1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2016 Gary Mills 26 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 28 * Copyright 2019 Joyent, Inc. 29 */ 30 31 #include <sys/dsl_scan.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_prop.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dnode.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/arc.h> 41 #include <sys/arc_impl.h> 42 #include <sys/zap.h> 43 #include <sys/zio.h> 44 #include <sys/zfs_context.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/zfs_znode.h> 47 #include <sys/spa_impl.h> 48 #include <sys/vdev_impl.h> 49 #include <sys/zil_impl.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/brt.h> 52 #include <sys/ddt.h> 53 #include <sys/sa.h> 54 #include <sys/sa_impl.h> 55 #include <sys/zfeature.h> 56 #include <sys/abd.h> 57 #include <sys/range_tree.h> 58 #include <sys/dbuf.h> 59 #ifdef _KERNEL 60 #include <sys/zfs_vfsops.h> 61 #endif 62 63 /* 64 * Grand theory statement on scan queue sorting 65 * 66 * Scanning is implemented by recursively traversing all indirection levels 67 * in an object and reading all blocks referenced from said objects. This 68 * results in us approximately traversing the object from lowest logical 69 * offset to the highest. For best performance, we would want the logical 70 * blocks to be physically contiguous. However, this is frequently not the 71 * case with pools given the allocation patterns of copy-on-write filesystems. 72 * So instead, we put the I/Os into a reordering queue and issue them in a 73 * way that will most benefit physical disks (LBA-order). 74 * 75 * Queue management: 76 * 77 * Ideally, we would want to scan all metadata and queue up all block I/O 78 * prior to starting to issue it, because that allows us to do an optimal 79 * sorting job. This can however consume large amounts of memory. Therefore 80 * we continuously monitor the size of the queues and constrain them to 5% 81 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 82 * limit, we clear out a few of the largest extents at the head of the queues 83 * to make room for more scanning. Hopefully, these extents will be fairly 84 * large and contiguous, allowing us to approach sequential I/O throughput 85 * even without a fully sorted tree. 86 * 87 * Metadata scanning takes place in dsl_scan_visit(), which is called from 88 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 89 * metadata on the pool, or we need to make room in memory because our 90 * queues are too large, dsl_scan_visit() is postponed and 91 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 92 * that metadata scanning and queued I/O issuing are mutually exclusive. This 93 * allows us to provide maximum sequential I/O throughput for the majority of 94 * I/O's issued since sequential I/O performance is significantly negatively 95 * impacted if it is interleaved with random I/O. 96 * 97 * Implementation Notes 98 * 99 * One side effect of the queued scanning algorithm is that the scanning code 100 * needs to be notified whenever a block is freed. This is needed to allow 101 * the scanning code to remove these I/Os from the issuing queue. Additionally, 102 * we do not attempt to queue gang blocks to be issued sequentially since this 103 * is very hard to do and would have an extremely limited performance benefit. 104 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 105 * algorithm. 106 * 107 * Backwards compatibility 108 * 109 * This new algorithm is backwards compatible with the legacy on-disk data 110 * structures (and therefore does not require a new feature flag). 111 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 112 * will stop scanning metadata (in logical order) and wait for all outstanding 113 * sorted I/O to complete. Once this is done, we write out a checkpoint 114 * bookmark, indicating that we have scanned everything logically before it. 115 * If the pool is imported on a machine without the new sorting algorithm, 116 * the scan simply resumes from the last checkpoint using the legacy algorithm. 117 */ 118 119 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 120 const zbookmark_phys_t *); 121 122 static scan_cb_t dsl_scan_scrub_cb; 123 124 static int scan_ds_queue_compare(const void *a, const void *b); 125 static int scan_prefetch_queue_compare(const void *a, const void *b); 126 static void scan_ds_queue_clear(dsl_scan_t *scn); 127 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 128 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 129 uint64_t *txg); 130 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 131 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 132 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 133 static uint64_t dsl_scan_count_data_disks(spa_t *spa); 134 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb); 135 136 extern uint_t zfs_vdev_async_write_active_min_dirty_percent; 137 static int zfs_scan_blkstats = 0; 138 139 /* 140 * 'zpool status' uses bytes processed per pass to report throughput and 141 * estimate time remaining. We define a pass to start when the scanning 142 * phase completes for a sequential resilver. Optionally, this value 143 * may be used to reset the pass statistics every N txgs to provide an 144 * estimated completion time based on currently observed performance. 145 */ 146 static uint_t zfs_scan_report_txgs = 0; 147 148 /* 149 * By default zfs will check to ensure it is not over the hard memory 150 * limit before each txg. If finer-grained control of this is needed 151 * this value can be set to 1 to enable checking before scanning each 152 * block. 153 */ 154 static int zfs_scan_strict_mem_lim = B_FALSE; 155 156 /* 157 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 158 * to strike a balance here between keeping the vdev queues full of I/Os 159 * at all times and not overflowing the queues to cause long latency, 160 * which would cause long txg sync times. No matter what, we will not 161 * overload the drives with I/O, since that is protected by 162 * zfs_vdev_scrub_max_active. 163 */ 164 static uint64_t zfs_scan_vdev_limit = 16 << 20; 165 166 static uint_t zfs_scan_issue_strategy = 0; 167 168 /* don't queue & sort zios, go direct */ 169 static int zfs_scan_legacy = B_FALSE; 170 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 171 172 /* 173 * fill_weight is non-tunable at runtime, so we copy it at module init from 174 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 175 * break queue sorting. 176 */ 177 static uint_t zfs_scan_fill_weight = 3; 178 static uint64_t fill_weight; 179 180 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 181 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 182 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 183 184 185 /* fraction of physmem */ 186 static uint_t zfs_scan_mem_lim_fact = 20; 187 188 /* fraction of mem lim above */ 189 static uint_t zfs_scan_mem_lim_soft_fact = 20; 190 191 /* minimum milliseconds to scrub per txg */ 192 static uint_t zfs_scrub_min_time_ms = 750; 193 194 /* minimum milliseconds to obsolete per txg */ 195 static uint_t zfs_obsolete_min_time_ms = 500; 196 197 /* minimum milliseconds to free per txg */ 198 static uint_t zfs_free_min_time_ms = 500; 199 200 /* minimum milliseconds to resilver per txg */ 201 static uint_t zfs_resilver_min_time_ms = 1500; 202 203 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */ 204 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 205 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 206 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 207 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 208 /* max number of blocks to free in a single TXG */ 209 static uint64_t zfs_async_block_max_blocks = UINT64_MAX; 210 /* max number of dedup blocks to free in a single TXG */ 211 static uint64_t zfs_max_async_dedup_frees = 250000; 212 213 /* 214 * After freeing this many async ZIOs (dedup, clone, gang blocks), wait for 215 * them to complete before continuing. This prevents unbounded I/O queueing. 216 */ 217 static uint64_t zfs_async_free_zio_wait_interval = 2000; 218 219 /* set to disable resilver deferring */ 220 static int zfs_resilver_disable_defer = B_FALSE; 221 222 /* Don't defer a resilver if the one in progress only got this far: */ 223 static uint_t zfs_resilver_defer_percent = 10; 224 225 /* 226 * Number of TXGs to wait after importing before starting background 227 * work (async destroys, scan/scrub/resilver operations). This allows 228 * the import command and filesystem mounts to complete quickly without 229 * being delayed by background activities. The value is somewhat arbitrary 230 * since userspace triggers filesystem mounts asynchronously, but 5 TXGs 231 * provides a reasonable window for import completion in most cases. 232 */ 233 static uint_t zfs_import_defer_txgs = 5; 234 235 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 236 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 237 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 238 239 #define DSL_SCAN_IS_SCRUB(scn) \ 240 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB) 241 242 #define DSL_SCAN_IS_RESILVER(scn) \ 243 ((scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 244 245 /* 246 * Enable/disable the processing of the free_bpobj object. 247 */ 248 static int zfs_free_bpobj_enabled = 1; 249 250 /* Error blocks to be scrubbed in one txg. */ 251 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12; 252 253 /* the order has to match pool_scan_type */ 254 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 255 NULL, 256 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 257 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 258 }; 259 260 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 261 typedef struct { 262 uint64_t sds_dsobj; 263 uint64_t sds_txg; 264 avl_node_t sds_node; 265 } scan_ds_t; 266 267 /* 268 * This controls what conditions are placed on dsl_scan_sync_state(): 269 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 270 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 271 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 272 * write out the scn_phys_cached version. 273 * See dsl_scan_sync_state for details. 274 */ 275 typedef enum { 276 SYNC_OPTIONAL, 277 SYNC_MANDATORY, 278 SYNC_CACHED 279 } state_sync_type_t; 280 281 /* 282 * This struct represents the minimum information needed to reconstruct a 283 * zio for sequential scanning. This is useful because many of these will 284 * accumulate in the sequential IO queues before being issued, so saving 285 * memory matters here. 286 */ 287 typedef struct scan_io { 288 /* fields from blkptr_t */ 289 uint64_t sio_blk_prop; 290 uint64_t sio_phys_birth; 291 uint64_t sio_birth; 292 zio_cksum_t sio_cksum; 293 uint32_t sio_nr_dvas; 294 295 /* fields from zio_t */ 296 uint32_t sio_flags; 297 zbookmark_phys_t sio_zb; 298 299 /* members for queue sorting */ 300 union { 301 avl_node_t sio_addr_node; /* link into issuing queue */ 302 list_node_t sio_list_node; /* link for issuing to disk */ 303 } sio_nodes; 304 305 /* 306 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 307 * depending on how many were in the original bp. Only the 308 * first DVA is really used for sorting and issuing purposes. 309 * The other DVAs (if provided) simply exist so that the zio 310 * layer can find additional copies to repair from in the 311 * event of an error. This array must go at the end of the 312 * struct to allow this for the variable number of elements. 313 */ 314 dva_t sio_dva[]; 315 } scan_io_t; 316 317 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 318 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 319 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 320 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 321 #define SIO_GET_END_OFFSET(sio) \ 322 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 323 #define SIO_GET_MUSED(sio) \ 324 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 325 326 struct dsl_scan_io_queue { 327 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 328 vdev_t *q_vd; /* top-level vdev that this queue represents */ 329 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 330 331 /* trees used for sorting I/Os and extents of I/Os */ 332 zfs_range_tree_t *q_exts_by_addr; 333 zfs_btree_t q_exts_by_size; 334 avl_tree_t q_sios_by_addr; 335 uint64_t q_sio_memused; 336 uint64_t q_last_ext_addr; 337 338 /* members for zio rate limiting */ 339 uint64_t q_maxinflight_bytes; 340 uint64_t q_inflight_bytes; 341 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 342 343 /* per txg statistics */ 344 uint64_t q_total_seg_size_this_txg; 345 uint64_t q_segs_this_txg; 346 uint64_t q_total_zio_size_this_txg; 347 uint64_t q_zios_this_txg; 348 }; 349 350 /* private data for dsl_scan_prefetch_cb() */ 351 typedef struct scan_prefetch_ctx { 352 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 353 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 354 boolean_t spc_root; /* is this prefetch for an objset? */ 355 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 356 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 357 } scan_prefetch_ctx_t; 358 359 /* private data for dsl_scan_prefetch() */ 360 typedef struct scan_prefetch_issue_ctx { 361 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 362 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 363 blkptr_t spic_bp; /* bp to prefetch */ 364 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 365 } scan_prefetch_issue_ctx_t; 366 367 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 368 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 369 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 370 scan_io_t *sio); 371 372 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 373 static void scan_io_queues_destroy(dsl_scan_t *scn); 374 375 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 376 377 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 378 static void 379 sio_free(scan_io_t *sio) 380 { 381 ASSERT3U(sio->sio_nr_dvas, >, 0); 382 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 383 384 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 385 } 386 387 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 388 static scan_io_t * 389 sio_alloc(unsigned short nr_dvas) 390 { 391 ASSERT3U(nr_dvas, >, 0); 392 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 393 394 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 395 } 396 397 void 398 scan_init(void) 399 { 400 /* 401 * This is used in ext_size_compare() to weight segments 402 * based on how sparse they are. This cannot be changed 403 * mid-scan and the tree comparison functions don't currently 404 * have a mechanism for passing additional context to the 405 * compare functions. Thus we store this value globally and 406 * we only allow it to be set at module initialization time 407 */ 408 fill_weight = zfs_scan_fill_weight; 409 410 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 411 char name[36]; 412 413 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 414 sio_cache[i] = kmem_cache_create(name, 415 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 416 0, NULL, NULL, NULL, NULL, NULL, 0); 417 } 418 } 419 420 void 421 scan_fini(void) 422 { 423 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 424 kmem_cache_destroy(sio_cache[i]); 425 } 426 } 427 428 static inline boolean_t 429 dsl_scan_is_running(const dsl_scan_t *scn) 430 { 431 return (scn->scn_phys.scn_state == DSS_SCANNING); 432 } 433 434 boolean_t 435 dsl_scan_resilvering(dsl_pool_t *dp) 436 { 437 return (dsl_scan_is_running(dp->dp_scan) && 438 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 439 } 440 441 static inline void 442 sio2bp(const scan_io_t *sio, blkptr_t *bp) 443 { 444 memset(bp, 0, sizeof (*bp)); 445 bp->blk_prop = sio->sio_blk_prop; 446 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth); 447 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth); 448 bp->blk_fill = 1; /* we always only work with data pointers */ 449 bp->blk_cksum = sio->sio_cksum; 450 451 ASSERT3U(sio->sio_nr_dvas, >, 0); 452 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 453 454 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 455 } 456 457 static inline void 458 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 459 { 460 sio->sio_blk_prop = bp->blk_prop; 461 sio->sio_phys_birth = BP_GET_RAW_PHYSICAL_BIRTH(bp); 462 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp); 463 sio->sio_cksum = bp->blk_cksum; 464 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 465 466 /* 467 * Copy the DVAs to the sio. We need all copies of the block so 468 * that the self healing code can use the alternate copies if the 469 * first is corrupted. We want the DVA at index dva_i to be first 470 * in the sio since this is the primary one that we want to issue. 471 */ 472 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 473 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 474 } 475 } 476 477 int 478 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 479 { 480 int err; 481 dsl_scan_t *scn; 482 spa_t *spa = dp->dp_spa; 483 uint64_t f; 484 485 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 486 scn->scn_dp = dp; 487 488 /* 489 * It's possible that we're resuming a scan after a reboot so 490 * make sure that the scan_async_destroying flag is initialized 491 * appropriately. 492 */ 493 ASSERT(!scn->scn_async_destroying); 494 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 495 SPA_FEATURE_ASYNC_DESTROY); 496 497 /* 498 * Calculate the max number of in-flight bytes for pool-wide 499 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 500 * Limits for the issuing phase are done per top-level vdev and 501 * are handled separately. 502 */ 503 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 504 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 505 506 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 507 offsetof(scan_ds_t, sds_node)); 508 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL); 509 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 510 sizeof (scan_prefetch_issue_ctx_t), 511 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 512 513 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 514 "scrub_func", sizeof (uint64_t), 1, &f); 515 if (err == 0) { 516 /* 517 * There was an old-style scrub in progress. Restart a 518 * new-style scrub from the beginning. 519 */ 520 scn->scn_restart_txg = txg; 521 zfs_dbgmsg("old-style scrub was in progress for %s; " 522 "restarting new-style scrub in txg %llu", 523 spa->spa_name, 524 (longlong_t)scn->scn_restart_txg); 525 526 /* 527 * Load the queue obj from the old location so that it 528 * can be freed by dsl_scan_done(). 529 */ 530 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 531 "scrub_queue", sizeof (uint64_t), 1, 532 &scn->scn_phys.scn_queue_obj); 533 } else { 534 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 535 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), 536 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys); 537 538 if (err != 0 && err != ENOENT) 539 return (err); 540 541 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 542 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 543 &scn->scn_phys); 544 545 /* 546 * Detect if the pool contains the signature of #2094. If it 547 * does properly update the scn->scn_phys structure and notify 548 * the administrator by setting an errata for the pool. 549 */ 550 if (err == EOVERFLOW) { 551 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 552 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 553 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 554 (23 * sizeof (uint64_t))); 555 556 err = zap_lookup(dp->dp_meta_objset, 557 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 558 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 559 if (err == 0) { 560 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 561 562 if (overflow & ~DSL_SCAN_FLAGS_MASK || 563 scn->scn_async_destroying) { 564 spa->spa_errata = 565 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 566 return (EOVERFLOW); 567 } 568 569 memcpy(&scn->scn_phys, zaptmp, 570 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 571 scn->scn_phys.scn_flags = overflow; 572 573 /* Required scrub already in progress. */ 574 if (scn->scn_phys.scn_state == DSS_FINISHED || 575 scn->scn_phys.scn_state == DSS_CANCELED) 576 spa->spa_errata = 577 ZPOOL_ERRATA_ZOL_2094_SCRUB; 578 } 579 } 580 581 if (err == ENOENT) 582 return (0); 583 else if (err) 584 return (err); 585 586 /* 587 * We might be restarting after a reboot, so jump the issued 588 * counter to how far we've scanned. We know we're consistent 589 * up to here. 590 */ 591 scn->scn_issued_before_pass = scn->scn_phys.scn_examined - 592 scn->scn_phys.scn_skipped; 593 594 if (dsl_scan_is_running(scn) && 595 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 596 /* 597 * A new-type scrub was in progress on an old 598 * pool, and the pool was accessed by old 599 * software. Restart from the beginning, since 600 * the old software may have changed the pool in 601 * the meantime. 602 */ 603 scn->scn_restart_txg = txg; 604 zfs_dbgmsg("new-style scrub for %s was modified " 605 "by old software; restarting in txg %llu", 606 spa->spa_name, 607 (longlong_t)scn->scn_restart_txg); 608 } else if (dsl_scan_resilvering(dp)) { 609 /* 610 * If a resilver is in progress and there are already 611 * errors, restart it instead of finishing this scan and 612 * then restarting it. If there haven't been any errors 613 * then remember that the incore DTL is valid. 614 */ 615 if (scn->scn_phys.scn_errors > 0) { 616 scn->scn_restart_txg = txg; 617 zfs_dbgmsg("resilver can't excise DTL_MISSING " 618 "when finished; restarting on %s in txg " 619 "%llu", 620 spa->spa_name, 621 (u_longlong_t)scn->scn_restart_txg); 622 } else { 623 /* it's safe to excise DTL when finished */ 624 spa->spa_scrub_started = B_TRUE; 625 } 626 } 627 } 628 629 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 630 631 /* reload the queue into the in-core state */ 632 if (scn->scn_phys.scn_queue_obj != 0) { 633 zap_cursor_t zc; 634 zap_attribute_t *za = zap_attribute_alloc(); 635 636 for (zap_cursor_init(&zc, dp->dp_meta_objset, 637 scn->scn_phys.scn_queue_obj); 638 zap_cursor_retrieve(&zc, za) == 0; 639 (void) zap_cursor_advance(&zc)) { 640 scan_ds_queue_insert(scn, 641 zfs_strtonum(za->za_name, NULL), 642 za->za_first_integer); 643 } 644 zap_cursor_fini(&zc); 645 zap_attribute_free(za); 646 } 647 648 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 649 650 spa_scan_stat_init(spa); 651 vdev_scan_stat_init(spa->spa_root_vdev); 652 653 return (0); 654 } 655 656 void 657 dsl_scan_fini(dsl_pool_t *dp) 658 { 659 if (dp->dp_scan != NULL) { 660 dsl_scan_t *scn = dp->dp_scan; 661 662 if (scn->scn_taskq != NULL) 663 taskq_destroy(scn->scn_taskq); 664 665 scan_ds_queue_clear(scn); 666 avl_destroy(&scn->scn_queue); 667 mutex_destroy(&scn->scn_queue_lock); 668 scan_ds_prefetch_queue_clear(scn); 669 avl_destroy(&scn->scn_prefetch_queue); 670 671 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 672 dp->dp_scan = NULL; 673 } 674 } 675 676 static boolean_t 677 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 678 { 679 return (scn->scn_restart_txg != 0 && 680 scn->scn_restart_txg <= tx->tx_txg); 681 } 682 683 boolean_t 684 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 685 { 686 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 687 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 688 } 689 690 boolean_t 691 dsl_scan_scrubbing(const dsl_pool_t *dp) 692 { 693 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 694 695 return (scn_phys->scn_state == DSS_SCANNING && 696 scn_phys->scn_func == POOL_SCAN_SCRUB); 697 } 698 699 boolean_t 700 dsl_errorscrubbing(const dsl_pool_t *dp) 701 { 702 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys; 703 704 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING && 705 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB); 706 } 707 708 boolean_t 709 dsl_errorscrub_is_paused(const dsl_scan_t *scn) 710 { 711 return (dsl_errorscrubbing(scn->scn_dp) && 712 scn->errorscrub_phys.dep_paused_flags); 713 } 714 715 boolean_t 716 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 717 { 718 return (dsl_scan_scrubbing(scn->scn_dp) && 719 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 720 } 721 722 static void 723 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) 724 { 725 scn->errorscrub_phys.dep_cursor = 726 zap_cursor_serialize(&scn->errorscrub_cursor); 727 728 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 729 DMU_POOL_DIRECTORY_OBJECT, 730 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS, 731 &scn->errorscrub_phys, tx)); 732 } 733 734 static void 735 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx) 736 { 737 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 738 pool_scan_func_t *funcp = arg; 739 dsl_pool_t *dp = scn->scn_dp; 740 spa_t *spa = dp->dp_spa; 741 742 ASSERT(!dsl_scan_is_running(scn)); 743 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 744 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 745 746 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 747 scn->errorscrub_phys.dep_func = *funcp; 748 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING; 749 scn->errorscrub_phys.dep_start_time = gethrestime_sec(); 750 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa); 751 scn->errorscrub_phys.dep_examined = 0; 752 scn->errorscrub_phys.dep_errors = 0; 753 scn->errorscrub_phys.dep_cursor = 0; 754 zap_cursor_init_serialized(&scn->errorscrub_cursor, 755 spa->spa_meta_objset, spa->spa_errlog_last, 756 scn->errorscrub_phys.dep_cursor); 757 758 vdev_config_dirty(spa->spa_root_vdev); 759 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START); 760 761 dsl_errorscrub_sync_state(scn, tx); 762 763 spa_history_log_internal(spa, "error scrub setup", tx, 764 "func=%u mintxg=%u maxtxg=%llu", 765 *funcp, 0, (u_longlong_t)tx->tx_txg); 766 } 767 768 static int 769 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx) 770 { 771 (void) arg; 772 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 773 774 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) { 775 return (SET_ERROR(EBUSY)); 776 } 777 778 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) { 779 return (ECANCELED); 780 } 781 return (0); 782 } 783 784 /* 785 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 786 * Because we can be running in the block sorting algorithm, we do not always 787 * want to write out the record, only when it is "safe" to do so. This safety 788 * condition is achieved by making sure that the sorting queues are empty 789 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 790 * is inconsistent with how much actual scanning progress has been made. The 791 * kind of sync to be performed is specified by the sync_type argument. If the 792 * sync is optional, we only sync if the queues are empty. If the sync is 793 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 794 * third possible state is a "cached" sync. This is done in response to: 795 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 796 * destroyed, so we wouldn't be able to restart scanning from it. 797 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 798 * superseded by a newer snapshot. 799 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 800 * swapped with its clone. 801 * In all cases, a cached sync simply rewrites the last record we've written, 802 * just slightly modified. For the modifications that are performed to the 803 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 804 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 805 */ 806 static void 807 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 808 { 809 int i; 810 spa_t *spa = scn->scn_dp->dp_spa; 811 812 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 813 if (scn->scn_queues_pending == 0) { 814 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 815 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 816 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 817 818 if (q == NULL) 819 continue; 820 821 mutex_enter(&vd->vdev_scan_io_queue_lock); 822 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 823 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 824 NULL); 825 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==, 826 NULL); 827 mutex_exit(&vd->vdev_scan_io_queue_lock); 828 } 829 830 if (scn->scn_phys.scn_queue_obj != 0) 831 scan_ds_queue_sync(scn, tx); 832 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 833 DMU_POOL_DIRECTORY_OBJECT, 834 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 835 &scn->scn_phys, tx)); 836 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 837 sizeof (scn->scn_phys)); 838 839 if (scn->scn_checkpointing) 840 zfs_dbgmsg("finish scan checkpoint for %s", 841 spa->spa_name); 842 843 scn->scn_checkpointing = B_FALSE; 844 scn->scn_last_checkpoint = ddi_get_lbolt(); 845 } else if (sync_type == SYNC_CACHED) { 846 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 847 DMU_POOL_DIRECTORY_OBJECT, 848 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 849 &scn->scn_phys_cached, tx)); 850 } 851 } 852 853 int 854 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 855 { 856 (void) arg; 857 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 858 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 859 860 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) || 861 dsl_errorscrubbing(scn->scn_dp)) 862 return (SET_ERROR(EBUSY)); 863 864 return (0); 865 } 866 867 void 868 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 869 { 870 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg; 871 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 872 dmu_object_type_t ot = 0; 873 dsl_pool_t *dp = scn->scn_dp; 874 spa_t *spa = dp->dp_spa; 875 876 ASSERT(!dsl_scan_is_running(scn)); 877 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE); 878 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS); 879 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 880 881 /* 882 * If we are starting a fresh scrub, we erase the error scrub 883 * information from disk. 884 */ 885 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 886 dsl_errorscrub_sync_state(scn, tx); 887 888 scn->scn_phys.scn_func = setup_sync_arg->func; 889 scn->scn_phys.scn_state = DSS_SCANNING; 890 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart; 891 if (setup_sync_arg->txgend == 0) { 892 scn->scn_phys.scn_max_txg = tx->tx_txg; 893 } else { 894 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend; 895 } 896 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 897 scn->scn_phys.scn_start_time = gethrestime_sec(); 898 scn->scn_phys.scn_errors = 0; 899 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 900 scn->scn_issued_before_pass = 0; 901 scn->scn_restart_txg = 0; 902 scn->scn_done_txg = 0; 903 scn->scn_last_checkpoint = 0; 904 scn->scn_checkpointing = B_FALSE; 905 spa_scan_stat_init(spa); 906 vdev_scan_stat_init(spa->spa_root_vdev); 907 908 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 909 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 910 911 /* rewrite all disk labels */ 912 vdev_config_dirty(spa->spa_root_vdev); 913 914 if (vdev_resilver_needed(spa->spa_root_vdev, 915 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 916 nvlist_t *aux = fnvlist_alloc(); 917 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 918 "healing"); 919 spa_event_notify(spa, NULL, aux, 920 ESC_ZFS_RESILVER_START); 921 nvlist_free(aux); 922 } else { 923 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 924 } 925 926 spa->spa_scrub_started = B_TRUE; 927 /* 928 * If this is an incremental scrub, limit the DDT scrub phase 929 * to just the auto-ditto class (for correctness); the rest 930 * of the scrub should go faster using top-down pruning. 931 */ 932 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 933 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 934 935 /* 936 * When starting a resilver clear any existing rebuild state. 937 * This is required to prevent stale rebuild status from 938 * being reported when a rebuild is run, then a resilver and 939 * finally a scrub. In which case only the scrub status 940 * should be reported by 'zpool status'. 941 */ 942 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 943 vdev_t *rvd = spa->spa_root_vdev; 944 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 945 vdev_t *vd = rvd->vdev_child[i]; 946 vdev_rebuild_clear_sync( 947 (void *)(uintptr_t)vd->vdev_id, tx); 948 } 949 } 950 } 951 952 /* back to the generic stuff */ 953 954 if (zfs_scan_blkstats) { 955 if (dp->dp_blkstats == NULL) { 956 dp->dp_blkstats = 957 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 958 } 959 memset(&dp->dp_blkstats->zab_type, 0, 960 sizeof (dp->dp_blkstats->zab_type)); 961 } else { 962 if (dp->dp_blkstats) { 963 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 964 dp->dp_blkstats = NULL; 965 } 966 } 967 968 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 969 ot = DMU_OT_ZAP_OTHER; 970 971 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 972 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 973 974 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 975 976 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 977 978 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 979 980 spa_history_log_internal(spa, "scan setup", tx, 981 "func=%u mintxg=%llu maxtxg=%llu", 982 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg, 983 (u_longlong_t)scn->scn_phys.scn_max_txg); 984 } 985 986 /* 987 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub, 988 * error scrub or resilver. Can also be called to resume a paused scrub or 989 * error scrub. 990 */ 991 int 992 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart, 993 uint64_t txgend) 994 { 995 spa_t *spa = dp->dp_spa; 996 dsl_scan_t *scn = dp->dp_scan; 997 setup_sync_arg_t setup_sync_arg; 998 999 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) { 1000 return (EINVAL); 1001 } 1002 1003 /* 1004 * Purge all vdev caches and probe all devices. We do this here 1005 * rather than in sync context because this requires a writer lock 1006 * on the spa_config lock, which we can't do from sync context. The 1007 * spa_scrub_reopen flag indicates that vdev_open() should not 1008 * attempt to start another scrub. 1009 */ 1010 spa_vdev_state_enter(spa, SCL_NONE); 1011 spa->spa_scrub_reopen = B_TRUE; 1012 vdev_reopen(spa->spa_root_vdev); 1013 spa->spa_scrub_reopen = B_FALSE; 1014 (void) spa_vdev_state_exit(spa, NULL, 0); 1015 1016 if (func == POOL_SCAN_RESILVER) { 1017 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 1018 return (0); 1019 } 1020 1021 if (func == POOL_SCAN_ERRORSCRUB) { 1022 if (dsl_errorscrub_is_paused(dp->dp_scan)) { 1023 /* 1024 * got error scrub start cmd, resume paused error scrub. 1025 */ 1026 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1027 POOL_SCRUB_NORMAL); 1028 if (err == 0) { 1029 spa_event_notify(spa, NULL, NULL, 1030 ESC_ZFS_ERRORSCRUB_RESUME); 1031 return (0); 1032 } 1033 return (SET_ERROR(err)); 1034 } 1035 1036 return (dsl_sync_task(spa_name(dp->dp_spa), 1037 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync, 1038 &func, 0, ZFS_SPACE_CHECK_RESERVED)); 1039 } 1040 1041 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 1042 /* got scrub start cmd, resume paused scrub */ 1043 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1044 POOL_SCRUB_NORMAL); 1045 if (err == 0) { 1046 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 1047 return (0); 1048 } 1049 return (SET_ERROR(err)); 1050 } 1051 1052 setup_sync_arg.func = func; 1053 setup_sync_arg.txgstart = txgstart; 1054 setup_sync_arg.txgend = txgend; 1055 1056 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 1057 dsl_scan_setup_sync, &setup_sync_arg, 0, 1058 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1059 } 1060 1061 static void 1062 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1063 { 1064 dsl_pool_t *dp = scn->scn_dp; 1065 spa_t *spa = dp->dp_spa; 1066 1067 if (complete) { 1068 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH); 1069 spa_history_log_internal(spa, "error scrub done", tx, 1070 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1071 } else { 1072 spa_history_log_internal(spa, "error scrub canceled", tx, 1073 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1074 } 1075 1076 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED; 1077 spa->spa_scrub_active = B_FALSE; 1078 spa_errlog_rotate(spa); 1079 scn->errorscrub_phys.dep_end_time = gethrestime_sec(); 1080 zap_cursor_fini(&scn->errorscrub_cursor); 1081 1082 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1083 spa->spa_errata = 0; 1084 1085 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 1086 } 1087 1088 static void 1089 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1090 { 1091 static const char *old_names[] = { 1092 "scrub_bookmark", 1093 "scrub_ddt_bookmark", 1094 "scrub_ddt_class_max", 1095 "scrub_queue", 1096 "scrub_min_txg", 1097 "scrub_max_txg", 1098 "scrub_func", 1099 "scrub_errors", 1100 NULL 1101 }; 1102 1103 dsl_pool_t *dp = scn->scn_dp; 1104 spa_t *spa = dp->dp_spa; 1105 int i; 1106 1107 /* Remove any remnants of an old-style scrub. */ 1108 for (i = 0; old_names[i]; i++) { 1109 (void) zap_remove(dp->dp_meta_objset, 1110 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 1111 } 1112 1113 if (scn->scn_phys.scn_queue_obj != 0) { 1114 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1115 scn->scn_phys.scn_queue_obj, tx)); 1116 scn->scn_phys.scn_queue_obj = 0; 1117 } 1118 scan_ds_queue_clear(scn); 1119 scan_ds_prefetch_queue_clear(scn); 1120 1121 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1122 1123 /* 1124 * If we were "restarted" from a stopped state, don't bother 1125 * with anything else. 1126 */ 1127 if (!dsl_scan_is_running(scn)) { 1128 ASSERT(!scn->scn_is_sorted); 1129 return; 1130 } 1131 1132 if (scn->scn_is_sorted) { 1133 scan_io_queues_destroy(scn); 1134 scn->scn_is_sorted = B_FALSE; 1135 1136 if (scn->scn_taskq != NULL) { 1137 taskq_destroy(scn->scn_taskq); 1138 scn->scn_taskq = NULL; 1139 } 1140 } 1141 1142 if (dsl_scan_restarting(scn, tx)) { 1143 spa_history_log_internal(spa, "scan aborted, restarting", tx, 1144 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1145 } else if (!complete) { 1146 spa_history_log_internal(spa, "scan cancelled", tx, 1147 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1148 } else { 1149 spa_history_log_internal(spa, "scan done", tx, 1150 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1151 if (DSL_SCAN_IS_SCRUB(scn)) { 1152 VERIFY0(zap_update(dp->dp_meta_objset, 1153 DMU_POOL_DIRECTORY_OBJECT, 1154 DMU_POOL_LAST_SCRUBBED_TXG, 1155 sizeof (uint64_t), 1, 1156 &scn->scn_phys.scn_max_txg, tx)); 1157 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg; 1158 } 1159 } 1160 1161 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 1162 spa->spa_scrub_active = B_FALSE; 1163 1164 /* 1165 * If the scrub/resilver completed, update all DTLs to 1166 * reflect this. Whether it succeeded or not, vacate 1167 * all temporary scrub DTLs. 1168 * 1169 * As the scrub does not currently support traversing 1170 * data that have been freed but are part of a checkpoint, 1171 * we don't mark the scrub as done in the DTLs as faults 1172 * may still exist in those vdevs. 1173 */ 1174 if (complete && 1175 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 1176 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1177 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 1178 1179 if (DSL_SCAN_IS_RESILVER(scn)) { 1180 nvlist_t *aux = fnvlist_alloc(); 1181 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 1182 "healing"); 1183 spa_event_notify(spa, NULL, aux, 1184 ESC_ZFS_RESILVER_FINISH); 1185 nvlist_free(aux); 1186 } else { 1187 spa_event_notify(spa, NULL, NULL, 1188 ESC_ZFS_SCRUB_FINISH); 1189 } 1190 } else { 1191 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1192 0, B_TRUE, B_FALSE); 1193 } 1194 spa_errlog_rotate(spa); 1195 1196 /* 1197 * Don't clear flag until after vdev_dtl_reassess to ensure that 1198 * DTL_MISSING will get updated when possible. 1199 */ 1200 scn->scn_phys.scn_state = complete ? DSS_FINISHED : 1201 DSS_CANCELED; 1202 scn->scn_phys.scn_end_time = gethrestime_sec(); 1203 spa->spa_scrub_started = B_FALSE; 1204 1205 /* 1206 * We may have finished replacing a device. 1207 * Let the async thread assess this and handle the detach. 1208 */ 1209 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 1210 1211 /* 1212 * Clear any resilver_deferred flags in the config. 1213 * If there are drives that need resilvering, kick 1214 * off an asynchronous request to start resilver. 1215 * vdev_clear_resilver_deferred() may update the config 1216 * before the resilver can restart. In the event of 1217 * a crash during this period, the spa loading code 1218 * will find the drives that need to be resilvered 1219 * and start the resilver then. 1220 */ 1221 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 1222 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 1223 spa_history_log_internal(spa, 1224 "starting deferred resilver", tx, "errors=%llu", 1225 (u_longlong_t)spa_approx_errlog_size(spa)); 1226 spa_async_request(spa, SPA_ASYNC_RESILVER); 1227 } 1228 1229 /* Clear recent error events (i.e. duplicate events tracking) */ 1230 if (complete) 1231 zfs_ereport_clear(spa, NULL); 1232 } else { 1233 scn->scn_phys.scn_state = complete ? DSS_FINISHED : 1234 DSS_CANCELED; 1235 scn->scn_phys.scn_end_time = gethrestime_sec(); 1236 } 1237 1238 spa_notify_waiters(spa); 1239 1240 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1241 spa->spa_errata = 0; 1242 1243 ASSERT(!dsl_scan_is_running(scn)); 1244 } 1245 1246 static int 1247 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1248 { 1249 pool_scrub_cmd_t *cmd = arg; 1250 dsl_pool_t *dp = dmu_tx_pool(tx); 1251 dsl_scan_t *scn = dp->dp_scan; 1252 1253 if (*cmd == POOL_SCRUB_PAUSE) { 1254 /* 1255 * can't pause a error scrub when there is no in-progress 1256 * error scrub. 1257 */ 1258 if (!dsl_errorscrubbing(dp)) 1259 return (SET_ERROR(ENOENT)); 1260 1261 /* can't pause a paused error scrub */ 1262 if (dsl_errorscrub_is_paused(scn)) 1263 return (SET_ERROR(EBUSY)); 1264 } else if (*cmd != POOL_SCRUB_NORMAL) { 1265 return (SET_ERROR(ENOTSUP)); 1266 } 1267 1268 return (0); 1269 } 1270 1271 static void 1272 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1273 { 1274 pool_scrub_cmd_t *cmd = arg; 1275 dsl_pool_t *dp = dmu_tx_pool(tx); 1276 spa_t *spa = dp->dp_spa; 1277 dsl_scan_t *scn = dp->dp_scan; 1278 1279 if (*cmd == POOL_SCRUB_PAUSE) { 1280 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec(); 1281 scn->errorscrub_phys.dep_paused_flags = B_TRUE; 1282 dsl_errorscrub_sync_state(scn, tx); 1283 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED); 1284 } else { 1285 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1286 if (dsl_errorscrub_is_paused(scn)) { 1287 /* 1288 * We need to keep track of how much time we spend 1289 * paused per pass so that we can adjust the error scrub 1290 * rate shown in the output of 'zpool status'. 1291 */ 1292 spa->spa_scan_pass_errorscrub_spent_paused += 1293 gethrestime_sec() - 1294 spa->spa_scan_pass_errorscrub_pause; 1295 1296 spa->spa_scan_pass_errorscrub_pause = 0; 1297 scn->errorscrub_phys.dep_paused_flags = B_FALSE; 1298 1299 zap_cursor_init_serialized( 1300 &scn->errorscrub_cursor, 1301 spa->spa_meta_objset, spa->spa_errlog_last, 1302 scn->errorscrub_phys.dep_cursor); 1303 1304 dsl_errorscrub_sync_state(scn, tx); 1305 } 1306 } 1307 } 1308 1309 static int 1310 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx) 1311 { 1312 (void) arg; 1313 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1314 /* can't cancel a error scrub when there is no one in-progress */ 1315 if (!dsl_errorscrubbing(scn->scn_dp)) 1316 return (SET_ERROR(ENOENT)); 1317 return (0); 1318 } 1319 1320 static void 1321 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx) 1322 { 1323 (void) arg; 1324 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1325 1326 dsl_errorscrub_done(scn, B_FALSE, tx); 1327 dsl_errorscrub_sync_state(scn, tx); 1328 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, 1329 ESC_ZFS_ERRORSCRUB_ABORT); 1330 } 1331 1332 static int 1333 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1334 { 1335 (void) arg; 1336 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1337 1338 if (!dsl_scan_is_running(scn)) 1339 return (SET_ERROR(ENOENT)); 1340 return (0); 1341 } 1342 1343 static void 1344 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1345 { 1346 (void) arg; 1347 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1348 1349 dsl_scan_done(scn, B_FALSE, tx); 1350 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1351 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1352 } 1353 1354 int 1355 dsl_scan_cancel(dsl_pool_t *dp) 1356 { 1357 if (dsl_errorscrubbing(dp)) { 1358 return (dsl_sync_task(spa_name(dp->dp_spa), 1359 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync, 1360 NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1361 } 1362 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1363 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1364 } 1365 1366 static int 1367 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1368 { 1369 pool_scrub_cmd_t *cmd = arg; 1370 dsl_pool_t *dp = dmu_tx_pool(tx); 1371 dsl_scan_t *scn = dp->dp_scan; 1372 1373 if (*cmd == POOL_SCRUB_PAUSE) { 1374 /* can't pause a scrub when there is no in-progress scrub */ 1375 if (!dsl_scan_scrubbing(dp)) 1376 return (SET_ERROR(ENOENT)); 1377 1378 /* can't pause a paused scrub */ 1379 if (dsl_scan_is_paused_scrub(scn)) 1380 return (SET_ERROR(EBUSY)); 1381 } else if (*cmd != POOL_SCRUB_NORMAL) { 1382 return (SET_ERROR(ENOTSUP)); 1383 } 1384 1385 return (0); 1386 } 1387 1388 static void 1389 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1390 { 1391 pool_scrub_cmd_t *cmd = arg; 1392 dsl_pool_t *dp = dmu_tx_pool(tx); 1393 spa_t *spa = dp->dp_spa; 1394 dsl_scan_t *scn = dp->dp_scan; 1395 1396 if (*cmd == POOL_SCRUB_PAUSE) { 1397 /* can't pause a scrub when there is no in-progress scrub */ 1398 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1399 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1400 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1401 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1402 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1403 spa_notify_waiters(spa); 1404 } else { 1405 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1406 if (dsl_scan_is_paused_scrub(scn)) { 1407 /* 1408 * We need to keep track of how much time we spend 1409 * paused per pass so that we can adjust the scrub rate 1410 * shown in the output of 'zpool status' 1411 */ 1412 spa->spa_scan_pass_scrub_spent_paused += 1413 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1414 spa->spa_scan_pass_scrub_pause = 0; 1415 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1416 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1417 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1418 } 1419 } 1420 } 1421 1422 /* 1423 * Set scrub pause/resume state if it makes sense to do so 1424 */ 1425 int 1426 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1427 { 1428 if (dsl_errorscrubbing(dp)) { 1429 return (dsl_sync_task(spa_name(dp->dp_spa), 1430 dsl_errorscrub_pause_resume_check, 1431 dsl_errorscrub_pause_resume_sync, &cmd, 3, 1432 ZFS_SPACE_CHECK_RESERVED)); 1433 } 1434 return (dsl_sync_task(spa_name(dp->dp_spa), 1435 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1436 ZFS_SPACE_CHECK_RESERVED)); 1437 } 1438 1439 1440 /* start a new scan, or restart an existing one. */ 1441 void 1442 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1443 { 1444 if (txg == 0) { 1445 dmu_tx_t *tx; 1446 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1447 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND)); 1448 1449 txg = dmu_tx_get_txg(tx); 1450 dp->dp_scan->scn_restart_txg = txg; 1451 dmu_tx_commit(tx); 1452 } else { 1453 dp->dp_scan->scn_restart_txg = txg; 1454 } 1455 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1456 dp->dp_spa->spa_name, (longlong_t)txg); 1457 } 1458 1459 void 1460 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1461 { 1462 zio_free(dp->dp_spa, txg, bp); 1463 } 1464 1465 void 1466 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1467 { 1468 ASSERT(dsl_pool_sync_context(dp)); 1469 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1470 } 1471 1472 static int 1473 scan_ds_queue_compare(const void *a, const void *b) 1474 { 1475 const scan_ds_t *sds_a = a, *sds_b = b; 1476 1477 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1478 return (-1); 1479 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1480 return (0); 1481 return (1); 1482 } 1483 1484 static void 1485 scan_ds_queue_clear(dsl_scan_t *scn) 1486 { 1487 void *cookie = NULL; 1488 scan_ds_t *sds; 1489 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1490 kmem_free(sds, sizeof (*sds)); 1491 } 1492 } 1493 1494 static boolean_t 1495 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1496 { 1497 scan_ds_t srch, *sds; 1498 1499 srch.sds_dsobj = dsobj; 1500 sds = avl_find(&scn->scn_queue, &srch, NULL); 1501 if (sds != NULL && txg != NULL) 1502 *txg = sds->sds_txg; 1503 return (sds != NULL); 1504 } 1505 1506 static void 1507 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1508 { 1509 scan_ds_t *sds; 1510 avl_index_t where; 1511 1512 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1513 sds->sds_dsobj = dsobj; 1514 sds->sds_txg = txg; 1515 1516 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1517 avl_insert(&scn->scn_queue, sds, where); 1518 } 1519 1520 static void 1521 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1522 { 1523 scan_ds_t srch, *sds; 1524 1525 srch.sds_dsobj = dsobj; 1526 1527 sds = avl_find(&scn->scn_queue, &srch, NULL); 1528 VERIFY(sds != NULL); 1529 avl_remove(&scn->scn_queue, sds); 1530 kmem_free(sds, sizeof (*sds)); 1531 } 1532 1533 static void 1534 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1535 { 1536 dsl_pool_t *dp = scn->scn_dp; 1537 spa_t *spa = dp->dp_spa; 1538 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1539 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1540 1541 ASSERT0(scn->scn_queues_pending); 1542 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1543 1544 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1545 scn->scn_phys.scn_queue_obj, tx)); 1546 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1547 DMU_OT_NONE, 0, tx); 1548 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1549 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1550 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1551 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1552 sds->sds_txg, tx)); 1553 } 1554 } 1555 1556 /* 1557 * Computes the memory limit state that we're currently in. A sorted scan 1558 * needs quite a bit of memory to hold the sorting queue, so we need to 1559 * reasonably constrain the size so it doesn't impact overall system 1560 * performance. We compute two limits: 1561 * 1) Hard memory limit: if the amount of memory used by the sorting 1562 * queues on a pool gets above this value, we stop the metadata 1563 * scanning portion and start issuing the queued up and sorted 1564 * I/Os to reduce memory usage. 1565 * This limit is calculated as a fraction of physmem (by default 5%). 1566 * We constrain the lower bound of the hard limit to an absolute 1567 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1568 * the upper bound to 5% of the total pool size - no chance we'll 1569 * ever need that much memory, but just to keep the value in check. 1570 * 2) Soft memory limit: once we hit the hard memory limit, we start 1571 * issuing I/O to reduce queue memory usage, but we don't want to 1572 * completely empty out the queues, since we might be able to find I/Os 1573 * that will fill in the gaps of our non-sequential IOs at some point 1574 * in the future. So we stop the issuing of I/Os once the amount of 1575 * memory used drops below the soft limit (at which point we stop issuing 1576 * I/O and start scanning metadata again). 1577 * 1578 * This limit is calculated by subtracting a fraction of the hard 1579 * limit from the hard limit. By default this fraction is 5%, so 1580 * the soft limit is 95% of the hard limit. We cap the size of the 1581 * difference between the hard and soft limits at an absolute 1582 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1583 * sufficient to not cause too frequent switching between the 1584 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1585 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1586 * that should take at least a decent fraction of a second). 1587 */ 1588 static boolean_t 1589 dsl_scan_should_clear(dsl_scan_t *scn) 1590 { 1591 spa_t *spa = scn->scn_dp->dp_spa; 1592 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1593 uint64_t alloc, mlim_hard, mlim_soft, mused; 1594 1595 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1596 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1597 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1598 1599 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1600 zfs_scan_mem_lim_min); 1601 mlim_hard = MIN(mlim_hard, alloc / 20); 1602 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1603 zfs_scan_mem_lim_soft_max); 1604 mused = 0; 1605 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1606 vdev_t *tvd = rvd->vdev_child[i]; 1607 dsl_scan_io_queue_t *queue; 1608 1609 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1610 queue = tvd->vdev_scan_io_queue; 1611 if (queue != NULL) { 1612 /* 1613 * # of extents in exts_by_addr = # in exts_by_size. 1614 * B-tree efficiency is ~75%, but can be as low as 50%. 1615 */ 1616 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * (( 1617 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) * 1618 3 / 2) + queue->q_sio_memused; 1619 } 1620 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1621 } 1622 1623 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1624 1625 if (mused == 0) 1626 ASSERT0(scn->scn_queues_pending); 1627 1628 /* 1629 * If we are above our hard limit, we need to clear out memory. 1630 * If we are below our soft limit, we need to accumulate sequential IOs. 1631 * Otherwise, we should keep doing whatever we are currently doing. 1632 */ 1633 if (mused >= mlim_hard) 1634 return (B_TRUE); 1635 else if (mused < mlim_soft) 1636 return (B_FALSE); 1637 else 1638 return (scn->scn_clearing); 1639 } 1640 1641 static boolean_t 1642 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1643 { 1644 /* we never skip user/group accounting objects */ 1645 if (zb && (int64_t)zb->zb_object < 0) 1646 return (B_FALSE); 1647 1648 if (scn->scn_suspending) 1649 return (B_TRUE); /* we're already suspending */ 1650 1651 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1652 return (B_FALSE); /* we're resuming */ 1653 1654 /* We only know how to resume from level-0 and objset blocks. */ 1655 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1656 return (B_FALSE); 1657 1658 /* 1659 * We suspend if: 1660 * - we have scanned for at least the minimum time (default 1 sec 1661 * for scrub, 3 sec for resilver), and either we have sufficient 1662 * dirty data that we are starting to write more quickly 1663 * (default 30%), someone is explicitly waiting for this txg 1664 * to complete, or we have used up all of the time in the txg 1665 * timeout (default 5 sec). 1666 * or 1667 * - the spa is shutting down because this pool is being exported 1668 * or the machine is rebooting. 1669 * or 1670 * - the scan queue has reached its memory use limit 1671 */ 1672 uint64_t curr_time_ns = getlrtime(); 1673 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1674 uint64_t sync_time_ns = curr_time_ns - 1675 scn->scn_dp->dp_spa->spa_sync_starttime; 1676 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1677 zfs_vdev_async_write_active_min_dirty_percent / 100; 1678 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1679 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1680 1681 if ((NSEC2MSEC(scan_time_ns) > mintime && 1682 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1683 txg_sync_waiting(scn->scn_dp) || 1684 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1685 spa_shutting_down(scn->scn_dp->dp_spa) || 1686 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) || 1687 !ddt_walk_ready(scn->scn_dp->dp_spa)) { 1688 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1689 dprintf("suspending at first available bookmark " 1690 "%llx/%llx/%llx/%llx\n", 1691 (longlong_t)zb->zb_objset, 1692 (longlong_t)zb->zb_object, 1693 (longlong_t)zb->zb_level, 1694 (longlong_t)zb->zb_blkid); 1695 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1696 zb->zb_objset, 0, 0, 0); 1697 } else if (zb != NULL) { 1698 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1699 (longlong_t)zb->zb_objset, 1700 (longlong_t)zb->zb_object, 1701 (longlong_t)zb->zb_level, 1702 (longlong_t)zb->zb_blkid); 1703 scn->scn_phys.scn_bookmark = *zb; 1704 } else { 1705 #ifdef ZFS_DEBUG 1706 dsl_scan_phys_t *scnp = &scn->scn_phys; 1707 dprintf("suspending at at DDT bookmark " 1708 "%llx/%llx/%llx/%llx\n", 1709 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1710 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1711 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1712 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1713 #endif 1714 } 1715 scn->scn_suspending = B_TRUE; 1716 return (B_TRUE); 1717 } 1718 return (B_FALSE); 1719 } 1720 1721 static boolean_t 1722 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1723 { 1724 /* 1725 * We suspend if: 1726 * - we have scrubbed for at least the minimum time (default 1 sec 1727 * for error scrub), someone is explicitly waiting for this txg 1728 * to complete, or we have used up all of the time in the txg 1729 * timeout (default 5 sec). 1730 * or 1731 * - the spa is shutting down because this pool is being exported 1732 * or the machine is rebooting. 1733 */ 1734 uint64_t curr_time_ns = getlrtime(); 1735 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time; 1736 uint64_t sync_time_ns = curr_time_ns - 1737 scn->scn_dp->dp_spa->spa_sync_starttime; 1738 int mintime = zfs_scrub_min_time_ms; 1739 1740 if ((NSEC2MSEC(error_scrub_time_ns) > mintime && 1741 (txg_sync_waiting(scn->scn_dp) || 1742 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1743 spa_shutting_down(scn->scn_dp->dp_spa)) { 1744 if (zb) { 1745 dprintf("error scrub suspending at bookmark " 1746 "%llx/%llx/%llx/%llx\n", 1747 (longlong_t)zb->zb_objset, 1748 (longlong_t)zb->zb_object, 1749 (longlong_t)zb->zb_level, 1750 (longlong_t)zb->zb_blkid); 1751 } 1752 return (B_TRUE); 1753 } 1754 return (B_FALSE); 1755 } 1756 1757 typedef struct zil_scan_arg { 1758 dsl_pool_t *zsa_dp; 1759 zil_header_t *zsa_zh; 1760 } zil_scan_arg_t; 1761 1762 static int 1763 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1764 uint64_t claim_txg) 1765 { 1766 (void) zilog; 1767 zil_scan_arg_t *zsa = arg; 1768 dsl_pool_t *dp = zsa->zsa_dp; 1769 dsl_scan_t *scn = dp->dp_scan; 1770 zil_header_t *zh = zsa->zsa_zh; 1771 zbookmark_phys_t zb; 1772 1773 ASSERT(!BP_IS_REDACTED(bp)); 1774 if (BP_IS_HOLE(bp) || 1775 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1776 return (0); 1777 1778 /* 1779 * One block ("stubby") can be allocated a long time ago; we 1780 * want to visit that one because it has been allocated 1781 * (on-disk) even if it hasn't been claimed (even though for 1782 * scrub there's nothing to do to it). 1783 */ 1784 if (claim_txg == 0 && 1785 BP_GET_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa)) 1786 return (0); 1787 1788 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1789 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1790 1791 VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1792 return (0); 1793 } 1794 1795 static int 1796 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1797 uint64_t claim_txg) 1798 { 1799 (void) zilog; 1800 if (lrc->lrc_txtype == TX_WRITE) { 1801 zil_scan_arg_t *zsa = arg; 1802 dsl_pool_t *dp = zsa->zsa_dp; 1803 dsl_scan_t *scn = dp->dp_scan; 1804 zil_header_t *zh = zsa->zsa_zh; 1805 const lr_write_t *lr = (const lr_write_t *)lrc; 1806 const blkptr_t *bp = &lr->lr_blkptr; 1807 zbookmark_phys_t zb; 1808 1809 ASSERT(!BP_IS_REDACTED(bp)); 1810 if (BP_IS_HOLE(bp) || 1811 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1812 return (0); 1813 1814 /* 1815 * birth can be < claim_txg if this record's txg is 1816 * already txg sync'ed (but this log block contains 1817 * other records that are not synced) 1818 */ 1819 if (claim_txg == 0 || BP_GET_BIRTH(bp) < claim_txg) 1820 return (0); 1821 1822 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 1823 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1824 lr->lr_foid, ZB_ZIL_LEVEL, 1825 lr->lr_offset / BP_GET_LSIZE(bp)); 1826 1827 VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1828 } 1829 return (0); 1830 } 1831 1832 static void 1833 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1834 { 1835 uint64_t claim_txg = zh->zh_claim_txg; 1836 zil_scan_arg_t zsa = { dp, zh }; 1837 zilog_t *zilog; 1838 1839 ASSERT(spa_writeable(dp->dp_spa)); 1840 1841 /* 1842 * We only want to visit blocks that have been claimed but not yet 1843 * replayed (or, in read-only mode, blocks that *would* be claimed). 1844 */ 1845 if (claim_txg == 0) 1846 return; 1847 1848 zilog = zil_alloc(dp->dp_meta_objset, zh); 1849 1850 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1851 claim_txg, B_FALSE); 1852 1853 zil_free(zilog); 1854 } 1855 1856 /* 1857 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1858 * here is to sort the AVL tree by the order each block will be needed. 1859 */ 1860 static int 1861 scan_prefetch_queue_compare(const void *a, const void *b) 1862 { 1863 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1864 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1865 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1866 1867 return (zbookmark_compare(spc_a->spc_datablkszsec, 1868 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1869 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1870 } 1871 1872 static void 1873 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1874 { 1875 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1876 zfs_refcount_destroy(&spc->spc_refcnt); 1877 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1878 } 1879 } 1880 1881 static scan_prefetch_ctx_t * 1882 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1883 { 1884 scan_prefetch_ctx_t *spc; 1885 1886 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1887 zfs_refcount_create(&spc->spc_refcnt); 1888 zfs_refcount_add(&spc->spc_refcnt, tag); 1889 spc->spc_scn = scn; 1890 if (dnp != NULL) { 1891 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1892 spc->spc_indblkshift = dnp->dn_indblkshift; 1893 spc->spc_root = B_FALSE; 1894 } else { 1895 spc->spc_datablkszsec = 0; 1896 spc->spc_indblkshift = 0; 1897 spc->spc_root = B_TRUE; 1898 } 1899 1900 return (spc); 1901 } 1902 1903 static void 1904 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1905 { 1906 zfs_refcount_add(&spc->spc_refcnt, tag); 1907 } 1908 1909 static void 1910 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1911 { 1912 spa_t *spa = scn->scn_dp->dp_spa; 1913 void *cookie = NULL; 1914 scan_prefetch_issue_ctx_t *spic = NULL; 1915 1916 mutex_enter(&spa->spa_scrub_lock); 1917 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1918 &cookie)) != NULL) { 1919 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1920 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1921 } 1922 mutex_exit(&spa->spa_scrub_lock); 1923 } 1924 1925 static boolean_t 1926 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1927 const zbookmark_phys_t *zb) 1928 { 1929 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1930 dnode_phys_t tmp_dnp; 1931 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1932 1933 if (zb->zb_objset != last_zb->zb_objset) 1934 return (B_TRUE); 1935 if ((int64_t)zb->zb_object < 0) 1936 return (B_FALSE); 1937 1938 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1939 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1940 1941 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1942 return (B_TRUE); 1943 1944 return (B_FALSE); 1945 } 1946 1947 static void 1948 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1949 { 1950 avl_index_t idx; 1951 dsl_scan_t *scn = spc->spc_scn; 1952 spa_t *spa = scn->scn_dp->dp_spa; 1953 scan_prefetch_issue_ctx_t *spic; 1954 1955 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1956 return; 1957 1958 if (BP_IS_HOLE(bp) || 1959 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg || 1960 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1961 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1962 return; 1963 1964 if (dsl_scan_check_prefetch_resume(spc, zb)) 1965 return; 1966 1967 scan_prefetch_ctx_add_ref(spc, scn); 1968 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1969 spic->spic_spc = spc; 1970 spic->spic_bp = *bp; 1971 spic->spic_zb = *zb; 1972 1973 /* 1974 * Add the IO to the queue of blocks to prefetch. This allows us to 1975 * prioritize blocks that we will need first for the main traversal 1976 * thread. 1977 */ 1978 mutex_enter(&spa->spa_scrub_lock); 1979 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1980 /* this block is already queued for prefetch */ 1981 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1982 scan_prefetch_ctx_rele(spc, scn); 1983 mutex_exit(&spa->spa_scrub_lock); 1984 return; 1985 } 1986 1987 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1988 cv_broadcast(&spa->spa_scrub_io_cv); 1989 mutex_exit(&spa->spa_scrub_lock); 1990 } 1991 1992 static void 1993 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1994 uint64_t objset, uint64_t object) 1995 { 1996 int i; 1997 zbookmark_phys_t zb; 1998 scan_prefetch_ctx_t *spc; 1999 2000 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2001 return; 2002 2003 SET_BOOKMARK(&zb, objset, object, 0, 0); 2004 2005 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 2006 2007 for (i = 0; i < dnp->dn_nblkptr; i++) { 2008 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 2009 zb.zb_blkid = i; 2010 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 2011 } 2012 2013 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2014 zb.zb_level = 0; 2015 zb.zb_blkid = DMU_SPILL_BLKID; 2016 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 2017 } 2018 2019 scan_prefetch_ctx_rele(spc, FTAG); 2020 } 2021 2022 static void 2023 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 2024 arc_buf_t *buf, void *private) 2025 { 2026 (void) zio; 2027 scan_prefetch_ctx_t *spc = private; 2028 dsl_scan_t *scn = spc->spc_scn; 2029 spa_t *spa = scn->scn_dp->dp_spa; 2030 2031 /* broadcast that the IO has completed for rate limiting purposes */ 2032 mutex_enter(&spa->spa_scrub_lock); 2033 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 2034 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 2035 cv_broadcast(&spa->spa_scrub_io_cv); 2036 mutex_exit(&spa->spa_scrub_lock); 2037 2038 /* if there was an error or we are done prefetching, just cleanup */ 2039 if (buf == NULL || scn->scn_prefetch_stop) 2040 goto out; 2041 2042 if (BP_GET_LEVEL(bp) > 0) { 2043 int i; 2044 blkptr_t *cbp; 2045 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2046 zbookmark_phys_t czb; 2047 2048 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2049 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2050 zb->zb_level - 1, zb->zb_blkid * epb + i); 2051 dsl_scan_prefetch(spc, cbp, &czb); 2052 } 2053 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2054 dnode_phys_t *cdnp; 2055 int i; 2056 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2057 2058 for (i = 0, cdnp = buf->b_data; i < epb; 2059 i += cdnp->dn_extra_slots + 1, 2060 cdnp += cdnp->dn_extra_slots + 1) { 2061 dsl_scan_prefetch_dnode(scn, cdnp, 2062 zb->zb_objset, zb->zb_blkid * epb + i); 2063 } 2064 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2065 objset_phys_t *osp = buf->b_data; 2066 2067 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 2068 zb->zb_objset, DMU_META_DNODE_OBJECT); 2069 2070 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2071 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) { 2072 dsl_scan_prefetch_dnode(scn, 2073 &osp->os_projectused_dnode, zb->zb_objset, 2074 DMU_PROJECTUSED_OBJECT); 2075 } 2076 dsl_scan_prefetch_dnode(scn, 2077 &osp->os_groupused_dnode, zb->zb_objset, 2078 DMU_GROUPUSED_OBJECT); 2079 dsl_scan_prefetch_dnode(scn, 2080 &osp->os_userused_dnode, zb->zb_objset, 2081 DMU_USERUSED_OBJECT); 2082 } 2083 } 2084 2085 out: 2086 if (buf != NULL) 2087 arc_buf_destroy(buf, private); 2088 scan_prefetch_ctx_rele(spc, scn); 2089 } 2090 2091 static void 2092 dsl_scan_prefetch_thread(void *arg) 2093 { 2094 dsl_scan_t *scn = arg; 2095 spa_t *spa = scn->scn_dp->dp_spa; 2096 scan_prefetch_issue_ctx_t *spic; 2097 2098 /* loop until we are told to stop */ 2099 while (!scn->scn_prefetch_stop) { 2100 arc_flags_t flags = ARC_FLAG_NOWAIT | 2101 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 2102 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2103 2104 mutex_enter(&spa->spa_scrub_lock); 2105 2106 /* 2107 * Wait until we have an IO to issue and are not above our 2108 * maximum in flight limit. 2109 */ 2110 while (!scn->scn_prefetch_stop && 2111 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 2112 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 2113 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2114 } 2115 2116 /* recheck if we should stop since we waited for the cv */ 2117 if (scn->scn_prefetch_stop) { 2118 mutex_exit(&spa->spa_scrub_lock); 2119 break; 2120 } 2121 2122 /* remove the prefetch IO from the tree */ 2123 spic = avl_first(&scn->scn_prefetch_queue); 2124 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 2125 avl_remove(&scn->scn_prefetch_queue, spic); 2126 2127 mutex_exit(&spa->spa_scrub_lock); 2128 2129 if (BP_IS_PROTECTED(&spic->spic_bp)) { 2130 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 2131 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 2132 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 2133 zio_flags |= ZIO_FLAG_RAW; 2134 } 2135 2136 /* We don't need data L1 buffer since we do not prefetch L0. */ 2137 blkptr_t *bp = &spic->spic_bp; 2138 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 2139 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2140 flags |= ARC_FLAG_NO_BUF; 2141 2142 /* issue the prefetch asynchronously */ 2143 (void) arc_read(scn->scn_zio_root, spa, bp, 2144 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, 2145 zio_flags, &flags, &spic->spic_zb); 2146 2147 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2148 } 2149 2150 ASSERT(scn->scn_prefetch_stop); 2151 2152 /* free any prefetches we didn't get to complete */ 2153 mutex_enter(&spa->spa_scrub_lock); 2154 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 2155 avl_remove(&scn->scn_prefetch_queue, spic); 2156 scan_prefetch_ctx_rele(spic->spic_spc, scn); 2157 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2158 } 2159 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 2160 mutex_exit(&spa->spa_scrub_lock); 2161 } 2162 2163 static boolean_t 2164 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 2165 const zbookmark_phys_t *zb) 2166 { 2167 /* 2168 * We never skip over user/group accounting objects (obj<0) 2169 */ 2170 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 2171 (int64_t)zb->zb_object >= 0) { 2172 /* 2173 * If we already visited this bp & everything below (in 2174 * a prior txg sync), don't bother doing it again. 2175 */ 2176 if (zbookmark_subtree_completed(dnp, zb, 2177 &scn->scn_phys.scn_bookmark)) 2178 return (B_TRUE); 2179 2180 /* 2181 * If we found the block we're trying to resume from, or 2182 * we went past it, zero it out to indicate that it's OK 2183 * to start checking for suspending again. 2184 */ 2185 if (zbookmark_subtree_tbd(dnp, zb, 2186 &scn->scn_phys.scn_bookmark)) { 2187 dprintf("resuming at %llx/%llx/%llx/%llx\n", 2188 (longlong_t)zb->zb_objset, 2189 (longlong_t)zb->zb_object, 2190 (longlong_t)zb->zb_level, 2191 (longlong_t)zb->zb_blkid); 2192 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 2193 } 2194 } 2195 return (B_FALSE); 2196 } 2197 2198 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2199 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2200 dmu_objset_type_t ostype, dmu_tx_t *tx); 2201 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 2202 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2203 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 2204 2205 /* 2206 * Return nonzero on i/o error. 2207 * Return new buf to write out in *bufp. 2208 */ 2209 inline __attribute__((always_inline)) static int 2210 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2211 dnode_phys_t *dnp, const blkptr_t *bp, 2212 const zbookmark_phys_t *zb, dmu_tx_t *tx) 2213 { 2214 dsl_pool_t *dp = scn->scn_dp; 2215 spa_t *spa = dp->dp_spa; 2216 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2217 int err; 2218 2219 ASSERT(!BP_IS_REDACTED(bp)); 2220 2221 /* 2222 * There is an unlikely case of encountering dnodes with contradicting 2223 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 2224 * or modified before commit 4254acb was merged. As it is not possible 2225 * to know which of the two is correct, report an error. 2226 */ 2227 if (dnp != NULL && 2228 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 2229 scn->scn_phys.scn_errors++; 2230 spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp)); 2231 return (SET_ERROR(EINVAL)); 2232 } 2233 2234 if (BP_GET_LEVEL(bp) > 0) { 2235 arc_flags_t flags = ARC_FLAG_WAIT; 2236 int i; 2237 blkptr_t *cbp; 2238 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2239 arc_buf_t *buf; 2240 2241 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2242 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2243 if (err) { 2244 scn->scn_phys.scn_errors++; 2245 return (err); 2246 } 2247 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2248 zbookmark_phys_t czb; 2249 2250 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2251 zb->zb_level - 1, 2252 zb->zb_blkid * epb + i); 2253 dsl_scan_visitbp(cbp, &czb, dnp, 2254 ds, scn, ostype, tx); 2255 } 2256 arc_buf_destroy(buf, &buf); 2257 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2258 arc_flags_t flags = ARC_FLAG_WAIT; 2259 dnode_phys_t *cdnp; 2260 int i; 2261 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2262 arc_buf_t *buf; 2263 2264 if (BP_IS_PROTECTED(bp)) { 2265 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 2266 zio_flags |= ZIO_FLAG_RAW; 2267 } 2268 2269 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2270 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2271 if (err) { 2272 scn->scn_phys.scn_errors++; 2273 return (err); 2274 } 2275 for (i = 0, cdnp = buf->b_data; i < epb; 2276 i += cdnp->dn_extra_slots + 1, 2277 cdnp += cdnp->dn_extra_slots + 1) { 2278 dsl_scan_visitdnode(scn, ds, ostype, 2279 cdnp, zb->zb_blkid * epb + i, tx); 2280 } 2281 2282 arc_buf_destroy(buf, &buf); 2283 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2284 arc_flags_t flags = ARC_FLAG_WAIT; 2285 objset_phys_t *osp; 2286 arc_buf_t *buf; 2287 2288 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2289 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2290 if (err) { 2291 scn->scn_phys.scn_errors++; 2292 return (err); 2293 } 2294 2295 osp = buf->b_data; 2296 2297 dsl_scan_visitdnode(scn, ds, osp->os_type, 2298 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 2299 2300 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2301 /* 2302 * We also always visit user/group/project accounting 2303 * objects, and never skip them, even if we are 2304 * suspending. This is necessary so that the 2305 * space deltas from this txg get integrated. 2306 */ 2307 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 2308 dsl_scan_visitdnode(scn, ds, osp->os_type, 2309 &osp->os_projectused_dnode, 2310 DMU_PROJECTUSED_OBJECT, tx); 2311 dsl_scan_visitdnode(scn, ds, osp->os_type, 2312 &osp->os_groupused_dnode, 2313 DMU_GROUPUSED_OBJECT, tx); 2314 dsl_scan_visitdnode(scn, ds, osp->os_type, 2315 &osp->os_userused_dnode, 2316 DMU_USERUSED_OBJECT, tx); 2317 } 2318 arc_buf_destroy(buf, &buf); 2319 } else if (zfs_blkptr_verify(spa, bp, 2320 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2321 /* 2322 * Sanity check the block pointer contents, this is handled 2323 * by arc_read() for the cases above. 2324 */ 2325 scn->scn_phys.scn_errors++; 2326 spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp)); 2327 return (SET_ERROR(EINVAL)); 2328 } 2329 2330 return (0); 2331 } 2332 2333 inline __attribute__((always_inline)) static void 2334 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 2335 dmu_objset_type_t ostype, dnode_phys_t *dnp, 2336 uint64_t object, dmu_tx_t *tx) 2337 { 2338 int j; 2339 2340 for (j = 0; j < dnp->dn_nblkptr; j++) { 2341 zbookmark_phys_t czb; 2342 2343 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2344 dnp->dn_nlevels - 1, j); 2345 dsl_scan_visitbp(&dnp->dn_blkptr[j], 2346 &czb, dnp, ds, scn, ostype, tx); 2347 } 2348 2349 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2350 zbookmark_phys_t czb; 2351 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2352 0, DMU_SPILL_BLKID); 2353 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 2354 &czb, dnp, ds, scn, ostype, tx); 2355 } 2356 } 2357 2358 /* 2359 * The arguments are in this order because mdb can only print the 2360 * first 5; we want them to be useful. 2361 */ 2362 static void 2363 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2364 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2365 dmu_objset_type_t ostype, dmu_tx_t *tx) 2366 { 2367 dsl_pool_t *dp = scn->scn_dp; 2368 2369 if (dsl_scan_check_suspend(scn, zb)) 2370 return; 2371 2372 if (dsl_scan_check_resume(scn, dnp, zb)) 2373 return; 2374 2375 scn->scn_visited_this_txg++; 2376 2377 if (BP_IS_HOLE(bp)) { 2378 scn->scn_holes_this_txg++; 2379 return; 2380 } 2381 2382 if (BP_IS_REDACTED(bp)) { 2383 ASSERT(dsl_dataset_feature_is_active(ds, 2384 SPA_FEATURE_REDACTED_DATASETS)); 2385 return; 2386 } 2387 2388 /* 2389 * Check if this block contradicts any filesystem flags. 2390 */ 2391 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2392 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2393 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2394 2395 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2396 if (f != SPA_FEATURE_NONE) 2397 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2398 2399 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2400 if (f != SPA_FEATURE_NONE) 2401 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2402 2403 /* 2404 * Recurse any blocks that were written either logically or physically 2405 * at or after cur_min_txg. About logical birth we care for traversal, 2406 * looking for any changes, while about physical for the actual scan. 2407 */ 2408 if (BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) { 2409 scn->scn_lt_min_this_txg++; 2410 return; 2411 } 2412 2413 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0) 2414 return; 2415 2416 /* 2417 * If dsl_scan_ddt() has already visited this block, it will have 2418 * already done any translations or scrubbing, so don't call the 2419 * callback again. 2420 */ 2421 if (ddt_class_contains(dp->dp_spa, 2422 scn->scn_phys.scn_ddt_class_max, bp)) { 2423 scn->scn_ddt_contained_this_txg++; 2424 return; 2425 } 2426 2427 /* 2428 * If this block is from the future (after cur_max_txg), then we 2429 * are doing this on behalf of a deleted snapshot, and we will 2430 * revisit the future block on the next pass of this dataset. 2431 * Don't scan it now unless we need to because something 2432 * under it was modified. 2433 */ 2434 if (BP_GET_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2435 scn->scn_gt_max_this_txg++; 2436 return; 2437 } 2438 2439 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2440 } 2441 2442 static void 2443 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2444 dmu_tx_t *tx) 2445 { 2446 zbookmark_phys_t zb; 2447 scan_prefetch_ctx_t *spc; 2448 2449 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2450 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2451 2452 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2453 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2454 zb.zb_objset, 0, 0, 0); 2455 } else { 2456 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2457 } 2458 2459 scn->scn_objsets_visited_this_txg++; 2460 2461 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2462 dsl_scan_prefetch(spc, bp, &zb); 2463 scan_prefetch_ctx_rele(spc, FTAG); 2464 2465 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2466 2467 dprintf_ds(ds, "finished scan%s", ""); 2468 } 2469 2470 static void 2471 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2472 { 2473 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2474 if (ds->ds_is_snapshot) { 2475 /* 2476 * Note: 2477 * - scn_cur_{min,max}_txg stays the same. 2478 * - Setting the flag is not really necessary if 2479 * scn_cur_max_txg == scn_max_txg, because there 2480 * is nothing after this snapshot that we care 2481 * about. However, we set it anyway and then 2482 * ignore it when we retraverse it in 2483 * dsl_scan_visitds(). 2484 */ 2485 scn_phys->scn_bookmark.zb_objset = 2486 dsl_dataset_phys(ds)->ds_next_snap_obj; 2487 zfs_dbgmsg("destroying ds %llu on %s; currently " 2488 "traversing; reset zb_objset to %llu", 2489 (u_longlong_t)ds->ds_object, 2490 ds->ds_dir->dd_pool->dp_spa->spa_name, 2491 (u_longlong_t)dsl_dataset_phys(ds)-> 2492 ds_next_snap_obj); 2493 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2494 } else { 2495 SET_BOOKMARK(&scn_phys->scn_bookmark, 2496 ZB_DESTROYED_OBJSET, 0, 0, 0); 2497 zfs_dbgmsg("destroying ds %llu on %s; currently " 2498 "traversing; reset bookmark to -1,0,0,0", 2499 (u_longlong_t)ds->ds_object, 2500 ds->ds_dir->dd_pool->dp_spa->spa_name); 2501 } 2502 } 2503 } 2504 2505 /* 2506 * Invoked when a dataset is destroyed. We need to make sure that: 2507 * 2508 * 1) If it is the dataset that was currently being scanned, we write 2509 * a new dsl_scan_phys_t and marking the objset reference in it 2510 * as destroyed. 2511 * 2) Remove it from the work queue, if it was present. 2512 * 2513 * If the dataset was actually a snapshot, instead of marking the dataset 2514 * as destroyed, we instead substitute the next snapshot in line. 2515 */ 2516 void 2517 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2518 { 2519 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2520 dsl_scan_t *scn = dp->dp_scan; 2521 uint64_t mintxg; 2522 2523 if (!dsl_scan_is_running(scn)) 2524 return; 2525 2526 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2527 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2528 2529 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2530 scan_ds_queue_remove(scn, ds->ds_object); 2531 if (ds->ds_is_snapshot) 2532 scan_ds_queue_insert(scn, 2533 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2534 } 2535 2536 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2537 ds->ds_object, &mintxg) == 0) { 2538 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2539 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2540 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2541 if (ds->ds_is_snapshot) { 2542 /* 2543 * We keep the same mintxg; it could be > 2544 * ds_creation_txg if the previous snapshot was 2545 * deleted too. 2546 */ 2547 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2548 scn->scn_phys.scn_queue_obj, 2549 dsl_dataset_phys(ds)->ds_next_snap_obj, 2550 mintxg, tx) == 0); 2551 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2552 "replacing with %llu", 2553 (u_longlong_t)ds->ds_object, 2554 dp->dp_spa->spa_name, 2555 (u_longlong_t)dsl_dataset_phys(ds)-> 2556 ds_next_snap_obj); 2557 } else { 2558 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2559 "removing", 2560 (u_longlong_t)ds->ds_object, 2561 dp->dp_spa->spa_name); 2562 } 2563 } 2564 2565 /* 2566 * dsl_scan_sync() should be called after this, and should sync 2567 * out our changed state, but just to be safe, do it here. 2568 */ 2569 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2570 } 2571 2572 static void 2573 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2574 { 2575 if (scn_bookmark->zb_objset == ds->ds_object) { 2576 scn_bookmark->zb_objset = 2577 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2578 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2579 "reset zb_objset to %llu", 2580 (u_longlong_t)ds->ds_object, 2581 ds->ds_dir->dd_pool->dp_spa->spa_name, 2582 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2583 } 2584 } 2585 2586 /* 2587 * Called when a dataset is snapshotted. If we were currently traversing 2588 * this snapshot, we reset our bookmark to point at the newly created 2589 * snapshot. We also modify our work queue to remove the old snapshot and 2590 * replace with the new one. 2591 */ 2592 void 2593 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2594 { 2595 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2596 dsl_scan_t *scn = dp->dp_scan; 2597 uint64_t mintxg; 2598 2599 if (!dsl_scan_is_running(scn)) 2600 return; 2601 2602 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2603 2604 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2605 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2606 2607 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2608 scan_ds_queue_remove(scn, ds->ds_object); 2609 scan_ds_queue_insert(scn, 2610 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2611 } 2612 2613 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2614 ds->ds_object, &mintxg) == 0) { 2615 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2616 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2617 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2618 scn->scn_phys.scn_queue_obj, 2619 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2620 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2621 "replacing with %llu", 2622 (u_longlong_t)ds->ds_object, 2623 dp->dp_spa->spa_name, 2624 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2625 } 2626 2627 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2628 } 2629 2630 static void 2631 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2632 zbookmark_phys_t *scn_bookmark) 2633 { 2634 if (scn_bookmark->zb_objset == ds1->ds_object) { 2635 scn_bookmark->zb_objset = ds2->ds_object; 2636 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2637 "reset zb_objset to %llu", 2638 (u_longlong_t)ds1->ds_object, 2639 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2640 (u_longlong_t)ds2->ds_object); 2641 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2642 scn_bookmark->zb_objset = ds1->ds_object; 2643 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2644 "reset zb_objset to %llu", 2645 (u_longlong_t)ds2->ds_object, 2646 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2647 (u_longlong_t)ds1->ds_object); 2648 } 2649 } 2650 2651 /* 2652 * Called when an origin dataset and its clone are swapped. If we were 2653 * currently traversing the dataset, we need to switch to traversing the 2654 * newly promoted clone. 2655 */ 2656 void 2657 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2658 { 2659 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2660 dsl_scan_t *scn = dp->dp_scan; 2661 uint64_t mintxg1, mintxg2; 2662 boolean_t ds1_queued, ds2_queued; 2663 2664 if (!dsl_scan_is_running(scn)) 2665 return; 2666 2667 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2668 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2669 2670 /* 2671 * Handle the in-memory scan queue. 2672 */ 2673 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2674 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2675 2676 /* Sanity checking. */ 2677 if (ds1_queued) { 2678 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2679 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2680 } 2681 if (ds2_queued) { 2682 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2683 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2684 } 2685 2686 if (ds1_queued && ds2_queued) { 2687 /* 2688 * If both are queued, we don't need to do anything. 2689 * The swapping code below would not handle this case correctly, 2690 * since we can't insert ds2 if it is already there. That's 2691 * because scan_ds_queue_insert() prohibits a duplicate insert 2692 * and panics. 2693 */ 2694 } else if (ds1_queued) { 2695 scan_ds_queue_remove(scn, ds1->ds_object); 2696 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2697 } else if (ds2_queued) { 2698 scan_ds_queue_remove(scn, ds2->ds_object); 2699 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2700 } 2701 2702 /* 2703 * Handle the on-disk scan queue. 2704 * The on-disk state is an out-of-date version of the in-memory state, 2705 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2706 * be different. Therefore we need to apply the swap logic to the 2707 * on-disk state independently of the in-memory state. 2708 */ 2709 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2710 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2711 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2712 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2713 2714 /* Sanity checking. */ 2715 if (ds1_queued) { 2716 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2717 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2718 } 2719 if (ds2_queued) { 2720 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2721 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2722 } 2723 2724 if (ds1_queued && ds2_queued) { 2725 /* 2726 * If both are queued, we don't need to do anything. 2727 * Alternatively, we could check for EEXIST from 2728 * zap_add_int_key() and back out to the original state, but 2729 * that would be more work than checking for this case upfront. 2730 */ 2731 } else if (ds1_queued) { 2732 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2733 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2734 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2735 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2736 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2737 "replacing with %llu", 2738 (u_longlong_t)ds1->ds_object, 2739 dp->dp_spa->spa_name, 2740 (u_longlong_t)ds2->ds_object); 2741 } else if (ds2_queued) { 2742 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2743 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2744 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2745 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2746 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2747 "replacing with %llu", 2748 (u_longlong_t)ds2->ds_object, 2749 dp->dp_spa->spa_name, 2750 (u_longlong_t)ds1->ds_object); 2751 } 2752 2753 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2754 } 2755 2756 static int 2757 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2758 { 2759 uint64_t originobj = *(uint64_t *)arg; 2760 dsl_dataset_t *ds; 2761 int err; 2762 dsl_scan_t *scn = dp->dp_scan; 2763 2764 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2765 return (0); 2766 2767 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2768 if (err) 2769 return (err); 2770 2771 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2772 dsl_dataset_t *prev; 2773 err = dsl_dataset_hold_obj(dp, 2774 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2775 2776 dsl_dataset_rele(ds, FTAG); 2777 if (err) 2778 return (err); 2779 ds = prev; 2780 } 2781 mutex_enter(&scn->scn_queue_lock); 2782 scan_ds_queue_insert(scn, ds->ds_object, 2783 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2784 mutex_exit(&scn->scn_queue_lock); 2785 dsl_dataset_rele(ds, FTAG); 2786 return (0); 2787 } 2788 2789 static void 2790 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2791 { 2792 dsl_pool_t *dp = scn->scn_dp; 2793 dsl_dataset_t *ds; 2794 2795 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2796 2797 if (scn->scn_phys.scn_cur_min_txg >= 2798 scn->scn_phys.scn_max_txg) { 2799 /* 2800 * This can happen if this snapshot was created after the 2801 * scan started, and we already completed a previous snapshot 2802 * that was created after the scan started. This snapshot 2803 * only references blocks with: 2804 * 2805 * birth < our ds_creation_txg 2806 * cur_min_txg is no less than ds_creation_txg. 2807 * We have already visited these blocks. 2808 * or 2809 * birth > scn_max_txg 2810 * The scan requested not to visit these blocks. 2811 * 2812 * Subsequent snapshots (and clones) can reference our 2813 * blocks, or blocks with even higher birth times. 2814 * Therefore we do not need to visit them either, 2815 * so we do not add them to the work queue. 2816 * 2817 * Note that checking for cur_min_txg >= cur_max_txg 2818 * is not sufficient, because in that case we may need to 2819 * visit subsequent snapshots. This happens when min_txg > 0, 2820 * which raises cur_min_txg. In this case we will visit 2821 * this dataset but skip all of its blocks, because the 2822 * rootbp's birth time is < cur_min_txg. Then we will 2823 * add the next snapshots/clones to the work queue. 2824 */ 2825 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2826 dsl_dataset_name(ds, dsname); 2827 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2828 "cur_min_txg (%llu) >= max_txg (%llu)", 2829 (longlong_t)dsobj, dsname, 2830 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2831 (longlong_t)scn->scn_phys.scn_max_txg); 2832 kmem_free(dsname, MAXNAMELEN); 2833 2834 goto out; 2835 } 2836 2837 /* 2838 * Only the ZIL in the head (non-snapshot) is valid. Even though 2839 * snapshots can have ZIL block pointers (which may be the same 2840 * BP as in the head), they must be ignored. In addition, $ORIGIN 2841 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2842 * need to look for a ZIL in it either. So we traverse the ZIL here, 2843 * rather than in scan_recurse(), because the regular snapshot 2844 * block-sharing rules don't apply to it. 2845 */ 2846 if (!dsl_dataset_is_snapshot(ds) && 2847 (dp->dp_origin_snap == NULL || 2848 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2849 objset_t *os; 2850 if (dmu_objset_from_ds(ds, &os) != 0) { 2851 goto out; 2852 } 2853 dsl_scan_zil(dp, &os->os_zil_header); 2854 } 2855 2856 /* 2857 * Iterate over the bps in this ds. 2858 */ 2859 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2860 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2861 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2862 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2863 2864 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2865 dsl_dataset_name(ds, dsname); 2866 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2867 "suspending=%u", 2868 (longlong_t)dsobj, dsname, 2869 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2870 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2871 (int)scn->scn_suspending); 2872 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2873 2874 if (scn->scn_suspending) 2875 goto out; 2876 2877 /* 2878 * We've finished this pass over this dataset. 2879 */ 2880 2881 /* 2882 * If we did not completely visit this dataset, do another pass. 2883 */ 2884 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2885 zfs_dbgmsg("incomplete pass on %s; visiting again", 2886 dp->dp_spa->spa_name); 2887 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2888 scan_ds_queue_insert(scn, ds->ds_object, 2889 scn->scn_phys.scn_cur_max_txg); 2890 goto out; 2891 } 2892 2893 /* 2894 * Add descendant datasets to work queue. 2895 */ 2896 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2897 scan_ds_queue_insert(scn, 2898 dsl_dataset_phys(ds)->ds_next_snap_obj, 2899 dsl_dataset_phys(ds)->ds_creation_txg); 2900 } 2901 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2902 boolean_t usenext = B_FALSE; 2903 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2904 uint64_t count; 2905 /* 2906 * A bug in a previous version of the code could 2907 * cause upgrade_clones_cb() to not set 2908 * ds_next_snap_obj when it should, leading to a 2909 * missing entry. Therefore we can only use the 2910 * next_clones_obj when its count is correct. 2911 */ 2912 int err = zap_count(dp->dp_meta_objset, 2913 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2914 if (err == 0 && 2915 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2916 usenext = B_TRUE; 2917 } 2918 2919 if (usenext) { 2920 zap_cursor_t zc; 2921 zap_attribute_t *za = zap_attribute_alloc(); 2922 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2923 dsl_dataset_phys(ds)->ds_next_clones_obj); 2924 zap_cursor_retrieve(&zc, za) == 0; 2925 (void) zap_cursor_advance(&zc)) { 2926 scan_ds_queue_insert(scn, 2927 zfs_strtonum(za->za_name, NULL), 2928 dsl_dataset_phys(ds)->ds_creation_txg); 2929 } 2930 zap_cursor_fini(&zc); 2931 zap_attribute_free(za); 2932 } else { 2933 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2934 enqueue_clones_cb, &ds->ds_object, 2935 DS_FIND_CHILDREN)); 2936 } 2937 } 2938 2939 out: 2940 dsl_dataset_rele(ds, FTAG); 2941 } 2942 2943 static int 2944 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2945 { 2946 (void) arg; 2947 dsl_dataset_t *ds; 2948 int err; 2949 dsl_scan_t *scn = dp->dp_scan; 2950 2951 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2952 if (err) 2953 return (err); 2954 2955 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2956 dsl_dataset_t *prev; 2957 err = dsl_dataset_hold_obj(dp, 2958 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2959 if (err) { 2960 dsl_dataset_rele(ds, FTAG); 2961 return (err); 2962 } 2963 2964 /* 2965 * If this is a clone, we don't need to worry about it for now. 2966 */ 2967 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2968 dsl_dataset_rele(ds, FTAG); 2969 dsl_dataset_rele(prev, FTAG); 2970 return (0); 2971 } 2972 dsl_dataset_rele(ds, FTAG); 2973 ds = prev; 2974 } 2975 2976 mutex_enter(&scn->scn_queue_lock); 2977 scan_ds_queue_insert(scn, ds->ds_object, 2978 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2979 mutex_exit(&scn->scn_queue_lock); 2980 dsl_dataset_rele(ds, FTAG); 2981 return (0); 2982 } 2983 2984 void 2985 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2986 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 2987 { 2988 (void) tx; 2989 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 2990 blkptr_t bp; 2991 zbookmark_phys_t zb = { 0 }; 2992 2993 if (!dsl_scan_is_running(scn)) 2994 return; 2995 2996 /* 2997 * This function is special because it is the only thing 2998 * that can add scan_io_t's to the vdev scan queues from 2999 * outside dsl_scan_sync(). For the most part this is ok 3000 * as long as it is called from within syncing context. 3001 * However, dsl_scan_sync() expects that no new sio's will 3002 * be added between when all the work for a scan is done 3003 * and the next txg when the scan is actually marked as 3004 * completed. This check ensures we do not issue new sio's 3005 * during this period. 3006 */ 3007 if (scn->scn_done_txg != 0) 3008 return; 3009 3010 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 3011 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 3012 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v); 3013 3014 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg) 3015 continue; 3016 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp); 3017 3018 scn->scn_visited_this_txg++; 3019 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 3020 } 3021 } 3022 3023 /* 3024 * Scrub/dedup interaction. 3025 * 3026 * If there are N references to a deduped block, we don't want to scrub it 3027 * N times -- ideally, we should scrub it exactly once. 3028 * 3029 * We leverage the fact that the dde's replication class (ddt_class_t) 3030 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 3031 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 3032 * 3033 * To prevent excess scrubbing, the scrub begins by walking the DDT 3034 * to find all blocks with refcnt > 1, and scrubs each of these once. 3035 * Since there are two replication classes which contain blocks with 3036 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 3037 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 3038 * 3039 * There would be nothing more to say if a block's refcnt couldn't change 3040 * during a scrub, but of course it can so we must account for changes 3041 * in a block's replication class. 3042 * 3043 * Here's an example of what can occur: 3044 * 3045 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 3046 * when visited during the top-down scrub phase, it will be scrubbed twice. 3047 * This negates our scrub optimization, but is otherwise harmless. 3048 * 3049 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 3050 * on each visit during the top-down scrub phase, it will never be scrubbed. 3051 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 3052 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 3053 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 3054 * while a scrub is in progress, it scrubs the block right then. 3055 */ 3056 static void 3057 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 3058 { 3059 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 3060 ddt_lightweight_entry_t ddlwe = {0}; 3061 int error; 3062 uint64_t n = 0; 3063 3064 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) { 3065 ddt_t *ddt; 3066 3067 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 3068 break; 3069 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 3070 (longlong_t)ddb->ddb_class, 3071 (longlong_t)ddb->ddb_type, 3072 (longlong_t)ddb->ddb_checksum, 3073 (longlong_t)ddb->ddb_cursor); 3074 3075 /* There should be no pending changes to the dedup table */ 3076 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 3077 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 3078 3079 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx); 3080 n++; 3081 3082 if (dsl_scan_check_suspend(scn, NULL)) 3083 break; 3084 } 3085 3086 if (error == EAGAIN) { 3087 dsl_scan_check_suspend(scn, NULL); 3088 error = 0; 3089 3090 zfs_dbgmsg("waiting for ddt to become ready for scan " 3091 "on %s with class_max = %u; suspending=%u", 3092 scn->scn_dp->dp_spa->spa_name, 3093 (int)scn->scn_phys.scn_ddt_class_max, 3094 (int)scn->scn_suspending); 3095 } else 3096 zfs_dbgmsg("scanned %llu ddt entries on %s with " 3097 "class_max = %u; suspending=%u", (longlong_t)n, 3098 scn->scn_dp->dp_spa->spa_name, 3099 (int)scn->scn_phys.scn_ddt_class_max, 3100 (int)scn->scn_suspending); 3101 3102 ASSERT(error == 0 || error == ENOENT); 3103 ASSERT(error != ENOENT || 3104 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 3105 } 3106 3107 static uint64_t 3108 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 3109 { 3110 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 3111 if (ds->ds_is_snapshot) 3112 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 3113 return (smt); 3114 } 3115 3116 static void 3117 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 3118 { 3119 scan_ds_t *sds; 3120 dsl_pool_t *dp = scn->scn_dp; 3121 3122 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 3123 scn->scn_phys.scn_ddt_class_max) { 3124 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3125 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3126 dsl_scan_ddt(scn, tx); 3127 if (scn->scn_suspending) 3128 return; 3129 } 3130 3131 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 3132 /* First do the MOS & ORIGIN */ 3133 3134 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3135 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3136 dsl_scan_visit_rootbp(scn, NULL, 3137 &dp->dp_meta_rootbp, tx); 3138 if (scn->scn_suspending) 3139 return; 3140 3141 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 3142 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3143 enqueue_cb, NULL, DS_FIND_CHILDREN)); 3144 } else { 3145 dsl_scan_visitds(scn, 3146 dp->dp_origin_snap->ds_object, tx); 3147 } 3148 ASSERT(!scn->scn_suspending); 3149 } else if (scn->scn_phys.scn_bookmark.zb_objset != 3150 ZB_DESTROYED_OBJSET) { 3151 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 3152 /* 3153 * If we were suspended, continue from here. Note if the 3154 * ds we were suspended on was deleted, the zb_objset may 3155 * be -1, so we will skip this and find a new objset 3156 * below. 3157 */ 3158 dsl_scan_visitds(scn, dsobj, tx); 3159 if (scn->scn_suspending) 3160 return; 3161 } 3162 3163 /* 3164 * In case we suspended right at the end of the ds, zero the 3165 * bookmark so we don't think that we're still trying to resume. 3166 */ 3167 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 3168 3169 /* 3170 * Keep pulling things out of the dataset avl queue. Updates to the 3171 * persistent zap-object-as-queue happen only at checkpoints. 3172 */ 3173 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 3174 dsl_dataset_t *ds; 3175 uint64_t dsobj = sds->sds_dsobj; 3176 uint64_t txg = sds->sds_txg; 3177 3178 /* dequeue and free the ds from the queue */ 3179 scan_ds_queue_remove(scn, dsobj); 3180 sds = NULL; 3181 3182 /* set up min / max txg */ 3183 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 3184 if (txg != 0) { 3185 scn->scn_phys.scn_cur_min_txg = 3186 MAX(scn->scn_phys.scn_min_txg, txg); 3187 } else { 3188 scn->scn_phys.scn_cur_min_txg = 3189 MAX(scn->scn_phys.scn_min_txg, 3190 dsl_dataset_phys(ds)->ds_prev_snap_txg); 3191 } 3192 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 3193 dsl_dataset_rele(ds, FTAG); 3194 3195 dsl_scan_visitds(scn, dsobj, tx); 3196 if (scn->scn_suspending) 3197 return; 3198 } 3199 3200 /* No more objsets to fetch, we're done */ 3201 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 3202 ASSERT0(scn->scn_suspending); 3203 } 3204 3205 static uint64_t 3206 dsl_scan_count_data_disks(spa_t *spa) 3207 { 3208 vdev_t *rvd = spa->spa_root_vdev; 3209 uint64_t i, leaves = 0; 3210 3211 for (i = 0; i < rvd->vdev_children; i++) { 3212 vdev_t *vd = rvd->vdev_child[i]; 3213 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 3214 continue; 3215 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 3216 } 3217 return (leaves); 3218 } 3219 3220 static void 3221 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 3222 { 3223 int i; 3224 uint64_t cur_size = 0; 3225 3226 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3227 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 3228 } 3229 3230 q->q_total_zio_size_this_txg += cur_size; 3231 q->q_zios_this_txg++; 3232 } 3233 3234 static void 3235 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 3236 uint64_t end) 3237 { 3238 q->q_total_seg_size_this_txg += end - start; 3239 q->q_segs_this_txg++; 3240 } 3241 3242 static boolean_t 3243 scan_io_queue_check_suspend(dsl_scan_t *scn) 3244 { 3245 /* See comment in dsl_scan_check_suspend() */ 3246 uint64_t curr_time_ns = getlrtime(); 3247 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 3248 uint64_t sync_time_ns = curr_time_ns - 3249 scn->scn_dp->dp_spa->spa_sync_starttime; 3250 uint64_t dirty_min_bytes = zfs_dirty_data_max * 3251 zfs_vdev_async_write_active_min_dirty_percent / 100; 3252 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3253 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3254 3255 return ((NSEC2MSEC(scan_time_ns) > mintime && 3256 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 3257 txg_sync_waiting(scn->scn_dp) || 3258 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 3259 spa_shutting_down(scn->scn_dp->dp_spa)); 3260 } 3261 3262 /* 3263 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 3264 * disk. This consumes the io_list and frees the scan_io_t's. This is 3265 * called when emptying queues, either when we're up against the memory 3266 * limit or when we have finished scanning. Returns B_TRUE if we stopped 3267 * processing the list before we finished. Any sios that were not issued 3268 * will remain in the io_list. 3269 */ 3270 static boolean_t 3271 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 3272 { 3273 dsl_scan_t *scn = queue->q_scn; 3274 scan_io_t *sio; 3275 boolean_t suspended = B_FALSE; 3276 3277 while ((sio = list_head(io_list)) != NULL) { 3278 blkptr_t bp; 3279 3280 if (scan_io_queue_check_suspend(scn)) { 3281 suspended = B_TRUE; 3282 break; 3283 } 3284 3285 sio2bp(sio, &bp); 3286 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 3287 &sio->sio_zb, queue); 3288 (void) list_remove_head(io_list); 3289 scan_io_queues_update_zio_stats(queue, &bp); 3290 sio_free(sio); 3291 } 3292 return (suspended); 3293 } 3294 3295 /* 3296 * This function removes sios from an IO queue which reside within a given 3297 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that 3298 * we only ever return a maximum of 32 sios at once. If there are more sios 3299 * to process within this segment that did not make it onto the list we 3300 * return B_TRUE and otherwise B_FALSE. 3301 */ 3302 static boolean_t 3303 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs, 3304 list_t *list) 3305 { 3306 scan_io_t *srch_sio, *sio, *next_sio; 3307 avl_index_t idx; 3308 uint_t num_sios = 0; 3309 int64_t bytes_issued = 0; 3310 3311 ASSERT(rs != NULL); 3312 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3313 3314 srch_sio = sio_alloc(1); 3315 srch_sio->sio_nr_dvas = 1; 3316 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr)); 3317 3318 /* 3319 * The exact start of the extent might not contain any matching zios, 3320 * so if that's the case, examine the next one in the tree. 3321 */ 3322 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 3323 sio_free(srch_sio); 3324 3325 if (sio == NULL) 3326 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 3327 3328 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs, 3329 queue->q_exts_by_addr) && num_sios <= 32) { 3330 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs, 3331 queue->q_exts_by_addr)); 3332 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs, 3333 queue->q_exts_by_addr)); 3334 3335 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 3336 avl_remove(&queue->q_sios_by_addr, sio); 3337 if (avl_is_empty(&queue->q_sios_by_addr)) 3338 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 3339 queue->q_sio_memused -= SIO_GET_MUSED(sio); 3340 3341 bytes_issued += SIO_GET_ASIZE(sio); 3342 num_sios++; 3343 list_insert_tail(list, sio); 3344 sio = next_sio; 3345 } 3346 3347 /* 3348 * We limit the number of sios we process at once to 32 to avoid 3349 * biting off more than we can chew. If we didn't take everything 3350 * in the segment we update it to reflect the work we were able to 3351 * complete. Otherwise, we remove it from the range tree entirely. 3352 */ 3353 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs, 3354 queue->q_exts_by_addr)) { 3355 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs, 3356 -bytes_issued); 3357 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs, 3358 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs, 3359 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 3360 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 3361 return (B_TRUE); 3362 } else { 3363 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr); 3364 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr); 3365 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend - 3366 rstart); 3367 queue->q_last_ext_addr = -1; 3368 return (B_FALSE); 3369 } 3370 } 3371 3372 /* 3373 * This is called from the queue emptying thread and selects the next 3374 * extent from which we are to issue I/Os. The behavior of this function 3375 * depends on the state of the scan, the current memory consumption and 3376 * whether or not we are performing a scan shutdown. 3377 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 3378 * needs to perform a checkpoint 3379 * 2) We select the largest available extent if we are up against the 3380 * memory limit. 3381 * 3) Otherwise we don't select any extents. 3382 */ 3383 static zfs_range_seg_t * 3384 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 3385 { 3386 dsl_scan_t *scn = queue->q_scn; 3387 zfs_range_tree_t *rt = queue->q_exts_by_addr; 3388 3389 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3390 ASSERT(scn->scn_is_sorted); 3391 3392 if (!scn->scn_checkpointing && !scn->scn_clearing) 3393 return (NULL); 3394 3395 /* 3396 * During normal clearing, we want to issue our largest segments 3397 * first, keeping IO as sequential as possible, and leaving the 3398 * smaller extents for later with the hope that they might eventually 3399 * grow to larger sequential segments. However, when the scan is 3400 * checkpointing, no new extents will be added to the sorting queue, 3401 * so the way we are sorted now is as good as it will ever get. 3402 * In this case, we instead switch to issuing extents in LBA order. 3403 */ 3404 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3405 zfs_scan_issue_strategy == 1) 3406 return (zfs_range_tree_first(rt)); 3407 3408 /* 3409 * Try to continue previous extent if it is not completed yet. After 3410 * shrink in scan_io_queue_gather() it may no longer be the best, but 3411 * otherwise we leave shorter remnant every txg. 3412 */ 3413 uint64_t start; 3414 uint64_t size = 1ULL << rt->rt_shift; 3415 zfs_range_seg_t *addr_rs; 3416 if (queue->q_last_ext_addr != -1) { 3417 start = queue->q_last_ext_addr; 3418 addr_rs = zfs_range_tree_find(rt, start, size); 3419 if (addr_rs != NULL) 3420 return (addr_rs); 3421 } 3422 3423 /* 3424 * Nothing to continue, so find new best extent. 3425 */ 3426 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3427 if (v == NULL) 3428 return (NULL); 3429 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3430 3431 /* 3432 * We need to get the original entry in the by_addr tree so we can 3433 * modify it. 3434 */ 3435 addr_rs = zfs_range_tree_find(rt, start, size); 3436 ASSERT3P(addr_rs, !=, NULL); 3437 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start); 3438 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start); 3439 return (addr_rs); 3440 } 3441 3442 static void 3443 scan_io_queues_run_one(void *arg) 3444 { 3445 dsl_scan_io_queue_t *queue = arg; 3446 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3447 boolean_t suspended = B_FALSE; 3448 zfs_range_seg_t *rs; 3449 scan_io_t *sio; 3450 zio_t *zio; 3451 list_t sio_list; 3452 3453 ASSERT(queue->q_scn->scn_is_sorted); 3454 3455 list_create(&sio_list, sizeof (scan_io_t), 3456 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3457 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3458 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3459 mutex_enter(q_lock); 3460 queue->q_zio = zio; 3461 3462 /* Calculate maximum in-flight bytes for this vdev. */ 3463 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3464 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3465 3466 /* reset per-queue scan statistics for this txg */ 3467 queue->q_total_seg_size_this_txg = 0; 3468 queue->q_segs_this_txg = 0; 3469 queue->q_total_zio_size_this_txg = 0; 3470 queue->q_zios_this_txg = 0; 3471 3472 /* loop until we run out of time or sios */ 3473 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3474 uint64_t seg_start = 0, seg_end = 0; 3475 boolean_t more_left; 3476 3477 ASSERT(list_is_empty(&sio_list)); 3478 3479 /* loop while we still have sios left to process in this rs */ 3480 do { 3481 scan_io_t *first_sio, *last_sio; 3482 3483 /* 3484 * We have selected which extent needs to be 3485 * processed next. Gather up the corresponding sios. 3486 */ 3487 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3488 ASSERT(!list_is_empty(&sio_list)); 3489 first_sio = list_head(&sio_list); 3490 last_sio = list_tail(&sio_list); 3491 3492 seg_end = SIO_GET_END_OFFSET(last_sio); 3493 if (seg_start == 0) 3494 seg_start = SIO_GET_OFFSET(first_sio); 3495 3496 /* 3497 * Issuing sios can take a long time so drop the 3498 * queue lock. The sio queue won't be updated by 3499 * other threads since we're in syncing context so 3500 * we can be sure that our trees will remain exactly 3501 * as we left them. 3502 */ 3503 mutex_exit(q_lock); 3504 suspended = scan_io_queue_issue(queue, &sio_list); 3505 mutex_enter(q_lock); 3506 3507 if (suspended) 3508 break; 3509 } while (more_left); 3510 3511 /* update statistics for debugging purposes */ 3512 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3513 3514 if (suspended) 3515 break; 3516 } 3517 3518 /* 3519 * If we were suspended in the middle of processing, 3520 * requeue any unfinished sios and exit. 3521 */ 3522 while ((sio = list_remove_head(&sio_list)) != NULL) 3523 scan_io_queue_insert_impl(queue, sio); 3524 3525 queue->q_zio = NULL; 3526 mutex_exit(q_lock); 3527 zio_nowait(zio); 3528 list_destroy(&sio_list); 3529 } 3530 3531 /* 3532 * Performs an emptying run on all scan queues in the pool. This just 3533 * punches out one thread per top-level vdev, each of which processes 3534 * only that vdev's scan queue. We can parallelize the I/O here because 3535 * we know that each queue's I/Os only affect its own top-level vdev. 3536 * 3537 * This function waits for the queue runs to complete, and must be 3538 * called from dsl_scan_sync (or in general, syncing context). 3539 */ 3540 static void 3541 scan_io_queues_run(dsl_scan_t *scn) 3542 { 3543 spa_t *spa = scn->scn_dp->dp_spa; 3544 3545 ASSERT(scn->scn_is_sorted); 3546 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3547 3548 if (scn->scn_queues_pending == 0) 3549 return; 3550 3551 if (scn->scn_taskq == NULL) { 3552 int nthreads = spa->spa_root_vdev->vdev_children; 3553 3554 /* 3555 * We need to make this taskq *always* execute as many 3556 * threads in parallel as we have top-level vdevs and no 3557 * less, otherwise strange serialization of the calls to 3558 * scan_io_queues_run_one can occur during spa_sync runs 3559 * and that significantly impacts performance. 3560 */ 3561 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3562 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3563 } 3564 3565 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3566 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3567 3568 mutex_enter(&vd->vdev_scan_io_queue_lock); 3569 if (vd->vdev_scan_io_queue != NULL) { 3570 VERIFY(taskq_dispatch(scn->scn_taskq, 3571 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3572 TQ_SLEEP) != TASKQID_INVALID); 3573 } 3574 mutex_exit(&vd->vdev_scan_io_queue_lock); 3575 } 3576 3577 /* 3578 * Wait for the queues to finish issuing their IOs for this run 3579 * before we return. There may still be IOs in flight at this 3580 * point. 3581 */ 3582 taskq_wait(scn->scn_taskq); 3583 } 3584 3585 static boolean_t 3586 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3587 { 3588 uint64_t elapsed_nanosecs; 3589 3590 if (zfs_recover) 3591 return (B_FALSE); 3592 3593 if (zfs_async_block_max_blocks != 0 && 3594 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3595 return (B_TRUE); 3596 } 3597 3598 if (zfs_max_async_dedup_frees != 0 && 3599 scn->scn_async_frees_this_txg >= zfs_max_async_dedup_frees) { 3600 return (B_TRUE); 3601 } 3602 3603 elapsed_nanosecs = getlrtime() - scn->scn_sync_start_time; 3604 return (elapsed_nanosecs / (NANOSEC / 2) > zfs_txg_timeout || 3605 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3606 txg_sync_waiting(scn->scn_dp)) || 3607 spa_shutting_down(scn->scn_dp->dp_spa)); 3608 } 3609 3610 static int 3611 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3612 { 3613 dsl_scan_t *scn = arg; 3614 3615 if (!scn->scn_is_bptree || 3616 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3617 if (dsl_scan_async_block_should_pause(scn)) 3618 return (SET_ERROR(ERESTART)); 3619 } 3620 3621 zio_t *zio = zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3622 dmu_tx_get_txg(tx), bp, 0); 3623 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3624 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3625 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3626 scn->scn_visited_this_txg++; 3627 if (zio != NULL) { 3628 /* 3629 * zio_free_sync() returned a ZIO, meaning this is an 3630 * async I/O (dedup, clone or gang block). 3631 */ 3632 scn->scn_async_frees_this_txg++; 3633 zio_nowait(zio); 3634 3635 /* 3636 * After issuing N async ZIOs, wait for them to complete. 3637 * This makes time limits work with actual I/O completion 3638 * times, not just queuing times. 3639 */ 3640 uint64_t i = zfs_async_free_zio_wait_interval; 3641 if (i != 0 && (scn->scn_async_frees_this_txg % i) == 0) { 3642 VERIFY0(zio_wait(scn->scn_zio_root)); 3643 scn->scn_zio_root = zio_root(scn->scn_dp->dp_spa, NULL, 3644 NULL, ZIO_FLAG_MUSTSUCCEED); 3645 } 3646 } 3647 return (0); 3648 } 3649 3650 static void 3651 dsl_scan_update_stats(dsl_scan_t *scn) 3652 { 3653 spa_t *spa = scn->scn_dp->dp_spa; 3654 uint64_t i; 3655 uint64_t seg_size_total = 0, zio_size_total = 0; 3656 uint64_t seg_count_total = 0, zio_count_total = 0; 3657 3658 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3659 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3660 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3661 3662 if (queue == NULL) 3663 continue; 3664 3665 seg_size_total += queue->q_total_seg_size_this_txg; 3666 zio_size_total += queue->q_total_zio_size_this_txg; 3667 seg_count_total += queue->q_segs_this_txg; 3668 zio_count_total += queue->q_zios_this_txg; 3669 } 3670 3671 if (seg_count_total == 0 || zio_count_total == 0) { 3672 scn->scn_avg_seg_size_this_txg = 0; 3673 scn->scn_avg_zio_size_this_txg = 0; 3674 scn->scn_segs_this_txg = 0; 3675 scn->scn_zios_this_txg = 0; 3676 return; 3677 } 3678 3679 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3680 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3681 scn->scn_segs_this_txg = seg_count_total; 3682 scn->scn_zios_this_txg = zio_count_total; 3683 } 3684 3685 static int 3686 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3687 dmu_tx_t *tx) 3688 { 3689 ASSERT(!bp_freed); 3690 return (dsl_scan_free_block_cb(arg, bp, tx)); 3691 } 3692 3693 static int 3694 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3695 dmu_tx_t *tx) 3696 { 3697 ASSERT(!bp_freed); 3698 dsl_scan_t *scn = arg; 3699 const dva_t *dva = &bp->blk_dva[0]; 3700 3701 if (dsl_scan_async_block_should_pause(scn)) 3702 return (SET_ERROR(ERESTART)); 3703 3704 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3705 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3706 DVA_GET_ASIZE(dva), tx); 3707 scn->scn_visited_this_txg++; 3708 return (0); 3709 } 3710 3711 boolean_t 3712 dsl_scan_active(dsl_scan_t *scn) 3713 { 3714 spa_t *spa = scn->scn_dp->dp_spa; 3715 uint64_t used = 0, comp, uncomp; 3716 boolean_t clones_left; 3717 3718 if (spa->spa_load_state != SPA_LOAD_NONE) 3719 return (B_FALSE); 3720 if (spa_shutting_down(spa)) 3721 return (B_FALSE); 3722 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3723 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3724 return (B_TRUE); 3725 3726 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3727 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3728 &used, &comp, &uncomp); 3729 } 3730 clones_left = spa_livelist_delete_check(spa); 3731 return ((used != 0) || (clones_left)); 3732 } 3733 3734 boolean_t 3735 dsl_errorscrub_active(dsl_scan_t *scn) 3736 { 3737 spa_t *spa = scn->scn_dp->dp_spa; 3738 if (spa->spa_load_state != SPA_LOAD_NONE) 3739 return (B_FALSE); 3740 if (spa_shutting_down(spa)) 3741 return (B_FALSE); 3742 if (dsl_errorscrubbing(scn->scn_dp)) 3743 return (B_TRUE); 3744 return (B_FALSE); 3745 } 3746 3747 static boolean_t 3748 dsl_scan_check_deferred(vdev_t *vd) 3749 { 3750 boolean_t need_resilver = B_FALSE; 3751 3752 for (int c = 0; c < vd->vdev_children; c++) { 3753 need_resilver |= 3754 dsl_scan_check_deferred(vd->vdev_child[c]); 3755 } 3756 3757 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3758 !vd->vdev_ops->vdev_op_leaf) 3759 return (need_resilver); 3760 3761 if (!vd->vdev_resilver_deferred) 3762 need_resilver = B_TRUE; 3763 3764 return (need_resilver); 3765 } 3766 3767 static boolean_t 3768 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3769 uint64_t phys_birth) 3770 { 3771 vdev_t *vd; 3772 3773 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3774 3775 if (vd->vdev_ops == &vdev_indirect_ops) { 3776 /* 3777 * The indirect vdev can point to multiple 3778 * vdevs. For simplicity, always create 3779 * the resilver zio_t. zio_vdev_io_start() 3780 * will bypass the child resilver i/o's if 3781 * they are on vdevs that don't have DTL's. 3782 */ 3783 return (B_TRUE); 3784 } 3785 3786 if (DVA_GET_GANG(dva)) { 3787 /* 3788 * Gang members may be spread across multiple 3789 * vdevs, so the best estimate we have is the 3790 * scrub range, which has already been checked. 3791 * XXX -- it would be better to change our 3792 * allocation policy to ensure that all 3793 * gang members reside on the same vdev. 3794 */ 3795 return (B_TRUE); 3796 } 3797 3798 /* 3799 * Check if the top-level vdev must resilver this offset. 3800 * When the offset does not intersect with a dirty leaf DTL 3801 * then it may be possible to skip the resilver IO. The psize 3802 * is provided instead of asize to simplify the check for RAIDZ. 3803 */ 3804 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3805 return (B_FALSE); 3806 3807 /* 3808 * Check that this top-level vdev has a device under it which 3809 * is resilvering and is not deferred. 3810 */ 3811 if (!dsl_scan_check_deferred(vd)) 3812 return (B_FALSE); 3813 3814 return (B_TRUE); 3815 } 3816 3817 static int 3818 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3819 { 3820 dsl_scan_t *scn = dp->dp_scan; 3821 spa_t *spa = dp->dp_spa; 3822 int err = 0; 3823 3824 if (spa_suspend_async_destroy(spa)) 3825 return (0); 3826 3827 if (zfs_free_bpobj_enabled && 3828 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3829 scn->scn_is_bptree = B_FALSE; 3830 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3831 scn->scn_zio_root = zio_root(spa, NULL, 3832 NULL, ZIO_FLAG_MUSTSUCCEED); 3833 err = bpobj_iterate(&dp->dp_free_bpobj, 3834 bpobj_dsl_scan_free_block_cb, scn, tx); 3835 VERIFY0(zio_wait(scn->scn_zio_root)); 3836 scn->scn_zio_root = NULL; 3837 3838 if (err != 0 && err != ERESTART) 3839 zfs_panic_recover("error %u from bpobj_iterate()", err); 3840 } 3841 3842 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3843 ASSERT(scn->scn_async_destroying); 3844 scn->scn_is_bptree = B_TRUE; 3845 scn->scn_zio_root = zio_root(spa, NULL, 3846 NULL, ZIO_FLAG_MUSTSUCCEED); 3847 err = bptree_iterate(dp->dp_meta_objset, 3848 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3849 VERIFY0(zio_wait(scn->scn_zio_root)); 3850 scn->scn_zio_root = NULL; 3851 3852 if (err == EIO || err == ECKSUM) { 3853 err = 0; 3854 } else if (err != 0 && err != ERESTART) { 3855 zfs_panic_recover("error %u from " 3856 "traverse_dataset_destroyed()", err); 3857 } 3858 3859 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3860 /* finished; deactivate async destroy feature */ 3861 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3862 ASSERT(!spa_feature_is_active(spa, 3863 SPA_FEATURE_ASYNC_DESTROY)); 3864 VERIFY0(zap_remove(dp->dp_meta_objset, 3865 DMU_POOL_DIRECTORY_OBJECT, 3866 DMU_POOL_BPTREE_OBJ, tx)); 3867 VERIFY0(bptree_free(dp->dp_meta_objset, 3868 dp->dp_bptree_obj, tx)); 3869 dp->dp_bptree_obj = 0; 3870 scn->scn_async_destroying = B_FALSE; 3871 scn->scn_async_stalled = B_FALSE; 3872 } else { 3873 /* 3874 * If we didn't make progress, mark the async 3875 * destroy as stalled, so that we will not initiate 3876 * a spa_sync() on its behalf. Note that we only 3877 * check this if we are not finished, because if the 3878 * bptree had no blocks for us to visit, we can 3879 * finish without "making progress". 3880 */ 3881 scn->scn_async_stalled = 3882 (scn->scn_visited_this_txg == 0); 3883 } 3884 } 3885 if (scn->scn_visited_this_txg) { 3886 zfs_dbgmsg("freed %llu blocks in %llums from " 3887 "free_bpobj/bptree on %s in txg %llu; err=%u", 3888 (longlong_t)scn->scn_visited_this_txg, 3889 (longlong_t) 3890 NSEC2MSEC(getlrtime() - scn->scn_sync_start_time), 3891 spa->spa_name, (longlong_t)tx->tx_txg, err); 3892 scn->scn_visited_this_txg = 0; 3893 scn->scn_async_frees_this_txg = 0; 3894 3895 /* 3896 * Write out changes to the DDT and the BRT that may be required 3897 * as a result of the blocks freed. This ensures that the DDT 3898 * and the BRT are clean when a scrub/resilver runs. 3899 */ 3900 ddt_sync(spa, tx->tx_txg); 3901 brt_sync(spa, tx->tx_txg); 3902 } 3903 if (err != 0) 3904 return (err); 3905 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3906 zfs_free_leak_on_eio && 3907 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3908 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3909 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3910 /* 3911 * We have finished background destroying, but there is still 3912 * some space left in the dp_free_dir. Transfer this leaked 3913 * space to the dp_leak_dir. 3914 */ 3915 if (dp->dp_leak_dir == NULL) { 3916 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3917 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3918 LEAK_DIR_NAME, tx); 3919 VERIFY0(dsl_pool_open_special_dir(dp, 3920 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3921 rrw_exit(&dp->dp_config_rwlock, FTAG); 3922 } 3923 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3924 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3925 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3926 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3927 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3928 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3929 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3930 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3931 } 3932 3933 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3934 !spa_livelist_delete_check(spa)) { 3935 /* finished; verify that space accounting went to zero */ 3936 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3937 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3938 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3939 } 3940 3941 spa_notify_waiters(spa); 3942 3943 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3944 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3945 DMU_POOL_OBSOLETE_BPOBJ)); 3946 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3947 ASSERT(spa_feature_is_active(dp->dp_spa, 3948 SPA_FEATURE_OBSOLETE_COUNTS)); 3949 3950 scn->scn_is_bptree = B_FALSE; 3951 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3952 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3953 dsl_scan_obsolete_block_cb, scn, tx); 3954 if (err != 0 && err != ERESTART) 3955 zfs_panic_recover("error %u from bpobj_iterate()", err); 3956 3957 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3958 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3959 } 3960 return (0); 3961 } 3962 3963 static void 3964 name_to_bookmark(char *buf, zbookmark_phys_t *zb) 3965 { 3966 zb->zb_objset = zfs_strtonum(buf, &buf); 3967 ASSERT(*buf == ':'); 3968 zb->zb_object = zfs_strtonum(buf + 1, &buf); 3969 ASSERT(*buf == ':'); 3970 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf); 3971 ASSERT(*buf == ':'); 3972 zb->zb_blkid = zfs_strtonum(buf + 1, &buf); 3973 ASSERT(*buf == '\0'); 3974 } 3975 3976 static void 3977 name_to_object(char *buf, uint64_t *obj) 3978 { 3979 *obj = zfs_strtonum(buf, &buf); 3980 ASSERT(*buf == '\0'); 3981 } 3982 3983 static void 3984 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb) 3985 { 3986 dsl_pool_t *dp = scn->scn_dp; 3987 dsl_dataset_t *ds; 3988 objset_t *os; 3989 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0) 3990 return; 3991 3992 if (dmu_objset_from_ds(ds, &os) != 0) { 3993 dsl_dataset_rele(ds, FTAG); 3994 return; 3995 } 3996 3997 /* 3998 * If the key is not loaded dbuf_dnode_findbp() will error out with 3999 * EACCES. However in that case dnode_hold() will eventually call 4000 * dbuf_read()->zio_wait() which may call spa_log_error(). This will 4001 * lead to a deadlock due to us holding the mutex spa_errlist_lock. 4002 * Avoid this by checking here if the keys are loaded, if not return. 4003 * If the keys are not loaded the head_errlog feature is meaningless 4004 * as we cannot figure out the birth txg of the block pointer. 4005 */ 4006 if (dsl_dataset_get_keystatus(ds->ds_dir) == 4007 ZFS_KEYSTATUS_UNAVAILABLE) { 4008 dsl_dataset_rele(ds, FTAG); 4009 return; 4010 } 4011 4012 dnode_t *dn; 4013 blkptr_t bp; 4014 4015 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) { 4016 dsl_dataset_rele(ds, FTAG); 4017 return; 4018 } 4019 4020 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4021 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL, 4022 NULL); 4023 4024 if (error) { 4025 rw_exit(&dn->dn_struct_rwlock); 4026 dnode_rele(dn, FTAG); 4027 dsl_dataset_rele(ds, FTAG); 4028 return; 4029 } 4030 4031 if (!error && BP_IS_HOLE(&bp)) { 4032 rw_exit(&dn->dn_struct_rwlock); 4033 dnode_rele(dn, FTAG); 4034 dsl_dataset_rele(ds, FTAG); 4035 return; 4036 } 4037 4038 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | 4039 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB; 4040 4041 /* If it's an intent log block, failure is expected. */ 4042 if (zb.zb_level == ZB_ZIL_LEVEL) 4043 zio_flags |= ZIO_FLAG_SPECULATIVE; 4044 4045 ASSERT(!BP_IS_EMBEDDED(&bp)); 4046 scan_exec_io(dp, &bp, zio_flags, &zb, NULL); 4047 rw_exit(&dn->dn_struct_rwlock); 4048 dnode_rele(dn, FTAG); 4049 dsl_dataset_rele(ds, FTAG); 4050 } 4051 4052 /* 4053 * We keep track of the scrubbed error blocks in "count". This will be used 4054 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This 4055 * function is modelled after check_filesystem(). 4056 */ 4057 static int 4058 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep, 4059 int *count) 4060 { 4061 dsl_dataset_t *ds; 4062 dsl_pool_t *dp = spa->spa_dsl_pool; 4063 dsl_scan_t *scn = dp->dp_scan; 4064 4065 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds); 4066 if (error != 0) 4067 return (error); 4068 4069 uint64_t latest_txg; 4070 uint64_t txg_to_consider = spa->spa_syncing_txg; 4071 boolean_t check_snapshot = B_TRUE; 4072 4073 error = find_birth_txg(ds, zep, &latest_txg); 4074 4075 /* 4076 * If find_birth_txg() errors out, then err on the side of caution and 4077 * proceed. In worst case scenario scrub all objects. If zep->zb_birth 4078 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to 4079 * scrub all objects. 4080 */ 4081 if (error == 0 && zep->zb_birth == latest_txg) { 4082 /* Block neither free nor re written. */ 4083 zbookmark_phys_t zb; 4084 zep_to_zb(fs, zep, &zb); 4085 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4086 ZIO_FLAG_CANFAIL); 4087 /* We have already acquired the config lock for spa */ 4088 read_by_block_level(scn, zb); 4089 4090 (void) zio_wait(scn->scn_zio_root); 4091 scn->scn_zio_root = NULL; 4092 4093 scn->errorscrub_phys.dep_examined++; 4094 scn->errorscrub_phys.dep_to_examine--; 4095 (*count)++; 4096 if ((*count) == zfs_scrub_error_blocks_per_txg || 4097 dsl_error_scrub_check_suspend(scn, &zb)) { 4098 dsl_dataset_rele(ds, FTAG); 4099 return (SET_ERROR(EFAULT)); 4100 } 4101 4102 check_snapshot = B_FALSE; 4103 } else if (error == 0) { 4104 txg_to_consider = latest_txg; 4105 } 4106 4107 /* 4108 * Retrieve the number of snapshots if the dataset is not a snapshot. 4109 */ 4110 uint64_t snap_count = 0; 4111 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) { 4112 4113 error = zap_count(spa->spa_meta_objset, 4114 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count); 4115 4116 if (error != 0) { 4117 dsl_dataset_rele(ds, FTAG); 4118 return (error); 4119 } 4120 } 4121 4122 if (snap_count == 0) { 4123 /* Filesystem without snapshots. */ 4124 dsl_dataset_rele(ds, FTAG); 4125 return (0); 4126 } 4127 4128 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4129 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4130 4131 dsl_dataset_rele(ds, FTAG); 4132 4133 /* Check only snapshots created from this file system. */ 4134 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg && 4135 snap_obj_txg <= txg_to_consider) { 4136 4137 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds); 4138 if (error != 0) 4139 return (error); 4140 4141 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) { 4142 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4143 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4144 dsl_dataset_rele(ds, FTAG); 4145 continue; 4146 } 4147 4148 boolean_t affected = B_TRUE; 4149 if (check_snapshot) { 4150 uint64_t blk_txg; 4151 error = find_birth_txg(ds, zep, &blk_txg); 4152 4153 /* 4154 * Scrub the snapshot also when zb_birth == 0 or when 4155 * find_birth_txg() returns an error. 4156 */ 4157 affected = (error == 0 && zep->zb_birth == blk_txg) || 4158 (error != 0) || (zep->zb_birth == 0); 4159 } 4160 4161 /* Scrub snapshots. */ 4162 if (affected) { 4163 zbookmark_phys_t zb; 4164 zep_to_zb(snap_obj, zep, &zb); 4165 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4166 ZIO_FLAG_CANFAIL); 4167 /* We have already acquired the config lock for spa */ 4168 read_by_block_level(scn, zb); 4169 4170 (void) zio_wait(scn->scn_zio_root); 4171 scn->scn_zio_root = NULL; 4172 4173 scn->errorscrub_phys.dep_examined++; 4174 scn->errorscrub_phys.dep_to_examine--; 4175 (*count)++; 4176 if ((*count) == zfs_scrub_error_blocks_per_txg || 4177 dsl_error_scrub_check_suspend(scn, &zb)) { 4178 dsl_dataset_rele(ds, FTAG); 4179 return (EFAULT); 4180 } 4181 } 4182 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4183 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4184 dsl_dataset_rele(ds, FTAG); 4185 } 4186 return (0); 4187 } 4188 4189 void 4190 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4191 { 4192 spa_t *spa = dp->dp_spa; 4193 dsl_scan_t *scn = dp->dp_scan; 4194 4195 /* 4196 * Only process scans in sync pass 1. 4197 */ 4198 4199 if (spa_sync_pass(spa) > 1) 4200 return; 4201 4202 /* 4203 * If the spa is shutting down, then stop scanning. This will 4204 * ensure that the scan does not dirty any new data during the 4205 * shutdown phase. 4206 */ 4207 if (spa_shutting_down(spa)) 4208 return; 4209 4210 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) { 4211 return; 4212 } 4213 4214 if (dsl_scan_resilvering(scn->scn_dp)) { 4215 /* cancel the error scrub if resilver started */ 4216 dsl_scan_cancel(scn->scn_dp); 4217 return; 4218 } 4219 4220 spa->spa_scrub_active = B_TRUE; 4221 scn->scn_sync_start_time = getlrtime(); 4222 4223 /* 4224 * zfs_scan_suspend_progress can be set to disable scrub progress. 4225 * See more detailed comment in dsl_scan_sync(). 4226 */ 4227 if (zfs_scan_suspend_progress) { 4228 uint64_t scan_time_ns = getlrtime() - scn->scn_sync_start_time; 4229 int mintime = zfs_scrub_min_time_ms; 4230 4231 while (zfs_scan_suspend_progress && 4232 !txg_sync_waiting(scn->scn_dp) && 4233 !spa_shutting_down(scn->scn_dp->dp_spa) && 4234 NSEC2MSEC(scan_time_ns) < mintime) { 4235 delay(hz); 4236 scan_time_ns = getlrtime() - scn->scn_sync_start_time; 4237 } 4238 return; 4239 } 4240 4241 int i = 0; 4242 zap_attribute_t *za; 4243 zbookmark_phys_t *zb; 4244 boolean_t limit_exceeded = B_FALSE; 4245 4246 za = zap_attribute_alloc(); 4247 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP); 4248 4249 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 4250 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4251 zap_cursor_advance(&scn->errorscrub_cursor)) { 4252 name_to_bookmark(za->za_name, zb); 4253 4254 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4255 NULL, ZIO_FLAG_CANFAIL); 4256 dsl_pool_config_enter(dp, FTAG); 4257 read_by_block_level(scn, *zb); 4258 dsl_pool_config_exit(dp, FTAG); 4259 4260 (void) zio_wait(scn->scn_zio_root); 4261 scn->scn_zio_root = NULL; 4262 4263 scn->errorscrub_phys.dep_examined += 1; 4264 scn->errorscrub_phys.dep_to_examine -= 1; 4265 i++; 4266 if (i == zfs_scrub_error_blocks_per_txg || 4267 dsl_error_scrub_check_suspend(scn, zb)) { 4268 limit_exceeded = B_TRUE; 4269 break; 4270 } 4271 } 4272 4273 if (!limit_exceeded) 4274 dsl_errorscrub_done(scn, B_TRUE, tx); 4275 4276 dsl_errorscrub_sync_state(scn, tx); 4277 zap_attribute_free(za); 4278 kmem_free(zb, sizeof (*zb)); 4279 return; 4280 } 4281 4282 int error = 0; 4283 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4284 zap_cursor_advance(&scn->errorscrub_cursor)) { 4285 4286 zap_cursor_t *head_ds_cursor; 4287 zap_attribute_t *head_ds_attr; 4288 zbookmark_err_phys_t head_ds_block; 4289 4290 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP); 4291 head_ds_attr = zap_attribute_alloc(); 4292 4293 uint64_t head_ds_err_obj = za->za_first_integer; 4294 uint64_t head_ds; 4295 name_to_object(za->za_name, &head_ds); 4296 boolean_t config_held = B_FALSE; 4297 uint64_t top_affected_fs; 4298 4299 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset, 4300 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor, 4301 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) { 4302 4303 name_to_errphys(head_ds_attr->za_name, &head_ds_block); 4304 4305 /* 4306 * In case we are called from spa_sync the pool 4307 * config is already held. 4308 */ 4309 if (!dsl_pool_config_held(dp)) { 4310 dsl_pool_config_enter(dp, FTAG); 4311 config_held = B_TRUE; 4312 } 4313 4314 error = find_top_affected_fs(spa, 4315 head_ds, &head_ds_block, &top_affected_fs); 4316 if (error) 4317 break; 4318 4319 error = scrub_filesystem(spa, top_affected_fs, 4320 &head_ds_block, &i); 4321 4322 if (error == SET_ERROR(EFAULT)) { 4323 limit_exceeded = B_TRUE; 4324 break; 4325 } 4326 } 4327 4328 zap_cursor_fini(head_ds_cursor); 4329 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor)); 4330 zap_attribute_free(head_ds_attr); 4331 4332 if (config_held) 4333 dsl_pool_config_exit(dp, FTAG); 4334 } 4335 4336 zap_attribute_free(za); 4337 kmem_free(zb, sizeof (*zb)); 4338 if (!limit_exceeded) 4339 dsl_errorscrub_done(scn, B_TRUE, tx); 4340 4341 dsl_errorscrub_sync_state(scn, tx); 4342 } 4343 4344 /* 4345 * This is the primary entry point for scans that is called from syncing 4346 * context. Scans must happen entirely during syncing context so that we 4347 * can guarantee that blocks we are currently scanning will not change out 4348 * from under us. While a scan is active, this function controls how quickly 4349 * transaction groups proceed, instead of the normal handling provided by 4350 * txg_sync_thread(). 4351 */ 4352 void 4353 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4354 { 4355 int err = 0; 4356 dsl_scan_t *scn = dp->dp_scan; 4357 spa_t *spa = dp->dp_spa; 4358 state_sync_type_t sync_type = SYNC_OPTIONAL; 4359 int restart_early = 0; 4360 4361 if (spa->spa_resilver_deferred) { 4362 uint64_t to_issue, issued; 4363 4364 if (!spa_feature_is_active(dp->dp_spa, 4365 SPA_FEATURE_RESILVER_DEFER)) 4366 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4367 4368 /* 4369 * See print_scan_scrub_resilver_status() issued/total_i 4370 * @ cmd/zpool/zpool_main.c 4371 */ 4372 to_issue = 4373 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped; 4374 issued = 4375 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 4376 restart_early = 4377 zfs_resilver_disable_defer || 4378 (issued < (to_issue * zfs_resilver_defer_percent / 100)); 4379 } 4380 4381 /* 4382 * Only process scans in sync pass 1. 4383 */ 4384 if (spa_sync_pass(spa) > 1) 4385 return; 4386 4387 4388 /* 4389 * Check for scn_restart_txg before checking spa_load_state, so 4390 * that we can restart an old-style scan while the pool is being 4391 * imported (see dsl_scan_init). We also restart scans if there 4392 * is a deferred resilver and the user has manually disabled 4393 * deferred resilvers via zfs_resilver_disable_defer, or if the 4394 * current scan progress is below zfs_resilver_defer_percent. 4395 */ 4396 if (dsl_scan_restarting(scn, tx) || restart_early) { 4397 setup_sync_arg_t setup_sync_arg = { 4398 .func = POOL_SCAN_SCRUB, 4399 .txgstart = 0, 4400 .txgend = 0, 4401 }; 4402 dsl_scan_done(scn, B_FALSE, tx); 4403 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4404 setup_sync_arg.func = POOL_SCAN_RESILVER; 4405 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d", 4406 setup_sync_arg.func, dp->dp_spa->spa_name, 4407 (longlong_t)tx->tx_txg, restart_early); 4408 dsl_scan_setup_sync(&setup_sync_arg, tx); 4409 } 4410 4411 /* 4412 * If the spa is shutting down, then stop scanning. This will 4413 * ensure that the scan does not dirty any new data during the 4414 * shutdown phase. 4415 */ 4416 if (spa_shutting_down(spa)) 4417 return; 4418 4419 /* 4420 * Wait a few txgs after importing before doing background work 4421 * (async destroys and scanning). This should help the import 4422 * command to complete quickly. 4423 */ 4424 if (spa->spa_syncing_txg < spa->spa_first_txg + zfs_import_defer_txgs) 4425 return; 4426 4427 /* 4428 * If the scan is inactive due to a stalled async destroy, try again. 4429 */ 4430 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 4431 return; 4432 4433 /* reset scan statistics */ 4434 scn->scn_visited_this_txg = 0; 4435 scn->scn_async_frees_this_txg = 0; 4436 scn->scn_holes_this_txg = 0; 4437 scn->scn_lt_min_this_txg = 0; 4438 scn->scn_gt_max_this_txg = 0; 4439 scn->scn_ddt_contained_this_txg = 0; 4440 scn->scn_objsets_visited_this_txg = 0; 4441 scn->scn_avg_seg_size_this_txg = 0; 4442 scn->scn_segs_this_txg = 0; 4443 scn->scn_avg_zio_size_this_txg = 0; 4444 scn->scn_zios_this_txg = 0; 4445 scn->scn_suspending = B_FALSE; 4446 scn->scn_sync_start_time = getlrtime(); 4447 spa->spa_scrub_active = B_TRUE; 4448 4449 /* 4450 * First process the async destroys. If we suspend, don't do 4451 * any scrubbing or resilvering. This ensures that there are no 4452 * async destroys while we are scanning, so the scan code doesn't 4453 * have to worry about traversing it. It is also faster to free the 4454 * blocks than to scrub them. 4455 */ 4456 err = dsl_process_async_destroys(dp, tx); 4457 if (err != 0) 4458 return; 4459 4460 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 4461 return; 4462 4463 /* 4464 * zfs_scan_suspend_progress can be set to disable scan progress. 4465 * We don't want to spin the txg_sync thread, so we add a delay 4466 * here to simulate the time spent doing a scan. This is mostly 4467 * useful for testing and debugging. 4468 */ 4469 if (zfs_scan_suspend_progress) { 4470 uint64_t scan_time_ns = getlrtime() - scn->scn_sync_start_time; 4471 uint_t mintime = (scn->scn_phys.scn_func == 4472 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : 4473 zfs_scrub_min_time_ms; 4474 4475 while (zfs_scan_suspend_progress && 4476 !txg_sync_waiting(scn->scn_dp) && 4477 !spa_shutting_down(scn->scn_dp->dp_spa) && 4478 NSEC2MSEC(scan_time_ns) < mintime) { 4479 delay(hz); 4480 scan_time_ns = getlrtime() - scn->scn_sync_start_time; 4481 } 4482 return; 4483 } 4484 4485 /* 4486 * Disabled by default, set zfs_scan_report_txgs to report 4487 * average performance over the last zfs_scan_report_txgs TXGs. 4488 */ 4489 if (zfs_scan_report_txgs != 0 && 4490 tx->tx_txg % zfs_scan_report_txgs == 0) { 4491 scn->scn_issued_before_pass += spa->spa_scan_pass_issued; 4492 spa_scan_stat_init(spa); 4493 } 4494 4495 /* 4496 * It is possible to switch from unsorted to sorted at any time, 4497 * but afterwards the scan will remain sorted unless reloaded from 4498 * a checkpoint after a reboot. 4499 */ 4500 if (!zfs_scan_legacy) { 4501 scn->scn_is_sorted = B_TRUE; 4502 if (scn->scn_last_checkpoint == 0) 4503 scn->scn_last_checkpoint = ddi_get_lbolt(); 4504 } 4505 4506 /* 4507 * For sorted scans, determine what kind of work we will be doing 4508 * this txg based on our memory limitations and whether or not we 4509 * need to perform a checkpoint. 4510 */ 4511 if (scn->scn_is_sorted) { 4512 /* 4513 * If we are over our checkpoint interval, set scn_clearing 4514 * so that we can begin checkpointing immediately. The 4515 * checkpoint allows us to save a consistent bookmark 4516 * representing how much data we have scrubbed so far. 4517 * Otherwise, use the memory limit to determine if we should 4518 * scan for metadata or start issue scrub IOs. We accumulate 4519 * metadata until we hit our hard memory limit at which point 4520 * we issue scrub IOs until we are at our soft memory limit. 4521 */ 4522 if (scn->scn_checkpointing || 4523 ddi_get_lbolt() - scn->scn_last_checkpoint > 4524 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 4525 if (!scn->scn_checkpointing) 4526 zfs_dbgmsg("begin scan checkpoint for %s", 4527 spa->spa_name); 4528 4529 scn->scn_checkpointing = B_TRUE; 4530 scn->scn_clearing = B_TRUE; 4531 } else { 4532 boolean_t should_clear = dsl_scan_should_clear(scn); 4533 if (should_clear && !scn->scn_clearing) { 4534 zfs_dbgmsg("begin scan clearing for %s", 4535 spa->spa_name); 4536 scn->scn_clearing = B_TRUE; 4537 } else if (!should_clear && scn->scn_clearing) { 4538 zfs_dbgmsg("finish scan clearing for %s", 4539 spa->spa_name); 4540 scn->scn_clearing = B_FALSE; 4541 } 4542 } 4543 } else { 4544 ASSERT0(scn->scn_checkpointing); 4545 ASSERT0(scn->scn_clearing); 4546 } 4547 4548 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 4549 /* Need to scan metadata for more blocks to scrub */ 4550 dsl_scan_phys_t *scnp = &scn->scn_phys; 4551 taskqid_t prefetch_tqid; 4552 4553 /* 4554 * Calculate the max number of in-flight bytes for pool-wide 4555 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 4556 * Limits for the issuing phase are done per top-level vdev and 4557 * are handled separately. 4558 */ 4559 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 4560 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 4561 4562 if (scnp->scn_ddt_bookmark.ddb_class <= 4563 scnp->scn_ddt_class_max) { 4564 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 4565 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4566 "ddt bm=%llu/%llu/%llu/%llx", 4567 spa->spa_name, 4568 (longlong_t)tx->tx_txg, 4569 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 4570 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 4571 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 4572 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 4573 } else { 4574 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4575 "bm=%llu/%llu/%llu/%llu", 4576 spa->spa_name, 4577 (longlong_t)tx->tx_txg, 4578 (longlong_t)scnp->scn_bookmark.zb_objset, 4579 (longlong_t)scnp->scn_bookmark.zb_object, 4580 (longlong_t)scnp->scn_bookmark.zb_level, 4581 (longlong_t)scnp->scn_bookmark.zb_blkid); 4582 } 4583 4584 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4585 NULL, ZIO_FLAG_CANFAIL); 4586 4587 scn->scn_prefetch_stop = B_FALSE; 4588 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 4589 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 4590 ASSERT(prefetch_tqid != TASKQID_INVALID); 4591 4592 dsl_pool_config_enter(dp, FTAG); 4593 dsl_scan_visit(scn, tx); 4594 dsl_pool_config_exit(dp, FTAG); 4595 4596 mutex_enter(&dp->dp_spa->spa_scrub_lock); 4597 scn->scn_prefetch_stop = B_TRUE; 4598 cv_broadcast(&spa->spa_scrub_io_cv); 4599 mutex_exit(&dp->dp_spa->spa_scrub_lock); 4600 4601 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 4602 (void) zio_wait(scn->scn_zio_root); 4603 scn->scn_zio_root = NULL; 4604 4605 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 4606 "(%llu os's, %llu holes, %llu < mintxg, " 4607 "%llu in ddt, %llu > maxtxg)", 4608 (longlong_t)scn->scn_visited_this_txg, 4609 spa->spa_name, 4610 (longlong_t)NSEC2MSEC(getlrtime() - 4611 scn->scn_sync_start_time), 4612 (longlong_t)scn->scn_objsets_visited_this_txg, 4613 (longlong_t)scn->scn_holes_this_txg, 4614 (longlong_t)scn->scn_lt_min_this_txg, 4615 (longlong_t)scn->scn_ddt_contained_this_txg, 4616 (longlong_t)scn->scn_gt_max_this_txg); 4617 4618 if (!scn->scn_suspending) { 4619 ASSERT0(avl_numnodes(&scn->scn_queue)); 4620 scn->scn_done_txg = tx->tx_txg + 1; 4621 if (scn->scn_is_sorted) { 4622 scn->scn_checkpointing = B_TRUE; 4623 scn->scn_clearing = B_TRUE; 4624 scn->scn_issued_before_pass += 4625 spa->spa_scan_pass_issued; 4626 spa_scan_stat_init(spa); 4627 } 4628 zfs_dbgmsg("scan complete for %s txg %llu", 4629 spa->spa_name, 4630 (longlong_t)tx->tx_txg); 4631 } 4632 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 4633 ASSERT(scn->scn_clearing); 4634 4635 /* need to issue scrubbing IOs from per-vdev queues */ 4636 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4637 NULL, ZIO_FLAG_CANFAIL); 4638 scan_io_queues_run(scn); 4639 (void) zio_wait(scn->scn_zio_root); 4640 scn->scn_zio_root = NULL; 4641 4642 /* calculate and dprintf the current memory usage */ 4643 (void) dsl_scan_should_clear(scn); 4644 dsl_scan_update_stats(scn); 4645 4646 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 4647 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 4648 (longlong_t)scn->scn_zios_this_txg, 4649 spa->spa_name, 4650 (longlong_t)scn->scn_segs_this_txg, 4651 (longlong_t)NSEC2MSEC(getlrtime() - 4652 scn->scn_sync_start_time), 4653 (longlong_t)scn->scn_avg_zio_size_this_txg, 4654 (longlong_t)scn->scn_avg_seg_size_this_txg); 4655 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 4656 /* Finished with everything. Mark the scrub as complete */ 4657 zfs_dbgmsg("scan issuing complete txg %llu for %s", 4658 (longlong_t)tx->tx_txg, 4659 spa->spa_name); 4660 ASSERT3U(scn->scn_done_txg, !=, 0); 4661 ASSERT0(spa->spa_scrub_inflight); 4662 ASSERT0(scn->scn_queues_pending); 4663 dsl_scan_done(scn, B_TRUE, tx); 4664 sync_type = SYNC_MANDATORY; 4665 } 4666 4667 dsl_scan_sync_state(scn, tx, sync_type); 4668 } 4669 4670 static void 4671 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 4672 { 4673 /* 4674 * Don't count embedded bp's, since we already did the work of 4675 * scanning these when we scanned the containing block. 4676 */ 4677 if (BP_IS_EMBEDDED(bp)) 4678 return; 4679 4680 /* 4681 * Update the spa's stats on how many bytes we have issued. 4682 * Sequential scrubs create a zio for each DVA of the bp. Each 4683 * of these will include all DVAs for repair purposes, but the 4684 * zio code will only try the first one unless there is an issue. 4685 * Therefore, we should only count the first DVA for these IOs. 4686 */ 4687 atomic_add_64(&spa->spa_scan_pass_issued, 4688 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4689 } 4690 4691 static void 4692 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all) 4693 { 4694 if (BP_IS_EMBEDDED(bp)) 4695 return; 4696 atomic_add_64(&scn->scn_phys.scn_skipped, 4697 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4698 } 4699 4700 static void 4701 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 4702 { 4703 /* 4704 * If we resume after a reboot, zab will be NULL; don't record 4705 * incomplete stats in that case. 4706 */ 4707 if (zab == NULL) 4708 return; 4709 4710 for (int i = 0; i < 4; i++) { 4711 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 4712 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 4713 4714 if (t & DMU_OT_NEWTYPE) 4715 t = DMU_OT_OTHER; 4716 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 4717 int equal; 4718 4719 zb->zb_count++; 4720 zb->zb_asize += BP_GET_ASIZE(bp); 4721 zb->zb_lsize += BP_GET_LSIZE(bp); 4722 zb->zb_psize += BP_GET_PSIZE(bp); 4723 zb->zb_gangs += BP_COUNT_GANG(bp); 4724 4725 switch (BP_GET_NDVAS(bp)) { 4726 case 2: 4727 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 4728 DVA_GET_VDEV(&bp->blk_dva[1])) 4729 zb->zb_ditto_2_of_2_samevdev++; 4730 break; 4731 case 3: 4732 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 4733 DVA_GET_VDEV(&bp->blk_dva[1])) + 4734 (DVA_GET_VDEV(&bp->blk_dva[0]) == 4735 DVA_GET_VDEV(&bp->blk_dva[2])) + 4736 (DVA_GET_VDEV(&bp->blk_dva[1]) == 4737 DVA_GET_VDEV(&bp->blk_dva[2])); 4738 if (equal == 1) 4739 zb->zb_ditto_2_of_3_samevdev++; 4740 else if (equal == 3) 4741 zb->zb_ditto_3_of_3_samevdev++; 4742 break; 4743 } 4744 } 4745 } 4746 4747 static void 4748 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 4749 { 4750 avl_index_t idx; 4751 dsl_scan_t *scn = queue->q_scn; 4752 4753 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4754 4755 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 4756 atomic_add_64(&scn->scn_queues_pending, 1); 4757 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 4758 /* block is already scheduled for reading */ 4759 sio_free(sio); 4760 return; 4761 } 4762 avl_insert(&queue->q_sios_by_addr, sio, idx); 4763 queue->q_sio_memused += SIO_GET_MUSED(sio); 4764 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 4765 SIO_GET_ASIZE(sio)); 4766 } 4767 4768 /* 4769 * Given all the info we got from our metadata scanning process, we 4770 * construct a scan_io_t and insert it into the scan sorting queue. The 4771 * I/O must already be suitable for us to process. This is controlled 4772 * by dsl_scan_enqueue(). 4773 */ 4774 static void 4775 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 4776 int zio_flags, const zbookmark_phys_t *zb) 4777 { 4778 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 4779 4780 ASSERT0(BP_IS_GANG(bp)); 4781 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4782 4783 bp2sio(bp, sio, dva_i); 4784 sio->sio_flags = zio_flags; 4785 sio->sio_zb = *zb; 4786 4787 queue->q_last_ext_addr = -1; 4788 scan_io_queue_insert_impl(queue, sio); 4789 } 4790 4791 /* 4792 * Given a set of I/O parameters as discovered by the metadata traversal 4793 * process, attempts to place the I/O into the sorted queues (if allowed), 4794 * or immediately executes the I/O. 4795 */ 4796 static void 4797 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4798 const zbookmark_phys_t *zb) 4799 { 4800 spa_t *spa = dp->dp_spa; 4801 4802 ASSERT(!BP_IS_EMBEDDED(bp)); 4803 4804 /* 4805 * Gang blocks are hard to issue sequentially, so we just issue them 4806 * here immediately instead of queuing them. 4807 */ 4808 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 4809 scan_exec_io(dp, bp, zio_flags, zb, NULL); 4810 return; 4811 } 4812 4813 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 4814 dva_t dva; 4815 vdev_t *vdev; 4816 4817 dva = bp->blk_dva[i]; 4818 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 4819 ASSERT(vdev != NULL); 4820 4821 mutex_enter(&vdev->vdev_scan_io_queue_lock); 4822 if (vdev->vdev_scan_io_queue == NULL) 4823 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 4824 ASSERT(dp->dp_scan != NULL); 4825 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 4826 i, zio_flags, zb); 4827 mutex_exit(&vdev->vdev_scan_io_queue_lock); 4828 } 4829 } 4830 4831 static int 4832 dsl_scan_scrub_cb(dsl_pool_t *dp, 4833 const blkptr_t *bp, const zbookmark_phys_t *zb) 4834 { 4835 dsl_scan_t *scn = dp->dp_scan; 4836 spa_t *spa = dp->dp_spa; 4837 uint64_t phys_birth = BP_GET_PHYSICAL_BIRTH(bp); 4838 size_t psize = BP_GET_PSIZE(bp); 4839 boolean_t needs_io = B_FALSE; 4840 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 4841 4842 count_block(dp->dp_blkstats, bp); 4843 if (phys_birth <= scn->scn_phys.scn_min_txg || 4844 phys_birth >= scn->scn_phys.scn_max_txg) { 4845 count_block_skipped(scn, bp, B_TRUE); 4846 return (0); 4847 } 4848 4849 /* Embedded BP's have phys_birth==0, so we reject them above. */ 4850 ASSERT(!BP_IS_EMBEDDED(bp)); 4851 4852 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 4853 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 4854 zio_flags |= ZIO_FLAG_SCRUB; 4855 needs_io = B_TRUE; 4856 } else { 4857 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4858 zio_flags |= ZIO_FLAG_RESILVER; 4859 needs_io = B_FALSE; 4860 } 4861 4862 /* If it's an intent log block, failure is expected. */ 4863 if (zb->zb_level == ZB_ZIL_LEVEL) 4864 zio_flags |= ZIO_FLAG_SPECULATIVE; 4865 4866 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4867 const dva_t *dva = &bp->blk_dva[d]; 4868 4869 /* 4870 * Keep track of how much data we've examined so that 4871 * zpool(8) status can make useful progress reports. 4872 */ 4873 uint64_t asize = DVA_GET_ASIZE(dva); 4874 scn->scn_phys.scn_examined += asize; 4875 spa->spa_scan_pass_exam += asize; 4876 4877 /* if it's a resilver, this may not be in the target range */ 4878 if (!needs_io) 4879 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4880 phys_birth); 4881 } 4882 4883 if (needs_io && !zfs_no_scrub_io) { 4884 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4885 } else { 4886 count_block_skipped(scn, bp, B_TRUE); 4887 } 4888 4889 /* do not relocate this block */ 4890 return (0); 4891 } 4892 4893 static void 4894 dsl_scan_scrub_done(zio_t *zio) 4895 { 4896 spa_t *spa = zio->io_spa; 4897 blkptr_t *bp = zio->io_bp; 4898 dsl_scan_io_queue_t *queue = zio->io_private; 4899 4900 abd_free(zio->io_abd); 4901 4902 if (queue == NULL) { 4903 mutex_enter(&spa->spa_scrub_lock); 4904 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4905 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4906 cv_broadcast(&spa->spa_scrub_io_cv); 4907 mutex_exit(&spa->spa_scrub_lock); 4908 } else { 4909 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4910 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4911 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4912 cv_broadcast(&queue->q_zio_cv); 4913 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4914 } 4915 4916 if (zio->io_error && (zio->io_error != ECKSUM || 4917 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4918 if (dsl_errorscrubbing(spa->spa_dsl_pool) && 4919 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) { 4920 atomic_inc_64(&spa->spa_dsl_pool->dp_scan 4921 ->errorscrub_phys.dep_errors); 4922 } else { 4923 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys 4924 .scn_errors); 4925 } 4926 } 4927 } 4928 4929 /* 4930 * Given a scanning zio's information, executes the zio. The zio need 4931 * not necessarily be only sortable, this function simply executes the 4932 * zio, no matter what it is. The optional queue argument allows the 4933 * caller to specify that they want per top level vdev IO rate limiting 4934 * instead of the legacy global limiting. 4935 */ 4936 static void 4937 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4938 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4939 { 4940 spa_t *spa = dp->dp_spa; 4941 dsl_scan_t *scn = dp->dp_scan; 4942 size_t size = BP_GET_PSIZE(bp); 4943 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4944 zio_t *pio; 4945 4946 if (queue == NULL) { 4947 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4948 mutex_enter(&spa->spa_scrub_lock); 4949 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4950 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4951 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4952 mutex_exit(&spa->spa_scrub_lock); 4953 pio = scn->scn_zio_root; 4954 } else { 4955 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4956 4957 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4958 mutex_enter(q_lock); 4959 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4960 cv_wait(&queue->q_zio_cv, q_lock); 4961 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4962 pio = queue->q_zio; 4963 mutex_exit(q_lock); 4964 } 4965 4966 ASSERT(pio != NULL); 4967 count_block_issued(spa, bp, queue == NULL); 4968 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4969 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4970 } 4971 4972 /* 4973 * This is the primary extent sorting algorithm. We balance two parameters: 4974 * 1) how many bytes of I/O are in an extent 4975 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4976 * Since we allow extents to have gaps between their constituent I/Os, it's 4977 * possible to have a fairly large extent that contains the same amount of 4978 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4979 * The algorithm sorts based on a score calculated from the extent's size, 4980 * the relative fill volume (in %) and a "fill weight" parameter that controls 4981 * the split between whether we prefer larger extents or more well populated 4982 * extents: 4983 * 4984 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4985 * 4986 * Example: 4987 * 1) assume extsz = 64 MiB 4988 * 2) assume fill = 32 MiB (extent is half full) 4989 * 3) assume fill_weight = 3 4990 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4991 * SCORE = 32M + (50 * 3 * 32M) / 100 4992 * SCORE = 32M + (4800M / 100) 4993 * SCORE = 32M + 48M 4994 * ^ ^ 4995 * | +--- final total relative fill-based score 4996 * +--------- final total fill-based score 4997 * SCORE = 80M 4998 * 4999 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 5000 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 5001 * Note that as an optimization, we replace multiplication and division by 5002 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 5003 * 5004 * Since we do not care if one extent is only few percent better than another, 5005 * compress the score into 6 bits via binary logarithm AKA highbit64() and 5006 * put into otherwise unused due to ashift high bits of offset. This allows 5007 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 5008 * with single operation. Plus it makes scrubs more sequential and reduces 5009 * chances that minor extent change move it within the B-tree. 5010 */ 5011 __attribute__((always_inline)) inline 5012 static int 5013 ext_size_compare(const void *x, const void *y) 5014 { 5015 const uint64_t *a = x, *b = y; 5016 5017 return (TREE_CMP(*a, *b)); 5018 } 5019 5020 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t, 5021 ext_size_compare) 5022 5023 static void 5024 ext_size_create(zfs_range_tree_t *rt, void *arg) 5025 { 5026 (void) rt; 5027 zfs_btree_t *size_tree = arg; 5028 5029 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf, 5030 sizeof (uint64_t)); 5031 } 5032 5033 static void 5034 ext_size_destroy(zfs_range_tree_t *rt, void *arg) 5035 { 5036 (void) rt; 5037 zfs_btree_t *size_tree = arg; 5038 ASSERT0(zfs_btree_numnodes(size_tree)); 5039 5040 zfs_btree_destroy(size_tree); 5041 } 5042 5043 static uint64_t 5044 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg) 5045 { 5046 (void) rt; 5047 uint64_t size = rsg->rs_end - rsg->rs_start; 5048 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 5049 fill_weight * rsg->rs_fill) >> 7); 5050 ASSERT3U(rt->rt_shift, >=, 8); 5051 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 5052 } 5053 5054 static void 5055 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 5056 { 5057 zfs_btree_t *size_tree = arg; 5058 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP); 5059 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs); 5060 zfs_btree_add(size_tree, &v); 5061 } 5062 5063 static void 5064 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 5065 { 5066 zfs_btree_t *size_tree = arg; 5067 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP); 5068 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs); 5069 zfs_btree_remove(size_tree, &v); 5070 } 5071 5072 static void 5073 ext_size_vacate(zfs_range_tree_t *rt, void *arg) 5074 { 5075 zfs_btree_t *size_tree = arg; 5076 zfs_btree_clear(size_tree); 5077 zfs_btree_destroy(size_tree); 5078 5079 ext_size_create(rt, arg); 5080 } 5081 5082 static const zfs_range_tree_ops_t ext_size_ops = { 5083 .rtop_create = ext_size_create, 5084 .rtop_destroy = ext_size_destroy, 5085 .rtop_add = ext_size_add, 5086 .rtop_remove = ext_size_remove, 5087 .rtop_vacate = ext_size_vacate 5088 }; 5089 5090 /* 5091 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 5092 * based on LBA-order (from lowest to highest). 5093 */ 5094 static int 5095 sio_addr_compare(const void *x, const void *y) 5096 { 5097 const scan_io_t *a = x, *b = y; 5098 5099 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 5100 } 5101 5102 /* IO queues are created on demand when they are needed. */ 5103 static dsl_scan_io_queue_t * 5104 scan_io_queue_create(vdev_t *vd) 5105 { 5106 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 5107 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 5108 5109 q->q_scn = scn; 5110 q->q_vd = vd; 5111 q->q_sio_memused = 0; 5112 q->q_last_ext_addr = -1; 5113 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 5114 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops, 5115 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift, 5116 zfs_scan_max_ext_gap); 5117 avl_create(&q->q_sios_by_addr, sio_addr_compare, 5118 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 5119 5120 return (q); 5121 } 5122 5123 /* 5124 * Destroys a scan queue and all segments and scan_io_t's contained in it. 5125 * No further execution of I/O occurs, anything pending in the queue is 5126 * simply freed without being executed. 5127 */ 5128 void 5129 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 5130 { 5131 dsl_scan_t *scn = queue->q_scn; 5132 scan_io_t *sio; 5133 void *cookie = NULL; 5134 5135 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 5136 5137 if (!avl_is_empty(&queue->q_sios_by_addr)) 5138 atomic_add_64(&scn->scn_queues_pending, -1); 5139 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 5140 NULL) { 5141 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, 5142 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 5143 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5144 sio_free(sio); 5145 } 5146 5147 ASSERT0(queue->q_sio_memused); 5148 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 5149 zfs_range_tree_destroy(queue->q_exts_by_addr); 5150 avl_destroy(&queue->q_sios_by_addr); 5151 cv_destroy(&queue->q_zio_cv); 5152 5153 kmem_free(queue, sizeof (*queue)); 5154 } 5155 5156 /* 5157 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 5158 * called on behalf of vdev_top_transfer when creating or destroying 5159 * a mirror vdev due to zpool attach/detach. 5160 */ 5161 void 5162 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 5163 { 5164 mutex_enter(&svd->vdev_scan_io_queue_lock); 5165 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5166 5167 VERIFY0P(tvd->vdev_scan_io_queue); 5168 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 5169 svd->vdev_scan_io_queue = NULL; 5170 if (tvd->vdev_scan_io_queue != NULL) 5171 tvd->vdev_scan_io_queue->q_vd = tvd; 5172 5173 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5174 mutex_exit(&svd->vdev_scan_io_queue_lock); 5175 } 5176 5177 static void 5178 scan_io_queues_destroy(dsl_scan_t *scn) 5179 { 5180 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 5181 5182 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5183 vdev_t *tvd = rvd->vdev_child[i]; 5184 5185 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5186 if (tvd->vdev_scan_io_queue != NULL) 5187 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 5188 tvd->vdev_scan_io_queue = NULL; 5189 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5190 } 5191 } 5192 5193 static void 5194 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 5195 { 5196 dsl_pool_t *dp = spa->spa_dsl_pool; 5197 dsl_scan_t *scn = dp->dp_scan; 5198 vdev_t *vdev; 5199 kmutex_t *q_lock; 5200 dsl_scan_io_queue_t *queue; 5201 scan_io_t *srch_sio, *sio; 5202 avl_index_t idx; 5203 uint64_t start, size; 5204 5205 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 5206 ASSERT(vdev != NULL); 5207 q_lock = &vdev->vdev_scan_io_queue_lock; 5208 queue = vdev->vdev_scan_io_queue; 5209 5210 mutex_enter(q_lock); 5211 if (queue == NULL) { 5212 mutex_exit(q_lock); 5213 return; 5214 } 5215 5216 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 5217 bp2sio(bp, srch_sio, dva_i); 5218 start = SIO_GET_OFFSET(srch_sio); 5219 size = SIO_GET_ASIZE(srch_sio); 5220 5221 /* 5222 * We can find the zio in two states: 5223 * 1) Cold, just sitting in the queue of zio's to be issued at 5224 * some point in the future. In this case, all we do is 5225 * remove the zio from the q_sios_by_addr tree, decrement 5226 * its data volume from the containing zfs_range_seg_t and 5227 * resort the q_exts_by_size tree to reflect that the 5228 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten 5229 * the zfs_range_seg_t - this is usually rare enough not to be 5230 * worth the extra hassle of trying keep track of precise 5231 * extent boundaries. 5232 * 2) Hot, where the zio is currently in-flight in 5233 * dsl_scan_issue_ios. In this case, we can't simply 5234 * reach in and stop the in-flight zio's, so we instead 5235 * block the caller. Eventually, dsl_scan_issue_ios will 5236 * be done with issuing the zio's it gathered and will 5237 * signal us. 5238 */ 5239 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 5240 sio_free(srch_sio); 5241 5242 if (sio != NULL) { 5243 blkptr_t tmpbp; 5244 5245 /* Got it while it was cold in the queue */ 5246 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 5247 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 5248 avl_remove(&queue->q_sios_by_addr, sio); 5249 if (avl_is_empty(&queue->q_sios_by_addr)) 5250 atomic_add_64(&scn->scn_queues_pending, -1); 5251 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5252 5253 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start, 5254 size)); 5255 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size); 5256 5257 /* count the block as though we skipped it */ 5258 sio2bp(sio, &tmpbp); 5259 count_block_skipped(scn, &tmpbp, B_FALSE); 5260 5261 sio_free(sio); 5262 } 5263 mutex_exit(q_lock); 5264 } 5265 5266 /* 5267 * Callback invoked when a zio_free() zio is executing. This needs to be 5268 * intercepted to prevent the zio from deallocating a particular portion 5269 * of disk space and it then getting reallocated and written to, while we 5270 * still have it queued up for processing. 5271 */ 5272 void 5273 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 5274 { 5275 dsl_pool_t *dp = spa->spa_dsl_pool; 5276 dsl_scan_t *scn = dp->dp_scan; 5277 5278 ASSERT(!BP_IS_EMBEDDED(bp)); 5279 ASSERT(scn != NULL); 5280 if (!dsl_scan_is_running(scn)) 5281 return; 5282 5283 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 5284 dsl_scan_freed_dva(spa, bp, i); 5285 } 5286 5287 /* 5288 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 5289 * not started, start it. Otherwise, only restart if max txg in DTL range is 5290 * greater than the max txg in the current scan. If the DTL max is less than 5291 * the scan max, then the vdev has not missed any new data since the resilver 5292 * started, so a restart is not needed. 5293 */ 5294 void 5295 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 5296 { 5297 uint64_t min, max; 5298 5299 if (!vdev_resilver_needed(vd, &min, &max)) 5300 return; 5301 5302 if (!dsl_scan_resilvering(dp)) { 5303 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5304 return; 5305 } 5306 5307 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 5308 return; 5309 5310 /* restart is needed, check if it can be deferred */ 5311 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 5312 vdev_defer_resilver(vd); 5313 else 5314 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5315 } 5316 5317 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW, 5318 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 5319 5320 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW, 5321 "Min millisecs to scrub per txg"); 5322 5323 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW, 5324 "Min millisecs to obsolete per txg"); 5325 5326 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW, 5327 "Min millisecs to free per txg"); 5328 5329 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW, 5330 "Min millisecs to resilver per txg"); 5331 5332 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 5333 "Set to prevent scans from progressing"); 5334 5335 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 5336 "Set to disable scrub I/O"); 5337 5338 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 5339 "Set to disable scrub prefetching"); 5340 5341 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW, 5342 "Max number of blocks freed in one txg"); 5343 5344 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW, 5345 "Max number of dedup, clone or gang blocks freed in one txg"); 5346 5347 ZFS_MODULE_PARAM(zfs, zfs_, async_free_zio_wait_interval, U64, ZMOD_RW, 5348 "Wait for pending free I/Os after issuing this many asynchronously"); 5349 5350 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 5351 "Enable processing of the free_bpobj"); 5352 5353 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 5354 "Enable block statistics calculation during scrub"); 5355 5356 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW, 5357 "Fraction of RAM for scan hard limit"); 5358 5359 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW, 5360 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 5361 5362 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 5363 "Scrub using legacy non-sequential method"); 5364 5365 ZFS_MODULE_PARAM(zfs, zfs_, import_defer_txgs, UINT, ZMOD_RW, 5366 "Number of TXGs to defer background work after pool import"); 5367 5368 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW, 5369 "Scan progress on-disk checkpointing interval"); 5370 5371 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW, 5372 "Max gap in bytes between sequential scrub / resilver I/Os"); 5373 5374 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW, 5375 "Fraction of hard limit used as soft limit"); 5376 5377 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 5378 "Tunable to attempt to reduce lock contention"); 5379 5380 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW, 5381 "Tunable to adjust bias towards more filled segments during scans"); 5382 5383 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW, 5384 "Tunable to report resilver performance over the last N txgs"); 5385 5386 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 5387 "Process all resilvers immediately"); 5388 5389 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW, 5390 "Issued IO percent complete after which resilvers are deferred"); 5391 5392 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW, 5393 "Error blocks to be scrubbed in one txg"); 5394