1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27
28 #include <linux/uaccess.h>
29
30 #include "internal.h"
31
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35 {
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54
55 /*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64
65 const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
67 };
68 EXPORT_SYMBOL(simple_dentry_operations);
69
70 /*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
73 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 {
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
80
81 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
82 return NULL;
83
84 d_add(dentry, NULL);
85 return NULL;
86 }
87 EXPORT_SYMBOL(simple_lookup);
88
dcache_dir_open(struct inode * inode,struct file * file)89 int dcache_dir_open(struct inode *inode, struct file *file)
90 {
91 file->private_data = d_alloc_cursor(file->f_path.dentry);
92
93 return file->private_data ? 0 : -ENOMEM;
94 }
95 EXPORT_SYMBOL(dcache_dir_open);
96
dcache_dir_close(struct inode * inode,struct file * file)97 int dcache_dir_close(struct inode *inode, struct file *file)
98 {
99 dput(file->private_data);
100 return 0;
101 }
102 EXPORT_SYMBOL(dcache_dir_close);
103
104 /* parent is locked at least shared */
105 /*
106 * Returns an element of siblings' list.
107 * We are looking for <count>th positive after <p>; if
108 * found, dentry is grabbed and returned to caller.
109 * If no such element exists, NULL is returned.
110 */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)111 static struct dentry *scan_positives(struct dentry *cursor,
112 struct hlist_node **p,
113 loff_t count,
114 struct dentry *last)
115 {
116 struct dentry *dentry = cursor->d_parent, *found = NULL;
117
118 spin_lock(&dentry->d_lock);
119 while (*p) {
120 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
121 p = &d->d_sib.next;
122 // we must at least skip cursors, to avoid livelocks
123 if (d->d_flags & DCACHE_DENTRY_CURSOR)
124 continue;
125 if (simple_positive(d) && !--count) {
126 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 if (simple_positive(d))
128 found = dget_dlock(d);
129 spin_unlock(&d->d_lock);
130 if (likely(found))
131 break;
132 count = 1;
133 }
134 if (need_resched()) {
135 if (!hlist_unhashed(&cursor->d_sib))
136 __hlist_del(&cursor->d_sib);
137 hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 p = &cursor->d_sib.next;
139 spin_unlock(&dentry->d_lock);
140 cond_resched();
141 spin_lock(&dentry->d_lock);
142 }
143 }
144 spin_unlock(&dentry->d_lock);
145 dput(last);
146 return found;
147 }
148
dcache_dir_lseek(struct file * file,loff_t offset,int whence)149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
150 {
151 struct dentry *dentry = file->f_path.dentry;
152 switch (whence) {
153 case 1:
154 offset += file->f_pos;
155 fallthrough;
156 case 0:
157 if (offset >= 0)
158 break;
159 fallthrough;
160 default:
161 return -EINVAL;
162 }
163 if (offset != file->f_pos) {
164 struct dentry *cursor = file->private_data;
165 struct dentry *to = NULL;
166
167 inode_lock_shared(dentry->d_inode);
168
169 if (offset > 2)
170 to = scan_positives(cursor, &dentry->d_children.first,
171 offset - 2, NULL);
172 spin_lock(&dentry->d_lock);
173 hlist_del_init(&cursor->d_sib);
174 if (to)
175 hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 spin_unlock(&dentry->d_lock);
177 dput(to);
178
179 file->f_pos = offset;
180
181 inode_unlock_shared(dentry->d_inode);
182 }
183 return offset;
184 }
185 EXPORT_SYMBOL(dcache_dir_lseek);
186
187 /*
188 * Directory is locked and all positive dentries in it are safe, since
189 * for ramfs-type trees they can't go away without unlink() or rmdir(),
190 * both impossible due to the lock on directory.
191 */
192
dcache_readdir(struct file * file,struct dir_context * ctx)193 int dcache_readdir(struct file *file, struct dir_context *ctx)
194 {
195 struct dentry *dentry = file->f_path.dentry;
196 struct dentry *cursor = file->private_data;
197 struct dentry *next = NULL;
198 struct hlist_node **p;
199
200 if (!dir_emit_dots(file, ctx))
201 return 0;
202
203 if (ctx->pos == 2)
204 p = &dentry->d_children.first;
205 else
206 p = &cursor->d_sib.next;
207
208 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 d_inode(next)->i_ino,
211 fs_umode_to_dtype(d_inode(next)->i_mode)))
212 break;
213 ctx->pos++;
214 p = &next->d_sib.next;
215 }
216 spin_lock(&dentry->d_lock);
217 hlist_del_init(&cursor->d_sib);
218 if (next)
219 hlist_add_before(&cursor->d_sib, &next->d_sib);
220 spin_unlock(&dentry->d_lock);
221 dput(next);
222
223 return 0;
224 }
225 EXPORT_SYMBOL(dcache_readdir);
226
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228 {
229 return -EISDIR;
230 }
231 EXPORT_SYMBOL(generic_read_dir);
232
233 const struct file_operations simple_dir_operations = {
234 .open = dcache_dir_open,
235 .release = dcache_dir_close,
236 .llseek = dcache_dir_lseek,
237 .read = generic_read_dir,
238 .iterate_shared = dcache_readdir,
239 .fsync = noop_fsync,
240 };
241 EXPORT_SYMBOL(simple_dir_operations);
242
243 const struct inode_operations simple_dir_inode_operations = {
244 .lookup = simple_lookup,
245 };
246 EXPORT_SYMBOL(simple_dir_inode_operations);
247
248 /* simple_offset_add() never assigns these to a dentry */
249 enum {
250 DIR_OFFSET_FIRST = 2, /* Find first real entry */
251 DIR_OFFSET_EOD = S32_MAX,
252 };
253
254 /* simple_offset_add() allocation range */
255 enum {
256 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
257 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
258 };
259
offset_set(struct dentry * dentry,long offset)260 static void offset_set(struct dentry *dentry, long offset)
261 {
262 dentry->d_fsdata = (void *)offset;
263 }
264
dentry2offset(struct dentry * dentry)265 static long dentry2offset(struct dentry *dentry)
266 {
267 return (long)dentry->d_fsdata;
268 }
269
270 static struct lock_class_key simple_offset_lock_class;
271
272 /**
273 * simple_offset_init - initialize an offset_ctx
274 * @octx: directory offset map to be initialized
275 *
276 */
simple_offset_init(struct offset_ctx * octx)277 void simple_offset_init(struct offset_ctx *octx)
278 {
279 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
280 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
281 octx->next_offset = DIR_OFFSET_MIN;
282 }
283
284 /**
285 * simple_offset_add - Add an entry to a directory's offset map
286 * @octx: directory offset ctx to be updated
287 * @dentry: new dentry being added
288 *
289 * Returns zero on success. @octx and the dentry's offset are updated.
290 * Otherwise, a negative errno value is returned.
291 */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)292 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
293 {
294 unsigned long offset;
295 int ret;
296
297 if (dentry2offset(dentry) != 0)
298 return -EBUSY;
299
300 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
301 DIR_OFFSET_MAX, &octx->next_offset,
302 GFP_KERNEL);
303 if (unlikely(ret < 0))
304 return ret == -EBUSY ? -ENOSPC : ret;
305
306 offset_set(dentry, offset);
307 return 0;
308 }
309
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)310 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
311 long offset)
312 {
313 int ret;
314
315 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
316 if (ret)
317 return ret;
318 offset_set(dentry, offset);
319 return 0;
320 }
321
322 /**
323 * simple_offset_remove - Remove an entry to a directory's offset map
324 * @octx: directory offset ctx to be updated
325 * @dentry: dentry being removed
326 *
327 */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)328 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
329 {
330 long offset;
331
332 offset = dentry2offset(dentry);
333 if (offset == 0)
334 return;
335
336 mtree_erase(&octx->mt, offset);
337 offset_set(dentry, 0);
338 }
339
340 /**
341 * simple_offset_rename - handle directory offsets for rename
342 * @old_dir: parent directory of source entry
343 * @old_dentry: dentry of source entry
344 * @new_dir: parent_directory of destination entry
345 * @new_dentry: dentry of destination
346 *
347 * Caller provides appropriate serialization.
348 *
349 * User space expects the directory offset value of the replaced
350 * (new) directory entry to be unchanged after a rename.
351 *
352 * Returns zero on success, a negative errno value on failure.
353 */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)354 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
355 struct inode *new_dir, struct dentry *new_dentry)
356 {
357 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
358 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
359 long new_offset = dentry2offset(new_dentry);
360
361 simple_offset_remove(old_ctx, old_dentry);
362
363 if (new_offset) {
364 offset_set(new_dentry, 0);
365 return simple_offset_replace(new_ctx, old_dentry, new_offset);
366 }
367 return simple_offset_add(new_ctx, old_dentry);
368 }
369
370 /**
371 * simple_offset_rename_exchange - exchange rename with directory offsets
372 * @old_dir: parent of dentry being moved
373 * @old_dentry: dentry being moved
374 * @new_dir: destination parent
375 * @new_dentry: destination dentry
376 *
377 * This API preserves the directory offset values. Caller provides
378 * appropriate serialization.
379 *
380 * Returns zero on success. Otherwise a negative errno is returned and the
381 * rename is rolled back.
382 */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)383 int simple_offset_rename_exchange(struct inode *old_dir,
384 struct dentry *old_dentry,
385 struct inode *new_dir,
386 struct dentry *new_dentry)
387 {
388 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
389 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
390 long old_index = dentry2offset(old_dentry);
391 long new_index = dentry2offset(new_dentry);
392 int ret;
393
394 simple_offset_remove(old_ctx, old_dentry);
395 simple_offset_remove(new_ctx, new_dentry);
396
397 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
398 if (ret)
399 goto out_restore;
400
401 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
402 if (ret) {
403 simple_offset_remove(new_ctx, old_dentry);
404 goto out_restore;
405 }
406
407 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
408 if (ret) {
409 simple_offset_remove(new_ctx, old_dentry);
410 simple_offset_remove(old_ctx, new_dentry);
411 goto out_restore;
412 }
413 return 0;
414
415 out_restore:
416 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
417 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
418 return ret;
419 }
420
421 /**
422 * simple_offset_destroy - Release offset map
423 * @octx: directory offset ctx that is about to be destroyed
424 *
425 * During fs teardown (eg. umount), a directory's offset map might still
426 * contain entries. xa_destroy() cleans out anything that remains.
427 */
simple_offset_destroy(struct offset_ctx * octx)428 void simple_offset_destroy(struct offset_ctx *octx)
429 {
430 mtree_destroy(&octx->mt);
431 }
432
433 /**
434 * offset_dir_llseek - Advance the read position of a directory descriptor
435 * @file: an open directory whose position is to be updated
436 * @offset: a byte offset
437 * @whence: enumerator describing the starting position for this update
438 *
439 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
440 *
441 * Returns the updated read position if successful; otherwise a
442 * negative errno is returned and the read position remains unchanged.
443 */
offset_dir_llseek(struct file * file,loff_t offset,int whence)444 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
445 {
446 switch (whence) {
447 case SEEK_CUR:
448 offset += file->f_pos;
449 fallthrough;
450 case SEEK_SET:
451 if (offset >= 0)
452 break;
453 fallthrough;
454 default:
455 return -EINVAL;
456 }
457
458 return vfs_setpos(file, offset, LONG_MAX);
459 }
460
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)461 static struct dentry *find_positive_dentry(struct dentry *parent,
462 struct dentry *dentry,
463 bool next)
464 {
465 struct dentry *found = NULL;
466
467 spin_lock(&parent->d_lock);
468 if (next)
469 dentry = d_next_sibling(dentry);
470 else if (!dentry)
471 dentry = d_first_child(parent);
472 hlist_for_each_entry_from(dentry, d_sib) {
473 if (!simple_positive(dentry))
474 continue;
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (simple_positive(dentry))
477 found = dget_dlock(dentry);
478 spin_unlock(&dentry->d_lock);
479 if (likely(found))
480 break;
481 }
482 spin_unlock(&parent->d_lock);
483 return found;
484 }
485
486 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)487 offset_dir_lookup(struct dentry *parent, loff_t offset)
488 {
489 struct inode *inode = d_inode(parent);
490 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
491 struct dentry *child, *found = NULL;
492
493 MA_STATE(mas, &octx->mt, offset, offset);
494
495 if (offset == DIR_OFFSET_FIRST)
496 found = find_positive_dentry(parent, NULL, false);
497 else {
498 rcu_read_lock();
499 child = mas_find(&mas, DIR_OFFSET_MAX);
500 found = find_positive_dentry(parent, child, false);
501 rcu_read_unlock();
502 }
503 return found;
504 }
505
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)506 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
507 {
508 struct inode *inode = d_inode(dentry);
509
510 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
511 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
512 }
513
offset_iterate_dir(struct file * file,struct dir_context * ctx)514 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
515 {
516 struct dentry *dir = file->f_path.dentry;
517 struct dentry *dentry;
518
519 dentry = offset_dir_lookup(dir, ctx->pos);
520 if (!dentry)
521 goto out_eod;
522 while (true) {
523 struct dentry *next;
524
525 ctx->pos = dentry2offset(dentry);
526 if (!offset_dir_emit(ctx, dentry))
527 break;
528
529 next = find_positive_dentry(dir, dentry, true);
530 dput(dentry);
531
532 if (!next)
533 goto out_eod;
534 dentry = next;
535 }
536 dput(dentry);
537 return;
538
539 out_eod:
540 ctx->pos = DIR_OFFSET_EOD;
541 }
542
543 /**
544 * offset_readdir - Emit entries starting at offset @ctx->pos
545 * @file: an open directory to iterate over
546 * @ctx: directory iteration context
547 *
548 * Caller must hold @file's i_rwsem to prevent insertion or removal of
549 * entries during this call.
550 *
551 * On entry, @ctx->pos contains an offset that represents the first entry
552 * to be read from the directory.
553 *
554 * The operation continues until there are no more entries to read, or
555 * until the ctx->actor indicates there is no more space in the caller's
556 * output buffer.
557 *
558 * On return, @ctx->pos contains an offset that will read the next entry
559 * in this directory when offset_readdir() is called again with @ctx.
560 * Caller places this value in the d_off field of the last entry in the
561 * user's buffer.
562 *
563 * Return values:
564 * %0 - Complete
565 */
offset_readdir(struct file * file,struct dir_context * ctx)566 static int offset_readdir(struct file *file, struct dir_context *ctx)
567 {
568 struct dentry *dir = file->f_path.dentry;
569
570 lockdep_assert_held(&d_inode(dir)->i_rwsem);
571
572 if (!dir_emit_dots(file, ctx))
573 return 0;
574 if (ctx->pos != DIR_OFFSET_EOD)
575 offset_iterate_dir(file, ctx);
576 return 0;
577 }
578
579 const struct file_operations simple_offset_dir_operations = {
580 .llseek = offset_dir_llseek,
581 .iterate_shared = offset_readdir,
582 .read = generic_read_dir,
583 .fsync = noop_fsync,
584 };
585
find_next_child(struct dentry * parent,struct dentry * prev)586 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
587 {
588 struct dentry *child = NULL, *d;
589
590 spin_lock(&parent->d_lock);
591 d = prev ? d_next_sibling(prev) : d_first_child(parent);
592 hlist_for_each_entry_from(d, d_sib) {
593 if (simple_positive(d)) {
594 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
595 if (simple_positive(d))
596 child = dget_dlock(d);
597 spin_unlock(&d->d_lock);
598 if (likely(child))
599 break;
600 }
601 }
602 spin_unlock(&parent->d_lock);
603 dput(prev);
604 return child;
605 }
606
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))607 void simple_recursive_removal(struct dentry *dentry,
608 void (*callback)(struct dentry *))
609 {
610 struct dentry *this = dget(dentry);
611 while (true) {
612 struct dentry *victim = NULL, *child;
613 struct inode *inode = this->d_inode;
614
615 inode_lock(inode);
616 if (d_is_dir(this))
617 inode->i_flags |= S_DEAD;
618 while ((child = find_next_child(this, victim)) == NULL) {
619 // kill and ascend
620 // update metadata while it's still locked
621 inode_set_ctime_current(inode);
622 clear_nlink(inode);
623 inode_unlock(inode);
624 victim = this;
625 this = this->d_parent;
626 inode = this->d_inode;
627 inode_lock(inode);
628 if (simple_positive(victim)) {
629 d_invalidate(victim); // avoid lost mounts
630 if (d_is_dir(victim))
631 fsnotify_rmdir(inode, victim);
632 else
633 fsnotify_unlink(inode, victim);
634 if (callback)
635 callback(victim);
636 dput(victim); // unpin it
637 }
638 if (victim == dentry) {
639 inode_set_mtime_to_ts(inode,
640 inode_set_ctime_current(inode));
641 if (d_is_dir(dentry))
642 drop_nlink(inode);
643 inode_unlock(inode);
644 dput(dentry);
645 return;
646 }
647 }
648 inode_unlock(inode);
649 this = child;
650 }
651 }
652 EXPORT_SYMBOL(simple_recursive_removal);
653
654 static const struct super_operations simple_super_operations = {
655 .statfs = simple_statfs,
656 };
657
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)658 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
659 {
660 struct pseudo_fs_context *ctx = fc->fs_private;
661 struct inode *root;
662
663 s->s_maxbytes = MAX_LFS_FILESIZE;
664 s->s_blocksize = PAGE_SIZE;
665 s->s_blocksize_bits = PAGE_SHIFT;
666 s->s_magic = ctx->magic;
667 s->s_op = ctx->ops ?: &simple_super_operations;
668 s->s_export_op = ctx->eops;
669 s->s_xattr = ctx->xattr;
670 s->s_time_gran = 1;
671 root = new_inode(s);
672 if (!root)
673 return -ENOMEM;
674
675 /*
676 * since this is the first inode, make it number 1. New inodes created
677 * after this must take care not to collide with it (by passing
678 * max_reserved of 1 to iunique).
679 */
680 root->i_ino = 1;
681 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
682 simple_inode_init_ts(root);
683 s->s_root = d_make_root(root);
684 if (!s->s_root)
685 return -ENOMEM;
686 s->s_d_op = ctx->dops;
687 return 0;
688 }
689
pseudo_fs_get_tree(struct fs_context * fc)690 static int pseudo_fs_get_tree(struct fs_context *fc)
691 {
692 return get_tree_nodev(fc, pseudo_fs_fill_super);
693 }
694
pseudo_fs_free(struct fs_context * fc)695 static void pseudo_fs_free(struct fs_context *fc)
696 {
697 kfree(fc->fs_private);
698 }
699
700 static const struct fs_context_operations pseudo_fs_context_ops = {
701 .free = pseudo_fs_free,
702 .get_tree = pseudo_fs_get_tree,
703 };
704
705 /*
706 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
707 * will never be mountable)
708 */
init_pseudo(struct fs_context * fc,unsigned long magic)709 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
710 unsigned long magic)
711 {
712 struct pseudo_fs_context *ctx;
713
714 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
715 if (likely(ctx)) {
716 ctx->magic = magic;
717 fc->fs_private = ctx;
718 fc->ops = &pseudo_fs_context_ops;
719 fc->sb_flags |= SB_NOUSER;
720 fc->global = true;
721 }
722 return ctx;
723 }
724 EXPORT_SYMBOL(init_pseudo);
725
simple_open(struct inode * inode,struct file * file)726 int simple_open(struct inode *inode, struct file *file)
727 {
728 if (inode->i_private)
729 file->private_data = inode->i_private;
730 return 0;
731 }
732 EXPORT_SYMBOL(simple_open);
733
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)734 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
735 {
736 struct inode *inode = d_inode(old_dentry);
737
738 inode_set_mtime_to_ts(dir,
739 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
740 inc_nlink(inode);
741 ihold(inode);
742 dget(dentry);
743 d_instantiate(dentry, inode);
744 return 0;
745 }
746 EXPORT_SYMBOL(simple_link);
747
simple_empty(struct dentry * dentry)748 int simple_empty(struct dentry *dentry)
749 {
750 struct dentry *child;
751 int ret = 0;
752
753 spin_lock(&dentry->d_lock);
754 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
755 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
756 if (simple_positive(child)) {
757 spin_unlock(&child->d_lock);
758 goto out;
759 }
760 spin_unlock(&child->d_lock);
761 }
762 ret = 1;
763 out:
764 spin_unlock(&dentry->d_lock);
765 return ret;
766 }
767 EXPORT_SYMBOL(simple_empty);
768
simple_unlink(struct inode * dir,struct dentry * dentry)769 int simple_unlink(struct inode *dir, struct dentry *dentry)
770 {
771 struct inode *inode = d_inode(dentry);
772
773 inode_set_mtime_to_ts(dir,
774 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
775 drop_nlink(inode);
776 dput(dentry);
777 return 0;
778 }
779 EXPORT_SYMBOL(simple_unlink);
780
simple_rmdir(struct inode * dir,struct dentry * dentry)781 int simple_rmdir(struct inode *dir, struct dentry *dentry)
782 {
783 if (!simple_empty(dentry))
784 return -ENOTEMPTY;
785
786 drop_nlink(d_inode(dentry));
787 simple_unlink(dir, dentry);
788 drop_nlink(dir);
789 return 0;
790 }
791 EXPORT_SYMBOL(simple_rmdir);
792
793 /**
794 * simple_rename_timestamp - update the various inode timestamps for rename
795 * @old_dir: old parent directory
796 * @old_dentry: dentry that is being renamed
797 * @new_dir: new parent directory
798 * @new_dentry: target for rename
799 *
800 * POSIX mandates that the old and new parent directories have their ctime and
801 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
802 * their ctime updated.
803 */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)804 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
805 struct inode *new_dir, struct dentry *new_dentry)
806 {
807 struct inode *newino = d_inode(new_dentry);
808
809 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
810 if (new_dir != old_dir)
811 inode_set_mtime_to_ts(new_dir,
812 inode_set_ctime_current(new_dir));
813 inode_set_ctime_current(d_inode(old_dentry));
814 if (newino)
815 inode_set_ctime_current(newino);
816 }
817 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
818
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)819 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
820 struct inode *new_dir, struct dentry *new_dentry)
821 {
822 bool old_is_dir = d_is_dir(old_dentry);
823 bool new_is_dir = d_is_dir(new_dentry);
824
825 if (old_dir != new_dir && old_is_dir != new_is_dir) {
826 if (old_is_dir) {
827 drop_nlink(old_dir);
828 inc_nlink(new_dir);
829 } else {
830 drop_nlink(new_dir);
831 inc_nlink(old_dir);
832 }
833 }
834 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
835 return 0;
836 }
837 EXPORT_SYMBOL_GPL(simple_rename_exchange);
838
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)839 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
840 struct dentry *old_dentry, struct inode *new_dir,
841 struct dentry *new_dentry, unsigned int flags)
842 {
843 int they_are_dirs = d_is_dir(old_dentry);
844
845 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
846 return -EINVAL;
847
848 if (flags & RENAME_EXCHANGE)
849 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
850
851 if (!simple_empty(new_dentry))
852 return -ENOTEMPTY;
853
854 if (d_really_is_positive(new_dentry)) {
855 simple_unlink(new_dir, new_dentry);
856 if (they_are_dirs) {
857 drop_nlink(d_inode(new_dentry));
858 drop_nlink(old_dir);
859 }
860 } else if (they_are_dirs) {
861 drop_nlink(old_dir);
862 inc_nlink(new_dir);
863 }
864
865 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
866 return 0;
867 }
868 EXPORT_SYMBOL(simple_rename);
869
870 /**
871 * simple_setattr - setattr for simple filesystem
872 * @idmap: idmap of the target mount
873 * @dentry: dentry
874 * @iattr: iattr structure
875 *
876 * Returns 0 on success, -error on failure.
877 *
878 * simple_setattr is a simple ->setattr implementation without a proper
879 * implementation of size changes.
880 *
881 * It can either be used for in-memory filesystems or special files
882 * on simple regular filesystems. Anything that needs to change on-disk
883 * or wire state on size changes needs its own setattr method.
884 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)885 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
886 struct iattr *iattr)
887 {
888 struct inode *inode = d_inode(dentry);
889 int error;
890
891 error = setattr_prepare(idmap, dentry, iattr);
892 if (error)
893 return error;
894
895 if (iattr->ia_valid & ATTR_SIZE)
896 truncate_setsize(inode, iattr->ia_size);
897 setattr_copy(idmap, inode, iattr);
898 mark_inode_dirty(inode);
899 return 0;
900 }
901 EXPORT_SYMBOL(simple_setattr);
902
simple_read_folio(struct file * file,struct folio * folio)903 static int simple_read_folio(struct file *file, struct folio *folio)
904 {
905 folio_zero_range(folio, 0, folio_size(folio));
906 flush_dcache_folio(folio);
907 folio_mark_uptodate(folio);
908 folio_unlock(folio);
909 return 0;
910 }
911
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)912 int simple_write_begin(struct file *file, struct address_space *mapping,
913 loff_t pos, unsigned len,
914 struct folio **foliop, void **fsdata)
915 {
916 struct folio *folio;
917
918 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
919 mapping_gfp_mask(mapping));
920 if (IS_ERR(folio))
921 return PTR_ERR(folio);
922
923 *foliop = folio;
924
925 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
926 size_t from = offset_in_folio(folio, pos);
927
928 folio_zero_segments(folio, 0, from,
929 from + len, folio_size(folio));
930 }
931 return 0;
932 }
933 EXPORT_SYMBOL(simple_write_begin);
934
935 /**
936 * simple_write_end - .write_end helper for non-block-device FSes
937 * @file: See .write_end of address_space_operations
938 * @mapping: "
939 * @pos: "
940 * @len: "
941 * @copied: "
942 * @folio: "
943 * @fsdata: "
944 *
945 * simple_write_end does the minimum needed for updating a folio after
946 * writing is done. It has the same API signature as the .write_end of
947 * address_space_operations vector. So it can just be set onto .write_end for
948 * FSes that don't need any other processing. i_mutex is assumed to be held.
949 * Block based filesystems should use generic_write_end().
950 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
951 * is not called, so a filesystem that actually does store data in .write_inode
952 * should extend on what's done here with a call to mark_inode_dirty() in the
953 * case that i_size has changed.
954 *
955 * Use *ONLY* with simple_read_folio()
956 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)957 static int simple_write_end(struct file *file, struct address_space *mapping,
958 loff_t pos, unsigned len, unsigned copied,
959 struct folio *folio, void *fsdata)
960 {
961 struct inode *inode = folio->mapping->host;
962 loff_t last_pos = pos + copied;
963
964 /* zero the stale part of the folio if we did a short copy */
965 if (!folio_test_uptodate(folio)) {
966 if (copied < len) {
967 size_t from = offset_in_folio(folio, pos);
968
969 folio_zero_range(folio, from + copied, len - copied);
970 }
971 folio_mark_uptodate(folio);
972 }
973 /*
974 * No need to use i_size_read() here, the i_size
975 * cannot change under us because we hold the i_mutex.
976 */
977 if (last_pos > inode->i_size)
978 i_size_write(inode, last_pos);
979
980 folio_mark_dirty(folio);
981 folio_unlock(folio);
982 folio_put(folio);
983
984 return copied;
985 }
986
987 /*
988 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
989 */
990 const struct address_space_operations ram_aops = {
991 .read_folio = simple_read_folio,
992 .write_begin = simple_write_begin,
993 .write_end = simple_write_end,
994 .dirty_folio = noop_dirty_folio,
995 };
996 EXPORT_SYMBOL(ram_aops);
997
998 /*
999 * the inodes created here are not hashed. If you use iunique to generate
1000 * unique inode values later for this filesystem, then you must take care
1001 * to pass it an appropriate max_reserved value to avoid collisions.
1002 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1003 int simple_fill_super(struct super_block *s, unsigned long magic,
1004 const struct tree_descr *files)
1005 {
1006 struct inode *inode;
1007 struct dentry *dentry;
1008 int i;
1009
1010 s->s_blocksize = PAGE_SIZE;
1011 s->s_blocksize_bits = PAGE_SHIFT;
1012 s->s_magic = magic;
1013 s->s_op = &simple_super_operations;
1014 s->s_time_gran = 1;
1015
1016 inode = new_inode(s);
1017 if (!inode)
1018 return -ENOMEM;
1019 /*
1020 * because the root inode is 1, the files array must not contain an
1021 * entry at index 1
1022 */
1023 inode->i_ino = 1;
1024 inode->i_mode = S_IFDIR | 0755;
1025 simple_inode_init_ts(inode);
1026 inode->i_op = &simple_dir_inode_operations;
1027 inode->i_fop = &simple_dir_operations;
1028 set_nlink(inode, 2);
1029 s->s_root = d_make_root(inode);
1030 if (!s->s_root)
1031 return -ENOMEM;
1032 for (i = 0; !files->name || files->name[0]; i++, files++) {
1033 if (!files->name)
1034 continue;
1035
1036 /* warn if it tries to conflict with the root inode */
1037 if (unlikely(i == 1))
1038 printk(KERN_WARNING "%s: %s passed in a files array"
1039 "with an index of 1!\n", __func__,
1040 s->s_type->name);
1041
1042 dentry = d_alloc_name(s->s_root, files->name);
1043 if (!dentry)
1044 return -ENOMEM;
1045 inode = new_inode(s);
1046 if (!inode) {
1047 dput(dentry);
1048 return -ENOMEM;
1049 }
1050 inode->i_mode = S_IFREG | files->mode;
1051 simple_inode_init_ts(inode);
1052 inode->i_fop = files->ops;
1053 inode->i_ino = i;
1054 d_add(dentry, inode);
1055 }
1056 return 0;
1057 }
1058 EXPORT_SYMBOL(simple_fill_super);
1059
1060 static DEFINE_SPINLOCK(pin_fs_lock);
1061
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1062 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1063 {
1064 struct vfsmount *mnt = NULL;
1065 spin_lock(&pin_fs_lock);
1066 if (unlikely(!*mount)) {
1067 spin_unlock(&pin_fs_lock);
1068 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1069 if (IS_ERR(mnt))
1070 return PTR_ERR(mnt);
1071 spin_lock(&pin_fs_lock);
1072 if (!*mount)
1073 *mount = mnt;
1074 }
1075 mntget(*mount);
1076 ++*count;
1077 spin_unlock(&pin_fs_lock);
1078 mntput(mnt);
1079 return 0;
1080 }
1081 EXPORT_SYMBOL(simple_pin_fs);
1082
simple_release_fs(struct vfsmount ** mount,int * count)1083 void simple_release_fs(struct vfsmount **mount, int *count)
1084 {
1085 struct vfsmount *mnt;
1086 spin_lock(&pin_fs_lock);
1087 mnt = *mount;
1088 if (!--*count)
1089 *mount = NULL;
1090 spin_unlock(&pin_fs_lock);
1091 mntput(mnt);
1092 }
1093 EXPORT_SYMBOL(simple_release_fs);
1094
1095 /**
1096 * simple_read_from_buffer - copy data from the buffer to user space
1097 * @to: the user space buffer to read to
1098 * @count: the maximum number of bytes to read
1099 * @ppos: the current position in the buffer
1100 * @from: the buffer to read from
1101 * @available: the size of the buffer
1102 *
1103 * The simple_read_from_buffer() function reads up to @count bytes from the
1104 * buffer @from at offset @ppos into the user space address starting at @to.
1105 *
1106 * On success, the number of bytes read is returned and the offset @ppos is
1107 * advanced by this number, or negative value is returned on error.
1108 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1109 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1110 const void *from, size_t available)
1111 {
1112 loff_t pos = *ppos;
1113 size_t ret;
1114
1115 if (pos < 0)
1116 return -EINVAL;
1117 if (pos >= available || !count)
1118 return 0;
1119 if (count > available - pos)
1120 count = available - pos;
1121 ret = copy_to_user(to, from + pos, count);
1122 if (ret == count)
1123 return -EFAULT;
1124 count -= ret;
1125 *ppos = pos + count;
1126 return count;
1127 }
1128 EXPORT_SYMBOL(simple_read_from_buffer);
1129
1130 /**
1131 * simple_write_to_buffer - copy data from user space to the buffer
1132 * @to: the buffer to write to
1133 * @available: the size of the buffer
1134 * @ppos: the current position in the buffer
1135 * @from: the user space buffer to read from
1136 * @count: the maximum number of bytes to read
1137 *
1138 * The simple_write_to_buffer() function reads up to @count bytes from the user
1139 * space address starting at @from into the buffer @to at offset @ppos.
1140 *
1141 * On success, the number of bytes written is returned and the offset @ppos is
1142 * advanced by this number, or negative value is returned on error.
1143 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1144 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1145 const void __user *from, size_t count)
1146 {
1147 loff_t pos = *ppos;
1148 size_t res;
1149
1150 if (pos < 0)
1151 return -EINVAL;
1152 if (pos >= available || !count)
1153 return 0;
1154 if (count > available - pos)
1155 count = available - pos;
1156 res = copy_from_user(to + pos, from, count);
1157 if (res == count)
1158 return -EFAULT;
1159 count -= res;
1160 *ppos = pos + count;
1161 return count;
1162 }
1163 EXPORT_SYMBOL(simple_write_to_buffer);
1164
1165 /**
1166 * memory_read_from_buffer - copy data from the buffer
1167 * @to: the kernel space buffer to read to
1168 * @count: the maximum number of bytes to read
1169 * @ppos: the current position in the buffer
1170 * @from: the buffer to read from
1171 * @available: the size of the buffer
1172 *
1173 * The memory_read_from_buffer() function reads up to @count bytes from the
1174 * buffer @from at offset @ppos into the kernel space address starting at @to.
1175 *
1176 * On success, the number of bytes read is returned and the offset @ppos is
1177 * advanced by this number, or negative value is returned on error.
1178 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1179 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1180 const void *from, size_t available)
1181 {
1182 loff_t pos = *ppos;
1183
1184 if (pos < 0)
1185 return -EINVAL;
1186 if (pos >= available)
1187 return 0;
1188 if (count > available - pos)
1189 count = available - pos;
1190 memcpy(to, from + pos, count);
1191 *ppos = pos + count;
1192
1193 return count;
1194 }
1195 EXPORT_SYMBOL(memory_read_from_buffer);
1196
1197 /*
1198 * Transaction based IO.
1199 * The file expects a single write which triggers the transaction, and then
1200 * possibly a read which collects the result - which is stored in a
1201 * file-local buffer.
1202 */
1203
simple_transaction_set(struct file * file,size_t n)1204 void simple_transaction_set(struct file *file, size_t n)
1205 {
1206 struct simple_transaction_argresp *ar = file->private_data;
1207
1208 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1209
1210 /*
1211 * The barrier ensures that ar->size will really remain zero until
1212 * ar->data is ready for reading.
1213 */
1214 smp_mb();
1215 ar->size = n;
1216 }
1217 EXPORT_SYMBOL(simple_transaction_set);
1218
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1219 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1220 {
1221 struct simple_transaction_argresp *ar;
1222 static DEFINE_SPINLOCK(simple_transaction_lock);
1223
1224 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1225 return ERR_PTR(-EFBIG);
1226
1227 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1228 if (!ar)
1229 return ERR_PTR(-ENOMEM);
1230
1231 spin_lock(&simple_transaction_lock);
1232
1233 /* only one write allowed per open */
1234 if (file->private_data) {
1235 spin_unlock(&simple_transaction_lock);
1236 free_page((unsigned long)ar);
1237 return ERR_PTR(-EBUSY);
1238 }
1239
1240 file->private_data = ar;
1241
1242 spin_unlock(&simple_transaction_lock);
1243
1244 if (copy_from_user(ar->data, buf, size))
1245 return ERR_PTR(-EFAULT);
1246
1247 return ar->data;
1248 }
1249 EXPORT_SYMBOL(simple_transaction_get);
1250
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1251 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1252 {
1253 struct simple_transaction_argresp *ar = file->private_data;
1254
1255 if (!ar)
1256 return 0;
1257 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1258 }
1259 EXPORT_SYMBOL(simple_transaction_read);
1260
simple_transaction_release(struct inode * inode,struct file * file)1261 int simple_transaction_release(struct inode *inode, struct file *file)
1262 {
1263 free_page((unsigned long)file->private_data);
1264 return 0;
1265 }
1266 EXPORT_SYMBOL(simple_transaction_release);
1267
1268 /* Simple attribute files */
1269
1270 struct simple_attr {
1271 int (*get)(void *, u64 *);
1272 int (*set)(void *, u64);
1273 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1274 char set_buf[24];
1275 void *data;
1276 const char *fmt; /* format for read operation */
1277 struct mutex mutex; /* protects access to these buffers */
1278 };
1279
1280 /* simple_attr_open is called by an actual attribute open file operation
1281 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1282 int simple_attr_open(struct inode *inode, struct file *file,
1283 int (*get)(void *, u64 *), int (*set)(void *, u64),
1284 const char *fmt)
1285 {
1286 struct simple_attr *attr;
1287
1288 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1289 if (!attr)
1290 return -ENOMEM;
1291
1292 attr->get = get;
1293 attr->set = set;
1294 attr->data = inode->i_private;
1295 attr->fmt = fmt;
1296 mutex_init(&attr->mutex);
1297
1298 file->private_data = attr;
1299
1300 return nonseekable_open(inode, file);
1301 }
1302 EXPORT_SYMBOL_GPL(simple_attr_open);
1303
simple_attr_release(struct inode * inode,struct file * file)1304 int simple_attr_release(struct inode *inode, struct file *file)
1305 {
1306 kfree(file->private_data);
1307 return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1310
1311 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1312 ssize_t simple_attr_read(struct file *file, char __user *buf,
1313 size_t len, loff_t *ppos)
1314 {
1315 struct simple_attr *attr;
1316 size_t size;
1317 ssize_t ret;
1318
1319 attr = file->private_data;
1320
1321 if (!attr->get)
1322 return -EACCES;
1323
1324 ret = mutex_lock_interruptible(&attr->mutex);
1325 if (ret)
1326 return ret;
1327
1328 if (*ppos && attr->get_buf[0]) {
1329 /* continued read */
1330 size = strlen(attr->get_buf);
1331 } else {
1332 /* first read */
1333 u64 val;
1334 ret = attr->get(attr->data, &val);
1335 if (ret)
1336 goto out;
1337
1338 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1339 attr->fmt, (unsigned long long)val);
1340 }
1341
1342 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1343 out:
1344 mutex_unlock(&attr->mutex);
1345 return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(simple_attr_read);
1348
1349 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1350 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1351 size_t len, loff_t *ppos, bool is_signed)
1352 {
1353 struct simple_attr *attr;
1354 unsigned long long val;
1355 size_t size;
1356 ssize_t ret;
1357
1358 attr = file->private_data;
1359 if (!attr->set)
1360 return -EACCES;
1361
1362 ret = mutex_lock_interruptible(&attr->mutex);
1363 if (ret)
1364 return ret;
1365
1366 ret = -EFAULT;
1367 size = min(sizeof(attr->set_buf) - 1, len);
1368 if (copy_from_user(attr->set_buf, buf, size))
1369 goto out;
1370
1371 attr->set_buf[size] = '\0';
1372 if (is_signed)
1373 ret = kstrtoll(attr->set_buf, 0, &val);
1374 else
1375 ret = kstrtoull(attr->set_buf, 0, &val);
1376 if (ret)
1377 goto out;
1378 ret = attr->set(attr->data, val);
1379 if (ret == 0)
1380 ret = len; /* on success, claim we got the whole input */
1381 out:
1382 mutex_unlock(&attr->mutex);
1383 return ret;
1384 }
1385
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1386 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1387 size_t len, loff_t *ppos)
1388 {
1389 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1390 }
1391 EXPORT_SYMBOL_GPL(simple_attr_write);
1392
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1393 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1394 size_t len, loff_t *ppos)
1395 {
1396 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1397 }
1398 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1399
1400 /**
1401 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1402 * @inode: the object to encode
1403 * @fh: where to store the file handle fragment
1404 * @max_len: maximum length to store there (in 4 byte units)
1405 * @parent: parent directory inode, if wanted
1406 *
1407 * This generic encode_fh function assumes that the 32 inode number
1408 * is suitable for locating an inode, and that the generation number
1409 * can be used to check that it is still valid. It places them in the
1410 * filehandle fragment where export_decode_fh expects to find them.
1411 */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1412 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1413 struct inode *parent)
1414 {
1415 struct fid *fid = (void *)fh;
1416 int len = *max_len;
1417 int type = FILEID_INO32_GEN;
1418
1419 if (parent && (len < 4)) {
1420 *max_len = 4;
1421 return FILEID_INVALID;
1422 } else if (len < 2) {
1423 *max_len = 2;
1424 return FILEID_INVALID;
1425 }
1426
1427 len = 2;
1428 fid->i32.ino = inode->i_ino;
1429 fid->i32.gen = inode->i_generation;
1430 if (parent) {
1431 fid->i32.parent_ino = parent->i_ino;
1432 fid->i32.parent_gen = parent->i_generation;
1433 len = 4;
1434 type = FILEID_INO32_GEN_PARENT;
1435 }
1436 *max_len = len;
1437 return type;
1438 }
1439 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1440
1441 /**
1442 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1443 * @sb: filesystem to do the file handle conversion on
1444 * @fid: file handle to convert
1445 * @fh_len: length of the file handle in bytes
1446 * @fh_type: type of file handle
1447 * @get_inode: filesystem callback to retrieve inode
1448 *
1449 * This function decodes @fid as long as it has one of the well-known
1450 * Linux filehandle types and calls @get_inode on it to retrieve the
1451 * inode for the object specified in the file handle.
1452 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1453 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1454 int fh_len, int fh_type, struct inode *(*get_inode)
1455 (struct super_block *sb, u64 ino, u32 gen))
1456 {
1457 struct inode *inode = NULL;
1458
1459 if (fh_len < 2)
1460 return NULL;
1461
1462 switch (fh_type) {
1463 case FILEID_INO32_GEN:
1464 case FILEID_INO32_GEN_PARENT:
1465 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1466 break;
1467 }
1468
1469 return d_obtain_alias(inode);
1470 }
1471 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1472
1473 /**
1474 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1475 * @sb: filesystem to do the file handle conversion on
1476 * @fid: file handle to convert
1477 * @fh_len: length of the file handle in bytes
1478 * @fh_type: type of file handle
1479 * @get_inode: filesystem callback to retrieve inode
1480 *
1481 * This function decodes @fid as long as it has one of the well-known
1482 * Linux filehandle types and calls @get_inode on it to retrieve the
1483 * inode for the _parent_ object specified in the file handle if it
1484 * is specified in the file handle, or NULL otherwise.
1485 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1486 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1487 int fh_len, int fh_type, struct inode *(*get_inode)
1488 (struct super_block *sb, u64 ino, u32 gen))
1489 {
1490 struct inode *inode = NULL;
1491
1492 if (fh_len <= 2)
1493 return NULL;
1494
1495 switch (fh_type) {
1496 case FILEID_INO32_GEN_PARENT:
1497 inode = get_inode(sb, fid->i32.parent_ino,
1498 (fh_len > 3 ? fid->i32.parent_gen : 0));
1499 break;
1500 }
1501
1502 return d_obtain_alias(inode);
1503 }
1504 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1505
1506 /**
1507 * __generic_file_fsync - generic fsync implementation for simple filesystems
1508 *
1509 * @file: file to synchronize
1510 * @start: start offset in bytes
1511 * @end: end offset in bytes (inclusive)
1512 * @datasync: only synchronize essential metadata if true
1513 *
1514 * This is a generic implementation of the fsync method for simple
1515 * filesystems which track all non-inode metadata in the buffers list
1516 * hanging off the address_space structure.
1517 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1518 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1519 int datasync)
1520 {
1521 struct inode *inode = file->f_mapping->host;
1522 int err;
1523 int ret;
1524
1525 err = file_write_and_wait_range(file, start, end);
1526 if (err)
1527 return err;
1528
1529 inode_lock(inode);
1530 ret = sync_mapping_buffers(inode->i_mapping);
1531 if (!(inode->i_state & I_DIRTY_ALL))
1532 goto out;
1533 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1534 goto out;
1535
1536 err = sync_inode_metadata(inode, 1);
1537 if (ret == 0)
1538 ret = err;
1539
1540 out:
1541 inode_unlock(inode);
1542 /* check and advance again to catch errors after syncing out buffers */
1543 err = file_check_and_advance_wb_err(file);
1544 if (ret == 0)
1545 ret = err;
1546 return ret;
1547 }
1548 EXPORT_SYMBOL(__generic_file_fsync);
1549
1550 /**
1551 * generic_file_fsync - generic fsync implementation for simple filesystems
1552 * with flush
1553 * @file: file to synchronize
1554 * @start: start offset in bytes
1555 * @end: end offset in bytes (inclusive)
1556 * @datasync: only synchronize essential metadata if true
1557 *
1558 */
1559
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1560 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1561 int datasync)
1562 {
1563 struct inode *inode = file->f_mapping->host;
1564 int err;
1565
1566 err = __generic_file_fsync(file, start, end, datasync);
1567 if (err)
1568 return err;
1569 return blkdev_issue_flush(inode->i_sb->s_bdev);
1570 }
1571 EXPORT_SYMBOL(generic_file_fsync);
1572
1573 /**
1574 * generic_check_addressable - Check addressability of file system
1575 * @blocksize_bits: log of file system block size
1576 * @num_blocks: number of blocks in file system
1577 *
1578 * Determine whether a file system with @num_blocks blocks (and a
1579 * block size of 2**@blocksize_bits) is addressable by the sector_t
1580 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1581 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1582 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1583 {
1584 u64 last_fs_block = num_blocks - 1;
1585 u64 last_fs_page =
1586 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1587
1588 if (unlikely(num_blocks == 0))
1589 return 0;
1590
1591 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1592 return -EINVAL;
1593
1594 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1595 (last_fs_page > (pgoff_t)(~0ULL))) {
1596 return -EFBIG;
1597 }
1598 return 0;
1599 }
1600 EXPORT_SYMBOL(generic_check_addressable);
1601
1602 /*
1603 * No-op implementation of ->fsync for in-memory filesystems.
1604 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1605 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1606 {
1607 return 0;
1608 }
1609 EXPORT_SYMBOL(noop_fsync);
1610
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1611 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1612 {
1613 /*
1614 * iomap based filesystems support direct I/O without need for
1615 * this callback. However, it still needs to be set in
1616 * inode->a_ops so that open/fcntl know that direct I/O is
1617 * generally supported.
1618 */
1619 return -EINVAL;
1620 }
1621 EXPORT_SYMBOL_GPL(noop_direct_IO);
1622
1623 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1624 void kfree_link(void *p)
1625 {
1626 kfree(p);
1627 }
1628 EXPORT_SYMBOL(kfree_link);
1629
alloc_anon_inode(struct super_block * s)1630 struct inode *alloc_anon_inode(struct super_block *s)
1631 {
1632 static const struct address_space_operations anon_aops = {
1633 .dirty_folio = noop_dirty_folio,
1634 };
1635 struct inode *inode = new_inode_pseudo(s);
1636
1637 if (!inode)
1638 return ERR_PTR(-ENOMEM);
1639
1640 inode->i_ino = get_next_ino();
1641 inode->i_mapping->a_ops = &anon_aops;
1642
1643 /*
1644 * Mark the inode dirty from the very beginning,
1645 * that way it will never be moved to the dirty
1646 * list because mark_inode_dirty() will think
1647 * that it already _is_ on the dirty list.
1648 */
1649 inode->i_state = I_DIRTY;
1650 inode->i_mode = S_IRUSR | S_IWUSR;
1651 inode->i_uid = current_fsuid();
1652 inode->i_gid = current_fsgid();
1653 inode->i_flags |= S_PRIVATE;
1654 simple_inode_init_ts(inode);
1655 return inode;
1656 }
1657 EXPORT_SYMBOL(alloc_anon_inode);
1658
1659 /**
1660 * simple_nosetlease - generic helper for prohibiting leases
1661 * @filp: file pointer
1662 * @arg: type of lease to obtain
1663 * @flp: new lease supplied for insertion
1664 * @priv: private data for lm_setup operation
1665 *
1666 * Generic helper for filesystems that do not wish to allow leases to be set.
1667 * All arguments are ignored and it just returns -EINVAL.
1668 */
1669 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1670 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1671 void **priv)
1672 {
1673 return -EINVAL;
1674 }
1675 EXPORT_SYMBOL(simple_nosetlease);
1676
1677 /**
1678 * simple_get_link - generic helper to get the target of "fast" symlinks
1679 * @dentry: not used here
1680 * @inode: the symlink inode
1681 * @done: not used here
1682 *
1683 * Generic helper for filesystems to use for symlink inodes where a pointer to
1684 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1685 * since as an optimization the path lookup code uses any non-NULL ->i_link
1686 * directly, without calling ->get_link(). But ->get_link() still must be set,
1687 * to mark the inode_operations as being for a symlink.
1688 *
1689 * Return: the symlink target
1690 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1691 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1692 struct delayed_call *done)
1693 {
1694 return inode->i_link;
1695 }
1696 EXPORT_SYMBOL(simple_get_link);
1697
1698 const struct inode_operations simple_symlink_inode_operations = {
1699 .get_link = simple_get_link,
1700 };
1701 EXPORT_SYMBOL(simple_symlink_inode_operations);
1702
1703 /*
1704 * Operations for a permanently empty directory.
1705 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1706 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1707 {
1708 return ERR_PTR(-ENOENT);
1709 }
1710
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1711 static int empty_dir_setattr(struct mnt_idmap *idmap,
1712 struct dentry *dentry, struct iattr *attr)
1713 {
1714 return -EPERM;
1715 }
1716
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1717 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1718 {
1719 return -EOPNOTSUPP;
1720 }
1721
1722 static const struct inode_operations empty_dir_inode_operations = {
1723 .lookup = empty_dir_lookup,
1724 .setattr = empty_dir_setattr,
1725 .listxattr = empty_dir_listxattr,
1726 };
1727
empty_dir_llseek(struct file * file,loff_t offset,int whence)1728 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1729 {
1730 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1731 return generic_file_llseek_size(file, offset, whence, 2, 2);
1732 }
1733
empty_dir_readdir(struct file * file,struct dir_context * ctx)1734 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1735 {
1736 dir_emit_dots(file, ctx);
1737 return 0;
1738 }
1739
1740 static const struct file_operations empty_dir_operations = {
1741 .llseek = empty_dir_llseek,
1742 .read = generic_read_dir,
1743 .iterate_shared = empty_dir_readdir,
1744 .fsync = noop_fsync,
1745 };
1746
1747
make_empty_dir_inode(struct inode * inode)1748 void make_empty_dir_inode(struct inode *inode)
1749 {
1750 set_nlink(inode, 2);
1751 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1752 inode->i_uid = GLOBAL_ROOT_UID;
1753 inode->i_gid = GLOBAL_ROOT_GID;
1754 inode->i_rdev = 0;
1755 inode->i_size = 0;
1756 inode->i_blkbits = PAGE_SHIFT;
1757 inode->i_blocks = 0;
1758
1759 inode->i_op = &empty_dir_inode_operations;
1760 inode->i_opflags &= ~IOP_XATTR;
1761 inode->i_fop = &empty_dir_operations;
1762 }
1763
is_empty_dir_inode(struct inode * inode)1764 bool is_empty_dir_inode(struct inode *inode)
1765 {
1766 return (inode->i_fop == &empty_dir_operations) &&
1767 (inode->i_op == &empty_dir_inode_operations);
1768 }
1769
1770 #if IS_ENABLED(CONFIG_UNICODE)
1771 /**
1772 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1773 * @dentry: dentry whose name we are checking against
1774 * @len: len of name of dentry
1775 * @str: str pointer to name of dentry
1776 * @name: Name to compare against
1777 *
1778 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1779 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1780 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1781 const char *str, const struct qstr *name)
1782 {
1783 const struct dentry *parent;
1784 const struct inode *dir;
1785 union shortname_store strbuf;
1786 struct qstr qstr;
1787
1788 /*
1789 * Attempt a case-sensitive match first. It is cheaper and
1790 * should cover most lookups, including all the sane
1791 * applications that expect a case-sensitive filesystem.
1792 *
1793 * This comparison is safe under RCU because the caller
1794 * guarantees the consistency between str and len. See
1795 * __d_lookup_rcu_op_compare() for details.
1796 */
1797 if (len == name->len && !memcmp(str, name->name, len))
1798 return 0;
1799
1800 parent = READ_ONCE(dentry->d_parent);
1801 dir = READ_ONCE(parent->d_inode);
1802 if (!dir || !IS_CASEFOLDED(dir))
1803 return 1;
1804
1805 qstr.len = len;
1806 qstr.name = str;
1807 /*
1808 * If the dentry name is stored in-line, then it may be concurrently
1809 * modified by a rename. If this happens, the VFS will eventually retry
1810 * the lookup, so it doesn't matter what ->d_compare() returns.
1811 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1812 * string. Therefore, we have to copy the name into a temporary buffer.
1813 * As above, len is guaranteed to match str, so the shortname case
1814 * is exactly when str points to ->d_shortname.
1815 */
1816 if (qstr.name == dentry->d_shortname.string) {
1817 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1818 qstr.name = strbuf.string;
1819 /* prevent compiler from optimizing out the temporary buffer */
1820 barrier();
1821 }
1822
1823 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1824 }
1825 EXPORT_SYMBOL(generic_ci_d_compare);
1826
1827 /**
1828 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1829 * @dentry: dentry of the parent directory
1830 * @str: qstr of name whose hash we should fill in
1831 *
1832 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1833 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1834 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1835 {
1836 const struct inode *dir = READ_ONCE(dentry->d_inode);
1837 struct super_block *sb = dentry->d_sb;
1838 const struct unicode_map *um = sb->s_encoding;
1839 int ret;
1840
1841 if (!dir || !IS_CASEFOLDED(dir))
1842 return 0;
1843
1844 ret = utf8_casefold_hash(um, dentry, str);
1845 if (ret < 0 && sb_has_strict_encoding(sb))
1846 return -EINVAL;
1847 return 0;
1848 }
1849 EXPORT_SYMBOL(generic_ci_d_hash);
1850
1851 static const struct dentry_operations generic_ci_dentry_ops = {
1852 .d_hash = generic_ci_d_hash,
1853 .d_compare = generic_ci_d_compare,
1854 #ifdef CONFIG_FS_ENCRYPTION
1855 .d_revalidate = fscrypt_d_revalidate,
1856 #endif
1857 };
1858
1859 /**
1860 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1861 * This is a filesystem helper for comparison with directory entries.
1862 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1863 *
1864 * @parent: Inode of the parent of the dirent under comparison
1865 * @name: name under lookup.
1866 * @folded_name: Optional pre-folded name under lookup
1867 * @de_name: Dirent name.
1868 * @de_name_len: dirent name length.
1869 *
1870 * Test whether a case-insensitive directory entry matches the filename
1871 * being searched. If @folded_name is provided, it is used instead of
1872 * recalculating the casefold of @name.
1873 *
1874 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1875 * < 0 on error.
1876 */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1877 int generic_ci_match(const struct inode *parent,
1878 const struct qstr *name,
1879 const struct qstr *folded_name,
1880 const u8 *de_name, u32 de_name_len)
1881 {
1882 const struct super_block *sb = parent->i_sb;
1883 const struct unicode_map *um = sb->s_encoding;
1884 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1885 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1886 int res = 0;
1887
1888 if (IS_ENCRYPTED(parent)) {
1889 const struct fscrypt_str encrypted_name =
1890 FSTR_INIT((u8 *) de_name, de_name_len);
1891
1892 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1893 return -EINVAL;
1894
1895 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1896 if (!decrypted_name.name)
1897 return -ENOMEM;
1898 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1899 &decrypted_name);
1900 if (res < 0) {
1901 kfree(decrypted_name.name);
1902 return res;
1903 }
1904 dirent.name = decrypted_name.name;
1905 dirent.len = decrypted_name.len;
1906 }
1907
1908 /*
1909 * Attempt a case-sensitive match first. It is cheaper and
1910 * should cover most lookups, including all the sane
1911 * applications that expect a case-sensitive filesystem.
1912 */
1913
1914 if (dirent.len == name->len &&
1915 !memcmp(name->name, dirent.name, dirent.len))
1916 goto out;
1917
1918 if (folded_name->name)
1919 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1920 else
1921 res = utf8_strncasecmp(um, name, &dirent);
1922
1923 out:
1924 kfree(decrypted_name.name);
1925 if (res < 0 && sb_has_strict_encoding(sb)) {
1926 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1927 return 0;
1928 }
1929 return !res;
1930 }
1931 EXPORT_SYMBOL(generic_ci_match);
1932 #endif
1933
1934 #ifdef CONFIG_FS_ENCRYPTION
1935 static const struct dentry_operations generic_encrypted_dentry_ops = {
1936 .d_revalidate = fscrypt_d_revalidate,
1937 };
1938 #endif
1939
1940 /**
1941 * generic_set_sb_d_ops - helper for choosing the set of
1942 * filesystem-wide dentry operations for the enabled features
1943 * @sb: superblock to be configured
1944 *
1945 * Filesystems supporting casefolding and/or fscrypt can call this
1946 * helper at mount-time to configure sb->s_d_op to best set of dentry
1947 * operations required for the enabled features. The helper must be
1948 * called after these have been configured, but before the root dentry
1949 * is created.
1950 */
generic_set_sb_d_ops(struct super_block * sb)1951 void generic_set_sb_d_ops(struct super_block *sb)
1952 {
1953 #if IS_ENABLED(CONFIG_UNICODE)
1954 if (sb->s_encoding) {
1955 sb->s_d_op = &generic_ci_dentry_ops;
1956 return;
1957 }
1958 #endif
1959 #ifdef CONFIG_FS_ENCRYPTION
1960 if (sb->s_cop) {
1961 sb->s_d_op = &generic_encrypted_dentry_ops;
1962 return;
1963 }
1964 #endif
1965 }
1966 EXPORT_SYMBOL(generic_set_sb_d_ops);
1967
1968 /**
1969 * inode_maybe_inc_iversion - increments i_version
1970 * @inode: inode with the i_version that should be updated
1971 * @force: increment the counter even if it's not necessary?
1972 *
1973 * Every time the inode is modified, the i_version field must be seen to have
1974 * changed by any observer.
1975 *
1976 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1977 * the value, and clear the queried flag.
1978 *
1979 * In the common case where neither is set, then we can return "false" without
1980 * updating i_version.
1981 *
1982 * If this function returns false, and no other metadata has changed, then we
1983 * can avoid logging the metadata.
1984 */
inode_maybe_inc_iversion(struct inode * inode,bool force)1985 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1986 {
1987 u64 cur, new;
1988
1989 /*
1990 * The i_version field is not strictly ordered with any other inode
1991 * information, but the legacy inode_inc_iversion code used a spinlock
1992 * to serialize increments.
1993 *
1994 * We add a full memory barrier to ensure that any de facto ordering
1995 * with other state is preserved (either implicitly coming from cmpxchg
1996 * or explicitly from smp_mb if we don't know upfront if we will execute
1997 * the former).
1998 *
1999 * These barriers pair with inode_query_iversion().
2000 */
2001 cur = inode_peek_iversion_raw(inode);
2002 if (!force && !(cur & I_VERSION_QUERIED)) {
2003 smp_mb();
2004 cur = inode_peek_iversion_raw(inode);
2005 }
2006
2007 do {
2008 /* If flag is clear then we needn't do anything */
2009 if (!force && !(cur & I_VERSION_QUERIED))
2010 return false;
2011
2012 /* Since lowest bit is flag, add 2 to avoid it */
2013 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2014 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2015 return true;
2016 }
2017 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2018
2019 /**
2020 * inode_query_iversion - read i_version for later use
2021 * @inode: inode from which i_version should be read
2022 *
2023 * Read the inode i_version counter. This should be used by callers that wish
2024 * to store the returned i_version for later comparison. This will guarantee
2025 * that a later query of the i_version will result in a different value if
2026 * anything has changed.
2027 *
2028 * In this implementation, we fetch the current value, set the QUERIED flag and
2029 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2030 * that fails, we try again with the newly fetched value from the cmpxchg.
2031 */
inode_query_iversion(struct inode * inode)2032 u64 inode_query_iversion(struct inode *inode)
2033 {
2034 u64 cur, new;
2035 bool fenced = false;
2036
2037 /*
2038 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2039 * inode_maybe_inc_iversion(), see that routine for more details.
2040 */
2041 cur = inode_peek_iversion_raw(inode);
2042 do {
2043 /* If flag is already set, then no need to swap */
2044 if (cur & I_VERSION_QUERIED) {
2045 if (!fenced)
2046 smp_mb();
2047 break;
2048 }
2049
2050 fenced = true;
2051 new = cur | I_VERSION_QUERIED;
2052 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2053 return cur >> I_VERSION_QUERIED_SHIFT;
2054 }
2055 EXPORT_SYMBOL(inode_query_iversion);
2056
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2057 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2058 ssize_t direct_written, ssize_t buffered_written)
2059 {
2060 struct address_space *mapping = iocb->ki_filp->f_mapping;
2061 loff_t pos = iocb->ki_pos - buffered_written;
2062 loff_t end = iocb->ki_pos - 1;
2063 int err;
2064
2065 /*
2066 * If the buffered write fallback returned an error, we want to return
2067 * the number of bytes which were written by direct I/O, or the error
2068 * code if that was zero.
2069 *
2070 * Note that this differs from normal direct-io semantics, which will
2071 * return -EFOO even if some bytes were written.
2072 */
2073 if (unlikely(buffered_written < 0)) {
2074 if (direct_written)
2075 return direct_written;
2076 return buffered_written;
2077 }
2078
2079 /*
2080 * We need to ensure that the page cache pages are written to disk and
2081 * invalidated to preserve the expected O_DIRECT semantics.
2082 */
2083 err = filemap_write_and_wait_range(mapping, pos, end);
2084 if (err < 0) {
2085 /*
2086 * We don't know how much we wrote, so just return the number of
2087 * bytes which were direct-written
2088 */
2089 iocb->ki_pos -= buffered_written;
2090 if (direct_written)
2091 return direct_written;
2092 return err;
2093 }
2094 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2095 return direct_written + buffered_written;
2096 }
2097 EXPORT_SYMBOL_GPL(direct_write_fallback);
2098
2099 /**
2100 * simple_inode_init_ts - initialize the timestamps for a new inode
2101 * @inode: inode to be initialized
2102 *
2103 * When a new inode is created, most filesystems set the timestamps to the
2104 * current time. Add a helper to do this.
2105 */
simple_inode_init_ts(struct inode * inode)2106 struct timespec64 simple_inode_init_ts(struct inode *inode)
2107 {
2108 struct timespec64 ts = inode_set_ctime_current(inode);
2109
2110 inode_set_atime_to_ts(inode, ts);
2111 inode_set_mtime_to_ts(inode, ts);
2112 return ts;
2113 }
2114 EXPORT_SYMBOL(simple_inode_init_ts);
2115
get_stashed_dentry(struct dentry ** stashed)2116 static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2117 {
2118 struct dentry *dentry;
2119
2120 guard(rcu)();
2121 dentry = rcu_dereference(*stashed);
2122 if (!dentry)
2123 return NULL;
2124 if (!lockref_get_not_dead(&dentry->d_lockref))
2125 return NULL;
2126 return dentry;
2127 }
2128
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2129 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2130 struct super_block *sb,
2131 void *data)
2132 {
2133 struct dentry *dentry;
2134 struct inode *inode;
2135 const struct stashed_operations *sops = sb->s_fs_info;
2136 int ret;
2137
2138 inode = new_inode_pseudo(sb);
2139 if (!inode) {
2140 sops->put_data(data);
2141 return ERR_PTR(-ENOMEM);
2142 }
2143
2144 inode->i_flags |= S_IMMUTABLE;
2145 inode->i_mode = S_IFREG;
2146 simple_inode_init_ts(inode);
2147
2148 ret = sops->init_inode(inode, data);
2149 if (ret < 0) {
2150 iput(inode);
2151 return ERR_PTR(ret);
2152 }
2153
2154 /* Notice when this is changed. */
2155 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2156 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2157
2158 dentry = d_alloc_anon(sb);
2159 if (!dentry) {
2160 iput(inode);
2161 return ERR_PTR(-ENOMEM);
2162 }
2163
2164 /* Store address of location where dentry's supposed to be stashed. */
2165 dentry->d_fsdata = stashed;
2166
2167 /* @data is now owned by the fs */
2168 d_instantiate(dentry, inode);
2169 return dentry;
2170 }
2171
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2172 static struct dentry *stash_dentry(struct dentry **stashed,
2173 struct dentry *dentry)
2174 {
2175 guard(rcu)();
2176 for (;;) {
2177 struct dentry *old;
2178
2179 /* Assume any old dentry was cleared out. */
2180 old = cmpxchg(stashed, NULL, dentry);
2181 if (likely(!old))
2182 return dentry;
2183
2184 /* Check if somebody else installed a reusable dentry. */
2185 if (lockref_get_not_dead(&old->d_lockref))
2186 return old;
2187
2188 /* There's an old dead dentry there, try to take it over. */
2189 if (likely(try_cmpxchg(stashed, &old, dentry)))
2190 return dentry;
2191 }
2192 }
2193
2194 /**
2195 * path_from_stashed - create path from stashed or new dentry
2196 * @stashed: where to retrieve or stash dentry
2197 * @mnt: mnt of the filesystems to use
2198 * @data: data to store in inode->i_private
2199 * @path: path to create
2200 *
2201 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2202 * is still valid then it will be reused. If the dentry isn't able the function
2203 * will allocate a new dentry and inode. It will then check again whether it
2204 * can reuse an existing dentry in case one has been added in the meantime or
2205 * update @stashed with the newly added dentry.
2206 *
2207 * Special-purpose helper for nsfs and pidfs.
2208 *
2209 * Return: On success zero and on failure a negative error is returned.
2210 */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2211 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2212 struct path *path)
2213 {
2214 struct dentry *dentry;
2215 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2216
2217 /* See if dentry can be reused. */
2218 path->dentry = get_stashed_dentry(stashed);
2219 if (path->dentry) {
2220 sops->put_data(data);
2221 goto out_path;
2222 }
2223
2224 /* Allocate a new dentry. */
2225 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2226 if (IS_ERR(dentry))
2227 return PTR_ERR(dentry);
2228
2229 /* Added a new dentry. @data is now owned by the filesystem. */
2230 path->dentry = stash_dentry(stashed, dentry);
2231 if (path->dentry != dentry)
2232 dput(dentry);
2233
2234 out_path:
2235 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2236 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2237 path->mnt = mntget(mnt);
2238 return 0;
2239 }
2240
stashed_dentry_prune(struct dentry * dentry)2241 void stashed_dentry_prune(struct dentry *dentry)
2242 {
2243 struct dentry **stashed = dentry->d_fsdata;
2244 struct inode *inode = d_inode(dentry);
2245
2246 if (WARN_ON_ONCE(!stashed))
2247 return;
2248
2249 if (!inode)
2250 return;
2251
2252 /*
2253 * Only replace our own @dentry as someone else might've
2254 * already cleared out @dentry and stashed their own
2255 * dentry in there.
2256 */
2257 cmpxchg(stashed, dentry, NULL);
2258 }
2259