xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
12 //
13 //     A = B op C
14 //
15 // to:
16 //
17 //     A = B
18 //     A op= C
19 //
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
23 //
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/CodeGen/TwoAddressInstructionPass.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineDominators.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineOperand.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/Passes.h"
49 #include "llvm/CodeGen/SlotIndexes.h"
50 #include "llvm/CodeGen/TargetInstrInfo.h"
51 #include "llvm/CodeGen/TargetOpcodes.h"
52 #include "llvm/CodeGen/TargetRegisterInfo.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <cassert>
63 #include <iterator>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "twoaddressinstruction"
69 
70 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
71 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
72 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
73 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
74 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
75 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
76 
77 // Temporary flag to disable rescheduling.
78 static cl::opt<bool>
79 EnableRescheduling("twoaddr-reschedule",
80                    cl::desc("Coalesce copies by rescheduling (default=true)"),
81                    cl::init(true), cl::Hidden);
82 
83 // Limit the number of dataflow edges to traverse when evaluating the benefit
84 // of commuting operands.
85 static cl::opt<unsigned> MaxDataFlowEdge(
86     "dataflow-edge-limit", cl::Hidden, cl::init(3),
87     cl::desc("Maximum number of dataflow edges to traverse when evaluating "
88              "the benefit of commuting operands"));
89 
90 namespace {
91 
92 class TwoAddressInstructionImpl {
93   MachineFunction *MF = nullptr;
94   const TargetInstrInfo *TII = nullptr;
95   const TargetRegisterInfo *TRI = nullptr;
96   const InstrItineraryData *InstrItins = nullptr;
97   MachineRegisterInfo *MRI = nullptr;
98   LiveVariables *LV = nullptr;
99   LiveIntervals *LIS = nullptr;
100   AliasAnalysis *AA = nullptr;
101   CodeGenOptLevel OptLevel = CodeGenOptLevel::None;
102 
103   // The current basic block being processed.
104   MachineBasicBlock *MBB = nullptr;
105 
106   // Keep track the distance of a MI from the start of the current basic block.
107   DenseMap<MachineInstr*, unsigned> DistanceMap;
108 
109   // Set of already processed instructions in the current block.
110   SmallPtrSet<MachineInstr*, 8> Processed;
111 
112   // A map from virtual registers to physical registers which are likely targets
113   // to be coalesced to due to copies from physical registers to virtual
114   // registers. e.g. v1024 = move r0.
115   DenseMap<Register, Register> SrcRegMap;
116 
117   // A map from virtual registers to physical registers which are likely targets
118   // to be coalesced to due to copies to physical registers from virtual
119   // registers. e.g. r1 = move v1024.
120   DenseMap<Register, Register> DstRegMap;
121 
122   MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB) const;
123 
124   bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
125 
126   bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
127 
128   bool isCopyToReg(MachineInstr &MI, Register &SrcReg, Register &DstReg,
129                    bool &IsSrcPhys, bool &IsDstPhys) const;
130 
131   bool isPlainlyKilled(const MachineInstr *MI, LiveRange &LR) const;
132   bool isPlainlyKilled(const MachineInstr *MI, Register Reg) const;
133   bool isPlainlyKilled(const MachineOperand &MO) const;
134 
135   bool isKilled(MachineInstr &MI, Register Reg, bool allowFalsePositives) const;
136 
137   MachineInstr *findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
138                                        bool &IsCopy, Register &DstReg,
139                                        bool &IsDstPhys) const;
140 
141   bool regsAreCompatible(Register RegA, Register RegB) const;
142 
143   void removeMapRegEntry(const MachineOperand &MO,
144                          DenseMap<Register, Register> &RegMap) const;
145 
146   void removeClobberedSrcRegMap(MachineInstr *MI);
147 
148   bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg) const;
149 
150   bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
151                              MachineInstr *MI, unsigned Dist);
152 
153   bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
154                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
155 
156   bool isProfitableToConv3Addr(Register RegA, Register RegB);
157 
158   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
159                           MachineBasicBlock::iterator &nmi, Register RegA,
160                           Register RegB, unsigned &Dist);
161 
162   bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
163 
164   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
165                              MachineBasicBlock::iterator &nmi, Register Reg);
166   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
167                              MachineBasicBlock::iterator &nmi, Register Reg);
168 
169   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
170                                MachineBasicBlock::iterator &nmi,
171                                unsigned SrcIdx, unsigned DstIdx,
172                                unsigned &Dist, bool shouldOnlyCommute);
173 
174   bool tryInstructionCommute(MachineInstr *MI,
175                              unsigned DstOpIdx,
176                              unsigned BaseOpIdx,
177                              bool BaseOpKilled,
178                              unsigned Dist);
179   void scanUses(Register DstReg);
180 
181   void processCopy(MachineInstr *MI);
182 
183   using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
184   using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
185 
186   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
187   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
188   void eliminateRegSequence(MachineBasicBlock::iterator&);
189   bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands);
190 
191 public:
192   TwoAddressInstructionImpl(MachineFunction &MF, MachineFunctionPass *P);
193   TwoAddressInstructionImpl(MachineFunction &MF,
194                             MachineFunctionAnalysisManager &MFAM);
setOptLevel(CodeGenOptLevel Level)195   void setOptLevel(CodeGenOptLevel Level) { OptLevel = Level; }
196   bool run();
197 };
198 
199 class TwoAddressInstructionLegacyPass : public MachineFunctionPass {
200 public:
201   static char ID; // Pass identification, replacement for typeid
202 
TwoAddressInstructionLegacyPass()203   TwoAddressInstructionLegacyPass() : MachineFunctionPass(ID) {
204     initializeTwoAddressInstructionLegacyPassPass(
205         *PassRegistry::getPassRegistry());
206   }
207 
208   /// Pass entry point.
runOnMachineFunction(MachineFunction & MF)209   bool runOnMachineFunction(MachineFunction &MF) override {
210     TwoAddressInstructionImpl Impl(MF, this);
211     // Disable optimizations if requested. We cannot skip the whole pass as some
212     // fixups are necessary for correctness.
213     if (skipFunction(MF.getFunction()))
214       Impl.setOptLevel(CodeGenOptLevel::None);
215     return Impl.run();
216   }
217 
getAnalysisUsage(AnalysisUsage & AU) const218   void getAnalysisUsage(AnalysisUsage &AU) const override {
219     AU.setPreservesCFG();
220     AU.addUsedIfAvailable<AAResultsWrapperPass>();
221     AU.addUsedIfAvailable<LiveVariablesWrapperPass>();
222     AU.addPreserved<LiveVariablesWrapperPass>();
223     AU.addPreserved<SlotIndexesWrapperPass>();
224     AU.addPreserved<LiveIntervalsWrapperPass>();
225     AU.addPreservedID(MachineLoopInfoID);
226     AU.addPreservedID(MachineDominatorsID);
227     MachineFunctionPass::getAnalysisUsage(AU);
228   }
229 };
230 
231 } // end anonymous namespace
232 
233 PreservedAnalyses
run(MachineFunction & MF,MachineFunctionAnalysisManager & MFAM)234 TwoAddressInstructionPass::run(MachineFunction &MF,
235                                MachineFunctionAnalysisManager &MFAM) {
236   // Disable optimizations if requested. We cannot skip the whole pass as some
237   // fixups are necessary for correctness.
238   TwoAddressInstructionImpl Impl(MF, MFAM);
239   if (MF.getFunction().hasOptNone())
240     Impl.setOptLevel(CodeGenOptLevel::None);
241 
242   MFPropsModifier _(*this, MF);
243   bool Changed = Impl.run();
244   if (!Changed)
245     return PreservedAnalyses::all();
246   auto PA = getMachineFunctionPassPreservedAnalyses();
247   PA.preserve<LiveIntervalsAnalysis>();
248   PA.preserve<LiveVariablesAnalysis>();
249   PA.preserve<MachineDominatorTreeAnalysis>();
250   PA.preserve<MachineLoopAnalysis>();
251   PA.preserve<SlotIndexesAnalysis>();
252   PA.preserveSet<CFGAnalyses>();
253   return PA;
254 }
255 
256 char TwoAddressInstructionLegacyPass::ID = 0;
257 
258 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionLegacyPass::ID;
259 
260 INITIALIZE_PASS_BEGIN(TwoAddressInstructionLegacyPass, DEBUG_TYPE,
261                       "Two-Address instruction pass", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)262 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
263 INITIALIZE_PASS_END(TwoAddressInstructionLegacyPass, DEBUG_TYPE,
264                     "Two-Address instruction pass", false, false)
265 
266 TwoAddressInstructionImpl::TwoAddressInstructionImpl(
267     MachineFunction &Func, MachineFunctionAnalysisManager &MFAM)
268     : MF(&Func), TII(Func.getSubtarget().getInstrInfo()),
269       TRI(Func.getSubtarget().getRegisterInfo()),
270       InstrItins(Func.getSubtarget().getInstrItineraryData()),
271       MRI(&Func.getRegInfo()),
272       LV(MFAM.getCachedResult<LiveVariablesAnalysis>(Func)),
273       LIS(MFAM.getCachedResult<LiveIntervalsAnalysis>(Func)),
274       OptLevel(Func.getTarget().getOptLevel()) {
275   auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(Func)
276                   .getManager();
277   AA = FAM.getCachedResult<AAManager>(Func.getFunction());
278 }
279 
TwoAddressInstructionImpl(MachineFunction & Func,MachineFunctionPass * P)280 TwoAddressInstructionImpl::TwoAddressInstructionImpl(MachineFunction &Func,
281                                                      MachineFunctionPass *P)
282     : MF(&Func), TII(Func.getSubtarget().getInstrInfo()),
283       TRI(Func.getSubtarget().getRegisterInfo()),
284       InstrItins(Func.getSubtarget().getInstrItineraryData()),
285       MRI(&Func.getRegInfo()), OptLevel(Func.getTarget().getOptLevel()) {
286   auto *LVWrapper = P->getAnalysisIfAvailable<LiveVariablesWrapperPass>();
287   LV = LVWrapper ? &LVWrapper->getLV() : nullptr;
288   auto *LISWrapper = P->getAnalysisIfAvailable<LiveIntervalsWrapperPass>();
289   LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr;
290   if (auto *AAPass = P->getAnalysisIfAvailable<AAResultsWrapperPass>())
291     AA = &AAPass->getAAResults();
292   else
293     AA = nullptr;
294 }
295 
296 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
297 MachineInstr *
getSingleDef(Register Reg,MachineBasicBlock * BB) const298 TwoAddressInstructionImpl::getSingleDef(Register Reg,
299                                         MachineBasicBlock *BB) const {
300   MachineInstr *Ret = nullptr;
301   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
302     if (DefMI.getParent() != BB || DefMI.isDebugValue())
303       continue;
304     if (!Ret)
305       Ret = &DefMI;
306     else if (Ret != &DefMI)
307       return nullptr;
308   }
309   return Ret;
310 }
311 
312 /// Check if there is a reversed copy chain from FromReg to ToReg:
313 /// %Tmp1 = copy %Tmp2;
314 /// %FromReg = copy %Tmp1;
315 /// %ToReg = add %FromReg ...
316 /// %Tmp2 = copy %ToReg;
317 /// MaxLen specifies the maximum length of the copy chain the func
318 /// can walk through.
isRevCopyChain(Register FromReg,Register ToReg,int Maxlen)319 bool TwoAddressInstructionImpl::isRevCopyChain(Register FromReg, Register ToReg,
320                                                int Maxlen) {
321   Register TmpReg = FromReg;
322   for (int i = 0; i < Maxlen; i++) {
323     MachineInstr *Def = getSingleDef(TmpReg, MBB);
324     if (!Def || !Def->isCopy())
325       return false;
326 
327     TmpReg = Def->getOperand(1).getReg();
328 
329     if (TmpReg == ToReg)
330       return true;
331   }
332   return false;
333 }
334 
335 /// Return true if there are no intervening uses between the last instruction
336 /// in the MBB that defines the specified register and the two-address
337 /// instruction which is being processed. It also returns the last def location
338 /// by reference.
noUseAfterLastDef(Register Reg,unsigned Dist,unsigned & LastDef)339 bool TwoAddressInstructionImpl::noUseAfterLastDef(Register Reg, unsigned Dist,
340                                                   unsigned &LastDef) {
341   LastDef = 0;
342   unsigned LastUse = Dist;
343   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
344     MachineInstr *MI = MO.getParent();
345     if (MI->getParent() != MBB || MI->isDebugValue())
346       continue;
347     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
348     if (DI == DistanceMap.end())
349       continue;
350     if (MO.isUse() && DI->second < LastUse)
351       LastUse = DI->second;
352     if (MO.isDef() && DI->second > LastDef)
353       LastDef = DI->second;
354   }
355 
356   return !(LastUse > LastDef && LastUse < Dist);
357 }
358 
359 /// Return true if the specified MI is a copy instruction or an extract_subreg
360 /// instruction. It also returns the source and destination registers and
361 /// whether they are physical registers by reference.
isCopyToReg(MachineInstr & MI,Register & SrcReg,Register & DstReg,bool & IsSrcPhys,bool & IsDstPhys) const362 bool TwoAddressInstructionImpl::isCopyToReg(MachineInstr &MI, Register &SrcReg,
363                                             Register &DstReg, bool &IsSrcPhys,
364                                             bool &IsDstPhys) const {
365   SrcReg = 0;
366   DstReg = 0;
367   if (MI.isCopy()) {
368     DstReg = MI.getOperand(0).getReg();
369     SrcReg = MI.getOperand(1).getReg();
370   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
371     DstReg = MI.getOperand(0).getReg();
372     SrcReg = MI.getOperand(2).getReg();
373   } else {
374     return false;
375   }
376 
377   IsSrcPhys = SrcReg.isPhysical();
378   IsDstPhys = DstReg.isPhysical();
379   return true;
380 }
381 
isPlainlyKilled(const MachineInstr * MI,LiveRange & LR) const382 bool TwoAddressInstructionImpl::isPlainlyKilled(const MachineInstr *MI,
383                                                 LiveRange &LR) const {
384   // This is to match the kill flag version where undefs don't have kill flags.
385   if (!LR.hasAtLeastOneValue())
386     return false;
387 
388   SlotIndex useIdx = LIS->getInstructionIndex(*MI);
389   LiveInterval::const_iterator I = LR.find(useIdx);
390   assert(I != LR.end() && "Reg must be live-in to use.");
391   return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
392 }
393 
394 /// Test if the given register value, which is used by the
395 /// given instruction, is killed by the given instruction.
isPlainlyKilled(const MachineInstr * MI,Register Reg) const396 bool TwoAddressInstructionImpl::isPlainlyKilled(const MachineInstr *MI,
397                                                 Register Reg) const {
398   // FIXME: Sometimes tryInstructionTransform() will add instructions and
399   // test whether they can be folded before keeping them. In this case it
400   // sets a kill before recursively calling tryInstructionTransform() again.
401   // If there is no interval available, we assume that this instruction is
402   // one of those. A kill flag is manually inserted on the operand so the
403   // check below will handle it.
404   if (LIS && !LIS->isNotInMIMap(*MI)) {
405     if (Reg.isVirtual())
406       return isPlainlyKilled(MI, LIS->getInterval(Reg));
407     // Reserved registers are considered always live.
408     if (MRI->isReserved(Reg))
409       return false;
410     return all_of(TRI->regunits(Reg), [&](MCRegUnit U) {
411       return isPlainlyKilled(MI, LIS->getRegUnit(U));
412     });
413   }
414 
415   return MI->killsRegister(Reg, /*TRI=*/nullptr);
416 }
417 
418 /// Test if the register used by the given operand is killed by the operand's
419 /// instruction.
isPlainlyKilled(const MachineOperand & MO) const420 bool TwoAddressInstructionImpl::isPlainlyKilled(
421     const MachineOperand &MO) const {
422   return MO.isKill() || isPlainlyKilled(MO.getParent(), MO.getReg());
423 }
424 
425 /// Test if the given register value, which is used by the given
426 /// instruction, is killed by the given instruction. This looks through
427 /// coalescable copies to see if the original value is potentially not killed.
428 ///
429 /// For example, in this code:
430 ///
431 ///   %reg1034 = copy %reg1024
432 ///   %reg1035 = copy killed %reg1025
433 ///   %reg1036 = add killed %reg1034, killed %reg1035
434 ///
435 /// %reg1034 is not considered to be killed, since it is copied from a
436 /// register which is not killed. Treating it as not killed lets the
437 /// normal heuristics commute the (two-address) add, which lets
438 /// coalescing eliminate the extra copy.
439 ///
440 /// If allowFalsePositives is true then likely kills are treated as kills even
441 /// if it can't be proven that they are kills.
isKilled(MachineInstr & MI,Register Reg,bool allowFalsePositives) const442 bool TwoAddressInstructionImpl::isKilled(MachineInstr &MI, Register Reg,
443                                          bool allowFalsePositives) const {
444   MachineInstr *DefMI = &MI;
445   while (true) {
446     // All uses of physical registers are likely to be kills.
447     if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg)))
448       return true;
449     if (!isPlainlyKilled(DefMI, Reg))
450       return false;
451     if (Reg.isPhysical())
452       return true;
453     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
454     // If there are multiple defs, we can't do a simple analysis, so just
455     // go with what the kill flag says.
456     if (std::next(Begin) != MRI->def_end())
457       return true;
458     DefMI = Begin->getParent();
459     bool IsSrcPhys, IsDstPhys;
460     Register SrcReg, DstReg;
461     // If the def is something other than a copy, then it isn't going to
462     // be coalesced, so follow the kill flag.
463     if (!isCopyToReg(*DefMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
464       return true;
465     Reg = SrcReg;
466   }
467 }
468 
469 /// Return true if the specified MI uses the specified register as a two-address
470 /// use. If so, return the destination register by reference.
isTwoAddrUse(MachineInstr & MI,Register Reg,Register & DstReg)471 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
472   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
473     const MachineOperand &MO = MI.getOperand(i);
474     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
475       continue;
476     unsigned ti;
477     if (MI.isRegTiedToDefOperand(i, &ti)) {
478       DstReg = MI.getOperand(ti).getReg();
479       return true;
480     }
481   }
482   return false;
483 }
484 
485 /// Given a register, if all its uses are in the same basic block, return the
486 /// last use instruction if it's a copy or a two-address use.
findOnlyInterestingUse(Register Reg,MachineBasicBlock * MBB,bool & IsCopy,Register & DstReg,bool & IsDstPhys) const487 MachineInstr *TwoAddressInstructionImpl::findOnlyInterestingUse(
488     Register Reg, MachineBasicBlock *MBB, bool &IsCopy, Register &DstReg,
489     bool &IsDstPhys) const {
490   MachineOperand *UseOp = nullptr;
491   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
492     MachineInstr *MI = MO.getParent();
493     if (MI->getParent() != MBB)
494       return nullptr;
495     if (isPlainlyKilled(MI, Reg))
496       UseOp = &MO;
497   }
498   if (!UseOp)
499     return nullptr;
500   MachineInstr &UseMI = *UseOp->getParent();
501 
502   Register SrcReg;
503   bool IsSrcPhys;
504   if (isCopyToReg(UseMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
505     IsCopy = true;
506     return &UseMI;
507   }
508   IsDstPhys = false;
509   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
510     IsDstPhys = DstReg.isPhysical();
511     return &UseMI;
512   }
513   if (UseMI.isCommutable()) {
514     unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex;
515     unsigned Src2 = UseOp->getOperandNo();
516     if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) {
517       MachineOperand &MO = UseMI.getOperand(Src1);
518       if (MO.isReg() && MO.isUse() &&
519           isTwoAddrUse(UseMI, MO.getReg(), DstReg)) {
520         IsDstPhys = DstReg.isPhysical();
521         return &UseMI;
522       }
523     }
524   }
525   return nullptr;
526 }
527 
528 /// Return the physical register the specified virtual register might be mapped
529 /// to.
getMappedReg(Register Reg,DenseMap<Register,Register> & RegMap)530 static MCRegister getMappedReg(Register Reg,
531                                DenseMap<Register, Register> &RegMap) {
532   while (Reg.isVirtual()) {
533     DenseMap<Register, Register>::iterator SI = RegMap.find(Reg);
534     if (SI == RegMap.end())
535       return 0;
536     Reg = SI->second;
537   }
538   if (Reg.isPhysical())
539     return Reg;
540   return 0;
541 }
542 
543 /// Return true if the two registers are equal or aliased.
regsAreCompatible(Register RegA,Register RegB) const544 bool TwoAddressInstructionImpl::regsAreCompatible(Register RegA,
545                                                   Register RegB) const {
546   if (RegA == RegB)
547     return true;
548   if (!RegA || !RegB)
549     return false;
550   return TRI->regsOverlap(RegA, RegB);
551 }
552 
553 /// From RegMap remove entries mapped to a physical register which overlaps MO.
removeMapRegEntry(const MachineOperand & MO,DenseMap<Register,Register> & RegMap) const554 void TwoAddressInstructionImpl::removeMapRegEntry(
555     const MachineOperand &MO, DenseMap<Register, Register> &RegMap) const {
556   assert(
557       (MO.isReg() || MO.isRegMask()) &&
558       "removeMapRegEntry must be called with a register or regmask operand.");
559 
560   SmallVector<Register, 2> Srcs;
561   for (auto SI : RegMap) {
562     Register ToReg = SI.second;
563     if (ToReg.isVirtual())
564       continue;
565 
566     if (MO.isReg()) {
567       Register Reg = MO.getReg();
568       if (TRI->regsOverlap(ToReg, Reg))
569         Srcs.push_back(SI.first);
570     } else if (MO.clobbersPhysReg(ToReg))
571       Srcs.push_back(SI.first);
572   }
573 
574   for (auto SrcReg : Srcs)
575     RegMap.erase(SrcReg);
576 }
577 
578 /// If a physical register is clobbered, old entries mapped to it should be
579 /// deleted. For example
580 ///
581 ///     %2:gr64 = COPY killed $rdx
582 ///     MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx
583 ///
584 /// After the MUL instruction, $rdx contains different value than in the COPY
585 /// instruction. So %2 should not map to $rdx after MUL.
removeClobberedSrcRegMap(MachineInstr * MI)586 void TwoAddressInstructionImpl::removeClobberedSrcRegMap(MachineInstr *MI) {
587   if (MI->isCopy()) {
588     // If a virtual register is copied to its mapped physical register, it
589     // doesn't change the potential coalescing between them, so we don't remove
590     // entries mapped to the physical register. For example
591     //
592     // %100 = COPY $r8
593     //     ...
594     // $r8  = COPY %100
595     //
596     // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't
597     // destroy the content of $r8, and should not impact SrcRegMap.
598     Register Dst = MI->getOperand(0).getReg();
599     if (!Dst || Dst.isVirtual())
600       return;
601 
602     Register Src = MI->getOperand(1).getReg();
603     if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap)))
604       return;
605   }
606 
607   for (const MachineOperand &MO : MI->operands()) {
608     if (MO.isRegMask()) {
609       removeMapRegEntry(MO, SrcRegMap);
610       continue;
611     }
612     if (!MO.isReg() || !MO.isDef())
613       continue;
614     Register Reg = MO.getReg();
615     if (!Reg || Reg.isVirtual())
616       continue;
617     removeMapRegEntry(MO, SrcRegMap);
618   }
619 }
620 
621 // Returns true if Reg is equal or aliased to at least one register in Set.
regOverlapsSet(const SmallVectorImpl<Register> & Set,Register Reg) const622 bool TwoAddressInstructionImpl::regOverlapsSet(
623     const SmallVectorImpl<Register> &Set, Register Reg) const {
624   for (unsigned R : Set)
625     if (TRI->regsOverlap(R, Reg))
626       return true;
627 
628   return false;
629 }
630 
631 /// Return true if it's potentially profitable to commute the two-address
632 /// instruction that's being processed.
isProfitableToCommute(Register RegA,Register RegB,Register RegC,MachineInstr * MI,unsigned Dist)633 bool TwoAddressInstructionImpl::isProfitableToCommute(Register RegA,
634                                                       Register RegB,
635                                                       Register RegC,
636                                                       MachineInstr *MI,
637                                                       unsigned Dist) {
638   if (OptLevel == CodeGenOptLevel::None)
639     return false;
640 
641   // Determine if it's profitable to commute this two address instruction. In
642   // general, we want no uses between this instruction and the definition of
643   // the two-address register.
644   // e.g.
645   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
646   // %reg1029 = COPY %reg1028
647   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
648   // insert => %reg1030 = COPY %reg1028
649   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
650   // In this case, it might not be possible to coalesce the second COPY
651   // instruction if the first one is coalesced. So it would be profitable to
652   // commute it:
653   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
654   // %reg1029 = COPY %reg1028
655   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
656   // insert => %reg1030 = COPY %reg1029
657   // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
658 
659   if (!isPlainlyKilled(MI, RegC))
660     return false;
661 
662   // Ok, we have something like:
663   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
664   // let's see if it's worth commuting it.
665 
666   // Look for situations like this:
667   // %reg1024 = MOV r1
668   // %reg1025 = MOV r0
669   // %reg1026 = ADD %reg1024, %reg1025
670   // r0            = MOV %reg1026
671   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
672   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
673   if (ToRegA) {
674     MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
675     MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
676     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA);
677     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA);
678 
679     // Compute if any of the following are true:
680     // -RegB is not tied to a register and RegC is compatible with RegA.
681     // -RegB is tied to the wrong physical register, but RegC is.
682     // -RegB is tied to the wrong physical register, and RegC isn't tied.
683     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
684       return true;
685     // Don't compute if any of the following are true:
686     // -RegC is not tied to a register and RegB is compatible with RegA.
687     // -RegC is tied to the wrong physical register, but RegB is.
688     // -RegC is tied to the wrong physical register, and RegB isn't tied.
689     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
690       return false;
691   }
692 
693   // If there is a use of RegC between its last def (could be livein) and this
694   // instruction, then bail.
695   unsigned LastDefC = 0;
696   if (!noUseAfterLastDef(RegC, Dist, LastDefC))
697     return false;
698 
699   // If there is a use of RegB between its last def (could be livein) and this
700   // instruction, then go ahead and make this transformation.
701   unsigned LastDefB = 0;
702   if (!noUseAfterLastDef(RegB, Dist, LastDefB))
703     return true;
704 
705   // Look for situation like this:
706   // %reg101 = MOV %reg100
707   // %reg102 = ...
708   // %reg103 = ADD %reg102, %reg101
709   // ... = %reg103 ...
710   // %reg100 = MOV %reg103
711   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
712   // to eliminate an otherwise unavoidable copy.
713   // FIXME:
714   // We can extend the logic further: If an pair of operands in an insn has
715   // been merged, the insn could be regarded as a virtual copy, and the virtual
716   // copy could also be used to construct a copy chain.
717   // To more generally minimize register copies, ideally the logic of two addr
718   // instruction pass should be integrated with register allocation pass where
719   // interference graph is available.
720   if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge))
721     return true;
722 
723   if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge))
724     return false;
725 
726   // Look for other target specific commute preference.
727   bool Commute;
728   if (TII->hasCommutePreference(*MI, Commute))
729     return Commute;
730 
731   // Since there are no intervening uses for both registers, then commute
732   // if the def of RegC is closer. Its live interval is shorter.
733   return LastDefB && LastDefC && LastDefC > LastDefB;
734 }
735 
736 /// Commute a two-address instruction and update the basic block, distance map,
737 /// and live variables if needed. Return true if it is successful.
commuteInstruction(MachineInstr * MI,unsigned DstIdx,unsigned RegBIdx,unsigned RegCIdx,unsigned Dist)738 bool TwoAddressInstructionImpl::commuteInstruction(MachineInstr *MI,
739                                                    unsigned DstIdx,
740                                                    unsigned RegBIdx,
741                                                    unsigned RegCIdx,
742                                                    unsigned Dist) {
743   Register RegC = MI->getOperand(RegCIdx).getReg();
744   LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
745   MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
746 
747   if (NewMI == nullptr) {
748     LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
749     return false;
750   }
751 
752   LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
753   assert(NewMI == MI &&
754          "TargetInstrInfo::commuteInstruction() should not return a new "
755          "instruction unless it was requested.");
756 
757   // Update source register map.
758   MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
759   if (FromRegC) {
760     Register RegA = MI->getOperand(DstIdx).getReg();
761     SrcRegMap[RegA] = FromRegC;
762   }
763 
764   return true;
765 }
766 
767 /// Return true if it is profitable to convert the given 2-address instruction
768 /// to a 3-address one.
isProfitableToConv3Addr(Register RegA,Register RegB)769 bool TwoAddressInstructionImpl::isProfitableToConv3Addr(Register RegA,
770                                                         Register RegB) {
771   // Look for situations like this:
772   // %reg1024 = MOV r1
773   // %reg1025 = MOV r0
774   // %reg1026 = ADD %reg1024, %reg1025
775   // r2            = MOV %reg1026
776   // Turn ADD into a 3-address instruction to avoid a copy.
777   MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
778   if (!FromRegB)
779     return false;
780   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
781   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA));
782 }
783 
784 /// Convert the specified two-address instruction into a three address one.
785 /// Return true if this transformation was successful.
convertInstTo3Addr(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,Register RegA,Register RegB,unsigned & Dist)786 bool TwoAddressInstructionImpl::convertInstTo3Addr(
787     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
788     Register RegA, Register RegB, unsigned &Dist) {
789   MachineInstrSpan MIS(mi, MBB);
790   MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS);
791   if (!NewMI)
792     return false;
793 
794   LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
795   LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
796 
797   // If the old instruction is debug value tracked, an update is required.
798   if (auto OldInstrNum = mi->peekDebugInstrNum()) {
799     assert(mi->getNumExplicitDefs() == 1);
800     assert(NewMI->getNumExplicitDefs() == 1);
801 
802     // Find the old and new def location.
803     unsigned OldIdx = mi->defs().begin()->getOperandNo();
804     unsigned NewIdx = NewMI->defs().begin()->getOperandNo();
805 
806     // Record that one def has been replaced by the other.
807     unsigned NewInstrNum = NewMI->getDebugInstrNum();
808     MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx),
809                                    std::make_pair(NewInstrNum, NewIdx));
810   }
811 
812   MBB->erase(mi); // Nuke the old inst.
813 
814   for (MachineInstr &MI : MIS)
815     DistanceMap.insert(std::make_pair(&MI, Dist++));
816   Dist--;
817   mi = NewMI;
818   nmi = std::next(mi);
819 
820   // Update source and destination register maps.
821   SrcRegMap.erase(RegA);
822   DstRegMap.erase(RegB);
823   return true;
824 }
825 
826 /// Scan forward recursively for only uses, update maps if the use is a copy or
827 /// a two-address instruction.
scanUses(Register DstReg)828 void TwoAddressInstructionImpl::scanUses(Register DstReg) {
829   SmallVector<Register, 4> VirtRegPairs;
830   bool IsDstPhys;
831   bool IsCopy = false;
832   Register NewReg;
833   Register Reg = DstReg;
834   while (MachineInstr *UseMI =
835              findOnlyInterestingUse(Reg, MBB, IsCopy, NewReg, IsDstPhys)) {
836     if (IsCopy && !Processed.insert(UseMI).second)
837       break;
838 
839     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
840     if (DI != DistanceMap.end())
841       // Earlier in the same MBB.Reached via a back edge.
842       break;
843 
844     if (IsDstPhys) {
845       VirtRegPairs.push_back(NewReg);
846       break;
847     }
848     SrcRegMap[NewReg] = Reg;
849     VirtRegPairs.push_back(NewReg);
850     Reg = NewReg;
851   }
852 
853   if (!VirtRegPairs.empty()) {
854     unsigned ToReg = VirtRegPairs.back();
855     VirtRegPairs.pop_back();
856     while (!VirtRegPairs.empty()) {
857       unsigned FromReg = VirtRegPairs.pop_back_val();
858       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
859       if (!isNew)
860         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
861       ToReg = FromReg;
862     }
863     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
864     if (!isNew)
865       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
866   }
867 }
868 
869 /// If the specified instruction is not yet processed, process it if it's a
870 /// copy. For a copy instruction, we find the physical registers the
871 /// source and destination registers might be mapped to. These are kept in
872 /// point-to maps used to determine future optimizations. e.g.
873 /// v1024 = mov r0
874 /// v1025 = mov r1
875 /// v1026 = add v1024, v1025
876 /// r1    = mov r1026
877 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
878 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
879 /// potentially joined with r1 on the output side. It's worthwhile to commute
880 /// 'add' to eliminate a copy.
processCopy(MachineInstr * MI)881 void TwoAddressInstructionImpl::processCopy(MachineInstr *MI) {
882   if (Processed.count(MI))
883     return;
884 
885   bool IsSrcPhys, IsDstPhys;
886   Register SrcReg, DstReg;
887   if (!isCopyToReg(*MI, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
888     return;
889 
890   if (IsDstPhys && !IsSrcPhys) {
891     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
892   } else if (!IsDstPhys && IsSrcPhys) {
893     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
894     if (!isNew)
895       assert(SrcRegMap[DstReg] == SrcReg &&
896              "Can't map to two src physical registers!");
897 
898     scanUses(DstReg);
899   }
900 
901   Processed.insert(MI);
902 }
903 
904 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
905 /// consider moving the instruction below the kill instruction in order to
906 /// eliminate the need for the copy.
rescheduleMIBelowKill(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,Register Reg)907 bool TwoAddressInstructionImpl::rescheduleMIBelowKill(
908     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
909     Register Reg) {
910   // Bail immediately if we don't have LV or LIS available. We use them to find
911   // kills efficiently.
912   if (!LV && !LIS)
913     return false;
914 
915   MachineInstr *MI = &*mi;
916   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
917   if (DI == DistanceMap.end())
918     // Must be created from unfolded load. Don't waste time trying this.
919     return false;
920 
921   MachineInstr *KillMI = nullptr;
922   if (LIS) {
923     LiveInterval &LI = LIS->getInterval(Reg);
924     assert(LI.end() != LI.begin() &&
925            "Reg should not have empty live interval.");
926 
927     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
928     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
929     if (I != LI.end() && I->start < MBBEndIdx)
930       return false;
931 
932     --I;
933     KillMI = LIS->getInstructionFromIndex(I->end);
934   } else {
935     KillMI = LV->getVarInfo(Reg).findKill(MBB);
936   }
937   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
938     // Don't mess with copies, they may be coalesced later.
939     return false;
940 
941   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
942       KillMI->isBranch() || KillMI->isTerminator())
943     // Don't move pass calls, etc.
944     return false;
945 
946   Register DstReg;
947   if (isTwoAddrUse(*KillMI, Reg, DstReg))
948     return false;
949 
950   bool SeenStore = true;
951   if (!MI->isSafeToMove(AA, SeenStore))
952     return false;
953 
954   if (TII->getInstrLatency(InstrItins, *MI) > 1)
955     // FIXME: Needs more sophisticated heuristics.
956     return false;
957 
958   SmallVector<Register, 2> Uses;
959   SmallVector<Register, 2> Kills;
960   SmallVector<Register, 2> Defs;
961   for (const MachineOperand &MO : MI->operands()) {
962     if (!MO.isReg())
963       continue;
964     Register MOReg = MO.getReg();
965     if (!MOReg)
966       continue;
967     if (MO.isDef())
968       Defs.push_back(MOReg);
969     else {
970       Uses.push_back(MOReg);
971       if (MOReg != Reg && isPlainlyKilled(MO))
972         Kills.push_back(MOReg);
973     }
974   }
975 
976   // Move the copies connected to MI down as well.
977   MachineBasicBlock::iterator Begin = MI;
978   MachineBasicBlock::iterator AfterMI = std::next(Begin);
979   MachineBasicBlock::iterator End = AfterMI;
980   while (End != MBB->end()) {
981     End = skipDebugInstructionsForward(End, MBB->end());
982     if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg()))
983       Defs.push_back(End->getOperand(0).getReg());
984     else
985       break;
986     ++End;
987   }
988 
989   // Check if the reschedule will not break dependencies.
990   unsigned NumVisited = 0;
991   MachineBasicBlock::iterator KillPos = KillMI;
992   ++KillPos;
993   for (MachineInstr &OtherMI : make_range(End, KillPos)) {
994     // Debug or pseudo instructions cannot be counted against the limit.
995     if (OtherMI.isDebugOrPseudoInstr())
996       continue;
997     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
998       return false;
999     ++NumVisited;
1000     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1001         OtherMI.isBranch() || OtherMI.isTerminator())
1002       // Don't move pass calls, etc.
1003       return false;
1004     for (const MachineOperand &MO : OtherMI.operands()) {
1005       if (!MO.isReg())
1006         continue;
1007       Register MOReg = MO.getReg();
1008       if (!MOReg)
1009         continue;
1010       if (MO.isDef()) {
1011         if (regOverlapsSet(Uses, MOReg))
1012           // Physical register use would be clobbered.
1013           return false;
1014         if (!MO.isDead() && regOverlapsSet(Defs, MOReg))
1015           // May clobber a physical register def.
1016           // FIXME: This may be too conservative. It's ok if the instruction
1017           // is sunken completely below the use.
1018           return false;
1019       } else {
1020         if (regOverlapsSet(Defs, MOReg))
1021           return false;
1022         bool isKill = isPlainlyKilled(MO);
1023         if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg)) ||
1024                              regOverlapsSet(Kills, MOReg)))
1025           // Don't want to extend other live ranges and update kills.
1026           return false;
1027         if (MOReg == Reg && !isKill)
1028           // We can't schedule across a use of the register in question.
1029           return false;
1030         // Ensure that if this is register in question, its the kill we expect.
1031         assert((MOReg != Reg || &OtherMI == KillMI) &&
1032                "Found multiple kills of a register in a basic block");
1033       }
1034     }
1035   }
1036 
1037   // Move debug info as well.
1038   while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
1039     --Begin;
1040 
1041   nmi = End;
1042   MachineBasicBlock::iterator InsertPos = KillPos;
1043   if (LIS) {
1044     // We have to move the copies (and any interleaved debug instructions)
1045     // first so that the MBB is still well-formed when calling handleMove().
1046     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
1047       auto CopyMI = MBBI++;
1048       MBB->splice(InsertPos, MBB, CopyMI);
1049       if (!CopyMI->isDebugOrPseudoInstr())
1050         LIS->handleMove(*CopyMI);
1051       InsertPos = CopyMI;
1052     }
1053     End = std::next(MachineBasicBlock::iterator(MI));
1054   }
1055 
1056   // Copies following MI may have been moved as well.
1057   MBB->splice(InsertPos, MBB, Begin, End);
1058   DistanceMap.erase(DI);
1059 
1060   // Update live variables
1061   if (LIS) {
1062     LIS->handleMove(*MI);
1063   } else {
1064     LV->removeVirtualRegisterKilled(Reg, *KillMI);
1065     LV->addVirtualRegisterKilled(Reg, *MI);
1066   }
1067 
1068   LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
1069   return true;
1070 }
1071 
1072 /// Return true if the re-scheduling will put the given instruction too close
1073 /// to the defs of its register dependencies.
isDefTooClose(Register Reg,unsigned Dist,MachineInstr * MI)1074 bool TwoAddressInstructionImpl::isDefTooClose(Register Reg, unsigned Dist,
1075                                               MachineInstr *MI) {
1076   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
1077     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
1078       continue;
1079     if (&DefMI == MI)
1080       return true; // MI is defining something KillMI uses
1081     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
1082     if (DDI == DistanceMap.end())
1083       return true;  // Below MI
1084     unsigned DefDist = DDI->second;
1085     assert(Dist > DefDist && "Visited def already?");
1086     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
1087       return true;
1088   }
1089   return false;
1090 }
1091 
1092 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1093 /// consider moving the kill instruction above the current two-address
1094 /// instruction in order to eliminate the need for the copy.
rescheduleKillAboveMI(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,Register Reg)1095 bool TwoAddressInstructionImpl::rescheduleKillAboveMI(
1096     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
1097     Register Reg) {
1098   // Bail immediately if we don't have LV or LIS available. We use them to find
1099   // kills efficiently.
1100   if (!LV && !LIS)
1101     return false;
1102 
1103   MachineInstr *MI = &*mi;
1104   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1105   if (DI == DistanceMap.end())
1106     // Must be created from unfolded load. Don't waste time trying this.
1107     return false;
1108 
1109   MachineInstr *KillMI = nullptr;
1110   if (LIS) {
1111     LiveInterval &LI = LIS->getInterval(Reg);
1112     assert(LI.end() != LI.begin() &&
1113            "Reg should not have empty live interval.");
1114 
1115     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1116     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1117     if (I != LI.end() && I->start < MBBEndIdx)
1118       return false;
1119 
1120     --I;
1121     KillMI = LIS->getInstructionFromIndex(I->end);
1122   } else {
1123     KillMI = LV->getVarInfo(Reg).findKill(MBB);
1124   }
1125   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1126     // Don't mess with copies, they may be coalesced later.
1127     return false;
1128 
1129   Register DstReg;
1130   if (isTwoAddrUse(*KillMI, Reg, DstReg))
1131     return false;
1132 
1133   bool SeenStore = true;
1134   if (!KillMI->isSafeToMove(AA, SeenStore))
1135     return false;
1136 
1137   SmallVector<Register, 2> Uses;
1138   SmallVector<Register, 2> Kills;
1139   SmallVector<Register, 2> Defs;
1140   SmallVector<Register, 2> LiveDefs;
1141   for (const MachineOperand &MO : KillMI->operands()) {
1142     if (!MO.isReg())
1143       continue;
1144     Register MOReg = MO.getReg();
1145     if (MO.isUse()) {
1146       if (!MOReg)
1147         continue;
1148       if (isDefTooClose(MOReg, DI->second, MI))
1149         return false;
1150       bool isKill = isPlainlyKilled(MO);
1151       if (MOReg == Reg && !isKill)
1152         return false;
1153       Uses.push_back(MOReg);
1154       if (isKill && MOReg != Reg)
1155         Kills.push_back(MOReg);
1156     } else if (MOReg.isPhysical()) {
1157       Defs.push_back(MOReg);
1158       if (!MO.isDead())
1159         LiveDefs.push_back(MOReg);
1160     }
1161   }
1162 
1163   // Check if the reschedule will not break depedencies.
1164   unsigned NumVisited = 0;
1165   for (MachineInstr &OtherMI :
1166        make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1167     // Debug or pseudo instructions cannot be counted against the limit.
1168     if (OtherMI.isDebugOrPseudoInstr())
1169       continue;
1170     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1171       return false;
1172     ++NumVisited;
1173     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1174         OtherMI.isBranch() || OtherMI.isTerminator())
1175       // Don't move pass calls, etc.
1176       return false;
1177     SmallVector<Register, 2> OtherDefs;
1178     for (const MachineOperand &MO : OtherMI.operands()) {
1179       if (!MO.isReg())
1180         continue;
1181       Register MOReg = MO.getReg();
1182       if (!MOReg)
1183         continue;
1184       if (MO.isUse()) {
1185         if (regOverlapsSet(Defs, MOReg))
1186           // Moving KillMI can clobber the physical register if the def has
1187           // not been seen.
1188           return false;
1189         if (regOverlapsSet(Kills, MOReg))
1190           // Don't want to extend other live ranges and update kills.
1191           return false;
1192         if (&OtherMI != MI && MOReg == Reg && !isPlainlyKilled(MO))
1193           // We can't schedule across a use of the register in question.
1194           return false;
1195       } else {
1196         OtherDefs.push_back(MOReg);
1197       }
1198     }
1199 
1200     for (Register MOReg : OtherDefs) {
1201       if (regOverlapsSet(Uses, MOReg))
1202         return false;
1203       if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg))
1204         return false;
1205       // Physical register def is seen.
1206       llvm::erase(Defs, MOReg);
1207     }
1208   }
1209 
1210   // Move the old kill above MI, don't forget to move debug info as well.
1211   MachineBasicBlock::iterator InsertPos = mi;
1212   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1213     --InsertPos;
1214   MachineBasicBlock::iterator From = KillMI;
1215   MachineBasicBlock::iterator To = std::next(From);
1216   while (std::prev(From)->isDebugInstr())
1217     --From;
1218   MBB->splice(InsertPos, MBB, From, To);
1219 
1220   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1221   DistanceMap.erase(DI);
1222 
1223   // Update live variables
1224   if (LIS) {
1225     LIS->handleMove(*KillMI);
1226   } else {
1227     LV->removeVirtualRegisterKilled(Reg, *KillMI);
1228     LV->addVirtualRegisterKilled(Reg, *MI);
1229   }
1230 
1231   LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1232   return true;
1233 }
1234 
1235 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1236 /// given machine instruction to improve opportunities for coalescing and
1237 /// elimination of a register to register copy.
1238 ///
1239 /// 'DstOpIdx' specifies the index of MI def operand.
1240 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1241 /// operand is killed by the given instruction.
1242 /// The 'Dist' arguments provides the distance of MI from the start of the
1243 /// current basic block and it is used to determine if it is profitable
1244 /// to commute operands in the instruction.
1245 ///
1246 /// Returns true if the transformation happened. Otherwise, returns false.
tryInstructionCommute(MachineInstr * MI,unsigned DstOpIdx,unsigned BaseOpIdx,bool BaseOpKilled,unsigned Dist)1247 bool TwoAddressInstructionImpl::tryInstructionCommute(MachineInstr *MI,
1248                                                       unsigned DstOpIdx,
1249                                                       unsigned BaseOpIdx,
1250                                                       bool BaseOpKilled,
1251                                                       unsigned Dist) {
1252   if (!MI->isCommutable())
1253     return false;
1254 
1255   bool MadeChange = false;
1256   Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1257   Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1258   unsigned OpsNum = MI->getDesc().getNumOperands();
1259   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1260   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1261     // The call of findCommutedOpIndices below only checks if BaseOpIdx
1262     // and OtherOpIdx are commutable, it does not really search for
1263     // other commutable operands and does not change the values of passed
1264     // variables.
1265     if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1266         !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1267       continue;
1268 
1269     Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1270     bool AggressiveCommute = false;
1271 
1272     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1273     // operands. This makes the live ranges of DstOp and OtherOp joinable.
1274     bool OtherOpKilled = isKilled(*MI, OtherOpReg, false);
1275     bool DoCommute = !BaseOpKilled && OtherOpKilled;
1276 
1277     if (!DoCommute &&
1278         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1279       DoCommute = true;
1280       AggressiveCommute = true;
1281     }
1282 
1283     // If it's profitable to commute, try to do so.
1284     if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1285                                         Dist)) {
1286       MadeChange = true;
1287       ++NumCommuted;
1288       if (AggressiveCommute)
1289         ++NumAggrCommuted;
1290 
1291       // There might be more than two commutable operands, update BaseOp and
1292       // continue scanning.
1293       // FIXME: This assumes that the new instruction's operands are in the
1294       // same positions and were simply swapped.
1295       BaseOpReg = OtherOpReg;
1296       BaseOpKilled = OtherOpKilled;
1297       // Resamples OpsNum in case the number of operands was reduced. This
1298       // happens with X86.
1299       OpsNum = MI->getDesc().getNumOperands();
1300     }
1301   }
1302   return MadeChange;
1303 }
1304 
1305 /// For the case where an instruction has a single pair of tied register
1306 /// operands, attempt some transformations that may either eliminate the tied
1307 /// operands or improve the opportunities for coalescing away the register copy.
1308 /// Returns true if no copy needs to be inserted to untie mi's operands
1309 /// (either because they were untied, or because mi was rescheduled, and will
1310 /// be visited again later). If the shouldOnlyCommute flag is true, only
1311 /// instruction commutation is attempted.
tryInstructionTransform(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,unsigned SrcIdx,unsigned DstIdx,unsigned & Dist,bool shouldOnlyCommute)1312 bool TwoAddressInstructionImpl::tryInstructionTransform(
1313     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
1314     unsigned SrcIdx, unsigned DstIdx, unsigned &Dist, bool shouldOnlyCommute) {
1315   if (OptLevel == CodeGenOptLevel::None)
1316     return false;
1317 
1318   MachineInstr &MI = *mi;
1319   Register regA = MI.getOperand(DstIdx).getReg();
1320   Register regB = MI.getOperand(SrcIdx).getReg();
1321 
1322   assert(regB.isVirtual() && "cannot make instruction into two-address form");
1323   bool regBKilled = isKilled(MI, regB, true);
1324 
1325   if (regA.isVirtual())
1326     scanUses(regA);
1327 
1328   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1329 
1330   // If the instruction is convertible to 3 Addr, instead
1331   // of returning try 3 Addr transformation aggressively and
1332   // use this variable to check later. Because it might be better.
1333   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1334   // instead of the following code.
1335   //   addl     %esi, %edi
1336   //   movl     %edi, %eax
1337   //   ret
1338   if (Commuted && !MI.isConvertibleTo3Addr())
1339     return false;
1340 
1341   if (shouldOnlyCommute)
1342     return false;
1343 
1344   // If there is one more use of regB later in the same MBB, consider
1345   // re-schedule this MI below it.
1346   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1347     ++NumReSchedDowns;
1348     return true;
1349   }
1350 
1351   // If we commuted, regB may have changed so we should re-sample it to avoid
1352   // confusing the three address conversion below.
1353   if (Commuted) {
1354     regB = MI.getOperand(SrcIdx).getReg();
1355     regBKilled = isKilled(MI, regB, true);
1356   }
1357 
1358   if (MI.isConvertibleTo3Addr()) {
1359     // This instruction is potentially convertible to a true
1360     // three-address instruction.  Check if it is profitable.
1361     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1362       // Try to convert it.
1363       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1364         ++NumConvertedTo3Addr;
1365         return true; // Done with this instruction.
1366       }
1367     }
1368   }
1369 
1370   // Return if it is commuted but 3 addr conversion is failed.
1371   if (Commuted)
1372     return false;
1373 
1374   // If there is one more use of regB later in the same MBB, consider
1375   // re-schedule it before this MI if it's legal.
1376   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1377     ++NumReSchedUps;
1378     return true;
1379   }
1380 
1381   // If this is an instruction with a load folded into it, try unfolding
1382   // the load, e.g. avoid this:
1383   //   movq %rdx, %rcx
1384   //   addq (%rax), %rcx
1385   // in favor of this:
1386   //   movq (%rax), %rcx
1387   //   addq %rdx, %rcx
1388   // because it's preferable to schedule a load than a register copy.
1389   if (MI.mayLoad() && !regBKilled) {
1390     // Determine if a load can be unfolded.
1391     unsigned LoadRegIndex;
1392     unsigned NewOpc =
1393       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1394                                       /*UnfoldLoad=*/true,
1395                                       /*UnfoldStore=*/false,
1396                                       &LoadRegIndex);
1397     if (NewOpc != 0) {
1398       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1399       if (UnfoldMCID.getNumDefs() == 1) {
1400         // Unfold the load.
1401         LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1402         const TargetRegisterClass *RC =
1403           TRI->getAllocatableClass(
1404             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1405         Register Reg = MRI->createVirtualRegister(RC);
1406         SmallVector<MachineInstr *, 2> NewMIs;
1407         if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1408                                       /*UnfoldLoad=*/true,
1409                                       /*UnfoldStore=*/false, NewMIs)) {
1410           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1411           return false;
1412         }
1413         assert(NewMIs.size() == 2 &&
1414                "Unfolded a load into multiple instructions!");
1415         // The load was previously folded, so this is the only use.
1416         NewMIs[1]->addRegisterKilled(Reg, TRI);
1417 
1418         // Tentatively insert the instructions into the block so that they
1419         // look "normal" to the transformation logic.
1420         MBB->insert(mi, NewMIs[0]);
1421         MBB->insert(mi, NewMIs[1]);
1422         DistanceMap.insert(std::make_pair(NewMIs[0], Dist++));
1423         DistanceMap.insert(std::make_pair(NewMIs[1], Dist));
1424 
1425         LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1426                           << "2addr:    NEW INST: " << *NewMIs[1]);
1427 
1428         // Transform the instruction, now that it no longer has a load.
1429         unsigned NewDstIdx =
1430             NewMIs[1]->findRegisterDefOperandIdx(regA, /*TRI=*/nullptr);
1431         unsigned NewSrcIdx =
1432             NewMIs[1]->findRegisterUseOperandIdx(regB, /*TRI=*/nullptr);
1433         MachineBasicBlock::iterator NewMI = NewMIs[1];
1434         bool TransformResult =
1435           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1436         (void)TransformResult;
1437         assert(!TransformResult &&
1438                "tryInstructionTransform() should return false.");
1439         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1440           // Success, or at least we made an improvement. Keep the unfolded
1441           // instructions and discard the original.
1442           if (LV) {
1443             for (const MachineOperand &MO : MI.operands()) {
1444               if (MO.isReg() && MO.getReg().isVirtual()) {
1445                 if (MO.isUse()) {
1446                   if (MO.isKill()) {
1447                     if (NewMIs[0]->killsRegister(MO.getReg(), /*TRI=*/nullptr))
1448                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1449                     else {
1450                       assert(NewMIs[1]->killsRegister(MO.getReg(),
1451                                                       /*TRI=*/nullptr) &&
1452                              "Kill missing after load unfold!");
1453                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1454                     }
1455                   }
1456                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1457                   if (NewMIs[1]->registerDefIsDead(MO.getReg(),
1458                                                    /*TRI=*/nullptr))
1459                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1460                   else {
1461                     assert(NewMIs[0]->registerDefIsDead(MO.getReg(),
1462                                                         /*TRI=*/nullptr) &&
1463                            "Dead flag missing after load unfold!");
1464                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1465                   }
1466                 }
1467               }
1468             }
1469             LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1470           }
1471 
1472           SmallVector<Register, 4> OrigRegs;
1473           if (LIS) {
1474             for (const MachineOperand &MO : MI.operands()) {
1475               if (MO.isReg())
1476                 OrigRegs.push_back(MO.getReg());
1477             }
1478 
1479             LIS->RemoveMachineInstrFromMaps(MI);
1480           }
1481 
1482           MI.eraseFromParent();
1483           DistanceMap.erase(&MI);
1484 
1485           // Update LiveIntervals.
1486           if (LIS) {
1487             MachineBasicBlock::iterator Begin(NewMIs[0]);
1488             MachineBasicBlock::iterator End(NewMIs[1]);
1489             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1490           }
1491 
1492           mi = NewMIs[1];
1493         } else {
1494           // Transforming didn't eliminate the tie and didn't lead to an
1495           // improvement. Clean up the unfolded instructions and keep the
1496           // original.
1497           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1498           NewMIs[0]->eraseFromParent();
1499           NewMIs[1]->eraseFromParent();
1500           DistanceMap.erase(NewMIs[0]);
1501           DistanceMap.erase(NewMIs[1]);
1502           Dist--;
1503         }
1504       }
1505     }
1506   }
1507 
1508   return false;
1509 }
1510 
1511 // Collect tied operands of MI that need to be handled.
1512 // Rewrite trivial cases immediately.
1513 // Return true if any tied operands where found, including the trivial ones.
collectTiedOperands(MachineInstr * MI,TiedOperandMap & TiedOperands)1514 bool TwoAddressInstructionImpl::collectTiedOperands(
1515     MachineInstr *MI, TiedOperandMap &TiedOperands) {
1516   bool AnyOps = false;
1517   unsigned NumOps = MI->getNumOperands();
1518 
1519   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1520     unsigned DstIdx = 0;
1521     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1522       continue;
1523     AnyOps = true;
1524     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1525     MachineOperand &DstMO = MI->getOperand(DstIdx);
1526     Register SrcReg = SrcMO.getReg();
1527     Register DstReg = DstMO.getReg();
1528     // Tied constraint already satisfied?
1529     if (SrcReg == DstReg)
1530       continue;
1531 
1532     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1533 
1534     // Deal with undef uses immediately - simply rewrite the src operand.
1535     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1536       // Constrain the DstReg register class if required.
1537       if (DstReg.isVirtual()) {
1538         const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
1539         MRI->constrainRegClass(DstReg, RC);
1540       }
1541       SrcMO.setReg(DstReg);
1542       SrcMO.setSubReg(0);
1543       LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1544       continue;
1545     }
1546     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1547   }
1548   return AnyOps;
1549 }
1550 
1551 // Process a list of tied MI operands that all use the same source register.
1552 // The tied pairs are of the form (SrcIdx, DstIdx).
processTiedPairs(MachineInstr * MI,TiedPairList & TiedPairs,unsigned & Dist)1553 void TwoAddressInstructionImpl::processTiedPairs(MachineInstr *MI,
1554                                                  TiedPairList &TiedPairs,
1555                                                  unsigned &Dist) {
1556   bool IsEarlyClobber = llvm::any_of(TiedPairs, [MI](auto const &TP) {
1557     return MI->getOperand(TP.second).isEarlyClobber();
1558   });
1559 
1560   bool RemovedKillFlag = false;
1561   bool AllUsesCopied = true;
1562   unsigned LastCopiedReg = 0;
1563   SlotIndex LastCopyIdx;
1564   Register RegB = 0;
1565   unsigned SubRegB = 0;
1566   for (auto &TP : TiedPairs) {
1567     unsigned SrcIdx = TP.first;
1568     unsigned DstIdx = TP.second;
1569 
1570     const MachineOperand &DstMO = MI->getOperand(DstIdx);
1571     Register RegA = DstMO.getReg();
1572 
1573     // Grab RegB from the instruction because it may have changed if the
1574     // instruction was commuted.
1575     RegB = MI->getOperand(SrcIdx).getReg();
1576     SubRegB = MI->getOperand(SrcIdx).getSubReg();
1577 
1578     if (RegA == RegB) {
1579       // The register is tied to multiple destinations (or else we would
1580       // not have continued this far), but this use of the register
1581       // already matches the tied destination.  Leave it.
1582       AllUsesCopied = false;
1583       continue;
1584     }
1585     LastCopiedReg = RegA;
1586 
1587     assert(RegB.isVirtual() && "cannot make instruction into two-address form");
1588 
1589 #ifndef NDEBUG
1590     // First, verify that we don't have a use of "a" in the instruction
1591     // (a = b + a for example) because our transformation will not
1592     // work. This should never occur because we are in SSA form.
1593     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1594       assert(i == DstIdx ||
1595              !MI->getOperand(i).isReg() ||
1596              MI->getOperand(i).getReg() != RegA);
1597 #endif
1598 
1599     // Emit a copy.
1600     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1601                                       TII->get(TargetOpcode::COPY), RegA);
1602     // If this operand is folding a truncation, the truncation now moves to the
1603     // copy so that the register classes remain valid for the operands.
1604     MIB.addReg(RegB, 0, SubRegB);
1605     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1606     if (SubRegB) {
1607       if (RegA.isVirtual()) {
1608         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1609                                              SubRegB) &&
1610                "tied subregister must be a truncation");
1611         // The superreg class will not be used to constrain the subreg class.
1612         RC = nullptr;
1613       } else {
1614         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1615                && "tied subregister must be a truncation");
1616       }
1617     }
1618 
1619     // Update DistanceMap.
1620     MachineBasicBlock::iterator PrevMI = MI;
1621     --PrevMI;
1622     DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1623     DistanceMap[MI] = ++Dist;
1624 
1625     if (LIS) {
1626       LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1627 
1628       SlotIndex endIdx =
1629           LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1630       if (RegA.isVirtual()) {
1631         LiveInterval &LI = LIS->getInterval(RegA);
1632         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1633         LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1634         for (auto &S : LI.subranges()) {
1635           VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1636           S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1637         }
1638       } else {
1639         for (MCRegUnit Unit : TRI->regunits(RegA)) {
1640           if (LiveRange *LR = LIS->getCachedRegUnit(Unit)) {
1641             VNInfo *VNI =
1642                 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1643             LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1644           }
1645         }
1646       }
1647     }
1648 
1649     LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1650 
1651     MachineOperand &MO = MI->getOperand(SrcIdx);
1652     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1653            "inconsistent operand info for 2-reg pass");
1654     if (isPlainlyKilled(MO)) {
1655       MO.setIsKill(false);
1656       RemovedKillFlag = true;
1657     }
1658 
1659     // Make sure regA is a legal regclass for the SrcIdx operand.
1660     if (RegA.isVirtual() && RegB.isVirtual())
1661       MRI->constrainRegClass(RegA, RC);
1662     MO.setReg(RegA);
1663     // The getMatchingSuper asserts guarantee that the register class projected
1664     // by SubRegB is compatible with RegA with no subregister. So regardless of
1665     // whether the dest oper writes a subreg, the source oper should not.
1666     MO.setSubReg(0);
1667   }
1668 
1669   if (AllUsesCopied) {
1670     LaneBitmask RemainingUses = LaneBitmask::getNone();
1671     // Replace other (un-tied) uses of regB with LastCopiedReg.
1672     for (MachineOperand &MO : MI->all_uses()) {
1673       if (MO.getReg() == RegB) {
1674         if (MO.getSubReg() == SubRegB && !IsEarlyClobber) {
1675           if (isPlainlyKilled(MO)) {
1676             MO.setIsKill(false);
1677             RemovedKillFlag = true;
1678           }
1679           MO.setReg(LastCopiedReg);
1680           MO.setSubReg(0);
1681         } else {
1682           RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg());
1683         }
1684       }
1685     }
1686 
1687     // Update live variables for regB.
1688     if (RemovedKillFlag && RemainingUses.none() && LV &&
1689         LV->getVarInfo(RegB).removeKill(*MI)) {
1690       MachineBasicBlock::iterator PrevMI = MI;
1691       --PrevMI;
1692       LV->addVirtualRegisterKilled(RegB, *PrevMI);
1693     }
1694 
1695     if (RemovedKillFlag && RemainingUses.none())
1696       SrcRegMap[LastCopiedReg] = RegB;
1697 
1698     // Update LiveIntervals.
1699     if (LIS) {
1700       SlotIndex UseIdx = LIS->getInstructionIndex(*MI);
1701       auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) {
1702         LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx);
1703         if (!S)
1704           return true;
1705         if ((LaneMask & RemainingUses).any())
1706           return false;
1707         if (S->end.getBaseIndex() != UseIdx)
1708           return false;
1709         S->end = LastCopyIdx;
1710         return true;
1711       };
1712 
1713       LiveInterval &LI = LIS->getInterval(RegB);
1714       bool ShrinkLI = true;
1715       for (auto &S : LI.subranges())
1716         ShrinkLI &= Shrink(S, S.LaneMask);
1717       if (ShrinkLI)
1718         Shrink(LI, LaneBitmask::getAll());
1719     }
1720   } else if (RemovedKillFlag) {
1721     // Some tied uses of regB matched their destination registers, so
1722     // regB is still used in this instruction, but a kill flag was
1723     // removed from a different tied use of regB, so now we need to add
1724     // a kill flag to one of the remaining uses of regB.
1725     for (MachineOperand &MO : MI->all_uses()) {
1726       if (MO.getReg() == RegB) {
1727         MO.setIsKill(true);
1728         break;
1729       }
1730     }
1731   }
1732 }
1733 
1734 // For every tied operand pair this function transforms statepoint from
1735 //    RegA = STATEPOINT ... RegB(tied-def N)
1736 // to
1737 //    RegB = STATEPOINT ... RegB(tied-def N)
1738 // and replaces all uses of RegA with RegB.
1739 // No extra COPY instruction is necessary because tied use is killed at
1740 // STATEPOINT.
processStatepoint(MachineInstr * MI,TiedOperandMap & TiedOperands)1741 bool TwoAddressInstructionImpl::processStatepoint(
1742     MachineInstr *MI, TiedOperandMap &TiedOperands) {
1743 
1744   bool NeedCopy = false;
1745   for (auto &TO : TiedOperands) {
1746     Register RegB = TO.first;
1747     if (TO.second.size() != 1) {
1748       NeedCopy = true;
1749       continue;
1750     }
1751 
1752     unsigned SrcIdx = TO.second[0].first;
1753     unsigned DstIdx = TO.second[0].second;
1754 
1755     MachineOperand &DstMO = MI->getOperand(DstIdx);
1756     Register RegA = DstMO.getReg();
1757 
1758     assert(RegB == MI->getOperand(SrcIdx).getReg());
1759 
1760     if (RegA == RegB)
1761       continue;
1762 
1763     // CodeGenPrepare can sink pointer compare past statepoint, which
1764     // breaks assumption that statepoint kills tied-use register when
1765     // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back
1766     // to generic tied register handling to avoid assertion failures.
1767     // TODO: Recompute LIS/LV information for new range here.
1768     if (LIS) {
1769       const auto &UseLI = LIS->getInterval(RegB);
1770       const auto &DefLI = LIS->getInterval(RegA);
1771       if (DefLI.overlaps(UseLI)) {
1772         LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0)
1773                           << " UseLI overlaps with DefLI\n");
1774         NeedCopy = true;
1775         continue;
1776       }
1777     } else if (LV && LV->getVarInfo(RegB).findKill(MI->getParent()) != MI) {
1778       // Note that MachineOperand::isKill does not work here, because it
1779       // is set only on first register use in instruction and for statepoint
1780       // tied-use register will usually be found in preceeding deopt bundle.
1781       LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0)
1782                         << " not killed by statepoint\n");
1783       NeedCopy = true;
1784       continue;
1785     }
1786 
1787     if (!MRI->constrainRegClass(RegB, MRI->getRegClass(RegA))) {
1788       LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0)
1789                         << " to register class of " << printReg(RegA, TRI, 0)
1790                         << '\n');
1791       NeedCopy = true;
1792       continue;
1793     }
1794     MRI->replaceRegWith(RegA, RegB);
1795 
1796     if (LIS) {
1797       VNInfo::Allocator &A = LIS->getVNInfoAllocator();
1798       LiveInterval &LI = LIS->getInterval(RegB);
1799       LiveInterval &Other = LIS->getInterval(RegA);
1800       SmallVector<VNInfo *> NewVNIs;
1801       for (const VNInfo *VNI : Other.valnos) {
1802         assert(VNI->id == NewVNIs.size() && "assumed");
1803         NewVNIs.push_back(LI.createValueCopy(VNI, A));
1804       }
1805       for (auto &S : Other) {
1806         VNInfo *VNI = NewVNIs[S.valno->id];
1807         LiveRange::Segment NewSeg(S.start, S.end, VNI);
1808         LI.addSegment(NewSeg);
1809       }
1810       LIS->removeInterval(RegA);
1811     }
1812 
1813     if (LV) {
1814       if (MI->getOperand(SrcIdx).isKill())
1815         LV->removeVirtualRegisterKilled(RegB, *MI);
1816       LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(RegB);
1817       LiveVariables::VarInfo &DstInfo = LV->getVarInfo(RegA);
1818       SrcInfo.AliveBlocks |= DstInfo.AliveBlocks;
1819       DstInfo.AliveBlocks.clear();
1820       for (auto *KillMI : DstInfo.Kills)
1821         LV->addVirtualRegisterKilled(RegB, *KillMI, false);
1822     }
1823   }
1824   return !NeedCopy;
1825 }
1826 
1827 /// Reduce two-address instructions to two operands.
run()1828 bool TwoAddressInstructionImpl::run() {
1829   bool MadeChange = false;
1830 
1831   LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1832   LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1833 
1834   // This pass takes the function out of SSA form.
1835   MRI->leaveSSA();
1836 
1837   // This pass will rewrite the tied-def to meet the RegConstraint.
1838   MF->getProperties()
1839       .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1840 
1841   TiedOperandMap TiedOperands;
1842   for (MachineBasicBlock &MBBI : *MF) {
1843     MBB = &MBBI;
1844     unsigned Dist = 0;
1845     DistanceMap.clear();
1846     SrcRegMap.clear();
1847     DstRegMap.clear();
1848     Processed.clear();
1849     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1850          mi != me; ) {
1851       MachineBasicBlock::iterator nmi = std::next(mi);
1852       // Skip debug instructions.
1853       if (mi->isDebugInstr()) {
1854         mi = nmi;
1855         continue;
1856       }
1857 
1858       // Expand REG_SEQUENCE instructions. This will position mi at the first
1859       // expanded instruction.
1860       if (mi->isRegSequence())
1861         eliminateRegSequence(mi);
1862 
1863       DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1864 
1865       processCopy(&*mi);
1866 
1867       // First scan through all the tied register uses in this instruction
1868       // and record a list of pairs of tied operands for each register.
1869       if (!collectTiedOperands(&*mi, TiedOperands)) {
1870         removeClobberedSrcRegMap(&*mi);
1871         mi = nmi;
1872         continue;
1873       }
1874 
1875       ++NumTwoAddressInstrs;
1876       MadeChange = true;
1877       LLVM_DEBUG(dbgs() << '\t' << *mi);
1878 
1879       // If the instruction has a single pair of tied operands, try some
1880       // transformations that may either eliminate the tied operands or
1881       // improve the opportunities for coalescing away the register copy.
1882       if (TiedOperands.size() == 1) {
1883         SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1884           = TiedOperands.begin()->second;
1885         if (TiedPairs.size() == 1) {
1886           unsigned SrcIdx = TiedPairs[0].first;
1887           unsigned DstIdx = TiedPairs[0].second;
1888           Register SrcReg = mi->getOperand(SrcIdx).getReg();
1889           Register DstReg = mi->getOperand(DstIdx).getReg();
1890           if (SrcReg != DstReg &&
1891               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1892             // The tied operands have been eliminated or shifted further down
1893             // the block to ease elimination. Continue processing with 'nmi'.
1894             TiedOperands.clear();
1895             removeClobberedSrcRegMap(&*mi);
1896             mi = nmi;
1897             continue;
1898           }
1899         }
1900       }
1901 
1902       if (mi->getOpcode() == TargetOpcode::STATEPOINT &&
1903           processStatepoint(&*mi, TiedOperands)) {
1904         TiedOperands.clear();
1905         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1906         mi = nmi;
1907         continue;
1908       }
1909 
1910       // Now iterate over the information collected above.
1911       for (auto &TO : TiedOperands) {
1912         processTiedPairs(&*mi, TO.second, Dist);
1913         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1914       }
1915 
1916       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1917       if (mi->isInsertSubreg()) {
1918         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1919         // To   %reg:subidx = COPY %subreg
1920         unsigned SubIdx = mi->getOperand(3).getImm();
1921         mi->removeOperand(3);
1922         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1923         mi->getOperand(0).setSubReg(SubIdx);
1924         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1925         mi->removeOperand(1);
1926         mi->setDesc(TII->get(TargetOpcode::COPY));
1927         LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1928 
1929         // Update LiveIntervals.
1930         if (LIS) {
1931           Register Reg = mi->getOperand(0).getReg();
1932           LiveInterval &LI = LIS->getInterval(Reg);
1933           if (LI.hasSubRanges()) {
1934             // The COPY no longer defines subregs of %reg except for
1935             // %reg.subidx.
1936             LaneBitmask LaneMask =
1937                 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg());
1938             SlotIndex Idx = LIS->getInstructionIndex(*mi).getRegSlot();
1939             for (auto &S : LI.subranges()) {
1940               if ((S.LaneMask & LaneMask).none()) {
1941                 LiveRange::iterator DefSeg = S.FindSegmentContaining(Idx);
1942                 if (mi->getOperand(0).isUndef()) {
1943                   S.removeValNo(DefSeg->valno);
1944                 } else {
1945                   LiveRange::iterator UseSeg = std::prev(DefSeg);
1946                   S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno);
1947                 }
1948               }
1949             }
1950 
1951             // The COPY no longer has a use of %reg.
1952             LIS->shrinkToUses(&LI);
1953           } else {
1954             // The live interval for Reg did not have subranges but now it needs
1955             // them because we have introduced a subreg def. Recompute it.
1956             LIS->removeInterval(Reg);
1957             LIS->createAndComputeVirtRegInterval(Reg);
1958           }
1959         }
1960       }
1961 
1962       // Clear TiedOperands here instead of at the top of the loop
1963       // since most instructions do not have tied operands.
1964       TiedOperands.clear();
1965       removeClobberedSrcRegMap(&*mi);
1966       mi = nmi;
1967     }
1968   }
1969 
1970   return MadeChange;
1971 }
1972 
1973 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1974 ///
1975 /// The instruction is turned into a sequence of sub-register copies:
1976 ///
1977 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1978 ///
1979 /// Becomes:
1980 ///
1981 ///   undef %dst:ssub0 = COPY %v1
1982 ///   %dst:ssub1 = COPY %v2
eliminateRegSequence(MachineBasicBlock::iterator & MBBI)1983 void TwoAddressInstructionImpl::eliminateRegSequence(
1984     MachineBasicBlock::iterator &MBBI) {
1985   MachineInstr &MI = *MBBI;
1986   Register DstReg = MI.getOperand(0).getReg();
1987 
1988   SmallVector<Register, 4> OrigRegs;
1989   VNInfo *DefVN = nullptr;
1990   if (LIS) {
1991     OrigRegs.push_back(MI.getOperand(0).getReg());
1992     for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1993       OrigRegs.push_back(MI.getOperand(i).getReg());
1994     if (LIS->hasInterval(DstReg)) {
1995       DefVN = LIS->getInterval(DstReg)
1996                   .Query(LIS->getInstructionIndex(MI))
1997                   .valueOut();
1998     }
1999   }
2000 
2001   LaneBitmask UndefLanes = LaneBitmask::getNone();
2002   bool DefEmitted = false;
2003   for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
2004     MachineOperand &UseMO = MI.getOperand(i);
2005     Register SrcReg = UseMO.getReg();
2006     unsigned SubIdx = MI.getOperand(i+1).getImm();
2007     // Nothing needs to be inserted for undef operands.
2008     if (UseMO.isUndef()) {
2009       UndefLanes |= TRI->getSubRegIndexLaneMask(SubIdx);
2010       continue;
2011     }
2012 
2013     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
2014     // might insert a COPY that uses SrcReg after is was killed.
2015     bool isKill = UseMO.isKill();
2016     if (isKill)
2017       for (unsigned j = i + 2; j < e; j += 2)
2018         if (MI.getOperand(j).getReg() == SrcReg) {
2019           MI.getOperand(j).setIsKill();
2020           UseMO.setIsKill(false);
2021           isKill = false;
2022           break;
2023         }
2024 
2025     // Insert the sub-register copy.
2026     MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
2027                                    TII->get(TargetOpcode::COPY))
2028                                .addReg(DstReg, RegState::Define, SubIdx)
2029                                .add(UseMO);
2030 
2031     // The first def needs an undef flag because there is no live register
2032     // before it.
2033     if (!DefEmitted) {
2034       CopyMI->getOperand(0).setIsUndef(true);
2035       // Return an iterator pointing to the first inserted instr.
2036       MBBI = CopyMI;
2037     }
2038     DefEmitted = true;
2039 
2040     // Update LiveVariables' kill info.
2041     if (LV && isKill && !SrcReg.isPhysical())
2042       LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
2043 
2044     LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
2045   }
2046 
2047   MachineBasicBlock::iterator EndMBBI =
2048       std::next(MachineBasicBlock::iterator(MI));
2049 
2050   if (!DefEmitted) {
2051     LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
2052     MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
2053     for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
2054       MI.removeOperand(j);
2055   } else {
2056     if (LIS) {
2057       // Force live interval recomputation if we moved to a partial definition
2058       // of the register.  Undef flags must be propagate to uses of undefined
2059       // subregister for accurate interval computation.
2060       if (UndefLanes.any() && DefVN && MRI->shouldTrackSubRegLiveness(DstReg)) {
2061         auto &LI = LIS->getInterval(DstReg);
2062         for (MachineOperand &UseOp : MRI->use_operands(DstReg)) {
2063           unsigned SubReg = UseOp.getSubReg();
2064           if (UseOp.isUndef() || !SubReg)
2065             continue;
2066           auto *VN =
2067               LI.getVNInfoAt(LIS->getInstructionIndex(*UseOp.getParent()));
2068           if (DefVN != VN)
2069             continue;
2070           LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
2071           if ((UndefLanes & LaneMask).any())
2072             UseOp.setIsUndef(true);
2073         }
2074         LIS->removeInterval(DstReg);
2075       }
2076       LIS->RemoveMachineInstrFromMaps(MI);
2077     }
2078 
2079     LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
2080     MI.eraseFromParent();
2081   }
2082 
2083   // Udpate LiveIntervals.
2084   if (LIS)
2085     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
2086 }
2087