1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_kern_tls.h"
34 #include "opt_param.h"
35
36 #include <sys/param.h>
37 #include <sys/aio.h> /* for aio_swake proto */
38 #include <sys/kernel.h>
39 #include <sys/ktls.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/msan.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sx.h>
52 #include <sys/sysctl.h>
53
54 #include <netinet/in.h>
55
56 /*
57 * Function pointer set by the AIO routines so that the socket buffer code
58 * can call back into the AIO module if it is loaded.
59 */
60 void (*aio_swake)(struct socket *, struct sockbuf *);
61
62 /*
63 * Primitive routines for operating on socket buffers
64 */
65
66 #define BUF_MAX_ADJ(_sz) (((u_quad_t)(_sz)) * MCLBYTES / (MSIZE + MCLBYTES))
67
68 u_long sb_max = SB_MAX;
69 u_long sb_max_adj = BUF_MAX_ADJ(SB_MAX);
70
71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */
72
73 #ifdef KERN_TLS
74 static void sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75 struct mbuf *n);
76 #endif
77 static struct mbuf *sbcut_internal(struct sockbuf *sb, int len);
78 static void sbflush_internal(struct sockbuf *sb);
79
80 /*
81 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82 */
83 static void
sbm_clrprotoflags(struct mbuf * m,int flags)84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 int mask;
87
88 mask = ~M_PROTOFLAGS;
89 if (flags & PRUS_NOTREADY)
90 mask |= M_NOTREADY;
91 while (m) {
92 m->m_flags &= mask;
93 m = m->m_next;
94 }
95 }
96
97 /*
98 * Compress M_NOTREADY mbufs after they have been readied by sbready().
99 *
100 * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101 * be copied at the time of sbcompress(). This function combines small
102 * mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first
103 * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104 * ready.
105 */
106 static void
sbready_compress(struct sockbuf * sb,struct mbuf * m0,struct mbuf * end)107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 struct mbuf *m, *n;
110 int ext_size;
111
112 SOCKBUF_LOCK_ASSERT(sb);
113
114 if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 return;
116
117 for (m = m0; m != end; m = m->m_next) {
118 MPASS((m->m_flags & M_NOTREADY) == 0);
119 /*
120 * NB: In sbcompress(), 'n' is the last mbuf in the
121 * socket buffer and 'm' is the new mbuf being copied
122 * into the trailing space of 'n'. Here, the roles
123 * are reversed and 'n' is the next mbuf after 'm'
124 * that is being copied into the trailing space of
125 * 'm'.
126 */
127 n = m->m_next;
128 #ifdef KERN_TLS
129 /* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 (m->m_flags & M_EXTPG) &&
132 (n->m_flags & M_EXTPG) &&
133 !mbuf_has_tls_session(m) &&
134 !mbuf_has_tls_session(n)) {
135 int hdr_len, trail_len;
136
137 hdr_len = n->m_epg_hdrlen;
138 trail_len = m->m_epg_trllen;
139 if (trail_len != 0 && hdr_len != 0 &&
140 trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 /* copy n's header to m's trailer */
142 memcpy(&m->m_epg_trail[trail_len],
143 n->m_epg_hdr, hdr_len);
144 m->m_epg_trllen += hdr_len;
145 m->m_len += hdr_len;
146 n->m_epg_hdrlen = 0;
147 n->m_len -= hdr_len;
148 }
149 }
150 #endif
151
152 /* Compress small unmapped mbufs into plain mbufs. */
153 if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 !mbuf_has_tls_session(m)) {
155 ext_size = m->m_ext.ext_size;
156 if (mb_unmapped_compress(m) == 0)
157 sb->sb_mbcnt -= ext_size;
158 }
159
160 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
161 M_WRITABLE(m) &&
162 (m->m_flags & M_EXTPG) == 0 &&
163 !mbuf_has_tls_session(n) &&
164 !mbuf_has_tls_session(m) &&
165 n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
166 n->m_len <= M_TRAILINGSPACE(m) &&
167 m->m_type == n->m_type) {
168 KASSERT(sb->sb_lastrecord != n,
169 ("%s: merging start of record (%p) into previous mbuf (%p)",
170 __func__, n, m));
171 m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
172 m->m_len += n->m_len;
173 m->m_next = n->m_next;
174 m->m_flags |= n->m_flags & M_EOR;
175 if (sb->sb_mbtail == n)
176 sb->sb_mbtail = m;
177
178 sb->sb_mbcnt -= MSIZE;
179 if (n->m_flags & M_EXT)
180 sb->sb_mbcnt -= n->m_ext.ext_size;
181 m_free(n);
182 n = m->m_next;
183 }
184 }
185 SBLASTRECORDCHK(sb);
186 SBLASTMBUFCHK(sb);
187 }
188
189 /*
190 * Mark ready "count" units of I/O starting with "m". Most mbufs
191 * count as a single unit of I/O except for M_EXTPG mbufs which
192 * are backed by multiple pages.
193 */
194 int
sbready(struct sockbuf * sb,struct mbuf * m0,int count)195 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
196 {
197 struct mbuf *m;
198 u_int blocker;
199
200 SOCKBUF_LOCK_ASSERT(sb);
201 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
202 KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
203
204 m = m0;
205 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
206
207 while (count > 0) {
208 KASSERT(m->m_flags & M_NOTREADY,
209 ("%s: m %p !M_NOTREADY", __func__, m));
210 if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
211 if (count < m->m_epg_nrdy) {
212 m->m_epg_nrdy -= count;
213 count = 0;
214 break;
215 }
216 count -= m->m_epg_nrdy;
217 m->m_epg_nrdy = 0;
218 } else
219 count--;
220
221 m->m_flags &= ~(M_NOTREADY | blocker);
222 if (blocker)
223 sb->sb_acc += m->m_len;
224 m = m->m_next;
225 }
226
227 /*
228 * If the first mbuf is still not fully ready because only
229 * some of its backing pages were readied, no further progress
230 * can be made.
231 */
232 if (m0 == m) {
233 MPASS(m->m_flags & M_NOTREADY);
234 return (EINPROGRESS);
235 }
236
237 if (!blocker) {
238 sbready_compress(sb, m0, m);
239 return (EINPROGRESS);
240 }
241
242 /* This one was blocking all the queue. */
243 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
244 KASSERT(m->m_flags & M_BLOCKED,
245 ("%s: m %p !M_BLOCKED", __func__, m));
246 m->m_flags &= ~M_BLOCKED;
247 sb->sb_acc += m->m_len;
248 }
249
250 sb->sb_fnrdy = m;
251 sbready_compress(sb, m0, m);
252
253 return (0);
254 }
255
256 /*
257 * Adjust sockbuf state reflecting allocation of m.
258 */
259 void
sballoc(struct sockbuf * sb,struct mbuf * m)260 sballoc(struct sockbuf *sb, struct mbuf *m)
261 {
262
263 SOCKBUF_LOCK_ASSERT(sb);
264
265 sb->sb_ccc += m->m_len;
266
267 if (sb->sb_fnrdy == NULL) {
268 if (m->m_flags & M_NOTREADY)
269 sb->sb_fnrdy = m;
270 else
271 sb->sb_acc += m->m_len;
272 } else
273 m->m_flags |= M_BLOCKED;
274
275 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
276 sb->sb_ctl += m->m_len;
277
278 sb->sb_mbcnt += MSIZE;
279
280 if (m->m_flags & M_EXT)
281 sb->sb_mbcnt += m->m_ext.ext_size;
282 }
283
284 /*
285 * Adjust sockbuf state reflecting freeing of m.
286 */
287 void
sbfree(struct sockbuf * sb,struct mbuf * m)288 sbfree(struct sockbuf *sb, struct mbuf *m)
289 {
290
291 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
292 SOCKBUF_LOCK_ASSERT(sb);
293 #endif
294
295 sb->sb_ccc -= m->m_len;
296
297 if (!(m->m_flags & M_NOTAVAIL))
298 sb->sb_acc -= m->m_len;
299
300 if (m == sb->sb_fnrdy) {
301 struct mbuf *n;
302
303 KASSERT(m->m_flags & M_NOTREADY,
304 ("%s: m %p !M_NOTREADY", __func__, m));
305
306 n = m->m_next;
307 while (n != NULL && !(n->m_flags & M_NOTREADY)) {
308 n->m_flags &= ~M_BLOCKED;
309 sb->sb_acc += n->m_len;
310 n = n->m_next;
311 }
312 sb->sb_fnrdy = n;
313 }
314
315 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
316 sb->sb_ctl -= m->m_len;
317
318 sb->sb_mbcnt -= MSIZE;
319 if (m->m_flags & M_EXT)
320 sb->sb_mbcnt -= m->m_ext.ext_size;
321
322 if (sb->sb_sndptr == m) {
323 sb->sb_sndptr = NULL;
324 sb->sb_sndptroff = 0;
325 }
326 if (sb->sb_sndptroff != 0)
327 sb->sb_sndptroff -= m->m_len;
328 }
329
330 #ifdef KERN_TLS
331 /*
332 * Similar to sballoc/sbfree but does not adjust state associated with
333 * the sb_mb chain such as sb_fnrdy or sb_sndptr*. Also assumes mbufs
334 * are not ready.
335 */
336 void
sballoc_ktls_rx(struct sockbuf * sb,struct mbuf * m)337 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
338 {
339
340 SOCKBUF_LOCK_ASSERT(sb);
341
342 sb->sb_ccc += m->m_len;
343 sb->sb_tlscc += m->m_len;
344
345 sb->sb_mbcnt += MSIZE;
346
347 if (m->m_flags & M_EXT)
348 sb->sb_mbcnt += m->m_ext.ext_size;
349 }
350
351 void
sbfree_ktls_rx(struct sockbuf * sb,struct mbuf * m)352 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
353 {
354
355 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
356 SOCKBUF_LOCK_ASSERT(sb);
357 #endif
358
359 sb->sb_ccc -= m->m_len;
360 sb->sb_tlscc -= m->m_len;
361
362 sb->sb_mbcnt -= MSIZE;
363
364 if (m->m_flags & M_EXT)
365 sb->sb_mbcnt -= m->m_ext.ext_size;
366 }
367 #endif
368
369 /*
370 * Socantsendmore indicates that no more data will be sent on the socket; it
371 * would normally be applied to a socket when the user informs the system
372 * that no more data is to be sent, by the protocol code (in case
373 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
374 * received, and will normally be applied to the socket by a protocol when it
375 * detects that the peer will send no more data. Data queued for reading in
376 * the socket may yet be read.
377 */
378 void
socantsendmore_locked(struct socket * so)379 socantsendmore_locked(struct socket *so)
380 {
381
382 SOCK_SENDBUF_LOCK_ASSERT(so);
383
384 so->so_snd.sb_state |= SBS_CANTSENDMORE;
385 sowwakeup_locked(so);
386 SOCK_SENDBUF_UNLOCK_ASSERT(so);
387 }
388
389 void
socantsendmore(struct socket * so)390 socantsendmore(struct socket *so)
391 {
392
393 SOCK_SENDBUF_LOCK(so);
394 socantsendmore_locked(so);
395 SOCK_SENDBUF_UNLOCK_ASSERT(so);
396 }
397
398 void
socantrcvmore_locked(struct socket * so)399 socantrcvmore_locked(struct socket *so)
400 {
401
402 SOCK_RECVBUF_LOCK_ASSERT(so);
403
404 so->so_rcv.sb_state |= SBS_CANTRCVMORE;
405 #ifdef KERN_TLS
406 if (so->so_rcv.sb_flags & SB_TLS_RX)
407 ktls_check_rx(&so->so_rcv);
408 #endif
409 sorwakeup_locked(so);
410 SOCK_RECVBUF_UNLOCK_ASSERT(so);
411 }
412
413 void
socantrcvmore(struct socket * so)414 socantrcvmore(struct socket *so)
415 {
416
417 SOCK_RECVBUF_LOCK(so);
418 socantrcvmore_locked(so);
419 SOCK_RECVBUF_UNLOCK_ASSERT(so);
420 }
421
422 void
soroverflow_locked(struct socket * so)423 soroverflow_locked(struct socket *so)
424 {
425
426 SOCK_RECVBUF_LOCK_ASSERT(so);
427
428 if (so->so_options & SO_RERROR) {
429 so->so_rerror = ENOBUFS;
430 sorwakeup_locked(so);
431 } else
432 SOCK_RECVBUF_UNLOCK(so);
433
434 SOCK_RECVBUF_UNLOCK_ASSERT(so);
435 }
436
437 void
soroverflow(struct socket * so)438 soroverflow(struct socket *so)
439 {
440
441 SOCK_RECVBUF_LOCK(so);
442 soroverflow_locked(so);
443 SOCK_RECVBUF_UNLOCK_ASSERT(so);
444 }
445
446 /*
447 * Wait for data to arrive at/drain from a socket buffer.
448 */
449 int
sbwait(struct socket * so,sb_which which)450 sbwait(struct socket *so, sb_which which)
451 {
452 struct sockbuf *sb;
453
454 SOCK_BUF_LOCK_ASSERT(so, which);
455
456 sb = sobuf(so, which);
457 sb->sb_flags |= SB_WAIT;
458 return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
459 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
460 sb->sb_timeo, 0, 0));
461 }
462
463 /*
464 * Wakeup processes waiting on a socket buffer. Do asynchronous notification
465 * via SIGIO if the socket has the SS_ASYNC flag set.
466 *
467 * Called with the socket buffer lock held; will release the lock by the end
468 * of the function. This allows the caller to acquire the socket buffer lock
469 * while testing for the need for various sorts of wakeup and hold it through
470 * to the point where it's no longer required. We currently hold the lock
471 * through calls out to other subsystems (with the exception of kqueue), and
472 * then release it to avoid lock order issues. It's not clear that's
473 * correct.
474 */
475 static __always_inline void
sowakeup(struct socket * so,const sb_which which)476 sowakeup(struct socket *so, const sb_which which)
477 {
478 struct sockbuf *sb;
479 int ret;
480
481 SOCK_BUF_LOCK_ASSERT(so, which);
482
483 sb = sobuf(so, which);
484 selwakeuppri(sb->sb_sel, PSOCK);
485 if (!SEL_WAITING(sb->sb_sel))
486 sb->sb_flags &= ~SB_SEL;
487 if (sb->sb_flags & SB_WAIT) {
488 sb->sb_flags &= ~SB_WAIT;
489 wakeup(&sb->sb_acc);
490 }
491 KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
492 if (sb->sb_upcall != NULL) {
493 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
494 if (ret == SU_ISCONNECTED) {
495 KASSERT(sb == &so->so_rcv,
496 ("SO_SND upcall returned SU_ISCONNECTED"));
497 soupcall_clear(so, SO_RCV);
498 }
499 } else
500 ret = SU_OK;
501 if (sb->sb_flags & SB_AIO)
502 sowakeup_aio(so, which);
503 SOCK_BUF_UNLOCK(so, which);
504 if (ret == SU_ISCONNECTED)
505 soisconnected(so);
506 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
507 pgsigio(&so->so_sigio, SIGIO, 0);
508 SOCK_BUF_UNLOCK_ASSERT(so, which);
509 }
510
511 static void
splice_push(struct socket * so)512 splice_push(struct socket *so)
513 {
514 struct so_splice *sp;
515
516 SOCK_RECVBUF_LOCK_ASSERT(so);
517
518 sp = so->so_splice;
519 mtx_lock(&sp->mtx);
520 SOCK_RECVBUF_UNLOCK(so);
521 so_splice_dispatch(sp);
522 }
523
524 static void
splice_pull(struct socket * so)525 splice_pull(struct socket *so)
526 {
527 struct so_splice *sp;
528
529 SOCK_SENDBUF_LOCK_ASSERT(so);
530
531 sp = so->so_splice_back;
532 mtx_lock(&sp->mtx);
533 SOCK_SENDBUF_UNLOCK(so);
534 so_splice_dispatch(sp);
535 }
536
537 /*
538 * Do we need to notify the other side when I/O is possible?
539 */
540 static __always_inline bool
sb_notify(const struct sockbuf * sb)541 sb_notify(const struct sockbuf *sb)
542 {
543 return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
544 SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
545 }
546
547 void
sorwakeup_locked(struct socket * so)548 sorwakeup_locked(struct socket *so)
549 {
550 SOCK_RECVBUF_LOCK_ASSERT(so);
551 if (so->so_rcv.sb_flags & SB_SPLICED)
552 splice_push(so);
553 else if (sb_notify(&so->so_rcv))
554 sowakeup(so, SO_RCV);
555 else
556 SOCK_RECVBUF_UNLOCK(so);
557 }
558
559 void
sowwakeup_locked(struct socket * so)560 sowwakeup_locked(struct socket *so)
561 {
562 SOCK_SENDBUF_LOCK_ASSERT(so);
563 if (so->so_snd.sb_flags & SB_SPLICED)
564 splice_pull(so);
565 else if (sb_notify(&so->so_snd))
566 sowakeup(so, SO_SND);
567 else
568 SOCK_SENDBUF_UNLOCK(so);
569 }
570
571 /*
572 * Socket buffer (struct sockbuf) utility routines.
573 *
574 * Each socket contains two socket buffers: one for sending data and one for
575 * receiving data. Each buffer contains a queue of mbufs, information about
576 * the number of mbufs and amount of data in the queue, and other fields
577 * allowing select() statements and notification on data availability to be
578 * implemented.
579 *
580 * Data stored in a socket buffer is maintained as a list of records. Each
581 * record is a list of mbufs chained together with the m_next field. Records
582 * are chained together with the m_nextpkt field. The upper level routine
583 * soreceive() expects the following conventions to be observed when placing
584 * information in the receive buffer:
585 *
586 * 1. If the protocol requires each message be preceded by the sender's name,
587 * then a record containing that name must be present before any
588 * associated data (mbuf's must be of type MT_SONAME).
589 * 2. If the protocol supports the exchange of ``access rights'' (really just
590 * additional data associated with the message), and there are ``rights''
591 * to be received, then a record containing this data should be present
592 * (mbuf's must be of type MT_RIGHTS).
593 * 3. If a name or rights record exists, then it must be followed by a data
594 * record, perhaps of zero length.
595 *
596 * Before using a new socket structure it is first necessary to reserve
597 * buffer space to the socket, by calling sbreserve(). This should commit
598 * some of the available buffer space in the system buffer pool for the
599 * socket (currently, it does nothing but enforce limits). The space should
600 * be released by calling sbrelease() when the socket is destroyed.
601 */
602 int
soreserve(struct socket * so,u_long sndcc,u_long rcvcc)603 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
604 {
605 struct thread *td = curthread;
606
607 SOCK_SENDBUF_LOCK(so);
608 SOCK_RECVBUF_LOCK(so);
609 if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
610 goto bad;
611 if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
612 goto bad2;
613 if (so->so_rcv.sb_lowat == 0)
614 so->so_rcv.sb_lowat = 1;
615 if (so->so_snd.sb_lowat == 0)
616 so->so_snd.sb_lowat = MCLBYTES;
617 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
618 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
619 SOCK_RECVBUF_UNLOCK(so);
620 SOCK_SENDBUF_UNLOCK(so);
621 return (0);
622 bad2:
623 sbrelease_locked(so, SO_SND);
624 bad:
625 SOCK_RECVBUF_UNLOCK(so);
626 SOCK_SENDBUF_UNLOCK(so);
627 return (ENOBUFS);
628 }
629
630 static int
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)631 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
632 {
633 int error = 0;
634 u_long tmp_sb_max = sb_max;
635
636 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
637 if (error || !req->newptr)
638 return (error);
639 if (tmp_sb_max < MSIZE + MCLBYTES)
640 return (EINVAL);
641 sb_max = tmp_sb_max;
642 sb_max_adj = BUF_MAX_ADJ(sb_max);
643 return (0);
644 }
645
646 /*
647 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
648 * become limiting if buffering efficiency is near the normal case.
649 */
650 bool
sbreserve_locked_limit(struct socket * so,sb_which which,u_long cc,u_long buf_max,struct thread * td)651 sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
652 u_long buf_max, struct thread *td)
653 {
654 struct sockbuf *sb = sobuf(so, which);
655 rlim_t sbsize_limit;
656
657 SOCK_BUF_LOCK_ASSERT(so, which);
658
659 /*
660 * When a thread is passed, we take into account the thread's socket
661 * buffer size limit. The caller will generally pass curthread, but
662 * in the TCP input path, NULL will be passed to indicate that no
663 * appropriate thread resource limits are available. In that case,
664 * we don't apply a process limit.
665 */
666 if (cc > BUF_MAX_ADJ(buf_max))
667 return (false);
668 if (td != NULL) {
669 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
670 } else
671 sbsize_limit = RLIM_INFINITY;
672 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
673 sbsize_limit))
674 return (false);
675 sb->sb_mbmax = min(cc * sb_efficiency, buf_max);
676 if (sb->sb_lowat > sb->sb_hiwat)
677 sb->sb_lowat = sb->sb_hiwat;
678 return (true);
679 }
680
681 bool
sbreserve_locked(struct socket * so,sb_which which,u_long cc,struct thread * td)682 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
683 struct thread *td)
684 {
685 return (sbreserve_locked_limit(so, which, cc, sb_max, td));
686 }
687
688 int
sbsetopt(struct socket * so,struct sockopt * sopt)689 sbsetopt(struct socket *so, struct sockopt *sopt)
690 {
691 struct sockbuf *sb;
692 sb_which wh;
693 short *flags;
694 u_int cc, *hiwat, *lowat;
695 int error, optval;
696
697 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
698 if (error != 0)
699 return (error);
700
701 /*
702 * Values < 1 make no sense for any of these options,
703 * so disallow them.
704 */
705 if (optval < 1)
706 return (EINVAL);
707 cc = optval;
708
709 sb = NULL;
710 SOCK_LOCK(so);
711 if (SOLISTENING(so)) {
712 switch (sopt->sopt_name) {
713 case SO_SNDLOWAT:
714 case SO_SNDBUF:
715 lowat = &so->sol_sbsnd_lowat;
716 hiwat = &so->sol_sbsnd_hiwat;
717 flags = &so->sol_sbsnd_flags;
718 break;
719 case SO_RCVLOWAT:
720 case SO_RCVBUF:
721 lowat = &so->sol_sbrcv_lowat;
722 hiwat = &so->sol_sbrcv_hiwat;
723 flags = &so->sol_sbrcv_flags;
724 break;
725 }
726 } else {
727 switch (sopt->sopt_name) {
728 case SO_SNDLOWAT:
729 case SO_SNDBUF:
730 sb = &so->so_snd;
731 wh = SO_SND;
732 break;
733 case SO_RCVLOWAT:
734 case SO_RCVBUF:
735 sb = &so->so_rcv;
736 wh = SO_RCV;
737 break;
738 }
739 flags = &sb->sb_flags;
740 hiwat = &sb->sb_hiwat;
741 lowat = &sb->sb_lowat;
742 SOCK_BUF_LOCK(so, wh);
743 }
744
745 error = 0;
746 switch (sopt->sopt_name) {
747 case SO_SNDBUF:
748 case SO_RCVBUF:
749 if (SOLISTENING(so)) {
750 if (cc > sb_max_adj) {
751 error = ENOBUFS;
752 break;
753 }
754 *hiwat = cc;
755 if (*lowat > *hiwat)
756 *lowat = *hiwat;
757 } else {
758 if (!sbreserve_locked(so, wh, cc, curthread))
759 error = ENOBUFS;
760 }
761 if (error == 0)
762 *flags &= ~SB_AUTOSIZE;
763 break;
764 case SO_SNDLOWAT:
765 case SO_RCVLOWAT:
766 /*
767 * Make sure the low-water is never greater than the
768 * high-water.
769 */
770 *lowat = (cc > *hiwat) ? *hiwat : cc;
771 break;
772 }
773
774 if (!SOLISTENING(so))
775 SOCK_BUF_UNLOCK(so, wh);
776 SOCK_UNLOCK(so);
777 return (error);
778 }
779
780 /*
781 * Free mbufs held by a socket, and reserved mbuf space.
782 */
783 static void
sbrelease_internal(struct socket * so,sb_which which)784 sbrelease_internal(struct socket *so, sb_which which)
785 {
786 struct sockbuf *sb = sobuf(so, which);
787
788 sbflush_internal(sb);
789 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
790 RLIM_INFINITY);
791 sb->sb_mbmax = 0;
792 }
793
794 void
sbrelease_locked(struct socket * so,sb_which which)795 sbrelease_locked(struct socket *so, sb_which which)
796 {
797
798 SOCK_BUF_LOCK_ASSERT(so, which);
799
800 sbrelease_internal(so, which);
801 }
802
803 void
sbrelease(struct socket * so,sb_which which)804 sbrelease(struct socket *so, sb_which which)
805 {
806
807 SOCK_BUF_LOCK(so, which);
808 sbrelease_locked(so, which);
809 SOCK_BUF_UNLOCK(so, which);
810 }
811
812 void
sbdestroy(struct socket * so,sb_which which)813 sbdestroy(struct socket *so, sb_which which)
814 {
815 #ifdef KERN_TLS
816 struct sockbuf *sb = sobuf(so, which);
817
818 if (sb->sb_tls_info != NULL)
819 ktls_free(sb->sb_tls_info);
820 sb->sb_tls_info = NULL;
821 #endif
822 sbrelease_internal(so, which);
823 }
824
825 /*
826 * Routines to add and remove data from an mbuf queue.
827 *
828 * The routines sbappend() or sbappendrecord() are normally called to append
829 * new mbufs to a socket buffer, after checking that adequate space is
830 * available, comparing the function sbspace() with the amount of data to be
831 * added. sbappendrecord() differs from sbappend() in that data supplied is
832 * treated as the beginning of a new record. To place a sender's address,
833 * optional access rights, and data in a socket receive buffer,
834 * sbappendaddr() should be used. To place access rights and data in a
835 * socket receive buffer, sbappendrights() should be used. In either case,
836 * the new data begins a new record. Note that unlike sbappend() and
837 * sbappendrecord(), these routines check for the caller that there will be
838 * enough space to store the data. Each fails if there is not enough space,
839 * or if it cannot find mbufs to store additional information in.
840 *
841 * Reliable protocols may use the socket send buffer to hold data awaiting
842 * acknowledgement. Data is normally copied from a socket send buffer in a
843 * protocol with m_copy for output to a peer, and then removing the data from
844 * the socket buffer with sbdrop() or sbdroprecord() when the data is
845 * acknowledged by the peer.
846 */
847 #ifdef SOCKBUF_DEBUG
848 void
sblastrecordchk(struct sockbuf * sb,const char * file,int line)849 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
850 {
851 struct mbuf *m = sb->sb_mb;
852
853 SOCKBUF_LOCK_ASSERT(sb);
854
855 while (m && m->m_nextpkt)
856 m = m->m_nextpkt;
857
858 if (m != sb->sb_lastrecord) {
859 printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
860 __func__, sb->sb_mb, sb->sb_lastrecord, m);
861 printf("packet chain:\n");
862 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
863 printf("\t%p\n", m);
864 panic("%s from %s:%u", __func__, file, line);
865 }
866 }
867
868 void
sblastmbufchk(struct sockbuf * sb,const char * file,int line)869 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
870 {
871 struct mbuf *m = sb->sb_mb;
872 struct mbuf *n;
873
874 SOCKBUF_LOCK_ASSERT(sb);
875
876 while (m && m->m_nextpkt)
877 m = m->m_nextpkt;
878
879 while (m && m->m_next)
880 m = m->m_next;
881
882 if (m != sb->sb_mbtail) {
883 printf("%s: sb_mb %p sb_mbtail %p last %p\n",
884 __func__, sb->sb_mb, sb->sb_mbtail, m);
885 printf("packet tree:\n");
886 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
887 printf("\t");
888 for (n = m; n != NULL; n = n->m_next)
889 printf("%p ", n);
890 printf("\n");
891 }
892 panic("%s from %s:%u", __func__, file, line);
893 }
894
895 #ifdef KERN_TLS
896 m = sb->sb_mtls;
897 while (m && m->m_next)
898 m = m->m_next;
899
900 if (m != sb->sb_mtlstail) {
901 printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
902 __func__, sb->sb_mtls, sb->sb_mtlstail, m);
903 printf("TLS packet tree:\n");
904 printf("\t");
905 for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
906 printf("%p ", m);
907 }
908 printf("\n");
909 panic("%s from %s:%u", __func__, file, line);
910 }
911 #endif
912 }
913 #endif /* SOCKBUF_DEBUG */
914
915 #define SBLINKRECORD(sb, m0) do { \
916 SOCKBUF_LOCK_ASSERT(sb); \
917 if ((sb)->sb_lastrecord != NULL) \
918 (sb)->sb_lastrecord->m_nextpkt = (m0); \
919 else \
920 (sb)->sb_mb = (m0); \
921 (sb)->sb_lastrecord = (m0); \
922 } while (/*CONSTCOND*/0)
923
924 /*
925 * Append mbuf chain m to the last record in the socket buffer sb. The
926 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
927 * are discarded and mbufs are compacted where possible.
928 */
929 void
sbappend_locked(struct sockbuf * sb,struct mbuf * m,int flags)930 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
931 {
932 struct mbuf *n;
933
934 SOCKBUF_LOCK_ASSERT(sb);
935
936 if (m == NULL)
937 return;
938 kmsan_check_mbuf(m, "sbappend");
939 sbm_clrprotoflags(m, flags);
940 SBLASTRECORDCHK(sb);
941 n = sb->sb_mb;
942 if (n) {
943 while (n->m_nextpkt)
944 n = n->m_nextpkt;
945 do {
946 if (n->m_flags & M_EOR) {
947 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
948 return;
949 }
950 } while (n->m_next && (n = n->m_next));
951 } else {
952 /*
953 * XXX Would like to simply use sb_mbtail here, but
954 * XXX I need to verify that I won't miss an EOR that
955 * XXX way.
956 */
957 if ((n = sb->sb_lastrecord) != NULL) {
958 do {
959 if (n->m_flags & M_EOR) {
960 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
961 return;
962 }
963 } while (n->m_next && (n = n->m_next));
964 } else {
965 /*
966 * If this is the first record in the socket buffer,
967 * it's also the last record.
968 */
969 sb->sb_lastrecord = m;
970 }
971 }
972 sbcompress(sb, m, n);
973 SBLASTRECORDCHK(sb);
974 }
975
976 /*
977 * Append mbuf chain m to the last record in the socket buffer sb. The
978 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
979 * are discarded and mbufs are compacted where possible.
980 */
981 void
sbappend(struct sockbuf * sb,struct mbuf * m,int flags)982 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
983 {
984
985 SOCKBUF_LOCK(sb);
986 sbappend_locked(sb, m, flags);
987 SOCKBUF_UNLOCK(sb);
988 }
989
990 #ifdef KERN_TLS
991 /*
992 * Append an mbuf containing encrypted TLS data. The data
993 * is marked M_NOTREADY until it has been decrypted and
994 * stored as a TLS record.
995 */
996 static void
sbappend_ktls_rx(struct sockbuf * sb,struct mbuf * m)997 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
998 {
999 struct ifnet *ifp;
1000 struct mbuf *n;
1001 int flags;
1002
1003 ifp = NULL;
1004 flags = M_NOTREADY;
1005
1006 SBLASTMBUFCHK(sb);
1007
1008 /* Mbuf chain must start with a packet header. */
1009 MPASS((m->m_flags & M_PKTHDR) != 0);
1010
1011 /* Remove all packet headers and mbuf tags to get a pure data chain. */
1012 for (n = m; n != NULL; n = n->m_next) {
1013 if (n->m_flags & M_PKTHDR) {
1014 ifp = m->m_pkthdr.leaf_rcvif;
1015 if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
1016 CSUM_TLS_DECRYPTED) {
1017 /* Mark all mbufs in this packet decrypted. */
1018 flags = M_NOTREADY | M_DECRYPTED;
1019 } else {
1020 flags = M_NOTREADY;
1021 }
1022 m_demote_pkthdr(n);
1023 }
1024
1025 n->m_flags &= M_DEMOTEFLAGS;
1026 n->m_flags |= flags;
1027
1028 MPASS((n->m_flags & M_NOTREADY) != 0);
1029 }
1030
1031 sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
1032 ktls_check_rx(sb);
1033
1034 /* Check for incoming packet route changes: */
1035 if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
1036 sb->sb_tls_info->rx_ifp != ifp)
1037 ktls_input_ifp_mismatch(sb, ifp);
1038 }
1039 #endif
1040
1041 /*
1042 * This version of sbappend() should only be used when the caller absolutely
1043 * knows that there will never be more than one record in the socket buffer,
1044 * that is, a stream protocol (such as TCP).
1045 */
1046 void
sbappendstream_locked(struct sockbuf * sb,struct mbuf * m,int flags)1047 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1048 {
1049 SOCKBUF_LOCK_ASSERT(sb);
1050
1051 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
1052
1053 kmsan_check_mbuf(m, "sbappend");
1054
1055 #ifdef KERN_TLS
1056 /*
1057 * Decrypted TLS records are appended as records via
1058 * sbappendrecord(). TCP passes encrypted TLS records to this
1059 * function which must be scheduled for decryption.
1060 */
1061 if (sb->sb_flags & SB_TLS_RX) {
1062 sbappend_ktls_rx(sb, m);
1063 return;
1064 }
1065 #endif
1066
1067 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1068
1069 SBLASTMBUFCHK(sb);
1070
1071 #ifdef KERN_TLS
1072 if (sb->sb_tls_info != NULL)
1073 ktls_seq(sb, m);
1074 #endif
1075
1076 /* Remove all packet headers and mbuf tags to get a pure data chain. */
1077 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1078
1079 sbcompress(sb, m, sb->sb_mbtail);
1080
1081 sb->sb_lastrecord = sb->sb_mb;
1082 SBLASTRECORDCHK(sb);
1083 }
1084
1085 /*
1086 * This version of sbappend() should only be used when the caller absolutely
1087 * knows that there will never be more than one record in the socket buffer,
1088 * that is, a stream protocol (such as TCP).
1089 */
1090 void
sbappendstream(struct sockbuf * sb,struct mbuf * m,int flags)1091 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1092 {
1093
1094 SOCKBUF_LOCK(sb);
1095 sbappendstream_locked(sb, m, flags);
1096 SOCKBUF_UNLOCK(sb);
1097 }
1098
1099 #ifdef SOCKBUF_DEBUG
1100 void
sbcheck(struct sockbuf * sb,const char * file,int line)1101 sbcheck(struct sockbuf *sb, const char *file, int line)
1102 {
1103 struct mbuf *m, *n, *fnrdy;
1104 u_long acc, ccc, mbcnt;
1105 #ifdef KERN_TLS
1106 u_long tlscc;
1107 #endif
1108
1109 SOCKBUF_LOCK_ASSERT(sb);
1110
1111 acc = ccc = mbcnt = 0;
1112 fnrdy = NULL;
1113
1114 for (m = sb->sb_mb; m; m = n) {
1115 n = m->m_nextpkt;
1116 for (; m; m = m->m_next) {
1117 if (m->m_len == 0) {
1118 printf("sb %p empty mbuf %p\n", sb, m);
1119 goto fail;
1120 }
1121 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1122 if (m != sb->sb_fnrdy) {
1123 printf("sb %p: fnrdy %p != m %p\n",
1124 sb, sb->sb_fnrdy, m);
1125 goto fail;
1126 }
1127 fnrdy = m;
1128 }
1129 if (fnrdy) {
1130 if (!(m->m_flags & M_NOTAVAIL)) {
1131 printf("sb %p: fnrdy %p, m %p is avail\n",
1132 sb, sb->sb_fnrdy, m);
1133 goto fail;
1134 }
1135 } else
1136 acc += m->m_len;
1137 ccc += m->m_len;
1138 mbcnt += MSIZE;
1139 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1140 mbcnt += m->m_ext.ext_size;
1141 }
1142 }
1143 #ifdef KERN_TLS
1144 /*
1145 * Account for mbufs "detached" by ktls_detach_record() while
1146 * they are decrypted by ktls_decrypt(). tlsdcc gives a count
1147 * of the detached bytes that are included in ccc. The mbufs
1148 * and clusters are not included in the socket buffer
1149 * accounting.
1150 */
1151 ccc += sb->sb_tlsdcc;
1152
1153 tlscc = 0;
1154 for (m = sb->sb_mtls; m; m = m->m_next) {
1155 if (m->m_nextpkt != NULL) {
1156 printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1157 goto fail;
1158 }
1159 if ((m->m_flags & M_NOTREADY) == 0) {
1160 printf("sb %p TLS mbuf %p ready\n", sb, m);
1161 goto fail;
1162 }
1163 tlscc += m->m_len;
1164 ccc += m->m_len;
1165 mbcnt += MSIZE;
1166 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1167 mbcnt += m->m_ext.ext_size;
1168 }
1169
1170 if (sb->sb_tlscc != tlscc) {
1171 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1172 sb->sb_tlsdcc);
1173 goto fail;
1174 }
1175 #endif
1176 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1177 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1178 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1179 #ifdef KERN_TLS
1180 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1181 sb->sb_tlsdcc);
1182 #endif
1183 goto fail;
1184 }
1185 return;
1186 fail:
1187 panic("%s from %s:%u", __func__, file, line);
1188 }
1189 #endif
1190
1191 /*
1192 * As above, except the mbuf chain begins a new record.
1193 */
1194 void
sbappendrecord_locked(struct sockbuf * sb,struct mbuf * m0)1195 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1196 {
1197 struct mbuf *m;
1198
1199 SOCKBUF_LOCK_ASSERT(sb);
1200
1201 if (m0 == NULL)
1202 return;
1203
1204 kmsan_check_mbuf(m0, "sbappend");
1205 m_clrprotoflags(m0);
1206
1207 /*
1208 * Put the first mbuf on the queue. Note this permits zero length
1209 * records.
1210 */
1211 sballoc(sb, m0);
1212 SBLASTRECORDCHK(sb);
1213 SBLINKRECORD(sb, m0);
1214 sb->sb_mbtail = m0;
1215 m = m0->m_next;
1216 m0->m_next = 0;
1217 if (m && (m0->m_flags & M_EOR)) {
1218 m0->m_flags &= ~M_EOR;
1219 m->m_flags |= M_EOR;
1220 }
1221 /* always call sbcompress() so it can do SBLASTMBUFCHK() */
1222 sbcompress(sb, m, m0);
1223 }
1224
1225 /*
1226 * As above, except the mbuf chain begins a new record.
1227 */
1228 void
sbappendrecord(struct sockbuf * sb,struct mbuf * m0)1229 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1230 {
1231
1232 SOCKBUF_LOCK(sb);
1233 sbappendrecord_locked(sb, m0);
1234 SOCKBUF_UNLOCK(sb);
1235 }
1236
1237 /* Helper routine that appends data, control, and address to a sockbuf. */
1238 static int
sbappendaddr_locked_internal(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control,struct mbuf * ctrl_last)1239 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1240 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1241 {
1242 struct mbuf *m, *n, *nlast;
1243
1244 if (m0 != NULL)
1245 kmsan_check_mbuf(m0, "sbappend");
1246 if (control != NULL)
1247 kmsan_check_mbuf(control, "sbappend");
1248
1249 #if MSIZE <= 256
1250 if (asa->sa_len > MLEN)
1251 return (0);
1252 #endif
1253 m = m_get(M_NOWAIT, MT_SONAME);
1254 if (m == NULL)
1255 return (0);
1256 m->m_len = asa->sa_len;
1257 bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1258 if (m0) {
1259 M_ASSERT_NO_SND_TAG(m0);
1260 m_clrprotoflags(m0);
1261 m_tag_delete_chain(m0, NULL);
1262 /*
1263 * Clear some persistent info from pkthdr.
1264 * We don't use m_demote(), because some netgraph consumers
1265 * expect M_PKTHDR presence.
1266 */
1267 m0->m_pkthdr.rcvif = NULL;
1268 m0->m_pkthdr.flowid = 0;
1269 m0->m_pkthdr.csum_flags = 0;
1270 m0->m_pkthdr.fibnum = 0;
1271 m0->m_pkthdr.rsstype = 0;
1272 }
1273 if (ctrl_last)
1274 ctrl_last->m_next = m0; /* concatenate data to control */
1275 else
1276 control = m0;
1277 m->m_next = control;
1278 for (n = m; n->m_next != NULL; n = n->m_next)
1279 sballoc(sb, n);
1280 sballoc(sb, n);
1281 nlast = n;
1282 SBLINKRECORD(sb, m);
1283
1284 sb->sb_mbtail = nlast;
1285 SBLASTMBUFCHK(sb);
1286
1287 SBLASTRECORDCHK(sb);
1288 return (1);
1289 }
1290
1291 /*
1292 * Append address and data, and optionally, control (ancillary) data to the
1293 * receive queue of a socket. If present, m0 must include a packet header
1294 * with total length. Returns 0 if no space in sockbuf or insufficient
1295 * mbufs.
1296 */
1297 int
sbappendaddr_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1298 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1299 struct mbuf *m0, struct mbuf *control)
1300 {
1301 struct mbuf *ctrl_last;
1302 int space = asa->sa_len;
1303
1304 SOCKBUF_LOCK_ASSERT(sb);
1305
1306 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1307 panic("sbappendaddr_locked");
1308 if (m0)
1309 space += m0->m_pkthdr.len;
1310 space += m_length(control, &ctrl_last);
1311
1312 if (space > sbspace(sb))
1313 return (0);
1314 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1315 }
1316
1317 /*
1318 * Append address and data, and optionally, control (ancillary) data to the
1319 * receive queue of a socket. If present, m0 must include a packet header
1320 * with total length. Returns 0 if insufficient mbufs. Does not validate space
1321 * on the receiving sockbuf.
1322 */
1323 int
sbappendaddr_nospacecheck_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1324 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1325 struct mbuf *m0, struct mbuf *control)
1326 {
1327 struct mbuf *ctrl_last;
1328
1329 SOCKBUF_LOCK_ASSERT(sb);
1330
1331 ctrl_last = (control == NULL) ? NULL : m_last(control);
1332 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1333 }
1334
1335 /*
1336 * Append address and data, and optionally, control (ancillary) data to the
1337 * receive queue of a socket. If present, m0 must include a packet header
1338 * with total length. Returns 0 if no space in sockbuf or insufficient
1339 * mbufs.
1340 */
1341 int
sbappendaddr(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1342 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1343 struct mbuf *m0, struct mbuf *control)
1344 {
1345 int retval;
1346
1347 SOCKBUF_LOCK(sb);
1348 retval = sbappendaddr_locked(sb, asa, m0, control);
1349 SOCKBUF_UNLOCK(sb);
1350 return (retval);
1351 }
1352
1353 void
sbappendcontrol_locked(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1354 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1355 struct mbuf *control, int flags)
1356 {
1357 struct mbuf *m, *mlast;
1358
1359 if (m0 != NULL)
1360 kmsan_check_mbuf(m0, "sbappend");
1361 kmsan_check_mbuf(control, "sbappend");
1362
1363 sbm_clrprotoflags(m0, flags);
1364 m_last(control)->m_next = m0;
1365
1366 SBLASTRECORDCHK(sb);
1367
1368 for (m = control; m->m_next; m = m->m_next)
1369 sballoc(sb, m);
1370 sballoc(sb, m);
1371 mlast = m;
1372 SBLINKRECORD(sb, control);
1373
1374 sb->sb_mbtail = mlast;
1375 SBLASTMBUFCHK(sb);
1376
1377 SBLASTRECORDCHK(sb);
1378 }
1379
1380 void
sbappendcontrol(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1381 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1382 int flags)
1383 {
1384
1385 SOCKBUF_LOCK(sb);
1386 sbappendcontrol_locked(sb, m0, control, flags);
1387 SOCKBUF_UNLOCK(sb);
1388 }
1389
1390 /*
1391 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1392 * (n). If (n) is NULL, the buffer is presumed empty.
1393 *
1394 * When the data is compressed, mbufs in the chain may be handled in one of
1395 * three ways:
1396 *
1397 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1398 * record boundary, and no change in data type).
1399 *
1400 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1401 * an mbuf already in the socket buffer. This can occur if an
1402 * appropriate mbuf exists, there is room, both mbufs are not marked as
1403 * not ready, and no merging of data types will occur.
1404 *
1405 * (3) The mbuf may be appended to the end of the existing mbuf chain.
1406 *
1407 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1408 * end-of-record.
1409 */
1410 void
sbcompress(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1411 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1412 {
1413 int eor = 0;
1414 struct mbuf *o;
1415
1416 SOCKBUF_LOCK_ASSERT(sb);
1417
1418 while (m) {
1419 eor |= m->m_flags & M_EOR;
1420 if (m->m_len == 0 &&
1421 (eor == 0 ||
1422 (((o = m->m_next) || (o = n)) &&
1423 o->m_type == m->m_type))) {
1424 if (sb->sb_lastrecord == m)
1425 sb->sb_lastrecord = m->m_next;
1426 m = m_free(m);
1427 continue;
1428 }
1429 if (n && (n->m_flags & M_EOR) == 0 &&
1430 M_WRITABLE(n) &&
1431 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1432 !(m->m_flags & M_NOTREADY) &&
1433 !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1434 !mbuf_has_tls_session(m) &&
1435 !mbuf_has_tls_session(n) &&
1436 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1437 m->m_len <= M_TRAILINGSPACE(n) &&
1438 n->m_type == m->m_type) {
1439 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1440 n->m_len += m->m_len;
1441 sb->sb_ccc += m->m_len;
1442 if (sb->sb_fnrdy == NULL)
1443 sb->sb_acc += m->m_len;
1444 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1445 /* XXX: Probably don't need.*/
1446 sb->sb_ctl += m->m_len;
1447 m = m_free(m);
1448 continue;
1449 }
1450 if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1451 (m->m_flags & M_NOTREADY) == 0 &&
1452 !mbuf_has_tls_session(m))
1453 (void)mb_unmapped_compress(m);
1454 if (n)
1455 n->m_next = m;
1456 else
1457 sb->sb_mb = m;
1458 sb->sb_mbtail = m;
1459 sballoc(sb, m);
1460 n = m;
1461 m->m_flags &= ~M_EOR;
1462 m = m->m_next;
1463 n->m_next = 0;
1464 }
1465 if (eor) {
1466 KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1467 n->m_flags |= eor;
1468 }
1469 SBLASTMBUFCHK(sb);
1470 }
1471
1472 #ifdef KERN_TLS
1473 /*
1474 * A version of sbcompress() for encrypted TLS RX mbufs. These mbufs
1475 * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1476 * a bit simpler (no EOR markers, always MT_DATA, etc.).
1477 */
1478 static void
sbcompress_ktls_rx(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1479 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1480 {
1481
1482 SOCKBUF_LOCK_ASSERT(sb);
1483
1484 while (m) {
1485 KASSERT((m->m_flags & M_EOR) == 0,
1486 ("TLS RX mbuf %p with EOR", m));
1487 KASSERT(m->m_type == MT_DATA,
1488 ("TLS RX mbuf %p is not MT_DATA", m));
1489 KASSERT((m->m_flags & M_NOTREADY) != 0,
1490 ("TLS RX mbuf %p ready", m));
1491 KASSERT((m->m_flags & M_EXTPG) == 0,
1492 ("TLS RX mbuf %p unmapped", m));
1493
1494 if (m->m_len == 0) {
1495 m = m_free(m);
1496 continue;
1497 }
1498
1499 /*
1500 * Even though both 'n' and 'm' are NOTREADY, it's ok
1501 * to coalesce the data.
1502 */
1503 if (n &&
1504 M_WRITABLE(n) &&
1505 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1506 !((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
1507 !(n->m_flags & M_EXTPG) &&
1508 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1509 m->m_len <= M_TRAILINGSPACE(n)) {
1510 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1511 n->m_len += m->m_len;
1512 sb->sb_ccc += m->m_len;
1513 sb->sb_tlscc += m->m_len;
1514 m = m_free(m);
1515 continue;
1516 }
1517 if (n)
1518 n->m_next = m;
1519 else
1520 sb->sb_mtls = m;
1521 sb->sb_mtlstail = m;
1522 sballoc_ktls_rx(sb, m);
1523 n = m;
1524 m = m->m_next;
1525 n->m_next = NULL;
1526 }
1527 SBLASTMBUFCHK(sb);
1528 }
1529 #endif
1530
1531 /*
1532 * Free all mbufs in a sockbuf. Check that all resources are reclaimed.
1533 */
1534 static void
sbflush_internal(struct sockbuf * sb)1535 sbflush_internal(struct sockbuf *sb)
1536 {
1537
1538 while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1539 /*
1540 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1541 * we would loop forever. Panic instead.
1542 */
1543 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1544 break;
1545 m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1546 }
1547 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1548 ("%s: ccc %u mb %p mbcnt %u", __func__,
1549 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1550 }
1551
1552 void
sbflush_locked(struct sockbuf * sb)1553 sbflush_locked(struct sockbuf *sb)
1554 {
1555
1556 SOCKBUF_LOCK_ASSERT(sb);
1557 sbflush_internal(sb);
1558 }
1559
1560 void
sbflush(struct sockbuf * sb)1561 sbflush(struct sockbuf *sb)
1562 {
1563
1564 SOCKBUF_LOCK(sb);
1565 sbflush_locked(sb);
1566 SOCKBUF_UNLOCK(sb);
1567 }
1568
1569 /*
1570 * Cut data from (the front of) a sockbuf.
1571 */
1572 static struct mbuf *
sbcut_internal(struct sockbuf * sb,int len)1573 sbcut_internal(struct sockbuf *sb, int len)
1574 {
1575 struct mbuf *m, *next, *mfree;
1576 bool is_tls;
1577
1578 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1579 __func__, len));
1580 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1581 __func__, len, sb->sb_ccc));
1582
1583 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1584 is_tls = false;
1585 mfree = NULL;
1586
1587 while (len > 0) {
1588 if (m == NULL) {
1589 #ifdef KERN_TLS
1590 if (next == NULL && !is_tls) {
1591 if (sb->sb_tlsdcc != 0) {
1592 MPASS(len >= sb->sb_tlsdcc);
1593 len -= sb->sb_tlsdcc;
1594 sb->sb_ccc -= sb->sb_tlsdcc;
1595 sb->sb_tlsdcc = 0;
1596 if (len == 0)
1597 break;
1598 }
1599 next = sb->sb_mtls;
1600 is_tls = true;
1601 }
1602 #endif
1603 KASSERT(next, ("%s: no next, len %d", __func__, len));
1604 m = next;
1605 next = m->m_nextpkt;
1606 }
1607 if (m->m_len > len) {
1608 KASSERT(!(m->m_flags & M_NOTAVAIL),
1609 ("%s: m %p M_NOTAVAIL", __func__, m));
1610 m->m_len -= len;
1611 m->m_data += len;
1612 sb->sb_ccc -= len;
1613 sb->sb_acc -= len;
1614 if (sb->sb_sndptroff != 0)
1615 sb->sb_sndptroff -= len;
1616 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1617 sb->sb_ctl -= len;
1618 break;
1619 }
1620 len -= m->m_len;
1621 #ifdef KERN_TLS
1622 if (is_tls)
1623 sbfree_ktls_rx(sb, m);
1624 else
1625 #endif
1626 sbfree(sb, m);
1627 /*
1628 * Do not put M_NOTREADY buffers to the free list, they
1629 * are referenced from outside.
1630 */
1631 if (m->m_flags & M_NOTREADY && !is_tls)
1632 m = m->m_next;
1633 else {
1634 struct mbuf *n;
1635
1636 n = m->m_next;
1637 m->m_next = mfree;
1638 mfree = m;
1639 m = n;
1640 }
1641 }
1642 /*
1643 * Free any zero-length mbufs from the buffer.
1644 * For SOCK_DGRAM sockets such mbufs represent empty records.
1645 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1646 * when sosend_generic() needs to send only control data.
1647 */
1648 while (m && m->m_len == 0) {
1649 struct mbuf *n;
1650
1651 sbfree(sb, m);
1652 n = m->m_next;
1653 m->m_next = mfree;
1654 mfree = m;
1655 m = n;
1656 }
1657 #ifdef KERN_TLS
1658 if (is_tls) {
1659 sb->sb_mb = NULL;
1660 sb->sb_mtls = m;
1661 if (m == NULL)
1662 sb->sb_mtlstail = NULL;
1663 } else
1664 #endif
1665 if (m) {
1666 sb->sb_mb = m;
1667 m->m_nextpkt = next;
1668 } else
1669 sb->sb_mb = next;
1670 /*
1671 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure
1672 * sb_lastrecord is up-to-date if we dropped part of the last record.
1673 */
1674 m = sb->sb_mb;
1675 if (m == NULL) {
1676 sb->sb_mbtail = NULL;
1677 sb->sb_lastrecord = NULL;
1678 } else if (m->m_nextpkt == NULL) {
1679 sb->sb_lastrecord = m;
1680 }
1681
1682 return (mfree);
1683 }
1684
1685 /*
1686 * Drop data from (the front of) a sockbuf.
1687 */
1688 void
sbdrop_locked(struct sockbuf * sb,int len)1689 sbdrop_locked(struct sockbuf *sb, int len)
1690 {
1691
1692 SOCKBUF_LOCK_ASSERT(sb);
1693 m_freem(sbcut_internal(sb, len));
1694 }
1695
1696 /*
1697 * Drop data from (the front of) a sockbuf,
1698 * and return it to caller.
1699 */
1700 struct mbuf *
sbcut_locked(struct sockbuf * sb,int len)1701 sbcut_locked(struct sockbuf *sb, int len)
1702 {
1703
1704 SOCKBUF_LOCK_ASSERT(sb);
1705 return (sbcut_internal(sb, len));
1706 }
1707
1708 void
sbdrop(struct sockbuf * sb,int len)1709 sbdrop(struct sockbuf *sb, int len)
1710 {
1711 struct mbuf *mfree;
1712
1713 SOCKBUF_LOCK(sb);
1714 mfree = sbcut_internal(sb, len);
1715 SOCKBUF_UNLOCK(sb);
1716
1717 m_freem(mfree);
1718 }
1719
1720 struct mbuf *
sbsndptr_noadv(struct sockbuf * sb,uint32_t off,uint32_t * moff)1721 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1722 {
1723 struct mbuf *m;
1724
1725 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1726 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1727 *moff = off;
1728 if (sb->sb_sndptr == NULL) {
1729 sb->sb_sndptr = sb->sb_mb;
1730 sb->sb_sndptroff = 0;
1731 }
1732 return (sb->sb_mb);
1733 } else {
1734 m = sb->sb_sndptr;
1735 off -= sb->sb_sndptroff;
1736 }
1737 *moff = off;
1738 return (m);
1739 }
1740
1741 void
sbsndptr_adv(struct sockbuf * sb,struct mbuf * mb,uint32_t len)1742 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1743 {
1744 /*
1745 * A small copy was done, advance forward the sb_sbsndptr to cover
1746 * it.
1747 */
1748 struct mbuf *m;
1749
1750 if (mb != sb->sb_sndptr) {
1751 /* Did not copyout at the same mbuf */
1752 return;
1753 }
1754 m = mb;
1755 while (m && (len > 0)) {
1756 if (len >= m->m_len) {
1757 len -= m->m_len;
1758 if (m->m_next) {
1759 sb->sb_sndptroff += m->m_len;
1760 sb->sb_sndptr = m->m_next;
1761 }
1762 m = m->m_next;
1763 } else {
1764 len = 0;
1765 }
1766 }
1767 }
1768
1769 /*
1770 * Return the first mbuf and the mbuf data offset for the provided
1771 * send offset without changing the "sb_sndptroff" field.
1772 */
1773 struct mbuf *
sbsndmbuf(struct sockbuf * sb,u_int off,u_int * moff)1774 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1775 {
1776 struct mbuf *m;
1777
1778 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1779
1780 /*
1781 * If the "off" is below the stored offset, which happens on
1782 * retransmits, just use "sb_mb":
1783 */
1784 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1785 m = sb->sb_mb;
1786 } else {
1787 m = sb->sb_sndptr;
1788 off -= sb->sb_sndptroff;
1789 }
1790 while (off > 0 && m != NULL) {
1791 if (off < m->m_len)
1792 break;
1793 off -= m->m_len;
1794 m = m->m_next;
1795 }
1796 *moff = off;
1797 return (m);
1798 }
1799
1800 /*
1801 * Drop a record off the front of a sockbuf and move the next record to the
1802 * front.
1803 */
1804 void
sbdroprecord_locked(struct sockbuf * sb)1805 sbdroprecord_locked(struct sockbuf *sb)
1806 {
1807 struct mbuf *m;
1808
1809 SOCKBUF_LOCK_ASSERT(sb);
1810
1811 m = sb->sb_mb;
1812 if (m) {
1813 sb->sb_mb = m->m_nextpkt;
1814 do {
1815 sbfree(sb, m);
1816 m = m_free(m);
1817 } while (m);
1818 }
1819 SB_EMPTY_FIXUP(sb);
1820 }
1821
1822 /*
1823 * Drop a record off the front of a sockbuf and move the next record to the
1824 * front.
1825 */
1826 void
sbdroprecord(struct sockbuf * sb)1827 sbdroprecord(struct sockbuf *sb)
1828 {
1829
1830 SOCKBUF_LOCK(sb);
1831 sbdroprecord_locked(sb);
1832 SOCKBUF_UNLOCK(sb);
1833 }
1834
1835 /*
1836 * Create a "control" mbuf containing the specified data with the specified
1837 * type for presentation on a socket buffer.
1838 */
1839 struct mbuf *
sbcreatecontrol(const void * p,u_int size,int type,int level,int wait)1840 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1841 {
1842 struct cmsghdr *cp;
1843 struct mbuf *m;
1844
1845 MBUF_CHECKSLEEP(wait);
1846
1847 if (wait == M_NOWAIT) {
1848 if (CMSG_SPACE(size) > MCLBYTES)
1849 return (NULL);
1850 } else
1851 KASSERT(CMSG_SPACE(size) <= MCLBYTES,
1852 ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
1853
1854 if (CMSG_SPACE(size) > MLEN)
1855 m = m_getcl(wait, MT_CONTROL, 0);
1856 else
1857 m = m_get(wait, MT_CONTROL);
1858 if (m == NULL)
1859 return (NULL);
1860
1861 KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1862 ("sbcreatecontrol: short mbuf"));
1863 /*
1864 * Don't leave the padding between the msg header and the
1865 * cmsg data and the padding after the cmsg data un-initialized.
1866 */
1867 cp = mtod(m, struct cmsghdr *);
1868 bzero(cp, CMSG_SPACE(size));
1869 if (p != NULL)
1870 (void)memcpy(CMSG_DATA(cp), p, size);
1871 m->m_len = CMSG_SPACE(size);
1872 cp->cmsg_len = CMSG_LEN(size);
1873 cp->cmsg_level = level;
1874 cp->cmsg_type = type;
1875 return (m);
1876 }
1877
1878 /*
1879 * This does the same for socket buffers that sotoxsocket does for sockets:
1880 * generate an user-format data structure describing the socket buffer. Note
1881 * that the xsockbuf structure, since it is always embedded in a socket, does
1882 * not include a self pointer nor a length. We make this entry point public
1883 * in case some other mechanism needs it.
1884 */
1885 void
sbtoxsockbuf(struct sockbuf * sb,struct xsockbuf * xsb)1886 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1887 {
1888
1889 xsb->sb_cc = sb->sb_ccc;
1890 xsb->sb_hiwat = sb->sb_hiwat;
1891 xsb->sb_mbcnt = sb->sb_mbcnt;
1892 xsb->sb_mbmax = sb->sb_mbmax;
1893 xsb->sb_lowat = sb->sb_lowat;
1894 xsb->sb_flags = sb->sb_flags;
1895 xsb->sb_timeo = sb->sb_timeo;
1896 }
1897
1898 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1899 static int dummy;
1900 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1901 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1902 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1903 sysctl_handle_sb_max, "LU",
1904 "Maximum socket buffer size");
1905 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1906 &sb_efficiency, 0, "Socket buffer size waste factor");
1907