1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
23
24
25 /*
26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
27 */
28
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/param.h>
32 #include <sys/errno.h>
33 #include <sys/signal.h>
34 #include <sys/stat.h>
35 #include <sys/proc.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stream.h>
41 #include <sys/strsubr.h>
42 #include <sys/stropts.h>
43 #include <sys/tihdr.h>
44 #include <sys/var.h>
45 #include <sys/poll.h>
46 #include <sys/termio.h>
47 #include <sys/ttold.h>
48 #include <sys/systm.h>
49 #include <sys/uio.h>
50 #include <sys/cmn_err.h>
51 #include <sys/sad.h>
52 #include <sys/netstack.h>
53 #include <sys/priocntl.h>
54 #include <sys/jioctl.h>
55 #include <sys/procset.h>
56 #include <sys/session.h>
57 #include <sys/kmem.h>
58 #include <sys/filio.h>
59 #include <sys/vtrace.h>
60 #include <sys/debug.h>
61 #include <sys/strredir.h>
62 #include <sys/fs/fifonode.h>
63 #include <sys/fs/snode.h>
64 #include <sys/strlog.h>
65 #include <sys/strsun.h>
66 #include <sys/project.h>
67 #include <sys/kbio.h>
68 #include <sys/msio.h>
69 #include <sys/tty.h>
70 #include <sys/ptyvar.h>
71 #include <sys/vuid_event.h>
72 #include <sys/modctl.h>
73 #include <sys/sunddi.h>
74 #include <sys/sunldi_impl.h>
75 #include <sys/autoconf.h>
76 #include <sys/policy.h>
77 #include <sys/dld.h>
78 #include <sys/zone.h>
79 #include <c2/audit.h>
80
81 /*
82 * This define helps improve the readability of streams code while
83 * still maintaining a very old streams performance enhancement. The
84 * performance enhancement basically involved having all callers
85 * of straccess() perform the first check that straccess() will do
86 * locally before actually calling straccess(). (There by reducing
87 * the number of unnecessary calls to straccess().)
88 */
89 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \
90 (stp->sd_vnode->v_type == VFIFO) ? 0 : \
91 straccess((x), (y)))
92
93 /*
94 * what is mblk_pull_len?
95 *
96 * If a streams message consists of many short messages,
97 * a performance degradation occurs from copyout overhead.
98 * To decrease the per mblk overhead, messages that are
99 * likely to consist of many small mblks are pulled up into
100 * one continuous chunk of memory.
101 *
102 * To avoid the processing overhead of examining every
103 * mblk, a quick heuristic is used. If the first mblk in
104 * the message is shorter than mblk_pull_len, it is likely
105 * that the rest of the mblk will be short.
106 *
107 * This heuristic was decided upon after performance tests
108 * indicated that anything more complex slowed down the main
109 * code path.
110 */
111 #define MBLK_PULL_LEN 64
112 uint32_t mblk_pull_len = MBLK_PULL_LEN;
113
114 /*
115 * The sgttyb_handling flag controls the handling of the old BSD
116 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
117 *
118 * 0 - Emit no warnings at all and retain old, broken behavior.
119 * 1 - Emit no warnings and silently handle new semantics.
120 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
121 * (once per system invocation). Handle with new semantics.
122 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
123 * made (so that offenders drop core and are easy to debug).
124 *
125 * The "new semantics" are that TIOCGETP returns B38400 for
126 * sg_[io]speed if the corresponding value is over B38400, and that
127 * TIOCSET[PN] accept B38400 in these cases to mean "retain current
128 * bit rate."
129 */
130 int sgttyb_handling = 1;
131 static boolean_t sgttyb_complaint;
132
133 /* don't push drcompat module by default on Style-2 streams */
134 static int push_drcompat = 0;
135
136 /*
137 * id value used to distinguish between different ioctl messages
138 */
139 static uint32_t ioc_id;
140
141 static void putback(struct stdata *, queue_t *, mblk_t *, int);
142 static void strcleanall(struct vnode *);
143 static int strwsrv(queue_t *);
144 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
145
146 /*
147 * qinit and module_info structures for stream head read and write queues
148 */
149 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
150 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
151 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
152 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
153 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
154 FIFOLOWAT };
155 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
156 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
157 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
158
159 extern kmutex_t strresources; /* protects global resources */
160 extern kmutex_t muxifier; /* single-threads multiplexor creation */
161
162 static boolean_t msghasdata(mblk_t *bp);
163 #define msgnodata(bp) (!msghasdata(bp))
164
165 /*
166 * Stream head locking notes:
167 * There are four monitors associated with the stream head:
168 * 1. v_stream monitor: in stropen() and strclose() v_lock
169 * is held while the association of vnode and stream
170 * head is established or tested for.
171 * 2. open/close/push/pop monitor: sd_lock is held while each
172 * thread bids for exclusive access to this monitor
173 * for opening or closing a stream. In addition, this
174 * monitor is entered during pushes and pops. This
175 * guarantees that during plumbing operations there
176 * is only one thread trying to change the plumbing.
177 * Any other threads present in the stream are only
178 * using the plumbing.
179 * 3. read/write monitor: in the case of read, a thread holds
180 * sd_lock while trying to get data from the stream
181 * head queue. if there is none to fulfill a read
182 * request, it sets RSLEEP and calls cv_wait_sig() down
183 * in strwaitq() to await the arrival of new data.
184 * when new data arrives in strrput(), sd_lock is acquired
185 * before testing for RSLEEP and calling cv_broadcast().
186 * the behavior of strwrite(), strwsrv(), and WSLEEP
187 * mirror this.
188 * 4. ioctl monitor: sd_lock is gotten to ensure that only one
189 * thread is doing an ioctl at a time.
190 */
191
192 static int
push_mod(queue_t * qp,dev_t * devp,struct stdata * stp,const char * name,int anchor,cred_t * crp,uint_t anchor_zoneid)193 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
194 int anchor, cred_t *crp, uint_t anchor_zoneid)
195 {
196 int error;
197 fmodsw_impl_t *fp;
198
199 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
200 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
201 return (error);
202 }
203 if (stp->sd_pushcnt >= nstrpush) {
204 return (EINVAL);
205 }
206
207 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
208 stp->sd_flag |= STREOPENFAIL;
209 return (EINVAL);
210 }
211
212 /*
213 * push new module and call its open routine via qattach
214 */
215 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
216 return (error);
217
218 /*
219 * Check to see if caller wants a STREAMS anchor
220 * put at this place in the stream, and add if so.
221 */
222 mutex_enter(&stp->sd_lock);
223 if (anchor == stp->sd_pushcnt) {
224 stp->sd_anchor = stp->sd_pushcnt;
225 stp->sd_anchorzone = anchor_zoneid;
226 }
227 mutex_exit(&stp->sd_lock);
228
229 return (0);
230 }
231
232 /*
233 * Open a stream device.
234 */
235 int
stropen(vnode_t * vp,dev_t * devp,int flag,cred_t * crp)236 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
237 {
238 struct stdata *stp;
239 queue_t *qp;
240 int s;
241 dev_t dummydev, savedev;
242 struct autopush *ap;
243 struct dlautopush dlap;
244 int error = 0;
245 ssize_t rmin, rmax;
246 int cloneopen;
247 queue_t *brq;
248 major_t major;
249 str_stack_t *ss;
250 zoneid_t zoneid;
251 uint_t anchor;
252
253 /*
254 * If the stream already exists, wait for any open in progress
255 * to complete, then call the open function of each module and
256 * driver in the stream. Otherwise create the stream.
257 */
258 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
259 retry:
260 mutex_enter(&vp->v_lock);
261 if ((stp = vp->v_stream) != NULL) {
262
263 /*
264 * Waiting for stream to be created to device
265 * due to another open.
266 */
267 mutex_exit(&vp->v_lock);
268
269 if (STRMATED(stp)) {
270 struct stdata *strmatep = stp->sd_mate;
271
272 STRLOCKMATES(stp);
273 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
274 if (flag & (FNDELAY|FNONBLOCK)) {
275 error = EAGAIN;
276 mutex_exit(&strmatep->sd_lock);
277 goto ckreturn;
278 }
279 mutex_exit(&stp->sd_lock);
280 if (!cv_wait_sig(&strmatep->sd_monitor,
281 &strmatep->sd_lock)) {
282 error = EINTR;
283 mutex_exit(&strmatep->sd_lock);
284 mutex_enter(&stp->sd_lock);
285 goto ckreturn;
286 }
287 mutex_exit(&strmatep->sd_lock);
288 goto retry;
289 }
290 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
291 if (flag & (FNDELAY|FNONBLOCK)) {
292 error = EAGAIN;
293 mutex_exit(&strmatep->sd_lock);
294 goto ckreturn;
295 }
296 mutex_exit(&strmatep->sd_lock);
297 if (!cv_wait_sig(&stp->sd_monitor,
298 &stp->sd_lock)) {
299 error = EINTR;
300 goto ckreturn;
301 }
302 mutex_exit(&stp->sd_lock);
303 goto retry;
304 }
305
306 if (stp->sd_flag & (STRDERR|STWRERR)) {
307 error = EIO;
308 mutex_exit(&strmatep->sd_lock);
309 goto ckreturn;
310 }
311
312 stp->sd_flag |= STWOPEN;
313 STRUNLOCKMATES(stp);
314 } else {
315 mutex_enter(&stp->sd_lock);
316 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
317 if (flag & (FNDELAY|FNONBLOCK)) {
318 error = EAGAIN;
319 goto ckreturn;
320 }
321 if (!cv_wait_sig(&stp->sd_monitor,
322 &stp->sd_lock)) {
323 error = EINTR;
324 goto ckreturn;
325 }
326 mutex_exit(&stp->sd_lock);
327 goto retry; /* could be clone! */
328 }
329
330 if (stp->sd_flag & (STRDERR|STWRERR)) {
331 error = EIO;
332 goto ckreturn;
333 }
334
335 stp->sd_flag |= STWOPEN;
336 mutex_exit(&stp->sd_lock);
337 }
338
339 /*
340 * Open all modules and devices down stream to notify
341 * that another user is streaming. For modules, set the
342 * last argument to MODOPEN and do not pass any open flags.
343 * Ignore dummydev since this is not the first open.
344 */
345 claimstr(stp->sd_wrq);
346 qp = stp->sd_wrq;
347 while (_SAMESTR(qp)) {
348 qp = qp->q_next;
349 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
350 break;
351 }
352 releasestr(stp->sd_wrq);
353 mutex_enter(&stp->sd_lock);
354 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
355 stp->sd_rerror = 0;
356 stp->sd_werror = 0;
357 ckreturn:
358 cv_broadcast(&stp->sd_monitor);
359 mutex_exit(&stp->sd_lock);
360 return (error);
361 }
362
363 /*
364 * This vnode isn't streaming. SPECFS already
365 * checked for multiple vnodes pointing to the
366 * same stream, so create a stream to the driver.
367 */
368 qp = allocq();
369 stp = shalloc(qp);
370
371 /*
372 * Initialize stream head. shalloc() has given us
373 * exclusive access, and we have the vnode locked;
374 * we can do whatever we want with stp.
375 */
376 stp->sd_flag = STWOPEN;
377 stp->sd_siglist = NULL;
378 stp->sd_pollist.ph_list = NULL;
379 stp->sd_sigflags = 0;
380 stp->sd_mark = NULL;
381 stp->sd_closetime = STRTIMOUT;
382 stp->sd_sidp = NULL;
383 stp->sd_pgidp = NULL;
384 stp->sd_vnode = vp;
385 stp->sd_rerror = 0;
386 stp->sd_werror = 0;
387 stp->sd_wroff = 0;
388 stp->sd_tail = 0;
389 stp->sd_iocblk = NULL;
390 stp->sd_cmdblk = NULL;
391 stp->sd_pushcnt = 0;
392 stp->sd_qn_minpsz = 0;
393 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */
394 stp->sd_maxblk = INFPSZ;
395 qp->q_ptr = _WR(qp)->q_ptr = stp;
396 STREAM(qp) = STREAM(_WR(qp)) = stp;
397 vp->v_stream = stp;
398 mutex_exit(&vp->v_lock);
399 if (vp->v_type == VFIFO) {
400 stp->sd_flag |= OLDNDELAY;
401 /*
402 * This means, both for pipes and fifos
403 * strwrite will send SIGPIPE if the other
404 * end is closed. For putmsg it depends
405 * on whether it is a XPG4_2 application
406 * or not
407 */
408 stp->sd_wput_opt = SW_SIGPIPE;
409
410 /* setq might sleep in kmem_alloc - avoid holding locks. */
411 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
412 SQ_CI|SQ_CO, B_FALSE);
413
414 set_qend(qp);
415 stp->sd_strtab = fifo_getinfo();
416 _WR(qp)->q_nfsrv = _WR(qp);
417 qp->q_nfsrv = qp;
418 /*
419 * Wake up others that are waiting for stream to be created.
420 */
421 mutex_enter(&stp->sd_lock);
422 /*
423 * nothing is be pushed on stream yet, so
424 * optimized stream head packetsizes are just that
425 * of the read queue
426 */
427 stp->sd_qn_minpsz = qp->q_minpsz;
428 stp->sd_qn_maxpsz = qp->q_maxpsz;
429 stp->sd_flag &= ~STWOPEN;
430 goto fifo_opendone;
431 }
432 /* setq might sleep in kmem_alloc - avoid holding locks. */
433 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
434
435 set_qend(qp);
436
437 /*
438 * Open driver and create stream to it (via qattach).
439 */
440 savedev = *devp;
441 cloneopen = (getmajor(*devp) == clone_major);
442 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
443 mutex_enter(&vp->v_lock);
444 vp->v_stream = NULL;
445 mutex_exit(&vp->v_lock);
446 mutex_enter(&stp->sd_lock);
447 cv_broadcast(&stp->sd_monitor);
448 mutex_exit(&stp->sd_lock);
449 freeq(_RD(qp));
450 shfree(stp);
451 return (error);
452 }
453 /*
454 * Set sd_strtab after open in order to handle clonable drivers
455 */
456 stp->sd_strtab = STREAMSTAB(getmajor(*devp));
457
458 /*
459 * Historical note: dummydev used to be be prior to the initial
460 * open (via qattach above), which made the value seen
461 * inconsistent between an I_PUSH and an autopush of a module.
462 */
463 dummydev = *devp;
464
465 /*
466 * For clone open of old style (Q not associated) network driver,
467 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
468 */
469 brq = _RD(_WR(qp)->q_next);
470 major = getmajor(*devp);
471 if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
472 ((brq->q_flag & _QASSOCIATED) == 0)) {
473 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
474 cmn_err(CE_WARN, "cannot push " DRMODNAME
475 " streams module");
476 }
477
478 if (!NETWORK_DRV(major)) {
479 savedev = *devp;
480 } else {
481 /*
482 * For network devices, process differently based on the
483 * return value from dld_autopush():
484 *
485 * 0: the passed-in device points to a GLDv3 datalink with
486 * per-link autopush configuration; use that configuration
487 * and ignore any per-driver autopush configuration.
488 *
489 * 1: the passed-in device points to a physical GLDv3
490 * datalink without per-link autopush configuration. The
491 * passed in device was changed to refer to the actual
492 * physical device (if it's not already); we use that new
493 * device to look up any per-driver autopush configuration.
494 *
495 * -1: neither of the above cases applied; use the initial
496 * device to look up any per-driver autopush configuration.
497 */
498 switch (dld_autopush(&savedev, &dlap)) {
499 case 0:
500 zoneid = crgetzoneid(crp);
501 for (s = 0; s < dlap.dap_npush; s++) {
502 error = push_mod(qp, &dummydev, stp,
503 dlap.dap_aplist[s], dlap.dap_anchor, crp,
504 zoneid);
505 if (error != 0)
506 break;
507 }
508 goto opendone;
509 case 1:
510 break;
511 case -1:
512 savedev = *devp;
513 break;
514 }
515 }
516 /*
517 * Find the autopush configuration based on "savedev". Start with the
518 * global zone. If not found check in the local zone.
519 */
520 zoneid = GLOBAL_ZONEID;
521 retryap:
522 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
523 netstack_str;
524 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
525 netstack_rele(ss->ss_netstack);
526 if (zoneid == GLOBAL_ZONEID) {
527 /*
528 * None found. Also look in the zone's autopush table.
529 */
530 zoneid = crgetzoneid(crp);
531 if (zoneid != GLOBAL_ZONEID)
532 goto retryap;
533 }
534 goto opendone;
535 }
536 anchor = ap->ap_anchor;
537 zoneid = crgetzoneid(crp);
538 for (s = 0; s < ap->ap_npush; s++) {
539 error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
540 anchor, crp, zoneid);
541 if (error != 0)
542 break;
543 }
544 sad_ap_rele(ap, ss);
545 netstack_rele(ss->ss_netstack);
546
547 opendone:
548
549 /*
550 * let specfs know that open failed part way through
551 */
552 if (error) {
553 mutex_enter(&stp->sd_lock);
554 stp->sd_flag |= STREOPENFAIL;
555 mutex_exit(&stp->sd_lock);
556 }
557
558 /*
559 * Wake up others that are waiting for stream to be created.
560 */
561 mutex_enter(&stp->sd_lock);
562 stp->sd_flag &= ~STWOPEN;
563
564 /*
565 * As a performance concern we are caching the values of
566 * q_minpsz and q_maxpsz of the module below the stream
567 * head in the stream head.
568 */
569 mutex_enter(QLOCK(stp->sd_wrq->q_next));
570 rmin = stp->sd_wrq->q_next->q_minpsz;
571 rmax = stp->sd_wrq->q_next->q_maxpsz;
572 mutex_exit(QLOCK(stp->sd_wrq->q_next));
573
574 /* do this processing here as a performance concern */
575 if (strmsgsz != 0) {
576 if (rmax == INFPSZ)
577 rmax = strmsgsz;
578 else
579 rmax = MIN(strmsgsz, rmax);
580 }
581
582 mutex_enter(QLOCK(stp->sd_wrq));
583 stp->sd_qn_minpsz = rmin;
584 stp->sd_qn_maxpsz = rmax;
585 mutex_exit(QLOCK(stp->sd_wrq));
586
587 fifo_opendone:
588 cv_broadcast(&stp->sd_monitor);
589 mutex_exit(&stp->sd_lock);
590 return (error);
591 }
592
593 static int strsink(queue_t *, mblk_t *);
594 static struct qinit deadrend = {
595 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
596 };
597 static struct qinit deadwend = {
598 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
599 };
600
601 /*
602 * Close a stream.
603 * This is called from closef() on the last close of an open stream.
604 * Strclean() will already have removed the siglist and pollist
605 * information, so all that remains is to remove all multiplexor links
606 * for the stream, pop all the modules (and the driver), and free the
607 * stream structure.
608 */
609
610 int
strclose(struct vnode * vp,int flag,cred_t * crp)611 strclose(struct vnode *vp, int flag, cred_t *crp)
612 {
613 struct stdata *stp;
614 queue_t *qp;
615 int rval;
616 int freestp = 1;
617 queue_t *rmq;
618
619 TRACE_1(TR_FAC_STREAMS_FR,
620 TR_STRCLOSE, "strclose:%p", vp);
621 ASSERT(vp->v_stream);
622
623 stp = vp->v_stream;
624 ASSERT(!(stp->sd_flag & STPLEX));
625 qp = stp->sd_wrq;
626
627 /*
628 * Needed so that strpoll will return non-zero for this fd.
629 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
630 */
631 mutex_enter(&stp->sd_lock);
632 stp->sd_flag |= STRHUP;
633 mutex_exit(&stp->sd_lock);
634
635 /*
636 * If the registered process or process group did not have an
637 * open instance of this stream then strclean would not be
638 * called. Thus at the time of closing all remaining siglist entries
639 * are removed.
640 */
641 if (stp->sd_siglist != NULL)
642 strcleanall(vp);
643
644 ASSERT(stp->sd_siglist == NULL);
645 ASSERT(stp->sd_sigflags == 0);
646
647 if (STRMATED(stp)) {
648 struct stdata *strmatep = stp->sd_mate;
649 int waited = 1;
650
651 STRLOCKMATES(stp);
652 while (waited) {
653 waited = 0;
654 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
655 mutex_exit(&strmatep->sd_lock);
656 cv_wait(&stp->sd_monitor, &stp->sd_lock);
657 mutex_exit(&stp->sd_lock);
658 STRLOCKMATES(stp);
659 waited = 1;
660 }
661 while (strmatep->sd_flag &
662 (STWOPEN|STRCLOSE|STRPLUMB)) {
663 mutex_exit(&stp->sd_lock);
664 cv_wait(&strmatep->sd_monitor,
665 &strmatep->sd_lock);
666 mutex_exit(&strmatep->sd_lock);
667 STRLOCKMATES(stp);
668 waited = 1;
669 }
670 }
671 stp->sd_flag |= STRCLOSE;
672 STRUNLOCKMATES(stp);
673 } else {
674 mutex_enter(&stp->sd_lock);
675 stp->sd_flag |= STRCLOSE;
676 mutex_exit(&stp->sd_lock);
677 }
678
679 ASSERT(qp->q_first == NULL); /* No more delayed write */
680
681 /* Check if an I_LINK was ever done on this stream */
682 if (stp->sd_flag & STRHASLINKS) {
683 netstack_t *ns;
684 str_stack_t *ss;
685
686 ns = netstack_find_by_cred(crp);
687 ASSERT(ns != NULL);
688 ss = ns->netstack_str;
689 ASSERT(ss != NULL);
690
691 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
692 netstack_rele(ss->ss_netstack);
693 }
694
695 while (_SAMESTR(qp)) {
696 /*
697 * Holding sd_lock prevents q_next from changing in
698 * this stream.
699 */
700 mutex_enter(&stp->sd_lock);
701 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
702
703 /*
704 * sleep until awakened by strwsrv() or timeout
705 */
706 for (;;) {
707 mutex_enter(QLOCK(qp->q_next));
708 if (!(qp->q_next->q_mblkcnt)) {
709 mutex_exit(QLOCK(qp->q_next));
710 break;
711 }
712 stp->sd_flag |= WSLEEP;
713
714 /* ensure strwsrv gets enabled */
715 qp->q_next->q_flag |= QWANTW;
716 mutex_exit(QLOCK(qp->q_next));
717 /* get out if we timed out or recv'd a signal */
718 if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
719 stp->sd_closetime, 0) <= 0) {
720 break;
721 }
722 }
723 stp->sd_flag &= ~WSLEEP;
724 }
725 mutex_exit(&stp->sd_lock);
726
727 rmq = qp->q_next;
728 if (rmq->q_flag & QISDRV) {
729 ASSERT(!_SAMESTR(rmq));
730 wait_sq_svc(_RD(qp)->q_syncq);
731 }
732
733 qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
734 }
735
736 /*
737 * Since we call pollwakeup in close() now, the poll list should
738 * be empty in most cases. The only exception is the layered devices
739 * (e.g. the console drivers with redirection modules pushed on top
740 * of it). We have to do this after calling qdetach() because
741 * the redirection module won't have torn down the console
742 * redirection until after qdetach() has been invoked.
743 */
744 if (stp->sd_pollist.ph_list != NULL) {
745 pollwakeup(&stp->sd_pollist, POLLERR);
746 pollhead_clean(&stp->sd_pollist);
747 }
748 ASSERT(stp->sd_pollist.ph_list == NULL);
749 ASSERT(stp->sd_sidp == NULL);
750 ASSERT(stp->sd_pgidp == NULL);
751
752 /* Prevent qenable from re-enabling the stream head queue */
753 disable_svc(_RD(qp));
754
755 /*
756 * Wait until service procedure of each queue is
757 * run, if QINSERVICE is set.
758 */
759 wait_svc(_RD(qp));
760
761 /*
762 * Now, flush both queues.
763 */
764 flushq(_RD(qp), FLUSHALL);
765 flushq(qp, FLUSHALL);
766
767 /*
768 * If the write queue of the stream head is pointing to a
769 * read queue, we have a twisted stream. If the read queue
770 * is alive, convert the stream head queues into a dead end.
771 * If the read queue is dead, free the dead pair.
772 */
773 if (qp->q_next && !_SAMESTR(qp)) {
774 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */
775 flushq(qp->q_next, FLUSHALL); /* ensure no message */
776 shfree(qp->q_next->q_stream);
777 freeq(qp->q_next);
778 freeq(_RD(qp));
779 } else if (qp->q_next == _RD(qp)) { /* fifo */
780 freeq(_RD(qp));
781 } else { /* pipe */
782 freestp = 0;
783 /*
784 * The q_info pointers are never accessed when
785 * SQLOCK is held.
786 */
787 ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
788 mutex_enter(SQLOCK(qp->q_syncq));
789 qp->q_qinfo = &deadwend;
790 _RD(qp)->q_qinfo = &deadrend;
791 mutex_exit(SQLOCK(qp->q_syncq));
792 }
793 } else {
794 freeq(_RD(qp)); /* free stream head queue pair */
795 }
796
797 mutex_enter(&vp->v_lock);
798 if (stp->sd_iocblk) {
799 if (stp->sd_iocblk != (mblk_t *)-1) {
800 freemsg(stp->sd_iocblk);
801 }
802 stp->sd_iocblk = NULL;
803 }
804 stp->sd_vnode = NULL;
805 vp->v_stream = NULL;
806 mutex_exit(&vp->v_lock);
807 mutex_enter(&stp->sd_lock);
808 freemsg(stp->sd_cmdblk);
809 stp->sd_cmdblk = NULL;
810 stp->sd_flag &= ~STRCLOSE;
811 cv_broadcast(&stp->sd_monitor);
812 mutex_exit(&stp->sd_lock);
813
814 if (freestp)
815 shfree(stp);
816 return (0);
817 }
818
819 static int
strsink(queue_t * q,mblk_t * bp)820 strsink(queue_t *q, mblk_t *bp)
821 {
822 struct copyresp *resp;
823
824 switch (bp->b_datap->db_type) {
825 case M_FLUSH:
826 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
827 *bp->b_rptr &= ~FLUSHR;
828 bp->b_flag |= MSGNOLOOP;
829 /*
830 * Protect against the driver passing up
831 * messages after it has done a qprocsoff.
832 */
833 if (_OTHERQ(q)->q_next == NULL)
834 freemsg(bp);
835 else
836 qreply(q, bp);
837 } else {
838 freemsg(bp);
839 }
840 break;
841
842 case M_COPYIN:
843 case M_COPYOUT:
844 if (bp->b_cont) {
845 freemsg(bp->b_cont);
846 bp->b_cont = NULL;
847 }
848 bp->b_datap->db_type = M_IOCDATA;
849 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
850 resp = (struct copyresp *)bp->b_rptr;
851 resp->cp_rval = (caddr_t)1; /* failure */
852 /*
853 * Protect against the driver passing up
854 * messages after it has done a qprocsoff.
855 */
856 if (_OTHERQ(q)->q_next == NULL)
857 freemsg(bp);
858 else
859 qreply(q, bp);
860 break;
861
862 case M_IOCTL:
863 if (bp->b_cont) {
864 freemsg(bp->b_cont);
865 bp->b_cont = NULL;
866 }
867 bp->b_datap->db_type = M_IOCNAK;
868 /*
869 * Protect against the driver passing up
870 * messages after it has done a qprocsoff.
871 */
872 if (_OTHERQ(q)->q_next == NULL)
873 freemsg(bp);
874 else
875 qreply(q, bp);
876 break;
877
878 default:
879 freemsg(bp);
880 break;
881 }
882
883 return (0);
884 }
885
886 /*
887 * Clean up after a process when it closes a stream. This is called
888 * from closef for all closes, whereas strclose is called only for the
889 * last close on a stream. The siglist is scanned for entries for the
890 * current process, and these are removed.
891 */
892 void
strclean(struct vnode * vp)893 strclean(struct vnode *vp)
894 {
895 strsig_t *ssp, *pssp, *tssp;
896 stdata_t *stp;
897 int update = 0;
898
899 TRACE_1(TR_FAC_STREAMS_FR,
900 TR_STRCLEAN, "strclean:%p", vp);
901 stp = vp->v_stream;
902 pssp = NULL;
903 mutex_enter(&stp->sd_lock);
904 ssp = stp->sd_siglist;
905 while (ssp) {
906 if (ssp->ss_pidp == curproc->p_pidp) {
907 tssp = ssp->ss_next;
908 if (pssp)
909 pssp->ss_next = tssp;
910 else
911 stp->sd_siglist = tssp;
912 mutex_enter(&pidlock);
913 PID_RELE(ssp->ss_pidp);
914 mutex_exit(&pidlock);
915 kmem_free(ssp, sizeof (strsig_t));
916 update = 1;
917 ssp = tssp;
918 } else {
919 pssp = ssp;
920 ssp = ssp->ss_next;
921 }
922 }
923 if (update) {
924 stp->sd_sigflags = 0;
925 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
926 stp->sd_sigflags |= ssp->ss_events;
927 }
928 mutex_exit(&stp->sd_lock);
929 }
930
931 /*
932 * Used on the last close to remove any remaining items on the siglist.
933 * These could be present on the siglist due to I_ESETSIG calls that
934 * use process groups or processed that do not have an open file descriptor
935 * for this stream (Such entries would not be removed by strclean).
936 */
937 static void
strcleanall(struct vnode * vp)938 strcleanall(struct vnode *vp)
939 {
940 strsig_t *ssp, *nssp;
941 stdata_t *stp;
942
943 stp = vp->v_stream;
944 mutex_enter(&stp->sd_lock);
945 ssp = stp->sd_siglist;
946 stp->sd_siglist = NULL;
947 while (ssp) {
948 nssp = ssp->ss_next;
949 mutex_enter(&pidlock);
950 PID_RELE(ssp->ss_pidp);
951 mutex_exit(&pidlock);
952 kmem_free(ssp, sizeof (strsig_t));
953 ssp = nssp;
954 }
955 stp->sd_sigflags = 0;
956 mutex_exit(&stp->sd_lock);
957 }
958
959 /*
960 * Retrieve the next message from the logical stream head read queue
961 * using either rwnext (if sync stream) or getq_noenab.
962 * It is the callers responsibility to call qbackenable after
963 * it is finished with the message. The caller should not call
964 * qbackenable until after any putback calls to avoid spurious backenabling.
965 */
966 mblk_t *
strget(struct stdata * stp,queue_t * q,struct uio * uiop,int first,int * errorp)967 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
968 int *errorp)
969 {
970 mblk_t *bp;
971 int error;
972 ssize_t rbytes = 0;
973
974 /* Holding sd_lock prevents the read queue from changing */
975 ASSERT(MUTEX_HELD(&stp->sd_lock));
976
977 if (uiop != NULL && stp->sd_struiordq != NULL &&
978 q->q_first == NULL &&
979 (!first || (stp->sd_wakeq & RSLEEP))) {
980 /*
981 * Stream supports rwnext() for the read side.
982 * If this is the first time we're called by e.g. strread
983 * only do the downcall if there is a deferred wakeup
984 * (registered in sd_wakeq).
985 */
986 struiod_t uiod;
987
988 if (first)
989 stp->sd_wakeq &= ~RSLEEP;
990
991 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
992 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
993 uiod.d_mp = 0;
994 /*
995 * Mark that a thread is in rwnext on the read side
996 * to prevent strrput from nacking ioctls immediately.
997 * When the last concurrent rwnext returns
998 * the ioctls are nack'ed.
999 */
1000 ASSERT(MUTEX_HELD(&stp->sd_lock));
1001 stp->sd_struiodnak++;
1002 /*
1003 * Note: rwnext will drop sd_lock.
1004 */
1005 error = rwnext(q, &uiod);
1006 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1007 mutex_enter(&stp->sd_lock);
1008 stp->sd_struiodnak--;
1009 while (stp->sd_struiodnak == 0 &&
1010 ((bp = stp->sd_struionak) != NULL)) {
1011 stp->sd_struionak = bp->b_next;
1012 bp->b_next = NULL;
1013 bp->b_datap->db_type = M_IOCNAK;
1014 /*
1015 * Protect against the driver passing up
1016 * messages after it has done a qprocsoff.
1017 */
1018 if (_OTHERQ(q)->q_next == NULL)
1019 freemsg(bp);
1020 else {
1021 mutex_exit(&stp->sd_lock);
1022 qreply(q, bp);
1023 mutex_enter(&stp->sd_lock);
1024 }
1025 }
1026 ASSERT(MUTEX_HELD(&stp->sd_lock));
1027 if (error == 0 || error == EWOULDBLOCK) {
1028 if ((bp = uiod.d_mp) != NULL) {
1029 *errorp = 0;
1030 ASSERT(MUTEX_HELD(&stp->sd_lock));
1031 return (bp);
1032 }
1033 error = 0;
1034 } else if (error == EINVAL) {
1035 /*
1036 * The stream plumbing must have
1037 * changed while we were away, so
1038 * just turn off rwnext()s.
1039 */
1040 error = 0;
1041 } else if (error == EBUSY) {
1042 /*
1043 * The module might have data in transit using putnext
1044 * Fall back on waiting + getq.
1045 */
1046 error = 0;
1047 } else {
1048 *errorp = error;
1049 ASSERT(MUTEX_HELD(&stp->sd_lock));
1050 return (NULL);
1051 }
1052 /*
1053 * Try a getq in case a rwnext() generated mblk
1054 * has bubbled up via strrput().
1055 */
1056 }
1057 *errorp = 0;
1058 ASSERT(MUTEX_HELD(&stp->sd_lock));
1059
1060 /*
1061 * If we have a valid uio, try and use this as a guide for how
1062 * many bytes to retrieve from the queue via getq_noenab().
1063 * Doing this can avoid unneccesary counting of overlong
1064 * messages in putback(). We currently only do this for sockets
1065 * and only if there is no sd_rputdatafunc hook.
1066 *
1067 * The sd_rputdatafunc hook transforms the entire message
1068 * before any bytes in it can be given to a client. So, rbytes
1069 * must be 0 if there is a hook.
1070 */
1071 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1072 (stp->sd_rputdatafunc == NULL))
1073 rbytes = uiop->uio_resid;
1074
1075 return (getq_noenab(q, rbytes));
1076 }
1077
1078 /*
1079 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1080 * If the message does not fit in the uio the remainder of it is returned;
1081 * otherwise NULL is returned. Any embedded zero-length mblk_t's are
1082 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to
1083 * the error code, the message is consumed, and NULL is returned.
1084 */
1085 static mblk_t *
struiocopyout(mblk_t * bp,struct uio * uiop,int * errorp)1086 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1087 {
1088 int error;
1089 ptrdiff_t n;
1090 mblk_t *nbp;
1091
1092 ASSERT(bp->b_wptr >= bp->b_rptr);
1093
1094 do {
1095 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1096 ASSERT(n > 0);
1097
1098 error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1099 if (error != 0) {
1100 freemsg(bp);
1101 *errorp = error;
1102 return (NULL);
1103 }
1104 }
1105
1106 bp->b_rptr += n;
1107 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1108 nbp = bp;
1109 bp = bp->b_cont;
1110 freeb(nbp);
1111 }
1112 } while (bp != NULL && uiop->uio_resid > 0);
1113
1114 *errorp = 0;
1115 return (bp);
1116 }
1117
1118 /*
1119 * Read a stream according to the mode flags in sd_flag:
1120 *
1121 * (default mode) - Byte stream, msg boundaries are ignored
1122 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away
1123 * any data remaining in msg
1124 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1125 * any remaining data on head of read queue
1126 *
1127 * Consume readable messages on the front of the queue until
1128 * ttolwp(curthread)->lwp_count
1129 * is satisfied, the readable messages are exhausted, or a message
1130 * boundary is reached in a message mode. If no data was read and
1131 * the stream was not opened with the NDELAY flag, block until data arrives.
1132 * Otherwise return the data read and update the count.
1133 *
1134 * In default mode a 0 length message signifies end-of-file and terminates
1135 * a read in progress. The 0 length message is removed from the queue
1136 * only if it is the only message read (no data is read).
1137 *
1138 * An attempt to read an M_PROTO or M_PCPROTO message results in an
1139 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1140 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1141 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1142 * are unlinked from and M_DATA blocks in the message, the protos are
1143 * thrown away, and the data is read.
1144 */
1145 /* ARGSUSED */
1146 int
strread(struct vnode * vp,struct uio * uiop,cred_t * crp)1147 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1148 {
1149 struct stdata *stp;
1150 mblk_t *bp, *nbp;
1151 queue_t *q;
1152 int error = 0;
1153 uint_t old_sd_flag;
1154 int first;
1155 char rflg;
1156 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
1157 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
1158 short delim;
1159 unsigned char pri = 0;
1160 char waitflag;
1161 unsigned char type;
1162
1163 TRACE_1(TR_FAC_STREAMS_FR,
1164 TR_STRREAD_ENTER, "strread:%p", vp);
1165 ASSERT(vp->v_stream);
1166 stp = vp->v_stream;
1167
1168 mutex_enter(&stp->sd_lock);
1169
1170 if ((error = i_straccess(stp, JCREAD)) != 0) {
1171 mutex_exit(&stp->sd_lock);
1172 return (error);
1173 }
1174
1175 if (stp->sd_flag & (STRDERR|STPLEX)) {
1176 error = strgeterr(stp, STRDERR|STPLEX, 0);
1177 if (error != 0) {
1178 mutex_exit(&stp->sd_lock);
1179 return (error);
1180 }
1181 }
1182
1183 /*
1184 * Loop terminates when uiop->uio_resid == 0.
1185 */
1186 rflg = 0;
1187 waitflag = READWAIT;
1188 q = _RD(stp->sd_wrq);
1189 for (;;) {
1190 ASSERT(MUTEX_HELD(&stp->sd_lock));
1191 old_sd_flag = stp->sd_flag;
1192 mark = 0;
1193 delim = 0;
1194 first = 1;
1195 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1196 int done = 0;
1197
1198 ASSERT(MUTEX_HELD(&stp->sd_lock));
1199
1200 if (error != 0)
1201 goto oops;
1202
1203 if (stp->sd_flag & (STRHUP|STREOF)) {
1204 goto oops;
1205 }
1206 if (rflg && !(stp->sd_flag & STRDELIM)) {
1207 goto oops;
1208 }
1209 /*
1210 * If a read(fd,buf,0) has been done, there is no
1211 * need to sleep. We always have zero bytes to
1212 * return.
1213 */
1214 if (uiop->uio_resid == 0) {
1215 goto oops;
1216 }
1217
1218 qbackenable(q, 0);
1219
1220 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1221 "strread calls strwaitq:%p, %p, %p",
1222 vp, uiop, crp);
1223 if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1224 uiop->uio_fmode, -1, &done)) != 0 || done) {
1225 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1226 "strread error or done:%p, %p, %p",
1227 vp, uiop, crp);
1228 if ((uiop->uio_fmode & FNDELAY) &&
1229 (stp->sd_flag & OLDNDELAY) &&
1230 (error == EAGAIN))
1231 error = 0;
1232 goto oops;
1233 }
1234 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1235 "strread awakes:%p, %p, %p", vp, uiop, crp);
1236 if ((error = i_straccess(stp, JCREAD)) != 0) {
1237 goto oops;
1238 }
1239 first = 0;
1240 }
1241
1242 ASSERT(MUTEX_HELD(&stp->sd_lock));
1243 ASSERT(bp);
1244 pri = bp->b_band;
1245 /*
1246 * Extract any mark information. If the message is not
1247 * completely consumed this information will be put in the mblk
1248 * that is putback.
1249 * If MSGMARKNEXT is set and the message is completely consumed
1250 * the STRATMARK flag will be set below. Likewise, if
1251 * MSGNOTMARKNEXT is set and the message is
1252 * completely consumed STRNOTATMARK will be set.
1253 *
1254 * For some unknown reason strread only breaks the read at the
1255 * last mark.
1256 */
1257 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1258 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1259 (MSGMARKNEXT|MSGNOTMARKNEXT));
1260 if (mark != 0 && bp == stp->sd_mark) {
1261 if (rflg) {
1262 putback(stp, q, bp, pri);
1263 goto oops;
1264 }
1265 mark |= _LASTMARK;
1266 stp->sd_mark = NULL;
1267 }
1268 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1269 delim = 1;
1270 mutex_exit(&stp->sd_lock);
1271
1272 if (STREAM_NEEDSERVICE(stp))
1273 stream_runservice(stp);
1274
1275 type = bp->b_datap->db_type;
1276
1277 switch (type) {
1278
1279 case M_DATA:
1280 ismdata:
1281 if (msgnodata(bp)) {
1282 if (mark || delim) {
1283 freemsg(bp);
1284 } else if (rflg) {
1285
1286 /*
1287 * If already read data put zero
1288 * length message back on queue else
1289 * free msg and return 0.
1290 */
1291 bp->b_band = pri;
1292 mutex_enter(&stp->sd_lock);
1293 putback(stp, q, bp, pri);
1294 mutex_exit(&stp->sd_lock);
1295 } else {
1296 freemsg(bp);
1297 }
1298 error = 0;
1299 goto oops1;
1300 }
1301
1302 rflg = 1;
1303 waitflag |= NOINTR;
1304 bp = struiocopyout(bp, uiop, &error);
1305 if (error != 0)
1306 goto oops1;
1307
1308 mutex_enter(&stp->sd_lock);
1309 if (bp) {
1310 /*
1311 * Have remaining data in message.
1312 * Free msg if in discard mode.
1313 */
1314 if (stp->sd_read_opt & RD_MSGDIS) {
1315 freemsg(bp);
1316 } else {
1317 bp->b_band = pri;
1318 if ((mark & _LASTMARK) &&
1319 (stp->sd_mark == NULL))
1320 stp->sd_mark = bp;
1321 bp->b_flag |= mark & ~_LASTMARK;
1322 if (delim)
1323 bp->b_flag |= MSGDELIM;
1324 if (msgnodata(bp))
1325 freemsg(bp);
1326 else
1327 putback(stp, q, bp, pri);
1328 }
1329 } else {
1330 /*
1331 * Consumed the complete message.
1332 * Move the MSG*MARKNEXT information
1333 * to the stream head just in case
1334 * the read queue becomes empty.
1335 *
1336 * If the stream head was at the mark
1337 * (STRATMARK) before we dropped sd_lock above
1338 * and some data was consumed then we have
1339 * moved past the mark thus STRATMARK is
1340 * cleared. However, if a message arrived in
1341 * strrput during the copyout above causing
1342 * STRATMARK to be set we can not clear that
1343 * flag.
1344 */
1345 if (mark &
1346 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1347 if (mark & MSGMARKNEXT) {
1348 stp->sd_flag &= ~STRNOTATMARK;
1349 stp->sd_flag |= STRATMARK;
1350 } else if (mark & MSGNOTMARKNEXT) {
1351 stp->sd_flag &= ~STRATMARK;
1352 stp->sd_flag |= STRNOTATMARK;
1353 } else {
1354 stp->sd_flag &=
1355 ~(STRATMARK|STRNOTATMARK);
1356 }
1357 } else if (rflg && (old_sd_flag & STRATMARK)) {
1358 stp->sd_flag &= ~STRATMARK;
1359 }
1360 }
1361
1362 /*
1363 * Check for signal messages at the front of the read
1364 * queue and generate the signal(s) if appropriate.
1365 * The only signal that can be on queue is M_SIG at
1366 * this point.
1367 */
1368 while ((((bp = q->q_first)) != NULL) &&
1369 (bp->b_datap->db_type == M_SIG)) {
1370 bp = getq_noenab(q, 0);
1371 /*
1372 * sd_lock is held so the content of the
1373 * read queue can not change.
1374 */
1375 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG);
1376 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
1377 mutex_exit(&stp->sd_lock);
1378 freemsg(bp);
1379 if (STREAM_NEEDSERVICE(stp))
1380 stream_runservice(stp);
1381 mutex_enter(&stp->sd_lock);
1382 }
1383
1384 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1385 delim ||
1386 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1387 goto oops;
1388 }
1389 continue;
1390
1391 case M_SIG:
1392 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1393 freemsg(bp);
1394 mutex_enter(&stp->sd_lock);
1395 continue;
1396
1397 case M_PROTO:
1398 case M_PCPROTO:
1399 /*
1400 * Only data messages are readable.
1401 * Any others generate an error, unless
1402 * RD_PROTDIS or RD_PROTDAT is set.
1403 */
1404 if (stp->sd_read_opt & RD_PROTDAT) {
1405 for (nbp = bp; nbp; nbp = nbp->b_next) {
1406 if ((nbp->b_datap->db_type ==
1407 M_PROTO) ||
1408 (nbp->b_datap->db_type ==
1409 M_PCPROTO)) {
1410 nbp->b_datap->db_type = M_DATA;
1411 } else {
1412 break;
1413 }
1414 }
1415 /*
1416 * clear stream head hi pri flag based on
1417 * first message
1418 */
1419 if (type == M_PCPROTO) {
1420 mutex_enter(&stp->sd_lock);
1421 stp->sd_flag &= ~STRPRI;
1422 mutex_exit(&stp->sd_lock);
1423 }
1424 goto ismdata;
1425 } else if (stp->sd_read_opt & RD_PROTDIS) {
1426 /*
1427 * discard non-data messages
1428 */
1429 while (bp &&
1430 ((bp->b_datap->db_type == M_PROTO) ||
1431 (bp->b_datap->db_type == M_PCPROTO))) {
1432 nbp = unlinkb(bp);
1433 freeb(bp);
1434 bp = nbp;
1435 }
1436 /*
1437 * clear stream head hi pri flag based on
1438 * first message
1439 */
1440 if (type == M_PCPROTO) {
1441 mutex_enter(&stp->sd_lock);
1442 stp->sd_flag &= ~STRPRI;
1443 mutex_exit(&stp->sd_lock);
1444 }
1445 if (bp) {
1446 bp->b_band = pri;
1447 goto ismdata;
1448 } else {
1449 break;
1450 }
1451 }
1452 /* FALLTHRU */
1453 case M_PASSFP:
1454 if ((bp->b_datap->db_type == M_PASSFP) &&
1455 (stp->sd_read_opt & RD_PROTDIS)) {
1456 freemsg(bp);
1457 break;
1458 }
1459 mutex_enter(&stp->sd_lock);
1460 putback(stp, q, bp, pri);
1461 mutex_exit(&stp->sd_lock);
1462 if (rflg == 0)
1463 error = EBADMSG;
1464 goto oops1;
1465
1466 default:
1467 /*
1468 * Garbage on stream head read queue.
1469 */
1470 cmn_err(CE_WARN, "bad %x found at stream head\n",
1471 bp->b_datap->db_type);
1472 freemsg(bp);
1473 goto oops1;
1474 }
1475 mutex_enter(&stp->sd_lock);
1476 }
1477 oops:
1478 mutex_exit(&stp->sd_lock);
1479 oops1:
1480 qbackenable(q, pri);
1481 return (error);
1482 #undef _LASTMARK
1483 }
1484
1485 /*
1486 * Default processing of M_PROTO/M_PCPROTO messages.
1487 * Determine which wakeups and signals are needed.
1488 * This can be replaced by a user-specified procedure for kernel users
1489 * of STREAMS.
1490 */
1491 /* ARGSUSED */
1492 mblk_t *
strrput_proto(vnode_t * vp,mblk_t * mp,strwakeup_t * wakeups,strsigset_t * firstmsgsigs,strsigset_t * allmsgsigs,strpollset_t * pollwakeups)1493 strrput_proto(vnode_t *vp, mblk_t *mp,
1494 strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1495 strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1496 {
1497 *wakeups = RSLEEP;
1498 *allmsgsigs = 0;
1499
1500 switch (mp->b_datap->db_type) {
1501 case M_PROTO:
1502 if (mp->b_band == 0) {
1503 *firstmsgsigs = S_INPUT | S_RDNORM;
1504 *pollwakeups = POLLIN | POLLRDNORM;
1505 } else {
1506 *firstmsgsigs = S_INPUT | S_RDBAND;
1507 *pollwakeups = POLLIN | POLLRDBAND;
1508 }
1509 break;
1510 case M_PCPROTO:
1511 *firstmsgsigs = S_HIPRI;
1512 *pollwakeups = POLLPRI;
1513 break;
1514 }
1515 return (mp);
1516 }
1517
1518 /*
1519 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1520 * M_PASSFP messages.
1521 * Determine which wakeups and signals are needed.
1522 * This can be replaced by a user-specified procedure for kernel users
1523 * of STREAMS.
1524 */
1525 /* ARGSUSED */
1526 mblk_t *
strrput_misc(vnode_t * vp,mblk_t * mp,strwakeup_t * wakeups,strsigset_t * firstmsgsigs,strsigset_t * allmsgsigs,strpollset_t * pollwakeups)1527 strrput_misc(vnode_t *vp, mblk_t *mp,
1528 strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1529 strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1530 {
1531 *wakeups = 0;
1532 *firstmsgsigs = 0;
1533 *allmsgsigs = 0;
1534 *pollwakeups = 0;
1535 return (mp);
1536 }
1537
1538 /*
1539 * Stream read put procedure. Called from downstream driver/module
1540 * with messages for the stream head. Data, protocol, and in-stream
1541 * signal messages are placed on the queue, others are handled directly.
1542 */
1543 int
strrput(queue_t * q,mblk_t * bp)1544 strrput(queue_t *q, mblk_t *bp)
1545 {
1546 struct stdata *stp;
1547 ulong_t rput_opt;
1548 strwakeup_t wakeups;
1549 strsigset_t firstmsgsigs; /* Signals if first message on queue */
1550 strsigset_t allmsgsigs; /* Signals for all messages */
1551 strsigset_t signals; /* Signals events to generate */
1552 strpollset_t pollwakeups;
1553 mblk_t *nextbp;
1554 uchar_t band = 0;
1555 int hipri_sig;
1556
1557 stp = (struct stdata *)q->q_ptr;
1558 /*
1559 * Use rput_opt for optimized access to the SR_ flags except
1560 * SR_POLLIN. That flag has to be checked under sd_lock since it
1561 * is modified by strpoll().
1562 */
1563 rput_opt = stp->sd_rput_opt;
1564
1565 ASSERT(qclaimed(q));
1566 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1567 "strrput called with message type:q %p bp %p", q, bp);
1568
1569 /*
1570 * Perform initial processing and pass to the parameterized functions.
1571 */
1572 ASSERT(bp->b_next == NULL);
1573
1574 switch (bp->b_datap->db_type) {
1575 case M_DATA:
1576 /*
1577 * sockfs is the only consumer of STREOF and when it is set,
1578 * it implies that the receiver is not interested in receiving
1579 * any more data, hence the mblk is freed to prevent unnecessary
1580 * message queueing at the stream head.
1581 */
1582 if (stp->sd_flag == STREOF) {
1583 freemsg(bp);
1584 return (0);
1585 }
1586 if ((rput_opt & SR_IGN_ZEROLEN) &&
1587 bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1588 /*
1589 * Ignore zero-length M_DATA messages. These might be
1590 * generated by some transports.
1591 * The zero-length M_DATA messages, even if they
1592 * are ignored, should effect the atmark tracking and
1593 * should wake up a thread sleeping in strwaitmark.
1594 */
1595 mutex_enter(&stp->sd_lock);
1596 if (bp->b_flag & MSGMARKNEXT) {
1597 /*
1598 * Record the position of the mark either
1599 * in q_last or in STRATMARK.
1600 */
1601 if (q->q_last != NULL) {
1602 q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1603 q->q_last->b_flag |= MSGMARKNEXT;
1604 } else {
1605 stp->sd_flag &= ~STRNOTATMARK;
1606 stp->sd_flag |= STRATMARK;
1607 }
1608 } else if (bp->b_flag & MSGNOTMARKNEXT) {
1609 /*
1610 * Record that this is not the position of
1611 * the mark either in q_last or in
1612 * STRNOTATMARK.
1613 */
1614 if (q->q_last != NULL) {
1615 q->q_last->b_flag &= ~MSGMARKNEXT;
1616 q->q_last->b_flag |= MSGNOTMARKNEXT;
1617 } else {
1618 stp->sd_flag &= ~STRATMARK;
1619 stp->sd_flag |= STRNOTATMARK;
1620 }
1621 }
1622 if (stp->sd_flag & RSLEEP) {
1623 stp->sd_flag &= ~RSLEEP;
1624 cv_broadcast(&q->q_wait);
1625 }
1626 mutex_exit(&stp->sd_lock);
1627 freemsg(bp);
1628 return (0);
1629 }
1630 wakeups = RSLEEP;
1631 if (bp->b_band == 0) {
1632 firstmsgsigs = S_INPUT | S_RDNORM;
1633 pollwakeups = POLLIN | POLLRDNORM;
1634 } else {
1635 firstmsgsigs = S_INPUT | S_RDBAND;
1636 pollwakeups = POLLIN | POLLRDBAND;
1637 }
1638 if (rput_opt & SR_SIGALLDATA)
1639 allmsgsigs = firstmsgsigs;
1640 else
1641 allmsgsigs = 0;
1642
1643 mutex_enter(&stp->sd_lock);
1644 if ((rput_opt & SR_CONSOL_DATA) &&
1645 (q->q_last != NULL) &&
1646 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1647 /*
1648 * Consolidate an M_DATA message onto an M_DATA,
1649 * M_PROTO, or M_PCPROTO by merging it with q_last.
1650 * The consolidation does not take place if
1651 * the old message is marked with either of the
1652 * marks or the delim flag or if the new
1653 * message is marked with MSGMARK. The MSGMARK
1654 * check is needed to handle the odd semantics of
1655 * MSGMARK where essentially the whole message
1656 * is to be treated as marked.
1657 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the
1658 * new message to the front of the b_cont chain.
1659 */
1660 mblk_t *lbp = q->q_last;
1661 unsigned char db_type = lbp->b_datap->db_type;
1662
1663 if ((db_type == M_DATA || db_type == M_PROTO ||
1664 db_type == M_PCPROTO) &&
1665 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1666 rmvq_noenab(q, lbp);
1667 /*
1668 * The first message in the b_cont list
1669 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1670 * We need to handle the case where we
1671 * are appending:
1672 *
1673 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1674 * 2) a MSGMARKNEXT to a plain message.
1675 * 3) a MSGNOTMARKNEXT to a plain message
1676 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1677 * message.
1678 *
1679 * Thus we never append a MSGMARKNEXT or
1680 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1681 */
1682 if (bp->b_flag & MSGMARKNEXT) {
1683 lbp->b_flag |= MSGMARKNEXT;
1684 lbp->b_flag &= ~MSGNOTMARKNEXT;
1685 bp->b_flag &= ~MSGMARKNEXT;
1686 } else if (bp->b_flag & MSGNOTMARKNEXT) {
1687 lbp->b_flag |= MSGNOTMARKNEXT;
1688 bp->b_flag &= ~MSGNOTMARKNEXT;
1689 }
1690
1691 linkb(lbp, bp);
1692 bp = lbp;
1693 /*
1694 * The new message logically isn't the first
1695 * even though the q_first check below thinks
1696 * it is. Clear the firstmsgsigs to make it
1697 * not appear to be first.
1698 */
1699 firstmsgsigs = 0;
1700 }
1701 }
1702 break;
1703
1704 case M_PASSFP:
1705 wakeups = RSLEEP;
1706 allmsgsigs = 0;
1707 if (bp->b_band == 0) {
1708 firstmsgsigs = S_INPUT | S_RDNORM;
1709 pollwakeups = POLLIN | POLLRDNORM;
1710 } else {
1711 firstmsgsigs = S_INPUT | S_RDBAND;
1712 pollwakeups = POLLIN | POLLRDBAND;
1713 }
1714 mutex_enter(&stp->sd_lock);
1715 break;
1716
1717 case M_PROTO:
1718 case M_PCPROTO:
1719 ASSERT(stp->sd_rprotofunc != NULL);
1720 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1721 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1722 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1723 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1724 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1725 POLLWRBAND)
1726
1727 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1728 ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1729 ASSERT((allmsgsigs & ~ALLSIG) == 0);
1730 ASSERT((pollwakeups & ~ALLPOLL) == 0);
1731
1732 mutex_enter(&stp->sd_lock);
1733 break;
1734
1735 default:
1736 ASSERT(stp->sd_rmiscfunc != NULL);
1737 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1738 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1739 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1740 ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1741 ASSERT((allmsgsigs & ~ALLSIG) == 0);
1742 ASSERT((pollwakeups & ~ALLPOLL) == 0);
1743 #undef ALLSIG
1744 #undef ALLPOLL
1745 mutex_enter(&stp->sd_lock);
1746 break;
1747 }
1748 ASSERT(MUTEX_HELD(&stp->sd_lock));
1749
1750 /* By default generate superset of signals */
1751 signals = (firstmsgsigs | allmsgsigs);
1752
1753 /*
1754 * The proto and misc functions can return multiple messages
1755 * as a b_next chain. Such messages are processed separately.
1756 */
1757 one_more:
1758 hipri_sig = 0;
1759 if (bp == NULL) {
1760 nextbp = NULL;
1761 } else {
1762 nextbp = bp->b_next;
1763 bp->b_next = NULL;
1764
1765 switch (bp->b_datap->db_type) {
1766 case M_PCPROTO:
1767 /*
1768 * Only one priority protocol message is allowed at the
1769 * stream head at a time.
1770 */
1771 if (stp->sd_flag & STRPRI) {
1772 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1773 "M_PCPROTO already at head");
1774 freemsg(bp);
1775 mutex_exit(&stp->sd_lock);
1776 goto done;
1777 }
1778 stp->sd_flag |= STRPRI;
1779 hipri_sig = 1;
1780 /* FALLTHRU */
1781 case M_DATA:
1782 case M_PROTO:
1783 case M_PASSFP:
1784 band = bp->b_band;
1785 /*
1786 * Marking doesn't work well when messages
1787 * are marked in more than one band. We only
1788 * remember the last message received, even if
1789 * it is placed on the queue ahead of other
1790 * marked messages.
1791 */
1792 if (bp->b_flag & MSGMARK)
1793 stp->sd_mark = bp;
1794 (void) putq(q, bp);
1795
1796 /*
1797 * If message is a PCPROTO message, always use
1798 * firstmsgsigs to determine if a signal should be
1799 * sent as strrput is the only place to send
1800 * signals for PCPROTO. Other messages are based on
1801 * the STRGETINPROG flag. The flag determines if
1802 * strrput or (k)strgetmsg will be responsible for
1803 * sending the signals, in the firstmsgsigs case.
1804 */
1805 if ((hipri_sig == 1) ||
1806 (((stp->sd_flag & STRGETINPROG) == 0) &&
1807 (q->q_first == bp)))
1808 signals = (firstmsgsigs | allmsgsigs);
1809 else
1810 signals = allmsgsigs;
1811 break;
1812
1813 default:
1814 mutex_exit(&stp->sd_lock);
1815 (void) strrput_nondata(q, bp);
1816 mutex_enter(&stp->sd_lock);
1817 break;
1818 }
1819 }
1820 ASSERT(MUTEX_HELD(&stp->sd_lock));
1821 /*
1822 * Wake sleeping read/getmsg and cancel deferred wakeup
1823 */
1824 if (wakeups & RSLEEP)
1825 stp->sd_wakeq &= ~RSLEEP;
1826
1827 wakeups &= stp->sd_flag;
1828 if (wakeups & RSLEEP) {
1829 stp->sd_flag &= ~RSLEEP;
1830 cv_broadcast(&q->q_wait);
1831 }
1832 if (wakeups & WSLEEP) {
1833 stp->sd_flag &= ~WSLEEP;
1834 cv_broadcast(&_WR(q)->q_wait);
1835 }
1836
1837 if (pollwakeups != 0) {
1838 if (pollwakeups == (POLLIN | POLLRDNORM)) {
1839 /*
1840 * Can't use rput_opt since it was not
1841 * read when sd_lock was held and SR_POLLIN is changed
1842 * by strpoll() under sd_lock.
1843 */
1844 if (!(stp->sd_rput_opt & SR_POLLIN))
1845 goto no_pollwake;
1846 stp->sd_rput_opt &= ~SR_POLLIN;
1847 }
1848 mutex_exit(&stp->sd_lock);
1849 pollwakeup(&stp->sd_pollist, pollwakeups);
1850 mutex_enter(&stp->sd_lock);
1851 }
1852 no_pollwake:
1853
1854 /*
1855 * strsendsig can handle multiple signals with a
1856 * single call.
1857 */
1858 if (stp->sd_sigflags & signals)
1859 strsendsig(stp->sd_siglist, signals, band, 0);
1860 mutex_exit(&stp->sd_lock);
1861
1862
1863 done:
1864 if (nextbp == NULL)
1865 return (0);
1866
1867 /*
1868 * Any signals were handled the first time.
1869 * Wakeups and pollwakeups are redone to avoid any race
1870 * conditions - all the messages are not queued until the
1871 * last message has been processed by strrput.
1872 */
1873 bp = nextbp;
1874 signals = firstmsgsigs = allmsgsigs = 0;
1875 mutex_enter(&stp->sd_lock);
1876 goto one_more;
1877 }
1878
1879 static void
log_dupioc(queue_t * rq,mblk_t * bp)1880 log_dupioc(queue_t *rq, mblk_t *bp)
1881 {
1882 queue_t *wq, *qp;
1883 char *modnames, *mnp, *dname;
1884 size_t maxmodstr;
1885 boolean_t islast;
1886
1887 /*
1888 * Allocate a buffer large enough to hold the names of nstrpush modules
1889 * and one driver, with spaces between and NUL terminator. If we can't
1890 * get memory, then we'll just log the driver name.
1891 */
1892 maxmodstr = nstrpush * (FMNAMESZ + 1);
1893 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1894
1895 /* march down write side to print log message down to the driver */
1896 wq = WR(rq);
1897
1898 /* make sure q_next doesn't shift around while we're grabbing data */
1899 claimstr(wq);
1900 qp = wq->q_next;
1901 do {
1902 dname = Q2NAME(qp);
1903 islast = !SAMESTR(qp) || qp->q_next == NULL;
1904 if (modnames == NULL) {
1905 /*
1906 * If we don't have memory, then get the driver name in
1907 * the log where we can see it. Note that memory
1908 * pressure is a possible cause of these sorts of bugs.
1909 */
1910 if (islast) {
1911 modnames = dname;
1912 maxmodstr = 0;
1913 }
1914 } else {
1915 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1916 if (!islast)
1917 *mnp++ = ' ';
1918 }
1919 qp = qp->q_next;
1920 } while (!islast);
1921 releasestr(wq);
1922 /* Cannot happen unless stream head is corrupt. */
1923 ASSERT(modnames != NULL);
1924 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1925 SL_CONSOLE|SL_TRACE|SL_ERROR,
1926 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1927 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1928 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1929 if (maxmodstr != 0)
1930 kmem_free(modnames, maxmodstr);
1931 }
1932
1933 int
strrput_nondata(queue_t * q,mblk_t * bp)1934 strrput_nondata(queue_t *q, mblk_t *bp)
1935 {
1936 struct stdata *stp;
1937 struct iocblk *iocbp;
1938 struct stroptions *sop;
1939 struct copyreq *reqp;
1940 struct copyresp *resp;
1941 unsigned char bpri;
1942 unsigned char flushed_already = 0;
1943
1944 stp = (struct stdata *)q->q_ptr;
1945
1946 ASSERT(!(stp->sd_flag & STPLEX));
1947 ASSERT(qclaimed(q));
1948
1949 switch (bp->b_datap->db_type) {
1950 case M_ERROR:
1951 /*
1952 * An error has occurred downstream, the errno is in the first
1953 * bytes of the message.
1954 */
1955 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */
1956 unsigned char rw = 0;
1957
1958 mutex_enter(&stp->sd_lock);
1959 if (*bp->b_rptr != NOERROR) { /* read error */
1960 if (*bp->b_rptr != 0) {
1961 if (stp->sd_flag & STRDERR)
1962 flushed_already |= FLUSHR;
1963 stp->sd_flag |= STRDERR;
1964 rw |= FLUSHR;
1965 } else {
1966 stp->sd_flag &= ~STRDERR;
1967 }
1968 stp->sd_rerror = *bp->b_rptr;
1969 }
1970 bp->b_rptr++;
1971 if (*bp->b_rptr != NOERROR) { /* write error */
1972 if (*bp->b_rptr != 0) {
1973 if (stp->sd_flag & STWRERR)
1974 flushed_already |= FLUSHW;
1975 stp->sd_flag |= STWRERR;
1976 rw |= FLUSHW;
1977 } else {
1978 stp->sd_flag &= ~STWRERR;
1979 }
1980 stp->sd_werror = *bp->b_rptr;
1981 }
1982 if (rw) {
1983 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
1984 "strrput cv_broadcast:q %p, bp %p",
1985 q, bp);
1986 cv_broadcast(&q->q_wait); /* readers */
1987 cv_broadcast(&_WR(q)->q_wait); /* writers */
1988 cv_broadcast(&stp->sd_monitor); /* ioctllers */
1989
1990 mutex_exit(&stp->sd_lock);
1991 pollwakeup(&stp->sd_pollist, POLLERR);
1992 mutex_enter(&stp->sd_lock);
1993
1994 if (stp->sd_sigflags & S_ERROR)
1995 strsendsig(stp->sd_siglist, S_ERROR, 0,
1996 ((rw & FLUSHR) ? stp->sd_rerror :
1997 stp->sd_werror));
1998 mutex_exit(&stp->sd_lock);
1999 /*
2000 * Send the M_FLUSH only
2001 * for the first M_ERROR
2002 * message on the stream
2003 */
2004 if (flushed_already == rw) {
2005 freemsg(bp);
2006 return (0);
2007 }
2008
2009 bp->b_datap->db_type = M_FLUSH;
2010 *bp->b_rptr = rw;
2011 bp->b_wptr = bp->b_rptr + 1;
2012 /*
2013 * Protect against the driver
2014 * passing up messages after
2015 * it has done a qprocsoff
2016 */
2017 if (_OTHERQ(q)->q_next == NULL)
2018 freemsg(bp);
2019 else
2020 qreply(q, bp);
2021 return (0);
2022 } else
2023 mutex_exit(&stp->sd_lock);
2024 } else if (*bp->b_rptr != 0) { /* Old flavor */
2025 if (stp->sd_flag & (STRDERR|STWRERR))
2026 flushed_already = FLUSHRW;
2027 mutex_enter(&stp->sd_lock);
2028 stp->sd_flag |= (STRDERR|STWRERR);
2029 stp->sd_rerror = *bp->b_rptr;
2030 stp->sd_werror = *bp->b_rptr;
2031 TRACE_2(TR_FAC_STREAMS_FR,
2032 TR_STRRPUT_WAKE2,
2033 "strrput wakeup #2:q %p, bp %p", q, bp);
2034 cv_broadcast(&q->q_wait); /* the readers */
2035 cv_broadcast(&_WR(q)->q_wait); /* the writers */
2036 cv_broadcast(&stp->sd_monitor); /* ioctllers */
2037
2038 mutex_exit(&stp->sd_lock);
2039 pollwakeup(&stp->sd_pollist, POLLERR);
2040 mutex_enter(&stp->sd_lock);
2041
2042 if (stp->sd_sigflags & S_ERROR)
2043 strsendsig(stp->sd_siglist, S_ERROR, 0,
2044 (stp->sd_werror ? stp->sd_werror :
2045 stp->sd_rerror));
2046 mutex_exit(&stp->sd_lock);
2047
2048 /*
2049 * Send the M_FLUSH only
2050 * for the first M_ERROR
2051 * message on the stream
2052 */
2053 if (flushed_already != FLUSHRW) {
2054 bp->b_datap->db_type = M_FLUSH;
2055 *bp->b_rptr = FLUSHRW;
2056 /*
2057 * Protect against the driver passing up
2058 * messages after it has done a
2059 * qprocsoff.
2060 */
2061 if (_OTHERQ(q)->q_next == NULL)
2062 freemsg(bp);
2063 else
2064 qreply(q, bp);
2065 return (0);
2066 }
2067 }
2068 freemsg(bp);
2069 return (0);
2070
2071 case M_HANGUP:
2072
2073 freemsg(bp);
2074 mutex_enter(&stp->sd_lock);
2075 stp->sd_werror = ENXIO;
2076 stp->sd_flag |= STRHUP;
2077 stp->sd_flag &= ~(WSLEEP|RSLEEP);
2078
2079 /*
2080 * send signal if controlling tty
2081 */
2082
2083 if (stp->sd_sidp) {
2084 prsignal(stp->sd_sidp, SIGHUP);
2085 if (stp->sd_sidp != stp->sd_pgidp)
2086 pgsignal(stp->sd_pgidp, SIGTSTP);
2087 }
2088
2089 /*
2090 * wake up read, write, and exception pollers and
2091 * reset wakeup mechanism.
2092 */
2093 cv_broadcast(&q->q_wait); /* the readers */
2094 cv_broadcast(&_WR(q)->q_wait); /* the writers */
2095 cv_broadcast(&stp->sd_monitor); /* the ioctllers */
2096 strhup(stp);
2097 mutex_exit(&stp->sd_lock);
2098 return (0);
2099
2100 case M_UNHANGUP:
2101 freemsg(bp);
2102 mutex_enter(&stp->sd_lock);
2103 stp->sd_werror = 0;
2104 stp->sd_flag &= ~STRHUP;
2105 mutex_exit(&stp->sd_lock);
2106 return (0);
2107
2108 case M_SIG:
2109 /*
2110 * Someone downstream wants to post a signal. The
2111 * signal to post is contained in the first byte of the
2112 * message. If the message would go on the front of
2113 * the queue, send a signal to the process group
2114 * (if not SIGPOLL) or to the siglist processes
2115 * (SIGPOLL). If something is already on the queue,
2116 * OR if we are delivering a delayed suspend (*sigh*
2117 * another "tty" hack) and there's no one sleeping already,
2118 * just enqueue the message.
2119 */
2120 mutex_enter(&stp->sd_lock);
2121 if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2122 !(stp->sd_flag & RSLEEP))) {
2123 (void) putq(q, bp);
2124 mutex_exit(&stp->sd_lock);
2125 return (0);
2126 }
2127 mutex_exit(&stp->sd_lock);
2128 /* FALLTHRU */
2129
2130 case M_PCSIG:
2131 /*
2132 * Don't enqueue, just post the signal.
2133 */
2134 strsignal(stp, *bp->b_rptr, 0L);
2135 freemsg(bp);
2136 return (0);
2137
2138 case M_CMD:
2139 if (MBLKL(bp) != sizeof (cmdblk_t)) {
2140 freemsg(bp);
2141 return (0);
2142 }
2143
2144 mutex_enter(&stp->sd_lock);
2145 if (stp->sd_flag & STRCMDWAIT) {
2146 ASSERT(stp->sd_cmdblk == NULL);
2147 stp->sd_cmdblk = bp;
2148 cv_broadcast(&stp->sd_monitor);
2149 mutex_exit(&stp->sd_lock);
2150 } else {
2151 mutex_exit(&stp->sd_lock);
2152 freemsg(bp);
2153 }
2154 return (0);
2155
2156 case M_FLUSH:
2157 /*
2158 * Flush queues. The indication of which queues to flush
2159 * is in the first byte of the message. If the read queue
2160 * is specified, then flush it. If FLUSHBAND is set, just
2161 * flush the band specified by the second byte of the message.
2162 *
2163 * If a module has issued a M_SETOPT to not flush hi
2164 * priority messages off of the stream head, then pass this
2165 * flag into the flushq code to preserve such messages.
2166 */
2167
2168 if (*bp->b_rptr & FLUSHR) {
2169 mutex_enter(&stp->sd_lock);
2170 if (*bp->b_rptr & FLUSHBAND) {
2171 ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2172 flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2173 } else
2174 flushq_common(q, FLUSHALL,
2175 stp->sd_read_opt & RFLUSHPCPROT);
2176 if ((q->q_first == NULL) ||
2177 (q->q_first->b_datap->db_type < QPCTL))
2178 stp->sd_flag &= ~STRPRI;
2179 else {
2180 ASSERT(stp->sd_flag & STRPRI);
2181 }
2182 mutex_exit(&stp->sd_lock);
2183 }
2184 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2185 *bp->b_rptr &= ~FLUSHR;
2186 bp->b_flag |= MSGNOLOOP;
2187 /*
2188 * Protect against the driver passing up
2189 * messages after it has done a qprocsoff.
2190 */
2191 if (_OTHERQ(q)->q_next == NULL)
2192 freemsg(bp);
2193 else
2194 qreply(q, bp);
2195 return (0);
2196 }
2197 freemsg(bp);
2198 return (0);
2199
2200 case M_IOCACK:
2201 case M_IOCNAK:
2202 iocbp = (struct iocblk *)bp->b_rptr;
2203 /*
2204 * If not waiting for ACK or NAK then just free msg.
2205 * If incorrect id sequence number then just free msg.
2206 * If already have ACK or NAK for user then this is a
2207 * duplicate, display a warning and free the msg.
2208 */
2209 mutex_enter(&stp->sd_lock);
2210 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2211 (stp->sd_iocid != iocbp->ioc_id)) {
2212 /*
2213 * If the ACK/NAK is a dup, display a message
2214 * Dup is when sd_iocid == ioc_id, and
2215 * sd_iocblk == <valid ptr> or -1 (the former
2216 * is when an ioctl has been put on the stream
2217 * head, but has not yet been consumed, the
2218 * later is when it has been consumed).
2219 */
2220 if ((stp->sd_iocid == iocbp->ioc_id) &&
2221 (stp->sd_iocblk != NULL)) {
2222 log_dupioc(q, bp);
2223 }
2224 freemsg(bp);
2225 mutex_exit(&stp->sd_lock);
2226 return (0);
2227 }
2228
2229 /*
2230 * Assign ACK or NAK to user and wake up.
2231 */
2232 stp->sd_iocblk = bp;
2233 cv_broadcast(&stp->sd_monitor);
2234 mutex_exit(&stp->sd_lock);
2235 return (0);
2236
2237 case M_COPYIN:
2238 case M_COPYOUT:
2239 reqp = (struct copyreq *)bp->b_rptr;
2240
2241 /*
2242 * If not waiting for ACK or NAK then just fail request.
2243 * If already have ACK, NAK, or copy request, then just
2244 * fail request.
2245 * If incorrect id sequence number then just fail request.
2246 */
2247 mutex_enter(&stp->sd_lock);
2248 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2249 (stp->sd_iocid != reqp->cq_id)) {
2250 if (bp->b_cont) {
2251 freemsg(bp->b_cont);
2252 bp->b_cont = NULL;
2253 }
2254 bp->b_datap->db_type = M_IOCDATA;
2255 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2256 resp = (struct copyresp *)bp->b_rptr;
2257 resp->cp_rval = (caddr_t)1; /* failure */
2258 mutex_exit(&stp->sd_lock);
2259 putnext(stp->sd_wrq, bp);
2260 return (0);
2261 }
2262
2263 /*
2264 * Assign copy request to user and wake up.
2265 */
2266 stp->sd_iocblk = bp;
2267 cv_broadcast(&stp->sd_monitor);
2268 mutex_exit(&stp->sd_lock);
2269 return (0);
2270
2271 case M_SETOPTS:
2272 /*
2273 * Set stream head options (read option, write offset,
2274 * min/max packet size, and/or high/low water marks for
2275 * the read side only).
2276 */
2277
2278 bpri = 0;
2279 sop = (struct stroptions *)bp->b_rptr;
2280 mutex_enter(&stp->sd_lock);
2281 if (sop->so_flags & SO_READOPT) {
2282 switch (sop->so_readopt & RMODEMASK) {
2283 case RNORM:
2284 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2285 break;
2286
2287 case RMSGD:
2288 stp->sd_read_opt =
2289 ((stp->sd_read_opt & ~RD_MSGNODIS) |
2290 RD_MSGDIS);
2291 break;
2292
2293 case RMSGN:
2294 stp->sd_read_opt =
2295 ((stp->sd_read_opt & ~RD_MSGDIS) |
2296 RD_MSGNODIS);
2297 break;
2298 }
2299 switch (sop->so_readopt & RPROTMASK) {
2300 case RPROTNORM:
2301 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2302 break;
2303
2304 case RPROTDAT:
2305 stp->sd_read_opt =
2306 ((stp->sd_read_opt & ~RD_PROTDIS) |
2307 RD_PROTDAT);
2308 break;
2309
2310 case RPROTDIS:
2311 stp->sd_read_opt =
2312 ((stp->sd_read_opt & ~RD_PROTDAT) |
2313 RD_PROTDIS);
2314 break;
2315 }
2316 switch (sop->so_readopt & RFLUSHMASK) {
2317 case RFLUSHPCPROT:
2318 /*
2319 * This sets the stream head to NOT flush
2320 * M_PCPROTO messages.
2321 */
2322 stp->sd_read_opt |= RFLUSHPCPROT;
2323 break;
2324 }
2325 }
2326 if (sop->so_flags & SO_ERROPT) {
2327 switch (sop->so_erropt & RERRMASK) {
2328 case RERRNORM:
2329 stp->sd_flag &= ~STRDERRNONPERSIST;
2330 break;
2331 case RERRNONPERSIST:
2332 stp->sd_flag |= STRDERRNONPERSIST;
2333 break;
2334 }
2335 switch (sop->so_erropt & WERRMASK) {
2336 case WERRNORM:
2337 stp->sd_flag &= ~STWRERRNONPERSIST;
2338 break;
2339 case WERRNONPERSIST:
2340 stp->sd_flag |= STWRERRNONPERSIST;
2341 break;
2342 }
2343 }
2344 if (sop->so_flags & SO_COPYOPT) {
2345 if (sop->so_copyopt & ZCVMSAFE) {
2346 stp->sd_copyflag |= STZCVMSAFE;
2347 stp->sd_copyflag &= ~STZCVMUNSAFE;
2348 } else if (sop->so_copyopt & ZCVMUNSAFE) {
2349 stp->sd_copyflag |= STZCVMUNSAFE;
2350 stp->sd_copyflag &= ~STZCVMSAFE;
2351 }
2352
2353 if (sop->so_copyopt & COPYCACHED) {
2354 stp->sd_copyflag |= STRCOPYCACHED;
2355 }
2356 }
2357 if (sop->so_flags & SO_WROFF)
2358 stp->sd_wroff = sop->so_wroff;
2359 if (sop->so_flags & SO_TAIL)
2360 stp->sd_tail = sop->so_tail;
2361 if (sop->so_flags & SO_MINPSZ)
2362 q->q_minpsz = sop->so_minpsz;
2363 if (sop->so_flags & SO_MAXPSZ)
2364 q->q_maxpsz = sop->so_maxpsz;
2365 if (sop->so_flags & SO_MAXBLK)
2366 stp->sd_maxblk = sop->so_maxblk;
2367 if (sop->so_flags & SO_HIWAT) {
2368 if (sop->so_flags & SO_BAND) {
2369 if (strqset(q, QHIWAT,
2370 sop->so_band, sop->so_hiwat)) {
2371 cmn_err(CE_WARN, "strrput: could not "
2372 "allocate qband\n");
2373 } else {
2374 bpri = sop->so_band;
2375 }
2376 } else {
2377 q->q_hiwat = sop->so_hiwat;
2378 }
2379 }
2380 if (sop->so_flags & SO_LOWAT) {
2381 if (sop->so_flags & SO_BAND) {
2382 if (strqset(q, QLOWAT,
2383 sop->so_band, sop->so_lowat)) {
2384 cmn_err(CE_WARN, "strrput: could not "
2385 "allocate qband\n");
2386 } else {
2387 bpri = sop->so_band;
2388 }
2389 } else {
2390 q->q_lowat = sop->so_lowat;
2391 }
2392 }
2393 if (sop->so_flags & SO_MREADON)
2394 stp->sd_flag |= SNDMREAD;
2395 if (sop->so_flags & SO_MREADOFF)
2396 stp->sd_flag &= ~SNDMREAD;
2397 if (sop->so_flags & SO_NDELON)
2398 stp->sd_flag |= OLDNDELAY;
2399 if (sop->so_flags & SO_NDELOFF)
2400 stp->sd_flag &= ~OLDNDELAY;
2401 if (sop->so_flags & SO_ISTTY)
2402 stp->sd_flag |= STRISTTY;
2403 if (sop->so_flags & SO_ISNTTY)
2404 stp->sd_flag &= ~STRISTTY;
2405 if (sop->so_flags & SO_TOSTOP)
2406 stp->sd_flag |= STRTOSTOP;
2407 if (sop->so_flags & SO_TONSTOP)
2408 stp->sd_flag &= ~STRTOSTOP;
2409 if (sop->so_flags & SO_DELIM)
2410 stp->sd_flag |= STRDELIM;
2411 if (sop->so_flags & SO_NODELIM)
2412 stp->sd_flag &= ~STRDELIM;
2413
2414 mutex_exit(&stp->sd_lock);
2415 freemsg(bp);
2416
2417 /* Check backenable in case the water marks changed */
2418 qbackenable(q, bpri);
2419 return (0);
2420
2421 /*
2422 * The following set of cases deal with situations where two stream
2423 * heads are connected to each other (twisted streams). These messages
2424 * have no meaning at the stream head.
2425 */
2426 case M_BREAK:
2427 case M_CTL:
2428 case M_DELAY:
2429 case M_START:
2430 case M_STOP:
2431 case M_IOCDATA:
2432 case M_STARTI:
2433 case M_STOPI:
2434 freemsg(bp);
2435 return (0);
2436
2437 case M_IOCTL:
2438 /*
2439 * Always NAK this condition
2440 * (makes no sense)
2441 * If there is one or more threads in the read side
2442 * rwnext we have to defer the nacking until that thread
2443 * returns (in strget).
2444 */
2445 mutex_enter(&stp->sd_lock);
2446 if (stp->sd_struiodnak != 0) {
2447 /*
2448 * Defer NAK to the streamhead. Queue at the end
2449 * the list.
2450 */
2451 mblk_t *mp = stp->sd_struionak;
2452
2453 while (mp && mp->b_next)
2454 mp = mp->b_next;
2455 if (mp)
2456 mp->b_next = bp;
2457 else
2458 stp->sd_struionak = bp;
2459 bp->b_next = NULL;
2460 mutex_exit(&stp->sd_lock);
2461 return (0);
2462 }
2463 mutex_exit(&stp->sd_lock);
2464
2465 bp->b_datap->db_type = M_IOCNAK;
2466 /*
2467 * Protect against the driver passing up
2468 * messages after it has done a qprocsoff.
2469 */
2470 if (_OTHERQ(q)->q_next == NULL)
2471 freemsg(bp);
2472 else
2473 qreply(q, bp);
2474 return (0);
2475
2476 default:
2477 #ifdef DEBUG
2478 cmn_err(CE_WARN,
2479 "bad message type %x received at stream head\n",
2480 bp->b_datap->db_type);
2481 #endif
2482 freemsg(bp);
2483 return (0);
2484 }
2485
2486 /* NOTREACHED */
2487 }
2488
2489 /*
2490 * Check if the stream pointed to by `stp' can be written to, and return an
2491 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set.
2492 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2493 * then always return EPIPE and send a SIGPIPE to the invoking thread.
2494 */
2495 static int
strwriteable(struct stdata * stp,boolean_t eiohup,boolean_t sigpipeok)2496 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2497 {
2498 int error;
2499
2500 ASSERT(MUTEX_HELD(&stp->sd_lock));
2501
2502 /*
2503 * For modem support, POSIX states that on writes, EIO should
2504 * be returned if the stream has been hung up.
2505 */
2506 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2507 error = EIO;
2508 else
2509 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2510
2511 if (error != 0) {
2512 if (!(stp->sd_flag & STPLEX) &&
2513 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2514 tsignal(curthread, SIGPIPE);
2515 error = EPIPE;
2516 }
2517 }
2518
2519 return (error);
2520 }
2521
2522 /*
2523 * Copyin and send data down a stream.
2524 * The caller will allocate and copyin any control part that precedes the
2525 * message and pass that in as mctl.
2526 *
2527 * Caller should *not* hold sd_lock.
2528 * When EWOULDBLOCK is returned the caller has to redo the canputnext
2529 * under sd_lock in order to avoid missing a backenabling wakeup.
2530 *
2531 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2532 *
2533 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2534 * For sync streams we can only ignore flow control by reverting to using
2535 * putnext.
2536 *
2537 * If sd_maxblk is less than *iosize this routine might return without
2538 * transferring all of *iosize. In all cases, on return *iosize will contain
2539 * the amount of data that was transferred.
2540 */
2541 static int
strput(struct stdata * stp,mblk_t * mctl,struct uio * uiop,ssize_t * iosize,int b_flag,int pri,int flags)2542 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2543 int b_flag, int pri, int flags)
2544 {
2545 struiod_t uiod;
2546 mblk_t *mp;
2547 queue_t *wqp = stp->sd_wrq;
2548 int error = 0;
2549 ssize_t count = *iosize;
2550
2551 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2552
2553 if (uiop != NULL && count >= 0)
2554 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2555
2556 if (!(flags & STRUIO_POSTPONE)) {
2557 /*
2558 * Use regular canputnext, strmakedata, putnext sequence.
2559 */
2560 if (pri == 0) {
2561 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2562 freemsg(mctl);
2563 return (EWOULDBLOCK);
2564 }
2565 } else {
2566 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2567 freemsg(mctl);
2568 return (EWOULDBLOCK);
2569 }
2570 }
2571
2572 if ((error = strmakedata(iosize, uiop, stp, flags,
2573 &mp)) != 0) {
2574 freemsg(mctl);
2575 /*
2576 * need to change return code to ENOMEM
2577 * so that this is not confused with
2578 * flow control, EAGAIN.
2579 */
2580
2581 if (error == EAGAIN)
2582 return (ENOMEM);
2583 else
2584 return (error);
2585 }
2586 if (mctl != NULL) {
2587 if (mctl->b_cont == NULL)
2588 mctl->b_cont = mp;
2589 else if (mp != NULL)
2590 linkb(mctl, mp);
2591 mp = mctl;
2592 } else if (mp == NULL)
2593 return (0);
2594
2595 mp->b_flag |= b_flag;
2596 mp->b_band = (uchar_t)pri;
2597
2598 if (flags & MSG_IGNFLOW) {
2599 /*
2600 * XXX Hack: Don't get stuck running service
2601 * procedures. This is needed for sockfs when
2602 * sending the unbind message out of the rput
2603 * procedure - we don't want a put procedure
2604 * to run service procedures.
2605 */
2606 putnext(wqp, mp);
2607 } else {
2608 stream_willservice(stp);
2609 putnext(wqp, mp);
2610 stream_runservice(stp);
2611 }
2612 return (0);
2613 }
2614 /*
2615 * Stream supports rwnext() for the write side.
2616 */
2617 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2618 freemsg(mctl);
2619 /*
2620 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2621 */
2622 return (error == EAGAIN ? ENOMEM : error);
2623 }
2624 if (mctl != NULL) {
2625 if (mctl->b_cont == NULL)
2626 mctl->b_cont = mp;
2627 else if (mp != NULL)
2628 linkb(mctl, mp);
2629 mp = mctl;
2630 } else if (mp == NULL) {
2631 return (0);
2632 }
2633
2634 mp->b_flag |= b_flag;
2635 mp->b_band = (uchar_t)pri;
2636
2637 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2638 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2639 uiod.d_uio.uio_offset = 0;
2640 uiod.d_mp = mp;
2641 error = rwnext(wqp, &uiod);
2642 if (! uiod.d_mp) {
2643 uioskip(uiop, *iosize);
2644 return (error);
2645 }
2646 ASSERT(mp == uiod.d_mp);
2647 if (error == EINVAL) {
2648 /*
2649 * The stream plumbing must have changed while
2650 * we were away, so just turn off rwnext()s.
2651 */
2652 error = 0;
2653 } else if (error == EBUSY || error == EWOULDBLOCK) {
2654 /*
2655 * Couldn't enter a perimeter or took a page fault,
2656 * so fall-back to putnext().
2657 */
2658 error = 0;
2659 } else {
2660 freemsg(mp);
2661 return (error);
2662 }
2663 /* Have to check canput before consuming data from the uio */
2664 if (pri == 0) {
2665 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2666 freemsg(mp);
2667 return (EWOULDBLOCK);
2668 }
2669 } else {
2670 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2671 freemsg(mp);
2672 return (EWOULDBLOCK);
2673 }
2674 }
2675 ASSERT(mp == uiod.d_mp);
2676 /* Copyin data from the uio */
2677 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2678 freemsg(mp);
2679 return (error);
2680 }
2681 uioskip(uiop, *iosize);
2682 if (flags & MSG_IGNFLOW) {
2683 /*
2684 * XXX Hack: Don't get stuck running service procedures.
2685 * This is needed for sockfs when sending the unbind message
2686 * out of the rput procedure - we don't want a put procedure
2687 * to run service procedures.
2688 */
2689 putnext(wqp, mp);
2690 } else {
2691 stream_willservice(stp);
2692 putnext(wqp, mp);
2693 stream_runservice(stp);
2694 }
2695 return (0);
2696 }
2697
2698 /*
2699 * Write attempts to break the write request into messages conforming
2700 * with the minimum and maximum packet sizes set downstream.
2701 *
2702 * Write will not block if downstream queue is full and
2703 * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2704 *
2705 * A write of zero bytes gets packaged into a zero length message and sent
2706 * downstream like any other message.
2707 *
2708 * If buffers of the requested sizes are not available, the write will
2709 * sleep until the buffers become available.
2710 *
2711 * Write (if specified) will supply a write offset in a message if it
2712 * makes sense. This can be specified by downstream modules as part of
2713 * a M_SETOPTS message. Write will not supply the write offset if it
2714 * cannot supply any data in a buffer. In other words, write will never
2715 * send down an empty packet due to a write offset.
2716 */
2717 /* ARGSUSED2 */
2718 int
strwrite(struct vnode * vp,struct uio * uiop,cred_t * crp)2719 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2720 {
2721 return (strwrite_common(vp, uiop, crp, 0));
2722 }
2723
2724 /* ARGSUSED2 */
2725 int
strwrite_common(struct vnode * vp,struct uio * uiop,cred_t * crp,int wflag)2726 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2727 {
2728 struct stdata *stp;
2729 struct queue *wqp;
2730 ssize_t rmin, rmax;
2731 ssize_t iosize;
2732 int waitflag;
2733 int tempmode;
2734 int error = 0;
2735 int b_flag;
2736
2737 ASSERT(vp->v_stream);
2738 stp = vp->v_stream;
2739
2740 mutex_enter(&stp->sd_lock);
2741
2742 if ((error = i_straccess(stp, JCWRITE)) != 0) {
2743 mutex_exit(&stp->sd_lock);
2744 return (error);
2745 }
2746
2747 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2748 error = strwriteable(stp, B_TRUE, B_TRUE);
2749 if (error != 0) {
2750 mutex_exit(&stp->sd_lock);
2751 return (error);
2752 }
2753 }
2754
2755 mutex_exit(&stp->sd_lock);
2756
2757 wqp = stp->sd_wrq;
2758
2759 /* get these values from them cached in the stream head */
2760 rmin = stp->sd_qn_minpsz;
2761 rmax = stp->sd_qn_maxpsz;
2762
2763 /*
2764 * Check the min/max packet size constraints. If min packet size
2765 * is non-zero, the write cannot be split into multiple messages
2766 * and still guarantee the size constraints.
2767 */
2768 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2769
2770 ASSERT((rmax >= 0) || (rmax == INFPSZ));
2771 if (rmax == 0) {
2772 return (0);
2773 }
2774 if (rmin > 0) {
2775 if (uiop->uio_resid < rmin) {
2776 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2777 "strwrite out:q %p out %d error %d",
2778 wqp, 0, ERANGE);
2779 return (ERANGE);
2780 }
2781 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2782 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2783 "strwrite out:q %p out %d error %d",
2784 wqp, 1, ERANGE);
2785 return (ERANGE);
2786 }
2787 }
2788
2789 /*
2790 * Do until count satisfied or error.
2791 */
2792 waitflag = WRITEWAIT | wflag;
2793 if (stp->sd_flag & OLDNDELAY)
2794 tempmode = uiop->uio_fmode & ~FNDELAY;
2795 else
2796 tempmode = uiop->uio_fmode;
2797
2798 if (rmax == INFPSZ)
2799 rmax = uiop->uio_resid;
2800
2801 /*
2802 * Note that tempmode does not get used in strput/strmakedata
2803 * but only in strwaitq. The other routines use uio_fmode
2804 * unmodified.
2805 */
2806
2807 /* LINTED: constant in conditional context */
2808 while (1) { /* breaks when uio_resid reaches zero */
2809 /*
2810 * Determine the size of the next message to be
2811 * packaged. May have to break write into several
2812 * messages based on max packet size.
2813 */
2814 iosize = MIN(uiop->uio_resid, rmax);
2815
2816 /*
2817 * Put block downstream when flow control allows it.
2818 */
2819 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2820 b_flag = MSGDELIM;
2821 else
2822 b_flag = 0;
2823
2824 for (;;) {
2825 int done = 0;
2826
2827 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2828 if (error == 0)
2829 break;
2830 if (error != EWOULDBLOCK)
2831 goto out;
2832
2833 mutex_enter(&stp->sd_lock);
2834 /*
2835 * Check for a missed wakeup.
2836 * Needed since strput did not hold sd_lock across
2837 * the canputnext.
2838 */
2839 if (canputnext(wqp)) {
2840 /* Try again */
2841 mutex_exit(&stp->sd_lock);
2842 continue;
2843 }
2844 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2845 "strwrite wait:q %p wait", wqp);
2846 if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2847 tempmode, -1, &done)) != 0 || done) {
2848 mutex_exit(&stp->sd_lock);
2849 if ((vp->v_type == VFIFO) &&
2850 (uiop->uio_fmode & FNDELAY) &&
2851 (error == EAGAIN))
2852 error = 0;
2853 goto out;
2854 }
2855 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2856 "strwrite wake:q %p awakes", wqp);
2857 if ((error = i_straccess(stp, JCWRITE)) != 0) {
2858 mutex_exit(&stp->sd_lock);
2859 goto out;
2860 }
2861 mutex_exit(&stp->sd_lock);
2862 }
2863 waitflag |= NOINTR;
2864 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2865 "strwrite resid:q %p uiop %p", wqp, uiop);
2866 if (uiop->uio_resid) {
2867 /* Recheck for errors - needed for sockets */
2868 if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2869 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2870 mutex_enter(&stp->sd_lock);
2871 error = strwriteable(stp, B_FALSE, B_TRUE);
2872 mutex_exit(&stp->sd_lock);
2873 if (error != 0)
2874 return (error);
2875 }
2876 continue;
2877 }
2878 break;
2879 }
2880 out:
2881 /*
2882 * For historical reasons, applications expect EAGAIN when a data
2883 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2884 */
2885 if (error == ENOMEM)
2886 error = EAGAIN;
2887 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2888 "strwrite out:q %p out %d error %d", wqp, 2, error);
2889 return (error);
2890 }
2891
2892 /*
2893 * Stream head write service routine.
2894 * Its job is to wake up any sleeping writers when a queue
2895 * downstream needs data (part of the flow control in putq and getq).
2896 * It also must wake anyone sleeping on a poll().
2897 * For stream head right below mux module, it must also invoke put procedure
2898 * of next downstream module.
2899 */
2900 int
strwsrv(queue_t * q)2901 strwsrv(queue_t *q)
2902 {
2903 struct stdata *stp;
2904 queue_t *tq;
2905 qband_t *qbp;
2906 int i;
2907 qband_t *myqbp;
2908 int isevent;
2909 unsigned char qbf[NBAND]; /* band flushing backenable flags */
2910
2911 TRACE_1(TR_FAC_STREAMS_FR,
2912 TR_STRWSRV, "strwsrv:q %p", q);
2913 stp = (struct stdata *)q->q_ptr;
2914 ASSERT(qclaimed(q));
2915 mutex_enter(&stp->sd_lock);
2916 ASSERT(!(stp->sd_flag & STPLEX));
2917
2918 if (stp->sd_flag & WSLEEP) {
2919 stp->sd_flag &= ~WSLEEP;
2920 cv_broadcast(&q->q_wait);
2921 }
2922 mutex_exit(&stp->sd_lock);
2923
2924 /* The other end of a stream pipe went away. */
2925 if ((tq = q->q_next) == NULL) {
2926 return (0);
2927 }
2928
2929 /* Find the next module forward that has a service procedure */
2930 claimstr(q);
2931 tq = q->q_nfsrv;
2932 ASSERT(tq != NULL);
2933
2934 if ((q->q_flag & QBACK)) {
2935 if ((tq->q_flag & QFULL)) {
2936 mutex_enter(QLOCK(tq));
2937 if (!(tq->q_flag & QFULL)) {
2938 mutex_exit(QLOCK(tq));
2939 goto wakeup;
2940 }
2941 /*
2942 * The queue must have become full again. Set QWANTW
2943 * again so strwsrv will be back enabled when
2944 * the queue becomes non-full next time.
2945 */
2946 tq->q_flag |= QWANTW;
2947 mutex_exit(QLOCK(tq));
2948 } else {
2949 wakeup:
2950 pollwakeup(&stp->sd_pollist, POLLWRNORM);
2951 mutex_enter(&stp->sd_lock);
2952 if (stp->sd_sigflags & S_WRNORM)
2953 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
2954 mutex_exit(&stp->sd_lock);
2955 }
2956 }
2957
2958 isevent = 0;
2959 i = 1;
2960 bzero((caddr_t)qbf, NBAND);
2961 mutex_enter(QLOCK(tq));
2962 if ((myqbp = q->q_bandp) != NULL)
2963 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
2964 ASSERT(myqbp);
2965 if ((myqbp->qb_flag & QB_BACK)) {
2966 if (qbp->qb_flag & QB_FULL) {
2967 /*
2968 * The band must have become full again.
2969 * Set QB_WANTW again so strwsrv will
2970 * be back enabled when the band becomes
2971 * non-full next time.
2972 */
2973 qbp->qb_flag |= QB_WANTW;
2974 } else {
2975 isevent = 1;
2976 qbf[i] = 1;
2977 }
2978 }
2979 myqbp = myqbp->qb_next;
2980 i++;
2981 }
2982 mutex_exit(QLOCK(tq));
2983
2984 if (isevent) {
2985 for (i = tq->q_nband; i; i--) {
2986 if (qbf[i]) {
2987 pollwakeup(&stp->sd_pollist, POLLWRBAND);
2988 mutex_enter(&stp->sd_lock);
2989 if (stp->sd_sigflags & S_WRBAND)
2990 strsendsig(stp->sd_siglist, S_WRBAND,
2991 (uchar_t)i, 0);
2992 mutex_exit(&stp->sd_lock);
2993 }
2994 }
2995 }
2996
2997 releasestr(q);
2998 return (0);
2999 }
3000
3001 /*
3002 * Special case of strcopyin/strcopyout for copying
3003 * struct strioctl that can deal with both data
3004 * models.
3005 */
3006
3007 #ifdef _LP64
3008
3009 static int
strcopyin_strioctl(void * from,void * to,int flag,int copyflag)3010 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3011 {
3012 struct strioctl32 strioc32;
3013 struct strioctl *striocp;
3014
3015 if (copyflag & U_TO_K) {
3016 ASSERT((copyflag & K_TO_K) == 0);
3017
3018 if ((flag & FMODELS) == DATAMODEL_ILP32) {
3019 if (copyin(from, &strioc32, sizeof (strioc32)))
3020 return (EFAULT);
3021
3022 striocp = (struct strioctl *)to;
3023 striocp->ic_cmd = strioc32.ic_cmd;
3024 striocp->ic_timout = strioc32.ic_timout;
3025 striocp->ic_len = strioc32.ic_len;
3026 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp;
3027
3028 } else { /* NATIVE data model */
3029 if (copyin(from, to, sizeof (struct strioctl))) {
3030 return (EFAULT);
3031 } else {
3032 return (0);
3033 }
3034 }
3035 } else {
3036 ASSERT(copyflag & K_TO_K);
3037 bcopy(from, to, sizeof (struct strioctl));
3038 }
3039 return (0);
3040 }
3041
3042 static int
strcopyout_strioctl(void * from,void * to,int flag,int copyflag)3043 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3044 {
3045 struct strioctl32 strioc32;
3046 struct strioctl *striocp;
3047
3048 if (copyflag & U_TO_K) {
3049 ASSERT((copyflag & K_TO_K) == 0);
3050
3051 if ((flag & FMODELS) == DATAMODEL_ILP32) {
3052 striocp = (struct strioctl *)from;
3053 strioc32.ic_cmd = striocp->ic_cmd;
3054 strioc32.ic_timout = striocp->ic_timout;
3055 strioc32.ic_len = striocp->ic_len;
3056 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp;
3057 ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3058 striocp->ic_dp);
3059
3060 if (copyout(&strioc32, to, sizeof (strioc32)))
3061 return (EFAULT);
3062
3063 } else { /* NATIVE data model */
3064 if (copyout(from, to, sizeof (struct strioctl))) {
3065 return (EFAULT);
3066 } else {
3067 return (0);
3068 }
3069 }
3070 } else {
3071 ASSERT(copyflag & K_TO_K);
3072 bcopy(from, to, sizeof (struct strioctl));
3073 }
3074 return (0);
3075 }
3076
3077 #else /* ! _LP64 */
3078
3079 /* ARGSUSED2 */
3080 static int
strcopyin_strioctl(void * from,void * to,int flag,int copyflag)3081 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3082 {
3083 return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3084 }
3085
3086 /* ARGSUSED2 */
3087 static int
strcopyout_strioctl(void * from,void * to,int flag,int copyflag)3088 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3089 {
3090 return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3091 }
3092
3093 #endif /* _LP64 */
3094
3095 /*
3096 * Determine type of job control semantics expected by user. The
3097 * possibilities are:
3098 * JCREAD - Behaves like read() on fd; send SIGTTIN
3099 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set
3100 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3101 * JCGETP - Gets a value in the stream; no signals.
3102 * See straccess in strsubr.c for usage of these values.
3103 *
3104 * This routine also returns -1 for I_STR as a special case; the
3105 * caller must call again with the real ioctl number for
3106 * classification.
3107 */
3108 static int
job_control_type(int cmd)3109 job_control_type(int cmd)
3110 {
3111 switch (cmd) {
3112 case I_STR:
3113 return (-1);
3114
3115 case I_RECVFD:
3116 case I_E_RECVFD:
3117 return (JCREAD);
3118
3119 case I_FDINSERT:
3120 case I_SENDFD:
3121 return (JCWRITE);
3122
3123 case TCSETA:
3124 case TCSETAW:
3125 case TCSETAF:
3126 case TCSBRK:
3127 case TCXONC:
3128 case TCFLSH:
3129 case TCDSET: /* Obsolete */
3130 case TIOCSWINSZ:
3131 case TCSETS:
3132 case TCSETSW:
3133 case TCSETSF:
3134 case TIOCSETD:
3135 case TIOCHPCL:
3136 case TIOCSETP:
3137 case TIOCSETN:
3138 case TIOCEXCL:
3139 case TIOCNXCL:
3140 case TIOCFLUSH:
3141 case TIOCSETC:
3142 case TIOCLBIS:
3143 case TIOCLBIC:
3144 case TIOCLSET:
3145 case TIOCSBRK:
3146 case TIOCCBRK:
3147 case TIOCSDTR:
3148 case TIOCCDTR:
3149 case TIOCSLTC:
3150 case TIOCSTOP:
3151 case TIOCSTART:
3152 case TIOCSTI:
3153 case TIOCSPGRP:
3154 case TIOCMSET:
3155 case TIOCMBIS:
3156 case TIOCMBIC:
3157 case TIOCREMOTE:
3158 case TIOCSIGNAL:
3159 case LDSETT:
3160 case LDSMAP: /* Obsolete */
3161 case DIOCSETP:
3162 case I_FLUSH:
3163 case I_SRDOPT:
3164 case I_SETSIG:
3165 case I_SWROPT:
3166 case I_FLUSHBAND:
3167 case I_SETCLTIME:
3168 case I_SERROPT:
3169 case I_ESETSIG:
3170 case FIONBIO:
3171 case FIOASYNC:
3172 case FIOSETOWN:
3173 case JBOOT: /* Obsolete */
3174 case JTERM: /* Obsolete */
3175 case JTIMOM: /* Obsolete */
3176 case JZOMBOOT: /* Obsolete */
3177 case JAGENT: /* Obsolete */
3178 case JTRUN: /* Obsolete */
3179 case JXTPROTO: /* Obsolete */
3180 return (JCSETP);
3181 }
3182
3183 return (JCGETP);
3184 }
3185
3186 /*
3187 * ioctl for streams
3188 */
3189 int
strioctl(struct vnode * vp,int cmd,intptr_t arg,int flag,int copyflag,cred_t * crp,int * rvalp)3190 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3191 cred_t *crp, int *rvalp)
3192 {
3193 struct stdata *stp;
3194 struct strcmd *scp;
3195 struct strioctl strioc;
3196 struct uio uio;
3197 struct iovec iov;
3198 int access;
3199 mblk_t *mp;
3200 int error = 0;
3201 int done = 0;
3202 ssize_t rmin, rmax;
3203 queue_t *wrq;
3204 queue_t *rdq;
3205 boolean_t kioctl = B_FALSE;
3206 uint32_t auditing = AU_AUDITING();
3207
3208 if (flag & FKIOCTL) {
3209 copyflag = K_TO_K;
3210 kioctl = B_TRUE;
3211 }
3212 ASSERT(vp->v_stream);
3213 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3214 stp = vp->v_stream;
3215
3216 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3217 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3218
3219 /*
3220 * If the copy is kernel to kernel, make sure that the FNATIVE
3221 * flag is set. After this it would be a serious error to have
3222 * no model flag.
3223 */
3224 if (copyflag == K_TO_K)
3225 flag = (flag & ~FMODELS) | FNATIVE;
3226
3227 ASSERT((flag & FMODELS) != 0);
3228
3229 wrq = stp->sd_wrq;
3230 rdq = _RD(wrq);
3231
3232 access = job_control_type(cmd);
3233
3234 /* We should never see these here, should be handled by iwscn */
3235 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3236 return (EINVAL);
3237
3238 mutex_enter(&stp->sd_lock);
3239 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3240 mutex_exit(&stp->sd_lock);
3241 return (error);
3242 }
3243 mutex_exit(&stp->sd_lock);
3244
3245 /*
3246 * Check for sgttyb-related ioctls first, and complain as
3247 * necessary.
3248 */
3249 switch (cmd) {
3250 case TIOCGETP:
3251 case TIOCSETP:
3252 case TIOCSETN:
3253 if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3254 sgttyb_complaint = B_TRUE;
3255 cmn_err(CE_NOTE,
3256 "application used obsolete TIOC[GS]ET");
3257 }
3258 if (sgttyb_handling >= 3) {
3259 tsignal(curthread, SIGSYS);
3260 return (EIO);
3261 }
3262 break;
3263 }
3264
3265 mutex_enter(&stp->sd_lock);
3266
3267 switch (cmd) {
3268 case I_RECVFD:
3269 case I_E_RECVFD:
3270 case I_PEEK:
3271 case I_NREAD:
3272 case FIONREAD:
3273 case FIORDCHK:
3274 case I_ATMARK:
3275 case FIONBIO:
3276 case FIOASYNC:
3277 if (stp->sd_flag & (STRDERR|STPLEX)) {
3278 error = strgeterr(stp, STRDERR|STPLEX, 0);
3279 if (error != 0) {
3280 mutex_exit(&stp->sd_lock);
3281 return (error);
3282 }
3283 }
3284 break;
3285
3286 default:
3287 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3288 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3289 if (error != 0) {
3290 mutex_exit(&stp->sd_lock);
3291 return (error);
3292 }
3293 }
3294 }
3295
3296 mutex_exit(&stp->sd_lock);
3297
3298 switch (cmd) {
3299 default:
3300 /*
3301 * The stream head has hardcoded knowledge of a
3302 * miscellaneous collection of terminal-, keyboard- and
3303 * mouse-related ioctls, enumerated below. This hardcoded
3304 * knowledge allows the stream head to automatically
3305 * convert transparent ioctl requests made by userland
3306 * programs into I_STR ioctls which many old STREAMS
3307 * modules and drivers require.
3308 *
3309 * No new ioctls should ever be added to this list.
3310 * Instead, the STREAMS module or driver should be written
3311 * to either handle transparent ioctls or require any
3312 * userland programs to use I_STR ioctls (by returning
3313 * EINVAL to any transparent ioctl requests).
3314 *
3315 * More importantly, removing ioctls from this list should
3316 * be done with the utmost care, since our STREAMS modules
3317 * and drivers *count* on the stream head performing this
3318 * conversion, and thus may panic while processing
3319 * transparent ioctl request for one of these ioctls (keep
3320 * in mind that third party modules and drivers may have
3321 * similar problems).
3322 */
3323 if (((cmd & IOCTYPE) == LDIOC) ||
3324 ((cmd & IOCTYPE) == tIOC) ||
3325 ((cmd & IOCTYPE) == TIOC) ||
3326 ((cmd & IOCTYPE) == KIOC) ||
3327 ((cmd & IOCTYPE) == MSIOC) ||
3328 ((cmd & IOCTYPE) == VUIOC)) {
3329 /*
3330 * The ioctl is a tty ioctl - set up strioc buffer
3331 * and call strdoioctl() to do the work.
3332 */
3333 if (stp->sd_flag & STRHUP)
3334 return (ENXIO);
3335 strioc.ic_cmd = cmd;
3336 strioc.ic_timout = INFTIM;
3337
3338 switch (cmd) {
3339
3340 case TCXONC:
3341 case TCSBRK:
3342 case TCFLSH:
3343 case TCDSET:
3344 {
3345 int native_arg = (int)arg;
3346 strioc.ic_len = sizeof (int);
3347 strioc.ic_dp = (char *)&native_arg;
3348 return (strdoioctl(stp, &strioc, flag,
3349 K_TO_K, crp, rvalp));
3350 }
3351
3352 case TCSETA:
3353 case TCSETAW:
3354 case TCSETAF:
3355 strioc.ic_len = sizeof (struct termio);
3356 strioc.ic_dp = (char *)arg;
3357 return (strdoioctl(stp, &strioc, flag,
3358 copyflag, crp, rvalp));
3359
3360 case TCSETS:
3361 case TCSETSW:
3362 case TCSETSF:
3363 strioc.ic_len = sizeof (struct termios);
3364 strioc.ic_dp = (char *)arg;
3365 return (strdoioctl(stp, &strioc, flag,
3366 copyflag, crp, rvalp));
3367
3368 case LDSETT:
3369 strioc.ic_len = sizeof (struct termcb);
3370 strioc.ic_dp = (char *)arg;
3371 return (strdoioctl(stp, &strioc, flag,
3372 copyflag, crp, rvalp));
3373
3374 case TIOCSETP:
3375 strioc.ic_len = sizeof (struct sgttyb);
3376 strioc.ic_dp = (char *)arg;
3377 return (strdoioctl(stp, &strioc, flag,
3378 copyflag, crp, rvalp));
3379
3380 case TIOCSTI:
3381 if ((flag & FREAD) == 0 &&
3382 secpolicy_sti(crp) != 0) {
3383 return (EPERM);
3384 }
3385 mutex_enter(&stp->sd_lock);
3386 mutex_enter(&curproc->p_splock);
3387 if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3388 secpolicy_sti(crp) != 0) {
3389 mutex_exit(&curproc->p_splock);
3390 mutex_exit(&stp->sd_lock);
3391 return (EACCES);
3392 }
3393 mutex_exit(&curproc->p_splock);
3394 mutex_exit(&stp->sd_lock);
3395
3396 strioc.ic_len = sizeof (char);
3397 strioc.ic_dp = (char *)arg;
3398 return (strdoioctl(stp, &strioc, flag,
3399 copyflag, crp, rvalp));
3400
3401 case TIOCSWINSZ:
3402 strioc.ic_len = sizeof (struct winsize);
3403 strioc.ic_dp = (char *)arg;
3404 return (strdoioctl(stp, &strioc, flag,
3405 copyflag, crp, rvalp));
3406
3407 case TIOCSSIZE:
3408 strioc.ic_len = sizeof (struct ttysize);
3409 strioc.ic_dp = (char *)arg;
3410 return (strdoioctl(stp, &strioc, flag,
3411 copyflag, crp, rvalp));
3412
3413 case TIOCSSOFTCAR:
3414 case KIOCTRANS:
3415 case KIOCTRANSABLE:
3416 case KIOCCMD:
3417 case KIOCSDIRECT:
3418 case KIOCSCOMPAT:
3419 case KIOCSKABORTEN:
3420 case KIOCSRPTDELAY:
3421 case KIOCSRPTRATE:
3422 case VUIDSFORMAT:
3423 case TIOCSPPS:
3424 strioc.ic_len = sizeof (int);
3425 strioc.ic_dp = (char *)arg;
3426 return (strdoioctl(stp, &strioc, flag,
3427 copyflag, crp, rvalp));
3428
3429 case KIOCSETKEY:
3430 case KIOCGETKEY:
3431 strioc.ic_len = sizeof (struct kiockey);
3432 strioc.ic_dp = (char *)arg;
3433 return (strdoioctl(stp, &strioc, flag,
3434 copyflag, crp, rvalp));
3435
3436 case KIOCSKEY:
3437 case KIOCGKEY:
3438 strioc.ic_len = sizeof (struct kiockeymap);
3439 strioc.ic_dp = (char *)arg;
3440 return (strdoioctl(stp, &strioc, flag,
3441 copyflag, crp, rvalp));
3442
3443 case KIOCSLED:
3444 /* arg is a pointer to char */
3445 strioc.ic_len = sizeof (char);
3446 strioc.ic_dp = (char *)arg;
3447 return (strdoioctl(stp, &strioc, flag,
3448 copyflag, crp, rvalp));
3449
3450 case MSIOSETPARMS:
3451 strioc.ic_len = sizeof (Ms_parms);
3452 strioc.ic_dp = (char *)arg;
3453 return (strdoioctl(stp, &strioc, flag,
3454 copyflag, crp, rvalp));
3455
3456 case VUIDSADDR:
3457 case VUIDGADDR:
3458 strioc.ic_len = sizeof (struct vuid_addr_probe);
3459 strioc.ic_dp = (char *)arg;
3460 return (strdoioctl(stp, &strioc, flag,
3461 copyflag, crp, rvalp));
3462
3463 /*
3464 * These M_IOCTL's don't require any data to be sent
3465 * downstream, and the driver will allocate and link
3466 * on its own mblk_t upon M_IOCACK -- thus we set
3467 * ic_len to zero and set ic_dp to arg so we know
3468 * where to copyout to later.
3469 */
3470 case TIOCGSOFTCAR:
3471 case TIOCGWINSZ:
3472 case TIOCGSIZE:
3473 case KIOCGTRANS:
3474 case KIOCGTRANSABLE:
3475 case KIOCTYPE:
3476 case KIOCGDIRECT:
3477 case KIOCGCOMPAT:
3478 case KIOCLAYOUT:
3479 case KIOCGLED:
3480 case MSIOGETPARMS:
3481 case MSIOBUTTONS:
3482 case VUIDGFORMAT:
3483 case TIOCGPPS:
3484 case TIOCGPPSEV:
3485 case TCGETA:
3486 case TCGETS:
3487 case LDGETT:
3488 case TIOCGETP:
3489 case KIOCGRPTDELAY:
3490 case KIOCGRPTRATE:
3491 strioc.ic_len = 0;
3492 strioc.ic_dp = (char *)arg;
3493 return (strdoioctl(stp, &strioc, flag,
3494 copyflag, crp, rvalp));
3495 }
3496 }
3497
3498 /*
3499 * Unknown cmd - send it down as a transparent ioctl.
3500 */
3501 strioc.ic_cmd = cmd;
3502 strioc.ic_timout = INFTIM;
3503 strioc.ic_len = TRANSPARENT;
3504 strioc.ic_dp = (char *)&arg;
3505
3506 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3507
3508 case I_STR:
3509 /*
3510 * Stream ioctl. Read in an strioctl buffer from the user
3511 * along with any data specified and send it downstream.
3512 * Strdoioctl will wait allow only one ioctl message at
3513 * a time, and waits for the acknowledgement.
3514 */
3515
3516 if (stp->sd_flag & STRHUP)
3517 return (ENXIO);
3518
3519 error = strcopyin_strioctl((void *)arg, &strioc, flag,
3520 copyflag);
3521 if (error != 0)
3522 return (error);
3523
3524 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3525 return (EINVAL);
3526
3527 access = job_control_type(strioc.ic_cmd);
3528 mutex_enter(&stp->sd_lock);
3529 if ((access != -1) &&
3530 ((error = i_straccess(stp, access)) != 0)) {
3531 mutex_exit(&stp->sd_lock);
3532 return (error);
3533 }
3534 mutex_exit(&stp->sd_lock);
3535
3536 /*
3537 * The I_STR facility provides a trap door for malicious
3538 * code to send down bogus streamio(7I) ioctl commands to
3539 * unsuspecting STREAMS modules and drivers which expect to
3540 * only get these messages from the stream head.
3541 * Explicitly prohibit any streamio ioctls which can be
3542 * passed downstream by the stream head. Note that we do
3543 * not block all streamio ioctls because the ioctl
3544 * numberspace is not well managed and thus it's possible
3545 * that a module or driver's ioctl numbers may accidentally
3546 * collide with them.
3547 */
3548 switch (strioc.ic_cmd) {
3549 case I_LINK:
3550 case I_PLINK:
3551 case I_UNLINK:
3552 case I_PUNLINK:
3553 case _I_GETPEERCRED:
3554 case _I_PLINK_LH:
3555 return (EINVAL);
3556 }
3557
3558 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3559 if (error == 0) {
3560 error = strcopyout_strioctl(&strioc, (void *)arg,
3561 flag, copyflag);
3562 }
3563 return (error);
3564
3565 case _I_CMD:
3566 /*
3567 * Like I_STR, but without using M_IOC* messages and without
3568 * copyins/copyouts beyond the passed-in argument.
3569 */
3570 if (stp->sd_flag & STRHUP)
3571 return (ENXIO);
3572
3573 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
3574 return (ENOMEM);
3575
3576 if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3577 kmem_free(scp, sizeof (strcmd_t));
3578 return (EFAULT);
3579 }
3580
3581 access = job_control_type(scp->sc_cmd);
3582 mutex_enter(&stp->sd_lock);
3583 if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3584 mutex_exit(&stp->sd_lock);
3585 kmem_free(scp, sizeof (strcmd_t));
3586 return (error);
3587 }
3588 mutex_exit(&stp->sd_lock);
3589
3590 *rvalp = 0;
3591 if ((error = strdocmd(stp, scp, crp)) == 0) {
3592 if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
3593 error = EFAULT;
3594 }
3595 kmem_free(scp, sizeof (strcmd_t));
3596 return (error);
3597
3598 case I_NREAD:
3599 /*
3600 * Return number of bytes of data in first message
3601 * in queue in "arg" and return the number of messages
3602 * in queue in return value.
3603 */
3604 {
3605 size_t size;
3606 int retval;
3607 int count = 0;
3608
3609 mutex_enter(QLOCK(rdq));
3610
3611 size = msgdsize(rdq->q_first);
3612 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3613 count++;
3614
3615 mutex_exit(QLOCK(rdq));
3616 if (stp->sd_struiordq) {
3617 infod_t infod;
3618
3619 infod.d_cmd = INFOD_COUNT;
3620 infod.d_count = 0;
3621 if (count == 0) {
3622 infod.d_cmd |= INFOD_FIRSTBYTES;
3623 infod.d_bytes = 0;
3624 }
3625 infod.d_res = 0;
3626 (void) infonext(rdq, &infod);
3627 count += infod.d_count;
3628 if (infod.d_res & INFOD_FIRSTBYTES)
3629 size = infod.d_bytes;
3630 }
3631
3632 /*
3633 * Drop down from size_t to the "int" required by the
3634 * interface. Cap at INT_MAX.
3635 */
3636 retval = MIN(size, INT_MAX);
3637 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3638 copyflag);
3639 if (!error)
3640 *rvalp = count;
3641 return (error);
3642 }
3643
3644 case FIONREAD:
3645 /*
3646 * Return number of bytes of data in all data messages
3647 * in queue in "arg".
3648 */
3649 {
3650 size_t size = 0;
3651 int retval;
3652
3653 mutex_enter(QLOCK(rdq));
3654 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3655 size += msgdsize(mp);
3656 mutex_exit(QLOCK(rdq));
3657
3658 if (stp->sd_struiordq) {
3659 infod_t infod;
3660
3661 infod.d_cmd = INFOD_BYTES;
3662 infod.d_res = 0;
3663 infod.d_bytes = 0;
3664 (void) infonext(rdq, &infod);
3665 size += infod.d_bytes;
3666 }
3667
3668 /*
3669 * Drop down from size_t to the "int" required by the
3670 * interface. Cap at INT_MAX.
3671 */
3672 retval = MIN(size, INT_MAX);
3673 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3674 copyflag);
3675
3676 *rvalp = 0;
3677 return (error);
3678 }
3679 case FIORDCHK:
3680 /*
3681 * FIORDCHK does not use arg value (like FIONREAD),
3682 * instead a count is returned. I_NREAD value may
3683 * not be accurate but safe. The real thing to do is
3684 * to add the msgdsizes of all data messages until
3685 * a non-data message.
3686 */
3687 {
3688 size_t size = 0;
3689
3690 mutex_enter(QLOCK(rdq));
3691 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3692 size += msgdsize(mp);
3693 mutex_exit(QLOCK(rdq));
3694
3695 if (stp->sd_struiordq) {
3696 infod_t infod;
3697
3698 infod.d_cmd = INFOD_BYTES;
3699 infod.d_res = 0;
3700 infod.d_bytes = 0;
3701 (void) infonext(rdq, &infod);
3702 size += infod.d_bytes;
3703 }
3704
3705 /*
3706 * Since ioctl returns an int, and memory sizes under
3707 * LP64 may not fit, we return INT_MAX if the count was
3708 * actually greater.
3709 */
3710 *rvalp = MIN(size, INT_MAX);
3711 return (0);
3712 }
3713
3714 case I_FIND:
3715 /*
3716 * Get module name.
3717 */
3718 {
3719 char mname[FMNAMESZ + 1];
3720 queue_t *q;
3721
3722 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3723 mname, FMNAMESZ + 1, NULL);
3724 if (error)
3725 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3726
3727 /*
3728 * Return EINVAL if we're handed a bogus module name.
3729 */
3730 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3731 TRACE_0(TR_FAC_STREAMS_FR,
3732 TR_I_CANT_FIND, "couldn't I_FIND");
3733 return (EINVAL);
3734 }
3735
3736 *rvalp = 0;
3737
3738 /* Look downstream to see if module is there. */
3739 claimstr(stp->sd_wrq);
3740 for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3741 if (q->q_flag & QREADR) {
3742 q = NULL;
3743 break;
3744 }
3745 if (strcmp(mname, Q2NAME(q)) == 0)
3746 break;
3747 }
3748 releasestr(stp->sd_wrq);
3749
3750 *rvalp = (q ? 1 : 0);
3751 return (error);
3752 }
3753
3754 case I_PUSH:
3755 case __I_PUSH_NOCTTY:
3756 /*
3757 * Push a module.
3758 * For the case __I_PUSH_NOCTTY push a module but
3759 * do not allocate controlling tty. See bugid 4025044
3760 */
3761
3762 {
3763 char mname[FMNAMESZ + 1];
3764 fmodsw_impl_t *fp;
3765 dev_t dummydev;
3766
3767 if (stp->sd_flag & STRHUP)
3768 return (ENXIO);
3769
3770 /*
3771 * Get module name and look up in fmodsw.
3772 */
3773 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3774 mname, FMNAMESZ + 1, NULL);
3775 if (error)
3776 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3777
3778 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3779 NULL)
3780 return (EINVAL);
3781
3782 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3783 "I_PUSH:fp %p stp %p", fp, stp);
3784
3785 if (error = strstartplumb(stp, flag, cmd)) {
3786 fmodsw_rele(fp);
3787 return (error);
3788 }
3789
3790 /*
3791 * See if any more modules can be pushed on this stream.
3792 * Note that this check must be done after strstartplumb()
3793 * since otherwise multiple threads issuing I_PUSHes on
3794 * the same stream will be able to exceed nstrpush.
3795 */
3796 mutex_enter(&stp->sd_lock);
3797 if (stp->sd_pushcnt >= nstrpush) {
3798 fmodsw_rele(fp);
3799 strendplumb(stp);
3800 mutex_exit(&stp->sd_lock);
3801 return (EINVAL);
3802 }
3803 mutex_exit(&stp->sd_lock);
3804
3805 /*
3806 * Push new module and call its open routine
3807 * via qattach(). Modules don't change device
3808 * numbers, so just ignore dummydev here.
3809 */
3810 dummydev = vp->v_rdev;
3811 if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3812 B_FALSE)) == 0) {
3813 if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3814 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3815 /*
3816 * try to allocate it as a controlling terminal
3817 */
3818 (void) strctty(stp);
3819 }
3820 }
3821
3822 mutex_enter(&stp->sd_lock);
3823
3824 /*
3825 * As a performance concern we are caching the values of
3826 * q_minpsz and q_maxpsz of the module below the stream
3827 * head in the stream head.
3828 */
3829 mutex_enter(QLOCK(stp->sd_wrq->q_next));
3830 rmin = stp->sd_wrq->q_next->q_minpsz;
3831 rmax = stp->sd_wrq->q_next->q_maxpsz;
3832 mutex_exit(QLOCK(stp->sd_wrq->q_next));
3833
3834 /* Do this processing here as a performance concern */
3835 if (strmsgsz != 0) {
3836 if (rmax == INFPSZ)
3837 rmax = strmsgsz;
3838 else {
3839 if (vp->v_type == VFIFO)
3840 rmax = MIN(PIPE_BUF, rmax);
3841 else rmax = MIN(strmsgsz, rmax);
3842 }
3843 }
3844
3845 mutex_enter(QLOCK(wrq));
3846 stp->sd_qn_minpsz = rmin;
3847 stp->sd_qn_maxpsz = rmax;
3848 mutex_exit(QLOCK(wrq));
3849
3850 strendplumb(stp);
3851 mutex_exit(&stp->sd_lock);
3852 return (error);
3853 }
3854
3855 case I_POP:
3856 {
3857 queue_t *q;
3858
3859 if (stp->sd_flag & STRHUP)
3860 return (ENXIO);
3861 if (!wrq->q_next) /* for broken pipes */
3862 return (EINVAL);
3863
3864 if (error = strstartplumb(stp, flag, cmd))
3865 return (error);
3866
3867 /*
3868 * If there is an anchor on this stream and popping
3869 * the current module would attempt to pop through the
3870 * anchor, then disallow the pop unless we have sufficient
3871 * privileges; take the cheapest (non-locking) check
3872 * first.
3873 */
3874 if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3875 (stp->sd_anchorzone != crgetzoneid(crp))) {
3876 mutex_enter(&stp->sd_lock);
3877 /*
3878 * Anchors only apply if there's at least one
3879 * module on the stream (sd_pushcnt > 0).
3880 */
3881 if (stp->sd_pushcnt > 0 &&
3882 stp->sd_pushcnt == stp->sd_anchor &&
3883 stp->sd_vnode->v_type != VFIFO) {
3884 strendplumb(stp);
3885 mutex_exit(&stp->sd_lock);
3886 if (stp->sd_anchorzone != crgetzoneid(crp))
3887 return (EINVAL);
3888 /* Audit and report error */
3889 return (secpolicy_ip_config(crp, B_FALSE));
3890 }
3891 mutex_exit(&stp->sd_lock);
3892 }
3893
3894 q = wrq->q_next;
3895 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3896 "I_POP:%p from %p", q, stp);
3897 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3898 error = EINVAL;
3899 } else {
3900 qdetach(_RD(q), 1, flag, crp, B_FALSE);
3901 error = 0;
3902 }
3903 mutex_enter(&stp->sd_lock);
3904
3905 /*
3906 * As a performance concern we are caching the values of
3907 * q_minpsz and q_maxpsz of the module below the stream
3908 * head in the stream head.
3909 */
3910 mutex_enter(QLOCK(wrq->q_next));
3911 rmin = wrq->q_next->q_minpsz;
3912 rmax = wrq->q_next->q_maxpsz;
3913 mutex_exit(QLOCK(wrq->q_next));
3914
3915 /* Do this processing here as a performance concern */
3916 if (strmsgsz != 0) {
3917 if (rmax == INFPSZ)
3918 rmax = strmsgsz;
3919 else {
3920 if (vp->v_type == VFIFO)
3921 rmax = MIN(PIPE_BUF, rmax);
3922 else rmax = MIN(strmsgsz, rmax);
3923 }
3924 }
3925
3926 mutex_enter(QLOCK(wrq));
3927 stp->sd_qn_minpsz = rmin;
3928 stp->sd_qn_maxpsz = rmax;
3929 mutex_exit(QLOCK(wrq));
3930
3931 /* If we popped through the anchor, then reset the anchor. */
3932 if (stp->sd_pushcnt < stp->sd_anchor) {
3933 stp->sd_anchor = 0;
3934 stp->sd_anchorzone = 0;
3935 }
3936 strendplumb(stp);
3937 mutex_exit(&stp->sd_lock);
3938 return (error);
3939 }
3940
3941 case _I_MUXID2FD:
3942 {
3943 /*
3944 * Create a fd for a I_PLINK'ed lower stream with a given
3945 * muxid. With the fd, application can send down ioctls,
3946 * like I_LIST, to the previously I_PLINK'ed stream. Note
3947 * that after getting the fd, the application has to do an
3948 * I_PUNLINK on the muxid before it can do any operation
3949 * on the lower stream. This is required by spec1170.
3950 *
3951 * The fd used to do this ioctl should point to the same
3952 * controlling device used to do the I_PLINK. If it uses
3953 * a different stream or an invalid muxid, I_MUXID2FD will
3954 * fail. The error code is set to EINVAL.
3955 *
3956 * The intended use of this interface is the following.
3957 * An application I_PLINK'ed a stream and exits. The fd
3958 * to the lower stream is gone. Another application
3959 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3960 */
3961 int muxid = (int)arg;
3962 int fd;
3963 linkinfo_t *linkp;
3964 struct file *fp;
3965 netstack_t *ns;
3966 str_stack_t *ss;
3967
3968 /*
3969 * Do not allow the wildcard muxid. This ioctl is not
3970 * intended to find arbitrary link.
3971 */
3972 if (muxid == 0) {
3973 return (EINVAL);
3974 }
3975
3976 ns = netstack_find_by_cred(crp);
3977 ASSERT(ns != NULL);
3978 ss = ns->netstack_str;
3979 ASSERT(ss != NULL);
3980
3981 mutex_enter(&muxifier);
3982 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
3983 if (linkp == NULL) {
3984 mutex_exit(&muxifier);
3985 netstack_rele(ss->ss_netstack);
3986 return (EINVAL);
3987 }
3988
3989 if ((fd = ufalloc(0)) == -1) {
3990 mutex_exit(&muxifier);
3991 netstack_rele(ss->ss_netstack);
3992 return (EMFILE);
3993 }
3994 fp = linkp->li_fpdown;
3995 mutex_enter(&fp->f_tlock);
3996 fp->f_count++;
3997 mutex_exit(&fp->f_tlock);
3998 mutex_exit(&muxifier);
3999 setf(fd, fp);
4000 *rvalp = fd;
4001 netstack_rele(ss->ss_netstack);
4002 return (0);
4003 }
4004
4005 case _I_INSERT:
4006 {
4007 /*
4008 * To insert a module to a given position in a stream.
4009 * In the first release, only allow privileged user
4010 * to use this ioctl. Furthermore, the insert is only allowed
4011 * below an anchor if the zoneid is the same as the zoneid
4012 * which created the anchor.
4013 *
4014 * Note that we do not plan to support this ioctl
4015 * on pipes in the first release. We want to learn more
4016 * about the implications of these ioctls before extending
4017 * their support. And we do not think these features are
4018 * valuable for pipes.
4019 */
4020 STRUCT_DECL(strmodconf, strmodinsert);
4021 char mod_name[FMNAMESZ + 1];
4022 fmodsw_impl_t *fp;
4023 dev_t dummydev;
4024 queue_t *tmp_wrq;
4025 int pos;
4026 boolean_t is_insert;
4027
4028 STRUCT_INIT(strmodinsert, flag);
4029 if (stp->sd_flag & STRHUP)
4030 return (ENXIO);
4031 if (STRMATED(stp))
4032 return (EINVAL);
4033 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4034 return (error);
4035 if (stp->sd_anchor != 0 &&
4036 stp->sd_anchorzone != crgetzoneid(crp))
4037 return (EINVAL);
4038
4039 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4040 STRUCT_SIZE(strmodinsert), copyflag);
4041 if (error)
4042 return (error);
4043
4044 /*
4045 * Get module name and look up in fmodsw.
4046 */
4047 error = (copyflag & U_TO_K ? copyinstr :
4048 copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4049 mod_name, FMNAMESZ + 1, NULL);
4050 if (error)
4051 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4052
4053 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4054 NULL)
4055 return (EINVAL);
4056
4057 if (error = strstartplumb(stp, flag, cmd)) {
4058 fmodsw_rele(fp);
4059 return (error);
4060 }
4061
4062 /*
4063 * Is this _I_INSERT just like an I_PUSH? We need to know
4064 * this because we do some optimizations if this is a
4065 * module being pushed.
4066 */
4067 pos = STRUCT_FGET(strmodinsert, pos);
4068 is_insert = (pos != 0);
4069
4070 /*
4071 * Make sure pos is valid. Even though it is not an I_PUSH,
4072 * we impose the same limit on the number of modules in a
4073 * stream.
4074 */
4075 mutex_enter(&stp->sd_lock);
4076 if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4077 pos > stp->sd_pushcnt) {
4078 fmodsw_rele(fp);
4079 strendplumb(stp);
4080 mutex_exit(&stp->sd_lock);
4081 return (EINVAL);
4082 }
4083 if (stp->sd_anchor != 0) {
4084 /*
4085 * Is this insert below the anchor?
4086 * Pushcnt hasn't been increased yet hence
4087 * we test for greater than here, and greater or
4088 * equal after qattach.
4089 */
4090 if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4091 stp->sd_anchorzone != crgetzoneid(crp)) {
4092 fmodsw_rele(fp);
4093 strendplumb(stp);
4094 mutex_exit(&stp->sd_lock);
4095 return (EPERM);
4096 }
4097 }
4098
4099 mutex_exit(&stp->sd_lock);
4100
4101 /*
4102 * First find the correct position this module to
4103 * be inserted. We don't need to call claimstr()
4104 * as the stream should not be changing at this point.
4105 *
4106 * Insert new module and call its open routine
4107 * via qattach(). Modules don't change device
4108 * numbers, so just ignore dummydev here.
4109 */
4110 for (tmp_wrq = stp->sd_wrq; pos > 0;
4111 tmp_wrq = tmp_wrq->q_next, pos--) {
4112 ASSERT(SAMESTR(tmp_wrq));
4113 }
4114 dummydev = vp->v_rdev;
4115 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4116 fp, is_insert)) != 0) {
4117 mutex_enter(&stp->sd_lock);
4118 strendplumb(stp);
4119 mutex_exit(&stp->sd_lock);
4120 return (error);
4121 }
4122
4123 mutex_enter(&stp->sd_lock);
4124
4125 /*
4126 * As a performance concern we are caching the values of
4127 * q_minpsz and q_maxpsz of the module below the stream
4128 * head in the stream head.
4129 */
4130 if (!is_insert) {
4131 mutex_enter(QLOCK(stp->sd_wrq->q_next));
4132 rmin = stp->sd_wrq->q_next->q_minpsz;
4133 rmax = stp->sd_wrq->q_next->q_maxpsz;
4134 mutex_exit(QLOCK(stp->sd_wrq->q_next));
4135
4136 /* Do this processing here as a performance concern */
4137 if (strmsgsz != 0) {
4138 if (rmax == INFPSZ) {
4139 rmax = strmsgsz;
4140 } else {
4141 rmax = MIN(strmsgsz, rmax);
4142 }
4143 }
4144
4145 mutex_enter(QLOCK(wrq));
4146 stp->sd_qn_minpsz = rmin;
4147 stp->sd_qn_maxpsz = rmax;
4148 mutex_exit(QLOCK(wrq));
4149 }
4150
4151 /*
4152 * Need to update the anchor value if this module is
4153 * inserted below the anchor point.
4154 */
4155 if (stp->sd_anchor != 0) {
4156 pos = STRUCT_FGET(strmodinsert, pos);
4157 if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4158 stp->sd_anchor++;
4159 }
4160
4161 strendplumb(stp);
4162 mutex_exit(&stp->sd_lock);
4163 return (0);
4164 }
4165
4166 case _I_REMOVE:
4167 {
4168 /*
4169 * To remove a module with a given name in a stream. The
4170 * caller of this ioctl needs to provide both the name and
4171 * the position of the module to be removed. This eliminates
4172 * the ambiguity of removal if a module is inserted/pushed
4173 * multiple times in a stream. In the first release, only
4174 * allow privileged user to use this ioctl.
4175 * Furthermore, the remove is only allowed
4176 * below an anchor if the zoneid is the same as the zoneid
4177 * which created the anchor.
4178 *
4179 * Note that we do not plan to support this ioctl
4180 * on pipes in the first release. We want to learn more
4181 * about the implications of these ioctls before extending
4182 * their support. And we do not think these features are
4183 * valuable for pipes.
4184 *
4185 * Also note that _I_REMOVE cannot be used to remove a
4186 * driver or the stream head.
4187 */
4188 STRUCT_DECL(strmodconf, strmodremove);
4189 queue_t *q;
4190 int pos;
4191 char mod_name[FMNAMESZ + 1];
4192 boolean_t is_remove;
4193
4194 STRUCT_INIT(strmodremove, flag);
4195 if (stp->sd_flag & STRHUP)
4196 return (ENXIO);
4197 if (STRMATED(stp))
4198 return (EINVAL);
4199 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4200 return (error);
4201 if (stp->sd_anchor != 0 &&
4202 stp->sd_anchorzone != crgetzoneid(crp))
4203 return (EINVAL);
4204
4205 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4206 STRUCT_SIZE(strmodremove), copyflag);
4207 if (error)
4208 return (error);
4209
4210 error = (copyflag & U_TO_K ? copyinstr :
4211 copystr)(STRUCT_FGETP(strmodremove, mod_name),
4212 mod_name, FMNAMESZ + 1, NULL);
4213 if (error)
4214 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4215
4216 if ((error = strstartplumb(stp, flag, cmd)) != 0)
4217 return (error);
4218
4219 /*
4220 * Match the name of given module to the name of module at
4221 * the given position.
4222 */
4223 pos = STRUCT_FGET(strmodremove, pos);
4224
4225 is_remove = (pos != 0);
4226 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4227 q = q->q_next, pos--)
4228 ;
4229 if (pos > 0 || !SAMESTR(q) ||
4230 strcmp(Q2NAME(q), mod_name) != 0) {
4231 mutex_enter(&stp->sd_lock);
4232 strendplumb(stp);
4233 mutex_exit(&stp->sd_lock);
4234 return (EINVAL);
4235 }
4236
4237 /*
4238 * If the position is at or below an anchor, then the zoneid
4239 * must match the zoneid that created the anchor.
4240 */
4241 if (stp->sd_anchor != 0) {
4242 pos = STRUCT_FGET(strmodremove, pos);
4243 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4244 stp->sd_anchorzone != crgetzoneid(crp)) {
4245 mutex_enter(&stp->sd_lock);
4246 strendplumb(stp);
4247 mutex_exit(&stp->sd_lock);
4248 return (EPERM);
4249 }
4250 }
4251
4252
4253 ASSERT(!(q->q_flag & QREADR));
4254 qdetach(_RD(q), 1, flag, crp, is_remove);
4255
4256 mutex_enter(&stp->sd_lock);
4257
4258 /*
4259 * As a performance concern we are caching the values of
4260 * q_minpsz and q_maxpsz of the module below the stream
4261 * head in the stream head.
4262 */
4263 if (!is_remove) {
4264 mutex_enter(QLOCK(wrq->q_next));
4265 rmin = wrq->q_next->q_minpsz;
4266 rmax = wrq->q_next->q_maxpsz;
4267 mutex_exit(QLOCK(wrq->q_next));
4268
4269 /* Do this processing here as a performance concern */
4270 if (strmsgsz != 0) {
4271 if (rmax == INFPSZ)
4272 rmax = strmsgsz;
4273 else {
4274 if (vp->v_type == VFIFO)
4275 rmax = MIN(PIPE_BUF, rmax);
4276 else rmax = MIN(strmsgsz, rmax);
4277 }
4278 }
4279
4280 mutex_enter(QLOCK(wrq));
4281 stp->sd_qn_minpsz = rmin;
4282 stp->sd_qn_maxpsz = rmax;
4283 mutex_exit(QLOCK(wrq));
4284 }
4285
4286 /*
4287 * Need to update the anchor value if this module is removed
4288 * at or below the anchor point. If the removed module is at
4289 * the anchor point, remove the anchor for this stream if
4290 * there is no module above the anchor point. Otherwise, if
4291 * the removed module is below the anchor point, decrement the
4292 * anchor point by 1.
4293 */
4294 if (stp->sd_anchor != 0) {
4295 pos = STRUCT_FGET(strmodremove, pos);
4296 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4297 stp->sd_anchor = 0;
4298 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4299 stp->sd_anchor--;
4300 }
4301
4302 strendplumb(stp);
4303 mutex_exit(&stp->sd_lock);
4304 return (0);
4305 }
4306
4307 case I_ANCHOR:
4308 /*
4309 * Set the anchor position on the stream to reside at
4310 * the top module (in other words, the top module
4311 * cannot be popped). Anchors with a FIFO make no
4312 * obvious sense, so they're not allowed.
4313 */
4314 mutex_enter(&stp->sd_lock);
4315
4316 if (stp->sd_vnode->v_type == VFIFO) {
4317 mutex_exit(&stp->sd_lock);
4318 return (EINVAL);
4319 }
4320 /* Only allow the same zoneid to update the anchor */
4321 if (stp->sd_anchor != 0 &&
4322 stp->sd_anchorzone != crgetzoneid(crp)) {
4323 mutex_exit(&stp->sd_lock);
4324 return (EINVAL);
4325 }
4326 stp->sd_anchor = stp->sd_pushcnt;
4327 stp->sd_anchorzone = crgetzoneid(crp);
4328 mutex_exit(&stp->sd_lock);
4329 return (0);
4330
4331 case I_LOOK:
4332 /*
4333 * Get name of first module downstream.
4334 * If no module, return an error.
4335 */
4336 claimstr(wrq);
4337 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {
4338 char *name = Q2NAME(wrq->q_next);
4339
4340 error = strcopyout(name, (void *)arg, strlen(name) + 1,
4341 copyflag);
4342 releasestr(wrq);
4343 return (error);
4344 }
4345 releasestr(wrq);
4346 return (EINVAL);
4347
4348 case I_LINK:
4349 case I_PLINK:
4350 /*
4351 * Link a multiplexor.
4352 */
4353 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
4354
4355 case _I_PLINK_LH:
4356 /*
4357 * Link a multiplexor: Call must originate from kernel.
4358 */
4359 if (kioctl)
4360 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4361
4362 return (EINVAL);
4363 case I_UNLINK:
4364 case I_PUNLINK:
4365 /*
4366 * Unlink a multiplexor.
4367 * If arg is -1, unlink all links for which this is the
4368 * controlling stream. Otherwise, arg is an index number
4369 * for a link to be removed.
4370 */
4371 {
4372 struct linkinfo *linkp;
4373 int native_arg = (int)arg;
4374 int type;
4375 netstack_t *ns;
4376 str_stack_t *ss;
4377
4378 TRACE_1(TR_FAC_STREAMS_FR,
4379 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4380 if (vp->v_type == VFIFO) {
4381 return (EINVAL);
4382 }
4383 if (cmd == I_UNLINK)
4384 type = LINKNORMAL;
4385 else /* I_PUNLINK */
4386 type = LINKPERSIST;
4387 if (native_arg == 0) {
4388 return (EINVAL);
4389 }
4390 ns = netstack_find_by_cred(crp);
4391 ASSERT(ns != NULL);
4392 ss = ns->netstack_str;
4393 ASSERT(ss != NULL);
4394
4395 if (native_arg == MUXID_ALL)
4396 error = munlinkall(stp, type, crp, rvalp, ss);
4397 else {
4398 mutex_enter(&muxifier);
4399 if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4400 /* invalid user supplied index number */
4401 mutex_exit(&muxifier);
4402 netstack_rele(ss->ss_netstack);
4403 return (EINVAL);
4404 }
4405 /* munlink drops the muxifier lock */
4406 error = munlink(stp, linkp, type, crp, rvalp, ss);
4407 }
4408 netstack_rele(ss->ss_netstack);
4409 return (error);
4410 }
4411
4412 case I_FLUSH:
4413 /*
4414 * send a flush message downstream
4415 * flush message can indicate
4416 * FLUSHR - flush read queue
4417 * FLUSHW - flush write queue
4418 * FLUSHRW - flush read/write queue
4419 */
4420 if (stp->sd_flag & STRHUP)
4421 return (ENXIO);
4422 if (arg & ~FLUSHRW)
4423 return (EINVAL);
4424
4425 for (;;) {
4426 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4427 break;
4428 }
4429 if (error = strwaitbuf(1, BPRI_HI)) {
4430 return (error);
4431 }
4432 }
4433
4434 /*
4435 * Send down an unsupported ioctl and wait for the nack
4436 * in order to allow the M_FLUSH to propagate back
4437 * up to the stream head.
4438 * Replaces if (qready()) runqueues();
4439 */
4440 strioc.ic_cmd = -1; /* The unsupported ioctl */
4441 strioc.ic_timout = 0;
4442 strioc.ic_len = 0;
4443 strioc.ic_dp = NULL;
4444 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4445 *rvalp = 0;
4446 return (0);
4447
4448 case I_FLUSHBAND:
4449 {
4450 struct bandinfo binfo;
4451
4452 error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4453 copyflag);
4454 if (error)
4455 return (error);
4456 if (stp->sd_flag & STRHUP)
4457 return (ENXIO);
4458 if (binfo.bi_flag & ~FLUSHRW)
4459 return (EINVAL);
4460 while (!(mp = allocb(2, BPRI_HI))) {
4461 if (error = strwaitbuf(2, BPRI_HI))
4462 return (error);
4463 }
4464 mp->b_datap->db_type = M_FLUSH;
4465 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4466 *mp->b_wptr++ = binfo.bi_pri;
4467 putnext(stp->sd_wrq, mp);
4468 /*
4469 * Send down an unsupported ioctl and wait for the nack
4470 * in order to allow the M_FLUSH to propagate back
4471 * up to the stream head.
4472 * Replaces if (qready()) runqueues();
4473 */
4474 strioc.ic_cmd = -1; /* The unsupported ioctl */
4475 strioc.ic_timout = 0;
4476 strioc.ic_len = 0;
4477 strioc.ic_dp = NULL;
4478 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4479 *rvalp = 0;
4480 return (0);
4481 }
4482
4483 case I_SRDOPT:
4484 /*
4485 * Set read options
4486 *
4487 * RNORM - default stream mode
4488 * RMSGN - message no discard
4489 * RMSGD - message discard
4490 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4491 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4492 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4493 */
4494 if (arg & ~(RMODEMASK | RPROTMASK))
4495 return (EINVAL);
4496
4497 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4498 return (EINVAL);
4499
4500 mutex_enter(&stp->sd_lock);
4501 switch (arg & RMODEMASK) {
4502 case RNORM:
4503 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4504 break;
4505 case RMSGD:
4506 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4507 RD_MSGDIS;
4508 break;
4509 case RMSGN:
4510 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4511 RD_MSGNODIS;
4512 break;
4513 }
4514
4515 switch (arg & RPROTMASK) {
4516 case RPROTNORM:
4517 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4518 break;
4519
4520 case RPROTDAT:
4521 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4522 RD_PROTDAT);
4523 break;
4524
4525 case RPROTDIS:
4526 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4527 RD_PROTDIS);
4528 break;
4529 }
4530 mutex_exit(&stp->sd_lock);
4531 return (0);
4532
4533 case I_GRDOPT:
4534 /*
4535 * Get read option and return the value
4536 * to spot pointed to by arg
4537 */
4538 {
4539 int rdopt;
4540
4541 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4542 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4543 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4544 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4545
4546 return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4547 copyflag));
4548 }
4549
4550 case I_SERROPT:
4551 /*
4552 * Set error options
4553 *
4554 * RERRNORM - persistent read errors
4555 * RERRNONPERSIST - non-persistent read errors
4556 * WERRNORM - persistent write errors
4557 * WERRNONPERSIST - non-persistent write errors
4558 */
4559 if (arg & ~(RERRMASK | WERRMASK))
4560 return (EINVAL);
4561
4562 mutex_enter(&stp->sd_lock);
4563 switch (arg & RERRMASK) {
4564 case RERRNORM:
4565 stp->sd_flag &= ~STRDERRNONPERSIST;
4566 break;
4567 case RERRNONPERSIST:
4568 stp->sd_flag |= STRDERRNONPERSIST;
4569 break;
4570 }
4571 switch (arg & WERRMASK) {
4572 case WERRNORM:
4573 stp->sd_flag &= ~STWRERRNONPERSIST;
4574 break;
4575 case WERRNONPERSIST:
4576 stp->sd_flag |= STWRERRNONPERSIST;
4577 break;
4578 }
4579 mutex_exit(&stp->sd_lock);
4580 return (0);
4581
4582 case I_GERROPT:
4583 /*
4584 * Get error option and return the value
4585 * to spot pointed to by arg
4586 */
4587 {
4588 int erropt = 0;
4589
4590 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4591 RERRNORM;
4592 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4593 WERRNORM;
4594 return (strcopyout(&erropt, (void *)arg, sizeof (int),
4595 copyflag));
4596 }
4597
4598 case I_SETSIG:
4599 /*
4600 * Register the calling proc to receive the SIGPOLL
4601 * signal based on the events given in arg. If
4602 * arg is zero, remove the proc from register list.
4603 */
4604 {
4605 strsig_t *ssp, *pssp;
4606 struct pid *pidp;
4607
4608 pssp = NULL;
4609 pidp = curproc->p_pidp;
4610 /*
4611 * Hold sd_lock to prevent traversal of sd_siglist while
4612 * it is modified.
4613 */
4614 mutex_enter(&stp->sd_lock);
4615 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4616 pssp = ssp, ssp = ssp->ss_next)
4617 ;
4618
4619 if (arg) {
4620 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4621 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4622 mutex_exit(&stp->sd_lock);
4623 return (EINVAL);
4624 }
4625 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4626 mutex_exit(&stp->sd_lock);
4627 return (EINVAL);
4628 }
4629
4630 /*
4631 * If proc not already registered, add it
4632 * to list.
4633 */
4634 if (!ssp) {
4635 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4636 ssp->ss_pidp = pidp;
4637 ssp->ss_pid = pidp->pid_id;
4638 ssp->ss_next = NULL;
4639 if (pssp)
4640 pssp->ss_next = ssp;
4641 else
4642 stp->sd_siglist = ssp;
4643 mutex_enter(&pidlock);
4644 PID_HOLD(pidp);
4645 mutex_exit(&pidlock);
4646 }
4647
4648 /*
4649 * Set events.
4650 */
4651 ssp->ss_events = (int)arg;
4652 } else {
4653 /*
4654 * Remove proc from register list.
4655 */
4656 if (ssp) {
4657 mutex_enter(&pidlock);
4658 PID_RELE(pidp);
4659 mutex_exit(&pidlock);
4660 if (pssp)
4661 pssp->ss_next = ssp->ss_next;
4662 else
4663 stp->sd_siglist = ssp->ss_next;
4664 kmem_free(ssp, sizeof (strsig_t));
4665 } else {
4666 mutex_exit(&stp->sd_lock);
4667 return (EINVAL);
4668 }
4669 }
4670
4671 /*
4672 * Recalculate OR of sig events.
4673 */
4674 stp->sd_sigflags = 0;
4675 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4676 stp->sd_sigflags |= ssp->ss_events;
4677 mutex_exit(&stp->sd_lock);
4678 return (0);
4679 }
4680
4681 case I_GETSIG:
4682 /*
4683 * Return (in arg) the current registration of events
4684 * for which the calling proc is to be signaled.
4685 */
4686 {
4687 struct strsig *ssp;
4688 struct pid *pidp;
4689
4690 pidp = curproc->p_pidp;
4691 mutex_enter(&stp->sd_lock);
4692 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4693 if (ssp->ss_pidp == pidp) {
4694 error = strcopyout(&ssp->ss_events, (void *)arg,
4695 sizeof (int), copyflag);
4696 mutex_exit(&stp->sd_lock);
4697 return (error);
4698 }
4699 mutex_exit(&stp->sd_lock);
4700 return (EINVAL);
4701 }
4702
4703 case I_ESETSIG:
4704 /*
4705 * Register the ss_pid to receive the SIGPOLL
4706 * signal based on the events is ss_events arg. If
4707 * ss_events is zero, remove the proc from register list.
4708 */
4709 {
4710 struct strsig *ssp, *pssp;
4711 struct proc *proc;
4712 struct pid *pidp;
4713 pid_t pid;
4714 struct strsigset ss;
4715
4716 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4717 if (error)
4718 return (error);
4719
4720 pid = ss.ss_pid;
4721
4722 if (ss.ss_events != 0) {
4723 /*
4724 * Permissions check by sending signal 0.
4725 * Note that when kill fails it does a set_errno
4726 * causing the system call to fail.
4727 */
4728 error = kill(pid, 0);
4729 if (error) {
4730 return (error);
4731 }
4732 }
4733 mutex_enter(&pidlock);
4734 if (pid == 0)
4735 proc = curproc;
4736 else if (pid < 0)
4737 proc = pgfind(-pid);
4738 else
4739 proc = prfind(pid);
4740 if (proc == NULL) {
4741 mutex_exit(&pidlock);
4742 return (ESRCH);
4743 }
4744 if (pid < 0)
4745 pidp = proc->p_pgidp;
4746 else
4747 pidp = proc->p_pidp;
4748 ASSERT(pidp);
4749 /*
4750 * Get a hold on the pid structure while referencing it.
4751 * There is a separate PID_HOLD should it be inserted
4752 * in the list below.
4753 */
4754 PID_HOLD(pidp);
4755 mutex_exit(&pidlock);
4756
4757 pssp = NULL;
4758 /*
4759 * Hold sd_lock to prevent traversal of sd_siglist while
4760 * it is modified.
4761 */
4762 mutex_enter(&stp->sd_lock);
4763 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4764 pssp = ssp, ssp = ssp->ss_next)
4765 ;
4766
4767 if (ss.ss_events) {
4768 if (ss.ss_events &
4769 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4770 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4771 mutex_exit(&stp->sd_lock);
4772 mutex_enter(&pidlock);
4773 PID_RELE(pidp);
4774 mutex_exit(&pidlock);
4775 return (EINVAL);
4776 }
4777 if ((ss.ss_events & S_BANDURG) &&
4778 !(ss.ss_events & S_RDBAND)) {
4779 mutex_exit(&stp->sd_lock);
4780 mutex_enter(&pidlock);
4781 PID_RELE(pidp);
4782 mutex_exit(&pidlock);
4783 return (EINVAL);
4784 }
4785
4786 /*
4787 * If proc not already registered, add it
4788 * to list.
4789 */
4790 if (!ssp) {
4791 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4792 ssp->ss_pidp = pidp;
4793 ssp->ss_pid = pid;
4794 ssp->ss_next = NULL;
4795 if (pssp)
4796 pssp->ss_next = ssp;
4797 else
4798 stp->sd_siglist = ssp;
4799 mutex_enter(&pidlock);
4800 PID_HOLD(pidp);
4801 mutex_exit(&pidlock);
4802 }
4803
4804 /*
4805 * Set events.
4806 */
4807 ssp->ss_events = ss.ss_events;
4808 } else {
4809 /*
4810 * Remove proc from register list.
4811 */
4812 if (ssp) {
4813 mutex_enter(&pidlock);
4814 PID_RELE(pidp);
4815 mutex_exit(&pidlock);
4816 if (pssp)
4817 pssp->ss_next = ssp->ss_next;
4818 else
4819 stp->sd_siglist = ssp->ss_next;
4820 kmem_free(ssp, sizeof (strsig_t));
4821 } else {
4822 mutex_exit(&stp->sd_lock);
4823 mutex_enter(&pidlock);
4824 PID_RELE(pidp);
4825 mutex_exit(&pidlock);
4826 return (EINVAL);
4827 }
4828 }
4829
4830 /*
4831 * Recalculate OR of sig events.
4832 */
4833 stp->sd_sigflags = 0;
4834 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4835 stp->sd_sigflags |= ssp->ss_events;
4836 mutex_exit(&stp->sd_lock);
4837 mutex_enter(&pidlock);
4838 PID_RELE(pidp);
4839 mutex_exit(&pidlock);
4840 return (0);
4841 }
4842
4843 case I_EGETSIG:
4844 /*
4845 * Return (in arg) the current registration of events
4846 * for which the calling proc is to be signaled.
4847 */
4848 {
4849 struct strsig *ssp;
4850 struct proc *proc;
4851 pid_t pid;
4852 struct pid *pidp;
4853 struct strsigset ss;
4854
4855 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4856 if (error)
4857 return (error);
4858
4859 pid = ss.ss_pid;
4860 mutex_enter(&pidlock);
4861 if (pid == 0)
4862 proc = curproc;
4863 else if (pid < 0)
4864 proc = pgfind(-pid);
4865 else
4866 proc = prfind(pid);
4867 if (proc == NULL) {
4868 mutex_exit(&pidlock);
4869 return (ESRCH);
4870 }
4871 if (pid < 0)
4872 pidp = proc->p_pgidp;
4873 else
4874 pidp = proc->p_pidp;
4875
4876 /* Prevent the pidp from being reassigned */
4877 PID_HOLD(pidp);
4878 mutex_exit(&pidlock);
4879
4880 mutex_enter(&stp->sd_lock);
4881 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4882 if (ssp->ss_pid == pid) {
4883 ss.ss_pid = ssp->ss_pid;
4884 ss.ss_events = ssp->ss_events;
4885 error = strcopyout(&ss, (void *)arg,
4886 sizeof (struct strsigset), copyflag);
4887 mutex_exit(&stp->sd_lock);
4888 mutex_enter(&pidlock);
4889 PID_RELE(pidp);
4890 mutex_exit(&pidlock);
4891 return (error);
4892 }
4893 mutex_exit(&stp->sd_lock);
4894 mutex_enter(&pidlock);
4895 PID_RELE(pidp);
4896 mutex_exit(&pidlock);
4897 return (EINVAL);
4898 }
4899
4900 case I_PEEK:
4901 {
4902 STRUCT_DECL(strpeek, strpeek);
4903 size_t n;
4904 mblk_t *fmp, *tmp_mp = NULL;
4905
4906 STRUCT_INIT(strpeek, flag);
4907
4908 error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4909 STRUCT_SIZE(strpeek), copyflag);
4910 if (error)
4911 return (error);
4912
4913 mutex_enter(QLOCK(rdq));
4914 /*
4915 * Skip the invalid messages
4916 */
4917 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4918 if (mp->b_datap->db_type != M_SIG)
4919 break;
4920
4921 /*
4922 * If user has requested to peek at a high priority message
4923 * and first message is not, return 0
4924 */
4925 if (mp != NULL) {
4926 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4927 queclass(mp) == QNORM) {
4928 *rvalp = 0;
4929 mutex_exit(QLOCK(rdq));
4930 return (0);
4931 }
4932 } else if (stp->sd_struiordq == NULL ||
4933 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4934 /*
4935 * No mblks to look at at the streamhead and
4936 * 1). This isn't a synch stream or
4937 * 2). This is a synch stream but caller wants high
4938 * priority messages which is not supported by
4939 * the synch stream. (it only supports QNORM)
4940 */
4941 *rvalp = 0;
4942 mutex_exit(QLOCK(rdq));
4943 return (0);
4944 }
4945
4946 fmp = mp;
4947
4948 if (mp && mp->b_datap->db_type == M_PASSFP) {
4949 mutex_exit(QLOCK(rdq));
4950 return (EBADMSG);
4951 }
4952
4953 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
4954 mp->b_datap->db_type == M_PROTO ||
4955 mp->b_datap->db_type == M_DATA);
4956
4957 if (mp && mp->b_datap->db_type == M_PCPROTO) {
4958 STRUCT_FSET(strpeek, flags, RS_HIPRI);
4959 } else {
4960 STRUCT_FSET(strpeek, flags, 0);
4961 }
4962
4963
4964 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
4965 mutex_exit(QLOCK(rdq));
4966 return (ENOSR);
4967 }
4968 mutex_exit(QLOCK(rdq));
4969
4970 /*
4971 * set mp = tmp_mp, so that I_PEEK processing can continue.
4972 * tmp_mp is used to free the dup'd message.
4973 */
4974 mp = tmp_mp;
4975
4976 uio.uio_fmode = 0;
4977 uio.uio_extflg = UIO_COPY_CACHED;
4978 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
4979 UIO_SYSSPACE;
4980 uio.uio_limit = 0;
4981 /*
4982 * First process PROTO blocks, if any.
4983 * If user doesn't want to get ctl info by setting maxlen <= 0,
4984 * then set len to -1/0 and skip control blocks part.
4985 */
4986 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
4987 STRUCT_FSET(strpeek, ctlbuf.len, -1);
4988 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
4989 STRUCT_FSET(strpeek, ctlbuf.len, 0);
4990 else {
4991 int ctl_part = 0;
4992
4993 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
4994 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
4995 uio.uio_iov = &iov;
4996 uio.uio_resid = iov.iov_len;
4997 uio.uio_loffset = 0;
4998 uio.uio_iovcnt = 1;
4999 while (mp && mp->b_datap->db_type != M_DATA &&
5000 uio.uio_resid >= 0) {
5001 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5002 mp->b_datap->db_type == M_PROTO :
5003 mp->b_datap->db_type == M_PCPROTO);
5004
5005 if ((n = MIN(uio.uio_resid,
5006 mp->b_wptr - mp->b_rptr)) != 0 &&
5007 (error = uiomove((char *)mp->b_rptr, n,
5008 UIO_READ, &uio)) != 0) {
5009 freemsg(tmp_mp);
5010 return (error);
5011 }
5012 ctl_part = 1;
5013 mp = mp->b_cont;
5014 }
5015 /* No ctl message */
5016 if (ctl_part == 0)
5017 STRUCT_FSET(strpeek, ctlbuf.len, -1);
5018 else
5019 STRUCT_FSET(strpeek, ctlbuf.len,
5020 STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5021 uio.uio_resid);
5022 }
5023
5024 /*
5025 * Now process DATA blocks, if any.
5026 * If user doesn't want to get data info by setting maxlen <= 0,
5027 * then set len to -1/0 and skip data blocks part.
5028 */
5029 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5030 STRUCT_FSET(strpeek, databuf.len, -1);
5031 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5032 STRUCT_FSET(strpeek, databuf.len, 0);
5033 else {
5034 int data_part = 0;
5035
5036 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5037 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5038 uio.uio_iov = &iov;
5039 uio.uio_resid = iov.iov_len;
5040 uio.uio_loffset = 0;
5041 uio.uio_iovcnt = 1;
5042 while (mp && uio.uio_resid) {
5043 if (mp->b_datap->db_type == M_DATA) {
5044 if ((n = MIN(uio.uio_resid,
5045 mp->b_wptr - mp->b_rptr)) != 0 &&
5046 (error = uiomove((char *)mp->b_rptr,
5047 n, UIO_READ, &uio)) != 0) {
5048 freemsg(tmp_mp);
5049 return (error);
5050 }
5051 data_part = 1;
5052 }
5053 ASSERT(data_part == 0 ||
5054 mp->b_datap->db_type == M_DATA);
5055 mp = mp->b_cont;
5056 }
5057 /* No data message */
5058 if (data_part == 0)
5059 STRUCT_FSET(strpeek, databuf.len, -1);
5060 else
5061 STRUCT_FSET(strpeek, databuf.len,
5062 STRUCT_FGET(strpeek, databuf.maxlen) -
5063 uio.uio_resid);
5064 }
5065 freemsg(tmp_mp);
5066
5067 /*
5068 * It is a synch stream and user wants to get
5069 * data (maxlen > 0).
5070 * uio setup is done by the codes that process DATA
5071 * blocks above.
5072 */
5073 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5074 infod_t infod;
5075
5076 infod.d_cmd = INFOD_COPYOUT;
5077 infod.d_res = 0;
5078 infod.d_uiop = &uio;
5079 error = infonext(rdq, &infod);
5080 if (error == EINVAL || error == EBUSY)
5081 error = 0;
5082 if (error)
5083 return (error);
5084 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5085 databuf.maxlen) - uio.uio_resid);
5086 if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5087 /*
5088 * No data found by the infonext().
5089 */
5090 STRUCT_FSET(strpeek, databuf.len, -1);
5091 }
5092 }
5093 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5094 STRUCT_SIZE(strpeek), copyflag);
5095 if (error) {
5096 return (error);
5097 }
5098 /*
5099 * If there is no message retrieved, set return code to 0
5100 * otherwise, set it to 1.
5101 */
5102 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5103 STRUCT_FGET(strpeek, databuf.len) == -1)
5104 *rvalp = 0;
5105 else
5106 *rvalp = 1;
5107 return (0);
5108 }
5109
5110 case I_FDINSERT:
5111 {
5112 STRUCT_DECL(strfdinsert, strfdinsert);
5113 struct file *resftp;
5114 struct stdata *resstp;
5115 t_uscalar_t ival;
5116 ssize_t msgsize;
5117 struct strbuf mctl;
5118
5119 STRUCT_INIT(strfdinsert, flag);
5120 if (stp->sd_flag & STRHUP)
5121 return (ENXIO);
5122 /*
5123 * STRDERR, STWRERR and STPLEX tested above.
5124 */
5125 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5126 STRUCT_SIZE(strfdinsert), copyflag);
5127 if (error)
5128 return (error);
5129
5130 if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5131 (STRUCT_FGET(strfdinsert, offset) %
5132 sizeof (t_uscalar_t)) != 0)
5133 return (EINVAL);
5134 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5135 if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5136 releasef(STRUCT_FGET(strfdinsert, fildes));
5137 return (EINVAL);
5138 }
5139 } else
5140 return (EINVAL);
5141
5142 mutex_enter(&resstp->sd_lock);
5143 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5144 error = strgeterr(resstp,
5145 STRDERR|STWRERR|STRHUP|STPLEX, 0);
5146 if (error != 0) {
5147 mutex_exit(&resstp->sd_lock);
5148 releasef(STRUCT_FGET(strfdinsert, fildes));
5149 return (error);
5150 }
5151 }
5152 mutex_exit(&resstp->sd_lock);
5153
5154 #ifdef _ILP32
5155 {
5156 queue_t *q;
5157 queue_t *mate = NULL;
5158
5159 /* get read queue of stream terminus */
5160 claimstr(resstp->sd_wrq);
5161 for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5162 q = q->q_next)
5163 if (!STRMATED(resstp) && STREAM(q) != resstp &&
5164 mate == NULL) {
5165 ASSERT(q->q_qinfo->qi_srvp);
5166 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5167 claimstr(q);
5168 mate = q;
5169 }
5170 q = _RD(q);
5171 if (mate)
5172 releasestr(mate);
5173 releasestr(resstp->sd_wrq);
5174 ival = (t_uscalar_t)q;
5175 }
5176 #else
5177 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5178 #endif /* _ILP32 */
5179
5180 if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5181 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5182 releasef(STRUCT_FGET(strfdinsert, fildes));
5183 return (EINVAL);
5184 }
5185
5186 /*
5187 * Check for legal flag value.
5188 */
5189 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5190 releasef(STRUCT_FGET(strfdinsert, fildes));
5191 return (EINVAL);
5192 }
5193
5194 /* get these values from those cached in the stream head */
5195 mutex_enter(QLOCK(stp->sd_wrq));
5196 rmin = stp->sd_qn_minpsz;
5197 rmax = stp->sd_qn_maxpsz;
5198 mutex_exit(QLOCK(stp->sd_wrq));
5199
5200 /*
5201 * Make sure ctl and data sizes together fall within
5202 * the limits of the max and min receive packet sizes
5203 * and do not exceed system limit. A negative data
5204 * length means that no data part is to be sent.
5205 */
5206 ASSERT((rmax >= 0) || (rmax == INFPSZ));
5207 if (rmax == 0) {
5208 releasef(STRUCT_FGET(strfdinsert, fildes));
5209 return (ERANGE);
5210 }
5211 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5212 msgsize = 0;
5213 if ((msgsize < rmin) ||
5214 ((msgsize > rmax) && (rmax != INFPSZ)) ||
5215 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5216 releasef(STRUCT_FGET(strfdinsert, fildes));
5217 return (ERANGE);
5218 }
5219
5220 mutex_enter(&stp->sd_lock);
5221 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5222 !canputnext(stp->sd_wrq)) {
5223 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5224 flag, -1, &done)) != 0 || done) {
5225 mutex_exit(&stp->sd_lock);
5226 releasef(STRUCT_FGET(strfdinsert, fildes));
5227 return (error);
5228 }
5229 if ((error = i_straccess(stp, access)) != 0) {
5230 mutex_exit(&stp->sd_lock);
5231 releasef(
5232 STRUCT_FGET(strfdinsert, fildes));
5233 return (error);
5234 }
5235 }
5236 mutex_exit(&stp->sd_lock);
5237
5238 /*
5239 * Copy strfdinsert.ctlbuf into native form of
5240 * ctlbuf to pass down into strmakemsg().
5241 */
5242 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5243 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5244 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5245
5246 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5247 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5248 uio.uio_iov = &iov;
5249 uio.uio_iovcnt = 1;
5250 uio.uio_loffset = 0;
5251 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5252 UIO_SYSSPACE;
5253 uio.uio_fmode = 0;
5254 uio.uio_extflg = UIO_COPY_CACHED;
5255 uio.uio_resid = iov.iov_len;
5256 if ((error = strmakemsg(&mctl,
5257 &msgsize, &uio, stp,
5258 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5259 STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5260 releasef(STRUCT_FGET(strfdinsert, fildes));
5261 return (error);
5262 }
5263
5264 STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5265
5266 /*
5267 * Place the possibly reencoded queue pointer 'offset' bytes
5268 * from the start of the control portion of the message.
5269 */
5270 *((t_uscalar_t *)(mp->b_rptr +
5271 STRUCT_FGET(strfdinsert, offset))) = ival;
5272
5273 /*
5274 * Put message downstream.
5275 */
5276 stream_willservice(stp);
5277 putnext(stp->sd_wrq, mp);
5278 stream_runservice(stp);
5279 releasef(STRUCT_FGET(strfdinsert, fildes));
5280 return (error);
5281 }
5282
5283 case I_SENDFD:
5284 {
5285 struct file *fp;
5286
5287 if ((fp = getf((int)arg)) == NULL)
5288 return (EBADF);
5289 error = do_sendfp(stp, fp, crp);
5290 if (auditing) {
5291 audit_fdsend((int)arg, fp, error);
5292 }
5293 releasef((int)arg);
5294 return (error);
5295 }
5296
5297 case I_RECVFD:
5298 case I_E_RECVFD:
5299 {
5300 struct k_strrecvfd *srf;
5301 int i, fd;
5302
5303 mutex_enter(&stp->sd_lock);
5304 while (!(mp = getq(rdq))) {
5305 if (stp->sd_flag & (STRHUP|STREOF)) {
5306 mutex_exit(&stp->sd_lock);
5307 return (ENXIO);
5308 }
5309 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5310 flag, -1, &done)) != 0 || done) {
5311 mutex_exit(&stp->sd_lock);
5312 return (error);
5313 }
5314 if ((error = i_straccess(stp, access)) != 0) {
5315 mutex_exit(&stp->sd_lock);
5316 return (error);
5317 }
5318 }
5319 if (mp->b_datap->db_type != M_PASSFP) {
5320 putback(stp, rdq, mp, mp->b_band);
5321 mutex_exit(&stp->sd_lock);
5322 return (EBADMSG);
5323 }
5324 mutex_exit(&stp->sd_lock);
5325
5326 srf = (struct k_strrecvfd *)mp->b_rptr;
5327 if ((fd = ufalloc(0)) == -1) {
5328 mutex_enter(&stp->sd_lock);
5329 putback(stp, rdq, mp, mp->b_band);
5330 mutex_exit(&stp->sd_lock);
5331 return (EMFILE);
5332 }
5333 if (cmd == I_RECVFD) {
5334 struct o_strrecvfd ostrfd;
5335
5336 /* check to see if uid/gid values are too large. */
5337
5338 if (srf->uid > (o_uid_t)USHRT_MAX ||
5339 srf->gid > (o_gid_t)USHRT_MAX) {
5340 mutex_enter(&stp->sd_lock);
5341 putback(stp, rdq, mp, mp->b_band);
5342 mutex_exit(&stp->sd_lock);
5343 setf(fd, NULL); /* release fd entry */
5344 return (EOVERFLOW);
5345 }
5346
5347 ostrfd.fd = fd;
5348 ostrfd.uid = (o_uid_t)srf->uid;
5349 ostrfd.gid = (o_gid_t)srf->gid;
5350
5351 /* Null the filler bits */
5352 for (i = 0; i < 8; i++)
5353 ostrfd.fill[i] = 0;
5354
5355 error = strcopyout(&ostrfd, (void *)arg,
5356 sizeof (struct o_strrecvfd), copyflag);
5357 } else { /* I_E_RECVFD */
5358 struct strrecvfd strfd;
5359
5360 strfd.fd = fd;
5361 strfd.uid = srf->uid;
5362 strfd.gid = srf->gid;
5363
5364 /* null the filler bits */
5365 for (i = 0; i < 8; i++)
5366 strfd.fill[i] = 0;
5367
5368 error = strcopyout(&strfd, (void *)arg,
5369 sizeof (struct strrecvfd), copyflag);
5370 }
5371
5372 if (error) {
5373 setf(fd, NULL); /* release fd entry */
5374 mutex_enter(&stp->sd_lock);
5375 putback(stp, rdq, mp, mp->b_band);
5376 mutex_exit(&stp->sd_lock);
5377 return (error);
5378 }
5379 if (auditing) {
5380 audit_fdrecv(fd, srf->fp);
5381 }
5382
5383 /*
5384 * Always increment f_count since the freemsg() below will
5385 * always call free_passfp() which performs a closef().
5386 */
5387 mutex_enter(&srf->fp->f_tlock);
5388 srf->fp->f_count++;
5389 mutex_exit(&srf->fp->f_tlock);
5390 setf(fd, srf->fp);
5391 freemsg(mp);
5392 return (0);
5393 }
5394
5395 case I_SWROPT:
5396 /*
5397 * Set/clear the write options. arg is a bit
5398 * mask with any of the following bits set...
5399 * SNDZERO - send zero length message
5400 * SNDPIPE - send sigpipe to process if
5401 * sd_werror is set and process is
5402 * doing a write or putmsg.
5403 * The new stream head write options should reflect
5404 * what is in arg.
5405 */
5406 if (arg & ~(SNDZERO|SNDPIPE))
5407 return (EINVAL);
5408
5409 mutex_enter(&stp->sd_lock);
5410 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5411 if (arg & SNDZERO)
5412 stp->sd_wput_opt |= SW_SNDZERO;
5413 if (arg & SNDPIPE)
5414 stp->sd_wput_opt |= SW_SIGPIPE;
5415 mutex_exit(&stp->sd_lock);
5416 return (0);
5417
5418 case I_GWROPT:
5419 {
5420 int wropt = 0;
5421
5422 if (stp->sd_wput_opt & SW_SNDZERO)
5423 wropt |= SNDZERO;
5424 if (stp->sd_wput_opt & SW_SIGPIPE)
5425 wropt |= SNDPIPE;
5426 return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5427 copyflag));
5428 }
5429
5430 case I_LIST:
5431 /*
5432 * Returns all the modules found on this stream,
5433 * upto the driver. If argument is NULL, return the
5434 * number of modules (including driver). If argument
5435 * is not NULL, copy the names into the structure
5436 * provided.
5437 */
5438
5439 {
5440 queue_t *q;
5441 char *qname;
5442 int i, nmods;
5443 struct str_mlist *mlist;
5444 STRUCT_DECL(str_list, strlist);
5445
5446 if (arg == NULL) { /* Return number of modules plus driver */
5447 if (stp->sd_vnode->v_type == VFIFO)
5448 *rvalp = stp->sd_pushcnt;
5449 else
5450 *rvalp = stp->sd_pushcnt + 1;
5451 return (0);
5452 }
5453
5454 STRUCT_INIT(strlist, flag);
5455
5456 error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5457 STRUCT_SIZE(strlist), copyflag);
5458 if (error != 0)
5459 return (error);
5460
5461 mlist = STRUCT_FGETP(strlist, sl_modlist);
5462 nmods = STRUCT_FGET(strlist, sl_nmods);
5463 if (nmods <= 0)
5464 return (EINVAL);
5465
5466 claimstr(stp->sd_wrq);
5467 q = stp->sd_wrq;
5468 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
5469 qname = Q2NAME(q->q_next);
5470 error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
5471 copyflag);
5472 if (error != 0) {
5473 releasestr(stp->sd_wrq);
5474 return (error);
5475 }
5476 }
5477 releasestr(stp->sd_wrq);
5478 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
5479 }
5480
5481 case I_CKBAND:
5482 {
5483 queue_t *q;
5484 qband_t *qbp;
5485
5486 if ((arg < 0) || (arg >= NBAND))
5487 return (EINVAL);
5488 q = _RD(stp->sd_wrq);
5489 mutex_enter(QLOCK(q));
5490 if (arg > (int)q->q_nband) {
5491 *rvalp = 0;
5492 } else {
5493 if (arg == 0) {
5494 if (q->q_first)
5495 *rvalp = 1;
5496 else
5497 *rvalp = 0;
5498 } else {
5499 qbp = q->q_bandp;
5500 while (--arg > 0)
5501 qbp = qbp->qb_next;
5502 if (qbp->qb_first)
5503 *rvalp = 1;
5504 else
5505 *rvalp = 0;
5506 }
5507 }
5508 mutex_exit(QLOCK(q));
5509 return (0);
5510 }
5511
5512 case I_GETBAND:
5513 {
5514 int intpri;
5515 queue_t *q;
5516
5517 q = _RD(stp->sd_wrq);
5518 mutex_enter(QLOCK(q));
5519 mp = q->q_first;
5520 if (!mp) {
5521 mutex_exit(QLOCK(q));
5522 return (ENODATA);
5523 }
5524 intpri = (int)mp->b_band;
5525 error = strcopyout(&intpri, (void *)arg, sizeof (int),
5526 copyflag);
5527 mutex_exit(QLOCK(q));
5528 return (error);
5529 }
5530
5531 case I_ATMARK:
5532 {
5533 queue_t *q;
5534
5535 if (arg & ~(ANYMARK|LASTMARK))
5536 return (EINVAL);
5537 q = _RD(stp->sd_wrq);
5538 mutex_enter(&stp->sd_lock);
5539 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5540 *rvalp = 1;
5541 } else {
5542 mutex_enter(QLOCK(q));
5543 mp = q->q_first;
5544
5545 if (mp == NULL)
5546 *rvalp = 0;
5547 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5548 *rvalp = 1;
5549 else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5550 *rvalp = 1;
5551 else
5552 *rvalp = 0;
5553 mutex_exit(QLOCK(q));
5554 }
5555 mutex_exit(&stp->sd_lock);
5556 return (0);
5557 }
5558
5559 case I_CANPUT:
5560 {
5561 char band;
5562
5563 if ((arg < 0) || (arg >= NBAND))
5564 return (EINVAL);
5565 band = (char)arg;
5566 *rvalp = bcanputnext(stp->sd_wrq, band);
5567 return (0);
5568 }
5569
5570 case I_SETCLTIME:
5571 {
5572 int closetime;
5573
5574 error = strcopyin((void *)arg, &closetime, sizeof (int),
5575 copyflag);
5576 if (error)
5577 return (error);
5578 if (closetime < 0)
5579 return (EINVAL);
5580
5581 stp->sd_closetime = closetime;
5582 return (0);
5583 }
5584
5585 case I_GETCLTIME:
5586 {
5587 int closetime;
5588
5589 closetime = stp->sd_closetime;
5590 return (strcopyout(&closetime, (void *)arg, sizeof (int),
5591 copyflag));
5592 }
5593
5594 case TIOCGSID:
5595 {
5596 pid_t sid;
5597
5598 mutex_enter(&stp->sd_lock);
5599 if (stp->sd_sidp == NULL) {
5600 mutex_exit(&stp->sd_lock);
5601 return (ENOTTY);
5602 }
5603 sid = stp->sd_sidp->pid_id;
5604 mutex_exit(&stp->sd_lock);
5605 return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5606 copyflag));
5607 }
5608
5609 case TIOCSPGRP:
5610 {
5611 pid_t pgrp;
5612 proc_t *q;
5613 pid_t sid, fg_pgid, bg_pgid;
5614
5615 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5616 copyflag))
5617 return (error);
5618 mutex_enter(&stp->sd_lock);
5619 mutex_enter(&pidlock);
5620 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5621 mutex_exit(&pidlock);
5622 mutex_exit(&stp->sd_lock);
5623 return (ENOTTY);
5624 }
5625 if (pgrp == stp->sd_pgidp->pid_id) {
5626 mutex_exit(&pidlock);
5627 mutex_exit(&stp->sd_lock);
5628 return (0);
5629 }
5630 if (pgrp <= 0 || pgrp >= maxpid) {
5631 mutex_exit(&pidlock);
5632 mutex_exit(&stp->sd_lock);
5633 return (EINVAL);
5634 }
5635 if ((q = pgfind(pgrp)) == NULL ||
5636 q->p_sessp != ttoproc(curthread)->p_sessp) {
5637 mutex_exit(&pidlock);
5638 mutex_exit(&stp->sd_lock);
5639 return (EPERM);
5640 }
5641 sid = stp->sd_sidp->pid_id;
5642 fg_pgid = q->p_pgrp;
5643 bg_pgid = stp->sd_pgidp->pid_id;
5644 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5645 PID_RELE(stp->sd_pgidp);
5646 ctty_clear_sighuped();
5647 stp->sd_pgidp = q->p_pgidp;
5648 PID_HOLD(stp->sd_pgidp);
5649 mutex_exit(&pidlock);
5650 mutex_exit(&stp->sd_lock);
5651 return (0);
5652 }
5653
5654 case TIOCGPGRP:
5655 {
5656 pid_t pgrp;
5657
5658 mutex_enter(&stp->sd_lock);
5659 if (stp->sd_sidp == NULL) {
5660 mutex_exit(&stp->sd_lock);
5661 return (ENOTTY);
5662 }
5663 pgrp = stp->sd_pgidp->pid_id;
5664 mutex_exit(&stp->sd_lock);
5665 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5666 copyflag));
5667 }
5668
5669 case TIOCSCTTY:
5670 {
5671 return (strctty(stp));
5672 }
5673
5674 case TIOCNOTTY:
5675 {
5676 /* freectty() always assumes curproc. */
5677 if (freectty(B_FALSE) != 0)
5678 return (0);
5679 return (ENOTTY);
5680 }
5681
5682 case FIONBIO:
5683 case FIOASYNC:
5684 return (0); /* handled by the upper layer */
5685 }
5686 }
5687
5688 /*
5689 * Custom free routine used for M_PASSFP messages.
5690 */
5691 static void
free_passfp(struct k_strrecvfd * srf)5692 free_passfp(struct k_strrecvfd *srf)
5693 {
5694 (void) closef(srf->fp);
5695 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5696 }
5697
5698 /* ARGSUSED */
5699 int
do_sendfp(struct stdata * stp,struct file * fp,struct cred * cr)5700 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5701 {
5702 queue_t *qp, *nextqp;
5703 struct k_strrecvfd *srf;
5704 mblk_t *mp;
5705 frtn_t *frtnp;
5706 size_t bufsize;
5707 queue_t *mate = NULL;
5708 syncq_t *sq = NULL;
5709 int retval = 0;
5710
5711 if (stp->sd_flag & STRHUP)
5712 return (ENXIO);
5713
5714 claimstr(stp->sd_wrq);
5715
5716 /* Fastpath, we have a pipe, and we are already mated, use it. */
5717 if (STRMATED(stp)) {
5718 qp = _RD(stp->sd_mate->sd_wrq);
5719 claimstr(qp);
5720 mate = qp;
5721 } else { /* Not already mated. */
5722
5723 /*
5724 * Walk the stream to the end of this one.
5725 * assumes that the claimstr() will prevent
5726 * plumbing between the stream head and the
5727 * driver from changing
5728 */
5729 qp = stp->sd_wrq;
5730
5731 /*
5732 * Loop until we reach the end of this stream.
5733 * On completion, qp points to the write queue
5734 * at the end of the stream, or the read queue
5735 * at the stream head if this is a fifo.
5736 */
5737 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5738 ;
5739
5740 /*
5741 * Just in case we get a q_next which is NULL, but
5742 * not at the end of the stream. This is actually
5743 * broken, so we set an assert to catch it in
5744 * debug, and set an error and return if not debug.
5745 */
5746 ASSERT(qp);
5747 if (qp == NULL) {
5748 releasestr(stp->sd_wrq);
5749 return (EINVAL);
5750 }
5751
5752 /*
5753 * Enter the syncq for the driver, so (hopefully)
5754 * the queue values will not change on us.
5755 * XXXX - This will only prevent the race IFF only
5756 * the write side modifies the q_next member, and
5757 * the put procedure is protected by at least
5758 * MT_PERQ.
5759 */
5760 if ((sq = qp->q_syncq) != NULL)
5761 entersq(sq, SQ_PUT);
5762
5763 /* Now get the q_next value from this qp. */
5764 nextqp = qp->q_next;
5765
5766 /*
5767 * If nextqp exists and the other stream is different
5768 * from this one claim the stream, set the mate, and
5769 * get the read queue at the stream head of the other
5770 * stream. Assumes that nextqp was at least valid when
5771 * we got it. Hopefully the entersq of the driver
5772 * will prevent it from changing on us.
5773 */
5774 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5775 ASSERT(qp->q_qinfo->qi_srvp);
5776 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5777 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5778 claimstr(nextqp);
5779
5780 /* Make sure we still have a q_next */
5781 if (nextqp != qp->q_next) {
5782 releasestr(stp->sd_wrq);
5783 releasestr(nextqp);
5784 return (EINVAL);
5785 }
5786
5787 qp = _RD(STREAM(nextqp)->sd_wrq);
5788 mate = qp;
5789 }
5790 /* If we entered the synq above, leave it. */
5791 if (sq != NULL)
5792 leavesq(sq, SQ_PUT);
5793 } /* STRMATED(STP) */
5794
5795 /* XXX prevents substitution of the ops vector */
5796 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5797 retval = EINVAL;
5798 goto out;
5799 }
5800
5801 if (qp->q_flag & QFULL) {
5802 retval = EAGAIN;
5803 goto out;
5804 }
5805
5806 /*
5807 * Since M_PASSFP messages include a file descriptor, we use
5808 * esballoc() and specify a custom free routine (free_passfp()) that
5809 * will close the descriptor as part of freeing the message. For
5810 * convenience, we stash the frtn_t right after the data block.
5811 */
5812 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5813 srf = kmem_alloc(bufsize, KM_NOSLEEP);
5814 if (srf == NULL) {
5815 retval = EAGAIN;
5816 goto out;
5817 }
5818
5819 frtnp = (frtn_t *)(srf + 1);
5820 frtnp->free_arg = (caddr_t)srf;
5821 frtnp->free_func = free_passfp;
5822
5823 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5824 if (mp == NULL) {
5825 kmem_free(srf, bufsize);
5826 retval = EAGAIN;
5827 goto out;
5828 }
5829 mp->b_wptr += sizeof (struct k_strrecvfd);
5830 mp->b_datap->db_type = M_PASSFP;
5831
5832 srf->fp = fp;
5833 srf->uid = crgetuid(curthread->t_cred);
5834 srf->gid = crgetgid(curthread->t_cred);
5835 mutex_enter(&fp->f_tlock);
5836 fp->f_count++;
5837 mutex_exit(&fp->f_tlock);
5838
5839 put(qp, mp);
5840 out:
5841 releasestr(stp->sd_wrq);
5842 if (mate)
5843 releasestr(mate);
5844 return (retval);
5845 }
5846
5847 /*
5848 * Send an ioctl message downstream and wait for acknowledgement.
5849 * flags may be set to either U_TO_K or K_TO_K and a combination
5850 * of STR_NOERROR or STR_NOSIG
5851 * STR_NOSIG: Signals are essentially ignored or held and have
5852 * no effect for the duration of the call.
5853 * STR_NOERROR: Ignores stream head read, write and hup errors.
5854 * Additionally, if an existing ioctl times out, it is assumed
5855 * lost and and this ioctl will continue as if the previous ioctl had
5856 * finished. ETIME may be returned if this ioctl times out (i.e.
5857 * ic_timout is not INFTIM). Non-stream head errors may be returned if
5858 * the ioc_error indicates that the driver/module had problems,
5859 * an EFAULT was found when accessing user data, a lack of
5860 * resources, etc.
5861 */
5862 int
strdoioctl(struct stdata * stp,struct strioctl * strioc,int fflags,int flag,cred_t * crp,int * rvalp)5863 strdoioctl(
5864 struct stdata *stp,
5865 struct strioctl *strioc,
5866 int fflags, /* file flags with model info */
5867 int flag,
5868 cred_t *crp,
5869 int *rvalp)
5870 {
5871 mblk_t *bp;
5872 struct iocblk *iocbp;
5873 struct copyreq *reqp;
5874 struct copyresp *resp;
5875 int id;
5876 int transparent = 0;
5877 int error = 0;
5878 int len = 0;
5879 caddr_t taddr;
5880 int copyflag = (flag & (U_TO_K | K_TO_K));
5881 int sigflag = (flag & STR_NOSIG);
5882 int errs;
5883 uint_t waitflags;
5884 boolean_t set_iocwaitne = B_FALSE;
5885
5886 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5887 ASSERT((fflags & FMODELS) != 0);
5888
5889 TRACE_2(TR_FAC_STREAMS_FR,
5890 TR_STRDOIOCTL,
5891 "strdoioctl:stp %p strioc %p", stp, strioc);
5892 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */
5893 transparent = 1;
5894 strioc->ic_len = sizeof (intptr_t);
5895 }
5896
5897 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5898 return (EINVAL);
5899
5900 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5901 crp, curproc->p_pid)) == NULL)
5902 return (error);
5903
5904 bzero(bp->b_wptr, sizeof (union ioctypes));
5905
5906 iocbp = (struct iocblk *)bp->b_wptr;
5907 iocbp->ioc_count = strioc->ic_len;
5908 iocbp->ioc_cmd = strioc->ic_cmd;
5909 iocbp->ioc_flag = (fflags & FMODELS);
5910
5911 crhold(crp);
5912 iocbp->ioc_cr = crp;
5913 DB_TYPE(bp) = M_IOCTL;
5914 bp->b_wptr += sizeof (struct iocblk);
5915
5916 if (flag & STR_NOERROR)
5917 errs = STPLEX;
5918 else
5919 errs = STRHUP|STRDERR|STWRERR|STPLEX;
5920
5921 /*
5922 * If there is data to copy into ioctl block, do so.
5923 */
5924 if (iocbp->ioc_count > 0) {
5925 if (transparent)
5926 /*
5927 * Note: STR_NOERROR does not have an effect
5928 * in putiocd()
5929 */
5930 id = K_TO_K | sigflag;
5931 else
5932 id = flag;
5933 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5934 freemsg(bp);
5935 crfree(crp);
5936 return (error);
5937 }
5938
5939 /*
5940 * We could have slept copying in user pages.
5941 * Recheck the stream head state (the other end
5942 * of a pipe could have gone away).
5943 */
5944 if (stp->sd_flag & errs) {
5945 mutex_enter(&stp->sd_lock);
5946 error = strgeterr(stp, errs, 0);
5947 mutex_exit(&stp->sd_lock);
5948 if (error != 0) {
5949 freemsg(bp);
5950 crfree(crp);
5951 return (error);
5952 }
5953 }
5954 }
5955 if (transparent)
5956 iocbp->ioc_count = TRANSPARENT;
5957
5958 /*
5959 * Block for up to STRTIMOUT milliseconds if there is an outstanding
5960 * ioctl for this stream already running. All processes
5961 * sleeping here will be awakened as a result of an ACK
5962 * or NAK being received for the outstanding ioctl, or
5963 * as a result of the timer expiring on the outstanding
5964 * ioctl (a failure), or as a result of any waiting
5965 * process's timer expiring (also a failure).
5966 */
5967
5968 error = 0;
5969 mutex_enter(&stp->sd_lock);
5970 while ((stp->sd_flag & IOCWAIT) ||
5971 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) {
5972 clock_t cv_rval;
5973
5974 TRACE_0(TR_FAC_STREAMS_FR,
5975 TR_STRDOIOCTL_WAIT,
5976 "strdoioctl sleeps - IOCWAIT");
5977 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
5978 STRTIMOUT, sigflag);
5979 if (cv_rval <= 0) {
5980 if (cv_rval == 0) {
5981 error = EINTR;
5982 } else {
5983 if (flag & STR_NOERROR) {
5984 /*
5985 * Terminating current ioctl in
5986 * progress -- assume it got lost and
5987 * wake up the other thread so that the
5988 * operation completes.
5989 */
5990 if (!(stp->sd_flag & IOCWAITNE)) {
5991 set_iocwaitne = B_TRUE;
5992 stp->sd_flag |= IOCWAITNE;
5993 cv_broadcast(&stp->sd_monitor);
5994 }
5995 /*
5996 * Otherwise, there's a running
5997 * STR_NOERROR -- we have no choice
5998 * here but to wait forever (or until
5999 * interrupted).
6000 */
6001 } else {
6002 /*
6003 * pending ioctl has caused
6004 * us to time out
6005 */
6006 error = ETIME;
6007 }
6008 }
6009 } else if ((stp->sd_flag & errs)) {
6010 error = strgeterr(stp, errs, 0);
6011 }
6012 if (error) {
6013 mutex_exit(&stp->sd_lock);
6014 freemsg(bp);
6015 crfree(crp);
6016 return (error);
6017 }
6018 }
6019
6020 /*
6021 * Have control of ioctl mechanism.
6022 * Send down ioctl packet and wait for response.
6023 */
6024 if (stp->sd_iocblk != (mblk_t *)-1) {
6025 freemsg(stp->sd_iocblk);
6026 }
6027 stp->sd_iocblk = NULL;
6028
6029 /*
6030 * If this is marked with 'noerror' (internal; mostly
6031 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6032 * in here by setting IOCWAITNE.
6033 */
6034 waitflags = IOCWAIT;
6035 if (flag & STR_NOERROR)
6036 waitflags |= IOCWAITNE;
6037
6038 stp->sd_flag |= waitflags;
6039
6040 /*
6041 * Assign sequence number.
6042 */
6043 iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6044
6045 mutex_exit(&stp->sd_lock);
6046
6047 TRACE_1(TR_FAC_STREAMS_FR,
6048 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6049 stream_willservice(stp);
6050 putnext(stp->sd_wrq, bp);
6051 stream_runservice(stp);
6052
6053 /*
6054 * Timed wait for acknowledgment. The wait time is limited by the
6055 * timeout value, which must be a positive integer (number of
6056 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6057 * milliseconds), or -1 (wait forever). This will be awakened
6058 * either by an ACK/NAK message arriving, the timer expiring, or
6059 * the timer expiring on another ioctl waiting for control of the
6060 * mechanism.
6061 */
6062 waitioc:
6063 mutex_enter(&stp->sd_lock);
6064
6065
6066 /*
6067 * If the reply has already arrived, don't sleep. If awakened from
6068 * the sleep, fail only if the reply has not arrived by then.
6069 * Otherwise, process the reply.
6070 */
6071 while (!stp->sd_iocblk) {
6072 clock_t cv_rval;
6073
6074 if (stp->sd_flag & errs) {
6075 error = strgeterr(stp, errs, 0);
6076 if (error != 0) {
6077 stp->sd_flag &= ~waitflags;
6078 cv_broadcast(&stp->sd_iocmonitor);
6079 mutex_exit(&stp->sd_lock);
6080 crfree(crp);
6081 return (error);
6082 }
6083 }
6084
6085 TRACE_0(TR_FAC_STREAMS_FR,
6086 TR_STRDOIOCTL_WAIT2,
6087 "strdoioctl sleeps awaiting reply");
6088 ASSERT(error == 0);
6089
6090 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6091 (strioc->ic_timout ?
6092 strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6093
6094 /*
6095 * There are four possible cases here: interrupt, timeout,
6096 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6097 * valid M_IOCTL reply).
6098 *
6099 * If we've been awakened by a STR_NOERROR ioctl on some other
6100 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6101 * will be set. Pretend as if we just timed out. Note that
6102 * this other thread waited at least STRTIMOUT before trying to
6103 * awaken our thread, so this is indistinguishable (even for
6104 * INFTIM) from the case where we failed with ETIME waiting on
6105 * IOCWAIT in the prior loop.
6106 */
6107 if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6108 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6109 cv_rval = -1;
6110 }
6111
6112 /*
6113 * note: STR_NOERROR does not protect
6114 * us here.. use ic_timout < 0
6115 */
6116 if (cv_rval <= 0) {
6117 if (cv_rval == 0) {
6118 error = EINTR;
6119 } else {
6120 error = ETIME;
6121 }
6122 /*
6123 * A message could have come in after we were scheduled
6124 * but before we were actually run.
6125 */
6126 bp = stp->sd_iocblk;
6127 stp->sd_iocblk = NULL;
6128 if (bp != NULL) {
6129 if ((bp->b_datap->db_type == M_COPYIN) ||
6130 (bp->b_datap->db_type == M_COPYOUT)) {
6131 mutex_exit(&stp->sd_lock);
6132 if (bp->b_cont) {
6133 freemsg(bp->b_cont);
6134 bp->b_cont = NULL;
6135 }
6136 bp->b_datap->db_type = M_IOCDATA;
6137 bp->b_wptr = bp->b_rptr +
6138 sizeof (struct copyresp);
6139 resp = (struct copyresp *)bp->b_rptr;
6140 resp->cp_rval =
6141 (caddr_t)1; /* failure */
6142 stream_willservice(stp);
6143 putnext(stp->sd_wrq, bp);
6144 stream_runservice(stp);
6145 mutex_enter(&stp->sd_lock);
6146 } else {
6147 freemsg(bp);
6148 }
6149 }
6150 stp->sd_flag &= ~waitflags;
6151 cv_broadcast(&stp->sd_iocmonitor);
6152 mutex_exit(&stp->sd_lock);
6153 crfree(crp);
6154 return (error);
6155 }
6156 }
6157 bp = stp->sd_iocblk;
6158 /*
6159 * Note: it is strictly impossible to get here with sd_iocblk set to
6160 * -1. This is because the initial loop above doesn't allow any new
6161 * ioctls into the fray until all others have passed this point.
6162 */
6163 ASSERT(bp != NULL && bp != (mblk_t *)-1);
6164 TRACE_1(TR_FAC_STREAMS_FR,
6165 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6166 if ((bp->b_datap->db_type == M_IOCACK) ||
6167 (bp->b_datap->db_type == M_IOCNAK)) {
6168 /* for detection of duplicate ioctl replies */
6169 stp->sd_iocblk = (mblk_t *)-1;
6170 stp->sd_flag &= ~waitflags;
6171 cv_broadcast(&stp->sd_iocmonitor);
6172 mutex_exit(&stp->sd_lock);
6173 } else {
6174 /*
6175 * flags not cleared here because we're still doing
6176 * copy in/out for ioctl.
6177 */
6178 stp->sd_iocblk = NULL;
6179 mutex_exit(&stp->sd_lock);
6180 }
6181
6182
6183 /*
6184 * Have received acknowledgment.
6185 */
6186
6187 switch (bp->b_datap->db_type) {
6188 case M_IOCACK:
6189 /*
6190 * Positive ack.
6191 */
6192 iocbp = (struct iocblk *)bp->b_rptr;
6193
6194 /*
6195 * Set error if indicated.
6196 */
6197 if (iocbp->ioc_error) {
6198 error = iocbp->ioc_error;
6199 break;
6200 }
6201
6202 /*
6203 * Set return value.
6204 */
6205 *rvalp = iocbp->ioc_rval;
6206
6207 /*
6208 * Data may have been returned in ACK message (ioc_count > 0).
6209 * If so, copy it out to the user's buffer.
6210 */
6211 if (iocbp->ioc_count && !transparent) {
6212 if (error = getiocd(bp, strioc->ic_dp, copyflag))
6213 break;
6214 }
6215 if (!transparent) {
6216 if (len) /* an M_COPYOUT was used with I_STR */
6217 strioc->ic_len = len;
6218 else
6219 strioc->ic_len = (int)iocbp->ioc_count;
6220 }
6221 break;
6222
6223 case M_IOCNAK:
6224 /*
6225 * Negative ack.
6226 *
6227 * The only thing to do is set error as specified
6228 * in neg ack packet.
6229 */
6230 iocbp = (struct iocblk *)bp->b_rptr;
6231
6232 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6233 break;
6234
6235 case M_COPYIN:
6236 /*
6237 * Driver or module has requested user ioctl data.
6238 */
6239 reqp = (struct copyreq *)bp->b_rptr;
6240
6241 /*
6242 * M_COPYIN should *never* have a message attached, though
6243 * it's harmless if it does -- thus, panic on a DEBUG
6244 * kernel and just free it on a non-DEBUG build.
6245 */
6246 ASSERT(bp->b_cont == NULL);
6247 if (bp->b_cont != NULL) {
6248 freemsg(bp->b_cont);
6249 bp->b_cont = NULL;
6250 }
6251
6252 error = putiocd(bp, reqp->cq_addr, flag, crp);
6253 if (error && bp->b_cont) {
6254 freemsg(bp->b_cont);
6255 bp->b_cont = NULL;
6256 }
6257
6258 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6259 bp->b_datap->db_type = M_IOCDATA;
6260
6261 mblk_setcred(bp, crp, curproc->p_pid);
6262 resp = (struct copyresp *)bp->b_rptr;
6263 resp->cp_rval = (caddr_t)(uintptr_t)error;
6264 resp->cp_flag = (fflags & FMODELS);
6265
6266 stream_willservice(stp);
6267 putnext(stp->sd_wrq, bp);
6268 stream_runservice(stp);
6269
6270 if (error) {
6271 mutex_enter(&stp->sd_lock);
6272 stp->sd_flag &= ~waitflags;
6273 cv_broadcast(&stp->sd_iocmonitor);
6274 mutex_exit(&stp->sd_lock);
6275 crfree(crp);
6276 return (error);
6277 }
6278
6279 goto waitioc;
6280
6281 case M_COPYOUT:
6282 /*
6283 * Driver or module has ioctl data for a user.
6284 */
6285 reqp = (struct copyreq *)bp->b_rptr;
6286 ASSERT(bp->b_cont != NULL);
6287
6288 /*
6289 * Always (transparent or non-transparent )
6290 * use the address specified in the request
6291 */
6292 taddr = reqp->cq_addr;
6293 if (!transparent)
6294 len = (int)reqp->cq_size;
6295
6296 /* copyout data to the provided address */
6297 error = getiocd(bp, taddr, copyflag);
6298
6299 freemsg(bp->b_cont);
6300 bp->b_cont = NULL;
6301
6302 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6303 bp->b_datap->db_type = M_IOCDATA;
6304
6305 mblk_setcred(bp, crp, curproc->p_pid);
6306 resp = (struct copyresp *)bp->b_rptr;
6307 resp->cp_rval = (caddr_t)(uintptr_t)error;
6308 resp->cp_flag = (fflags & FMODELS);
6309
6310 stream_willservice(stp);
6311 putnext(stp->sd_wrq, bp);
6312 stream_runservice(stp);
6313
6314 if (error) {
6315 mutex_enter(&stp->sd_lock);
6316 stp->sd_flag &= ~waitflags;
6317 cv_broadcast(&stp->sd_iocmonitor);
6318 mutex_exit(&stp->sd_lock);
6319 crfree(crp);
6320 return (error);
6321 }
6322 goto waitioc;
6323
6324 default:
6325 ASSERT(0);
6326 mutex_enter(&stp->sd_lock);
6327 stp->sd_flag &= ~waitflags;
6328 cv_broadcast(&stp->sd_iocmonitor);
6329 mutex_exit(&stp->sd_lock);
6330 break;
6331 }
6332
6333 freemsg(bp);
6334 crfree(crp);
6335 return (error);
6336 }
6337
6338 /*
6339 * Send an M_CMD message downstream and wait for a reply. This is a ptools
6340 * special used to retrieve information from modules/drivers a stream without
6341 * being subjected to flow control or interfering with pending messages on the
6342 * stream (e.g. an ioctl in flight).
6343 */
6344 int
strdocmd(struct stdata * stp,struct strcmd * scp,cred_t * crp)6345 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6346 {
6347 mblk_t *mp;
6348 struct cmdblk *cmdp;
6349 int error = 0;
6350 int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6351 clock_t rval, timeout = STRTIMOUT;
6352
6353 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6354 scp->sc_timeout < -1)
6355 return (EINVAL);
6356
6357 if (scp->sc_timeout > 0)
6358 timeout = scp->sc_timeout * MILLISEC;
6359
6360 if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
6361 curproc->p_pid)) == NULL)
6362 return (ENOMEM);
6363
6364 crhold(crp);
6365
6366 cmdp = (struct cmdblk *)mp->b_wptr;
6367 cmdp->cb_cr = crp;
6368 cmdp->cb_cmd = scp->sc_cmd;
6369 cmdp->cb_len = scp->sc_len;
6370 cmdp->cb_error = 0;
6371 mp->b_wptr += sizeof (struct cmdblk);
6372
6373 DB_TYPE(mp) = M_CMD;
6374 DB_CPID(mp) = curproc->p_pid;
6375
6376 /*
6377 * Copy in the payload.
6378 */
6379 if (cmdp->cb_len > 0) {
6380 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
6381 curproc->p_pid);
6382 if (mp->b_cont == NULL) {
6383 error = ENOMEM;
6384 goto out;
6385 }
6386
6387 /* cb_len comes from sc_len, which has already been checked */
6388 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6389 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6390 mp->b_cont->b_wptr += cmdp->cb_len;
6391 DB_CPID(mp->b_cont) = curproc->p_pid;
6392 }
6393
6394 /*
6395 * Since this mechanism is strictly for ptools, and since only one
6396 * process can be grabbed at a time, we simply fail if there's
6397 * currently an operation pending.
6398 */
6399 mutex_enter(&stp->sd_lock);
6400 if (stp->sd_flag & STRCMDWAIT) {
6401 mutex_exit(&stp->sd_lock);
6402 error = EBUSY;
6403 goto out;
6404 }
6405 stp->sd_flag |= STRCMDWAIT;
6406 ASSERT(stp->sd_cmdblk == NULL);
6407 mutex_exit(&stp->sd_lock);
6408
6409 putnext(stp->sd_wrq, mp);
6410 mp = NULL;
6411
6412 /*
6413 * Timed wait for acknowledgment. If the reply has already arrived,
6414 * don't sleep. If awakened from the sleep, fail only if the reply
6415 * has not arrived by then. Otherwise, process the reply.
6416 */
6417 mutex_enter(&stp->sd_lock);
6418 while (stp->sd_cmdblk == NULL) {
6419 if (stp->sd_flag & errs) {
6420 if ((error = strgeterr(stp, errs, 0)) != 0)
6421 goto waitout;
6422 }
6423
6424 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6425 if (stp->sd_cmdblk != NULL)
6426 break;
6427
6428 if (rval <= 0) {
6429 error = (rval == 0) ? EINTR : ETIME;
6430 goto waitout;
6431 }
6432 }
6433
6434 /*
6435 * We received a reply.
6436 */
6437 mp = stp->sd_cmdblk;
6438 stp->sd_cmdblk = NULL;
6439 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6440 ASSERT(stp->sd_flag & STRCMDWAIT);
6441 stp->sd_flag &= ~STRCMDWAIT;
6442 mutex_exit(&stp->sd_lock);
6443
6444 cmdp = (struct cmdblk *)mp->b_rptr;
6445 if ((error = cmdp->cb_error) != 0)
6446 goto out;
6447
6448 /*
6449 * Data may have been returned in the reply (cb_len > 0).
6450 * If so, copy it out to the user's buffer.
6451 */
6452 if (cmdp->cb_len > 0) {
6453 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6454 error = EPROTO;
6455 goto out;
6456 }
6457
6458 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6459 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6460 }
6461 scp->sc_len = cmdp->cb_len;
6462 out:
6463 freemsg(mp);
6464 crfree(crp);
6465 return (error);
6466 waitout:
6467 ASSERT(stp->sd_cmdblk == NULL);
6468 stp->sd_flag &= ~STRCMDWAIT;
6469 mutex_exit(&stp->sd_lock);
6470 crfree(crp);
6471 return (error);
6472 }
6473
6474 /*
6475 * For the SunOS keyboard driver.
6476 * Return the next available "ioctl" sequence number.
6477 * Exported, so that streams modules can send "ioctl" messages
6478 * downstream from their open routine.
6479 */
6480 int
getiocseqno(void)6481 getiocseqno(void)
6482 {
6483 int i;
6484
6485 mutex_enter(&strresources);
6486 i = ++ioc_id;
6487 mutex_exit(&strresources);
6488 return (i);
6489 }
6490
6491 /*
6492 * Get the next message from the read queue. If the message is
6493 * priority, STRPRI will have been set by strrput(). This flag
6494 * should be reset only when the entire message at the front of the
6495 * queue as been consumed.
6496 *
6497 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6498 */
6499 int
strgetmsg(struct vnode * vp,struct strbuf * mctl,struct strbuf * mdata,unsigned char * prip,int * flagsp,int fmode,rval_t * rvp)6500 strgetmsg(
6501 struct vnode *vp,
6502 struct strbuf *mctl,
6503 struct strbuf *mdata,
6504 unsigned char *prip,
6505 int *flagsp,
6506 int fmode,
6507 rval_t *rvp)
6508 {
6509 struct stdata *stp;
6510 mblk_t *bp, *nbp;
6511 mblk_t *savemp = NULL;
6512 mblk_t *savemptail = NULL;
6513 uint_t old_sd_flag;
6514 int flg;
6515 int more = 0;
6516 int error = 0;
6517 char first = 1;
6518 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
6519 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
6520 unsigned char pri = 0;
6521 queue_t *q;
6522 int pr = 0; /* Partial read successful */
6523 struct uio uios;
6524 struct uio *uiop = &uios;
6525 struct iovec iovs;
6526 unsigned char type;
6527
6528 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6529 "strgetmsg:%p", vp);
6530
6531 ASSERT(vp->v_stream);
6532 stp = vp->v_stream;
6533 rvp->r_val1 = 0;
6534
6535 mutex_enter(&stp->sd_lock);
6536
6537 if ((error = i_straccess(stp, JCREAD)) != 0) {
6538 mutex_exit(&stp->sd_lock);
6539 return (error);
6540 }
6541
6542 if (stp->sd_flag & (STRDERR|STPLEX)) {
6543 error = strgeterr(stp, STRDERR|STPLEX, 0);
6544 if (error != 0) {
6545 mutex_exit(&stp->sd_lock);
6546 return (error);
6547 }
6548 }
6549 mutex_exit(&stp->sd_lock);
6550
6551 switch (*flagsp) {
6552 case MSG_HIPRI:
6553 if (*prip != 0)
6554 return (EINVAL);
6555 break;
6556
6557 case MSG_ANY:
6558 case MSG_BAND:
6559 break;
6560
6561 default:
6562 return (EINVAL);
6563 }
6564 /*
6565 * Setup uio and iov for data part
6566 */
6567 iovs.iov_base = mdata->buf;
6568 iovs.iov_len = mdata->maxlen;
6569 uios.uio_iov = &iovs;
6570 uios.uio_iovcnt = 1;
6571 uios.uio_loffset = 0;
6572 uios.uio_segflg = UIO_USERSPACE;
6573 uios.uio_fmode = 0;
6574 uios.uio_extflg = UIO_COPY_CACHED;
6575 uios.uio_resid = mdata->maxlen;
6576 uios.uio_offset = 0;
6577
6578 q = _RD(stp->sd_wrq);
6579 mutex_enter(&stp->sd_lock);
6580 old_sd_flag = stp->sd_flag;
6581 mark = 0;
6582 for (;;) {
6583 int done = 0;
6584 mblk_t *q_first = q->q_first;
6585
6586 /*
6587 * Get the next message of appropriate priority
6588 * from the stream head. If the caller is interested
6589 * in band or hipri messages, then they should already
6590 * be enqueued at the stream head. On the other hand
6591 * if the caller wants normal (band 0) messages, they
6592 * might be deferred in a synchronous stream and they
6593 * will need to be pulled up.
6594 *
6595 * After we have dequeued a message, we might find that
6596 * it was a deferred M_SIG that was enqueued at the
6597 * stream head. It must now be posted as part of the
6598 * read by calling strsignal_nolock().
6599 *
6600 * Also note that strrput does not enqueue an M_PCSIG,
6601 * and there cannot be more than one hipri message,
6602 * so there was no need to have the M_PCSIG case.
6603 *
6604 * At some time it might be nice to try and wrap the
6605 * functionality of kstrgetmsg() and strgetmsg() into
6606 * a common routine so to reduce the amount of replicated
6607 * code (since they are extremely similar).
6608 */
6609 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6610 /* Asking for normal, band0 data */
6611 bp = strget(stp, q, uiop, first, &error);
6612 ASSERT(MUTEX_HELD(&stp->sd_lock));
6613 if (bp != NULL) {
6614 if (DB_TYPE(bp) == M_SIG) {
6615 strsignal_nolock(stp, *bp->b_rptr,
6616 bp->b_band);
6617 freemsg(bp);
6618 continue;
6619 } else {
6620 break;
6621 }
6622 }
6623 if (error != 0)
6624 goto getmout;
6625
6626 /*
6627 * We can't depend on the value of STRPRI here because
6628 * the stream head may be in transit. Therefore, we
6629 * must look at the type of the first message to
6630 * determine if a high priority messages is waiting
6631 */
6632 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6633 DB_TYPE(q_first) >= QPCTL &&
6634 (bp = getq_noenab(q, 0)) != NULL) {
6635 /* Asked for HIPRI and got one */
6636 ASSERT(DB_TYPE(bp) >= QPCTL);
6637 break;
6638 } else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6639 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
6640 (bp = getq_noenab(q, 0)) != NULL) {
6641 /*
6642 * Asked for at least band "prip" and got either at
6643 * least that band or a hipri message.
6644 */
6645 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
6646 if (DB_TYPE(bp) == M_SIG) {
6647 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6648 freemsg(bp);
6649 continue;
6650 } else {
6651 break;
6652 }
6653 }
6654
6655 /* No data. Time to sleep? */
6656 qbackenable(q, 0);
6657
6658 /*
6659 * If STRHUP or STREOF, return 0 length control and data.
6660 * If resid is 0, then a read(fd,buf,0) was done. Do not
6661 * sleep to satisfy this request because by default we have
6662 * zero bytes to return.
6663 */
6664 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6665 mdata->maxlen == 0)) {
6666 mctl->len = mdata->len = 0;
6667 *flagsp = 0;
6668 mutex_exit(&stp->sd_lock);
6669 return (0);
6670 }
6671 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6672 "strgetmsg calls strwaitq:%p, %p",
6673 vp, uiop);
6674 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6675 &done)) != 0) || done) {
6676 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6677 "strgetmsg error or done:%p, %p",
6678 vp, uiop);
6679 mutex_exit(&stp->sd_lock);
6680 return (error);
6681 }
6682 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6683 "strgetmsg awakes:%p, %p", vp, uiop);
6684 if ((error = i_straccess(stp, JCREAD)) != 0) {
6685 mutex_exit(&stp->sd_lock);
6686 return (error);
6687 }
6688 first = 0;
6689 }
6690 ASSERT(bp != NULL);
6691 /*
6692 * Extract any mark information. If the message is not completely
6693 * consumed this information will be put in the mblk
6694 * that is putback.
6695 * If MSGMARKNEXT is set and the message is completely consumed
6696 * the STRATMARK flag will be set below. Likewise, if
6697 * MSGNOTMARKNEXT is set and the message is
6698 * completely consumed STRNOTATMARK will be set.
6699 */
6700 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6701 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6702 (MSGMARKNEXT|MSGNOTMARKNEXT));
6703 if (mark != 0 && bp == stp->sd_mark) {
6704 mark |= _LASTMARK;
6705 stp->sd_mark = NULL;
6706 }
6707 /*
6708 * keep track of the original message type and priority
6709 */
6710 pri = bp->b_band;
6711 type = bp->b_datap->db_type;
6712 if (type == M_PASSFP) {
6713 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6714 stp->sd_mark = bp;
6715 bp->b_flag |= mark & ~_LASTMARK;
6716 putback(stp, q, bp, pri);
6717 qbackenable(q, pri);
6718 mutex_exit(&stp->sd_lock);
6719 return (EBADMSG);
6720 }
6721 ASSERT(type != M_SIG);
6722
6723 /*
6724 * Set this flag so strrput will not generate signals. Need to
6725 * make sure this flag is cleared before leaving this routine
6726 * else signals will stop being sent.
6727 */
6728 stp->sd_flag |= STRGETINPROG;
6729 mutex_exit(&stp->sd_lock);
6730
6731 if (STREAM_NEEDSERVICE(stp))
6732 stream_runservice(stp);
6733
6734 /*
6735 * Set HIPRI flag if message is priority.
6736 */
6737 if (type >= QPCTL)
6738 flg = MSG_HIPRI;
6739 else
6740 flg = MSG_BAND;
6741
6742 /*
6743 * First process PROTO or PCPROTO blocks, if any.
6744 */
6745 if (mctl->maxlen >= 0 && type != M_DATA) {
6746 size_t n, bcnt;
6747 char *ubuf;
6748
6749 bcnt = mctl->maxlen;
6750 ubuf = mctl->buf;
6751 while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6752 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6753 copyout(bp->b_rptr, ubuf, n)) {
6754 error = EFAULT;
6755 mutex_enter(&stp->sd_lock);
6756 /*
6757 * clear stream head pri flag based on
6758 * first message type
6759 */
6760 if (type >= QPCTL) {
6761 ASSERT(type == M_PCPROTO);
6762 stp->sd_flag &= ~STRPRI;
6763 }
6764 more = 0;
6765 freemsg(bp);
6766 goto getmout;
6767 }
6768 ubuf += n;
6769 bp->b_rptr += n;
6770 if (bp->b_rptr >= bp->b_wptr) {
6771 nbp = bp;
6772 bp = bp->b_cont;
6773 freeb(nbp);
6774 }
6775 ASSERT(n <= bcnt);
6776 bcnt -= n;
6777 if (bcnt == 0)
6778 break;
6779 }
6780 mctl->len = mctl->maxlen - bcnt;
6781 } else
6782 mctl->len = -1;
6783
6784 if (bp && bp->b_datap->db_type != M_DATA) {
6785 /*
6786 * More PROTO blocks in msg.
6787 */
6788 more |= MORECTL;
6789 savemp = bp;
6790 while (bp && bp->b_datap->db_type != M_DATA) {
6791 savemptail = bp;
6792 bp = bp->b_cont;
6793 }
6794 savemptail->b_cont = NULL;
6795 }
6796
6797 /*
6798 * Now process DATA blocks, if any.
6799 */
6800 if (mdata->maxlen >= 0 && bp) {
6801 /*
6802 * struiocopyout will consume a potential zero-length
6803 * M_DATA even if uio_resid is zero.
6804 */
6805 size_t oldresid = uiop->uio_resid;
6806
6807 bp = struiocopyout(bp, uiop, &error);
6808 if (error != 0) {
6809 mutex_enter(&stp->sd_lock);
6810 /*
6811 * clear stream head hi pri flag based on
6812 * first message
6813 */
6814 if (type >= QPCTL) {
6815 ASSERT(type == M_PCPROTO);
6816 stp->sd_flag &= ~STRPRI;
6817 }
6818 more = 0;
6819 freemsg(savemp);
6820 goto getmout;
6821 }
6822 /*
6823 * (pr == 1) indicates a partial read.
6824 */
6825 if (oldresid > uiop->uio_resid)
6826 pr = 1;
6827 mdata->len = mdata->maxlen - uiop->uio_resid;
6828 } else
6829 mdata->len = -1;
6830
6831 if (bp) { /* more data blocks in msg */
6832 more |= MOREDATA;
6833 if (savemp)
6834 savemptail->b_cont = bp;
6835 else
6836 savemp = bp;
6837 }
6838
6839 mutex_enter(&stp->sd_lock);
6840 if (savemp) {
6841 if (pr && (savemp->b_datap->db_type == M_DATA) &&
6842 msgnodata(savemp)) {
6843 /*
6844 * Avoid queuing a zero-length tail part of
6845 * a message. pr=1 indicates that we read some of
6846 * the message.
6847 */
6848 freemsg(savemp);
6849 more &= ~MOREDATA;
6850 /*
6851 * clear stream head hi pri flag based on
6852 * first message
6853 */
6854 if (type >= QPCTL) {
6855 ASSERT(type == M_PCPROTO);
6856 stp->sd_flag &= ~STRPRI;
6857 }
6858 } else {
6859 savemp->b_band = pri;
6860 /*
6861 * If the first message was HIPRI and the one we're
6862 * putting back isn't, then clear STRPRI, otherwise
6863 * set STRPRI again. Note that we must set STRPRI
6864 * again since the flush logic in strrput_nondata()
6865 * may have cleared it while we had sd_lock dropped.
6866 */
6867 if (type >= QPCTL) {
6868 ASSERT(type == M_PCPROTO);
6869 if (queclass(savemp) < QPCTL)
6870 stp->sd_flag &= ~STRPRI;
6871 else
6872 stp->sd_flag |= STRPRI;
6873 } else if (queclass(savemp) >= QPCTL) {
6874 /*
6875 * The first message was not a HIPRI message,
6876 * but the one we are about to putback is.
6877 * For simplicitly, we do not allow for HIPRI
6878 * messages to be embedded in the message
6879 * body, so just force it to same type as
6880 * first message.
6881 */
6882 ASSERT(type == M_DATA || type == M_PROTO);
6883 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6884 savemp->b_datap->db_type = type;
6885 }
6886 if (mark != 0) {
6887 savemp->b_flag |= mark & ~_LASTMARK;
6888 if ((mark & _LASTMARK) &&
6889 (stp->sd_mark == NULL)) {
6890 /*
6891 * If another marked message arrived
6892 * while sd_lock was not held sd_mark
6893 * would be non-NULL.
6894 */
6895 stp->sd_mark = savemp;
6896 }
6897 }
6898 putback(stp, q, savemp, pri);
6899 }
6900 } else {
6901 /*
6902 * The complete message was consumed.
6903 *
6904 * If another M_PCPROTO arrived while sd_lock was not held
6905 * it would have been discarded since STRPRI was still set.
6906 *
6907 * Move the MSG*MARKNEXT information
6908 * to the stream head just in case
6909 * the read queue becomes empty.
6910 * clear stream head hi pri flag based on
6911 * first message
6912 *
6913 * If the stream head was at the mark
6914 * (STRATMARK) before we dropped sd_lock above
6915 * and some data was consumed then we have
6916 * moved past the mark thus STRATMARK is
6917 * cleared. However, if a message arrived in
6918 * strrput during the copyout above causing
6919 * STRATMARK to be set we can not clear that
6920 * flag.
6921 */
6922 if (type >= QPCTL) {
6923 ASSERT(type == M_PCPROTO);
6924 stp->sd_flag &= ~STRPRI;
6925 }
6926 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6927 if (mark & MSGMARKNEXT) {
6928 stp->sd_flag &= ~STRNOTATMARK;
6929 stp->sd_flag |= STRATMARK;
6930 } else if (mark & MSGNOTMARKNEXT) {
6931 stp->sd_flag &= ~STRATMARK;
6932 stp->sd_flag |= STRNOTATMARK;
6933 } else {
6934 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6935 }
6936 } else if (pr && (old_sd_flag & STRATMARK)) {
6937 stp->sd_flag &= ~STRATMARK;
6938 }
6939 }
6940
6941 *flagsp = flg;
6942 *prip = pri;
6943
6944 /*
6945 * Getmsg cleanup processing - if the state of the queue has changed
6946 * some signals may need to be sent and/or poll awakened.
6947 */
6948 getmout:
6949 qbackenable(q, pri);
6950
6951 /*
6952 * We dropped the stream head lock above. Send all M_SIG messages
6953 * before processing stream head for SIGPOLL messages.
6954 */
6955 ASSERT(MUTEX_HELD(&stp->sd_lock));
6956 while ((bp = q->q_first) != NULL &&
6957 (bp->b_datap->db_type == M_SIG)) {
6958 /*
6959 * sd_lock is held so the content of the read queue can not
6960 * change.
6961 */
6962 bp = getq(q);
6963 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
6964
6965 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6966 mutex_exit(&stp->sd_lock);
6967 freemsg(bp);
6968 if (STREAM_NEEDSERVICE(stp))
6969 stream_runservice(stp);
6970 mutex_enter(&stp->sd_lock);
6971 }
6972
6973 /*
6974 * stream head cannot change while we make the determination
6975 * whether or not to send a signal. Drop the flag to allow strrput
6976 * to send firstmsgsigs again.
6977 */
6978 stp->sd_flag &= ~STRGETINPROG;
6979
6980 /*
6981 * If the type of message at the front of the queue changed
6982 * due to the receive the appropriate signals and pollwakeup events
6983 * are generated. The type of changes are:
6984 * Processed a hipri message, q_first is not hipri.
6985 * Processed a band X message, and q_first is band Y.
6986 * The generated signals and pollwakeups are identical to what
6987 * strrput() generates should the message that is now on q_first
6988 * arrive to an empty read queue.
6989 *
6990 * Note: only strrput will send a signal for a hipri message.
6991 */
6992 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
6993 strsigset_t signals = 0;
6994 strpollset_t pollwakeups = 0;
6995
6996 if (flg & MSG_HIPRI) {
6997 /*
6998 * Removed a hipri message. Regular data at
6999 * the front of the queue.
7000 */
7001 if (bp->b_band == 0) {
7002 signals = S_INPUT | S_RDNORM;
7003 pollwakeups = POLLIN | POLLRDNORM;
7004 } else {
7005 signals = S_INPUT | S_RDBAND;
7006 pollwakeups = POLLIN | POLLRDBAND;
7007 }
7008 } else if (pri != bp->b_band) {
7009 /*
7010 * The band is different for the new q_first.
7011 */
7012 if (bp->b_band == 0) {
7013 signals = S_RDNORM;
7014 pollwakeups = POLLIN | POLLRDNORM;
7015 } else {
7016 signals = S_RDBAND;
7017 pollwakeups = POLLIN | POLLRDBAND;
7018 }
7019 }
7020
7021 if (pollwakeups != 0) {
7022 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7023 if (!(stp->sd_rput_opt & SR_POLLIN))
7024 goto no_pollwake;
7025 stp->sd_rput_opt &= ~SR_POLLIN;
7026 }
7027 mutex_exit(&stp->sd_lock);
7028 pollwakeup(&stp->sd_pollist, pollwakeups);
7029 mutex_enter(&stp->sd_lock);
7030 }
7031 no_pollwake:
7032
7033 if (stp->sd_sigflags & signals)
7034 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7035 }
7036 mutex_exit(&stp->sd_lock);
7037
7038 rvp->r_val1 = more;
7039 return (error);
7040 #undef _LASTMARK
7041 }
7042
7043 /*
7044 * Get the next message from the read queue. If the message is
7045 * priority, STRPRI will have been set by strrput(). This flag
7046 * should be reset only when the entire message at the front of the
7047 * queue as been consumed.
7048 *
7049 * If uiop is NULL all data is returned in mctlp.
7050 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7051 * not enabled.
7052 * The timeout parameter is in milliseconds; -1 for infinity.
7053 * This routine handles the consolidation private flags:
7054 * MSG_IGNERROR Ignore any stream head error except STPLEX.
7055 * MSG_DELAYERROR Defer the error check until the queue is empty.
7056 * MSG_HOLDSIG Hold signals while waiting for data.
7057 * MSG_IPEEK Only peek at messages.
7058 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message
7059 * that doesn't fit.
7060 * MSG_NOMARK If the message is marked leave it on the queue.
7061 *
7062 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7063 */
7064 int
kstrgetmsg(struct vnode * vp,mblk_t ** mctlp,struct uio * uiop,unsigned char * prip,int * flagsp,clock_t timout,rval_t * rvp)7065 kstrgetmsg(
7066 struct vnode *vp,
7067 mblk_t **mctlp,
7068 struct uio *uiop,
7069 unsigned char *prip,
7070 int *flagsp,
7071 clock_t timout,
7072 rval_t *rvp)
7073 {
7074 struct stdata *stp;
7075 mblk_t *bp, *nbp;
7076 mblk_t *savemp = NULL;
7077 mblk_t *savemptail = NULL;
7078 int flags;
7079 uint_t old_sd_flag;
7080 int flg;
7081 int more = 0;
7082 int error = 0;
7083 char first = 1;
7084 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
7085 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
7086 unsigned char pri = 0;
7087 queue_t *q;
7088 int pr = 0; /* Partial read successful */
7089 unsigned char type;
7090
7091 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7092 "kstrgetmsg:%p", vp);
7093
7094 ASSERT(vp->v_stream);
7095 stp = vp->v_stream;
7096 rvp->r_val1 = 0;
7097
7098 mutex_enter(&stp->sd_lock);
7099
7100 if ((error = i_straccess(stp, JCREAD)) != 0) {
7101 mutex_exit(&stp->sd_lock);
7102 return (error);
7103 }
7104
7105 flags = *flagsp;
7106 if (stp->sd_flag & (STRDERR|STPLEX)) {
7107 if ((stp->sd_flag & STPLEX) ||
7108 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7109 error = strgeterr(stp, STRDERR|STPLEX,
7110 (flags & MSG_IPEEK));
7111 if (error != 0) {
7112 mutex_exit(&stp->sd_lock);
7113 return (error);
7114 }
7115 }
7116 }
7117 mutex_exit(&stp->sd_lock);
7118
7119 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7120 case MSG_HIPRI:
7121 if (*prip != 0)
7122 return (EINVAL);
7123 break;
7124
7125 case MSG_ANY:
7126 case MSG_BAND:
7127 break;
7128
7129 default:
7130 return (EINVAL);
7131 }
7132
7133 retry:
7134 q = _RD(stp->sd_wrq);
7135 mutex_enter(&stp->sd_lock);
7136 old_sd_flag = stp->sd_flag;
7137 mark = 0;
7138 for (;;) {
7139 int done = 0;
7140 int waitflag;
7141 int fmode;
7142 mblk_t *q_first = q->q_first;
7143
7144 /*
7145 * This section of the code operates just like the code
7146 * in strgetmsg(). There is a comment there about what
7147 * is going on here.
7148 */
7149 if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7150 /* Asking for normal, band0 data */
7151 bp = strget(stp, q, uiop, first, &error);
7152 ASSERT(MUTEX_HELD(&stp->sd_lock));
7153 if (bp != NULL) {
7154 if (DB_TYPE(bp) == M_SIG) {
7155 strsignal_nolock(stp, *bp->b_rptr,
7156 bp->b_band);
7157 freemsg(bp);
7158 continue;
7159 } else {
7160 break;
7161 }
7162 }
7163 if (error != 0) {
7164 goto getmout;
7165 }
7166 /*
7167 * We can't depend on the value of STRPRI here because
7168 * the stream head may be in transit. Therefore, we
7169 * must look at the type of the first message to
7170 * determine if a high priority messages is waiting
7171 */
7172 } else if ((flags & MSG_HIPRI) && q_first != NULL &&
7173 DB_TYPE(q_first) >= QPCTL &&
7174 (bp = getq_noenab(q, 0)) != NULL) {
7175 ASSERT(DB_TYPE(bp) >= QPCTL);
7176 break;
7177 } else if ((flags & MSG_BAND) && q_first != NULL &&
7178 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
7179 (bp = getq_noenab(q, 0)) != NULL) {
7180 /*
7181 * Asked for at least band "prip" and got either at
7182 * least that band or a hipri message.
7183 */
7184 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
7185 if (DB_TYPE(bp) == M_SIG) {
7186 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7187 freemsg(bp);
7188 continue;
7189 } else {
7190 break;
7191 }
7192 }
7193
7194 /* No data. Time to sleep? */
7195 qbackenable(q, 0);
7196
7197 /*
7198 * Delayed error notification?
7199 */
7200 if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7201 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7202 error = strgeterr(stp, STRDERR|STPLEX,
7203 (flags & MSG_IPEEK));
7204 if (error != 0) {
7205 mutex_exit(&stp->sd_lock);
7206 return (error);
7207 }
7208 }
7209
7210 /*
7211 * If STRHUP or STREOF, return 0 length control and data.
7212 * If a read(fd,buf,0) has been done, do not sleep, just
7213 * return.
7214 *
7215 * If mctlp == NULL and uiop == NULL, then the code will
7216 * do the strwaitq. This is an understood way of saying
7217 * sleep "polling" until a message is received.
7218 */
7219 if ((stp->sd_flag & (STRHUP|STREOF)) ||
7220 (uiop != NULL && uiop->uio_resid == 0)) {
7221 if (mctlp != NULL)
7222 *mctlp = NULL;
7223 *flagsp = 0;
7224 mutex_exit(&stp->sd_lock);
7225 return (0);
7226 }
7227
7228 waitflag = GETWAIT;
7229 if (flags &
7230 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7231 if (flags & MSG_HOLDSIG)
7232 waitflag |= STR_NOSIG;
7233 if (flags & MSG_IGNERROR)
7234 waitflag |= STR_NOERROR;
7235 if (flags & MSG_IPEEK)
7236 waitflag |= STR_PEEK;
7237 if (flags & MSG_DELAYERROR)
7238 waitflag |= STR_DELAYERR;
7239 }
7240 if (uiop != NULL)
7241 fmode = uiop->uio_fmode;
7242 else
7243 fmode = 0;
7244
7245 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7246 "kstrgetmsg calls strwaitq:%p, %p",
7247 vp, uiop);
7248 if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7249 fmode, timout, &done))) != 0 || done) {
7250 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7251 "kstrgetmsg error or done:%p, %p",
7252 vp, uiop);
7253 mutex_exit(&stp->sd_lock);
7254 return (error);
7255 }
7256 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7257 "kstrgetmsg awakes:%p, %p", vp, uiop);
7258 if ((error = i_straccess(stp, JCREAD)) != 0) {
7259 mutex_exit(&stp->sd_lock);
7260 return (error);
7261 }
7262 first = 0;
7263 }
7264 ASSERT(bp != NULL);
7265 /*
7266 * Extract any mark information. If the message is not completely
7267 * consumed this information will be put in the mblk
7268 * that is putback.
7269 * If MSGMARKNEXT is set and the message is completely consumed
7270 * the STRATMARK flag will be set below. Likewise, if
7271 * MSGNOTMARKNEXT is set and the message is
7272 * completely consumed STRNOTATMARK will be set.
7273 */
7274 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7275 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7276 (MSGMARKNEXT|MSGNOTMARKNEXT));
7277 pri = bp->b_band;
7278 if (mark != 0) {
7279 /*
7280 * If the caller doesn't want the mark return.
7281 * Used to implement MSG_WAITALL in sockets.
7282 */
7283 if (flags & MSG_NOMARK) {
7284 putback(stp, q, bp, pri);
7285 qbackenable(q, pri);
7286 mutex_exit(&stp->sd_lock);
7287 return (EWOULDBLOCK);
7288 }
7289 if (bp == stp->sd_mark) {
7290 mark |= _LASTMARK;
7291 stp->sd_mark = NULL;
7292 }
7293 }
7294
7295 /*
7296 * keep track of the first message type
7297 */
7298 type = bp->b_datap->db_type;
7299
7300 if (bp->b_datap->db_type == M_PASSFP) {
7301 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7302 stp->sd_mark = bp;
7303 bp->b_flag |= mark & ~_LASTMARK;
7304 putback(stp, q, bp, pri);
7305 qbackenable(q, pri);
7306 mutex_exit(&stp->sd_lock);
7307 return (EBADMSG);
7308 }
7309 ASSERT(type != M_SIG);
7310
7311 if (flags & MSG_IPEEK) {
7312 /*
7313 * Clear any struioflag - we do the uiomove over again
7314 * when peeking since it simplifies the code.
7315 *
7316 * Dup the message and put the original back on the queue.
7317 * If dupmsg() fails, try again with copymsg() to see if
7318 * there is indeed a shortage of memory. dupmsg() may fail
7319 * if db_ref in any of the messages reaches its limit.
7320 */
7321
7322 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7323 /*
7324 * Restore the state of the stream head since we
7325 * need to drop sd_lock (strwaitbuf is sleeping).
7326 */
7327 size_t size = msgdsize(bp);
7328
7329 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7330 stp->sd_mark = bp;
7331 bp->b_flag |= mark & ~_LASTMARK;
7332 putback(stp, q, bp, pri);
7333 mutex_exit(&stp->sd_lock);
7334 error = strwaitbuf(size, BPRI_HI);
7335 if (error) {
7336 /*
7337 * There is no net change to the queue thus
7338 * no need to qbackenable.
7339 */
7340 return (error);
7341 }
7342 goto retry;
7343 }
7344
7345 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7346 stp->sd_mark = bp;
7347 bp->b_flag |= mark & ~_LASTMARK;
7348 putback(stp, q, bp, pri);
7349 bp = nbp;
7350 }
7351
7352 /*
7353 * Set this flag so strrput will not generate signals. Need to
7354 * make sure this flag is cleared before leaving this routine
7355 * else signals will stop being sent.
7356 */
7357 stp->sd_flag |= STRGETINPROG;
7358 mutex_exit(&stp->sd_lock);
7359
7360 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7361 mblk_t *tmp, *prevmp;
7362
7363 /*
7364 * Put first non-data mblk back to stream head and
7365 * cut the mblk chain so sd_rputdatafunc only sees
7366 * M_DATA mblks. We can skip the first mblk since it
7367 * is M_DATA according to the condition above.
7368 */
7369 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7370 prevmp = tmp, tmp = tmp->b_cont) {
7371 if (DB_TYPE(tmp) != M_DATA) {
7372 prevmp->b_cont = NULL;
7373 mutex_enter(&stp->sd_lock);
7374 putback(stp, q, tmp, tmp->b_band);
7375 mutex_exit(&stp->sd_lock);
7376 break;
7377 }
7378 }
7379
7380 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7381 NULL, NULL, NULL, NULL);
7382
7383 if (bp == NULL)
7384 goto retry;
7385 }
7386
7387 if (STREAM_NEEDSERVICE(stp))
7388 stream_runservice(stp);
7389
7390 /*
7391 * Set HIPRI flag if message is priority.
7392 */
7393 if (type >= QPCTL)
7394 flg = MSG_HIPRI;
7395 else
7396 flg = MSG_BAND;
7397
7398 /*
7399 * First process PROTO or PCPROTO blocks, if any.
7400 */
7401 if (mctlp != NULL && type != M_DATA) {
7402 mblk_t *nbp;
7403
7404 *mctlp = bp;
7405 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7406 bp = bp->b_cont;
7407 nbp = bp->b_cont;
7408 bp->b_cont = NULL;
7409 bp = nbp;
7410 }
7411
7412 if (bp && bp->b_datap->db_type != M_DATA) {
7413 /*
7414 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7415 */
7416 more |= MORECTL;
7417 savemp = bp;
7418 while (bp && bp->b_datap->db_type != M_DATA) {
7419 savemptail = bp;
7420 bp = bp->b_cont;
7421 }
7422 savemptail->b_cont = NULL;
7423 }
7424
7425 /*
7426 * Now process DATA blocks, if any.
7427 */
7428 if (uiop == NULL) {
7429 /* Append data to tail of mctlp */
7430
7431 if (mctlp != NULL) {
7432 mblk_t **mpp = mctlp;
7433
7434 while (*mpp != NULL)
7435 mpp = &((*mpp)->b_cont);
7436 *mpp = bp;
7437 bp = NULL;
7438 }
7439 } else if (uiop->uio_resid >= 0 && bp) {
7440 size_t oldresid = uiop->uio_resid;
7441
7442 /*
7443 * If a streams message is likely to consist
7444 * of many small mblks, it is pulled up into
7445 * one continuous chunk of memory.
7446 * The size of the first mblk may be bogus because
7447 * successive read() calls on the socket reduce
7448 * the size of this mblk until it is exhausted
7449 * and then the code walks on to the next. Thus
7450 * the size of the mblk may not be the original size
7451 * that was passed up, it's simply a remainder
7452 * and hence can be very small without any
7453 * implication that the packet is badly fragmented.
7454 * So the size of the possible second mblk is
7455 * used to spot a badly fragmented packet.
7456 * see longer comment at top of page
7457 * by mblk_pull_len declaration.
7458 */
7459
7460 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
7461 (void) pullupmsg(bp, -1);
7462 }
7463
7464 bp = struiocopyout(bp, uiop, &error);
7465 if (error != 0) {
7466 if (mctlp != NULL) {
7467 freemsg(*mctlp);
7468 *mctlp = NULL;
7469 } else
7470 freemsg(savemp);
7471 mutex_enter(&stp->sd_lock);
7472 /*
7473 * clear stream head hi pri flag based on
7474 * first message
7475 */
7476 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7477 ASSERT(type == M_PCPROTO);
7478 stp->sd_flag &= ~STRPRI;
7479 }
7480 more = 0;
7481 goto getmout;
7482 }
7483 /*
7484 * (pr == 1) indicates a partial read.
7485 */
7486 if (oldresid > uiop->uio_resid)
7487 pr = 1;
7488 }
7489
7490 if (bp) { /* more data blocks in msg */
7491 more |= MOREDATA;
7492 if (savemp)
7493 savemptail->b_cont = bp;
7494 else
7495 savemp = bp;
7496 }
7497
7498 mutex_enter(&stp->sd_lock);
7499 if (savemp) {
7500 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7501 /*
7502 * When MSG_DISCARDTAIL is set or
7503 * when peeking discard any tail. When peeking this
7504 * is the tail of the dup that was copied out - the
7505 * message has already been putback on the queue.
7506 * Return MOREDATA to the caller even though the data
7507 * is discarded. This is used by sockets (to
7508 * set MSG_TRUNC).
7509 */
7510 freemsg(savemp);
7511 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7512 ASSERT(type == M_PCPROTO);
7513 stp->sd_flag &= ~STRPRI;
7514 }
7515 } else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7516 msgnodata(savemp)) {
7517 /*
7518 * Avoid queuing a zero-length tail part of
7519 * a message. pr=1 indicates that we read some of
7520 * the message.
7521 */
7522 freemsg(savemp);
7523 more &= ~MOREDATA;
7524 if (type >= QPCTL) {
7525 ASSERT(type == M_PCPROTO);
7526 stp->sd_flag &= ~STRPRI;
7527 }
7528 } else {
7529 savemp->b_band = pri;
7530 /*
7531 * If the first message was HIPRI and the one we're
7532 * putting back isn't, then clear STRPRI, otherwise
7533 * set STRPRI again. Note that we must set STRPRI
7534 * again since the flush logic in strrput_nondata()
7535 * may have cleared it while we had sd_lock dropped.
7536 */
7537
7538 if (type >= QPCTL) {
7539 ASSERT(type == M_PCPROTO);
7540 if (queclass(savemp) < QPCTL)
7541 stp->sd_flag &= ~STRPRI;
7542 else
7543 stp->sd_flag |= STRPRI;
7544 } else if (queclass(savemp) >= QPCTL) {
7545 /*
7546 * The first message was not a HIPRI message,
7547 * but the one we are about to putback is.
7548 * For simplicitly, we do not allow for HIPRI
7549 * messages to be embedded in the message
7550 * body, so just force it to same type as
7551 * first message.
7552 */
7553 ASSERT(type == M_DATA || type == M_PROTO);
7554 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7555 savemp->b_datap->db_type = type;
7556 }
7557 if (mark != 0) {
7558 if ((mark & _LASTMARK) &&
7559 (stp->sd_mark == NULL)) {
7560 /*
7561 * If another marked message arrived
7562 * while sd_lock was not held sd_mark
7563 * would be non-NULL.
7564 */
7565 stp->sd_mark = savemp;
7566 }
7567 savemp->b_flag |= mark & ~_LASTMARK;
7568 }
7569 putback(stp, q, savemp, pri);
7570 }
7571 } else if (!(flags & MSG_IPEEK)) {
7572 /*
7573 * The complete message was consumed.
7574 *
7575 * If another M_PCPROTO arrived while sd_lock was not held
7576 * it would have been discarded since STRPRI was still set.
7577 *
7578 * Move the MSG*MARKNEXT information
7579 * to the stream head just in case
7580 * the read queue becomes empty.
7581 * clear stream head hi pri flag based on
7582 * first message
7583 *
7584 * If the stream head was at the mark
7585 * (STRATMARK) before we dropped sd_lock above
7586 * and some data was consumed then we have
7587 * moved past the mark thus STRATMARK is
7588 * cleared. However, if a message arrived in
7589 * strrput during the copyout above causing
7590 * STRATMARK to be set we can not clear that
7591 * flag.
7592 * XXX A "perimeter" would help by single-threading strrput,
7593 * strread, strgetmsg and kstrgetmsg.
7594 */
7595 if (type >= QPCTL) {
7596 ASSERT(type == M_PCPROTO);
7597 stp->sd_flag &= ~STRPRI;
7598 }
7599 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7600 if (mark & MSGMARKNEXT) {
7601 stp->sd_flag &= ~STRNOTATMARK;
7602 stp->sd_flag |= STRATMARK;
7603 } else if (mark & MSGNOTMARKNEXT) {
7604 stp->sd_flag &= ~STRATMARK;
7605 stp->sd_flag |= STRNOTATMARK;
7606 } else {
7607 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7608 }
7609 } else if (pr && (old_sd_flag & STRATMARK)) {
7610 stp->sd_flag &= ~STRATMARK;
7611 }
7612 }
7613
7614 *flagsp = flg;
7615 *prip = pri;
7616
7617 /*
7618 * Getmsg cleanup processing - if the state of the queue has changed
7619 * some signals may need to be sent and/or poll awakened.
7620 */
7621 getmout:
7622 qbackenable(q, pri);
7623
7624 /*
7625 * We dropped the stream head lock above. Send all M_SIG messages
7626 * before processing stream head for SIGPOLL messages.
7627 */
7628 ASSERT(MUTEX_HELD(&stp->sd_lock));
7629 while ((bp = q->q_first) != NULL &&
7630 (bp->b_datap->db_type == M_SIG)) {
7631 /*
7632 * sd_lock is held so the content of the read queue can not
7633 * change.
7634 */
7635 bp = getq(q);
7636 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7637
7638 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7639 mutex_exit(&stp->sd_lock);
7640 freemsg(bp);
7641 if (STREAM_NEEDSERVICE(stp))
7642 stream_runservice(stp);
7643 mutex_enter(&stp->sd_lock);
7644 }
7645
7646 /*
7647 * stream head cannot change while we make the determination
7648 * whether or not to send a signal. Drop the flag to allow strrput
7649 * to send firstmsgsigs again.
7650 */
7651 stp->sd_flag &= ~STRGETINPROG;
7652
7653 /*
7654 * If the type of message at the front of the queue changed
7655 * due to the receive the appropriate signals and pollwakeup events
7656 * are generated. The type of changes are:
7657 * Processed a hipri message, q_first is not hipri.
7658 * Processed a band X message, and q_first is band Y.
7659 * The generated signals and pollwakeups are identical to what
7660 * strrput() generates should the message that is now on q_first
7661 * arrive to an empty read queue.
7662 *
7663 * Note: only strrput will send a signal for a hipri message.
7664 */
7665 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7666 strsigset_t signals = 0;
7667 strpollset_t pollwakeups = 0;
7668
7669 if (flg & MSG_HIPRI) {
7670 /*
7671 * Removed a hipri message. Regular data at
7672 * the front of the queue.
7673 */
7674 if (bp->b_band == 0) {
7675 signals = S_INPUT | S_RDNORM;
7676 pollwakeups = POLLIN | POLLRDNORM;
7677 } else {
7678 signals = S_INPUT | S_RDBAND;
7679 pollwakeups = POLLIN | POLLRDBAND;
7680 }
7681 } else if (pri != bp->b_band) {
7682 /*
7683 * The band is different for the new q_first.
7684 */
7685 if (bp->b_band == 0) {
7686 signals = S_RDNORM;
7687 pollwakeups = POLLIN | POLLRDNORM;
7688 } else {
7689 signals = S_RDBAND;
7690 pollwakeups = POLLIN | POLLRDBAND;
7691 }
7692 }
7693
7694 if (pollwakeups != 0) {
7695 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7696 if (!(stp->sd_rput_opt & SR_POLLIN))
7697 goto no_pollwake;
7698 stp->sd_rput_opt &= ~SR_POLLIN;
7699 }
7700 mutex_exit(&stp->sd_lock);
7701 pollwakeup(&stp->sd_pollist, pollwakeups);
7702 mutex_enter(&stp->sd_lock);
7703 }
7704 no_pollwake:
7705
7706 if (stp->sd_sigflags & signals)
7707 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7708 }
7709 mutex_exit(&stp->sd_lock);
7710
7711 rvp->r_val1 = more;
7712 return (error);
7713 #undef _LASTMARK
7714 }
7715
7716 /*
7717 * Put a message downstream.
7718 *
7719 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7720 */
7721 int
strputmsg(struct vnode * vp,struct strbuf * mctl,struct strbuf * mdata,unsigned char pri,int flag,int fmode)7722 strputmsg(
7723 struct vnode *vp,
7724 struct strbuf *mctl,
7725 struct strbuf *mdata,
7726 unsigned char pri,
7727 int flag,
7728 int fmode)
7729 {
7730 struct stdata *stp;
7731 queue_t *wqp;
7732 mblk_t *mp;
7733 ssize_t msgsize;
7734 ssize_t rmin, rmax;
7735 int error;
7736 struct uio uios;
7737 struct uio *uiop = &uios;
7738 struct iovec iovs;
7739 int xpg4 = 0;
7740
7741 ASSERT(vp->v_stream);
7742 stp = vp->v_stream;
7743 wqp = stp->sd_wrq;
7744
7745 /*
7746 * If it is an XPG4 application, we need to send
7747 * SIGPIPE below
7748 */
7749
7750 xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7751 flag &= ~MSG_XPG4;
7752
7753 if (AU_AUDITING())
7754 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7755
7756 mutex_enter(&stp->sd_lock);
7757
7758 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7759 mutex_exit(&stp->sd_lock);
7760 return (error);
7761 }
7762
7763 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7764 error = strwriteable(stp, B_FALSE, xpg4);
7765 if (error != 0) {
7766 mutex_exit(&stp->sd_lock);
7767 return (error);
7768 }
7769 }
7770
7771 mutex_exit(&stp->sd_lock);
7772
7773 /*
7774 * Check for legal flag value.
7775 */
7776 switch (flag) {
7777 case MSG_HIPRI:
7778 if ((mctl->len < 0) || (pri != 0))
7779 return (EINVAL);
7780 break;
7781 case MSG_BAND:
7782 break;
7783
7784 default:
7785 return (EINVAL);
7786 }
7787
7788 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7789 "strputmsg in:stp %p", stp);
7790
7791 /* get these values from those cached in the stream head */
7792 rmin = stp->sd_qn_minpsz;
7793 rmax = stp->sd_qn_maxpsz;
7794
7795 /*
7796 * Make sure ctl and data sizes together fall within the
7797 * limits of the max and min receive packet sizes and do
7798 * not exceed system limit.
7799 */
7800 ASSERT((rmax >= 0) || (rmax == INFPSZ));
7801 if (rmax == 0) {
7802 return (ERANGE);
7803 }
7804 /*
7805 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7806 * Needed to prevent partial failures in the strmakedata loop.
7807 */
7808 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7809 rmax = stp->sd_maxblk;
7810
7811 if ((msgsize = mdata->len) < 0) {
7812 msgsize = 0;
7813 rmin = 0; /* no range check for NULL data part */
7814 }
7815 if ((msgsize < rmin) ||
7816 ((msgsize > rmax) && (rmax != INFPSZ)) ||
7817 (mctl->len > strctlsz)) {
7818 return (ERANGE);
7819 }
7820
7821 /*
7822 * Setup uio and iov for data part
7823 */
7824 iovs.iov_base = mdata->buf;
7825 iovs.iov_len = msgsize;
7826 uios.uio_iov = &iovs;
7827 uios.uio_iovcnt = 1;
7828 uios.uio_loffset = 0;
7829 uios.uio_segflg = UIO_USERSPACE;
7830 uios.uio_fmode = fmode;
7831 uios.uio_extflg = UIO_COPY_DEFAULT;
7832 uios.uio_resid = msgsize;
7833 uios.uio_offset = 0;
7834
7835 /* Ignore flow control in strput for HIPRI */
7836 if (flag & MSG_HIPRI)
7837 flag |= MSG_IGNFLOW;
7838
7839 for (;;) {
7840 int done = 0;
7841
7842 /*
7843 * strput will always free the ctl mblk - even when strput
7844 * fails.
7845 */
7846 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7847 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7848 "strputmsg out:stp %p out %d error %d",
7849 stp, 1, error);
7850 return (error);
7851 }
7852 /*
7853 * Verify that the whole message can be transferred by
7854 * strput.
7855 */
7856 ASSERT(stp->sd_maxblk == INFPSZ ||
7857 stp->sd_maxblk >= mdata->len);
7858
7859 msgsize = mdata->len;
7860 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7861 mdata->len = msgsize;
7862
7863 if (error == 0)
7864 break;
7865
7866 if (error != EWOULDBLOCK)
7867 goto out;
7868
7869 mutex_enter(&stp->sd_lock);
7870 /*
7871 * Check for a missed wakeup.
7872 * Needed since strput did not hold sd_lock across
7873 * the canputnext.
7874 */
7875 if (bcanputnext(wqp, pri)) {
7876 /* Try again */
7877 mutex_exit(&stp->sd_lock);
7878 continue;
7879 }
7880 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7881 "strputmsg wait:stp %p waits pri %d", stp, pri);
7882 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7883 &done)) != 0) || done) {
7884 mutex_exit(&stp->sd_lock);
7885 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7886 "strputmsg out:q %p out %d error %d",
7887 stp, 0, error);
7888 return (error);
7889 }
7890 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7891 "strputmsg wake:stp %p wakes", stp);
7892 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7893 mutex_exit(&stp->sd_lock);
7894 return (error);
7895 }
7896 mutex_exit(&stp->sd_lock);
7897 }
7898 out:
7899 /*
7900 * For historic reasons, applications expect EAGAIN
7901 * when data mblk could not be allocated. so change
7902 * ENOMEM back to EAGAIN
7903 */
7904 if (error == ENOMEM)
7905 error = EAGAIN;
7906 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7907 "strputmsg out:stp %p out %d error %d", stp, 2, error);
7908 return (error);
7909 }
7910
7911 /*
7912 * Put a message downstream.
7913 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7914 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7915 * and the fmode parameter.
7916 *
7917 * This routine handles the consolidation private flags:
7918 * MSG_IGNERROR Ignore any stream head error except STPLEX.
7919 * MSG_HOLDSIG Hold signals while waiting for data.
7920 * MSG_IGNFLOW Don't check streams flow control.
7921 *
7922 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7923 */
7924 int
kstrputmsg(struct vnode * vp,mblk_t * mctl,struct uio * uiop,ssize_t msgsize,unsigned char pri,int flag,int fmode)7925 kstrputmsg(
7926 struct vnode *vp,
7927 mblk_t *mctl,
7928 struct uio *uiop,
7929 ssize_t msgsize,
7930 unsigned char pri,
7931 int flag,
7932 int fmode)
7933 {
7934 struct stdata *stp;
7935 queue_t *wqp;
7936 ssize_t rmin, rmax;
7937 int error;
7938
7939 ASSERT(vp->v_stream);
7940 stp = vp->v_stream;
7941 wqp = stp->sd_wrq;
7942 if (AU_AUDITING())
7943 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7944 if (mctl == NULL)
7945 return (EINVAL);
7946
7947 mutex_enter(&stp->sd_lock);
7948
7949 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7950 mutex_exit(&stp->sd_lock);
7951 freemsg(mctl);
7952 return (error);
7953 }
7954
7955 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7956 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7957 error = strwriteable(stp, B_FALSE, B_TRUE);
7958 if (error != 0) {
7959 mutex_exit(&stp->sd_lock);
7960 freemsg(mctl);
7961 return (error);
7962 }
7963 }
7964 }
7965
7966 mutex_exit(&stp->sd_lock);
7967
7968 /*
7969 * Check for legal flag value.
7970 */
7971 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7972 case MSG_HIPRI:
7973 if (pri != 0) {
7974 freemsg(mctl);
7975 return (EINVAL);
7976 }
7977 break;
7978 case MSG_BAND:
7979 break;
7980 default:
7981 freemsg(mctl);
7982 return (EINVAL);
7983 }
7984
7985 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7986 "kstrputmsg in:stp %p", stp);
7987
7988 /* get these values from those cached in the stream head */
7989 rmin = stp->sd_qn_minpsz;
7990 rmax = stp->sd_qn_maxpsz;
7991
7992 /*
7993 * Make sure ctl and data sizes together fall within the
7994 * limits of the max and min receive packet sizes and do
7995 * not exceed system limit.
7996 */
7997 ASSERT((rmax >= 0) || (rmax == INFPSZ));
7998 if (rmax == 0) {
7999 freemsg(mctl);
8000 return (ERANGE);
8001 }
8002 /*
8003 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8004 * Needed to prevent partial failures in the strmakedata loop.
8005 */
8006 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8007 rmax = stp->sd_maxblk;
8008
8009 if (uiop == NULL) {
8010 msgsize = -1;
8011 rmin = -1; /* no range check for NULL data part */
8012 } else {
8013 /* Use uio flags as well as the fmode parameter flags */
8014 fmode |= uiop->uio_fmode;
8015
8016 if ((msgsize < rmin) ||
8017 ((msgsize > rmax) && (rmax != INFPSZ))) {
8018 freemsg(mctl);
8019 return (ERANGE);
8020 }
8021 }
8022
8023 /* Ignore flow control in strput for HIPRI */
8024 if (flag & MSG_HIPRI)
8025 flag |= MSG_IGNFLOW;
8026
8027 for (;;) {
8028 int done = 0;
8029 int waitflag;
8030 mblk_t *mp;
8031
8032 /*
8033 * strput will always free the ctl mblk - even when strput
8034 * fails. If MSG_IGNFLOW is set then any error returned
8035 * will cause us to break the loop, so we don't need a copy
8036 * of the message. If MSG_IGNFLOW is not set, then we can
8037 * get hit by flow control and be forced to try again. In
8038 * this case we need to have a copy of the message. We
8039 * do this using copymsg since the message may get modified
8040 * by something below us.
8041 *
8042 * We've observed that many TPI providers do not check db_ref
8043 * on the control messages but blindly reuse them for the
8044 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8045 * friendly to such providers than using dupmsg. Also, note
8046 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8047 * Only data messages are subject to flow control, hence
8048 * subject to this copymsg.
8049 */
8050 if (flag & MSG_IGNFLOW) {
8051 mp = mctl;
8052 mctl = NULL;
8053 } else {
8054 do {
8055 /*
8056 * If a message has a free pointer, the message
8057 * must be dupmsg to maintain this pointer.
8058 * Code using this facility must be sure
8059 * that modules below will not change the
8060 * contents of the dblk without checking db_ref
8061 * first. If db_ref is > 1, then the module
8062 * needs to do a copymsg first. Otherwise,
8063 * the contents of the dblk may become
8064 * inconsistent because the freesmg/freeb below
8065 * may end up calling atomic_add_32_nv.
8066 * The atomic_add_32_nv in freeb (accessing
8067 * all of db_ref, db_type, db_flags, and
8068 * db_struioflag) does not prevent other threads
8069 * from concurrently trying to modify e.g.
8070 * db_type.
8071 */
8072 if (mctl->b_datap->db_frtnp != NULL)
8073 mp = dupmsg(mctl);
8074 else
8075 mp = copymsg(mctl);
8076
8077 if (mp != NULL)
8078 break;
8079
8080 error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8081 if (error) {
8082 freemsg(mctl);
8083 return (error);
8084 }
8085 } while (mp == NULL);
8086 }
8087 /*
8088 * Verify that all of msgsize can be transferred by
8089 * strput.
8090 */
8091 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8092 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8093 if (error == 0)
8094 break;
8095
8096 if (error != EWOULDBLOCK)
8097 goto out;
8098
8099 /*
8100 * IF MSG_IGNFLOW is set we should have broken out of loop
8101 * above.
8102 */
8103 ASSERT(!(flag & MSG_IGNFLOW));
8104 mutex_enter(&stp->sd_lock);
8105 /*
8106 * Check for a missed wakeup.
8107 * Needed since strput did not hold sd_lock across
8108 * the canputnext.
8109 */
8110 if (bcanputnext(wqp, pri)) {
8111 /* Try again */
8112 mutex_exit(&stp->sd_lock);
8113 continue;
8114 }
8115 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8116 "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8117
8118 waitflag = WRITEWAIT;
8119 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8120 if (flag & MSG_HOLDSIG)
8121 waitflag |= STR_NOSIG;
8122 if (flag & MSG_IGNERROR)
8123 waitflag |= STR_NOERROR;
8124 }
8125 if (((error = strwaitq(stp, waitflag,
8126 (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8127 mutex_exit(&stp->sd_lock);
8128 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8129 "kstrputmsg out:stp %p out %d error %d",
8130 stp, 0, error);
8131 freemsg(mctl);
8132 return (error);
8133 }
8134 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8135 "kstrputmsg wake:stp %p wakes", stp);
8136 if ((error = i_straccess(stp, JCWRITE)) != 0) {
8137 mutex_exit(&stp->sd_lock);
8138 freemsg(mctl);
8139 return (error);
8140 }
8141 mutex_exit(&stp->sd_lock);
8142 }
8143 out:
8144 freemsg(mctl);
8145 /*
8146 * For historic reasons, applications expect EAGAIN
8147 * when data mblk could not be allocated. so change
8148 * ENOMEM back to EAGAIN
8149 */
8150 if (error == ENOMEM)
8151 error = EAGAIN;
8152 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8153 "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8154 return (error);
8155 }
8156
8157 /*
8158 * Determines whether the necessary conditions are set on a stream
8159 * for it to be readable, writeable, or have exceptions.
8160 *
8161 * strpoll handles the consolidation private events:
8162 * POLLNOERR Do not return POLLERR even if there are stream
8163 * head errors.
8164 * Used by sockfs.
8165 * POLLRDDATA Do not return POLLIN unless at least one message on
8166 * the queue contains one or more M_DATA mblks. Thus
8167 * when this flag is set a queue with only
8168 * M_PROTO/M_PCPROTO mblks does not return POLLIN.
8169 * Used by sockfs to ignore T_EXDATA_IND messages.
8170 *
8171 * Note: POLLRDDATA assumes that synch streams only return messages with
8172 * an M_DATA attached (i.e. not messages consisting of only
8173 * an M_PROTO/M_PCPROTO part).
8174 */
8175 int
strpoll(struct stdata * stp,short events_arg,int anyyet,short * reventsp,struct pollhead ** phpp)8176 strpoll(
8177 struct stdata *stp,
8178 short events_arg,
8179 int anyyet,
8180 short *reventsp,
8181 struct pollhead **phpp)
8182 {
8183 int events = (ushort_t)events_arg;
8184 int retevents = 0;
8185 mblk_t *mp;
8186 qband_t *qbp;
8187 long sd_flags = stp->sd_flag;
8188 int headlocked = 0;
8189
8190 /*
8191 * For performance, a single 'if' tests for most possible edge
8192 * conditions in one shot
8193 */
8194 if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8195 if (sd_flags & STPLEX) {
8196 *reventsp = POLLNVAL;
8197 return (EINVAL);
8198 }
8199 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8200 (sd_flags & STRDERR)) ||
8201 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8202 (sd_flags & STWRERR))) {
8203 if (!(events & POLLNOERR)) {
8204 *reventsp = POLLERR;
8205 return (0);
8206 }
8207 }
8208 }
8209 if (sd_flags & STRHUP) {
8210 retevents |= POLLHUP;
8211 } else if (events & (POLLWRNORM | POLLWRBAND)) {
8212 queue_t *tq;
8213 queue_t *qp = stp->sd_wrq;
8214
8215 claimstr(qp);
8216 /* Find next module forward that has a service procedure */
8217 tq = qp->q_next->q_nfsrv;
8218 ASSERT(tq != NULL);
8219
8220 polllock(&stp->sd_pollist, QLOCK(tq));
8221 if (events & POLLWRNORM) {
8222 queue_t *sqp;
8223
8224 if (tq->q_flag & QFULL)
8225 /* ensure backq svc procedure runs */
8226 tq->q_flag |= QWANTW;
8227 else if ((sqp = stp->sd_struiowrq) != NULL) {
8228 /* Check sync stream barrier write q */
8229 mutex_exit(QLOCK(tq));
8230 polllock(&stp->sd_pollist, QLOCK(sqp));
8231 if (sqp->q_flag & QFULL)
8232 /* ensure pollwakeup() is done */
8233 sqp->q_flag |= QWANTWSYNC;
8234 else
8235 retevents |= POLLOUT;
8236 /* More write events to process ??? */
8237 if (! (events & POLLWRBAND)) {
8238 mutex_exit(QLOCK(sqp));
8239 releasestr(qp);
8240 goto chkrd;
8241 }
8242 mutex_exit(QLOCK(sqp));
8243 polllock(&stp->sd_pollist, QLOCK(tq));
8244 } else
8245 retevents |= POLLOUT;
8246 }
8247 if (events & POLLWRBAND) {
8248 qbp = tq->q_bandp;
8249 if (qbp) {
8250 while (qbp) {
8251 if (qbp->qb_flag & QB_FULL)
8252 qbp->qb_flag |= QB_WANTW;
8253 else
8254 retevents |= POLLWRBAND;
8255 qbp = qbp->qb_next;
8256 }
8257 } else {
8258 retevents |= POLLWRBAND;
8259 }
8260 }
8261 mutex_exit(QLOCK(tq));
8262 releasestr(qp);
8263 }
8264 chkrd:
8265 if (sd_flags & STRPRI) {
8266 retevents |= (events & POLLPRI);
8267 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8268 queue_t *qp = _RD(stp->sd_wrq);
8269 int normevents = (events & (POLLIN | POLLRDNORM));
8270
8271 /*
8272 * Note: Need to do polllock() here since ps_lock may be
8273 * held. See bug 4191544.
8274 */
8275 polllock(&stp->sd_pollist, &stp->sd_lock);
8276 headlocked = 1;
8277 mp = qp->q_first;
8278 while (mp) {
8279 /*
8280 * For POLLRDDATA we scan b_cont and b_next until we
8281 * find an M_DATA.
8282 */
8283 if ((events & POLLRDDATA) &&
8284 mp->b_datap->db_type != M_DATA) {
8285 mblk_t *nmp = mp->b_cont;
8286
8287 while (nmp != NULL &&
8288 nmp->b_datap->db_type != M_DATA)
8289 nmp = nmp->b_cont;
8290 if (nmp == NULL) {
8291 mp = mp->b_next;
8292 continue;
8293 }
8294 }
8295 if (mp->b_band == 0)
8296 retevents |= normevents;
8297 else
8298 retevents |= (events & (POLLIN | POLLRDBAND));
8299 break;
8300 }
8301 if (! (retevents & normevents) &&
8302 (stp->sd_wakeq & RSLEEP)) {
8303 /*
8304 * Sync stream barrier read queue has data.
8305 */
8306 retevents |= normevents;
8307 }
8308 /* Treat eof as normal data */
8309 if (sd_flags & STREOF)
8310 retevents |= normevents;
8311 }
8312
8313 *reventsp = (short)retevents;
8314 if (retevents) {
8315 if (headlocked)
8316 mutex_exit(&stp->sd_lock);
8317 return (0);
8318 }
8319
8320 /*
8321 * If poll() has not found any events yet, set up event cell
8322 * to wake up the poll if a requested event occurs on this
8323 * stream. Check for collisions with outstanding poll requests.
8324 */
8325 if (!anyyet) {
8326 *phpp = &stp->sd_pollist;
8327 if (headlocked == 0) {
8328 polllock(&stp->sd_pollist, &stp->sd_lock);
8329 headlocked = 1;
8330 }
8331 stp->sd_rput_opt |= SR_POLLIN;
8332 }
8333 if (headlocked)
8334 mutex_exit(&stp->sd_lock);
8335 return (0);
8336 }
8337
8338 /*
8339 * The purpose of putback() is to assure sleeping polls/reads
8340 * are awakened when there are no new messages arriving at the,
8341 * stream head, and a message is placed back on the read queue.
8342 *
8343 * sd_lock must be held when messages are placed back on stream
8344 * head. (getq() holds sd_lock when it removes messages from
8345 * the queue)
8346 */
8347
8348 static void
putback(struct stdata * stp,queue_t * q,mblk_t * bp,int band)8349 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8350 {
8351 mblk_t *qfirst;
8352 ASSERT(MUTEX_HELD(&stp->sd_lock));
8353
8354 /*
8355 * As a result of lock-step ordering around q_lock and sd_lock,
8356 * it's possible for function calls like putnext() and
8357 * canputnext() to get an inaccurate picture of how much
8358 * data is really being processed at the stream head.
8359 * We only consolidate with existing messages on the queue
8360 * if the length of the message we want to put back is smaller
8361 * than the queue hiwater mark.
8362 */
8363 if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8364 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8365 (DB_TYPE(qfirst) == M_DATA) &&
8366 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8367 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8368 (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8369 /*
8370 * We use the same logic as defined in strrput()
8371 * but in reverse as we are putting back onto the
8372 * queue and want to retain byte ordering.
8373 * Consolidate M_DATA messages with M_DATA ONLY.
8374 * strrput() allows the consolidation of M_DATA onto
8375 * M_PROTO | M_PCPROTO but not the other way round.
8376 *
8377 * The consolidation does not take place if the message
8378 * we are returning to the queue is marked with either
8379 * of the marks or the delim flag or if q_first
8380 * is marked with MSGMARK. The MSGMARK check is needed to
8381 * handle the odd semantics of MSGMARK where essentially
8382 * the whole message is to be treated as marked.
8383 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8384 * to the front of the b_cont chain.
8385 */
8386 rmvq_noenab(q, qfirst);
8387
8388 /*
8389 * The first message in the b_cont list
8390 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8391 * We need to handle the case where we
8392 * are appending:
8393 *
8394 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8395 * 2) a MSGMARKNEXT to a plain message.
8396 * 3) a MSGNOTMARKNEXT to a plain message
8397 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8398 * message.
8399 *
8400 * Thus we never append a MSGMARKNEXT or
8401 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8402 */
8403 if (qfirst->b_flag & MSGMARKNEXT) {
8404 bp->b_flag |= MSGMARKNEXT;
8405 bp->b_flag &= ~MSGNOTMARKNEXT;
8406 qfirst->b_flag &= ~MSGMARKNEXT;
8407 } else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8408 bp->b_flag |= MSGNOTMARKNEXT;
8409 qfirst->b_flag &= ~MSGNOTMARKNEXT;
8410 }
8411
8412 linkb(bp, qfirst);
8413 }
8414 (void) putbq(q, bp);
8415
8416 /*
8417 * A message may have come in when the sd_lock was dropped in the
8418 * calling routine. If this is the case and STR*ATMARK info was
8419 * received, need to move that from the stream head to the q_last
8420 * so that SIOCATMARK can return the proper value.
8421 */
8422 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8423 unsigned short *flagp = &q->q_last->b_flag;
8424 uint_t b_flag = (uint_t)*flagp;
8425
8426 if (stp->sd_flag & STRATMARK) {
8427 b_flag &= ~MSGNOTMARKNEXT;
8428 b_flag |= MSGMARKNEXT;
8429 stp->sd_flag &= ~STRATMARK;
8430 } else {
8431 b_flag &= ~MSGMARKNEXT;
8432 b_flag |= MSGNOTMARKNEXT;
8433 stp->sd_flag &= ~STRNOTATMARK;
8434 }
8435 *flagp = (unsigned short) b_flag;
8436 }
8437
8438 #ifdef DEBUG
8439 /*
8440 * Make sure that the flags are not messed up.
8441 */
8442 {
8443 mblk_t *mp;
8444 mp = q->q_last;
8445 while (mp != NULL) {
8446 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8447 (MSGMARKNEXT|MSGNOTMARKNEXT));
8448 mp = mp->b_cont;
8449 }
8450 }
8451 #endif
8452 if (q->q_first == bp) {
8453 short pollevents;
8454
8455 if (stp->sd_flag & RSLEEP) {
8456 stp->sd_flag &= ~RSLEEP;
8457 cv_broadcast(&q->q_wait);
8458 }
8459 if (stp->sd_flag & STRPRI) {
8460 pollevents = POLLPRI;
8461 } else {
8462 if (band == 0) {
8463 if (!(stp->sd_rput_opt & SR_POLLIN))
8464 return;
8465 stp->sd_rput_opt &= ~SR_POLLIN;
8466 pollevents = POLLIN | POLLRDNORM;
8467 } else {
8468 pollevents = POLLIN | POLLRDBAND;
8469 }
8470 }
8471 mutex_exit(&stp->sd_lock);
8472 pollwakeup(&stp->sd_pollist, pollevents);
8473 mutex_enter(&stp->sd_lock);
8474 }
8475 }
8476
8477 /*
8478 * Return the held vnode attached to the stream head of a
8479 * given queue
8480 * It is the responsibility of the calling routine to ensure
8481 * that the queue does not go away (e.g. pop).
8482 */
8483 vnode_t *
strq2vp(queue_t * qp)8484 strq2vp(queue_t *qp)
8485 {
8486 vnode_t *vp;
8487 vp = STREAM(qp)->sd_vnode;
8488 ASSERT(vp != NULL);
8489 VN_HOLD(vp);
8490 return (vp);
8491 }
8492
8493 /*
8494 * return the stream head write queue for the given vp
8495 * It is the responsibility of the calling routine to ensure
8496 * that the stream or vnode do not close.
8497 */
8498 queue_t *
strvp2wq(vnode_t * vp)8499 strvp2wq(vnode_t *vp)
8500 {
8501 ASSERT(vp->v_stream != NULL);
8502 return (vp->v_stream->sd_wrq);
8503 }
8504
8505 /*
8506 * pollwakeup stream head
8507 * It is the responsibility of the calling routine to ensure
8508 * that the stream or vnode do not close.
8509 */
8510 void
strpollwakeup(vnode_t * vp,short event)8511 strpollwakeup(vnode_t *vp, short event)
8512 {
8513 ASSERT(vp->v_stream);
8514 pollwakeup(&vp->v_stream->sd_pollist, event);
8515 }
8516
8517 /*
8518 * Mate the stream heads of two vnodes together. If the two vnodes are the
8519 * same, we just make the write-side point at the read-side -- otherwise,
8520 * we do a full mate. Only works on vnodes associated with streams that are
8521 * still being built and thus have only a stream head.
8522 */
8523 void
strmate(vnode_t * vp1,vnode_t * vp2)8524 strmate(vnode_t *vp1, vnode_t *vp2)
8525 {
8526 queue_t *wrq1 = strvp2wq(vp1);
8527 queue_t *wrq2 = strvp2wq(vp2);
8528
8529 /*
8530 * Verify that there are no modules on the stream yet. We also
8531 * rely on the stream head always having a service procedure to
8532 * avoid tweaking q_nfsrv.
8533 */
8534 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8535 ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8536 ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8537
8538 /*
8539 * If the queues are the same, just twist; otherwise do a full mate.
8540 */
8541 if (wrq1 == wrq2) {
8542 wrq1->q_next = _RD(wrq1);
8543 } else {
8544 wrq1->q_next = _RD(wrq2);
8545 wrq2->q_next = _RD(wrq1);
8546 STREAM(wrq1)->sd_mate = STREAM(wrq2);
8547 STREAM(wrq1)->sd_flag |= STRMATE;
8548 STREAM(wrq2)->sd_mate = STREAM(wrq1);
8549 STREAM(wrq2)->sd_flag |= STRMATE;
8550 }
8551 }
8552
8553 /*
8554 * XXX will go away when console is correctly fixed.
8555 * Clean up the console PIDS, from previous I_SETSIG,
8556 * called only for cnopen which never calls strclean().
8557 */
8558 void
str_cn_clean(struct vnode * vp)8559 str_cn_clean(struct vnode *vp)
8560 {
8561 strsig_t *ssp, *pssp, *tssp;
8562 struct stdata *stp;
8563 struct pid *pidp;
8564 int update = 0;
8565
8566 ASSERT(vp->v_stream);
8567 stp = vp->v_stream;
8568 pssp = NULL;
8569 mutex_enter(&stp->sd_lock);
8570 ssp = stp->sd_siglist;
8571 while (ssp) {
8572 mutex_enter(&pidlock);
8573 pidp = ssp->ss_pidp;
8574 /*
8575 * Get rid of PID if the proc is gone.
8576 */
8577 if (pidp->pid_prinactive) {
8578 tssp = ssp->ss_next;
8579 if (pssp)
8580 pssp->ss_next = tssp;
8581 else
8582 stp->sd_siglist = tssp;
8583 ASSERT(pidp->pid_ref <= 1);
8584 PID_RELE(ssp->ss_pidp);
8585 mutex_exit(&pidlock);
8586 kmem_free(ssp, sizeof (strsig_t));
8587 update = 1;
8588 ssp = tssp;
8589 continue;
8590 } else
8591 mutex_exit(&pidlock);
8592 pssp = ssp;
8593 ssp = ssp->ss_next;
8594 }
8595 if (update) {
8596 stp->sd_sigflags = 0;
8597 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8598 stp->sd_sigflags |= ssp->ss_events;
8599 }
8600 mutex_exit(&stp->sd_lock);
8601 }
8602
8603 /*
8604 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8605 */
8606 static boolean_t
msghasdata(mblk_t * bp)8607 msghasdata(mblk_t *bp)
8608 {
8609 for (; bp; bp = bp->b_cont)
8610 if (bp->b_datap->db_type == M_DATA) {
8611 ASSERT(bp->b_wptr >= bp->b_rptr);
8612 if (bp->b_wptr > bp->b_rptr)
8613 return (B_TRUE);
8614 }
8615 return (B_FALSE);
8616 }
8617