1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2000-2008 Poul-Henning Kamp
5 * Copyright (c) 2000-2008 Dag-Erling Smørgrav
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer
13 * in this position and unchanged.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/param.h>
32
33 #ifdef _KERNEL
34 #include <sys/ctype.h>
35 #include <sys/errno.h>
36 #include <sys/kernel.h>
37 #include <sys/limits.h>
38 #include <sys/malloc.h>
39 #include <sys/systm.h>
40 #include <sys/uio.h>
41 #include <machine/stdarg.h>
42 #else /* _KERNEL */
43 #include <ctype.h>
44 #include <errno.h>
45 #include <limits.h>
46 #include <stdarg.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #endif /* _KERNEL */
51
52 #include <sys/sbuf.h>
53
54 #ifdef _KERNEL
55 static MALLOC_DEFINE(M_SBUF, "sbuf", "string buffers");
56 #define SBMALLOC(size, flags) malloc(size, M_SBUF, (flags) | M_ZERO)
57 #define SBFREE(buf) free(buf, M_SBUF)
58 #else /* _KERNEL */
59 #define KASSERT(e, m)
60 #define SBMALLOC(size, flags) calloc(1, size)
61 #define SBFREE(buf) free(buf)
62 #endif /* _KERNEL */
63
64 /*
65 * Predicates
66 */
67 #define SBUF_ISDYNAMIC(s) ((s)->s_flags & SBUF_DYNAMIC)
68 #define SBUF_ISDYNSTRUCT(s) ((s)->s_flags & SBUF_DYNSTRUCT)
69 #define SBUF_ISFINISHED(s) ((s)->s_flags & SBUF_FINISHED)
70 #define SBUF_ISDRAINATEOL(s) ((s)->s_flags & SBUF_DRAINATEOL)
71 #define SBUF_HASROOM(s) ((s)->s_len < (s)->s_size - 1)
72 #define SBUF_FREESPACE(s) ((s)->s_size - ((s)->s_len + 1))
73 #define SBUF_CANEXTEND(s) ((s)->s_flags & SBUF_AUTOEXTEND)
74 #define SBUF_ISSECTION(s) ((s)->s_flags & SBUF_INSECTION)
75 #define SBUF_NULINCLUDED(s) ((s)->s_flags & SBUF_INCLUDENUL)
76 #define SBUF_ISDRAINTOEOR(s) ((s)->s_flags & SBUF_DRAINTOEOR)
77 #define SBUF_DODRAINTOEOR(s) (SBUF_ISSECTION(s) && SBUF_ISDRAINTOEOR(s))
78 #define SBUF_MALLOCFLAG(s) \
79 (((s)->s_flags & SBUF_NOWAIT) ? M_NOWAIT : M_WAITOK)
80
81 /*
82 * Set / clear flags
83 */
84 #define SBUF_SETFLAG(s, f) do { (s)->s_flags |= (f); } while (0)
85 #define SBUF_CLEARFLAG(s, f) do { (s)->s_flags &= ~(f); } while (0)
86
87 #define SBUF_MINSIZE 2 /* Min is 1 byte + nulterm. */
88 #define SBUF_MINEXTENDSIZE 16 /* Should be power of 2. */
89
90 #ifdef PAGE_SIZE
91 #define SBUF_MAXEXTENDSIZE PAGE_SIZE
92 #define SBUF_MAXEXTENDINCR PAGE_SIZE
93 #else
94 #define SBUF_MAXEXTENDSIZE 4096
95 #define SBUF_MAXEXTENDINCR 4096
96 #endif
97
98 /*
99 * Debugging support
100 */
101 #if defined(_KERNEL) && defined(INVARIANTS)
102
103 static void
_assert_sbuf_integrity(const char * fun,struct sbuf * s)104 _assert_sbuf_integrity(const char *fun, struct sbuf *s)
105 {
106
107 KASSERT(s != NULL,
108 ("%s called with a NULL sbuf pointer", fun));
109 KASSERT(s->s_buf != NULL,
110 ("%s called with uninitialized or corrupt sbuf", fun));
111 if (SBUF_ISFINISHED(s) && SBUF_NULINCLUDED(s)) {
112 KASSERT(s->s_len <= s->s_size,
113 ("wrote past end of sbuf (%jd >= %jd)",
114 (intmax_t)s->s_len, (intmax_t)s->s_size));
115 } else {
116 KASSERT(s->s_len < s->s_size,
117 ("wrote past end of sbuf (%jd >= %jd)",
118 (intmax_t)s->s_len, (intmax_t)s->s_size));
119 }
120 }
121
122 static void
_assert_sbuf_state(const char * fun,struct sbuf * s,int state)123 _assert_sbuf_state(const char *fun, struct sbuf *s, int state)
124 {
125
126 KASSERT((s->s_flags & SBUF_FINISHED) == state,
127 ("%s called with %sfinished or corrupt sbuf", fun,
128 (state ? "un" : "")));
129 }
130
131 #define assert_sbuf_integrity(s) _assert_sbuf_integrity(__func__, (s))
132 #define assert_sbuf_state(s, i) _assert_sbuf_state(__func__, (s), (i))
133
134 #else /* _KERNEL && INVARIANTS */
135
136 #define assert_sbuf_integrity(s) do { } while (0)
137 #define assert_sbuf_state(s, i) do { } while (0)
138
139 #endif /* _KERNEL && INVARIANTS */
140
141 #ifdef CTASSERT
142 CTASSERT(powerof2(SBUF_MAXEXTENDSIZE));
143 CTASSERT(powerof2(SBUF_MAXEXTENDINCR));
144 #endif
145
146 static int
sbuf_extendsize(int size)147 sbuf_extendsize(int size)
148 {
149 int newsize;
150
151 if (size < (int)SBUF_MAXEXTENDSIZE) {
152 newsize = SBUF_MINEXTENDSIZE;
153 while (newsize < size)
154 newsize *= 2;
155 } else {
156 newsize = roundup2(size, SBUF_MAXEXTENDINCR);
157 }
158 KASSERT(newsize >= size, ("%s: %d < %d\n", __func__, newsize, size));
159 return (newsize);
160 }
161
162 /*
163 * Extend an sbuf.
164 */
165 static int
sbuf_extend(struct sbuf * s,int addlen)166 sbuf_extend(struct sbuf *s, int addlen)
167 {
168 char *newbuf;
169 int newsize;
170
171 if (!SBUF_CANEXTEND(s))
172 return (-1);
173 newsize = sbuf_extendsize(s->s_size + addlen);
174 newbuf = SBMALLOC(newsize, SBUF_MALLOCFLAG(s));
175 if (newbuf == NULL)
176 return (-1);
177 memcpy(newbuf, s->s_buf, s->s_size);
178 if (SBUF_ISDYNAMIC(s))
179 SBFREE(s->s_buf);
180 else
181 SBUF_SETFLAG(s, SBUF_DYNAMIC);
182 s->s_buf = newbuf;
183 s->s_size = newsize;
184 return (0);
185 }
186
187 /*
188 * Initialize an sbuf.
189 * If buf is non-NULL, it points to a static or already-allocated string
190 * big enough to hold at least length characters.
191 */
192 struct sbuf *
sbuf_new(struct sbuf * s,char * buf,int length,int flags)193 sbuf_new(struct sbuf *s, char *buf, int length, int flags)
194 {
195
196 KASSERT(length >= 0,
197 ("attempt to create an sbuf of negative length (%d)", length));
198 KASSERT((flags & ~SBUF_USRFLAGMSK) == 0,
199 ("%s called with invalid flags", __func__));
200 KASSERT((flags & SBUF_AUTOEXTEND) || length >= SBUF_MINSIZE,
201 ("sbuf buffer %d smaller than minimum %d bytes", length,
202 SBUF_MINSIZE));
203
204 flags &= SBUF_USRFLAGMSK;
205
206 /*
207 * Allocate 'DYNSTRUCT' sbuf from the heap, if NULL 's' was provided.
208 */
209 if (s == NULL) {
210 s = SBMALLOC(sizeof(*s),
211 (flags & SBUF_NOWAIT) ? M_NOWAIT : M_WAITOK);
212 if (s == NULL)
213 goto out;
214 SBUF_SETFLAG(s, SBUF_DYNSTRUCT);
215 } else {
216 /*
217 * DYNSTRUCT SBMALLOC sbufs are allocated with M_ZERO, but
218 * user-provided sbuf objects must be initialized.
219 */
220 memset(s, 0, sizeof(*s));
221 }
222
223 s->s_flags |= flags;
224 s->s_size = length;
225 s->s_buf = buf;
226 /*
227 * Never-written sbufs do not need \n termination.
228 */
229 SBUF_SETFLAG(s, SBUF_DRAINATEOL);
230
231 /*
232 * Allocate DYNAMIC, i.e., heap data buffer backing the sbuf, if no
233 * buffer was provided.
234 */
235 if (s->s_buf == NULL) {
236 if (SBUF_CANEXTEND(s))
237 s->s_size = sbuf_extendsize(s->s_size);
238 s->s_buf = SBMALLOC(s->s_size, SBUF_MALLOCFLAG(s));
239 if (s->s_buf == NULL)
240 goto out;
241 SBUF_SETFLAG(s, SBUF_DYNAMIC);
242 }
243
244 out:
245 if (s != NULL && s->s_buf == NULL) {
246 if (SBUF_ISDYNSTRUCT(s))
247 SBFREE(s);
248 s = NULL;
249 }
250 return (s);
251 }
252
253 #ifdef _KERNEL
254 /*
255 * Create an sbuf with uio data
256 */
257 struct sbuf *
sbuf_uionew(struct sbuf * s,struct uio * uio,int * error)258 sbuf_uionew(struct sbuf *s, struct uio *uio, int *error)
259 {
260
261 KASSERT(uio != NULL,
262 ("%s called with NULL uio pointer", __func__));
263 KASSERT(error != NULL,
264 ("%s called with NULL error pointer", __func__));
265
266 if (uio->uio_resid >= INT_MAX || uio->uio_resid < SBUF_MINSIZE - 1) {
267 *error = EINVAL;
268 return (NULL);
269 }
270 s = sbuf_new(s, NULL, uio->uio_resid + 1, 0);
271 if (s == NULL) {
272 *error = ENOMEM;
273 return (NULL);
274 }
275 *error = uiomove(s->s_buf, uio->uio_resid, uio);
276 if (*error != 0) {
277 sbuf_delete(s);
278 return (NULL);
279 }
280 s->s_len = s->s_size - 1;
281 if (SBUF_ISSECTION(s))
282 s->s_sect_len = s->s_size - 1;
283 *error = 0;
284 return (s);
285 }
286 #endif
287
288 int
sbuf_get_flags(struct sbuf * s)289 sbuf_get_flags(struct sbuf *s)
290 {
291
292 return (s->s_flags & SBUF_USRFLAGMSK);
293 }
294
295 void
sbuf_clear_flags(struct sbuf * s,int flags)296 sbuf_clear_flags(struct sbuf *s, int flags)
297 {
298
299 s->s_flags &= ~(flags & SBUF_USRFLAGMSK);
300 }
301
302 void
sbuf_set_flags(struct sbuf * s,int flags)303 sbuf_set_flags(struct sbuf *s, int flags)
304 {
305
306 s->s_flags |= (flags & SBUF_USRFLAGMSK);
307 }
308
309 /*
310 * Clear an sbuf and reset its position.
311 */
312 void
sbuf_clear(struct sbuf * s)313 sbuf_clear(struct sbuf *s)
314 {
315
316 assert_sbuf_integrity(s);
317 /* don't care if it's finished or not */
318 KASSERT(s->s_drain_func == NULL,
319 ("%s makes no sense on sbuf %p with drain", __func__, s));
320
321 SBUF_CLEARFLAG(s, SBUF_FINISHED);
322 s->s_error = 0;
323 s->s_len = 0;
324 s->s_rec_off = 0;
325 s->s_sect_len = 0;
326 }
327
328 /*
329 * Set the sbuf's end position to an arbitrary value.
330 * Effectively truncates the sbuf at the new position.
331 */
332 int
sbuf_setpos(struct sbuf * s,ssize_t pos)333 sbuf_setpos(struct sbuf *s, ssize_t pos)
334 {
335
336 assert_sbuf_integrity(s);
337 assert_sbuf_state(s, 0);
338
339 KASSERT(pos >= 0,
340 ("attempt to seek to a negative position (%jd)", (intmax_t)pos));
341 KASSERT(pos < s->s_size,
342 ("attempt to seek past end of sbuf (%jd >= %jd)",
343 (intmax_t)pos, (intmax_t)s->s_size));
344 KASSERT(!SBUF_ISSECTION(s),
345 ("attempt to seek when in a section"));
346
347 if (pos < 0 || pos > s->s_len)
348 return (-1);
349 s->s_len = pos;
350 return (0);
351 }
352
353 /*
354 * Drain into a counter. Counts amount of data without producing output.
355 * Useful for cases like sysctl, where user may first request only size.
356 * This allows to avoid pointless allocation/freeing of large buffers.
357 */
358 int
sbuf_count_drain(void * arg,const char * data __unused,int len)359 sbuf_count_drain(void *arg, const char *data __unused, int len)
360 {
361 size_t *sizep;
362
363 sizep = (size_t *)arg;
364 *sizep += len;
365 return (len);
366 }
367
368 /*
369 * Set up a drain function and argument on an sbuf to flush data to
370 * when the sbuf buffer overflows.
371 */
372 void
sbuf_set_drain(struct sbuf * s,sbuf_drain_func * func,void * ctx)373 sbuf_set_drain(struct sbuf *s, sbuf_drain_func *func, void *ctx)
374 {
375
376 assert_sbuf_state(s, 0);
377 assert_sbuf_integrity(s);
378 KASSERT(func == s->s_drain_func || s->s_len == 0,
379 ("Cannot change drain to %p on non-empty sbuf %p", func, s));
380 s->s_drain_func = func;
381 s->s_drain_arg = ctx;
382 }
383
384 /*
385 * Call the drain and process the return.
386 */
387 int
sbuf_drain(struct sbuf * s)388 sbuf_drain(struct sbuf *s)
389 {
390 int len;
391
392 /*
393 * Immediately return when no work to do,
394 * or an error has already been accumulated.
395 */
396 if ((s->s_len == 0) || (s->s_error != 0))
397 return(s->s_error);
398
399 if (SBUF_DODRAINTOEOR(s) && s->s_rec_off == 0)
400 return (s->s_error = EDEADLK);
401 len = s->s_drain_func(s->s_drain_arg, s->s_buf,
402 SBUF_DODRAINTOEOR(s) ? s->s_rec_off : s->s_len);
403 if (len <= 0) {
404 s->s_error = len ? -len : EDEADLK;
405 return (s->s_error);
406 }
407 KASSERT(len > 0 && len <= s->s_len,
408 ("Bad drain amount %d for sbuf %p", len, s));
409 s->s_len -= len;
410 s->s_rec_off -= len;
411 /*
412 * Fast path for the expected case where all the data was
413 * drained.
414 */
415 if (s->s_len == 0) {
416 /*
417 * When the s_buf is entirely drained, we need to remember if
418 * the last character was a '\n' or not for
419 * sbuf_nl_terminate().
420 */
421 if (s->s_buf[len - 1] == '\n')
422 SBUF_SETFLAG(s, SBUF_DRAINATEOL);
423 else
424 SBUF_CLEARFLAG(s, SBUF_DRAINATEOL);
425 return (0);
426 }
427 /*
428 * Move the remaining characters to the beginning of the
429 * string.
430 */
431 memmove(s->s_buf, s->s_buf + len, s->s_len);
432 return (0);
433 }
434
435 /*
436 * Append bytes to an sbuf. This is the core function for appending
437 * to an sbuf and is the main place that deals with extending the
438 * buffer and marking overflow.
439 */
440 static void
sbuf_put_bytes(struct sbuf * s,const char * buf,size_t len)441 sbuf_put_bytes(struct sbuf *s, const char *buf, size_t len)
442 {
443 size_t n;
444
445 assert_sbuf_integrity(s);
446 assert_sbuf_state(s, 0);
447
448 if (s->s_error != 0)
449 return;
450 while (len > 0) {
451 if (SBUF_FREESPACE(s) <= 0) {
452 /*
453 * If there is a drain, use it, otherwise extend the
454 * buffer.
455 */
456 if (s->s_drain_func != NULL)
457 (void)sbuf_drain(s);
458 else if (sbuf_extend(s, len > INT_MAX ? INT_MAX : len)
459 < 0)
460 s->s_error = ENOMEM;
461 if (s->s_error != 0)
462 return;
463 }
464 n = SBUF_FREESPACE(s);
465 if (len < n)
466 n = len;
467 memcpy(&s->s_buf[s->s_len], buf, n);
468 s->s_len += n;
469 if (SBUF_ISSECTION(s))
470 s->s_sect_len += n;
471 len -= n;
472 buf += n;
473 }
474 }
475
476 static void
sbuf_put_byte(struct sbuf * s,char c)477 sbuf_put_byte(struct sbuf *s, char c)
478 {
479
480 assert_sbuf_integrity(s);
481 assert_sbuf_state(s, 0);
482
483 if (__predict_false(s->s_error != 0))
484 return;
485 if (__predict_false(SBUF_FREESPACE(s) <= 0)) {
486 /*
487 * If there is a drain, use it, otherwise extend the
488 * buffer.
489 */
490 if (s->s_drain_func != NULL)
491 (void)sbuf_drain(s);
492 else if (sbuf_extend(s, 1) < 0)
493 s->s_error = ENOMEM;
494 if (s->s_error != 0)
495 return;
496 }
497 s->s_buf[s->s_len++] = c;
498 if (SBUF_ISSECTION(s))
499 s->s_sect_len++;
500 }
501
502 /*
503 * Append a byte string to an sbuf.
504 */
505 int
sbuf_bcat(struct sbuf * s,const void * buf,size_t len)506 sbuf_bcat(struct sbuf *s, const void *buf, size_t len)
507 {
508
509 sbuf_put_bytes(s, buf, len);
510 if (s->s_error != 0)
511 return (-1);
512 return (0);
513 }
514
515 #ifdef _KERNEL
516 /*
517 * Copy a byte string from userland into an sbuf.
518 */
519 int
sbuf_bcopyin(struct sbuf * s,const void * uaddr,size_t len)520 sbuf_bcopyin(struct sbuf *s, const void *uaddr, size_t len)
521 {
522
523 assert_sbuf_integrity(s);
524 assert_sbuf_state(s, 0);
525 KASSERT(s->s_drain_func == NULL,
526 ("Nonsensical copyin to sbuf %p with a drain", s));
527
528 if (s->s_error != 0)
529 return (-1);
530 if (len == 0)
531 return (0);
532 if (len > SBUF_FREESPACE(s)) {
533 sbuf_extend(s, len - SBUF_FREESPACE(s));
534 if (SBUF_FREESPACE(s) < len)
535 len = SBUF_FREESPACE(s);
536 }
537 if (copyin(uaddr, s->s_buf + s->s_len, len) != 0)
538 return (-1);
539 s->s_len += len;
540
541 return (0);
542 }
543 #endif
544
545 /*
546 * Copy a byte string into an sbuf.
547 */
548 int
sbuf_bcpy(struct sbuf * s,const void * buf,size_t len)549 sbuf_bcpy(struct sbuf *s, const void *buf, size_t len)
550 {
551
552 assert_sbuf_integrity(s);
553 assert_sbuf_state(s, 0);
554
555 sbuf_clear(s);
556 return (sbuf_bcat(s, buf, len));
557 }
558
559 /*
560 * Append a string to an sbuf.
561 */
562 int
sbuf_cat(struct sbuf * s,const char * str)563 sbuf_cat(struct sbuf *s, const char *str)
564 {
565 size_t n;
566
567 n = strlen(str);
568 sbuf_put_bytes(s, str, n);
569 if (s->s_error != 0)
570 return (-1);
571 return (0);
572 }
573
574 #ifdef _KERNEL
575 /*
576 * Append a string from userland to an sbuf.
577 */
578 int
sbuf_copyin(struct sbuf * s,const void * uaddr,size_t len)579 sbuf_copyin(struct sbuf *s, const void *uaddr, size_t len)
580 {
581 size_t done;
582
583 assert_sbuf_integrity(s);
584 assert_sbuf_state(s, 0);
585 KASSERT(s->s_drain_func == NULL,
586 ("Nonsensical copyin to sbuf %p with a drain", s));
587
588 if (s->s_error != 0)
589 return (-1);
590
591 if (len == 0)
592 len = SBUF_FREESPACE(s); /* XXX return 0? */
593 if (len > SBUF_FREESPACE(s)) {
594 sbuf_extend(s, len);
595 if (SBUF_FREESPACE(s) < len)
596 len = SBUF_FREESPACE(s);
597 }
598 switch (copyinstr(uaddr, s->s_buf + s->s_len, len + 1, &done)) {
599 case ENAMETOOLONG:
600 s->s_error = ENOMEM;
601 /* fall through */
602 case 0:
603 s->s_len += done - 1;
604 if (SBUF_ISSECTION(s))
605 s->s_sect_len += done - 1;
606 break;
607 default:
608 return (-1); /* XXX */
609 }
610
611 return (done);
612 }
613 #endif
614
615 /*
616 * Copy a string into an sbuf.
617 */
618 int
sbuf_cpy(struct sbuf * s,const char * str)619 sbuf_cpy(struct sbuf *s, const char *str)
620 {
621
622 assert_sbuf_integrity(s);
623 assert_sbuf_state(s, 0);
624
625 sbuf_clear(s);
626 return (sbuf_cat(s, str));
627 }
628
629 /*
630 * Format the given argument list and append the resulting string to an sbuf.
631 */
632 #ifdef _KERNEL
633
634 /*
635 * Append a non-NUL character to an sbuf. This prototype signature is
636 * suitable for use with kvprintf(9).
637 */
638 static void
sbuf_putc_func(int c,void * arg)639 sbuf_putc_func(int c, void *arg)
640 {
641
642 if (__predict_true(c != '\0'))
643 sbuf_put_byte(arg, c);
644 }
645
646 int
sbuf_vprintf(struct sbuf * s,const char * fmt,va_list ap)647 sbuf_vprintf(struct sbuf *s, const char *fmt, va_list ap)
648 {
649
650 assert_sbuf_integrity(s);
651 assert_sbuf_state(s, 0);
652
653 KASSERT(fmt != NULL,
654 ("%s called with a NULL format string", __func__));
655
656 (void)kvprintf(fmt, sbuf_putc_func, s, 10, ap);
657 if (s->s_error != 0)
658 return (-1);
659 return (0);
660 }
661 #else /* !_KERNEL */
662 int
sbuf_vprintf(struct sbuf * s,const char * fmt,va_list ap)663 sbuf_vprintf(struct sbuf *s, const char *fmt, va_list ap)
664 {
665 va_list ap_copy;
666 int error, len;
667
668 assert_sbuf_integrity(s);
669 assert_sbuf_state(s, 0);
670
671 KASSERT(fmt != NULL,
672 ("%s called with a NULL format string", __func__));
673
674 if (s->s_error != 0)
675 return (-1);
676
677 /*
678 * For the moment, there is no way to get vsnprintf(3) to hand
679 * back a character at a time, to push everything into
680 * sbuf_putc_func() as was done for the kernel.
681 *
682 * In userspace, while drains are useful, there's generally
683 * not a problem attempting to malloc(3) on out of space. So
684 * expand a userland sbuf if there is not enough room for the
685 * data produced by sbuf_[v]printf(3).
686 */
687
688 error = 0;
689 do {
690 va_copy(ap_copy, ap);
691 len = vsnprintf(&s->s_buf[s->s_len], SBUF_FREESPACE(s) + 1,
692 fmt, ap_copy);
693 if (len < 0) {
694 s->s_error = errno;
695 return (-1);
696 }
697 va_end(ap_copy);
698
699 if (SBUF_FREESPACE(s) >= len)
700 break;
701 /* Cannot print with the current available space. */
702 if (s->s_drain_func != NULL && s->s_len > 0)
703 error = sbuf_drain(s); /* sbuf_drain() sets s_error. */
704 else if (sbuf_extend(s, len - SBUF_FREESPACE(s)) != 0)
705 s->s_error = error = ENOMEM;
706 } while (error == 0);
707
708 /*
709 * s->s_len is the length of the string, without the terminating nul.
710 * When updating s->s_len, we must subtract 1 from the length that
711 * we passed into vsnprintf() because that length includes the
712 * terminating nul.
713 *
714 * vsnprintf() returns the amount that would have been copied,
715 * given sufficient space, so don't over-increment s_len.
716 */
717 if (SBUF_FREESPACE(s) < len)
718 len = SBUF_FREESPACE(s);
719 s->s_len += len;
720 if (SBUF_ISSECTION(s))
721 s->s_sect_len += len;
722
723 KASSERT(s->s_len < s->s_size,
724 ("wrote past end of sbuf (%d >= %d)", s->s_len, s->s_size));
725
726 if (s->s_error != 0)
727 return (-1);
728 return (0);
729 }
730 #endif /* _KERNEL */
731
732 /*
733 * Format the given arguments and append the resulting string to an sbuf.
734 */
735 int
sbuf_printf(struct sbuf * s,const char * fmt,...)736 sbuf_printf(struct sbuf *s, const char *fmt, ...)
737 {
738 va_list ap;
739 int result;
740
741 va_start(ap, fmt);
742 result = sbuf_vprintf(s, fmt, ap);
743 va_end(ap);
744 return (result);
745 }
746
747 /*
748 * Append a character to an sbuf.
749 */
750 int
sbuf_putc(struct sbuf * s,int c)751 sbuf_putc(struct sbuf *s, int c)
752 {
753
754 sbuf_put_byte(s, c);
755 if (s->s_error != 0)
756 return (-1);
757 return (0);
758 }
759
760 /*
761 * Append a trailing newline to a non-empty sbuf, if one is not already
762 * present. Handles sbufs with drain functions correctly.
763 */
764 int
sbuf_nl_terminate(struct sbuf * s)765 sbuf_nl_terminate(struct sbuf *s)
766 {
767
768 assert_sbuf_integrity(s);
769 assert_sbuf_state(s, 0);
770
771 /*
772 * If the s_buf isn't empty, the last byte is simply s_buf[s_len - 1].
773 *
774 * If the s_buf is empty because a drain function drained it, we
775 * remember if the last byte was a \n with the SBUF_DRAINATEOL flag in
776 * sbuf_drain().
777 *
778 * In either case, we only append a \n if the previous character was
779 * something else.
780 */
781 if (s->s_len == 0) {
782 if (!SBUF_ISDRAINATEOL(s))
783 sbuf_put_byte(s, '\n');
784 } else if (s->s_buf[s->s_len - 1] != '\n')
785 sbuf_put_byte(s, '\n');
786
787 if (s->s_error != 0)
788 return (-1);
789 return (0);
790 }
791
792 /*
793 * Trim whitespace characters from end of an sbuf.
794 */
795 int
sbuf_trim(struct sbuf * s)796 sbuf_trim(struct sbuf *s)
797 {
798
799 assert_sbuf_integrity(s);
800 assert_sbuf_state(s, 0);
801 KASSERT(s->s_drain_func == NULL,
802 ("%s makes no sense on sbuf %p with drain", __func__, s));
803
804 if (s->s_error != 0)
805 return (-1);
806
807 while (s->s_len > 0 && isspace(s->s_buf[s->s_len-1])) {
808 --s->s_len;
809 if (SBUF_ISSECTION(s))
810 s->s_sect_len--;
811 }
812
813 return (0);
814 }
815
816 /*
817 * Check if an sbuf has an error.
818 */
819 int
sbuf_error(const struct sbuf * s)820 sbuf_error(const struct sbuf *s)
821 {
822
823 return (s->s_error);
824 }
825
826 /*
827 * Finish off an sbuf.
828 */
829 int
sbuf_finish(struct sbuf * s)830 sbuf_finish(struct sbuf *s)
831 {
832
833 assert_sbuf_integrity(s);
834 assert_sbuf_state(s, 0);
835
836 s->s_buf[s->s_len] = '\0';
837 if (SBUF_NULINCLUDED(s))
838 s->s_len++;
839 if (s->s_drain_func != NULL) {
840 while (s->s_len > 0 && s->s_error == 0)
841 s->s_error = sbuf_drain(s);
842 }
843 SBUF_SETFLAG(s, SBUF_FINISHED);
844 #ifdef _KERNEL
845 return (s->s_error);
846 #else
847 if (s->s_error != 0) {
848 errno = s->s_error;
849 return (-1);
850 }
851 return (0);
852 #endif
853 }
854
855 /*
856 * Return a pointer to the sbuf data.
857 */
858 char *
sbuf_data(struct sbuf * s)859 sbuf_data(struct sbuf *s)
860 {
861
862 assert_sbuf_integrity(s);
863 assert_sbuf_state(s, SBUF_FINISHED);
864 KASSERT(s->s_drain_func == NULL,
865 ("%s makes no sense on sbuf %p with drain", __func__, s));
866
867 return (s->s_buf);
868 }
869
870 /*
871 * Return the length of the sbuf data.
872 */
873 ssize_t
sbuf_len(struct sbuf * s)874 sbuf_len(struct sbuf *s)
875 {
876
877 assert_sbuf_integrity(s);
878 /* don't care if it's finished or not */
879 KASSERT(s->s_drain_func == NULL,
880 ("%s makes no sense on sbuf %p with drain", __func__, s));
881
882 if (s->s_error != 0)
883 return (-1);
884
885 /* If finished, nulterm is already in len, else add one. */
886 if (SBUF_NULINCLUDED(s) && !SBUF_ISFINISHED(s))
887 return (s->s_len + 1);
888 return (s->s_len);
889 }
890
891 /*
892 * Clear an sbuf, free its buffer if necessary.
893 */
894 void
sbuf_delete(struct sbuf * s)895 sbuf_delete(struct sbuf *s)
896 {
897 int isdyn;
898
899 assert_sbuf_integrity(s);
900 /* don't care if it's finished or not */
901
902 if (SBUF_ISDYNAMIC(s))
903 SBFREE(s->s_buf);
904 isdyn = SBUF_ISDYNSTRUCT(s);
905 memset(s, 0, sizeof(*s));
906 if (isdyn)
907 SBFREE(s);
908 }
909
910 /*
911 * Check if an sbuf has been finished.
912 */
913 int
sbuf_done(const struct sbuf * s)914 sbuf_done(const struct sbuf *s)
915 {
916
917 return (SBUF_ISFINISHED(s));
918 }
919
920 /*
921 * Start a section.
922 */
923 void
sbuf_start_section(struct sbuf * s,ssize_t * old_lenp)924 sbuf_start_section(struct sbuf *s, ssize_t *old_lenp)
925 {
926
927 assert_sbuf_integrity(s);
928 assert_sbuf_state(s, 0);
929
930 if (!SBUF_ISSECTION(s)) {
931 KASSERT(s->s_sect_len == 0,
932 ("s_sect_len != 0 when starting a section"));
933 if (old_lenp != NULL)
934 *old_lenp = -1;
935 s->s_rec_off = s->s_len;
936 SBUF_SETFLAG(s, SBUF_INSECTION);
937 } else {
938 KASSERT(old_lenp != NULL,
939 ("s_sect_len should be saved when starting a subsection"));
940 *old_lenp = s->s_sect_len;
941 s->s_sect_len = 0;
942 }
943 }
944
945 /*
946 * End the section padding to the specified length with the specified
947 * character.
948 */
949 ssize_t
sbuf_end_section(struct sbuf * s,ssize_t old_len,size_t pad,int c)950 sbuf_end_section(struct sbuf *s, ssize_t old_len, size_t pad, int c)
951 {
952 ssize_t len;
953
954 assert_sbuf_integrity(s);
955 assert_sbuf_state(s, 0);
956 KASSERT(SBUF_ISSECTION(s),
957 ("attempt to end a section when not in a section"));
958
959 if (pad > 1) {
960 len = roundup(s->s_sect_len, pad) - s->s_sect_len;
961 for (; s->s_error == 0 && len > 0; len--)
962 sbuf_put_byte(s, c);
963 }
964 len = s->s_sect_len;
965 if (old_len == -1) {
966 s->s_rec_off = s->s_sect_len = 0;
967 SBUF_CLEARFLAG(s, SBUF_INSECTION);
968 } else {
969 s->s_sect_len += old_len;
970 }
971 if (s->s_error != 0)
972 return (-1);
973 return (len);
974 }
975