1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/init.h>
17 #include <linux/threads.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/bitops.h>
24 #include <linux/export.h>
25 #include <linux/kexec.h>
26 #include <linux/irq.h>
27 #include <linux/memblock.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 #include <linux/libfdt.h>
31 #include <linux/cpu.h>
32 #include <linux/pgtable.h>
33 #include <linux/seq_buf.h>
34
35 #include <asm/rtas.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/kdump.h>
41 #include <asm/smp.h>
42 #include <asm/mmu.h>
43 #include <asm/paca.h>
44 #include <asm/powernv.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/pci-bridge.h>
50 #include <asm/kexec.h>
51 #include <asm/opal.h>
52 #include <asm/fadump.h>
53 #include <asm/epapr_hcalls.h>
54 #include <asm/firmware.h>
55 #include <asm/dt_cpu_ftrs.h>
56 #include <asm/drmem.h>
57 #include <asm/ultravisor.h>
58 #include <asm/prom.h>
59 #include <asm/plpks.h>
60
61 #include <mm/mmu_decl.h>
62
63 #ifdef DEBUG
64 #define DBG(fmt...) printk(KERN_ERR fmt)
65 #else
66 #define DBG(fmt...)
67 #endif
68
69 int *chip_id_lookup_table;
70
71 #ifdef CONFIG_PPC64
72 int __initdata iommu_is_off;
73 int __initdata iommu_force_on;
74 unsigned long tce_alloc_start, tce_alloc_end;
75 u64 ppc64_rma_size;
76 unsigned int boot_cpu_node_count __ro_after_init;
77 #endif
78 static phys_addr_t first_memblock_size;
79 static int __initdata boot_cpu_count;
80
early_parse_mem(char * p)81 static int __init early_parse_mem(char *p)
82 {
83 if (!p)
84 return 1;
85
86 memory_limit = PAGE_ALIGN(memparse(p, &p));
87 DBG("memory limit = 0x%llx\n", memory_limit);
88
89 return 0;
90 }
91 early_param("mem", early_parse_mem);
92
93 /*
94 * overlaps_initrd - check for overlap with page aligned extension of
95 * initrd.
96 */
overlaps_initrd(unsigned long start,unsigned long size)97 static inline int overlaps_initrd(unsigned long start, unsigned long size)
98 {
99 #ifdef CONFIG_BLK_DEV_INITRD
100 if (!initrd_start)
101 return 0;
102
103 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
104 start <= ALIGN(initrd_end, PAGE_SIZE);
105 #else
106 return 0;
107 #endif
108 }
109
110 /**
111 * move_device_tree - move tree to an unused area, if needed.
112 *
113 * The device tree may be allocated beyond our memory limit, or inside the
114 * crash kernel region for kdump, or within the page aligned range of initrd.
115 * If so, move it out of the way.
116 */
move_device_tree(void)117 static void __init move_device_tree(void)
118 {
119 unsigned long start, size;
120 void *p;
121
122 DBG("-> move_device_tree\n");
123
124 start = __pa(initial_boot_params);
125 size = fdt_totalsize(initial_boot_params);
126
127 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
128 !memblock_is_memory(start + size - 1) ||
129 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
130 p = memblock_alloc_raw(size, PAGE_SIZE);
131 if (!p)
132 panic("Failed to allocate %lu bytes to move device tree\n",
133 size);
134 memcpy(p, initial_boot_params, size);
135 initial_boot_params = p;
136 DBG("Moved device tree to 0x%px\n", p);
137 }
138
139 DBG("<- move_device_tree\n");
140 }
141
142 /*
143 * ibm,pa/pi-features is a per-cpu property that contains a string of
144 * attribute descriptors, each of which has a 2 byte header plus up
145 * to 254 bytes worth of processor attribute bits. First header
146 * byte specifies the number of bytes following the header.
147 * Second header byte is an "attribute-specifier" type, of which
148 * zero is the only currently-defined value.
149 * Implementation: Pass in the byte and bit offset for the feature
150 * that we are interested in. The function will return -1 if the
151 * pa-features property is missing, or a 1/0 to indicate if the feature
152 * is supported/not supported. Note that the bit numbers are
153 * big-endian to match the definition in PAPR.
154 * Note: the 'clear' flag clears the feature if the bit is set in the
155 * ibm,pa/pi-features property, it does not set the feature if the
156 * bit is clear.
157 */
158 struct ibm_feature {
159 unsigned long cpu_features; /* CPU_FTR_xxx bit */
160 unsigned long mmu_features; /* MMU_FTR_xxx bit */
161 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
162 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
163 unsigned char pabyte; /* byte number in ibm,pa/pi-features */
164 unsigned char pabit; /* bit number (big-endian) */
165 unsigned char clear; /* if 1, pa bit set => clear feature */
166 };
167
168 static struct ibm_feature ibm_pa_features[] __initdata = {
169 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
170 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
171 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
172 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
173 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
174 #ifdef CONFIG_PPC_RADIX_MMU
175 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
176 #endif
177 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
178 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
179 /*
180 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
181 * we don't want to turn on TM here, so we use the *_COMP versions
182 * which are 0 if the kernel doesn't support TM.
183 */
184 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
185 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
186
187 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
188 { .pabyte = 68, .pabit = 5, .cpu_features = CPU_FTR_DEXCR_NPHIE },
189 };
190
191 /*
192 * ibm,pi-features property provides the support of processor specific
193 * options not described in ibm,pa-features. Right now use byte 0, bit 3
194 * which indicates the occurrence of DSI interrupt when the paste operation
195 * on the suspended NX window.
196 */
197 static struct ibm_feature ibm_pi_features[] __initdata = {
198 { .pabyte = 0, .pabit = 3, .mmu_features = MMU_FTR_NX_DSI },
199 { .pabyte = 0, .pabit = 4, .cpu_features = CPU_FTR_DBELL, .clear = 1 },
200 };
201
scan_features(unsigned long node,const unsigned char * ftrs,unsigned long tablelen,struct ibm_feature * fp,unsigned long ft_size)202 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
203 unsigned long tablelen,
204 struct ibm_feature *fp,
205 unsigned long ft_size)
206 {
207 unsigned long i, len, bit;
208
209 /* find descriptor with type == 0 */
210 for (;;) {
211 if (tablelen < 3)
212 return;
213 len = 2 + ftrs[0];
214 if (tablelen < len)
215 return; /* descriptor 0 not found */
216 if (ftrs[1] == 0)
217 break;
218 tablelen -= len;
219 ftrs += len;
220 }
221
222 /* loop over bits we know about */
223 for (i = 0; i < ft_size; ++i, ++fp) {
224 if (fp->pabyte >= ftrs[0])
225 continue;
226 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
227 if (bit && !fp->clear) {
228 cur_cpu_spec->cpu_features |= fp->cpu_features;
229 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
230 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
231 cur_cpu_spec->mmu_features |= fp->mmu_features;
232 } else if (bit == fp->clear) {
233 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
234 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
235 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
236 cur_cpu_spec->mmu_features &= ~fp->mmu_features;
237 }
238 }
239 }
240
check_cpu_features(unsigned long node,char * name,struct ibm_feature * fp,unsigned long size)241 static void __init check_cpu_features(unsigned long node, char *name,
242 struct ibm_feature *fp,
243 unsigned long size)
244 {
245 const unsigned char *pa_ftrs;
246 int tablelen;
247
248 pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen);
249 if (pa_ftrs == NULL)
250 return;
251
252 scan_features(node, pa_ftrs, tablelen, fp, size);
253 }
254
255 #ifdef CONFIG_PPC_64S_HASH_MMU
init_mmu_slb_size(unsigned long node)256 static void __init init_mmu_slb_size(unsigned long node)
257 {
258 const __be32 *slb_size_ptr;
259
260 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
261 of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
262
263 if (slb_size_ptr)
264 mmu_slb_size = be32_to_cpup(slb_size_ptr);
265 }
266 #else
267 #define init_mmu_slb_size(node) do { } while(0)
268 #endif
269
270 static struct feature_property {
271 const char *name;
272 u32 min_value;
273 unsigned long cpu_feature;
274 unsigned long cpu_user_ftr;
275 } feature_properties[] __initdata = {
276 #ifdef CONFIG_ALTIVEC
277 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
278 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
279 #endif /* CONFIG_ALTIVEC */
280 #ifdef CONFIG_VSX
281 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
282 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
283 #endif /* CONFIG_VSX */
284 #ifdef CONFIG_PPC64
285 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
286 {"ibm,purr", 1, CPU_FTR_PURR, 0},
287 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
288 #endif /* CONFIG_PPC64 */
289 };
290
291 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
identical_pvr_fixup(unsigned long node)292 static __init void identical_pvr_fixup(unsigned long node)
293 {
294 unsigned int pvr;
295 const char *model = of_get_flat_dt_prop(node, "model", NULL);
296
297 /*
298 * Since 440GR(x)/440EP(x) processors have the same pvr,
299 * we check the node path and set bit 28 in the cur_cpu_spec
300 * pvr for EP(x) processor version. This bit is always 0 in
301 * the "real" pvr. Then we call identify_cpu again with
302 * the new logical pvr to enable FPU support.
303 */
304 if (model && strstr(model, "440EP")) {
305 pvr = cur_cpu_spec->pvr_value | 0x8;
306 identify_cpu(0, pvr);
307 DBG("Using logical pvr %x for %s\n", pvr, model);
308 }
309 }
310 #else
311 #define identical_pvr_fixup(node) do { } while(0)
312 #endif
313
check_cpu_feature_properties(unsigned long node)314 static void __init check_cpu_feature_properties(unsigned long node)
315 {
316 int i;
317 struct feature_property *fp = feature_properties;
318 const __be32 *prop;
319
320 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
321 prop = of_get_flat_dt_prop(node, fp->name, NULL);
322 if (prop && be32_to_cpup(prop) >= fp->min_value) {
323 cur_cpu_spec->cpu_features |= fp->cpu_feature;
324 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
325 }
326 }
327 }
328
early_init_dt_scan_cpus(unsigned long node,const char * uname,int depth,void * data)329 static int __init early_init_dt_scan_cpus(unsigned long node,
330 const char *uname, int depth,
331 void *data)
332 {
333 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
334 const __be32 *cpu_version = NULL;
335 const __be32 *prop;
336 const __be32 *intserv;
337 int i, nthreads;
338 int len;
339 int found = -1;
340 int found_thread = 0;
341
342 /* We are scanning "cpu" nodes only */
343 if (type == NULL || strcmp(type, "cpu") != 0)
344 return 0;
345
346 if (IS_ENABLED(CONFIG_PPC64))
347 boot_cpu_node_count++;
348
349 /* Get physical cpuid */
350 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
351 if (!intserv)
352 intserv = of_get_flat_dt_prop(node, "reg", &len);
353
354 nthreads = len / sizeof(int);
355
356 /*
357 * Now see if any of these threads match our boot cpu.
358 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
359 */
360 for (i = 0; i < nthreads; i++) {
361 if (be32_to_cpu(intserv[i]) ==
362 fdt_boot_cpuid_phys(initial_boot_params)) {
363 found = boot_cpu_count;
364 found_thread = i;
365 }
366 #ifdef CONFIG_SMP
367 /* logical cpu id is always 0 on UP kernels */
368 boot_cpu_count++;
369 #endif
370 }
371
372 /* Not the boot CPU */
373 if (found < 0)
374 return 0;
375
376 boot_cpuid = found;
377
378 if (IS_ENABLED(CONFIG_PPC64))
379 boot_cpu_hwid = be32_to_cpu(intserv[found_thread]);
380
381 if (nr_cpu_ids % nthreads != 0) {
382 set_nr_cpu_ids(ALIGN(nr_cpu_ids, nthreads));
383 pr_warn("nr_cpu_ids was not a multiple of threads_per_core, adjusted to %d\n",
384 nr_cpu_ids);
385 }
386
387 if (boot_cpuid >= nr_cpu_ids) {
388 // Remember boot core for smp_setup_cpu_maps()
389 boot_core_hwid = be32_to_cpu(intserv[0]);
390
391 pr_warn("Boot CPU %d (core hwid %d) >= nr_cpu_ids, adjusted boot CPU to %d\n",
392 boot_cpuid, boot_core_hwid, found_thread);
393
394 // Adjust boot CPU to appear on logical core 0
395 boot_cpuid = found_thread;
396 }
397
398 DBG("boot cpu: logical %d physical %d\n", boot_cpuid,
399 be32_to_cpu(intserv[found_thread]));
400
401 /*
402 * PAPR defines "logical" PVR values for cpus that
403 * meet various levels of the architecture:
404 * 0x0f000001 Architecture version 2.04
405 * 0x0f000002 Architecture version 2.05
406 * If the cpu-version property in the cpu node contains
407 * such a value, we call identify_cpu again with the
408 * logical PVR value in order to use the cpu feature
409 * bits appropriate for the architecture level.
410 *
411 * A POWER6 partition in "POWER6 architected" mode
412 * uses the 0x0f000002 PVR value; in POWER5+ mode
413 * it uses 0x0f000001.
414 *
415 * If we're using device tree CPU feature discovery then we don't
416 * support the cpu-version property, and it's the responsibility of the
417 * firmware/hypervisor to provide the correct feature set for the
418 * architecture level via the ibm,powerpc-cpu-features binding.
419 */
420 if (!dt_cpu_ftrs_in_use()) {
421 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
422 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) {
423 identify_cpu(0, be32_to_cpup(prop));
424 cpu_version = prop;
425 }
426
427 check_cpu_feature_properties(node);
428 check_cpu_features(node, "ibm,pa-features", ibm_pa_features,
429 ARRAY_SIZE(ibm_pa_features));
430 check_cpu_features(node, "ibm,pi-features", ibm_pi_features,
431 ARRAY_SIZE(ibm_pi_features));
432 }
433
434 identical_pvr_fixup(node);
435
436 // We can now add the CPU name & PVR to the hardware description
437 seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR));
438 if (cpu_version)
439 seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(cpu_version));
440
441 init_mmu_slb_size(node);
442
443 #ifdef CONFIG_PPC64
444 if (nthreads == 1)
445 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
446 else if (!dt_cpu_ftrs_in_use())
447 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
448 #endif
449
450 return 0;
451 }
452
early_init_dt_scan_chosen_ppc(unsigned long node,const char * uname,int depth,void * data)453 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
454 const char *uname,
455 int depth, void *data)
456 {
457 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
458
459 /* Use common scan routine to determine if this is the chosen node */
460 if (early_init_dt_scan_chosen(data) < 0)
461 return 0;
462
463 #ifdef CONFIG_PPC64
464 /* check if iommu is forced on or off */
465 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
466 iommu_is_off = 1;
467 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
468 iommu_force_on = 1;
469 #endif
470
471 /* mem=x on the command line is the preferred mechanism */
472 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
473 if (lprop)
474 memory_limit = *lprop;
475
476 #ifdef CONFIG_PPC64
477 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
478 if (lprop)
479 tce_alloc_start = *lprop;
480 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
481 if (lprop)
482 tce_alloc_end = *lprop;
483 #endif
484
485 #ifdef CONFIG_CRASH_RESERVE
486 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
487 if (lprop)
488 crashk_res.start = *lprop;
489
490 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
491 if (lprop)
492 crashk_res.end = crashk_res.start + *lprop - 1;
493 #endif
494
495 /* break now */
496 return 1;
497 }
498
499 /*
500 * Compare the range against max mem limit and update
501 * size if it cross the limit.
502 */
503
504 #ifdef CONFIG_SPARSEMEM
validate_mem_limit(u64 base,u64 * size)505 static bool __init validate_mem_limit(u64 base, u64 *size)
506 {
507 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
508
509 if (base >= max_mem)
510 return false;
511 if ((base + *size) > max_mem)
512 *size = max_mem - base;
513 return true;
514 }
515 #else
validate_mem_limit(u64 base,u64 * size)516 static bool __init validate_mem_limit(u64 base, u64 *size)
517 {
518 return true;
519 }
520 #endif
521
522 #ifdef CONFIG_PPC_PSERIES
523 /*
524 * Interpret the ibm dynamic reconfiguration memory LMBs.
525 * This contains a list of memory blocks along with NUMA affinity
526 * information.
527 */
early_init_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)528 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb,
529 const __be32 **usm,
530 void *data)
531 {
532 u64 base, size;
533 int is_kexec_kdump = 0, rngs;
534
535 base = lmb->base_addr;
536 size = drmem_lmb_size();
537 rngs = 1;
538
539 /*
540 * Skip this block if the reserved bit is set in flags
541 * or if the block is not assigned to this partition.
542 */
543 if ((lmb->flags & DRCONF_MEM_RESERVED) ||
544 !(lmb->flags & DRCONF_MEM_ASSIGNED))
545 return 0;
546
547 if (*usm)
548 is_kexec_kdump = 1;
549
550 if (is_kexec_kdump) {
551 /*
552 * For each memblock in ibm,dynamic-memory, a
553 * corresponding entry in linux,drconf-usable-memory
554 * property contains a counter 'p' followed by 'p'
555 * (base, size) duple. Now read the counter from
556 * linux,drconf-usable-memory property
557 */
558 rngs = dt_mem_next_cell(dt_root_size_cells, usm);
559 if (!rngs) /* there are no (base, size) duple */
560 return 0;
561 }
562
563 do {
564 if (is_kexec_kdump) {
565 base = dt_mem_next_cell(dt_root_addr_cells, usm);
566 size = dt_mem_next_cell(dt_root_size_cells, usm);
567 }
568
569 if (iommu_is_off) {
570 if (base >= 0x80000000ul)
571 continue;
572 if ((base + size) > 0x80000000ul)
573 size = 0x80000000ul - base;
574 }
575
576 if (!validate_mem_limit(base, &size))
577 continue;
578
579 DBG("Adding: %llx -> %llx\n", base, size);
580 memblock_add(base, size);
581
582 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
583 memblock_mark_hotplug(base, size);
584 } while (--rngs);
585
586 return 0;
587 }
588 #endif /* CONFIG_PPC_PSERIES */
589
early_init_dt_scan_memory_ppc(void)590 static int __init early_init_dt_scan_memory_ppc(void)
591 {
592 #ifdef CONFIG_PPC_PSERIES
593 const void *fdt = initial_boot_params;
594 int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
595
596 if (node > 0)
597 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
598
599 #endif
600
601 return early_init_dt_scan_memory();
602 }
603
604 /*
605 * For a relocatable kernel, we need to get the memstart_addr first,
606 * then use it to calculate the virtual kernel start address. This has
607 * to happen at a very early stage (before machine_init). In this case,
608 * we just want to get the memstart_address and would not like to mess the
609 * memblock at this stage. So introduce a variable to skip the memblock_add()
610 * for this reason.
611 */
612 #ifdef CONFIG_RELOCATABLE
613 static int add_mem_to_memblock = 1;
614 #else
615 #define add_mem_to_memblock 1
616 #endif
617
early_init_dt_add_memory_arch(u64 base,u64 size)618 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
619 {
620 #ifdef CONFIG_PPC64
621 if (iommu_is_off) {
622 if (base >= 0x80000000ul)
623 return;
624 if ((base + size) > 0x80000000ul)
625 size = 0x80000000ul - base;
626 }
627 #endif
628 /* Keep track of the beginning of memory -and- the size of
629 * the very first block in the device-tree as it represents
630 * the RMA on ppc64 server
631 */
632 if (base < memstart_addr) {
633 memstart_addr = base;
634 first_memblock_size = size;
635 }
636
637 /* Add the chunk to the MEMBLOCK list */
638 if (add_mem_to_memblock) {
639 if (validate_mem_limit(base, &size))
640 memblock_add(base, size);
641 }
642 }
643
early_reserve_mem_dt(void)644 static void __init early_reserve_mem_dt(void)
645 {
646 unsigned long i, dt_root;
647 int len;
648 const __be32 *prop;
649
650 early_init_fdt_reserve_self();
651 early_init_fdt_scan_reserved_mem();
652
653 dt_root = of_get_flat_dt_root();
654
655 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
656
657 if (!prop)
658 return;
659
660 DBG("Found new-style reserved-ranges\n");
661
662 /* Each reserved range is an (address,size) pair, 2 cells each,
663 * totalling 4 cells per range. */
664 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
665 u64 base, size;
666
667 base = of_read_number(prop + (i * 4) + 0, 2);
668 size = of_read_number(prop + (i * 4) + 2, 2);
669
670 if (size) {
671 DBG("reserving: %llx -> %llx\n", base, size);
672 memblock_reserve(base, size);
673 }
674 }
675 }
676
early_reserve_mem(void)677 static void __init early_reserve_mem(void)
678 {
679 __be64 *reserve_map;
680
681 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
682 fdt_off_mem_rsvmap(initial_boot_params));
683
684 /* Look for the new "reserved-regions" property in the DT */
685 early_reserve_mem_dt();
686
687 #ifdef CONFIG_BLK_DEV_INITRD
688 /* Then reserve the initrd, if any */
689 if (initrd_start && (initrd_end > initrd_start)) {
690 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
691 ALIGN(initrd_end, PAGE_SIZE) -
692 ALIGN_DOWN(initrd_start, PAGE_SIZE));
693 }
694 #endif /* CONFIG_BLK_DEV_INITRD */
695
696 if (!IS_ENABLED(CONFIG_PPC32))
697 return;
698
699 /*
700 * Handle the case where we might be booting from an old kexec
701 * image that setup the mem_rsvmap as pairs of 32-bit values
702 */
703 if (be64_to_cpup(reserve_map) > 0xffffffffull) {
704 u32 base_32, size_32;
705 __be32 *reserve_map_32 = (__be32 *)reserve_map;
706
707 DBG("Found old 32-bit reserve map\n");
708
709 while (1) {
710 base_32 = be32_to_cpup(reserve_map_32++);
711 size_32 = be32_to_cpup(reserve_map_32++);
712 if (size_32 == 0)
713 break;
714 DBG("reserving: %x -> %x\n", base_32, size_32);
715 memblock_reserve(base_32, size_32);
716 }
717 return;
718 }
719 }
720
721 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
722 static bool tm_disabled __initdata;
723
parse_ppc_tm(char * str)724 static int __init parse_ppc_tm(char *str)
725 {
726 bool res;
727
728 if (kstrtobool(str, &res))
729 return -EINVAL;
730
731 tm_disabled = !res;
732
733 return 0;
734 }
735 early_param("ppc_tm", parse_ppc_tm);
736
tm_init(void)737 static void __init tm_init(void)
738 {
739 if (tm_disabled) {
740 pr_info("Disabling hardware transactional memory (HTM)\n");
741 cur_cpu_spec->cpu_user_features2 &=
742 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
743 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
744 return;
745 }
746
747 pnv_tm_init();
748 }
749 #else
tm_init(void)750 static void tm_init(void) { }
751 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
752
753 static int __init
early_init_dt_scan_model(unsigned long node,const char * uname,int depth,void * data)754 early_init_dt_scan_model(unsigned long node, const char *uname,
755 int depth, void *data)
756 {
757 const char *prop;
758
759 if (depth != 0)
760 return 0;
761
762 prop = of_get_flat_dt_prop(node, "model", NULL);
763 if (prop)
764 seq_buf_printf(&ppc_hw_desc, "%s ", prop);
765
766 /* break now */
767 return 1;
768 }
769
770 #ifdef CONFIG_PPC64
save_fscr_to_task(void)771 static void __init save_fscr_to_task(void)
772 {
773 /*
774 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
775 * have configured via the device tree features or via __init_FSCR().
776 * That value will then be propagated to pid 1 (init) and all future
777 * processes.
778 */
779 if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
780 init_task.thread.fscr = mfspr(SPRN_FSCR);
781 }
782 #else
save_fscr_to_task(void)783 static inline void save_fscr_to_task(void) {}
784 #endif
785
786
early_init_devtree(void * params)787 void __init early_init_devtree(void *params)
788 {
789 phys_addr_t int_vector_size;
790
791 DBG(" -> early_init_devtree(%px)\n", params);
792
793 /* Too early to BUG_ON(), do it by hand */
794 if (!early_init_dt_verify(params))
795 panic("BUG: Failed verifying flat device tree, bad version?");
796
797 of_scan_flat_dt(early_init_dt_scan_model, NULL);
798
799 #ifdef CONFIG_PPC_RTAS
800 /* Some machines might need RTAS info for debugging, grab it now. */
801 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
802 #endif
803
804 #ifdef CONFIG_PPC_POWERNV
805 /* Some machines might need OPAL info for debugging, grab it now. */
806 of_scan_flat_dt(early_init_dt_scan_opal, NULL);
807
808 /* Scan tree for ultravisor feature */
809 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
810 #endif
811
812 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
813 /* scan tree to see if dump is active during last boot */
814 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
815 #endif
816
817 /* Retrieve various informations from the /chosen node of the
818 * device-tree, including the platform type, initrd location and
819 * size, TCE reserve, and more ...
820 */
821 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
822
823 /* Append additional parameters passed for fadump capture kernel */
824 fadump_append_bootargs();
825
826 /* Scan memory nodes and rebuild MEMBLOCKs */
827 early_init_dt_scan_root();
828 early_init_dt_scan_memory_ppc();
829
830 /*
831 * As generic code authors expect to be able to use static keys
832 * in early_param() handlers, we initialize the static keys just
833 * before parsing early params (it's fine to call jump_label_init()
834 * more than once).
835 */
836 jump_label_init();
837 parse_early_param();
838
839 /* make sure we've parsed cmdline for mem= before this */
840 if (memory_limit)
841 first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
842 setup_initial_memory_limit(memstart_addr, first_memblock_size);
843 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
844 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START);
845 #ifdef CONFIG_PPC64
846 /* If relocatable, reserve at least 32k for interrupt vectors etc. */
847 int_vector_size = __end_interrupts - _stext;
848 int_vector_size = max_t(phys_addr_t, SZ_32K, int_vector_size);
849 #else
850 /* If relocatable, reserve first 32k for interrupt vectors etc. */
851 int_vector_size = SZ_32K;
852 #endif
853 if (PHYSICAL_START > MEMORY_START)
854 memblock_reserve(MEMORY_START, int_vector_size);
855 reserve_kdump_trampoline();
856 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
857 /*
858 * If we fail to reserve memory for firmware-assisted dump then
859 * fallback to kexec based kdump.
860 */
861 if (fadump_reserve_mem() == 0)
862 #endif
863 reserve_crashkernel();
864 early_reserve_mem();
865
866 if (memory_limit > memblock_phys_mem_size())
867 memory_limit = 0;
868
869 /* Align down to 16 MB which is large page size with hash page translation */
870 memory_limit = ALIGN_DOWN(memory_limit ?: memblock_phys_mem_size(), SZ_16M);
871 memblock_enforce_memory_limit(memory_limit);
872
873 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES)
874 if (!early_radix_enabled())
875 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS));
876 #endif
877
878 memblock_allow_resize();
879 memblock_dump_all();
880
881 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
882
883 /* We may need to relocate the flat tree, do it now.
884 * FIXME .. and the initrd too? */
885 move_device_tree();
886
887 DBG("Scanning CPUs ...\n");
888
889 dt_cpu_ftrs_scan();
890
891 /* Retrieve CPU related informations from the flat tree
892 * (altivec support, boot CPU ID, ...)
893 */
894 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
895 if (boot_cpuid < 0) {
896 printk("Failed to identify boot CPU !\n");
897 BUG();
898 }
899
900 save_fscr_to_task();
901
902 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
903 /* We'll later wait for secondaries to check in; there are
904 * NCPUS-1 non-boot CPUs :-)
905 */
906 spinning_secondaries = boot_cpu_count - 1;
907 #endif
908
909 mmu_early_init_devtree();
910
911 #ifdef CONFIG_PPC_POWERNV
912 /* Scan and build the list of machine check recoverable ranges */
913 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
914 #endif
915 epapr_paravirt_early_init();
916
917 /* Now try to figure out if we are running on LPAR and so on */
918 pseries_probe_fw_features();
919
920 /*
921 * Initialize pkey features and default AMR/IAMR values
922 */
923 pkey_early_init_devtree();
924
925 #ifdef CONFIG_PPC_PS3
926 /* Identify PS3 firmware */
927 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
928 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
929 #endif
930
931 /* If kexec left a PLPKS password in the DT, get it and clear it */
932 plpks_early_init_devtree();
933
934 tm_init();
935
936 DBG(" <- early_init_devtree()\n");
937 }
938
939 #ifdef CONFIG_RELOCATABLE
940 /*
941 * This function run before early_init_devtree, so we have to init
942 * initial_boot_params.
943 */
early_get_first_memblock_info(void * params,phys_addr_t * size)944 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
945 {
946 /* Setup flat device-tree pointer */
947 initial_boot_params = params;
948
949 /*
950 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
951 * mess the memblock.
952 */
953 add_mem_to_memblock = 0;
954 early_init_dt_scan_root();
955 early_init_dt_scan_memory_ppc();
956 add_mem_to_memblock = 1;
957
958 if (size)
959 *size = first_memblock_size;
960 }
961 #endif
962
963 /*******
964 *
965 * New implementation of the OF "find" APIs, return a refcounted
966 * object, call of_node_put() when done. The device tree and list
967 * are protected by a rw_lock.
968 *
969 * Note that property management will need some locking as well,
970 * this isn't dealt with yet.
971 *
972 *******/
973
974 /**
975 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
976 * @np: device node of the device
977 *
978 * This looks for a property "ibm,chip-id" in the node or any
979 * of its parents and returns its content, or -1 if it cannot
980 * be found.
981 */
of_get_ibm_chip_id(struct device_node * np)982 int of_get_ibm_chip_id(struct device_node *np)
983 {
984 of_node_get(np);
985 while (np) {
986 u32 chip_id;
987
988 /*
989 * Skiboot may produce memory nodes that contain more than one
990 * cell in chip-id, we only read the first one here.
991 */
992 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
993 of_node_put(np);
994 return chip_id;
995 }
996
997 np = of_get_next_parent(np);
998 }
999 return -1;
1000 }
1001 EXPORT_SYMBOL(of_get_ibm_chip_id);
1002
1003 /**
1004 * cpu_to_chip_id - Return the cpus chip-id
1005 * @cpu: The logical cpu number.
1006 *
1007 * Return the value of the ibm,chip-id property corresponding to the given
1008 * logical cpu number. If the chip-id can not be found, returns -1.
1009 */
cpu_to_chip_id(int cpu)1010 int cpu_to_chip_id(int cpu)
1011 {
1012 struct device_node *np;
1013 int ret = -1, idx;
1014
1015 idx = cpu / threads_per_core;
1016 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1)
1017 return chip_id_lookup_table[idx];
1018
1019 np = of_get_cpu_node(cpu, NULL);
1020 if (np) {
1021 ret = of_get_ibm_chip_id(np);
1022 of_node_put(np);
1023
1024 if (chip_id_lookup_table)
1025 chip_id_lookup_table[idx] = ret;
1026 }
1027
1028 return ret;
1029 }
1030 EXPORT_SYMBOL(cpu_to_chip_id);
1031
arch_match_cpu_phys_id(int cpu,u64 phys_id)1032 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
1033 {
1034 #ifdef CONFIG_SMP
1035 /*
1036 * Early firmware scanning must use this rather than
1037 * get_hard_smp_processor_id because we don't have pacas allocated
1038 * until memory topology is discovered.
1039 */
1040 if (cpu_to_phys_id != NULL)
1041 return (int)phys_id == cpu_to_phys_id[cpu];
1042 #endif
1043
1044 return (int)phys_id == get_hard_smp_processor_id(cpu);
1045 }
1046