a new tiler OOM event 1458 * when it's scheduled again. 1459 */ 1460 if (unlikely(csg_id < 0)) 1461 return 0; 1462 1463 if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { 1464 ret = -EINVAL; 1465 } else { 1466 /* We do the allocation without holding the scheduler lock to avoid 1467 * blocking the scheduling. 1468 */ 1469 ret = panthor_heap_grow(heaps, heap_address, 1470 renderpasses_in_flight, 1471 pending_frag_count, &new_chunk_va); 1472 } 1473 1474 /* If the heap context doesn't have memory for us, we want to let the 1475 * FW try to reclaim memory by waiting for fragment jobs to land or by 1476 * executing the tiler OOM exception handler, which is supposed to 1477 * implement incremental rendering. 1478 */ 1479 if (ret && ret != -ENOMEM) { 1480 drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); 1481 group->fatal_queues |= BIT(cs_id); 1482 sched_queue_delayed_work(sched, tick, 0); 1483 goto out_put_heap_pool; 1484 } 1485 1486 mutex_lock(&sched->lock); 1487 csg_id = group->csg_id; 1488 if (csg_id >= 0) { 1489 struct panthor_fw_csg_iface *csg_iface; 1490 struct panthor_fw_cs_iface *cs_iface; 1491 1492 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1493 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1494 1495 cs_iface->input->heap_start = new_chunk_va; 1496 cs_iface->input->heap_end = new_chunk_va; 1497 panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); 1498 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); 1499 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1500 } 1501 mutex_unlock(&sched->lock); 1502 1503 /* We allocated a chunck, but couldn't link it to the heap 1504 * context because the group was scheduled out while we were 1505 * allocating memory. We need to return this chunk to the heap. 1506 */ 1507 if (unlikely(csg_id < 0 && new_chunk_va)) 1508 panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); 1509 1510 ret = 0; 1511 1512 out_put_heap_pool: 1513 panthor_heap_pool_put(heaps); 1514 return ret; 1515 } 1516 1517 static void group_tiler_oom_work(struct work_struct *work) 1518 { 1519 struct panthor_group *group = 1520 container_of(work, struct panthor_group, tiler_oom_work); 1521 u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); 1522 1523 while (tiler_oom) { 1524 u32 cs_id = ffs(tiler_oom) - 1; 1525 1526 group_process_tiler_oom(group, cs_id); 1527 tiler_oom &= ~BIT(cs_id); 1528 } 1529 1530 group_put(group); 1531 } 1532 1533 static void 1534 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, 1535 u32 csg_id, u32 cs_id) 1536 { 1537 struct panthor_scheduler *sched = ptdev->scheduler; 1538 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1539 struct panthor_group *group = csg_slot->group; 1540 1541 lockdep_assert_held(&sched->lock); 1542 1543 if (drm_WARN_ON(&ptdev->base, !group)) 1544 return; 1545 1546 atomic_or(BIT(cs_id), &group->tiler_oom); 1547 1548 /* We don't use group_queue_work() here because we want to queue the 1549 * work item to the heap_alloc_wq. 1550 */ 1551 group_get(group); 1552 if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) 1553 group_put(group); 1554 } 1555 1556 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, 1557 u32 csg_id, u32 cs_id) 1558 { 1559 struct panthor_fw_cs_iface *cs_iface; 1560 u32 req, ack, events; 1561 1562 lockdep_assert_held(&ptdev->scheduler->lock); 1563 1564 cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); 1565 req = cs_iface->input->req; 1566 ack = cs_iface->output->ack; 1567 events = (req ^ ack) & CS_EVT_MASK; 1568 1569 if (events & CS_FATAL) 1570 cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); 1571 1572 if (events & CS_FAULT) 1573 cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); 1574 1575 if (events & CS_TILER_OOM) 1576 cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); 1577 1578 /* We don't acknowledge the TILER_OOM event since its handling is 1579 * deferred to a separate work. 1580 */ 1581 panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); 1582 1583 return (events & (CS_FAULT | CS_TILER_OOM)) != 0; 1584 } 1585 1586 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) 1587 { 1588 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1589 struct panthor_fw_csg_iface *csg_iface; 1590 1591 lockdep_assert_held(&ptdev->scheduler->lock); 1592 1593 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1594 csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; 1595 } 1596 1597 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) 1598 { 1599 struct panthor_scheduler *sched = ptdev->scheduler; 1600 1601 lockdep_assert_held(&sched->lock); 1602 1603 sched->might_have_idle_groups = true; 1604 1605 /* Schedule a tick so we can evict idle groups and schedule non-idle 1606 * ones. This will also update runtime PM and devfreq busy/idle states, 1607 * so the device can lower its frequency or get suspended. 1608 */ 1609 sched_queue_delayed_work(sched, tick, 0); 1610 } 1611 1612 static void csg_slot_sync_update_locked(struct panthor_device *ptdev, 1613 u32 csg_id) 1614 { 1615 struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; 1616 struct panthor_group *group = csg_slot->group; 1617 1618 lockdep_assert_held(&ptdev->scheduler->lock); 1619 1620 if (group) 1621 group_queue_work(group, sync_upd); 1622 1623 sched_queue_work(ptdev->scheduler, sync_upd); 1624 } 1625 1626 static void 1627 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) 1628 { 1629 struct panthor_scheduler *sched = ptdev->scheduler; 1630 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 1631 struct panthor_group *group = csg_slot->group; 1632 1633 lockdep_assert_held(&sched->lock); 1634 1635 drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); 1636 1637 group = csg_slot->group; 1638 if (!drm_WARN_ON(&ptdev->base, !group)) 1639 group->timedout = true; 1640 1641 sched_queue_delayed_work(sched, tick, 0); 1642 } 1643 1644 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) 1645 { 1646 u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; 1647 struct panthor_fw_csg_iface *csg_iface; 1648 u32 ring_cs_db_mask = 0; 1649 1650 lockdep_assert_held(&ptdev->scheduler->lock); 1651 1652 if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1653 return; 1654 1655 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1656 req = READ_ONCE(csg_iface->input->req); 1657 ack = READ_ONCE(csg_iface->output->ack); 1658 cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); 1659 cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); 1660 csg_events = (req ^ ack) & CSG_EVT_MASK; 1661 1662 /* There may not be any pending CSG/CS interrupts to process */ 1663 if (req == ack && cs_irq_req == cs_irq_ack) 1664 return; 1665 1666 /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before 1667 * examining the CS_ACK & CS_REQ bits. This would ensure that Host 1668 * doesn't miss an interrupt for the CS in the race scenario where 1669 * whilst Host is servicing an interrupt for the CS, firmware sends 1670 * another interrupt for that CS. 1671 */ 1672 csg_iface->input->cs_irq_ack = cs_irq_req; 1673 1674 panthor_fw_update_reqs(csg_iface, req, ack, 1675 CSG_SYNC_UPDATE | 1676 CSG_IDLE | 1677 CSG_PROGRESS_TIMER_EVENT); 1678 1679 if (csg_events & CSG_IDLE) 1680 csg_slot_process_idle_event_locked(ptdev, csg_id); 1681 1682 if (csg_events & CSG_PROGRESS_TIMER_EVENT) 1683 csg_slot_process_progress_timer_event_locked(ptdev, csg_id); 1684 1685 cs_irqs = cs_irq_req ^ cs_irq_ack; 1686 while (cs_irqs) { 1687 u32 cs_id = ffs(cs_irqs) - 1; 1688 1689 if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) 1690 ring_cs_db_mask |= BIT(cs_id); 1691 1692 cs_irqs &= ~BIT(cs_id); 1693 } 1694 1695 if (csg_events & CSG_SYNC_UPDATE) 1696 csg_slot_sync_update_locked(ptdev, csg_id); 1697 1698 if (ring_cs_db_mask) 1699 panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); 1700 1701 panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); 1702 } 1703 1704 static void sched_process_idle_event_locked(struct panthor_device *ptdev) 1705 { 1706 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1707 1708 lockdep_assert_held(&ptdev->scheduler->lock); 1709 1710 /* Acknowledge the idle event and schedule a tick. */ 1711 panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); 1712 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 1713 } 1714 1715 /** 1716 * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ 1717 * @ptdev: Device. 1718 */ 1719 static void sched_process_global_irq_locked(struct panthor_device *ptdev) 1720 { 1721 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 1722 u32 req, ack, evts; 1723 1724 lockdep_assert_held(&ptdev->scheduler->lock); 1725 1726 req = READ_ONCE(glb_iface->input->req); 1727 ack = READ_ONCE(glb_iface->output->ack); 1728 evts = (req ^ ack) & GLB_EVT_MASK; 1729 1730 if (evts & GLB_IDLE) 1731 sched_process_idle_event_locked(ptdev); 1732 } 1733 1734 static void process_fw_events_work(struct work_struct *work) 1735 { 1736 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 1737 fw_events_work); 1738 u32 events = atomic_xchg(&sched->fw_events, 0); 1739 struct panthor_device *ptdev = sched->ptdev; 1740 1741 mutex_lock(&sched->lock); 1742 1743 if (events & JOB_INT_GLOBAL_IF) { 1744 sched_process_global_irq_locked(ptdev); 1745 events &= ~JOB_INT_GLOBAL_IF; 1746 } 1747 1748 while (events) { 1749 u32 csg_id = ffs(events) - 1; 1750 1751 sched_process_csg_irq_locked(ptdev, csg_id); 1752 events &= ~BIT(csg_id); 1753 } 1754 1755 mutex_unlock(&sched->lock); 1756 } 1757 1758 /** 1759 * panthor_sched_report_fw_events() - Report FW events to the scheduler. 1760 */ 1761 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) 1762 { 1763 if (!ptdev->scheduler) 1764 return; 1765 1766 atomic_or(events, &ptdev->scheduler->fw_events); 1767 sched_queue_work(ptdev->scheduler, fw_events); 1768 } 1769 1770 static const char *fence_get_driver_name(struct dma_fence *fence) 1771 { 1772 return "panthor"; 1773 } 1774 1775 static const char *queue_fence_get_timeline_name(struct dma_fence *fence) 1776 { 1777 return "queue-fence"; 1778 } 1779 1780 static const struct dma_fence_ops panthor_queue_fence_ops = { 1781 .get_driver_name = fence_get_driver_name, 1782 .get_timeline_name = queue_fence_get_timeline_name, 1783 }; 1784 1785 struct panthor_csg_slots_upd_ctx { 1786 u32 update_mask; 1787 u32 timedout_mask; 1788 struct { 1789 u32 value; 1790 u32 mask; 1791 } requests[MAX_CSGS]; 1792 }; 1793 1794 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) 1795 { 1796 memset(ctx, 0, sizeof(*ctx)); 1797 } 1798 1799 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, 1800 struct panthor_csg_slots_upd_ctx *ctx, 1801 u32 csg_id, u32 value, u32 mask) 1802 { 1803 if (drm_WARN_ON(&ptdev->base, !mask) || 1804 drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) 1805 return; 1806 1807 ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); 1808 ctx->requests[csg_id].mask |= mask; 1809 ctx->update_mask |= BIT(csg_id); 1810 } 1811 1812 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, 1813 struct panthor_csg_slots_upd_ctx *ctx) 1814 { 1815 struct panthor_scheduler *sched = ptdev->scheduler; 1816 u32 update_slots = ctx->update_mask; 1817 1818 lockdep_assert_held(&sched->lock); 1819 1820 if (!ctx->update_mask) 1821 return 0; 1822 1823 while (update_slots) { 1824 struct panthor_fw_csg_iface *csg_iface; 1825 u32 csg_id = ffs(update_slots) - 1; 1826 1827 update_slots &= ~BIT(csg_id); 1828 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1829 panthor_fw_update_reqs(csg_iface, req, 1830 ctx->requests[csg_id].value, 1831 ctx->requests[csg_id].mask); 1832 } 1833 1834 panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); 1835 1836 update_slots = ctx->update_mask; 1837 while (update_slots) { 1838 struct panthor_fw_csg_iface *csg_iface; 1839 u32 csg_id = ffs(update_slots) - 1; 1840 u32 req_mask = ctx->requests[csg_id].mask, acked; 1841 int ret; 1842 1843 update_slots &= ~BIT(csg_id); 1844 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 1845 1846 ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); 1847 1848 if (acked & CSG_ENDPOINT_CONFIG) 1849 csg_slot_sync_priority_locked(ptdev, csg_id); 1850 1851 if (acked & CSG_STATE_MASK) 1852 csg_slot_sync_state_locked(ptdev, csg_id); 1853 1854 if (acked & CSG_STATUS_UPDATE) { 1855 csg_slot_sync_queues_state_locked(ptdev, csg_id); 1856 csg_slot_sync_idle_state_locked(ptdev, csg_id); 1857 } 1858 1859 if (ret && acked != req_mask && 1860 ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { 1861 drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); 1862 ctx->timedout_mask |= BIT(csg_id); 1863 } 1864 } 1865 1866 if (ctx->timedout_mask) 1867 return -ETIMEDOUT; 1868 1869 return 0; 1870 } 1871 1872 struct panthor_sched_tick_ctx { 1873 struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; 1874 struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; 1875 u32 idle_group_count; 1876 u32 group_count; 1877 enum panthor_csg_priority min_priority; 1878 struct panthor_vm *vms[MAX_CS_PER_CSG]; 1879 u32 as_count; 1880 bool immediate_tick; 1881 u32 csg_upd_failed_mask; 1882 }; 1883 1884 static bool 1885 tick_ctx_is_full(const struct panthor_scheduler *sched, 1886 const struct panthor_sched_tick_ctx *ctx) 1887 { 1888 return ctx->group_count == sched->csg_slot_count; 1889 } 1890 1891 static bool 1892 group_is_idle(struct panthor_group *group) 1893 { 1894 struct panthor_device *ptdev = group->ptdev; 1895 u32 inactive_queues; 1896 1897 if (group->csg_id >= 0) 1898 return ptdev->scheduler->csg_slots[group->csg_id].idle; 1899 1900 inactive_queues = group->idle_queues | group->blocked_queues; 1901 return hweight32(inactive_queues) == group->queue_count; 1902 } 1903 1904 static bool 1905 group_can_run(struct panthor_group *group) 1906 { 1907 return group->state != PANTHOR_CS_GROUP_TERMINATED && 1908 group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && 1909 !group->destroyed && group->fatal_queues == 0 && 1910 !group->timedout; 1911 } 1912 1913 static void 1914 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, 1915 struct panthor_sched_tick_ctx *ctx, 1916 struct list_head *queue, 1917 bool skip_idle_groups, 1918 bool owned_by_tick_ctx) 1919 { 1920 struct panthor_group *group, *tmp; 1921 1922 if (tick_ctx_is_full(sched, ctx)) 1923 return; 1924 1925 list_for_each_entry_safe(group, tmp, queue, run_node) { 1926 u32 i; 1927 1928 if (!group_can_run(group)) 1929 continue; 1930 1931 if (skip_idle_groups && group_is_idle(group)) 1932 continue; 1933 1934 for (i = 0; i < ctx->as_count; i++) { 1935 if (ctx->vms[i] == group->vm) 1936 break; 1937 } 1938 1939 if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) 1940 continue; 1941 1942 if (!owned_by_tick_ctx) 1943 group_get(group); 1944 1945 list_move_tail(&group->run_node, &ctx->groups[group->priority]); 1946 ctx->group_count++; 1947 if (group_is_idle(group)) 1948 ctx->idle_group_count++; 1949 1950 if (i == ctx->as_count) 1951 ctx->vms[ctx->as_count++] = group->vm; 1952 1953 if (ctx->min_priority > group->priority) 1954 ctx->min_priority = group->priority; 1955 1956 if (tick_ctx_is_full(sched, ctx)) 1957 return; 1958 } 1959 } 1960 1961 static void 1962 tick_ctx_insert_old_group(struct panthor_scheduler *sched, 1963 struct panthor_sched_tick_ctx *ctx, 1964 struct panthor_group *group, 1965 bool full_tick) 1966 { 1967 struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; 1968 struct panthor_group *other_group; 1969 1970 if (!full_tick) { 1971 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1972 return; 1973 } 1974 1975 /* Rotate to make sure groups with lower CSG slot 1976 * priorities have a chance to get a higher CSG slot 1977 * priority next time they get picked. This priority 1978 * has an impact on resource request ordering, so it's 1979 * important to make sure we don't let one group starve 1980 * all other groups with the same group priority. 1981 */ 1982 list_for_each_entry(other_group, 1983 &ctx->old_groups[csg_slot->group->priority], 1984 run_node) { 1985 struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; 1986 1987 if (other_csg_slot->priority > csg_slot->priority) { 1988 list_add_tail(&csg_slot->group->run_node, &other_group->run_node); 1989 return; 1990 } 1991 } 1992 1993 list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); 1994 } 1995 1996 static void 1997 tick_ctx_init(struct panthor_scheduler *sched, 1998 struct panthor_sched_tick_ctx *ctx, 1999 bool full_tick) 2000 { 2001 struct panthor_device *ptdev = sched->ptdev; 2002 struct panthor_csg_slots_upd_ctx upd_ctx; 2003 int ret; 2004 u32 i; 2005 2006 memset(ctx, 0, sizeof(*ctx)); 2007 csgs_upd_ctx_init(&upd_ctx); 2008 2009 ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; 2010 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2011 INIT_LIST_HEAD(&ctx->groups[i]); 2012 INIT_LIST_HEAD(&ctx->old_groups[i]); 2013 } 2014 2015 for (i = 0; i < sched->csg_slot_count; i++) { 2016 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2017 struct panthor_group *group = csg_slot->group; 2018 struct panthor_fw_csg_iface *csg_iface; 2019 2020 if (!group) 2021 continue; 2022 2023 csg_iface = panthor_fw_get_csg_iface(ptdev, i); 2024 group_get(group); 2025 2026 /* If there was unhandled faults on the VM, force processing of 2027 * CSG IRQs, so we can flag the faulty queue. 2028 */ 2029 if (panthor_vm_has_unhandled_faults(group->vm)) { 2030 sched_process_csg_irq_locked(ptdev, i); 2031 2032 /* No fatal fault reported, flag all queues as faulty. */ 2033 if (!group->fatal_queues) 2034 group->fatal_queues |= GENMASK(group->queue_count - 1, 0); 2035 } 2036 2037 tick_ctx_insert_old_group(sched, ctx, group, full_tick); 2038 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2039 csg_iface->output->ack ^ CSG_STATUS_UPDATE, 2040 CSG_STATUS_UPDATE); 2041 } 2042 2043 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2044 if (ret) { 2045 panthor_device_schedule_reset(ptdev); 2046 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2047 } 2048 } 2049 2050 static void 2051 group_term_post_processing(struct panthor_group *group) 2052 { 2053 struct panthor_job *job, *tmp; 2054 LIST_HEAD(faulty_jobs); 2055 bool cookie; 2056 u32 i = 0; 2057 2058 if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) 2059 return; 2060 2061 cookie = dma_fence_begin_signalling(); 2062 for (i = 0; i < group->queue_count; i++) { 2063 struct panthor_queue *queue = group->queues[i]; 2064 struct panthor_syncobj_64b *syncobj; 2065 int err; 2066 2067 if (group->fatal_queues & BIT(i)) 2068 err = -EINVAL; 2069 else if (group->timedout) 2070 err = -ETIMEDOUT; 2071 else 2072 err = -ECANCELED; 2073 2074 if (!queue) 2075 continue; 2076 2077 spin_lock(&queue->fence_ctx.lock); 2078 list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { 2079 list_move_tail(&job->node, &faulty_jobs); 2080 dma_fence_set_error(job->done_fence, err); 2081 dma_fence_signal_locked(job->done_fence); 2082 } 2083 spin_unlock(&queue->fence_ctx.lock); 2084 2085 /* Manually update the syncobj seqno to unblock waiters. */ 2086 syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); 2087 syncobj->status = ~0; 2088 syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); 2089 sched_queue_work(group->ptdev->scheduler, sync_upd); 2090 } 2091 dma_fence_end_signalling(cookie); 2092 2093 list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { 2094 list_del_init(&job->node); 2095 panthor_job_put(&job->base); 2096 } 2097 } 2098 2099 static void group_term_work(struct work_struct *work) 2100 { 2101 struct panthor_group *group = 2102 container_of(work, struct panthor_group, term_work); 2103 2104 group_term_post_processing(group); 2105 group_put(group); 2106 } 2107 2108 static void 2109 tick_ctx_cleanup(struct panthor_scheduler *sched, 2110 struct panthor_sched_tick_ctx *ctx) 2111 { 2112 struct panthor_device *ptdev = sched->ptdev; 2113 struct panthor_group *group, *tmp; 2114 u32 i; 2115 2116 for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { 2117 list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { 2118 /* If everything went fine, we should only have groups 2119 * to be terminated in the old_groups lists. 2120 */ 2121 drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask && 2122 group_can_run(group)); 2123 2124 if (!group_can_run(group)) { 2125 list_del_init(&group->run_node); 2126 list_del_init(&group->wait_node); 2127 group_queue_work(group, term); 2128 } else if (group->csg_id >= 0) { 2129 list_del_init(&group->run_node); 2130 } else { 2131 list_move(&group->run_node, 2132 group_is_idle(group) ? 2133 &sched->groups.idle[group->priority] : 2134 &sched->groups.runnable[group->priority]); 2135 } 2136 group_put(group); 2137 } 2138 } 2139 2140 for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { 2141 /* If everything went fine, the groups to schedule lists should 2142 * be empty. 2143 */ 2144 drm_WARN_ON(&ptdev->base, 2145 !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); 2146 2147 list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { 2148 if (group->csg_id >= 0) { 2149 list_del_init(&group->run_node); 2150 } else { 2151 list_move(&group->run_node, 2152 group_is_idle(group) ? 2153 &sched->groups.idle[group->priority] : 2154 &sched->groups.runnable[group->priority]); 2155 } 2156 group_put(group); 2157 } 2158 } 2159 } 2160 2161 static void 2162 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) 2163 { 2164 struct panthor_group *group, *tmp; 2165 struct panthor_device *ptdev = sched->ptdev; 2166 struct panthor_csg_slot *csg_slot; 2167 int prio, new_csg_prio = MAX_CSG_PRIO, i; 2168 u32 free_csg_slots = 0; 2169 struct panthor_csg_slots_upd_ctx upd_ctx; 2170 int ret; 2171 2172 csgs_upd_ctx_init(&upd_ctx); 2173 2174 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2175 /* Suspend or terminate evicted groups. */ 2176 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2177 bool term = !group_can_run(group); 2178 int csg_id = group->csg_id; 2179 2180 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2181 continue; 2182 2183 csg_slot = &sched->csg_slots[csg_id]; 2184 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2185 term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, 2186 CSG_STATE_MASK); 2187 } 2188 2189 /* Update priorities on already running groups. */ 2190 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2191 struct panthor_fw_csg_iface *csg_iface; 2192 int csg_id = group->csg_id; 2193 2194 if (csg_id < 0) { 2195 new_csg_prio--; 2196 continue; 2197 } 2198 2199 csg_slot = &sched->csg_slots[csg_id]; 2200 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2201 if (csg_slot->priority == new_csg_prio) { 2202 new_csg_prio--; 2203 continue; 2204 } 2205 2206 panthor_fw_update_reqs(csg_iface, endpoint_req, 2207 CSG_EP_REQ_PRIORITY(new_csg_prio), 2208 CSG_EP_REQ_PRIORITY_MASK); 2209 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2210 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2211 CSG_ENDPOINT_CONFIG); 2212 new_csg_prio--; 2213 } 2214 } 2215 2216 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2217 if (ret) { 2218 panthor_device_schedule_reset(ptdev); 2219 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2220 return; 2221 } 2222 2223 /* Unbind evicted groups. */ 2224 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2225 list_for_each_entry(group, &ctx->old_groups[prio], run_node) { 2226 /* This group is gone. Process interrupts to clear 2227 * any pending interrupts before we start the new 2228 * group. 2229 */ 2230 if (group->csg_id >= 0) 2231 sched_process_csg_irq_locked(ptdev, group->csg_id); 2232 2233 group_unbind_locked(group); 2234 } 2235 } 2236 2237 for (i = 0; i < sched->csg_slot_count; i++) { 2238 if (!sched->csg_slots[i].group) 2239 free_csg_slots |= BIT(i); 2240 } 2241 2242 csgs_upd_ctx_init(&upd_ctx); 2243 new_csg_prio = MAX_CSG_PRIO; 2244 2245 /* Start new groups. */ 2246 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2247 list_for_each_entry(group, &ctx->groups[prio], run_node) { 2248 int csg_id = group->csg_id; 2249 struct panthor_fw_csg_iface *csg_iface; 2250 2251 if (csg_id >= 0) { 2252 new_csg_prio--; 2253 continue; 2254 } 2255 2256 csg_id = ffs(free_csg_slots) - 1; 2257 if (drm_WARN_ON(&ptdev->base, csg_id < 0)) 2258 break; 2259 2260 csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); 2261 csg_slot = &sched->csg_slots[csg_id]; 2262 group_bind_locked(group, csg_id); 2263 csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); 2264 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2265 group->state == PANTHOR_CS_GROUP_SUSPENDED ? 2266 CSG_STATE_RESUME : CSG_STATE_START, 2267 CSG_STATE_MASK); 2268 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2269 csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, 2270 CSG_ENDPOINT_CONFIG); 2271 free_csg_slots &= ~BIT(csg_id); 2272 } 2273 } 2274 2275 ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2276 if (ret) { 2277 panthor_device_schedule_reset(ptdev); 2278 ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; 2279 return; 2280 } 2281 2282 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 2283 list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { 2284 list_del_init(&group->run_node); 2285 2286 /* If the group has been destroyed while we were 2287 * scheduling, ask for an immediate tick to 2288 * re-evaluate as soon as possible and get rid of 2289 * this dangling group. 2290 */ 2291 if (group->destroyed) 2292 ctx->immediate_tick = true; 2293 group_put(group); 2294 } 2295 2296 /* Return evicted groups to the idle or run queues. Groups 2297 * that can no longer be run (because they've been destroyed 2298 * or experienced an unrecoverable error) will be scheduled 2299 * for destruction in tick_ctx_cleanup(). 2300 */ 2301 list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { 2302 if (!group_can_run(group)) 2303 continue; 2304 2305 if (group_is_idle(group)) 2306 list_move_tail(&group->run_node, &sched->groups.idle[prio]); 2307 else 2308 list_move_tail(&group->run_node, &sched->groups.runnable[prio]); 2309 group_put(group); 2310 } 2311 } 2312 2313 sched->used_csg_slot_count = ctx->group_count; 2314 sched->might_have_idle_groups = ctx->idle_group_count > 0; 2315 } 2316 2317 static u64 2318 tick_ctx_update_resched_target(struct panthor_scheduler *sched, 2319 const struct panthor_sched_tick_ctx *ctx) 2320 { 2321 /* We had space left, no need to reschedule until some external event happens. */ 2322 if (!tick_ctx_is_full(sched, ctx)) 2323 goto no_tick; 2324 2325 /* If idle groups were scheduled, no need to wake up until some external 2326 * event happens (group unblocked, new job submitted, ...). 2327 */ 2328 if (ctx->idle_group_count) 2329 goto no_tick; 2330 2331 if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) 2332 goto no_tick; 2333 2334 /* If there are groups of the same priority waiting, we need to 2335 * keep the scheduler ticking, otherwise, we'll just wait for 2336 * new groups with higher priority to be queued. 2337 */ 2338 if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { 2339 u64 resched_target = sched->last_tick + sched->tick_period; 2340 2341 if (time_before64(sched->resched_target, sched->last_tick) || 2342 time_before64(resched_target, sched->resched_target)) 2343 sched->resched_target = resched_target; 2344 2345 return sched->resched_target - sched->last_tick; 2346 } 2347 2348 no_tick: 2349 sched->resched_target = U64_MAX; 2350 return U64_MAX; 2351 } 2352 2353 static void tick_work(struct work_struct *work) 2354 { 2355 struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, 2356 tick_work.work); 2357 struct panthor_device *ptdev = sched->ptdev; 2358 struct panthor_sched_tick_ctx ctx; 2359 u64 remaining_jiffies = 0, resched_delay; 2360 u64 now = get_jiffies_64(); 2361 int prio, ret, cookie; 2362 2363 if (!drm_dev_enter(&ptdev->base, &cookie)) 2364 return; 2365 2366 ret = panthor_device_resume_and_get(ptdev); 2367 if (drm_WARN_ON(&ptdev->base, ret)) 2368 goto out_dev_exit; 2369 2370 if (time_before64(now, sched->resched_target)) 2371 remaining_jiffies = sched->resched_target - now; 2372 2373 mutex_lock(&sched->lock); 2374 if (panthor_device_reset_is_pending(sched->ptdev)) 2375 goto out_unlock; 2376 2377 tick_ctx_init(sched, &ctx, remaining_jiffies != 0); 2378 if (ctx.csg_upd_failed_mask) 2379 goto out_cleanup_ctx; 2380 2381 if (remaining_jiffies) { 2382 /* Scheduling forced in the middle of a tick. Only RT groups 2383 * can preempt non-RT ones. Currently running RT groups can't be 2384 * preempted. 2385 */ 2386 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2387 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2388 prio--) { 2389 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], 2390 true, true); 2391 if (prio == PANTHOR_CSG_PRIORITY_RT) { 2392 tick_ctx_pick_groups_from_list(sched, &ctx, 2393 &sched->groups.runnable[prio], 2394 true, false); 2395 } 2396 } 2397 } 2398 2399 /* First pick non-idle groups */ 2400 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2401 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2402 prio--) { 2403 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], 2404 true, false); 2405 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); 2406 } 2407 2408 /* If we have free CSG slots left, pick idle groups */ 2409 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; 2410 prio >= 0 && !tick_ctx_is_full(sched, &ctx); 2411 prio--) { 2412 /* Check the old_group queue first to avoid reprogramming the slots */ 2413 tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); 2414 tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], 2415 false, false); 2416 } 2417 2418 tick_ctx_apply(sched, &ctx); 2419 if (ctx.csg_upd_failed_mask) 2420 goto out_cleanup_ctx; 2421 2422 if (ctx.idle_group_count == ctx.group_count) { 2423 panthor_devfreq_record_idle(sched->ptdev); 2424 if (sched->pm.has_ref) { 2425 pm_runtime_put_autosuspend(ptdev->base.dev); 2426 sched->pm.has_ref = false; 2427 } 2428 } else { 2429 panthor_devfreq_record_busy(sched->ptdev); 2430 if (!sched->pm.has_ref) { 2431 pm_runtime_get(ptdev->base.dev); 2432 sched->pm.has_ref = true; 2433 } 2434 } 2435 2436 sched->last_tick = now; 2437 resched_delay = tick_ctx_update_resched_target(sched, &ctx); 2438 if (ctx.immediate_tick) 2439 resched_delay = 0; 2440 2441 if (resched_delay != U64_MAX) 2442 sched_queue_delayed_work(sched, tick, resched_delay); 2443 2444 out_cleanup_ctx: 2445 tick_ctx_cleanup(sched, &ctx); 2446 2447 out_unlock: 2448 mutex_unlock(&sched->lock); 2449 pm_runtime_mark_last_busy(ptdev->base.dev); 2450 pm_runtime_put_autosuspend(ptdev->base.dev); 2451 2452 out_dev_exit: 2453 drm_dev_exit(cookie); 2454 } 2455 2456 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) 2457 { 2458 struct panthor_queue *queue = group->queues[queue_idx]; 2459 union { 2460 struct panthor_syncobj_64b sync64; 2461 struct panthor_syncobj_32b sync32; 2462 } *syncobj; 2463 bool result; 2464 u64 value; 2465 2466 syncobj = panthor_queue_get_syncwait_obj(group, queue); 2467 if (!syncobj) 2468 return -EINVAL; 2469 2470 value = queue->syncwait.sync64 ? 2471 syncobj->sync64.seqno : 2472 syncobj->sync32.seqno; 2473 2474 if (queue->syncwait.gt) 2475 result = value > queue->syncwait.ref; 2476 else 2477 result = value <= queue->syncwait.ref; 2478 2479 if (result) 2480 panthor_queue_put_syncwait_obj(queue); 2481 2482 return result; 2483 } 2484 2485 static void sync_upd_work(struct work_struct *work) 2486 { 2487 struct panthor_scheduler *sched = container_of(work, 2488 struct panthor_scheduler, 2489 sync_upd_work); 2490 struct panthor_group *group, *tmp; 2491 bool immediate_tick = false; 2492 2493 mutex_lock(&sched->lock); 2494 list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { 2495 u32 tested_queues = group->blocked_queues; 2496 u32 unblocked_queues = 0; 2497 2498 while (tested_queues) { 2499 u32 cs_id = ffs(tested_queues) - 1; 2500 int ret; 2501 2502 ret = panthor_queue_eval_syncwait(group, cs_id); 2503 drm_WARN_ON(&group->ptdev->base, ret < 0); 2504 if (ret) 2505 unblocked_queues |= BIT(cs_id); 2506 2507 tested_queues &= ~BIT(cs_id); 2508 } 2509 2510 if (unblocked_queues) { 2511 group->blocked_queues &= ~unblocked_queues; 2512 2513 if (group->csg_id < 0) { 2514 list_move(&group->run_node, 2515 &sched->groups.runnable[group->priority]); 2516 if (group->priority == PANTHOR_CSG_PRIORITY_RT) 2517 immediate_tick = true; 2518 } 2519 } 2520 2521 if (!group->blocked_queues) 2522 list_del_init(&group->wait_node); 2523 } 2524 mutex_unlock(&sched->lock); 2525 2526 if (immediate_tick) 2527 sched_queue_delayed_work(sched, tick, 0); 2528 } 2529 2530 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) 2531 { 2532 struct panthor_device *ptdev = group->ptdev; 2533 struct panthor_scheduler *sched = ptdev->scheduler; 2534 struct list_head *queue = &sched->groups.runnable[group->priority]; 2535 u64 delay_jiffies = 0; 2536 bool was_idle; 2537 u64 now; 2538 2539 if (!group_can_run(group)) 2540 return; 2541 2542 /* All updated queues are blocked, no need to wake up the scheduler. */ 2543 if ((queue_mask & group->blocked_queues) == queue_mask) 2544 return; 2545 2546 was_idle = group_is_idle(group); 2547 group->idle_queues &= ~queue_mask; 2548 2549 /* Don't mess up with the lists if we're in a middle of a reset. */ 2550 if (atomic_read(&sched->reset.in_progress)) 2551 return; 2552 2553 if (was_idle && !group_is_idle(group)) 2554 list_move_tail(&group->run_node, queue); 2555 2556 /* RT groups are preemptive. */ 2557 if (group->priority == PANTHOR_CSG_PRIORITY_RT) { 2558 sched_queue_delayed_work(sched, tick, 0); 2559 return; 2560 } 2561 2562 /* Some groups might be idle, force an immediate tick to 2563 * re-evaluate. 2564 */ 2565 if (sched->might_have_idle_groups) { 2566 sched_queue_delayed_work(sched, tick, 0); 2567 return; 2568 } 2569 2570 /* Scheduler is ticking, nothing to do. */ 2571 if (sched->resched_target != U64_MAX) { 2572 /* If there are free slots, force immediating ticking. */ 2573 if (sched->used_csg_slot_count < sched->csg_slot_count) 2574 sched_queue_delayed_work(sched, tick, 0); 2575 2576 return; 2577 } 2578 2579 /* Scheduler tick was off, recalculate the resched_target based on the 2580 * last tick event, and queue the scheduler work. 2581 */ 2582 now = get_jiffies_64(); 2583 sched->resched_target = sched->last_tick + sched->tick_period; 2584 if (sched->used_csg_slot_count == sched->csg_slot_count && 2585 time_before64(now, sched->resched_target)) 2586 delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); 2587 2588 sched_queue_delayed_work(sched, tick, delay_jiffies); 2589 } 2590 2591 static void queue_stop(struct panthor_queue *queue, 2592 struct panthor_job *bad_job) 2593 { 2594 drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); 2595 } 2596 2597 static void queue_start(struct panthor_queue *queue) 2598 { 2599 struct panthor_job *job; 2600 2601 /* Re-assign the parent fences. */ 2602 list_for_each_entry(job, &queue->scheduler.pending_list, base.list) 2603 job->base.s_fence->parent = dma_fence_get(job->done_fence); 2604 2605 drm_sched_start(&queue->scheduler, 0); 2606 } 2607 2608 static void panthor_group_stop(struct panthor_group *group) 2609 { 2610 struct panthor_scheduler *sched = group->ptdev->scheduler; 2611 2612 lockdep_assert_held(&sched->reset.lock); 2613 2614 for (u32 i = 0; i < group->queue_count; i++) 2615 queue_stop(group->queues[i], NULL); 2616 2617 group_get(group); 2618 list_move_tail(&group->run_node, &sched->reset.stopped_groups); 2619 } 2620 2621 static void panthor_group_start(struct panthor_group *group) 2622 { 2623 struct panthor_scheduler *sched = group->ptdev->scheduler; 2624 2625 lockdep_assert_held(&group->ptdev->scheduler->reset.lock); 2626 2627 for (u32 i = 0; i < group->queue_count; i++) 2628 queue_start(group->queues[i]); 2629 2630 if (group_can_run(group)) { 2631 list_move_tail(&group->run_node, 2632 group_is_idle(group) ? 2633 &sched->groups.idle[group->priority] : 2634 &sched->groups.runnable[group->priority]); 2635 } else { 2636 list_del_init(&group->run_node); 2637 list_del_init(&group->wait_node); 2638 group_queue_work(group, term); 2639 } 2640 2641 group_put(group); 2642 } 2643 2644 static void panthor_sched_immediate_tick(struct panthor_device *ptdev) 2645 { 2646 struct panthor_scheduler *sched = ptdev->scheduler; 2647 2648 sched_queue_delayed_work(sched, tick, 0); 2649 } 2650 2651 /** 2652 * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. 2653 */ 2654 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) 2655 { 2656 /* Force a tick to immediately kill faulty groups. */ 2657 if (ptdev->scheduler) 2658 panthor_sched_immediate_tick(ptdev); 2659 } 2660 2661 void panthor_sched_resume(struct panthor_device *ptdev) 2662 { 2663 /* Force a tick to re-evaluate after a resume. */ 2664 panthor_sched_immediate_tick(ptdev); 2665 } 2666 2667 void panthor_sched_suspend(struct panthor_device *ptdev) 2668 { 2669 struct panthor_scheduler *sched = ptdev->scheduler; 2670 struct panthor_csg_slots_upd_ctx upd_ctx; 2671 struct panthor_group *group; 2672 u32 suspended_slots; 2673 u32 i; 2674 2675 mutex_lock(&sched->lock); 2676 csgs_upd_ctx_init(&upd_ctx); 2677 for (i = 0; i < sched->csg_slot_count; i++) { 2678 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2679 2680 if (csg_slot->group) { 2681 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, 2682 group_can_run(csg_slot->group) ? 2683 CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, 2684 CSG_STATE_MASK); 2685 } 2686 } 2687 2688 suspended_slots = upd_ctx.update_mask; 2689 2690 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2691 suspended_slots &= ~upd_ctx.timedout_mask; 2692 2693 if (upd_ctx.timedout_mask) { 2694 u32 slot_mask = upd_ctx.timedout_mask; 2695 2696 drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); 2697 csgs_upd_ctx_init(&upd_ctx); 2698 while (slot_mask) { 2699 u32 csg_id = ffs(slot_mask) - 1; 2700 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2701 2702 /* If the group was still usable before that point, we consider 2703 * it innocent. 2704 */ 2705 if (group_can_run(csg_slot->group)) 2706 csg_slot->group->innocent = true; 2707 2708 /* We consider group suspension failures as fatal and flag the 2709 * group as unusable by setting timedout=true. 2710 */ 2711 csg_slot->group->timedout = true; 2712 2713 csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, 2714 CSG_STATE_TERMINATE, 2715 CSG_STATE_MASK); 2716 slot_mask &= ~BIT(csg_id); 2717 } 2718 2719 csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); 2720 2721 slot_mask = upd_ctx.timedout_mask; 2722 while (slot_mask) { 2723 u32 csg_id = ffs(slot_mask) - 1; 2724 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2725 2726 /* Terminate command timedout, but the soft-reset will 2727 * automatically terminate all active groups, so let's 2728 * force the state to halted here. 2729 */ 2730 if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) 2731 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2732 slot_mask &= ~BIT(csg_id); 2733 } 2734 } 2735 2736 /* Flush L2 and LSC caches to make sure suspend state is up-to-date. 2737 * If the flush fails, flag all queues for termination. 2738 */ 2739 if (suspended_slots) { 2740 bool flush_caches_failed = false; 2741 u32 slot_mask = suspended_slots; 2742 2743 if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) 2744 flush_caches_failed = true; 2745 2746 while (slot_mask) { 2747 u32 csg_id = ffs(slot_mask) - 1; 2748 struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; 2749 2750 if (flush_caches_failed) 2751 csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; 2752 else 2753 csg_slot_sync_update_locked(ptdev, csg_id); 2754 2755 slot_mask &= ~BIT(csg_id); 2756 } 2757 } 2758 2759 for (i = 0; i < sched->csg_slot_count; i++) { 2760 struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; 2761 2762 group = csg_slot->group; 2763 if (!group) 2764 continue; 2765 2766 group_get(group); 2767 2768 if (group->csg_id >= 0) 2769 sched_process_csg_irq_locked(ptdev, group->csg_id); 2770 2771 group_unbind_locked(group); 2772 2773 drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); 2774 2775 if (group_can_run(group)) { 2776 list_add(&group->run_node, 2777 &sched->groups.idle[group->priority]); 2778 } else { 2779 /* We don't bother stopping the scheduler if the group is 2780 * faulty, the group termination work will finish the job. 2781 */ 2782 list_del_init(&group->wait_node); 2783 group_queue_work(group, term); 2784 } 2785 group_put(group); 2786 } 2787 mutex_unlock(&sched->lock); 2788 } 2789 2790 void panthor_sched_pre_reset(struct panthor_device *ptdev) 2791 { 2792 struct panthor_scheduler *sched = ptdev->scheduler; 2793 struct panthor_group *group, *group_tmp; 2794 u32 i; 2795 2796 mutex_lock(&sched->reset.lock); 2797 atomic_set(&sched->reset.in_progress, true); 2798 2799 /* Cancel all scheduler works. Once this is done, these works can't be 2800 * scheduled again until the reset operation is complete. 2801 */ 2802 cancel_work_sync(&sched->sync_upd_work); 2803 cancel_delayed_work_sync(&sched->tick_work); 2804 2805 panthor_sched_suspend(ptdev); 2806 2807 /* Stop all groups that might still accept jobs, so we don't get passed 2808 * new jobs while we're resetting. 2809 */ 2810 for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { 2811 /* All groups should be in the idle lists. */ 2812 drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); 2813 list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) 2814 panthor_group_stop(group); 2815 } 2816 2817 for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { 2818 list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) 2819 panthor_group_stop(group); 2820 } 2821 2822 mutex_unlock(&sched->reset.lock); 2823 } 2824 2825 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) 2826 { 2827 struct panthor_scheduler *sched = ptdev->scheduler; 2828 struct panthor_group *group, *group_tmp; 2829 2830 mutex_lock(&sched->reset.lock); 2831 2832 list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { 2833 /* Consider all previously running group as terminated if the 2834 * reset failed. 2835 */ 2836 if (reset_failed) 2837 group->state = PANTHOR_CS_GROUP_TERMINATED; 2838 2839 panthor_group_start(group); 2840 } 2841 2842 /* We're done resetting the GPU, clear the reset.in_progress bit so we can 2843 * kick the scheduler. 2844 */ 2845 atomic_set(&sched->reset.in_progress, false); 2846 mutex_unlock(&sched->reset.lock); 2847 2848 /* No need to queue a tick and update syncs if the reset failed. */ 2849 if (!reset_failed) { 2850 sched_queue_delayed_work(sched, tick, 0); 2851 sched_queue_work(sched, sync_upd); 2852 } 2853 } 2854 2855 static void update_fdinfo_stats(struct panthor_job *job) 2856 { 2857 struct panthor_group *group = job->group; 2858 struct panthor_queue *queue = group->queues[job->queue_idx]; 2859 struct panthor_gpu_usage *fdinfo = &group->fdinfo.data; 2860 struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap; 2861 struct panthor_job_profiling_data *data = &slots[job->profiling.slot]; 2862 2863 scoped_guard(spinlock, &group->fdinfo.lock) { 2864 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES) 2865 fdinfo->cycles += data->cycles.after - data->cycles.before; 2866 if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP) 2867 fdinfo->time += data->time.after - data->time.before; 2868 } 2869 } 2870 2871 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile) 2872 { 2873 struct panthor_group_pool *gpool = pfile->groups; 2874 struct panthor_group *group; 2875 unsigned long i; 2876 2877 if (IS_ERR_OR_NULL(gpool)) 2878 return; 2879 2880 xa_lock(&gpool->xa); 2881 xa_for_each(&gpool->xa, i, group) { 2882 guard(spinlock)(&group->fdinfo.lock); 2883 pfile->stats.cycles += group->fdinfo.data.cycles; 2884 pfile->stats.time += group->fdinfo.data.time; 2885 group->fdinfo.data.cycles = 0; 2886 group->fdinfo.data.time = 0; 2887 } 2888 xa_unlock(&gpool->xa); 2889 } 2890 2891 static void group_sync_upd_work(struct work_struct *work) 2892 { 2893 struct panthor_group *group = 2894 container_of(work, struct panthor_group, sync_upd_work); 2895 struct panthor_job *job, *job_tmp; 2896 LIST_HEAD(done_jobs); 2897 u32 queue_idx; 2898 bool cookie; 2899 2900 cookie = dma_fence_begin_signalling(); 2901 for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { 2902 struct panthor_queue *queue = group->queues[queue_idx]; 2903 struct panthor_syncobj_64b *syncobj; 2904 2905 if (!queue) 2906 continue; 2907 2908 syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); 2909 2910 spin_lock(&queue->fence_ctx.lock); 2911 list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { 2912 if (syncobj->seqno < job->done_fence->seqno) 2913 break; 2914 2915 list_move_tail(&job->node, &done_jobs); 2916 dma_fence_signal_locked(job->done_fence); 2917 } 2918 spin_unlock(&queue->fence_ctx.lock); 2919 } 2920 dma_fence_end_signalling(cookie); 2921 2922 list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { 2923 if (job->profiling.mask) 2924 update_fdinfo_stats(job); 2925 list_del_init(&job->node); 2926 panthor_job_put(&job->base); 2927 } 2928 2929 group_put(group); 2930 } 2931 2932 struct panthor_job_ringbuf_instrs { 2933 u64 buffer[MAX_INSTRS_PER_JOB]; 2934 u32 count; 2935 }; 2936 2937 struct panthor_job_instr { 2938 u32 profile_mask; 2939 u64 instr; 2940 }; 2941 2942 #define JOB_INSTR(__prof, __instr) \ 2943 { \ 2944 .profile_mask = __prof, \ 2945 .instr = __instr, \ 2946 } 2947 2948 static void 2949 copy_instrs_to_ringbuf(struct panthor_queue *queue, 2950 struct panthor_job *job, 2951 struct panthor_job_ringbuf_instrs *instrs) 2952 { 2953 u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); 2954 u64 start = job->ringbuf.start & (ringbuf_size - 1); 2955 u64 size, written; 2956 2957 /* 2958 * We need to write a whole slot, including any trailing zeroes 2959 * that may come at the end of it. Also, because instrs.buffer has 2960 * been zero-initialised, there's no need to pad it with 0's 2961 */ 2962 instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); 2963 size = instrs->count * sizeof(u64); 2964 WARN_ON(size > ringbuf_size); 2965 written = min(ringbuf_size - start, size); 2966 2967 memcpy(queue->ringbuf->kmap + start, instrs->buffer, written); 2968 2969 if (written < size) 2970 memcpy(queue->ringbuf->kmap, 2971 &instrs->buffer[written / sizeof(u64)], 2972 size - written); 2973 } 2974 2975 struct panthor_job_cs_params { 2976 u32 profile_mask; 2977 u64 addr_reg; u64 val_reg; 2978 u64 cycle_reg; u64 time_reg; 2979 u64 sync_addr; u64 times_addr; 2980 u64 cs_start; u64 cs_size; 2981 u32 last_flush; u32 waitall_mask; 2982 }; 2983 2984 static void 2985 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params) 2986 { 2987 struct panthor_group *group = job->group; 2988 struct panthor_queue *queue = group->queues[job->queue_idx]; 2989 struct panthor_device *ptdev = group->ptdev; 2990 struct panthor_scheduler *sched = ptdev->scheduler; 2991 2992 params->addr_reg = ptdev->csif_info.cs_reg_count - 2993 ptdev->csif_info.unpreserved_cs_reg_count; 2994 params->val_reg = params->addr_reg + 2; 2995 params->cycle_reg = params->addr_reg; 2996 params->time_reg = params->val_reg; 2997 2998 params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + 2999 job->queue_idx * sizeof(struct panthor_syncobj_64b); 3000 params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) + 3001 (job->profiling.slot * sizeof(struct panthor_job_profiling_data)); 3002 params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); 3003 3004 params->cs_start = job->call_info.start; 3005 params->cs_size = job->call_info.size; 3006 params->last_flush = job->call_info.latest_flush; 3007 3008 params->profile_mask = job->profiling.mask; 3009 } 3010 3011 #define JOB_INSTR_ALWAYS(instr) \ 3012 JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr)) 3013 #define JOB_INSTR_TIMESTAMP(instr) \ 3014 JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr)) 3015 #define JOB_INSTR_CYCLES(instr) \ 3016 JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr)) 3017 3018 static void 3019 prepare_job_instrs(const struct panthor_job_cs_params *params, 3020 struct panthor_job_ringbuf_instrs *instrs) 3021 { 3022 const struct panthor_job_instr instr_seq[] = { 3023 /* MOV32 rX+2, cs.latest_flush */ 3024 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush), 3025 /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ 3026 JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) | 3027 (0 << 16) | 0x233), 3028 /* MOV48 rX:rX+1, cycles_offset */ 3029 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | 3030 (params->times_addr + 3031 offsetof(struct panthor_job_profiling_data, cycles.before))), 3032 /* STORE_STATE cycles */ 3033 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), 3034 /* MOV48 rX:rX+1, time_offset */ 3035 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | 3036 (params->times_addr + 3037 offsetof(struct panthor_job_profiling_data, time.before))), 3038 /* STORE_STATE timer */ 3039 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), 3040 /* MOV48 rX:rX+1, cs.start */ 3041 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start), 3042 /* MOV32 rX+2, cs.size */ 3043 JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size), 3044 /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ 3045 JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)), 3046 /* CALL rX:rX+1, rX+2 */ 3047 JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) | 3048 (params->val_reg << 32)), 3049 /* MOV48 rX:rX+1, cycles_offset */ 3050 JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | 3051 (params->times_addr + 3052 offsetof(struct panthor_job_profiling_data, cycles.after))), 3053 /* STORE_STATE cycles */ 3054 JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), 3055 /* MOV48 rX:rX+1, time_offset */ 3056 JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | 3057 (params->times_addr + 3058 offsetof(struct panthor_job_profiling_data, time.after))), 3059 /* STORE_STATE timer */ 3060 JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), 3061 /* MOV48 rX:rX+1, sync_addr */ 3062 JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr), 3063 /* MOV48 rX+2, #1 */ 3064 JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1), 3065 /* WAIT(all) */ 3066 JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)), 3067 /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ 3068 JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) | 3069 (params->val_reg << 32) | (0 << 16) | 1), 3070 /* ERROR_BARRIER, so we can recover from faults at job boundaries. */ 3071 JOB_INSTR_ALWAYS((47ull << 56)), 3072 }; 3073 u32 pad; 3074 3075 instrs->count = 0; 3076 3077 /* NEED to be cacheline aligned to please the prefetcher. */ 3078 static_assert(sizeof(instrs->buffer) % 64 == 0, 3079 "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline"); 3080 3081 /* Make sure we have enough storage to store the whole sequence. */ 3082 static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) == 3083 ARRAY_SIZE(instrs->buffer), 3084 "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch"); 3085 3086 for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) { 3087 /* If the profile mask of this instruction is not enabled, skip it. */ 3088 if (instr_seq[i].profile_mask && 3089 !(instr_seq[i].profile_mask & params->profile_mask)) 3090 continue; 3091 3092 instrs->buffer[instrs->count++] = instr_seq[i].instr; 3093 } 3094 3095 pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); 3096 memset(&instrs->buffer[instrs->count], 0, 3097 (pad - instrs->count) * sizeof(instrs->buffer[0])); 3098 instrs->count = pad; 3099 } 3100 3101 static u32 calc_job_credits(u32 profile_mask) 3102 { 3103 struct panthor_job_ringbuf_instrs instrs; 3104 struct panthor_job_cs_params params = { 3105 .profile_mask = profile_mask, 3106 }; 3107 3108 prepare_job_instrs(¶ms, &instrs); 3109 return instrs.count; 3110 } 3111 3112 static struct dma_fence * 3113 queue_run_job(struct drm_sched_job *sched_job) 3114 { 3115 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3116 struct panthor_group *group = job->group; 3117 struct panthor_queue *queue = group->queues[job->queue_idx]; 3118 struct panthor_device *ptdev = group->ptdev; 3119 struct panthor_scheduler *sched = ptdev->scheduler; 3120 struct panthor_job_ringbuf_instrs instrs; 3121 struct panthor_job_cs_params cs_params; 3122 struct dma_fence *done_fence; 3123 int ret; 3124 3125 /* Stream size is zero, nothing to do except making sure all previously 3126 * submitted jobs are done before we signal the 3127 * drm_sched_job::s_fence::finished fence. 3128 */ 3129 if (!job->call_info.size) { 3130 job->done_fence = dma_fence_get(queue->fence_ctx.last_fence); 3131 return dma_fence_get(job->done_fence); 3132 } 3133 3134 ret = panthor_device_resume_and_get(ptdev); 3135 if (drm_WARN_ON(&ptdev->base, ret)) 3136 return ERR_PTR(ret); 3137 3138 mutex_lock(&sched->lock); 3139 if (!group_can_run(group)) { 3140 done_fence = ERR_PTR(-ECANCELED); 3141 goto out_unlock; 3142 } 3143 3144 dma_fence_init(job->done_fence, 3145 &panthor_queue_fence_ops, 3146 &queue->fence_ctx.lock, 3147 queue->fence_ctx.id, 3148 atomic64_inc_return(&queue->fence_ctx.seqno)); 3149 3150 job->profiling.slot = queue->profiling.seqno++; 3151 if (queue->profiling.seqno == queue->profiling.slot_count) 3152 queue->profiling.seqno = 0; 3153 3154 job->ringbuf.start = queue->iface.input->insert; 3155 3156 get_job_cs_params(job, &cs_params); 3157 prepare_job_instrs(&cs_params, &instrs); 3158 copy_instrs_to_ringbuf(queue, job, &instrs); 3159 3160 job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64)); 3161 3162 panthor_job_get(&job->base); 3163 spin_lock(&queue->fence_ctx.lock); 3164 list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); 3165 spin_unlock(&queue->fence_ctx.lock); 3166 3167 /* Make sure the ring buffer is updated before the INSERT 3168 * register. 3169 */ 3170 wmb(); 3171 3172 queue->iface.input->extract = queue->iface.output->extract; 3173 queue->iface.input->insert = job->ringbuf.end; 3174 3175 if (group->csg_id < 0) { 3176 /* If the queue is blocked, we want to keep the timeout running, so we 3177 * can detect unbounded waits and kill the group when that happens. 3178 * Otherwise, we suspend the timeout so the time we spend waiting for 3179 * a CSG slot is not counted. 3180 */ 3181 if (!(group->blocked_queues & BIT(job->queue_idx)) && 3182 !queue->timeout_suspended) { 3183 queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); 3184 queue->timeout_suspended = true; 3185 } 3186 3187 group_schedule_locked(group, BIT(job->queue_idx)); 3188 } else { 3189 gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); 3190 if (!sched->pm.has_ref && 3191 !(group->blocked_queues & BIT(job->queue_idx))) { 3192 pm_runtime_get(ptdev->base.dev); 3193 sched->pm.has_ref = true; 3194 } 3195 panthor_devfreq_record_busy(sched->ptdev); 3196 } 3197 3198 /* Update the last fence. */ 3199 dma_fence_put(queue->fence_ctx.last_fence); 3200 queue->fence_ctx.last_fence = dma_fence_get(job->done_fence); 3201 3202 done_fence = dma_fence_get(job->done_fence); 3203 3204 out_unlock: 3205 mutex_unlock(&sched->lock); 3206 pm_runtime_mark_last_busy(ptdev->base.dev); 3207 pm_runtime_put_autosuspend(ptdev->base.dev); 3208 3209 return done_fence; 3210 } 3211 3212 static enum drm_gpu_sched_stat 3213 queue_timedout_job(struct drm_sched_job *sched_job) 3214 { 3215 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3216 struct panthor_group *group = job->group; 3217 struct panthor_device *ptdev = group->ptdev; 3218 struct panthor_scheduler *sched = ptdev->scheduler; 3219 struct panthor_queue *queue = group->queues[job->queue_idx]; 3220 3221 drm_warn(&ptdev->base, "job timeout\n"); 3222 3223 drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); 3224 3225 queue_stop(queue, job); 3226 3227 mutex_lock(&sched->lock); 3228 group->timedout = true; 3229 if (group->csg_id >= 0) { 3230 sched_queue_delayed_work(ptdev->scheduler, tick, 0); 3231 } else { 3232 /* Remove from the run queues, so the scheduler can't 3233 * pick the group on the next tick. 3234 */ 3235 list_del_init(&group->run_node); 3236 list_del_init(&group->wait_node); 3237 3238 group_queue_work(group, term); 3239 } 3240 mutex_unlock(&sched->lock); 3241 3242 queue_start(queue); 3243 3244 return DRM_GPU_SCHED_STAT_NOMINAL; 3245 } 3246 3247 static void queue_free_job(struct drm_sched_job *sched_job) 3248 { 3249 drm_sched_job_cleanup(sched_job); 3250 panthor_job_put(sched_job); 3251 } 3252 3253 static const struct drm_sched_backend_ops panthor_queue_sched_ops = { 3254 .run_job = queue_run_job, 3255 .timedout_job = queue_timedout_job, 3256 .free_job = queue_free_job, 3257 }; 3258 3259 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev, 3260 u32 cs_ringbuf_size) 3261 { 3262 u32 min_profiled_job_instrs = U32_MAX; 3263 u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL); 3264 3265 /* 3266 * We want to calculate the minimum size of a profiled job's CS, 3267 * because since they need additional instructions for the sampling 3268 * of performance metrics, they might take up further slots in 3269 * the queue's ringbuffer. This means we might not need as many job 3270 * slots for keeping track of their profiling information. What we 3271 * need is the maximum number of slots we should allocate to this end, 3272 * which matches the maximum number of profiled jobs we can place 3273 * simultaneously in the queue's ring buffer. 3274 * That has to be calculated separately for every single job profiling 3275 * flag, but not in the case job profiling is disabled, since unprofiled 3276 * jobs don't need to keep track of this at all. 3277 */ 3278 for (u32 i = 0; i < last_flag; i++) { 3279 min_profiled_job_instrs = 3280 min(min_profiled_job_instrs, calc_job_credits(BIT(i))); 3281 } 3282 3283 return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64)); 3284 } 3285 3286 static struct panthor_queue * 3287 group_create_queue(struct panthor_group *group, 3288 const struct drm_panthor_queue_create *args) 3289 { 3290 const struct drm_sched_init_args sched_args = { 3291 .ops = &panthor_queue_sched_ops, 3292 .submit_wq = group->ptdev->scheduler->wq, 3293 .num_rqs = 1, 3294 /* 3295 * The credit limit argument tells us the total number of 3296 * instructions across all CS slots in the ringbuffer, with 3297 * some jobs requiring twice as many as others, depending on 3298 * their profiling status. 3299 */ 3300 .credit_limit = args->ringbuf_size / sizeof(u64), 3301 .timeout = msecs_to_jiffies(JOB_TIMEOUT_MS), 3302 .timeout_wq = group->ptdev->reset.wq, 3303 .name = "panthor-queue", 3304 .dev = group->ptdev->base.dev, 3305 }; 3306 struct drm_gpu_scheduler *drm_sched; 3307 struct panthor_queue *queue; 3308 int ret; 3309 3310 if (args->pad[0] || args->pad[1] || args->pad[2]) 3311 return ERR_PTR(-EINVAL); 3312 3313 if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || 3314 !is_power_of_2(args->ringbuf_size)) 3315 return ERR_PTR(-EINVAL); 3316 3317 if (args->priority > CSF_MAX_QUEUE_PRIO) 3318 return ERR_PTR(-EINVAL); 3319 3320 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 3321 if (!queue) 3322 return ERR_PTR(-ENOMEM); 3323 3324 queue->fence_ctx.id = dma_fence_context_alloc(1); 3325 spin_lock_init(&queue->fence_ctx.lock); 3326 INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); 3327 3328 queue->priority = args->priority; 3329 3330 queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, 3331 args->ringbuf_size, 3332 DRM_PANTHOR_BO_NO_MMAP, 3333 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3334 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3335 PANTHOR_VM_KERNEL_AUTO_VA); 3336 if (IS_ERR(queue->ringbuf)) { 3337 ret = PTR_ERR(queue->ringbuf); 3338 goto err_free_queue; 3339 } 3340 3341 ret = panthor_kernel_bo_vmap(queue->ringbuf); 3342 if (ret) 3343 goto err_free_queue; 3344 3345 queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, 3346 &queue->iface.input, 3347 &queue->iface.output, 3348 &queue->iface.input_fw_va, 3349 &queue->iface.output_fw_va); 3350 if (IS_ERR(queue->iface.mem)) { 3351 ret = PTR_ERR(queue->iface.mem); 3352 goto err_free_queue; 3353 } 3354 3355 queue->profiling.slot_count = 3356 calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size); 3357 3358 queue->profiling.slots = 3359 panthor_kernel_bo_create(group->ptdev, group->vm, 3360 queue->profiling.slot_count * 3361 sizeof(struct panthor_job_profiling_data), 3362 DRM_PANTHOR_BO_NO_MMAP, 3363 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3364 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3365 PANTHOR_VM_KERNEL_AUTO_VA); 3366 3367 if (IS_ERR(queue->profiling.slots)) { 3368 ret = PTR_ERR(queue->profiling.slots); 3369 goto err_free_queue; 3370 } 3371 3372 ret = panthor_kernel_bo_vmap(queue->profiling.slots); 3373 if (ret) 3374 goto err_free_queue; 3375 3376 ret = drm_sched_init(&queue->scheduler, &sched_args); 3377 if (ret) 3378 goto err_free_queue; 3379 3380 drm_sched = &queue->scheduler; 3381 ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); 3382 3383 return queue; 3384 3385 err_free_queue: 3386 group_free_queue(group, queue); 3387 return ERR_PTR(ret); 3388 } 3389 3390 static void add_group_kbo_sizes(struct panthor_device *ptdev, 3391 struct panthor_group *group) 3392 { 3393 struct panthor_queue *queue; 3394 int i; 3395 3396 if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(group))) 3397 return; 3398 if (drm_WARN_ON(&ptdev->base, ptdev != group->ptdev)) 3399 return; 3400 3401 group->fdinfo.kbo_sizes += group->suspend_buf->obj->size; 3402 group->fdinfo.kbo_sizes += group->protm_suspend_buf->obj->size; 3403 group->fdinfo.kbo_sizes += group->syncobjs->obj->size; 3404 3405 for (i = 0; i < group->queue_count; i++) { 3406 queue = group->queues[i]; 3407 group->fdinfo.kbo_sizes += queue->ringbuf->obj->size; 3408 group->fdinfo.kbo_sizes += queue->iface.mem->obj->size; 3409 group->fdinfo.kbo_sizes += queue->profiling.slots->obj->size; 3410 } 3411 } 3412 3413 #define MAX_GROUPS_PER_POOL 128 3414 3415 int panthor_group_create(struct panthor_file *pfile, 3416 const struct drm_panthor_group_create *group_args, 3417 const struct drm_panthor_queue_create *queue_args) 3418 { 3419 struct panthor_device *ptdev = pfile->ptdev; 3420 struct panthor_group_pool *gpool = pfile->groups; 3421 struct panthor_scheduler *sched = ptdev->scheduler; 3422 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3423 struct panthor_group *group = NULL; 3424 u32 gid, i, suspend_size; 3425 int ret; 3426 3427 if (group_args->pad) 3428 return -EINVAL; 3429 3430 if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT) 3431 return -EINVAL; 3432 3433 if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || 3434 (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || 3435 (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) 3436 return -EINVAL; 3437 3438 if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || 3439 hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || 3440 hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) 3441 return -EINVAL; 3442 3443 group = kzalloc(sizeof(*group), GFP_KERNEL); 3444 if (!group) 3445 return -ENOMEM; 3446 3447 spin_lock_init(&group->fatal_lock); 3448 kref_init(&group->refcount); 3449 group->state = PANTHOR_CS_GROUP_CREATED; 3450 group->csg_id = -1; 3451 3452 group->ptdev = ptdev; 3453 group->max_compute_cores = group_args->max_compute_cores; 3454 group->compute_core_mask = group_args->compute_core_mask; 3455 group->max_fragment_cores = group_args->max_fragment_cores; 3456 group->fragment_core_mask = group_args->fragment_core_mask; 3457 group->max_tiler_cores = group_args->max_tiler_cores; 3458 group->tiler_core_mask = group_args->tiler_core_mask; 3459 group->priority = group_args->priority; 3460 3461 INIT_LIST_HEAD(&group->wait_node); 3462 INIT_LIST_HEAD(&group->run_node); 3463 INIT_WORK(&group->term_work, group_term_work); 3464 INIT_WORK(&group->sync_upd_work, group_sync_upd_work); 3465 INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); 3466 INIT_WORK(&group->release_work, group_release_work); 3467 3468 group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); 3469 if (!group->vm) { 3470 ret = -EINVAL; 3471 goto err_put_group; 3472 } 3473 3474 suspend_size = csg_iface->control->suspend_size; 3475 group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3476 if (IS_ERR(group->suspend_buf)) { 3477 ret = PTR_ERR(group->suspend_buf); 3478 group->suspend_buf = NULL; 3479 goto err_put_group; 3480 } 3481 3482 suspend_size = csg_iface->control->protm_suspend_size; 3483 group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); 3484 if (IS_ERR(group->protm_suspend_buf)) { 3485 ret = PTR_ERR(group->protm_suspend_buf); 3486 group->protm_suspend_buf = NULL; 3487 goto err_put_group; 3488 } 3489 3490 group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, 3491 group_args->queues.count * 3492 sizeof(struct panthor_syncobj_64b), 3493 DRM_PANTHOR_BO_NO_MMAP, 3494 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | 3495 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, 3496 PANTHOR_VM_KERNEL_AUTO_VA); 3497 if (IS_ERR(group->syncobjs)) { 3498 ret = PTR_ERR(group->syncobjs); 3499 goto err_put_group; 3500 } 3501 3502 ret = panthor_kernel_bo_vmap(group->syncobjs); 3503 if (ret) 3504 goto err_put_group; 3505 3506 memset(group->syncobjs->kmap, 0, 3507 group_args->queues.count * sizeof(struct panthor_syncobj_64b)); 3508 3509 for (i = 0; i < group_args->queues.count; i++) { 3510 group->queues[i] = group_create_queue(group, &queue_args[i]); 3511 if (IS_ERR(group->queues[i])) { 3512 ret = PTR_ERR(group->queues[i]); 3513 group->queues[i] = NULL; 3514 goto err_put_group; 3515 } 3516 3517 group->queue_count++; 3518 } 3519 3520 group->idle_queues = GENMASK(group->queue_count - 1, 0); 3521 3522 ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); 3523 if (ret) 3524 goto err_put_group; 3525 3526 mutex_lock(&sched->reset.lock); 3527 if (atomic_read(&sched->reset.in_progress)) { 3528 panthor_group_stop(group); 3529 } else { 3530 mutex_lock(&sched->lock); 3531 list_add_tail(&group->run_node, 3532 &sched->groups.idle[group->priority]); 3533 mutex_unlock(&sched->lock); 3534 } 3535 mutex_unlock(&sched->reset.lock); 3536 3537 add_group_kbo_sizes(group->ptdev, group); 3538 spin_lock_init(&group->fdinfo.lock); 3539 3540 return gid; 3541 3542 err_put_group: 3543 group_put(group); 3544 return ret; 3545 } 3546 3547 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) 3548 { 3549 struct panthor_group_pool *gpool = pfile->groups; 3550 struct panthor_device *ptdev = pfile->ptdev; 3551 struct panthor_scheduler *sched = ptdev->scheduler; 3552 struct panthor_group *group; 3553 3554 group = xa_erase(&gpool->xa, group_handle); 3555 if (!group) 3556 return -EINVAL; 3557 3558 for (u32 i = 0; i < group->queue_count; i++) { 3559 if (group->queues[i]) 3560 drm_sched_entity_destroy(&group->queues[i]->entity); 3561 } 3562 3563 mutex_lock(&sched->reset.lock); 3564 mutex_lock(&sched->lock); 3565 group->destroyed = true; 3566 if (group->csg_id >= 0) { 3567 sched_queue_delayed_work(sched, tick, 0); 3568 } else if (!atomic_read(&sched->reset.in_progress)) { 3569 /* Remove from the run queues, so the scheduler can't 3570 * pick the group on the next tick. 3571 */ 3572 list_del_init(&group->run_node); 3573 list_del_init(&group->wait_node); 3574 group_queue_work(group, term); 3575 } 3576 mutex_unlock(&sched->lock); 3577 mutex_unlock(&sched->reset.lock); 3578 3579 group_put(group); 3580 return 0; 3581 } 3582 3583 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool, 3584 u32 group_handle) 3585 { 3586 struct panthor_group *group; 3587 3588 xa_lock(&pool->xa); 3589 group = group_get(xa_load(&pool->xa, group_handle)); 3590 xa_unlock(&pool->xa); 3591 3592 return group; 3593 } 3594 3595 int panthor_group_get_state(struct panthor_file *pfile, 3596 struct drm_panthor_group_get_state *get_state) 3597 { 3598 struct panthor_group_pool *gpool = pfile->groups; 3599 struct panthor_device *ptdev = pfile->ptdev; 3600 struct panthor_scheduler *sched = ptdev->scheduler; 3601 struct panthor_group *group; 3602 3603 if (get_state->pad) 3604 return -EINVAL; 3605 3606 group = group_from_handle(gpool, get_state->group_handle); 3607 if (!group) 3608 return -EINVAL; 3609 3610 memset(get_state, 0, sizeof(*get_state)); 3611 3612 mutex_lock(&sched->lock); 3613 if (group->timedout) 3614 get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; 3615 if (group->fatal_queues) { 3616 get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; 3617 get_state->fatal_queues = group->fatal_queues; 3618 } 3619 if (group->innocent) 3620 get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT; 3621 mutex_unlock(&sched->lock); 3622 3623 group_put(group); 3624 return 0; 3625 } 3626 3627 int panthor_group_pool_create(struct panthor_file *pfile) 3628 { 3629 struct panthor_group_pool *gpool; 3630 3631 gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); 3632 if (!gpool) 3633 return -ENOMEM; 3634 3635 xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); 3636 pfile->groups = gpool; 3637 return 0; 3638 } 3639 3640 void panthor_group_pool_destroy(struct panthor_file *pfile) 3641 { 3642 struct panthor_group_pool *gpool = pfile->groups; 3643 struct panthor_group *group; 3644 unsigned long i; 3645 3646 if (IS_ERR_OR_NULL(gpool)) 3647 return; 3648 3649 xa_for_each(&gpool->xa, i, group) 3650 panthor_group_destroy(pfile, i); 3651 3652 xa_destroy(&gpool->xa); 3653 kfree(gpool); 3654 pfile->groups = NULL; 3655 } 3656 3657 /** 3658 * panthor_fdinfo_gather_group_mem_info() - Retrieve aggregate size of all private kernel BO's 3659 * belonging to all the groups owned by an open Panthor file 3660 * @pfile: File. 3661 * @stats: Memory statistics to be updated. 3662 * 3663 */ 3664 void 3665 panthor_fdinfo_gather_group_mem_info(struct panthor_file *pfile, 3666 struct drm_memory_stats *stats) 3667 { 3668 struct panthor_group_pool *gpool = pfile->groups; 3669 struct panthor_group *group; 3670 unsigned long i; 3671 3672 if (IS_ERR_OR_NULL(gpool)) 3673 return; 3674 3675 xa_lock(&gpool->xa); 3676 xa_for_each(&gpool->xa, i, group) { 3677 stats->resident += group->fdinfo.kbo_sizes; 3678 if (group->csg_id >= 0) 3679 stats->active += group->fdinfo.kbo_sizes; 3680 } 3681 xa_unlock(&gpool->xa); 3682 } 3683 3684 static void job_release(struct kref *ref) 3685 { 3686 struct panthor_job *job = container_of(ref, struct panthor_job, refcount); 3687 3688 drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); 3689 3690 if (job->base.s_fence) 3691 drm_sched_job_cleanup(&job->base); 3692 3693 if (job->done_fence && job->done_fence->ops) 3694 dma_fence_put(job->done_fence); 3695 else 3696 dma_fence_free(job->done_fence); 3697 3698 group_put(job->group); 3699 3700 kfree(job); 3701 } 3702 3703 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) 3704 { 3705 if (sched_job) { 3706 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3707 3708 kref_get(&job->refcount); 3709 } 3710 3711 return sched_job; 3712 } 3713 3714 void panthor_job_put(struct drm_sched_job *sched_job) 3715 { 3716 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3717 3718 if (sched_job) 3719 kref_put(&job->refcount, job_release); 3720 } 3721 3722 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) 3723 { 3724 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3725 3726 return job->group->vm; 3727 } 3728 3729 struct drm_sched_job * 3730 panthor_job_create(struct panthor_file *pfile, 3731 u16 group_handle, 3732 const struct drm_panthor_queue_submit *qsubmit) 3733 { 3734 struct panthor_group_pool *gpool = pfile->groups; 3735 struct panthor_job *job; 3736 u32 credits; 3737 int ret; 3738 3739 if (qsubmit->pad) 3740 return ERR_PTR(-EINVAL); 3741 3742 /* If stream_addr is zero, so stream_size should be. */ 3743 if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) 3744 return ERR_PTR(-EINVAL); 3745 3746 /* Make sure the address is aligned on 64-byte (cacheline) and the size is 3747 * aligned on 8-byte (instruction size). 3748 */ 3749 if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) 3750 return ERR_PTR(-EINVAL); 3751 3752 /* bits 24:30 must be zero. */ 3753 if (qsubmit->latest_flush & GENMASK(30, 24)) 3754 return ERR_PTR(-EINVAL); 3755 3756 job = kzalloc(sizeof(*job), GFP_KERNEL); 3757 if (!job) 3758 return ERR_PTR(-ENOMEM); 3759 3760 kref_init(&job->refcount); 3761 job->queue_idx = qsubmit->queue_index; 3762 job->call_info.size = qsubmit->stream_size; 3763 job->call_info.start = qsubmit->stream_addr; 3764 job->call_info.latest_flush = qsubmit->latest_flush; 3765 INIT_LIST_HEAD(&job->node); 3766 3767 job->group = group_from_handle(gpool, group_handle); 3768 if (!job->group) { 3769 ret = -EINVAL; 3770 goto err_put_job; 3771 } 3772 3773 if (!group_can_run(job->group)) { 3774 ret = -EINVAL; 3775 goto err_put_job; 3776 } 3777 3778 if (job->queue_idx >= job->group->queue_count || 3779 !job->group->queues[job->queue_idx]) { 3780 ret = -EINVAL; 3781 goto err_put_job; 3782 } 3783 3784 /* Empty command streams don't need a fence, they'll pick the one from 3785 * the previously submitted job. 3786 */ 3787 if (job->call_info.size) { 3788 job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); 3789 if (!job->done_fence) { 3790 ret = -ENOMEM; 3791 goto err_put_job; 3792 } 3793 } 3794 3795 job->profiling.mask = pfile->ptdev->profile_mask; 3796 credits = calc_job_credits(job->profiling.mask); 3797 if (credits == 0) { 3798 ret = -EINVAL; 3799 goto err_put_job; 3800 } 3801 3802 ret = drm_sched_job_init(&job->base, 3803 &job->group->queues[job->queue_idx]->entity, 3804 credits, job->group); 3805 if (ret) 3806 goto err_put_job; 3807 3808 return &job->base; 3809 3810 err_put_job: 3811 panthor_job_put(&job->base); 3812 return ERR_PTR(ret); 3813 } 3814 3815 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) 3816 { 3817 struct panthor_job *job = container_of(sched_job, struct panthor_job, base); 3818 3819 panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, 3820 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); 3821 } 3822 3823 void panthor_sched_unplug(struct panthor_device *ptdev) 3824 { 3825 struct panthor_scheduler *sched = ptdev->scheduler; 3826 3827 cancel_delayed_work_sync(&sched->tick_work); 3828 3829 mutex_lock(&sched->lock); 3830 if (sched->pm.has_ref) { 3831 pm_runtime_put(ptdev->base.dev); 3832 sched->pm.has_ref = false; 3833 } 3834 mutex_unlock(&sched->lock); 3835 } 3836 3837 static void panthor_sched_fini(struct drm_device *ddev, void *res) 3838 { 3839 struct panthor_scheduler *sched = res; 3840 int prio; 3841 3842 if (!sched || !sched->csg_slot_count) 3843 return; 3844 3845 cancel_delayed_work_sync(&sched->tick_work); 3846 3847 if (sched->wq) 3848 destroy_workqueue(sched->wq); 3849 3850 if (sched->heap_alloc_wq) 3851 destroy_workqueue(sched->heap_alloc_wq); 3852 3853 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3854 drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); 3855 drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); 3856 } 3857 3858 drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); 3859 } 3860 3861 int panthor_sched_init(struct panthor_device *ptdev) 3862 { 3863 struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); 3864 struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); 3865 struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); 3866 struct panthor_scheduler *sched; 3867 u32 gpu_as_count, num_groups; 3868 int prio, ret; 3869 3870 sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); 3871 if (!sched) 3872 return -ENOMEM; 3873 3874 /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That 3875 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. 3876 */ 3877 num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); 3878 3879 /* The FW-side scheduler might deadlock if two groups with the same 3880 * priority try to access a set of resources that overlaps, with part 3881 * of the resources being allocated to one group and the other part to 3882 * the other group, both groups waiting for the remaining resources to 3883 * be allocated. To avoid that, it is recommended to assign each CSG a 3884 * different priority. In theory we could allow several groups to have 3885 * the same CSG priority if they don't request the same resources, but 3886 * that makes the scheduling logic more complicated, so let's clamp 3887 * the number of CSG slots to MAX_CSG_PRIO + 1 for now. 3888 */ 3889 num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); 3890 3891 /* We need at least one AS for the MCU and one for the GPU contexts. */ 3892 gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); 3893 if (!gpu_as_count) { 3894 drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", 3895 gpu_as_count + 1); 3896 return -EINVAL; 3897 } 3898 3899 sched->ptdev = ptdev; 3900 sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); 3901 sched->csg_slot_count = num_groups; 3902 sched->cs_slot_count = csg_iface->control->stream_num; 3903 sched->as_slot_count = gpu_as_count; 3904 ptdev->csif_info.csg_slot_count = sched->csg_slot_count; 3905 ptdev->csif_info.cs_slot_count = sched->cs_slot_count; 3906 ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; 3907 3908 sched->last_tick = 0; 3909 sched->resched_target = U64_MAX; 3910 sched->tick_period = msecs_to_jiffies(10); 3911 INIT_DELAYED_WORK(&sched->tick_work, tick_work); 3912 INIT_WORK(&sched->sync_upd_work, sync_upd_work); 3913 INIT_WORK(&sched->fw_events_work, process_fw_events_work); 3914 3915 ret = drmm_mutex_init(&ptdev->base, &sched->lock); 3916 if (ret) 3917 return ret; 3918 3919 for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { 3920 INIT_LIST_HEAD(&sched->groups.runnable[prio]); 3921 INIT_LIST_HEAD(&sched->groups.idle[prio]); 3922 } 3923 INIT_LIST_HEAD(&sched->groups.waiting); 3924 3925 ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); 3926 if (ret) 3927 return ret; 3928 3929 INIT_LIST_HEAD(&sched->reset.stopped_groups); 3930 3931 /* sched->heap_alloc_wq will be used for heap chunk allocation on 3932 * tiler OOM events, which means we can't use the same workqueue for 3933 * the scheduler because works queued by the scheduler are in 3934 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to 3935 * work around this limitation. 3936 * 3937 * FIXME: Ultimately, what we need is a failable/non-blocking GEM 3938 * allocation path that we can call when a heap OOM is reported. The 3939 * FW is smart enough to fall back on other methods if the kernel can't 3940 * allocate memory, and fail the tiling job if none of these 3941 * countermeasures worked. 3942 * 3943 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the 3944 * system is running out of memory. 3945 */ 3946 sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); 3947 sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 3948 if (!sched->wq || !sched->heap_alloc_wq) { 3949 panthor_sched_fini(&ptdev->base, sched); 3950 drm_err(&ptdev->base, "Failed to allocate the workqueues"); 3951 return -ENOMEM; 3952 } 3953 3954 ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); 3955 if (ret) 3956 return ret; 3957 3958 ptdev->scheduler = sched; 3959 return 0; 3960 } 3961