xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 9d7fb768543bbd1ddcd6a6d7bc2477838c59368f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_kern_tls.h"
34 #include "opt_param.h"
35 
36 #include <sys/param.h>
37 #include <sys/aio.h> /* for aio_swake proto */
38 #include <sys/kernel.h>
39 #include <sys/ktls.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/msan.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sx.h>
52 #include <sys/sysctl.h>
53 
54 #include <netinet/in.h>
55 
56 /*
57  * Function pointer set by the AIO routines so that the socket buffer code
58  * can call back into the AIO module if it is loaded.
59  */
60 void	(*aio_swake)(struct socket *, struct sockbuf *);
61 
62 /*
63  * Primitive routines for operating on socket buffers
64  */
65 
66 #define	BUF_MAX_ADJ(_sz)	(((u_quad_t)(_sz)) * MCLBYTES / (MSIZE + MCLBYTES))
67 
68 u_long	sb_max = SB_MAX;
69 u_long sb_max_adj = BUF_MAX_ADJ(SB_MAX);
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 #ifdef KERN_TLS
74 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75     struct mbuf *n);
76 #endif
77 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
78 static void	sbflush_internal(struct sockbuf *sb);
79 
80 /*
81  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82  */
83 static void
sbm_clrprotoflags(struct mbuf * m,int flags)84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 	int mask;
87 
88 	mask = ~M_PROTOFLAGS;
89 	if (flags & PRUS_NOTREADY)
90 		mask |= M_NOTREADY;
91 	while (m) {
92 		m->m_flags &= mask;
93 		m = m->m_next;
94 	}
95 }
96 
97 /*
98  * Compress M_NOTREADY mbufs after they have been readied by sbready().
99  *
100  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101  * be copied at the time of sbcompress().  This function combines small
102  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
103  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104  * ready.
105  */
106 static void
sbready_compress(struct sockbuf * sb,struct mbuf * m0,struct mbuf * end)107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 	struct mbuf *m, *n;
110 	int ext_size;
111 
112 	SOCKBUF_LOCK_ASSERT(sb);
113 
114 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 		return;
116 
117 	for (m = m0; m != end; m = m->m_next) {
118 		MPASS((m->m_flags & M_NOTREADY) == 0);
119 		/*
120 		 * NB: In sbcompress(), 'n' is the last mbuf in the
121 		 * socket buffer and 'm' is the new mbuf being copied
122 		 * into the trailing space of 'n'.  Here, the roles
123 		 * are reversed and 'n' is the next mbuf after 'm'
124 		 * that is being copied into the trailing space of
125 		 * 'm'.
126 		 */
127 		n = m->m_next;
128 #ifdef KERN_TLS
129 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 		    (m->m_flags & M_EXTPG) &&
132 		    (n->m_flags & M_EXTPG) &&
133 		    !mbuf_has_tls_session(m) &&
134 		    !mbuf_has_tls_session(n)) {
135 			int hdr_len, trail_len;
136 
137 			hdr_len = n->m_epg_hdrlen;
138 			trail_len = m->m_epg_trllen;
139 			if (trail_len != 0 && hdr_len != 0 &&
140 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 				/* copy n's header to m's trailer */
142 				memcpy(&m->m_epg_trail[trail_len],
143 				    n->m_epg_hdr, hdr_len);
144 				m->m_epg_trllen += hdr_len;
145 				m->m_len += hdr_len;
146 				n->m_epg_hdrlen = 0;
147 				n->m_len -= hdr_len;
148 			}
149 		}
150 #endif
151 
152 		/* Compress small unmapped mbufs into plain mbufs. */
153 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 		    !mbuf_has_tls_session(m)) {
155 			ext_size = m->m_ext.ext_size;
156 			if (mb_unmapped_compress(m) == 0)
157 				sb->sb_mbcnt -= ext_size;
158 		}
159 
160 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
161 		    M_WRITABLE(m) &&
162 		    (m->m_flags & M_EXTPG) == 0 &&
163 		    !mbuf_has_tls_session(n) &&
164 		    !mbuf_has_tls_session(m) &&
165 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
166 		    n->m_len <= M_TRAILINGSPACE(m) &&
167 		    m->m_type == n->m_type) {
168 			KASSERT(sb->sb_lastrecord != n,
169 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
170 			    __func__, n, m));
171 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
172 			m->m_len += n->m_len;
173 			m->m_next = n->m_next;
174 			m->m_flags |= n->m_flags & M_EOR;
175 			if (sb->sb_mbtail == n)
176 				sb->sb_mbtail = m;
177 
178 			sb->sb_mbcnt -= MSIZE;
179 			if (n->m_flags & M_EXT)
180 				sb->sb_mbcnt -= n->m_ext.ext_size;
181 			m_free(n);
182 			n = m->m_next;
183 		}
184 	}
185 	SBLASTRECORDCHK(sb);
186 	SBLASTMBUFCHK(sb);
187 }
188 
189 /*
190  * Mark ready "count" units of I/O starting with "m".  Most mbufs
191  * count as a single unit of I/O except for M_EXTPG mbufs which
192  * are backed by multiple pages.
193  */
194 int
sbready(struct sockbuf * sb,struct mbuf * m0,int count)195 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
196 {
197 	struct mbuf *m;
198 	u_int blocker;
199 
200 	SOCKBUF_LOCK_ASSERT(sb);
201 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
202 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
203 
204 	m = m0;
205 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
206 
207 	while (count > 0) {
208 		KASSERT(m->m_flags & M_NOTREADY,
209 		    ("%s: m %p !M_NOTREADY", __func__, m));
210 		if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
211 			if (count < m->m_epg_nrdy) {
212 				m->m_epg_nrdy -= count;
213 				count = 0;
214 				break;
215 			}
216 			count -= m->m_epg_nrdy;
217 			m->m_epg_nrdy = 0;
218 		} else
219 			count--;
220 
221 		m->m_flags &= ~(M_NOTREADY | blocker);
222 		if (blocker)
223 			sb->sb_acc += m->m_len;
224 		m = m->m_next;
225 	}
226 
227 	/*
228 	 * If the first mbuf is still not fully ready because only
229 	 * some of its backing pages were readied, no further progress
230 	 * can be made.
231 	 */
232 	if (m0 == m) {
233 		MPASS(m->m_flags & M_NOTREADY);
234 		return (EINPROGRESS);
235 	}
236 
237 	if (!blocker) {
238 		sbready_compress(sb, m0, m);
239 		return (EINPROGRESS);
240 	}
241 
242 	/* This one was blocking all the queue. */
243 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
244 		KASSERT(m->m_flags & M_BLOCKED,
245 		    ("%s: m %p !M_BLOCKED", __func__, m));
246 		m->m_flags &= ~M_BLOCKED;
247 		sb->sb_acc += m->m_len;
248 	}
249 
250 	sb->sb_fnrdy = m;
251 	sbready_compress(sb, m0, m);
252 
253 	return (0);
254 }
255 
256 /*
257  * Adjust sockbuf state reflecting allocation of m.
258  */
259 void
sballoc(struct sockbuf * sb,struct mbuf * m)260 sballoc(struct sockbuf *sb, struct mbuf *m)
261 {
262 
263 	SOCKBUF_LOCK_ASSERT(sb);
264 
265 	sb->sb_ccc += m->m_len;
266 
267 	if (sb->sb_fnrdy == NULL) {
268 		if (m->m_flags & M_NOTREADY)
269 			sb->sb_fnrdy = m;
270 		else
271 			sb->sb_acc += m->m_len;
272 	} else
273 		m->m_flags |= M_BLOCKED;
274 
275 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
276 		sb->sb_ctl += m->m_len;
277 
278 	sb->sb_mbcnt += MSIZE;
279 
280 	if (m->m_flags & M_EXT)
281 		sb->sb_mbcnt += m->m_ext.ext_size;
282 }
283 
284 /*
285  * Adjust sockbuf state reflecting freeing of m.
286  */
287 void
sbfree(struct sockbuf * sb,struct mbuf * m)288 sbfree(struct sockbuf *sb, struct mbuf *m)
289 {
290 
291 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
292 	SOCKBUF_LOCK_ASSERT(sb);
293 #endif
294 
295 	sb->sb_ccc -= m->m_len;
296 
297 	if (!(m->m_flags & M_NOTAVAIL))
298 		sb->sb_acc -= m->m_len;
299 
300 	if (m == sb->sb_fnrdy) {
301 		struct mbuf *n;
302 
303 		KASSERT(m->m_flags & M_NOTREADY,
304 		    ("%s: m %p !M_NOTREADY", __func__, m));
305 
306 		n = m->m_next;
307 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
308 			n->m_flags &= ~M_BLOCKED;
309 			sb->sb_acc += n->m_len;
310 			n = n->m_next;
311 		}
312 		sb->sb_fnrdy = n;
313 	}
314 
315 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
316 		sb->sb_ctl -= m->m_len;
317 
318 	sb->sb_mbcnt -= MSIZE;
319 	if (m->m_flags & M_EXT)
320 		sb->sb_mbcnt -= m->m_ext.ext_size;
321 
322 	if (sb->sb_sndptr == m) {
323 		sb->sb_sndptr = NULL;
324 		sb->sb_sndptroff = 0;
325 	}
326 	if (sb->sb_sndptroff != 0)
327 		sb->sb_sndptroff -= m->m_len;
328 }
329 
330 #ifdef KERN_TLS
331 /*
332  * Similar to sballoc/sbfree but does not adjust state associated with
333  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
334  * are not ready.
335  */
336 void
sballoc_ktls_rx(struct sockbuf * sb,struct mbuf * m)337 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
338 {
339 
340 	SOCKBUF_LOCK_ASSERT(sb);
341 
342 	sb->sb_ccc += m->m_len;
343 	sb->sb_tlscc += m->m_len;
344 
345 	sb->sb_mbcnt += MSIZE;
346 
347 	if (m->m_flags & M_EXT)
348 		sb->sb_mbcnt += m->m_ext.ext_size;
349 }
350 
351 void
sbfree_ktls_rx(struct sockbuf * sb,struct mbuf * m)352 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
353 {
354 
355 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
356 	SOCKBUF_LOCK_ASSERT(sb);
357 #endif
358 
359 	sb->sb_ccc -= m->m_len;
360 	sb->sb_tlscc -= m->m_len;
361 
362 	sb->sb_mbcnt -= MSIZE;
363 
364 	if (m->m_flags & M_EXT)
365 		sb->sb_mbcnt -= m->m_ext.ext_size;
366 }
367 #endif
368 
369 /*
370  * Socantsendmore indicates that no more data will be sent on the socket; it
371  * would normally be applied to a socket when the user informs the system
372  * that no more data is to be sent, by the protocol code (in case
373  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
374  * received, and will normally be applied to the socket by a protocol when it
375  * detects that the peer will send no more data.  Data queued for reading in
376  * the socket may yet be read.
377  */
378 void
socantsendmore_locked(struct socket * so)379 socantsendmore_locked(struct socket *so)
380 {
381 
382 	SOCK_SENDBUF_LOCK_ASSERT(so);
383 
384 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
385 	sowwakeup_locked(so);
386 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
387 }
388 
389 void
socantsendmore(struct socket * so)390 socantsendmore(struct socket *so)
391 {
392 
393 	SOCK_SENDBUF_LOCK(so);
394 	socantsendmore_locked(so);
395 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
396 }
397 
398 void
socantrcvmore_locked(struct socket * so)399 socantrcvmore_locked(struct socket *so)
400 {
401 
402 	SOCK_RECVBUF_LOCK_ASSERT(so);
403 
404 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
405 #ifdef KERN_TLS
406 	if (so->so_rcv.sb_flags & SB_TLS_RX)
407 		ktls_check_rx(&so->so_rcv);
408 #endif
409 	sorwakeup_locked(so);
410 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
411 }
412 
413 void
socantrcvmore(struct socket * so)414 socantrcvmore(struct socket *so)
415 {
416 
417 	SOCK_RECVBUF_LOCK(so);
418 	socantrcvmore_locked(so);
419 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
420 }
421 
422 void
soroverflow_locked(struct socket * so)423 soroverflow_locked(struct socket *so)
424 {
425 
426 	SOCK_RECVBUF_LOCK_ASSERT(so);
427 
428 	if (so->so_options & SO_RERROR) {
429 		so->so_rerror = ENOBUFS;
430 		sorwakeup_locked(so);
431 	} else
432 		SOCK_RECVBUF_UNLOCK(so);
433 
434 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
435 }
436 
437 void
soroverflow(struct socket * so)438 soroverflow(struct socket *so)
439 {
440 
441 	SOCK_RECVBUF_LOCK(so);
442 	soroverflow_locked(so);
443 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
444 }
445 
446 /*
447  * Wait for data to arrive at/drain from a socket buffer.
448  */
449 int
sbwait(struct socket * so,sb_which which)450 sbwait(struct socket *so, sb_which which)
451 {
452 	struct sockbuf *sb;
453 
454 	SOCK_BUF_LOCK_ASSERT(so, which);
455 
456 	sb = sobuf(so, which);
457 	sb->sb_flags |= SB_WAIT;
458 	return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
459 	    PSOCK | PCATCH, "sbwait", sb->sb_timeo, 0, 0));
460 }
461 
462 /*
463  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
464  * via SIGIO if the socket has the SS_ASYNC flag set.
465  *
466  * Called with the socket buffer lock held; will release the lock by the end
467  * of the function.  This allows the caller to acquire the socket buffer lock
468  * while testing for the need for various sorts of wakeup and hold it through
469  * to the point where it's no longer required.  We currently hold the lock
470  * through calls out to other subsystems (with the exception of kqueue), and
471  * then release it to avoid lock order issues.  It's not clear that's
472  * correct.
473  */
474 static __always_inline void
sowakeup(struct socket * so,const sb_which which)475 sowakeup(struct socket *so, const sb_which which)
476 {
477 	struct sockbuf *sb;
478 	int ret;
479 
480 	SOCK_BUF_LOCK_ASSERT(so, which);
481 
482 	sb = sobuf(so, which);
483 	selwakeuppri(sb->sb_sel, PSOCK);
484 	if (!SEL_WAITING(sb->sb_sel))
485 		sb->sb_flags &= ~SB_SEL;
486 	if (sb->sb_flags & SB_WAIT) {
487 		sb->sb_flags &= ~SB_WAIT;
488 		wakeup(&sb->sb_acc);
489 	}
490 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
491 	if (sb->sb_upcall != NULL) {
492 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
493 		if (ret == SU_ISCONNECTED) {
494 			KASSERT(sb == &so->so_rcv,
495 			    ("SO_SND upcall returned SU_ISCONNECTED"));
496 			soupcall_clear(so, SO_RCV);
497 		}
498 	} else
499 		ret = SU_OK;
500 	if (sb->sb_flags & SB_AIO)
501 		sowakeup_aio(so, which);
502 	SOCK_BUF_UNLOCK(so, which);
503 	if (ret == SU_ISCONNECTED)
504 		soisconnected(so);
505 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
506 		pgsigio(&so->so_sigio, SIGIO, 0);
507 	SOCK_BUF_UNLOCK_ASSERT(so, which);
508 }
509 
510 static void
splice_push(struct socket * so)511 splice_push(struct socket *so)
512 {
513 	struct so_splice *sp;
514 
515 	SOCK_RECVBUF_LOCK_ASSERT(so);
516 
517 	sp = so->so_splice;
518 	mtx_lock(&sp->mtx);
519 	SOCK_RECVBUF_UNLOCK(so);
520 	so_splice_dispatch(sp);
521 }
522 
523 static void
splice_pull(struct socket * so)524 splice_pull(struct socket *so)
525 {
526 	struct so_splice *sp;
527 
528 	SOCK_SENDBUF_LOCK_ASSERT(so);
529 
530 	sp = so->so_splice_back;
531 	mtx_lock(&sp->mtx);
532 	SOCK_SENDBUF_UNLOCK(so);
533 	so_splice_dispatch(sp);
534 }
535 
536 /*
537  * Do we need to notify the other side when I/O is possible?
538  */
539 static __always_inline bool
sb_notify(const struct sockbuf * sb)540 sb_notify(const struct sockbuf *sb)
541 {
542 	return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
543 	    SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
544 }
545 
546 void
sorwakeup_locked(struct socket * so)547 sorwakeup_locked(struct socket *so)
548 {
549 	SOCK_RECVBUF_LOCK_ASSERT(so);
550 	if (so->so_rcv.sb_flags & SB_SPLICED)
551 		splice_push(so);
552 	else if (sb_notify(&so->so_rcv))
553 		sowakeup(so, SO_RCV);
554 	else
555 		SOCK_RECVBUF_UNLOCK(so);
556 }
557 
558 void
sowwakeup_locked(struct socket * so)559 sowwakeup_locked(struct socket *so)
560 {
561 	SOCK_SENDBUF_LOCK_ASSERT(so);
562 	if (so->so_snd.sb_flags & SB_SPLICED)
563 		splice_pull(so);
564 	else if (sb_notify(&so->so_snd))
565 		sowakeup(so, SO_SND);
566 	else
567 		SOCK_SENDBUF_UNLOCK(so);
568 }
569 
570 /*
571  * Socket buffer (struct sockbuf) utility routines.
572  *
573  * Each socket contains two socket buffers: one for sending data and one for
574  * receiving data.  Each buffer contains a queue of mbufs, information about
575  * the number of mbufs and amount of data in the queue, and other fields
576  * allowing select() statements and notification on data availability to be
577  * implemented.
578  *
579  * Data stored in a socket buffer is maintained as a list of records.  Each
580  * record is a list of mbufs chained together with the m_next field.  Records
581  * are chained together with the m_nextpkt field. The upper level routine
582  * soreceive() expects the following conventions to be observed when placing
583  * information in the receive buffer:
584  *
585  * 1. If the protocol requires each message be preceded by the sender's name,
586  *    then a record containing that name must be present before any
587  *    associated data (mbuf's must be of type MT_SONAME).
588  * 2. If the protocol supports the exchange of ``access rights'' (really just
589  *    additional data associated with the message), and there are ``rights''
590  *    to be received, then a record containing this data should be present
591  *    (mbuf's must be of type MT_RIGHTS).
592  * 3. If a name or rights record exists, then it must be followed by a data
593  *    record, perhaps of zero length.
594  *
595  * Before using a new socket structure it is first necessary to reserve
596  * buffer space to the socket, by calling sbreserve().  This should commit
597  * some of the available buffer space in the system buffer pool for the
598  * socket (currently, it does nothing but enforce limits).  The space should
599  * be released by calling sbrelease() when the socket is destroyed.
600  */
601 int
soreserve(struct socket * so,u_long sndcc,u_long rcvcc)602 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
603 {
604 	struct thread *td = curthread;
605 
606 	SOCK_SENDBUF_LOCK(so);
607 	SOCK_RECVBUF_LOCK(so);
608 	if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
609 		goto bad;
610 	if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
611 		goto bad2;
612 	if (so->so_rcv.sb_lowat == 0)
613 		so->so_rcv.sb_lowat = 1;
614 	if (so->so_snd.sb_lowat == 0)
615 		so->so_snd.sb_lowat = MCLBYTES;
616 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
617 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
618 	SOCK_RECVBUF_UNLOCK(so);
619 	SOCK_SENDBUF_UNLOCK(so);
620 	return (0);
621 bad2:
622 	sbrelease_locked(so, SO_SND);
623 bad:
624 	SOCK_RECVBUF_UNLOCK(so);
625 	SOCK_SENDBUF_UNLOCK(so);
626 	return (ENOBUFS);
627 }
628 
629 static int
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)630 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
631 {
632 	int error = 0;
633 	u_long tmp_sb_max = sb_max;
634 
635 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
636 	if (error || !req->newptr)
637 		return (error);
638 	if (tmp_sb_max < MSIZE + MCLBYTES)
639 		return (EINVAL);
640 	sb_max = tmp_sb_max;
641 	sb_max_adj = BUF_MAX_ADJ(sb_max);
642 	return (0);
643 }
644 
645 /*
646  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
647  * become limiting if buffering efficiency is near the normal case.
648  */
649 bool
sbreserve_locked_limit(struct socket * so,sb_which which,u_long cc,u_long buf_max,struct thread * td)650 sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
651     u_long buf_max, struct thread *td)
652 {
653 	struct sockbuf *sb = sobuf(so, which);
654 	rlim_t sbsize_limit;
655 
656 	SOCK_BUF_LOCK_ASSERT(so, which);
657 
658 	/*
659 	 * When a thread is passed, we take into account the thread's socket
660 	 * buffer size limit.  The caller will generally pass curthread, but
661 	 * in the TCP input path, NULL will be passed to indicate that no
662 	 * appropriate thread resource limits are available.  In that case,
663 	 * we don't apply a process limit.
664 	 */
665 	if (cc > BUF_MAX_ADJ(buf_max))
666 		return (false);
667 	if (td != NULL) {
668 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
669 	} else
670 		sbsize_limit = RLIM_INFINITY;
671 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
672 	    sbsize_limit))
673 		return (false);
674 	sb->sb_mbmax = min(cc * sb_efficiency, buf_max);
675 	if (sb->sb_lowat > sb->sb_hiwat)
676 		sb->sb_lowat = sb->sb_hiwat;
677 	return (true);
678 }
679 
680 bool
sbreserve_locked(struct socket * so,sb_which which,u_long cc,struct thread * td)681 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
682     struct thread *td)
683 {
684 	return (sbreserve_locked_limit(so, which, cc, sb_max, td));
685 }
686 
687 int
sbsetopt(struct socket * so,struct sockopt * sopt)688 sbsetopt(struct socket *so, struct sockopt *sopt)
689 {
690 	struct sockbuf *sb;
691 	sb_which wh;
692 	short *flags;
693 	u_int cc, *hiwat, *lowat;
694 	int error, optval;
695 
696 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
697 	if (error != 0)
698 		return (error);
699 
700 	/*
701 	 * Values < 1 make no sense for any of these options,
702 	 * so disallow them.
703 	 */
704 	if (optval < 1)
705 		return (EINVAL);
706 	cc = optval;
707 
708 	sb = NULL;
709 	SOCK_LOCK(so);
710 	if (SOLISTENING(so)) {
711 		switch (sopt->sopt_name) {
712 			case SO_SNDLOWAT:
713 			case SO_SNDBUF:
714 				lowat = &so->sol_sbsnd_lowat;
715 				hiwat = &so->sol_sbsnd_hiwat;
716 				flags = &so->sol_sbsnd_flags;
717 				break;
718 			case SO_RCVLOWAT:
719 			case SO_RCVBUF:
720 				lowat = &so->sol_sbrcv_lowat;
721 				hiwat = &so->sol_sbrcv_hiwat;
722 				flags = &so->sol_sbrcv_flags;
723 				break;
724 		}
725 	} else {
726 		switch (sopt->sopt_name) {
727 			case SO_SNDLOWAT:
728 			case SO_SNDBUF:
729 				sb = &so->so_snd;
730 				wh = SO_SND;
731 				break;
732 			case SO_RCVLOWAT:
733 			case SO_RCVBUF:
734 				sb = &so->so_rcv;
735 				wh = SO_RCV;
736 				break;
737 		}
738 		flags = &sb->sb_flags;
739 		hiwat = &sb->sb_hiwat;
740 		lowat = &sb->sb_lowat;
741 		SOCK_BUF_LOCK(so, wh);
742 	}
743 
744 	error = 0;
745 	switch (sopt->sopt_name) {
746 	case SO_SNDBUF:
747 	case SO_RCVBUF:
748 		if (SOLISTENING(so)) {
749 			if (cc > sb_max_adj) {
750 				error = ENOBUFS;
751 				break;
752 			}
753 			*hiwat = cc;
754 			if (*lowat > *hiwat)
755 				*lowat = *hiwat;
756 		} else {
757 			if (!sbreserve_locked(so, wh, cc, curthread))
758 				error = ENOBUFS;
759 		}
760 		if (error == 0)
761 			*flags &= ~SB_AUTOSIZE;
762 		break;
763 	case SO_SNDLOWAT:
764 	case SO_RCVLOWAT:
765 		/*
766 		 * Make sure the low-water is never greater than the
767 		 * high-water.
768 		 */
769 		*lowat = (cc > *hiwat) ? *hiwat : cc;
770 		break;
771 	}
772 
773 	if (!SOLISTENING(so))
774 		SOCK_BUF_UNLOCK(so, wh);
775 	SOCK_UNLOCK(so);
776 	return (error);
777 }
778 
779 /*
780  * Free mbufs held by a socket, and reserved mbuf space.
781  */
782 static void
sbrelease_internal(struct socket * so,sb_which which)783 sbrelease_internal(struct socket *so, sb_which which)
784 {
785 	struct sockbuf *sb = sobuf(so, which);
786 
787 	sbflush_internal(sb);
788 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
789 	    RLIM_INFINITY);
790 	sb->sb_mbmax = 0;
791 }
792 
793 void
sbrelease_locked(struct socket * so,sb_which which)794 sbrelease_locked(struct socket *so, sb_which which)
795 {
796 
797 	SOCK_BUF_LOCK_ASSERT(so, which);
798 
799 	sbrelease_internal(so, which);
800 }
801 
802 void
sbrelease(struct socket * so,sb_which which)803 sbrelease(struct socket *so, sb_which which)
804 {
805 
806 	SOCK_BUF_LOCK(so, which);
807 	sbrelease_locked(so, which);
808 	SOCK_BUF_UNLOCK(so, which);
809 }
810 
811 void
sbdestroy(struct socket * so,sb_which which)812 sbdestroy(struct socket *so, sb_which which)
813 {
814 #ifdef KERN_TLS
815 	struct sockbuf *sb = sobuf(so, which);
816 
817 	if (sb->sb_tls_info != NULL)
818 		ktls_free(sb->sb_tls_info);
819 	sb->sb_tls_info = NULL;
820 #endif
821 	sbrelease_internal(so, which);
822 }
823 
824 /*
825  * Routines to add and remove data from an mbuf queue.
826  *
827  * The routines sbappend() or sbappendrecord() are normally called to append
828  * new mbufs to a socket buffer, after checking that adequate space is
829  * available, comparing the function sbspace() with the amount of data to be
830  * added.  sbappendrecord() differs from sbappend() in that data supplied is
831  * treated as the beginning of a new record.  To place a sender's address,
832  * optional access rights, and data in a socket receive buffer,
833  * sbappendaddr() should be used.  To place access rights and data in a
834  * socket receive buffer, sbappendrights() should be used.  In either case,
835  * the new data begins a new record.  Note that unlike sbappend() and
836  * sbappendrecord(), these routines check for the caller that there will be
837  * enough space to store the data.  Each fails if there is not enough space,
838  * or if it cannot find mbufs to store additional information in.
839  *
840  * Reliable protocols may use the socket send buffer to hold data awaiting
841  * acknowledgement.  Data is normally copied from a socket send buffer in a
842  * protocol with m_copy for output to a peer, and then removing the data from
843  * the socket buffer with sbdrop() or sbdroprecord() when the data is
844  * acknowledged by the peer.
845  */
846 #ifdef SOCKBUF_DEBUG
847 void
sblastrecordchk(struct sockbuf * sb,const char * file,int line)848 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
849 {
850 	struct mbuf *m = sb->sb_mb;
851 
852 	SOCKBUF_LOCK_ASSERT(sb);
853 
854 	while (m && m->m_nextpkt)
855 		m = m->m_nextpkt;
856 
857 	if (m != sb->sb_lastrecord) {
858 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
859 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
860 		printf("packet chain:\n");
861 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
862 			printf("\t%p\n", m);
863 		panic("%s from %s:%u", __func__, file, line);
864 	}
865 }
866 
867 void
sblastmbufchk(struct sockbuf * sb,const char * file,int line)868 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
869 {
870 	struct mbuf *m = sb->sb_mb;
871 	struct mbuf *n;
872 
873 	SOCKBUF_LOCK_ASSERT(sb);
874 
875 	while (m && m->m_nextpkt)
876 		m = m->m_nextpkt;
877 
878 	while (m && m->m_next)
879 		m = m->m_next;
880 
881 	if (m != sb->sb_mbtail) {
882 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
883 			__func__, sb->sb_mb, sb->sb_mbtail, m);
884 		printf("packet tree:\n");
885 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
886 			printf("\t");
887 			for (n = m; n != NULL; n = n->m_next)
888 				printf("%p ", n);
889 			printf("\n");
890 		}
891 		panic("%s from %s:%u", __func__, file, line);
892 	}
893 
894 #ifdef KERN_TLS
895 	m = sb->sb_mtls;
896 	while (m && m->m_next)
897 		m = m->m_next;
898 
899 	if (m != sb->sb_mtlstail) {
900 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
901 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
902 		printf("TLS packet tree:\n");
903 		printf("\t");
904 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
905 			printf("%p ", m);
906 		}
907 		printf("\n");
908 		panic("%s from %s:%u", __func__, file, line);
909 	}
910 #endif
911 }
912 #endif /* SOCKBUF_DEBUG */
913 
914 #define SBLINKRECORD(sb, m0) do {					\
915 	SOCKBUF_LOCK_ASSERT(sb);					\
916 	if ((sb)->sb_lastrecord != NULL)				\
917 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
918 	else								\
919 		(sb)->sb_mb = (m0);					\
920 	(sb)->sb_lastrecord = (m0);					\
921 } while (/*CONSTCOND*/0)
922 
923 /*
924  * Append mbuf chain m to the last record in the socket buffer sb.  The
925  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
926  * are discarded and mbufs are compacted where possible.
927  */
928 void
sbappend_locked(struct sockbuf * sb,struct mbuf * m,int flags)929 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
930 {
931 	struct mbuf *n;
932 
933 	SOCKBUF_LOCK_ASSERT(sb);
934 
935 	if (m == NULL)
936 		return;
937 	kmsan_check_mbuf(m, "sbappend");
938 	sbm_clrprotoflags(m, flags);
939 	SBLASTRECORDCHK(sb);
940 	n = sb->sb_mb;
941 	if (n) {
942 		while (n->m_nextpkt)
943 			n = n->m_nextpkt;
944 		do {
945 			if (n->m_flags & M_EOR) {
946 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
947 				return;
948 			}
949 		} while (n->m_next && (n = n->m_next));
950 	} else {
951 		/*
952 		 * XXX Would like to simply use sb_mbtail here, but
953 		 * XXX I need to verify that I won't miss an EOR that
954 		 * XXX way.
955 		 */
956 		if ((n = sb->sb_lastrecord) != NULL) {
957 			do {
958 				if (n->m_flags & M_EOR) {
959 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
960 					return;
961 				}
962 			} while (n->m_next && (n = n->m_next));
963 		} else {
964 			/*
965 			 * If this is the first record in the socket buffer,
966 			 * it's also the last record.
967 			 */
968 			sb->sb_lastrecord = m;
969 		}
970 	}
971 	sbcompress(sb, m, n);
972 	SBLASTRECORDCHK(sb);
973 }
974 
975 /*
976  * Append mbuf chain m to the last record in the socket buffer sb.  The
977  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
978  * are discarded and mbufs are compacted where possible.
979  */
980 void
sbappend(struct sockbuf * sb,struct mbuf * m,int flags)981 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
982 {
983 
984 	SOCKBUF_LOCK(sb);
985 	sbappend_locked(sb, m, flags);
986 	SOCKBUF_UNLOCK(sb);
987 }
988 
989 #ifdef KERN_TLS
990 /*
991  * Append an mbuf containing encrypted TLS data.  The data
992  * is marked M_NOTREADY until it has been decrypted and
993  * stored as a TLS record.
994  */
995 static void
sbappend_ktls_rx(struct sockbuf * sb,struct mbuf * m)996 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
997 {
998 	struct ifnet *ifp;
999 	struct mbuf *n;
1000 	int flags;
1001 
1002 	ifp = NULL;
1003 	flags = M_NOTREADY;
1004 
1005 	SBLASTMBUFCHK(sb);
1006 
1007 	/* Mbuf chain must start with a packet header. */
1008 	MPASS((m->m_flags & M_PKTHDR) != 0);
1009 
1010 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1011 	for (n = m; n != NULL; n = n->m_next) {
1012 		if (n->m_flags & M_PKTHDR) {
1013 			ifp = m->m_pkthdr.leaf_rcvif;
1014 			if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
1015 			    CSUM_TLS_DECRYPTED) {
1016 				/* Mark all mbufs in this packet decrypted. */
1017 				flags = M_NOTREADY | M_DECRYPTED;
1018 			} else {
1019 				flags = M_NOTREADY;
1020 			}
1021 			m_demote_pkthdr(n);
1022 		}
1023 
1024 		n->m_flags &= M_DEMOTEFLAGS;
1025 		n->m_flags |= flags;
1026 
1027 		MPASS((n->m_flags & M_NOTREADY) != 0);
1028 	}
1029 
1030 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
1031 	ktls_check_rx(sb);
1032 
1033 	/* Check for incoming packet route changes: */
1034 	if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
1035 	    sb->sb_tls_info->rx_ifp != ifp)
1036 		ktls_input_ifp_mismatch(sb, ifp);
1037 }
1038 #endif
1039 
1040 /*
1041  * This version of sbappend() should only be used when the caller absolutely
1042  * knows that there will never be more than one record in the socket buffer,
1043  * that is, a stream protocol (such as TCP).
1044  */
1045 void
sbappendstream_locked(struct sockbuf * sb,struct mbuf * m,int flags)1046 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1047 {
1048 	SOCKBUF_LOCK_ASSERT(sb);
1049 
1050 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
1051 
1052 	kmsan_check_mbuf(m, "sbappend");
1053 
1054 #ifdef KERN_TLS
1055 	/*
1056 	 * Decrypted TLS records are appended as records via
1057 	 * sbappendrecord().  TCP passes encrypted TLS records to this
1058 	 * function which must be scheduled for decryption.
1059 	 */
1060 	if (sb->sb_flags & SB_TLS_RX) {
1061 		sbappend_ktls_rx(sb, m);
1062 		return;
1063 	}
1064 #endif
1065 
1066 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1067 
1068 	SBLASTMBUFCHK(sb);
1069 
1070 #ifdef KERN_TLS
1071 	if (sb->sb_tls_info != NULL)
1072 		ktls_seq(sb, m);
1073 #endif
1074 
1075 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1076 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1077 
1078 	sbcompress(sb, m, sb->sb_mbtail);
1079 
1080 	sb->sb_lastrecord = sb->sb_mb;
1081 	SBLASTRECORDCHK(sb);
1082 }
1083 
1084 /*
1085  * This version of sbappend() should only be used when the caller absolutely
1086  * knows that there will never be more than one record in the socket buffer,
1087  * that is, a stream protocol (such as TCP).
1088  */
1089 void
sbappendstream(struct sockbuf * sb,struct mbuf * m,int flags)1090 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1091 {
1092 
1093 	SOCKBUF_LOCK(sb);
1094 	sbappendstream_locked(sb, m, flags);
1095 	SOCKBUF_UNLOCK(sb);
1096 }
1097 
1098 #ifdef SOCKBUF_DEBUG
1099 void
sbcheck(struct sockbuf * sb,const char * file,int line)1100 sbcheck(struct sockbuf *sb, const char *file, int line)
1101 {
1102 	struct mbuf *m, *n, *fnrdy;
1103 	u_long acc, ccc, mbcnt;
1104 #ifdef KERN_TLS
1105 	u_long tlscc;
1106 #endif
1107 
1108 	SOCKBUF_LOCK_ASSERT(sb);
1109 
1110 	acc = ccc = mbcnt = 0;
1111 	fnrdy = NULL;
1112 
1113 	for (m = sb->sb_mb; m; m = n) {
1114 	    n = m->m_nextpkt;
1115 	    for (; m; m = m->m_next) {
1116 		if (m->m_len == 0) {
1117 			printf("sb %p empty mbuf %p\n", sb, m);
1118 			goto fail;
1119 		}
1120 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1121 			if (m != sb->sb_fnrdy) {
1122 				printf("sb %p: fnrdy %p != m %p\n",
1123 				    sb, sb->sb_fnrdy, m);
1124 				goto fail;
1125 			}
1126 			fnrdy = m;
1127 		}
1128 		if (fnrdy) {
1129 			if (!(m->m_flags & M_NOTAVAIL)) {
1130 				printf("sb %p: fnrdy %p, m %p is avail\n",
1131 				    sb, sb->sb_fnrdy, m);
1132 				goto fail;
1133 			}
1134 		} else
1135 			acc += m->m_len;
1136 		ccc += m->m_len;
1137 		mbcnt += MSIZE;
1138 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1139 			mbcnt += m->m_ext.ext_size;
1140 	    }
1141 	}
1142 #ifdef KERN_TLS
1143 	/*
1144 	 * Account for mbufs "detached" by ktls_detach_record() while
1145 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1146 	 * of the detached bytes that are included in ccc.  The mbufs
1147 	 * and clusters are not included in the socket buffer
1148 	 * accounting.
1149 	 */
1150 	ccc += sb->sb_tlsdcc;
1151 
1152 	tlscc = 0;
1153 	for (m = sb->sb_mtls; m; m = m->m_next) {
1154 		if (m->m_nextpkt != NULL) {
1155 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1156 			goto fail;
1157 		}
1158 		if ((m->m_flags & M_NOTREADY) == 0) {
1159 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1160 			goto fail;
1161 		}
1162 		tlscc += m->m_len;
1163 		ccc += m->m_len;
1164 		mbcnt += MSIZE;
1165 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1166 			mbcnt += m->m_ext.ext_size;
1167 	}
1168 
1169 	if (sb->sb_tlscc != tlscc) {
1170 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1171 		    sb->sb_tlsdcc);
1172 		goto fail;
1173 	}
1174 #endif
1175 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1176 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1177 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1178 #ifdef KERN_TLS
1179 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1180 		    sb->sb_tlsdcc);
1181 #endif
1182 		goto fail;
1183 	}
1184 	return;
1185 fail:
1186 	panic("%s from %s:%u", __func__, file, line);
1187 }
1188 #endif
1189 
1190 /*
1191  * As above, except the mbuf chain begins a new record.
1192  */
1193 void
sbappendrecord_locked(struct sockbuf * sb,struct mbuf * m0)1194 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1195 {
1196 	struct mbuf *m;
1197 
1198 	SOCKBUF_LOCK_ASSERT(sb);
1199 
1200 	if (m0 == NULL)
1201 		return;
1202 
1203 	kmsan_check_mbuf(m0, "sbappend");
1204 	m_clrprotoflags(m0);
1205 
1206 	/*
1207 	 * Put the first mbuf on the queue.  Note this permits zero length
1208 	 * records.
1209 	 */
1210 	sballoc(sb, m0);
1211 	SBLASTRECORDCHK(sb);
1212 	SBLINKRECORD(sb, m0);
1213 	sb->sb_mbtail = m0;
1214 	m = m0->m_next;
1215 	m0->m_next = 0;
1216 	if (m && (m0->m_flags & M_EOR)) {
1217 		m0->m_flags &= ~M_EOR;
1218 		m->m_flags |= M_EOR;
1219 	}
1220 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1221 	sbcompress(sb, m, m0);
1222 }
1223 
1224 /*
1225  * As above, except the mbuf chain begins a new record.
1226  */
1227 void
sbappendrecord(struct sockbuf * sb,struct mbuf * m0)1228 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1229 {
1230 
1231 	SOCKBUF_LOCK(sb);
1232 	sbappendrecord_locked(sb, m0);
1233 	SOCKBUF_UNLOCK(sb);
1234 }
1235 
1236 /* Helper routine that appends data, control, and address to a sockbuf. */
1237 static int
sbappendaddr_locked_internal(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control,struct mbuf * ctrl_last)1238 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1239     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1240 {
1241 	struct mbuf *m, *n, *nlast;
1242 
1243 	if (m0 != NULL)
1244 		kmsan_check_mbuf(m0, "sbappend");
1245 	if (control != NULL)
1246 		kmsan_check_mbuf(control, "sbappend");
1247 
1248 #if MSIZE <= 256
1249 	if (asa->sa_len > MLEN)
1250 		return (0);
1251 #endif
1252 	m = m_get(M_NOWAIT, MT_SONAME);
1253 	if (m == NULL)
1254 		return (0);
1255 	m->m_len = asa->sa_len;
1256 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1257 	if (m0) {
1258 		M_ASSERT_NO_SND_TAG(m0);
1259 		m_clrprotoflags(m0);
1260 		m_tag_delete_chain(m0, NULL);
1261 		/*
1262 		 * Clear some persistent info from pkthdr.
1263 		 * We don't use m_demote(), because some netgraph consumers
1264 		 * expect M_PKTHDR presence.
1265 		 */
1266 		m0->m_pkthdr.rcvif = NULL;
1267 		m0->m_pkthdr.flowid = 0;
1268 		m0->m_pkthdr.csum_flags = 0;
1269 		m0->m_pkthdr.fibnum = 0;
1270 		m0->m_pkthdr.rsstype = 0;
1271 	}
1272 	if (ctrl_last)
1273 		ctrl_last->m_next = m0;	/* concatenate data to control */
1274 	else
1275 		control = m0;
1276 	m->m_next = control;
1277 	for (n = m; n->m_next != NULL; n = n->m_next)
1278 		sballoc(sb, n);
1279 	sballoc(sb, n);
1280 	nlast = n;
1281 	SBLINKRECORD(sb, m);
1282 
1283 	sb->sb_mbtail = nlast;
1284 	SBLASTMBUFCHK(sb);
1285 
1286 	SBLASTRECORDCHK(sb);
1287 	return (1);
1288 }
1289 
1290 /*
1291  * Append address and data, and optionally, control (ancillary) data to the
1292  * receive queue of a socket.  If present, m0 must include a packet header
1293  * with total length.  Returns 0 if no space in sockbuf or insufficient
1294  * mbufs.
1295  */
1296 int
sbappendaddr_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1297 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1298     struct mbuf *m0, struct mbuf *control)
1299 {
1300 	struct mbuf *ctrl_last;
1301 	int space = asa->sa_len;
1302 
1303 	SOCKBUF_LOCK_ASSERT(sb);
1304 
1305 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1306 		panic("sbappendaddr_locked");
1307 	if (m0)
1308 		space += m0->m_pkthdr.len;
1309 	space += m_length(control, &ctrl_last);
1310 
1311 	if (space > sbspace(sb))
1312 		return (0);
1313 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1314 }
1315 
1316 /*
1317  * Append address and data, and optionally, control (ancillary) data to the
1318  * receive queue of a socket.  If present, m0 must include a packet header
1319  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1320  * on the receiving sockbuf.
1321  */
1322 int
sbappendaddr_nospacecheck_locked(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1323 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1324     struct mbuf *m0, struct mbuf *control)
1325 {
1326 	struct mbuf *ctrl_last;
1327 
1328 	SOCKBUF_LOCK_ASSERT(sb);
1329 
1330 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1331 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1332 }
1333 
1334 /*
1335  * Append address and data, and optionally, control (ancillary) data to the
1336  * receive queue of a socket.  If present, m0 must include a packet header
1337  * with total length.  Returns 0 if no space in sockbuf or insufficient
1338  * mbufs.
1339  */
1340 int
sbappendaddr(struct sockbuf * sb,const struct sockaddr * asa,struct mbuf * m0,struct mbuf * control)1341 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1342     struct mbuf *m0, struct mbuf *control)
1343 {
1344 	int retval;
1345 
1346 	SOCKBUF_LOCK(sb);
1347 	retval = sbappendaddr_locked(sb, asa, m0, control);
1348 	SOCKBUF_UNLOCK(sb);
1349 	return (retval);
1350 }
1351 
1352 void
sbappendcontrol_locked(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1353 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1354     struct mbuf *control, int flags)
1355 {
1356 	struct mbuf *m, *mlast;
1357 
1358 	if (m0 != NULL)
1359 		kmsan_check_mbuf(m0, "sbappend");
1360 	kmsan_check_mbuf(control, "sbappend");
1361 
1362 	sbm_clrprotoflags(m0, flags);
1363 	m_last(control)->m_next = m0;
1364 
1365 	SBLASTRECORDCHK(sb);
1366 
1367 	for (m = control; m->m_next; m = m->m_next)
1368 		sballoc(sb, m);
1369 	sballoc(sb, m);
1370 	mlast = m;
1371 	SBLINKRECORD(sb, control);
1372 
1373 	sb->sb_mbtail = mlast;
1374 	SBLASTMBUFCHK(sb);
1375 
1376 	SBLASTRECORDCHK(sb);
1377 }
1378 
1379 void
sbappendcontrol(struct sockbuf * sb,struct mbuf * m0,struct mbuf * control,int flags)1380 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1381     int flags)
1382 {
1383 
1384 	SOCKBUF_LOCK(sb);
1385 	sbappendcontrol_locked(sb, m0, control, flags);
1386 	SOCKBUF_UNLOCK(sb);
1387 }
1388 
1389 /*
1390  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1391  * (n).  If (n) is NULL, the buffer is presumed empty.
1392  *
1393  * When the data is compressed, mbufs in the chain may be handled in one of
1394  * three ways:
1395  *
1396  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1397  *     record boundary, and no change in data type).
1398  *
1399  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1400  *     an mbuf already in the socket buffer.  This can occur if an
1401  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1402  *     not ready, and no merging of data types will occur.
1403  *
1404  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1405  *
1406  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1407  * end-of-record.
1408  */
1409 void
sbcompress(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1410 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1411 {
1412 	int eor = 0;
1413 	struct mbuf *o;
1414 
1415 	SOCKBUF_LOCK_ASSERT(sb);
1416 
1417 	while (m) {
1418 		eor |= m->m_flags & M_EOR;
1419 		if (m->m_len == 0 &&
1420 		    (eor == 0 ||
1421 		     (((o = m->m_next) || (o = n)) &&
1422 		      o->m_type == m->m_type))) {
1423 			if (sb->sb_lastrecord == m)
1424 				sb->sb_lastrecord = m->m_next;
1425 			m = m_free(m);
1426 			continue;
1427 		}
1428 		if (n && (n->m_flags & M_EOR) == 0 &&
1429 		    M_WRITABLE(n) &&
1430 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1431 		    !(m->m_flags & M_NOTREADY) &&
1432 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1433 		    !mbuf_has_tls_session(m) &&
1434 		    !mbuf_has_tls_session(n) &&
1435 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1436 		    m->m_len <= M_TRAILINGSPACE(n) &&
1437 		    n->m_type == m->m_type) {
1438 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1439 			n->m_len += m->m_len;
1440 			sb->sb_ccc += m->m_len;
1441 			if (sb->sb_fnrdy == NULL)
1442 				sb->sb_acc += m->m_len;
1443 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1444 				/* XXX: Probably don't need.*/
1445 				sb->sb_ctl += m->m_len;
1446 			m = m_free(m);
1447 			continue;
1448 		}
1449 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1450 		    (m->m_flags & M_NOTREADY) == 0 &&
1451 		    !mbuf_has_tls_session(m))
1452 			(void)mb_unmapped_compress(m);
1453 		if (n)
1454 			n->m_next = m;
1455 		else
1456 			sb->sb_mb = m;
1457 		sb->sb_mbtail = m;
1458 		sballoc(sb, m);
1459 		n = m;
1460 		m->m_flags &= ~M_EOR;
1461 		m = m->m_next;
1462 		n->m_next = 0;
1463 	}
1464 	if (eor) {
1465 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1466 		n->m_flags |= eor;
1467 	}
1468 	SBLASTMBUFCHK(sb);
1469 }
1470 
1471 #ifdef KERN_TLS
1472 /*
1473  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1474  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1475  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1476  */
1477 static void
sbcompress_ktls_rx(struct sockbuf * sb,struct mbuf * m,struct mbuf * n)1478 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1479 {
1480 
1481 	SOCKBUF_LOCK_ASSERT(sb);
1482 
1483 	while (m) {
1484 		KASSERT((m->m_flags & M_EOR) == 0,
1485 		    ("TLS RX mbuf %p with EOR", m));
1486 		KASSERT(m->m_type == MT_DATA,
1487 		    ("TLS RX mbuf %p is not MT_DATA", m));
1488 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1489 		    ("TLS RX mbuf %p ready", m));
1490 		KASSERT((m->m_flags & M_EXTPG) == 0,
1491 		    ("TLS RX mbuf %p unmapped", m));
1492 
1493 		if (m->m_len == 0) {
1494 			m = m_free(m);
1495 			continue;
1496 		}
1497 
1498 		/*
1499 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1500 		 * to coalesce the data.
1501 		 */
1502 		if (n &&
1503 		    M_WRITABLE(n) &&
1504 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1505 		    !((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
1506 		    !(n->m_flags & M_EXTPG) &&
1507 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1508 		    m->m_len <= M_TRAILINGSPACE(n)) {
1509 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1510 			n->m_len += m->m_len;
1511 			sb->sb_ccc += m->m_len;
1512 			sb->sb_tlscc += m->m_len;
1513 			m = m_free(m);
1514 			continue;
1515 		}
1516 		if (n)
1517 			n->m_next = m;
1518 		else
1519 			sb->sb_mtls = m;
1520 		sb->sb_mtlstail = m;
1521 		sballoc_ktls_rx(sb, m);
1522 		n = m;
1523 		m = m->m_next;
1524 		n->m_next = NULL;
1525 	}
1526 	SBLASTMBUFCHK(sb);
1527 }
1528 #endif
1529 
1530 /*
1531  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1532  */
1533 static void
sbflush_internal(struct sockbuf * sb)1534 sbflush_internal(struct sockbuf *sb)
1535 {
1536 
1537 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1538 		/*
1539 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1540 		 * we would loop forever. Panic instead.
1541 		 */
1542 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1543 			break;
1544 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1545 	}
1546 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1547 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1548 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1549 }
1550 
1551 void
sbflush_locked(struct sockbuf * sb)1552 sbflush_locked(struct sockbuf *sb)
1553 {
1554 
1555 	SOCKBUF_LOCK_ASSERT(sb);
1556 	sbflush_internal(sb);
1557 }
1558 
1559 void
sbflush(struct sockbuf * sb)1560 sbflush(struct sockbuf *sb)
1561 {
1562 
1563 	SOCKBUF_LOCK(sb);
1564 	sbflush_locked(sb);
1565 	SOCKBUF_UNLOCK(sb);
1566 }
1567 
1568 /*
1569  * Cut data from (the front of) a sockbuf.
1570  */
1571 static struct mbuf *
sbcut_internal(struct sockbuf * sb,int len)1572 sbcut_internal(struct sockbuf *sb, int len)
1573 {
1574 	struct mbuf *m, *next, *mfree;
1575 	bool is_tls;
1576 
1577 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1578 	    __func__, len));
1579 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1580 	    __func__, len, sb->sb_ccc));
1581 
1582 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1583 	is_tls = false;
1584 	mfree = NULL;
1585 
1586 	while (len > 0) {
1587 		if (m == NULL) {
1588 #ifdef KERN_TLS
1589 			if (next == NULL && !is_tls) {
1590 				if (sb->sb_tlsdcc != 0) {
1591 					MPASS(len >= sb->sb_tlsdcc);
1592 					len -= sb->sb_tlsdcc;
1593 					sb->sb_ccc -= sb->sb_tlsdcc;
1594 					sb->sb_tlsdcc = 0;
1595 					if (len == 0)
1596 						break;
1597 				}
1598 				next = sb->sb_mtls;
1599 				is_tls = true;
1600 			}
1601 #endif
1602 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1603 			m = next;
1604 			next = m->m_nextpkt;
1605 		}
1606 		if (m->m_len > len) {
1607 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1608 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1609 			m->m_len -= len;
1610 			m->m_data += len;
1611 			sb->sb_ccc -= len;
1612 			sb->sb_acc -= len;
1613 			if (sb->sb_sndptroff != 0)
1614 				sb->sb_sndptroff -= len;
1615 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1616 				sb->sb_ctl -= len;
1617 			break;
1618 		}
1619 		len -= m->m_len;
1620 #ifdef KERN_TLS
1621 		if (is_tls)
1622 			sbfree_ktls_rx(sb, m);
1623 		else
1624 #endif
1625 			sbfree(sb, m);
1626 		/*
1627 		 * Do not put M_NOTREADY buffers to the free list, they
1628 		 * are referenced from outside.
1629 		 */
1630 		if (m->m_flags & M_NOTREADY && !is_tls)
1631 			m = m->m_next;
1632 		else {
1633 			struct mbuf *n;
1634 
1635 			n = m->m_next;
1636 			m->m_next = mfree;
1637 			mfree = m;
1638 			m = n;
1639 		}
1640 	}
1641 	/*
1642 	 * Free any zero-length mbufs from the buffer.
1643 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1644 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1645 	 * when sosend_generic() needs to send only control data.
1646 	 */
1647 	while (m && m->m_len == 0) {
1648 		struct mbuf *n;
1649 
1650 		sbfree(sb, m);
1651 		n = m->m_next;
1652 		m->m_next = mfree;
1653 		mfree = m;
1654 		m = n;
1655 	}
1656 #ifdef KERN_TLS
1657 	if (is_tls) {
1658 		sb->sb_mb = NULL;
1659 		sb->sb_mtls = m;
1660 		if (m == NULL)
1661 			sb->sb_mtlstail = NULL;
1662 	} else
1663 #endif
1664 	if (m) {
1665 		sb->sb_mb = m;
1666 		m->m_nextpkt = next;
1667 	} else
1668 		sb->sb_mb = next;
1669 	/*
1670 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1671 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1672 	 */
1673 	m = sb->sb_mb;
1674 	if (m == NULL) {
1675 		sb->sb_mbtail = NULL;
1676 		sb->sb_lastrecord = NULL;
1677 	} else if (m->m_nextpkt == NULL) {
1678 		sb->sb_lastrecord = m;
1679 	}
1680 
1681 	return (mfree);
1682 }
1683 
1684 /*
1685  * Drop data from (the front of) a sockbuf.
1686  */
1687 void
sbdrop_locked(struct sockbuf * sb,int len)1688 sbdrop_locked(struct sockbuf *sb, int len)
1689 {
1690 
1691 	SOCKBUF_LOCK_ASSERT(sb);
1692 	m_freem(sbcut_internal(sb, len));
1693 }
1694 
1695 /*
1696  * Drop data from (the front of) a sockbuf,
1697  * and return it to caller.
1698  */
1699 struct mbuf *
sbcut_locked(struct sockbuf * sb,int len)1700 sbcut_locked(struct sockbuf *sb, int len)
1701 {
1702 
1703 	SOCKBUF_LOCK_ASSERT(sb);
1704 	return (sbcut_internal(sb, len));
1705 }
1706 
1707 void
sbdrop(struct sockbuf * sb,int len)1708 sbdrop(struct sockbuf *sb, int len)
1709 {
1710 	struct mbuf *mfree;
1711 
1712 	SOCKBUF_LOCK(sb);
1713 	mfree = sbcut_internal(sb, len);
1714 	SOCKBUF_UNLOCK(sb);
1715 
1716 	m_freem(mfree);
1717 }
1718 
1719 struct mbuf *
sbsndptr_noadv(struct sockbuf * sb,uint32_t off,uint32_t * moff)1720 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1721 {
1722 	struct mbuf *m;
1723 
1724 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1725 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1726 		*moff = off;
1727 		if (sb->sb_sndptr == NULL) {
1728 			sb->sb_sndptr = sb->sb_mb;
1729 			sb->sb_sndptroff = 0;
1730 		}
1731 		return (sb->sb_mb);
1732 	} else {
1733 		m = sb->sb_sndptr;
1734 		off -= sb->sb_sndptroff;
1735 	}
1736 	*moff = off;
1737 	return (m);
1738 }
1739 
1740 void
sbsndptr_adv(struct sockbuf * sb,struct mbuf * mb,uint32_t len)1741 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1742 {
1743 	/*
1744 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1745 	 * it.
1746 	 */
1747 	struct mbuf *m;
1748 
1749 	if (mb != sb->sb_sndptr) {
1750 		/* Did not copyout at the same mbuf */
1751 		return;
1752 	}
1753 	m = mb;
1754 	while (m && (len > 0)) {
1755 		if (len >= m->m_len) {
1756 			len -= m->m_len;
1757 			if (m->m_next) {
1758 				sb->sb_sndptroff += m->m_len;
1759 				sb->sb_sndptr = m->m_next;
1760 			}
1761 			m = m->m_next;
1762 		} else {
1763 			len = 0;
1764 		}
1765 	}
1766 }
1767 
1768 /*
1769  * Return the first mbuf and the mbuf data offset for the provided
1770  * send offset without changing the "sb_sndptroff" field.
1771  */
1772 struct mbuf *
sbsndmbuf(struct sockbuf * sb,u_int off,u_int * moff)1773 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1774 {
1775 	struct mbuf *m;
1776 
1777 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1778 
1779 	/*
1780 	 * If the "off" is below the stored offset, which happens on
1781 	 * retransmits, just use "sb_mb":
1782 	 */
1783 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1784 		m = sb->sb_mb;
1785 	} else {
1786 		m = sb->sb_sndptr;
1787 		off -= sb->sb_sndptroff;
1788 	}
1789 	while (off > 0 && m != NULL) {
1790 		if (off < m->m_len)
1791 			break;
1792 		off -= m->m_len;
1793 		m = m->m_next;
1794 	}
1795 	*moff = off;
1796 	return (m);
1797 }
1798 
1799 /*
1800  * Drop a record off the front of a sockbuf and move the next record to the
1801  * front.
1802  */
1803 void
sbdroprecord_locked(struct sockbuf * sb)1804 sbdroprecord_locked(struct sockbuf *sb)
1805 {
1806 	struct mbuf *m;
1807 
1808 	SOCKBUF_LOCK_ASSERT(sb);
1809 
1810 	m = sb->sb_mb;
1811 	if (m) {
1812 		sb->sb_mb = m->m_nextpkt;
1813 		do {
1814 			sbfree(sb, m);
1815 			m = m_free(m);
1816 		} while (m);
1817 	}
1818 	SB_EMPTY_FIXUP(sb);
1819 }
1820 
1821 /*
1822  * Drop a record off the front of a sockbuf and move the next record to the
1823  * front.
1824  */
1825 void
sbdroprecord(struct sockbuf * sb)1826 sbdroprecord(struct sockbuf *sb)
1827 {
1828 
1829 	SOCKBUF_LOCK(sb);
1830 	sbdroprecord_locked(sb);
1831 	SOCKBUF_UNLOCK(sb);
1832 }
1833 
1834 /*
1835  * Create a "control" mbuf containing the specified data with the specified
1836  * type for presentation on a socket buffer.
1837  */
1838 struct mbuf *
sbcreatecontrol(const void * p,u_int size,int type,int level,int wait)1839 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1840 {
1841 	struct cmsghdr *cp;
1842 	struct mbuf *m;
1843 
1844 	MBUF_CHECKSLEEP(wait);
1845 
1846 	if (wait == M_NOWAIT) {
1847 		if (CMSG_SPACE(size) > MCLBYTES)
1848 			return (NULL);
1849 	} else
1850 		KASSERT(CMSG_SPACE(size) <= MCLBYTES,
1851 		    ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
1852 
1853 	if (CMSG_SPACE(size) > MLEN)
1854 		m = m_getcl(wait, MT_CONTROL, 0);
1855 	else
1856 		m = m_get(wait, MT_CONTROL);
1857 	if (m == NULL)
1858 		return (NULL);
1859 
1860 	KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1861 	    ("sbcreatecontrol: short mbuf"));
1862 	/*
1863 	 * Don't leave the padding between the msg header and the
1864 	 * cmsg data and the padding after the cmsg data un-initialized.
1865 	 */
1866 	cp = mtod(m, struct cmsghdr *);
1867 	bzero(cp, CMSG_SPACE(size));
1868 	if (p != NULL)
1869 		(void)memcpy(CMSG_DATA(cp), p, size);
1870 	m->m_len = CMSG_SPACE(size);
1871 	cp->cmsg_len = CMSG_LEN(size);
1872 	cp->cmsg_level = level;
1873 	cp->cmsg_type = type;
1874 	return (m);
1875 }
1876 
1877 /*
1878  * This does the same for socket buffers that sotoxsocket does for sockets:
1879  * generate an user-format data structure describing the socket buffer.  Note
1880  * that the xsockbuf structure, since it is always embedded in a socket, does
1881  * not include a self pointer nor a length.  We make this entry point public
1882  * in case some other mechanism needs it.
1883  */
1884 void
sbtoxsockbuf(struct sockbuf * sb,struct xsockbuf * xsb)1885 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1886 {
1887 
1888 	xsb->sb_cc = sb->sb_ccc;
1889 	xsb->sb_hiwat = sb->sb_hiwat;
1890 	xsb->sb_mbcnt = sb->sb_mbcnt;
1891 	xsb->sb_mbmax = sb->sb_mbmax;
1892 	xsb->sb_lowat = sb->sb_lowat;
1893 	xsb->sb_flags = sb->sb_flags;
1894 	xsb->sb_timeo = sb->sb_timeo;
1895 }
1896 
1897 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1898 static int dummy;
1899 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1900 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1901     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1902     sysctl_handle_sb_max, "LU",
1903     "Maximum socket buffer size");
1904 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1905     &sb_efficiency, 0, "Socket buffer size waste factor");
1906