1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_kern_tls.h"
34 #include "opt_param.h"
35
36 #include <sys/param.h>
37 #include <sys/aio.h> /* for aio_swake proto */
38 #include <sys/kernel.h>
39 #include <sys/ktls.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/msan.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sx.h>
52 #include <sys/sysctl.h>
53
54 #include <netinet/in.h>
55
56 /*
57 * Function pointer set by the AIO routines so that the socket buffer code
58 * can call back into the AIO module if it is loaded.
59 */
60 void (*aio_swake)(struct socket *, struct sockbuf *);
61
62 /*
63 * Primitive routines for operating on socket buffers
64 */
65
66 #define BUF_MAX_ADJ(_sz) (((u_quad_t)(_sz)) * MCLBYTES / (MSIZE + MCLBYTES))
67
68 u_long sb_max = SB_MAX;
69 u_long sb_max_adj = BUF_MAX_ADJ(SB_MAX);
70
71 static u_long sb_efficiency = 8; /* parameter for sbreserve() */
72
73 #ifdef KERN_TLS
74 static void sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75 struct mbuf *n);
76 #endif
77 static struct mbuf *sbcut_internal(struct sockbuf *sb, int len);
78 static void sbflush_internal(struct sockbuf *sb);
79
80 /*
81 * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82 */
83 static void
sbm_clrprotoflags(struct mbuf * m,int flags)84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 int mask;
87
88 mask = ~M_PROTOFLAGS;
89 if (flags & PRUS_NOTREADY)
90 mask |= M_NOTREADY;
91 while (m) {
92 m->m_flags &= mask;
93 m = m->m_next;
94 }
95 }
96
97 /*
98 * Compress M_NOTREADY mbufs after they have been readied by sbready().
99 *
100 * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101 * be copied at the time of sbcompress(). This function combines small
102 * mbufs similar to sbcompress() once mbufs are ready. 'm0' is the first
103 * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104 * ready.
105 */
106 static void
sbready_compress(struct sockbuf * sb,struct mbuf * m0,struct mbuf * end)107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 struct mbuf *m, *n;
110 int ext_size;
111
112 SOCKBUF_LOCK_ASSERT(sb);
113
114 if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 return;
116
117 for (m = m0; m != end; m = m->m_next) {
118 MPASS((m->m_flags & M_NOTREADY) == 0);
119 /*
120 * NB: In sbcompress(), 'n' is the last mbuf in the
121 * socket buffer and 'm' is the new mbuf being copied
122 * into the trailing space of 'n'. Here, the roles
123 * are reversed and 'n' is the next mbuf after 'm'
124 * that is being copied into the trailing space of
125 * 'm'.
126 */
127 n = m->m_next;
128 #ifdef KERN_TLS
129 /* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 (m->m_flags & M_EXTPG) &&
132 (n->m_flags & M_EXTPG) &&
133 !mbuf_has_tls_session(m) &&
134 !mbuf_has_tls_session(n)) {
135 int hdr_len, trail_len;
136
137 hdr_len = n->m_epg_hdrlen;
138 trail_len = m->m_epg_trllen;
139 if (trail_len != 0 && hdr_len != 0 &&
140 trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 /* copy n's header to m's trailer */
142 memcpy(&m->m_epg_trail[trail_len],
143 n->m_epg_hdr, hdr_len);
144 m->m_epg_trllen += hdr_len;
145 m->m_len += hdr_len;
146 n->m_epg_hdrlen = 0;
147 n->m_len -= hdr_len;
148 }
149 }
150 #endif
151
152 /* Compress small unmapped mbufs into plain mbufs. */
153 if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 !mbuf_has_tls_session(m)) {
155 ext_size = m->m_ext.ext_size;
156 if (mb_unmapped_compress(m) == 0)
157 sb->sb_mbcnt -= ext_size;
158 }
159
160 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
161 M_WRITABLE(m) &&
162 (m->m_flags & M_EXTPG) == 0 &&
163 !mbuf_has_tls_session(n) &&
164 !mbuf_has_tls_session(m) &&
165 n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
166 n->m_len <= M_TRAILINGSPACE(m) &&
167 m->m_type == n->m_type) {
168 KASSERT(sb->sb_lastrecord != n,
169 ("%s: merging start of record (%p) into previous mbuf (%p)",
170 __func__, n, m));
171 m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
172 m->m_len += n->m_len;
173 m->m_next = n->m_next;
174 m->m_flags |= n->m_flags & M_EOR;
175 if (sb->sb_mbtail == n)
176 sb->sb_mbtail = m;
177
178 sb->sb_mbcnt -= MSIZE;
179 if (n->m_flags & M_EXT)
180 sb->sb_mbcnt -= n->m_ext.ext_size;
181 m_free(n);
182 n = m->m_next;
183 }
184 }
185 SBLASTRECORDCHK(sb);
186 SBLASTMBUFCHK(sb);
187 }
188
189 /*
190 * Mark ready "count" units of I/O starting with "m". Most mbufs
191 * count as a single unit of I/O except for M_EXTPG mbufs which
192 * are backed by multiple pages.
193 */
194 int
sbready(struct sockbuf * sb,struct mbuf * m0,int count)195 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
196 {
197 struct mbuf *m;
198 u_int blocker;
199
200 SOCKBUF_LOCK_ASSERT(sb);
201 KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
202 KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
203
204 m = m0;
205 blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
206
207 while (count > 0) {
208 KASSERT(m->m_flags & M_NOTREADY,
209 ("%s: m %p !M_NOTREADY", __func__, m));
210 if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
211 if (count < m->m_epg_nrdy) {
212 m->m_epg_nrdy -= count;
213 count = 0;
214 break;
215 }
216 count -= m->m_epg_nrdy;
217 m->m_epg_nrdy = 0;
218 } else
219 count--;
220
221 m->m_flags &= ~(M_NOTREADY | blocker);
222 if (blocker)
223 sb->sb_acc += m->m_len;
224 m = m->m_next;
225 }
226
227 /*
228 * If the first mbuf is still not fully ready because only
229 * some of its backing pages were readied, no further progress
230 * can be made.
231 */
232 if (m0 == m) {
233 MPASS(m->m_flags & M_NOTREADY);
234 return (EINPROGRESS);
235 }
236
237 if (!blocker) {
238 sbready_compress(sb, m0, m);
239 return (EINPROGRESS);
240 }
241
242 /* This one was blocking all the queue. */
243 for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
244 KASSERT(m->m_flags & M_BLOCKED,
245 ("%s: m %p !M_BLOCKED", __func__, m));
246 m->m_flags &= ~M_BLOCKED;
247 sb->sb_acc += m->m_len;
248 }
249
250 sb->sb_fnrdy = m;
251 sbready_compress(sb, m0, m);
252
253 return (0);
254 }
255
256 /*
257 * Adjust sockbuf state reflecting allocation of m.
258 */
259 void
sballoc(struct sockbuf * sb,struct mbuf * m)260 sballoc(struct sockbuf *sb, struct mbuf *m)
261 {
262
263 SOCKBUF_LOCK_ASSERT(sb);
264
265 sb->sb_ccc += m->m_len;
266
267 if (sb->sb_fnrdy == NULL) {
268 if (m->m_flags & M_NOTREADY)
269 sb->sb_fnrdy = m;
270 else
271 sb->sb_acc += m->m_len;
272 } else
273 m->m_flags |= M_BLOCKED;
274
275 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
276 sb->sb_ctl += m->m_len;
277
278 sb->sb_mbcnt += MSIZE;
279
280 if (m->m_flags & M_EXT)
281 sb->sb_mbcnt += m->m_ext.ext_size;
282 }
283
284 /*
285 * Adjust sockbuf state reflecting freeing of m.
286 */
287 void
sbfree(struct sockbuf * sb,struct mbuf * m)288 sbfree(struct sockbuf *sb, struct mbuf *m)
289 {
290
291 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
292 SOCKBUF_LOCK_ASSERT(sb);
293 #endif
294
295 sb->sb_ccc -= m->m_len;
296
297 if (!(m->m_flags & M_NOTAVAIL))
298 sb->sb_acc -= m->m_len;
299
300 if (m == sb->sb_fnrdy) {
301 struct mbuf *n;
302
303 KASSERT(m->m_flags & M_NOTREADY,
304 ("%s: m %p !M_NOTREADY", __func__, m));
305
306 n = m->m_next;
307 while (n != NULL && !(n->m_flags & M_NOTREADY)) {
308 n->m_flags &= ~M_BLOCKED;
309 sb->sb_acc += n->m_len;
310 n = n->m_next;
311 }
312 sb->sb_fnrdy = n;
313 }
314
315 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
316 sb->sb_ctl -= m->m_len;
317
318 sb->sb_mbcnt -= MSIZE;
319 if (m->m_flags & M_EXT)
320 sb->sb_mbcnt -= m->m_ext.ext_size;
321
322 if (sb->sb_sndptr == m) {
323 sb->sb_sndptr = NULL;
324 sb->sb_sndptroff = 0;
325 }
326 if (sb->sb_sndptroff != 0)
327 sb->sb_sndptroff -= m->m_len;
328 }
329
330 #ifdef KERN_TLS
331 /*
332 * Similar to sballoc/sbfree but does not adjust state associated with
333 * the sb_mb chain such as sb_fnrdy or sb_sndptr*. Also assumes mbufs
334 * are not ready.
335 */
336 void
sballoc_ktls_rx(struct sockbuf * sb,struct mbuf * m)337 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
338 {
339
340 SOCKBUF_LOCK_ASSERT(sb);
341
342 sb->sb_ccc += m->m_len;
343 sb->sb_tlscc += m->m_len;
344
345 sb->sb_mbcnt += MSIZE;
346
347 if (m->m_flags & M_EXT)
348 sb->sb_mbcnt += m->m_ext.ext_size;
349 }
350
351 void
sbfree_ktls_rx(struct sockbuf * sb,struct mbuf * m)352 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
353 {
354
355 #if 0 /* XXX: not yet: soclose() call path comes here w/o lock. */
356 SOCKBUF_LOCK_ASSERT(sb);
357 #endif
358
359 sb->sb_ccc -= m->m_len;
360 sb->sb_tlscc -= m->m_len;
361
362 sb->sb_mbcnt -= MSIZE;
363
364 if (m->m_flags & M_EXT)
365 sb->sb_mbcnt -= m->m_ext.ext_size;
366 }
367 #endif
368
369 /*
370 * Socantsendmore indicates that no more data will be sent on the socket; it
371 * would normally be applied to a socket when the user informs the system
372 * that no more data is to be sent, by the protocol code (in case
373 * PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
374 * received, and will normally be applied to the socket by a protocol when it
375 * detects that the peer will send no more data. Data queued for reading in
376 * the socket may yet be read.
377 */
378 void
socantsendmore_locked(struct socket * so)379 socantsendmore_locked(struct socket *so)
380 {
381
382 SOCK_SENDBUF_LOCK_ASSERT(so);
383
384 so->so_snd.sb_state |= SBS_CANTSENDMORE;
385 sowwakeup_locked(so);
386 SOCK_SENDBUF_UNLOCK_ASSERT(so);
387 }
388
389 void
socantsendmore(struct socket * so)390 socantsendmore(struct socket *so)
391 {
392
393 SOCK_SENDBUF_LOCK(so);
394 socantsendmore_locked(so);
395 SOCK_SENDBUF_UNLOCK_ASSERT(so);
396 }
397
398 void
socantrcvmore_locked(struct socket * so)399 socantrcvmore_locked(struct socket *so)
400 {
401
402 SOCK_RECVBUF_LOCK_ASSERT(so);
403
404 so->so_rcv.sb_state |= SBS_CANTRCVMORE;
405 #ifdef KERN_TLS
406 if (so->so_rcv.sb_flags & SB_TLS_RX)
407 ktls_check_rx(&so->so_rcv);
408 #endif
409 sorwakeup_locked(so);
410 SOCK_RECVBUF_UNLOCK_ASSERT(so);
411 }
412
413 void
socantrcvmore(struct socket * so)414 socantrcvmore(struct socket *so)
415 {
416
417 SOCK_RECVBUF_LOCK(so);
418 socantrcvmore_locked(so);
419 SOCK_RECVBUF_UNLOCK_ASSERT(so);
420 }
421
422 void
soroverflow_locked(struct socket * so)423 soroverflow_locked(struct socket *so)
424 {
425
426 SOCK_RECVBUF_LOCK_ASSERT(so);
427
428 if (so->so_options & SO_RERROR) {
429 so->so_rerror = ENOBUFS;
430 sorwakeup_locked(so);
431 } else
432 SOCK_RECVBUF_UNLOCK(so);
433
434 SOCK_RECVBUF_UNLOCK_ASSERT(so);
435 }
436
437 void
soroverflow(struct socket * so)438 soroverflow(struct socket *so)
439 {
440
441 SOCK_RECVBUF_LOCK(so);
442 soroverflow_locked(so);
443 SOCK_RECVBUF_UNLOCK_ASSERT(so);
444 }
445
446 /*
447 * Wait for data to arrive at/drain from a socket buffer.
448 */
449 int
sbwait(struct socket * so,sb_which which)450 sbwait(struct socket *so, sb_which which)
451 {
452 struct sockbuf *sb;
453
454 SOCK_BUF_LOCK_ASSERT(so, which);
455
456 sb = sobuf(so, which);
457 sb->sb_flags |= SB_WAIT;
458 return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
459 PSOCK | PCATCH, "sbwait", sb->sb_timeo, 0, 0));
460 }
461
462 /*
463 * Wakeup processes waiting on a socket buffer. Do asynchronous notification
464 * via SIGIO if the socket has the SS_ASYNC flag set.
465 *
466 * Called with the socket buffer lock held; will release the lock by the end
467 * of the function. This allows the caller to acquire the socket buffer lock
468 * while testing for the need for various sorts of wakeup and hold it through
469 * to the point where it's no longer required. We currently hold the lock
470 * through calls out to other subsystems (with the exception of kqueue), and
471 * then release it to avoid lock order issues. It's not clear that's
472 * correct.
473 */
474 static __always_inline void
sowakeup(struct socket * so,const sb_which which)475 sowakeup(struct socket *so, const sb_which which)
476 {
477 struct sockbuf *sb;
478 int ret;
479
480 SOCK_BUF_LOCK_ASSERT(so, which);
481
482 sb = sobuf(so, which);
483 selwakeuppri(sb->sb_sel, PSOCK);
484 if (!SEL_WAITING(sb->sb_sel))
485 sb->sb_flags &= ~SB_SEL;
486 if (sb->sb_flags & SB_WAIT) {
487 sb->sb_flags &= ~SB_WAIT;
488 wakeup(&sb->sb_acc);
489 }
490 KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
491 if (sb->sb_upcall != NULL) {
492 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
493 if (ret == SU_ISCONNECTED) {
494 KASSERT(sb == &so->so_rcv,
495 ("SO_SND upcall returned SU_ISCONNECTED"));
496 soupcall_clear(so, SO_RCV);
497 }
498 } else
499 ret = SU_OK;
500 if (sb->sb_flags & SB_AIO)
501 sowakeup_aio(so, which);
502 SOCK_BUF_UNLOCK(so, which);
503 if (ret == SU_ISCONNECTED)
504 soisconnected(so);
505 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
506 pgsigio(&so->so_sigio, SIGIO, 0);
507 SOCK_BUF_UNLOCK_ASSERT(so, which);
508 }
509
510 static void
splice_push(struct socket * so)511 splice_push(struct socket *so)
512 {
513 struct so_splice *sp;
514
515 SOCK_RECVBUF_LOCK_ASSERT(so);
516
517 sp = so->so_splice;
518 mtx_lock(&sp->mtx);
519 SOCK_RECVBUF_UNLOCK(so);
520 so_splice_dispatch(sp);
521 }
522
523 static void
splice_pull(struct socket * so)524 splice_pull(struct socket *so)
525 {
526 struct so_splice *sp;
527
528 SOCK_SENDBUF_LOCK_ASSERT(so);
529
530 sp = so->so_splice_back;
531 mtx_lock(&sp->mtx);
532 SOCK_SENDBUF_UNLOCK(so);
533 so_splice_dispatch(sp);
534 }
535
536 /*
537 * Do we need to notify the other side when I/O is possible?
538 */
539 static __always_inline bool
sb_notify(const struct sockbuf * sb)540 sb_notify(const struct sockbuf *sb)
541 {
542 return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
543 SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
544 }
545
546 void
sorwakeup_locked(struct socket * so)547 sorwakeup_locked(struct socket *so)
548 {
549 SOCK_RECVBUF_LOCK_ASSERT(so);
550 if (so->so_rcv.sb_flags & SB_SPLICED)
551 splice_push(so);
552 else if (sb_notify(&so->so_rcv))
553 sowakeup(so, SO_RCV);
554 else
555 SOCK_RECVBUF_UNLOCK(so);
556 }
557
558 void
sowwakeup_locked(struct socket * so)559 sowwakeup_locked(struct socket *so)
560 {
561 SOCK_SENDBUF_LOCK_ASSERT(so);
562 if (so->so_snd.sb_flags & SB_SPLICED)
563 splice_pull(so);
564 else if (sb_notify(&so->so_snd))
565 sowakeup(so, SO_SND);
566 else
567 SOCK_SENDBUF_UNLOCK(so);
568 }
569
570 /*
571 * Socket buffer (struct sockbuf) utility routines.
572 *
573 * Each socket contains two socket buffers: one for sending data and one for
574 * receiving data. Each buffer contains a queue of mbufs, information about
575 * the number of mbufs and amount of data in the queue, and other fields
576 * allowing select() statements and notification on data availability to be
577 * implemented.
578 *
579 * Data stored in a socket buffer is maintained as a list of records. Each
580 * record is a list of mbufs chained together with the m_next field. Records
581 * are chained together with the m_nextpkt field. The upper level routine
582 * soreceive() expects the following conventions to be observed when placing
583 * information in the receive buffer:
584 *
585 * 1. If the protocol requires each message be preceded by the sender's name,
586 * then a record containing that name must be present before any
587 * associated data (mbuf's must be of type MT_SONAME).
588 * 2. If the protocol supports the exchange of ``access rights'' (really just
589 * additional data associated with the message), and there are ``rights''
590 * to be received, then a record containing this data should be present
591 * (mbuf's must be of type MT_RIGHTS).
592 * 3. If a name or rights record exists, then it must be followed by a data
593 * record, perhaps of zero length.
594 *
595 * Before using a new socket structure it is first necessary to reserve
596 * buffer space to the socket, by calling sbreserve(). This should commit
597 * some of the available buffer space in the system buffer pool for the
598 * socket (currently, it does nothing but enforce limits). The space should
599 * be released by calling sbrelease() when the socket is destroyed.
600 */
601 int
soreserve(struct socket * so,u_long sndcc,u_long rcvcc)602 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
603 {
604 struct thread *td = curthread;
605
606 SOCK_SENDBUF_LOCK(so);
607 SOCK_RECVBUF_LOCK(so);
608 if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
609 goto bad;
610 if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
611 goto bad2;
612 if (so->so_rcv.sb_lowat == 0)
613 so->so_rcv.sb_lowat = 1;
614 if (so->so_snd.sb_lowat == 0)
615 so->so_snd.sb_lowat = MCLBYTES;
616 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
617 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
618 SOCK_RECVBUF_UNLOCK(so);
619 SOCK_SENDBUF_UNLOCK(so);
620 return (0);
621 bad2:
622 sbrelease_locked(so, SO_SND);
623 bad:
624 SOCK_RECVBUF_UNLOCK(so);
625 SOCK_SENDBUF_UNLOCK(so);
626 return (ENOBUFS);
627 }
628
629 static int
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)630 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
631 {
632 int error = 0;
633 u_long tmp_sb_max = sb_max;
634
635 error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
636 if (error || !req->newptr)
637 return (error);
638 if (tmp_sb_max < MSIZE + MCLBYTES)
639 return (EINVAL);
640 sb_max = tmp_sb_max;
641 sb_max_adj = BUF_MAX_ADJ(sb_max);
642 return (0);
643 }
644
645 /*
646 * Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
647 * become limiting if buffering efficiency is near the normal case.
648 */
649 bool
sbreserve_locked_limit(struct socket * so,sb_which which,u_long cc,u_long buf_max,struct thread * td)650 sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
651 u_long buf_max, struct thread *td)
652 {
653 struct sockbuf *sb = sobuf(so, which);
654 rlim_t sbsize_limit;
655
656 SOCK_BUF_LOCK_ASSERT(so, which);
657
658 /*
659 * When a thread is passed, we take into account the thread's socket
660 * buffer size limit. The caller will generally pass curthread, but
661 * in the TCP input path, NULL will be passed to indicate that no
662 * appropriate thread resource limits are available. In that case,
663 * we don't apply a process limit.
664 */
665 if (cc > BUF_MAX_ADJ(buf_max))
666 return (false);
667 if (td != NULL) {
668 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
669 } else
670 sbsize_limit = RLIM_INFINITY;
671 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
672 sbsize_limit))
673 return (false);
674 sb->sb_mbmax = min(cc * sb_efficiency, buf_max);
675 if (sb->sb_lowat > sb->sb_hiwat)
676 sb->sb_lowat = sb->sb_hiwat;
677 return (true);
678 }
679
680 bool
sbreserve_locked(struct socket * so,sb_which which,u_long cc,struct thread * td)681 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
682 struct thread *td)
683 {
684 return (sbreserve_locked_limit(so, which, cc, sb_max, td));
685 }
686
687 int
sbsetopt(struct socket * so,struct sockopt * sopt)688 sbsetopt(struct socket *so, struct sockopt *sopt)
689 {
690 struct sockbuf *sb;
691 sb_which wh;
692 short *flags;
693 u_int cc, *hiwat, *lowat;
694 int error, optval;
695
696 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
697 if (error != 0)
698 return (error);
699
700 /*
701 * Values < 1 make no sense for any of these options,
702 * so disallow them.
703 */
704 if (optval < 1)
705 return (EINVAL);
706 cc = optval;
707
708 sb = NULL;
709 SOCK_LOCK(so);
710 if (SOLISTENING(so)) {
711 switch (sopt->sopt_name) {
712 case SO_SNDLOWAT:
713 case SO_SNDBUF:
714 lowat = &so->sol_sbsnd_lowat;
715 hiwat = &so->sol_sbsnd_hiwat;
716 flags = &so->sol_sbsnd_flags;
717 break;
718 case SO_RCVLOWAT:
719 case SO_RCVBUF:
720 lowat = &so->sol_sbrcv_lowat;
721 hiwat = &so->sol_sbrcv_hiwat;
722 flags = &so->sol_sbrcv_flags;
723 break;
724 }
725 } else {
726 switch (sopt->sopt_name) {
727 case SO_SNDLOWAT:
728 case SO_SNDBUF:
729 sb = &so->so_snd;
730 wh = SO_SND;
731 break;
732 case SO_RCVLOWAT:
733 case SO_RCVBUF:
734 sb = &so->so_rcv;
735 wh = SO_RCV;
736 break;
737 }
738 flags = &sb->sb_flags;
739 hiwat = &sb->sb_hiwat;
740 lowat = &sb->sb_lowat;
741 SOCK_BUF_LOCK(so, wh);
742 }
743
744 error = 0;
745 switch (sopt->sopt_name) {
746 case SO_SNDBUF:
747 case SO_RCVBUF:
748 if (SOLISTENING(so)) {
749 if (cc > sb_max_adj) {
750 error = ENOBUFS;
751 break;
752 }
753 *hiwat = cc;
754 if (*lowat > *hiwat)
755 *lowat = *hiwat;
756 } else {
757 if (!sbreserve_locked(so, wh, cc, curthread))
758 error = ENOBUFS;
759 }
760 if (error == 0)
761 *flags &= ~SB_AUTOSIZE;
762 break;
763 case SO_SNDLOWAT:
764 case SO_RCVLOWAT:
765 /*
766 * Make sure the low-water is never greater than the
767 * high-water.
768 */
769 *lowat = (cc > *hiwat) ? *hiwat : cc;
770 break;
771 }
772
773 if (!SOLISTENING(so))
774 SOCK_BUF_UNLOCK(so, wh);
775 SOCK_UNLOCK(so);
776 return (error);
777 }
778
779 /*
780 * Free mbufs held by a socket, and reserved mbuf space.
781 */
782 static void
sbrelease_internal(struct socket * so,sb_which which)783 sbrelease_internal(struct socket *so, sb_which which)
784 {
785 struct sockbuf *sb = sobuf(so, which);
786
787 sbflush_internal(sb);
788 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
789 RLIM_INFINITY);
790 sb->sb_mbmax = 0;
791 }
792
793 void
sbrelease_locked(struct socket * so,sb_which which)794 sbrelease_locked(struct socket *so, sb_which which)
795 {
796
797 SOCK_BUF_LOCK_ASSERT(so, which);
798
799 sbrelease_internal(so, which);
800 }
801
802 void
sbrelease(struct socket * so,sb_which which)803 sbrelease(struct socket *so, sb_which which)
804 {
805
806 SOCK_BUF_LOCK(so, which);
807 sbrelease_locked(so, which);
808 SOCK_BUF_UNLOCK(so, which);
809 }
810
811 void
sbdestroy(struct socket * so,sb_which which)812 sbdestroy(struct socket *so, sb_which which)
813 {
814 #ifdef KERN_TLS
815 struct sockbuf *sb = sobuf(so, which);
816
817 if (sb->sb_tls_info != NULL)
818 ktls_free(sb->sb_tls_info);
819 sb->sb_tls_info = NULL;
820 #endif
821 sbrelease_internal(so, which);
822 }
823
824 /*
825 * Routines to add and remove data from an mbuf queue.
826 *
827 * The routines sbappend() or sbappendrecord() are normally called to append
828 * new mbufs to a socket buffer, after checking that adequate space is
829 * available, comparing the function sbspace() with the amount of data to be
830 * added. sbappendrecord() differs from sbappend() in that data supplied is
831 * treated as the beginning of a new record. To place a sender's address,
832 * optional access rights, and data in a socket receive buffer,
833 * sbappendaddr() should be used. To place access rights and data in a
834 * socket receive buffer, sbappendrights() should be used. In either case,
835 * the new data begins a new record. Note that unlike sbappend() and
836 * sbappendrecord(), these routines check for the caller that there will be
837 * enough space to store the data. Each fails if there is not enough space,
838 * or if it cannot find mbufs to store additional information in.
839 *
840 * Reliable protocols may use the socket send buffer to hold data awaiting
841 * acknowledgement. Data is normally copied from a socket send buffer in a
842 * protocol with m_copy for output to a peer, and then removing the data from
843 * the socket buffer with sbdrop() or sbdroprecord() when the data is
844 * acknowledged by the peer.
845 */
846 #ifdef SOCKBUF_DEBUG
847 void
sblastrecordchk(struct sockbuf * sb,const char * file,int line)848 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
849 {
850 struct mbuf *m = sb->sb_mb;
851
852 SOCKBUF_LOCK_ASSERT(sb);
853
854 while (m && m->m_nextpkt)
855 m = m->m_nextpkt;
856
857 if (m != sb->sb_lastrecord) {
858 printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
859 __func__, sb->sb_mb, sb->sb_lastrecord, m);
860 printf("packet chain:\n");
861 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
862 printf("\t%p\n", m);
863 panic("%s from %s:%u", __func__, file, line);
864 }
865 }
866
867 void
sblastmbufchk(struct sockbuf * sb,const char * file,int line)868 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
869 {
870 struct mbuf *m = sb->sb_mb;
871 struct mbuf *n;
872
873 SOCKBUF_LOCK_ASSERT(sb);
874
875 while (m && m->m_nextpkt)
876 m = m->m_nextpkt;
877
878 while (m && m->m_next)
879 m = m->m_next;
880
881 if (m != sb->sb_mbtail) {
882 printf("%s: sb_mb %p sb_mbtail %p last %p\n",
883 __func__, sb->sb_mb, sb->sb_mbtail, m);
884 printf("packet tree:\n");
885 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
886 printf("\t");
887 for (n = m; n != NULL; n = n->m_next)
888 printf("%p ", n);
889 printf("\n");
890 }
891 panic("%s from %s:%u", __func__, file, line);
892 }
893
894 #ifdef KERN_TLS
895 m = sb->sb_mtls;
896 while (m && m->m_next)
897 m = m->m_next;
898
899 if (m != sb->sb_mtlstail) {
900 printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
901 __func__, sb->sb_mtls, sb->sb_mtlstail, m);
902 printf("TLS packet tree:\n");
903 printf("\t");
904 for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
905 printf("%p ", m);
906 }
907 printf("\n");
908 panic("%s from %s:%u", __func__, file, line);
909 }
910 #endif
911 }
912 #endif /* SOCKBUF_DEBUG */
913
914 #define SBLINKRECORD(sb, m0) do { \
915 SOCKBUF_LOCK_ASSERT(sb); \
916 if ((sb)->sb_lastrecord != NULL) \
917 (sb)->sb_lastrecord->m_nextpkt = (m0); \
918 else \
919 (sb)->sb_mb = (m0); \
920 (sb)->sb_lastrecord = (m0); \
921 } while (/*CONSTCOND*/0)
922
923 /*
924 * Append mbuf chain m to the last record in the socket buffer sb. The
925 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
926 * are discarded and mbufs are compacted where possible.
927 */
928 void
sbappend_locked(struct sockbuf * sb,struct mbuf * m,int flags)929 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
930 {
931 struct mbuf *n;
932
933 SOCKBUF_LOCK_ASSERT(sb);
934
935 if (m == NULL)
936 return;
937 kmsan_check_mbuf(m, "sbappend");
938 sbm_clrprotoflags(m, flags);
939 SBLASTRECORDCHK(sb);
940 n = sb->sb_mb;
941 if (n) {
942 while (n->m_nextpkt)
943 n = n->m_nextpkt;
944 do {
945 if (n->m_flags & M_EOR) {
946 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
947 return;
948 }
949 } while (n->m_next && (n = n->m_next));
950 } else {
951 /*
952 * XXX Would like to simply use sb_mbtail here, but
953 * XXX I need to verify that I won't miss an EOR that
954 * XXX way.
955 */
956 if ((n = sb->sb_lastrecord) != NULL) {
957 do {
958 if (n->m_flags & M_EOR) {
959 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
960 return;
961 }
962 } while (n->m_next && (n = n->m_next));
963 } else {
964 /*
965 * If this is the first record in the socket buffer,
966 * it's also the last record.
967 */
968 sb->sb_lastrecord = m;
969 }
970 }
971 sbcompress(sb, m, n);
972 SBLASTRECORDCHK(sb);
973 }
974
975 /*
976 * Append mbuf chain m to the last record in the socket buffer sb. The
977 * additional space associated the mbuf chain is recorded in sb. Empty mbufs
978 * are discarded and mbufs are compacted where possible.
979 */
980 void
sbappend(struct sockbuf * sb,struct mbuf * m,int flags)981 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
982 {
983
984 SOCKBUF_LOCK(sb);
985 sbappend_locked(sb, m, flags);
986 SOCKBUF_UNLOCK(sb);
987 }
988
989 #ifdef KERN_TLS
990 /*
991 * Append an mbuf containing encrypted TLS data. The data
992 * is marked M_NOTREADY until it has been decrypted and
993 * stored as a TLS record.
994 */
995 static void
sbappend_ktls_rx(struct sockbuf * sb,struct mbuf * m)996 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
997 {
998 struct ifnet *ifp;
999 struct mbuf *n;
1000 int flags;
1001
1002 ifp = NULL;
1003 flags = M_NOTREADY;
1004
1005 SBLASTMBUFCHK(sb);
1006
1007 /* Mbuf chain must start with a packet header. */
1008 MPASS((m->m_flags & M_PKTHDR) != 0);
1009
1010 /* Remove all packet headers and mbuf tags to get a pure data chain. */
1011 for (n = m; n != NULL; n = n->m_next) {
1012 if (n->m_flags & M_PKTHDR) {
1013 ifp = m->m_pkthdr.leaf_rcvif;
1014 if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
1015 CSUM_TLS_DECRYPTED) {
1016 /* Mark all mbufs in this packet decrypted. */
1017 flags = M_NOTREADY | M_DECRYPTED;
1018 } else {
1019 flags = M_NOTREADY;
1020 }
1021 m_demote_pkthdr(n);
1022 }
1023
1024 n->m_flags &= M_DEMOTEFLAGS;
1025 n->m_flags |= flags;
1026
1027 MPASS((n->m_flags & M_NOTREADY) != 0);
1028 }
1029
1030 sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
1031 ktls_check_rx(sb);
1032
1033 /* Check for incoming packet route changes: */
1034 if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
1035 sb->sb_tls_info->rx_ifp != ifp)
1036 ktls_input_ifp_mismatch(sb, ifp);
1037 }
1038 #endif
1039
1040 /*
1041 * This version of sbappend() should only be used when the caller absolutely
1042 * knows that there will never be more than one record in the socket buffer,
1043 * that is, a stream protocol (such as TCP).
1044 */
1045 void
sbappendstream_locked(struct sockbuf * sb,struct mbuf * m,int flags)1046 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1047 {
1048 SOCKBUF_LOCK_ASSERT(sb);
1049
1050 KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
1051
1052 kmsan_check_mbuf(m, "sbappend");
1053
1054 #ifdef KERN_TLS
1055 /*
1056 * Decrypted TLS records are appended as records via
1057 * sbappendrecord(). TCP passes encrypted TLS records to this
1058 * function which must be scheduled for decryption.
1059 */
1060 if (sb->sb_flags & SB_TLS_RX) {
1061 sbappend_ktls_rx(sb, m);
1062 return;
1063 }
1064 #endif
1065
1066 KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1067
1068 SBLASTMBUFCHK(sb);
1069
1070 #ifdef KERN_TLS
1071 if (sb->sb_tls_info != NULL)
1072 ktls_seq(sb, m);
1073 #endif
1074
1075 /* Remove all packet headers and mbuf tags to get a pure data chain. */
1076 m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1077
1078 sbcompress(sb, m, sb->sb_mbtail);
1079
1080 sb->sb_lastrecord = sb->sb_mb;
1081 SBLASTRECORDCHK(sb);
1082 }
1083
1084 /*
1085 * This version of sbappend() should only be used when the caller absolutely
1086 * knows that there will never be more than one record in the socket buffer,
1087 * that is, a stream protocol (such as TCP).
1088 */
1089 void
sbappendstream(struct sockbuf * sb,struct mbuf * m,int flags)1090 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1091 {
1092
1093 SOCKBUF_LOCK(sb);
1094 sbappendstream_locked(sb, m, flags);
1095 SOCKBUF_UNLOCK(sb);
1096 }
1097
1098 #ifdef SOCKBUF_DEBUG
1099 void
sbcheck(struct sockbuf * sb,const char * file,int line)1100 sbcheck(struct sockbuf *sb, const char *file, int line)
1101 {
1102 struct mbuf *m, *n, *fnrdy;
1103 u_long acc, ccc, mbcnt;
1104 #ifdef KERN_TLS
1105 u_long tlscc;
1106 #endif
1107
1108 SOCKBUF_LOCK_ASSERT(sb);
1109
1110 acc = ccc = mbcnt = 0;
1111 fnrdy = NULL;
1112
1113 for (m = sb->sb_mb; m; m = n) {
1114 n = m->m_nextpkt;
1115 for (; m; m = m->m_next) {
1116 if (m->m_len == 0) {
1117 printf("sb %p empty mbuf %p\n", sb, m);
1118 goto fail;
1119 }
1120 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1121 if (m != sb->sb_fnrdy) {
1122 printf("sb %p: fnrdy %p != m %p\n",
1123 sb, sb->sb_fnrdy, m);
1124 goto fail;
1125 }
1126 fnrdy = m;
1127 }
1128 if (fnrdy) {
1129 if (!(m->m_flags & M_NOTAVAIL)) {
1130 printf("sb %p: fnrdy %p, m %p is avail\n",
1131 sb, sb->sb_fnrdy, m);
1132 goto fail;
1133 }
1134 } else
1135 acc += m->m_len;
1136 ccc += m->m_len;
1137 mbcnt += MSIZE;
1138 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1139 mbcnt += m->m_ext.ext_size;
1140 }
1141 }
1142 #ifdef KERN_TLS
1143 /*
1144 * Account for mbufs "detached" by ktls_detach_record() while
1145 * they are decrypted by ktls_decrypt(). tlsdcc gives a count
1146 * of the detached bytes that are included in ccc. The mbufs
1147 * and clusters are not included in the socket buffer
1148 * accounting.
1149 */
1150 ccc += sb->sb_tlsdcc;
1151
1152 tlscc = 0;
1153 for (m = sb->sb_mtls; m; m = m->m_next) {
1154 if (m->m_nextpkt != NULL) {
1155 printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1156 goto fail;
1157 }
1158 if ((m->m_flags & M_NOTREADY) == 0) {
1159 printf("sb %p TLS mbuf %p ready\n", sb, m);
1160 goto fail;
1161 }
1162 tlscc += m->m_len;
1163 ccc += m->m_len;
1164 mbcnt += MSIZE;
1165 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1166 mbcnt += m->m_ext.ext_size;
1167 }
1168
1169 if (sb->sb_tlscc != tlscc) {
1170 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1171 sb->sb_tlsdcc);
1172 goto fail;
1173 }
1174 #endif
1175 if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1176 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1177 acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1178 #ifdef KERN_TLS
1179 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1180 sb->sb_tlsdcc);
1181 #endif
1182 goto fail;
1183 }
1184 return;
1185 fail:
1186 panic("%s from %s:%u", __func__, file, line);
1187 }
1188 #endif
1189
1190 /*
1191 * As above, except the mbuf chain begins a new record.
1192 */
1193 void
sbappendrecord_locked(struct sockbuf * sb,struct mbuf * m0)1194 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1195 {
1196 struct mbuf *m;
1197
1198 SOCKBUF_LOCK_ASSERT(sb);
1199
1200 if (m0 == NULL)
1201 return;
1202
1203 kmsan_check_mbuf(m0, "sbappend");
1204 m_clrprotoflags(m0);
1205
1206 /*
1207 * Put the first mbuf on the queue. Note this permits zero length
1208 * records.
1209 */
1210 sballoc(sb, m0);
1211 SBLASTRECORDCHK(sb);
1212 SBLINKRECORD(sb, m0);
1213 sb->sb_mbtail = m0;
1214 m = m0->m_next;
1215 m0->m_next = 0;
1216 if (m && (m0->m_flags & M_EOR)) {
1217 m0->m_flags &= ~M_EOR;
1218 m->m_flags |= M_EOR;
1219 }
1220 /* always call sbcompress() so it can do SBLASTMBUFCHK() */
1221 sbcompress(sb, m, m0);
1222 }
1223
1224 /*
1225 * As above, except the mbuf chain begins a new record.
1226 */
1227 void
sbappendrecord(struct sockbuf * sb,struct mbuf * m0)1228 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1229 {
1230
1231 SOCKBUF_LOCK(sb);
1232 sbappendrecord_locked(sb, m0);
1233 SOCKBUF_UNLOCK(sb);
1234 }
1235
1236 /* Helper routine that appends data, control, and address to a sockbuf. */
1237 static int
sbappendaddr_locked_internal(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control,struct mbuf * ctrl_last)1238 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1239 struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1240 {
1241 struct mbuf *m, *n, *nlast;
1242
1243 if (m0 != NULL)
1244 kmsan_check_mbuf(m0, "sbappend");
1245 if (control != NULL)
1246 kmsan_check_mbuf(control, "sbappend");
1247
1248 #if MSIZE <= 256
1249 if (asa->sa_len > MLEN)
1250 return (0);
1251 #endif
1252 m = m_get(M_NOWAIT, MT_SONAME);
1253 if (m == NULL)
1254 return (0);
1255 m->m_len = asa->sa_len;
1256 bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1257 if (m0) {
1258 M_ASSERT_NO_SND_TAG(m0);
1259 m_clrprotoflags(m0);
1260 m_tag_delete_chain(m0, NULL);
1261 /*
1262 * Clear some persistent info from pkthdr.
1263 * We don't use m_demote(), because some netgraph consumers
1264 * expect M_PKTHDR presence.
1265 */
1266 m0->m_pkthdr.rcvif = NULL;
1267 m0->m_pkthdr.flowid = 0;
1268 m0->m_pkthdr.csum_flags = 0;
1269 m0->m_pkthdr.fibnum = 0;
1270 m0->m_pkthdr.rsstype = 0;
1271 }
1272 if (ctrl_last)
1273 ctrl_last->m_next = m0; /* concatenate data to control */
1274 else
1275 control = m0;
1276 m->m_next = control;
1277 for (n = m; n->m_next != NULL; n = n->m_next)
1278 sballoc(sb, n);
1279 sballoc(sb, n);
1280 nlast = n;
1281 SBLINKRECORD(sb, m);
1282
1283 sb->sb_mbtail = nlast;
1284 SBLASTMBUFCHK(sb);
1285
1286 SBLASTRECORDCHK(sb);
1287 return (1);
1288 }
1289
1290 /*
1291 * Append address and data, and optionally, control (ancillary) data to the
1292 * receive queue of a socket. If present, m0 must include a packet header
1293 * with total length. Returns 0 if no space in sockbuf or insufficient
1294 * mbufs.
1295 */
1296 int
sbappendaddr_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1297 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1298 struct mbuf *m0, struct mbuf *control)
1299 {
1300 struct mbuf *ctrl_last;
1301 int space = asa->sa_len;
1302
1303 SOCKBUF_LOCK_ASSERT(sb);
1304
1305 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1306 panic("sbappendaddr_locked");
1307 if (m0)
1308 space += m0->m_pkthdr.len;
1309 space += m_length(control, &ctrl_last);
1310
1311 if (space > sbspace(sb))
1312 return (0);
1313 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1314 }
1315
1316 /*
1317 * Append address and data, and optionally, control (ancillary) data to the
1318 * receive queue of a socket. If present, m0 must include a packet header
1319 * with total length. Returns 0 if insufficient mbufs. Does not validate space
1320 * on the receiving sockbuf.
1321 */
1322 int
sbappendaddr_nospacecheck_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1323 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1324 struct mbuf *m0, struct mbuf *control)
1325 {
1326 struct mbuf *ctrl_last;
1327
1328 SOCKBUF_LOCK_ASSERT(sb);
1329
1330 ctrl_last = (control == NULL) ? NULL : m_last(control);
1331 return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1332 }
1333
1334 /*
1335 * Append address and data, and optionally, control (ancillary) data to the
1336 * receive queue of a socket. If present, m0 must include a packet header
1337 * with total length. Returns 0 if no space in sockbuf or insufficient
1338 * mbufs.
1339 */
1340 int
sbappendaddr(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1341 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1342 struct mbuf *m0, struct mbuf *control)
1343 {
1344 int retval;
1345
1346 SOCKBUF_LOCK(sb);
1347 retval = sbappendaddr_locked(sb, asa, m0, control);
1348 SOCKBUF_UNLOCK(sb);
1349 return (retval);
1350 }
1351
1352 void
sbappendcontrol_locked(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1353 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1354 struct mbuf *control, int flags)
1355 {
1356 struct mbuf *m, *mlast;
1357
1358 if (m0 != NULL)
1359 kmsan_check_mbuf(m0, "sbappend");
1360 kmsan_check_mbuf(control, "sbappend");
1361
1362 sbm_clrprotoflags(m0, flags);
1363 m_last(control)->m_next = m0;
1364
1365 SBLASTRECORDCHK(sb);
1366
1367 for (m = control; m->m_next; m = m->m_next)
1368 sballoc(sb, m);
1369 sballoc(sb, m);
1370 mlast = m;
1371 SBLINKRECORD(sb, control);
1372
1373 sb->sb_mbtail = mlast;
1374 SBLASTMBUFCHK(sb);
1375
1376 SBLASTRECORDCHK(sb);
1377 }
1378
1379 void
sbappendcontrol(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1380 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1381 int flags)
1382 {
1383
1384 SOCKBUF_LOCK(sb);
1385 sbappendcontrol_locked(sb, m0, control, flags);
1386 SOCKBUF_UNLOCK(sb);
1387 }
1388
1389 /*
1390 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1391 * (n). If (n) is NULL, the buffer is presumed empty.
1392 *
1393 * When the data is compressed, mbufs in the chain may be handled in one of
1394 * three ways:
1395 *
1396 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1397 * record boundary, and no change in data type).
1398 *
1399 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1400 * an mbuf already in the socket buffer. This can occur if an
1401 * appropriate mbuf exists, there is room, both mbufs are not marked as
1402 * not ready, and no merging of data types will occur.
1403 *
1404 * (3) The mbuf may be appended to the end of the existing mbuf chain.
1405 *
1406 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1407 * end-of-record.
1408 */
1409 void
sbcompress(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1410 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1411 {
1412 int eor = 0;
1413 struct mbuf *o;
1414
1415 SOCKBUF_LOCK_ASSERT(sb);
1416
1417 while (m) {
1418 eor |= m->m_flags & M_EOR;
1419 if (m->m_len == 0 &&
1420 (eor == 0 ||
1421 (((o = m->m_next) || (o = n)) &&
1422 o->m_type == m->m_type))) {
1423 if (sb->sb_lastrecord == m)
1424 sb->sb_lastrecord = m->m_next;
1425 m = m_free(m);
1426 continue;
1427 }
1428 if (n && (n->m_flags & M_EOR) == 0 &&
1429 M_WRITABLE(n) &&
1430 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1431 !(m->m_flags & M_NOTREADY) &&
1432 !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1433 !mbuf_has_tls_session(m) &&
1434 !mbuf_has_tls_session(n) &&
1435 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1436 m->m_len <= M_TRAILINGSPACE(n) &&
1437 n->m_type == m->m_type) {
1438 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1439 n->m_len += m->m_len;
1440 sb->sb_ccc += m->m_len;
1441 if (sb->sb_fnrdy == NULL)
1442 sb->sb_acc += m->m_len;
1443 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1444 /* XXX: Probably don't need.*/
1445 sb->sb_ctl += m->m_len;
1446 m = m_free(m);
1447 continue;
1448 }
1449 if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1450 (m->m_flags & M_NOTREADY) == 0 &&
1451 !mbuf_has_tls_session(m))
1452 (void)mb_unmapped_compress(m);
1453 if (n)
1454 n->m_next = m;
1455 else
1456 sb->sb_mb = m;
1457 sb->sb_mbtail = m;
1458 sballoc(sb, m);
1459 n = m;
1460 m->m_flags &= ~M_EOR;
1461 m = m->m_next;
1462 n->m_next = 0;
1463 }
1464 if (eor) {
1465 KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1466 n->m_flags |= eor;
1467 }
1468 SBLASTMBUFCHK(sb);
1469 }
1470
1471 #ifdef KERN_TLS
1472 /*
1473 * A version of sbcompress() for encrypted TLS RX mbufs. These mbufs
1474 * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1475 * a bit simpler (no EOR markers, always MT_DATA, etc.).
1476 */
1477 static void
sbcompress_ktls_rx(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1478 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1479 {
1480
1481 SOCKBUF_LOCK_ASSERT(sb);
1482
1483 while (m) {
1484 KASSERT((m->m_flags & M_EOR) == 0,
1485 ("TLS RX mbuf %p with EOR", m));
1486 KASSERT(m->m_type == MT_DATA,
1487 ("TLS RX mbuf %p is not MT_DATA", m));
1488 KASSERT((m->m_flags & M_NOTREADY) != 0,
1489 ("TLS RX mbuf %p ready", m));
1490 KASSERT((m->m_flags & M_EXTPG) == 0,
1491 ("TLS RX mbuf %p unmapped", m));
1492
1493 if (m->m_len == 0) {
1494 m = m_free(m);
1495 continue;
1496 }
1497
1498 /*
1499 * Even though both 'n' and 'm' are NOTREADY, it's ok
1500 * to coalesce the data.
1501 */
1502 if (n &&
1503 M_WRITABLE(n) &&
1504 ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1505 !((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
1506 !(n->m_flags & M_EXTPG) &&
1507 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1508 m->m_len <= M_TRAILINGSPACE(n)) {
1509 m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1510 n->m_len += m->m_len;
1511 sb->sb_ccc += m->m_len;
1512 sb->sb_tlscc += m->m_len;
1513 m = m_free(m);
1514 continue;
1515 }
1516 if (n)
1517 n->m_next = m;
1518 else
1519 sb->sb_mtls = m;
1520 sb->sb_mtlstail = m;
1521 sballoc_ktls_rx(sb, m);
1522 n = m;
1523 m = m->m_next;
1524 n->m_next = NULL;
1525 }
1526 SBLASTMBUFCHK(sb);
1527 }
1528 #endif
1529
1530 /*
1531 * Free all mbufs in a sockbuf. Check that all resources are reclaimed.
1532 */
1533 static void
sbflush_internal(struct sockbuf * sb)1534 sbflush_internal(struct sockbuf *sb)
1535 {
1536
1537 while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1538 /*
1539 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1540 * we would loop forever. Panic instead.
1541 */
1542 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1543 break;
1544 m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1545 }
1546 KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1547 ("%s: ccc %u mb %p mbcnt %u", __func__,
1548 sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1549 }
1550
1551 void
sbflush_locked(struct sockbuf * sb)1552 sbflush_locked(struct sockbuf *sb)
1553 {
1554
1555 SOCKBUF_LOCK_ASSERT(sb);
1556 sbflush_internal(sb);
1557 }
1558
1559 void
sbflush(struct sockbuf * sb)1560 sbflush(struct sockbuf *sb)
1561 {
1562
1563 SOCKBUF_LOCK(sb);
1564 sbflush_locked(sb);
1565 SOCKBUF_UNLOCK(sb);
1566 }
1567
1568 /*
1569 * Cut data from (the front of) a sockbuf.
1570 */
1571 static struct mbuf *
sbcut_internal(struct sockbuf * sb,int len)1572 sbcut_internal(struct sockbuf *sb, int len)
1573 {
1574 struct mbuf *m, *next, *mfree;
1575 bool is_tls;
1576
1577 KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1578 __func__, len));
1579 KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1580 __func__, len, sb->sb_ccc));
1581
1582 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1583 is_tls = false;
1584 mfree = NULL;
1585
1586 while (len > 0) {
1587 if (m == NULL) {
1588 #ifdef KERN_TLS
1589 if (next == NULL && !is_tls) {
1590 if (sb->sb_tlsdcc != 0) {
1591 MPASS(len >= sb->sb_tlsdcc);
1592 len -= sb->sb_tlsdcc;
1593 sb->sb_ccc -= sb->sb_tlsdcc;
1594 sb->sb_tlsdcc = 0;
1595 if (len == 0)
1596 break;
1597 }
1598 next = sb->sb_mtls;
1599 is_tls = true;
1600 }
1601 #endif
1602 KASSERT(next, ("%s: no next, len %d", __func__, len));
1603 m = next;
1604 next = m->m_nextpkt;
1605 }
1606 if (m->m_len > len) {
1607 KASSERT(!(m->m_flags & M_NOTAVAIL),
1608 ("%s: m %p M_NOTAVAIL", __func__, m));
1609 m->m_len -= len;
1610 m->m_data += len;
1611 sb->sb_ccc -= len;
1612 sb->sb_acc -= len;
1613 if (sb->sb_sndptroff != 0)
1614 sb->sb_sndptroff -= len;
1615 if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1616 sb->sb_ctl -= len;
1617 break;
1618 }
1619 len -= m->m_len;
1620 #ifdef KERN_TLS
1621 if (is_tls)
1622 sbfree_ktls_rx(sb, m);
1623 else
1624 #endif
1625 sbfree(sb, m);
1626 /*
1627 * Do not put M_NOTREADY buffers to the free list, they
1628 * are referenced from outside.
1629 */
1630 if (m->m_flags & M_NOTREADY && !is_tls)
1631 m = m->m_next;
1632 else {
1633 struct mbuf *n;
1634
1635 n = m->m_next;
1636 m->m_next = mfree;
1637 mfree = m;
1638 m = n;
1639 }
1640 }
1641 /*
1642 * Free any zero-length mbufs from the buffer.
1643 * For SOCK_DGRAM sockets such mbufs represent empty records.
1644 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1645 * when sosend_generic() needs to send only control data.
1646 */
1647 while (m && m->m_len == 0) {
1648 struct mbuf *n;
1649
1650 sbfree(sb, m);
1651 n = m->m_next;
1652 m->m_next = mfree;
1653 mfree = m;
1654 m = n;
1655 }
1656 #ifdef KERN_TLS
1657 if (is_tls) {
1658 sb->sb_mb = NULL;
1659 sb->sb_mtls = m;
1660 if (m == NULL)
1661 sb->sb_mtlstail = NULL;
1662 } else
1663 #endif
1664 if (m) {
1665 sb->sb_mb = m;
1666 m->m_nextpkt = next;
1667 } else
1668 sb->sb_mb = next;
1669 /*
1670 * First part is an inline SB_EMPTY_FIXUP(). Second part makes sure
1671 * sb_lastrecord is up-to-date if we dropped part of the last record.
1672 */
1673 m = sb->sb_mb;
1674 if (m == NULL) {
1675 sb->sb_mbtail = NULL;
1676 sb->sb_lastrecord = NULL;
1677 } else if (m->m_nextpkt == NULL) {
1678 sb->sb_lastrecord = m;
1679 }
1680
1681 return (mfree);
1682 }
1683
1684 /*
1685 * Drop data from (the front of) a sockbuf.
1686 */
1687 void
sbdrop_locked(struct sockbuf * sb,int len)1688 sbdrop_locked(struct sockbuf *sb, int len)
1689 {
1690
1691 SOCKBUF_LOCK_ASSERT(sb);
1692 m_freem(sbcut_internal(sb, len));
1693 }
1694
1695 /*
1696 * Drop data from (the front of) a sockbuf,
1697 * and return it to caller.
1698 */
1699 struct mbuf *
sbcut_locked(struct sockbuf * sb,int len)1700 sbcut_locked(struct sockbuf *sb, int len)
1701 {
1702
1703 SOCKBUF_LOCK_ASSERT(sb);
1704 return (sbcut_internal(sb, len));
1705 }
1706
1707 void
sbdrop(struct sockbuf * sb,int len)1708 sbdrop(struct sockbuf *sb, int len)
1709 {
1710 struct mbuf *mfree;
1711
1712 SOCKBUF_LOCK(sb);
1713 mfree = sbcut_internal(sb, len);
1714 SOCKBUF_UNLOCK(sb);
1715
1716 m_freem(mfree);
1717 }
1718
1719 struct mbuf *
sbsndptr_noadv(struct sockbuf * sb,uint32_t off,uint32_t * moff)1720 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1721 {
1722 struct mbuf *m;
1723
1724 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1725 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1726 *moff = off;
1727 if (sb->sb_sndptr == NULL) {
1728 sb->sb_sndptr = sb->sb_mb;
1729 sb->sb_sndptroff = 0;
1730 }
1731 return (sb->sb_mb);
1732 } else {
1733 m = sb->sb_sndptr;
1734 off -= sb->sb_sndptroff;
1735 }
1736 *moff = off;
1737 return (m);
1738 }
1739
1740 void
sbsndptr_adv(struct sockbuf * sb,struct mbuf * mb,uint32_t len)1741 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1742 {
1743 /*
1744 * A small copy was done, advance forward the sb_sbsndptr to cover
1745 * it.
1746 */
1747 struct mbuf *m;
1748
1749 if (mb != sb->sb_sndptr) {
1750 /* Did not copyout at the same mbuf */
1751 return;
1752 }
1753 m = mb;
1754 while (m && (len > 0)) {
1755 if (len >= m->m_len) {
1756 len -= m->m_len;
1757 if (m->m_next) {
1758 sb->sb_sndptroff += m->m_len;
1759 sb->sb_sndptr = m->m_next;
1760 }
1761 m = m->m_next;
1762 } else {
1763 len = 0;
1764 }
1765 }
1766 }
1767
1768 /*
1769 * Return the first mbuf and the mbuf data offset for the provided
1770 * send offset without changing the "sb_sndptroff" field.
1771 */
1772 struct mbuf *
sbsndmbuf(struct sockbuf * sb,u_int off,u_int * moff)1773 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1774 {
1775 struct mbuf *m;
1776
1777 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1778
1779 /*
1780 * If the "off" is below the stored offset, which happens on
1781 * retransmits, just use "sb_mb":
1782 */
1783 if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1784 m = sb->sb_mb;
1785 } else {
1786 m = sb->sb_sndptr;
1787 off -= sb->sb_sndptroff;
1788 }
1789 while (off > 0 && m != NULL) {
1790 if (off < m->m_len)
1791 break;
1792 off -= m->m_len;
1793 m = m->m_next;
1794 }
1795 *moff = off;
1796 return (m);
1797 }
1798
1799 /*
1800 * Drop a record off the front of a sockbuf and move the next record to the
1801 * front.
1802 */
1803 void
sbdroprecord_locked(struct sockbuf * sb)1804 sbdroprecord_locked(struct sockbuf *sb)
1805 {
1806 struct mbuf *m;
1807
1808 SOCKBUF_LOCK_ASSERT(sb);
1809
1810 m = sb->sb_mb;
1811 if (m) {
1812 sb->sb_mb = m->m_nextpkt;
1813 do {
1814 sbfree(sb, m);
1815 m = m_free(m);
1816 } while (m);
1817 }
1818 SB_EMPTY_FIXUP(sb);
1819 }
1820
1821 /*
1822 * Drop a record off the front of a sockbuf and move the next record to the
1823 * front.
1824 */
1825 void
sbdroprecord(struct sockbuf * sb)1826 sbdroprecord(struct sockbuf *sb)
1827 {
1828
1829 SOCKBUF_LOCK(sb);
1830 sbdroprecord_locked(sb);
1831 SOCKBUF_UNLOCK(sb);
1832 }
1833
1834 /*
1835 * Create a "control" mbuf containing the specified data with the specified
1836 * type for presentation on a socket buffer.
1837 */
1838 struct mbuf *
sbcreatecontrol(const void * p,u_int size,int type,int level,int wait)1839 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1840 {
1841 struct cmsghdr *cp;
1842 struct mbuf *m;
1843
1844 MBUF_CHECKSLEEP(wait);
1845
1846 if (wait == M_NOWAIT) {
1847 if (CMSG_SPACE(size) > MCLBYTES)
1848 return (NULL);
1849 } else
1850 KASSERT(CMSG_SPACE(size) <= MCLBYTES,
1851 ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
1852
1853 if (CMSG_SPACE(size) > MLEN)
1854 m = m_getcl(wait, MT_CONTROL, 0);
1855 else
1856 m = m_get(wait, MT_CONTROL);
1857 if (m == NULL)
1858 return (NULL);
1859
1860 KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1861 ("sbcreatecontrol: short mbuf"));
1862 /*
1863 * Don't leave the padding between the msg header and the
1864 * cmsg data and the padding after the cmsg data un-initialized.
1865 */
1866 cp = mtod(m, struct cmsghdr *);
1867 bzero(cp, CMSG_SPACE(size));
1868 if (p != NULL)
1869 (void)memcpy(CMSG_DATA(cp), p, size);
1870 m->m_len = CMSG_SPACE(size);
1871 cp->cmsg_len = CMSG_LEN(size);
1872 cp->cmsg_level = level;
1873 cp->cmsg_type = type;
1874 return (m);
1875 }
1876
1877 /*
1878 * This does the same for socket buffers that sotoxsocket does for sockets:
1879 * generate an user-format data structure describing the socket buffer. Note
1880 * that the xsockbuf structure, since it is always embedded in a socket, does
1881 * not include a self pointer nor a length. We make this entry point public
1882 * in case some other mechanism needs it.
1883 */
1884 void
sbtoxsockbuf(struct sockbuf * sb,struct xsockbuf * xsb)1885 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1886 {
1887
1888 xsb->sb_cc = sb->sb_ccc;
1889 xsb->sb_hiwat = sb->sb_hiwat;
1890 xsb->sb_mbcnt = sb->sb_mbcnt;
1891 xsb->sb_mbmax = sb->sb_mbmax;
1892 xsb->sb_lowat = sb->sb_lowat;
1893 xsb->sb_flags = sb->sb_flags;
1894 xsb->sb_timeo = sb->sb_timeo;
1895 }
1896
1897 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1898 static int dummy;
1899 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1900 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1901 CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1902 sysctl_handle_sb_max, "LU",
1903 "Maximum socket buffer size");
1904 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1905 &sb_efficiency, 0, "Socket buffer size waste factor");
1906