1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zfs_znode.h>
48 #include <zfs_fletcher.h>
49 #include <sys/avl.h>
50 #include <sys/ddt.h>
51 #include <sys/zfs_onexit.h>
52 #include <sys/dmu_recv.h>
53 #include <sys/dsl_destroy.h>
54 #include <sys/blkptr.h>
55 #include <sys/dsl_bookmark.h>
56 #include <sys/zfeature.h>
57 #include <sys/bqueue.h>
58
59 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
60
61 static char *dmu_recv_tag = "dmu_recv_tag";
62 const char *recv_clone_name = "%recv";
63
64 static void byteswap_record(dmu_replay_record_t *drr);
65
66 typedef enum {
67 ORNS_NO,
68 ORNS_YES,
69 ORNS_MAYBE
70 } or_need_sync_t;
71
72 typedef struct dmu_recv_begin_arg {
73 const char *drba_origin;
74 dmu_recv_cookie_t *drba_cookie;
75 cred_t *drba_cred;
76 dsl_crypto_params_t *drba_dcp;
77 } dmu_recv_begin_arg_t;
78
79 static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t * drba,dsl_dataset_t * ds,uint64_t fromguid,uint64_t featureflags)80 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
81 uint64_t fromguid, uint64_t featureflags)
82 {
83 uint64_t val;
84 int error;
85 dsl_pool_t *dp = ds->ds_dir->dd_pool;
86 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
87 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
88 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
89
90 /* temporary clone name must not exist */
91 error = zap_lookup(dp->dp_meta_objset,
92 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
93 8, 1, &val);
94 if (error != ENOENT)
95 return (error == 0 ? EBUSY : error);
96
97 /* new snapshot name must not exist */
98 error = zap_lookup(dp->dp_meta_objset,
99 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
100 drba->drba_cookie->drc_tosnap, 8, 1, &val);
101 if (error != ENOENT)
102 return (error == 0 ? EEXIST : error);
103
104 /*
105 * Check snapshot limit before receiving. We'll recheck again at the
106 * end, but might as well abort before receiving if we're already over
107 * the limit.
108 *
109 * Note that we do not check the file system limit with
110 * dsl_dir_fscount_check because the temporary %clones don't count
111 * against that limit.
112 */
113 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
114 NULL, drba->drba_cred);
115 if (error != 0)
116 return (error);
117
118 if (fromguid != 0) {
119 dsl_dataset_t *snap;
120 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
121
122 /* Can't raw receive on top of an unencrypted dataset */
123 if (!encrypted && raw)
124 return (SET_ERROR(EINVAL));
125
126 /* Encryption is incompatible with embedded data */
127 if (encrypted && embed)
128 return (SET_ERROR(EINVAL));
129
130 /* Find snapshot in this dir that matches fromguid. */
131 while (obj != 0) {
132 error = dsl_dataset_hold_obj(dp, obj, FTAG,
133 &snap);
134 if (error != 0)
135 return (SET_ERROR(ENODEV));
136 if (snap->ds_dir != ds->ds_dir) {
137 dsl_dataset_rele(snap, FTAG);
138 return (SET_ERROR(ENODEV));
139 }
140 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
141 break;
142 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
143 dsl_dataset_rele(snap, FTAG);
144 }
145 if (obj == 0)
146 return (SET_ERROR(ENODEV));
147
148 if (drba->drba_cookie->drc_force) {
149 drba->drba_cookie->drc_fromsnapobj = obj;
150 } else {
151 /*
152 * If we are not forcing, there must be no
153 * changes since fromsnap.
154 */
155 if (dsl_dataset_modified_since_snap(ds, snap)) {
156 dsl_dataset_rele(snap, FTAG);
157 return (SET_ERROR(ETXTBSY));
158 }
159 drba->drba_cookie->drc_fromsnapobj =
160 ds->ds_prev->ds_object;
161 }
162
163 dsl_dataset_rele(snap, FTAG);
164 } else {
165 /* if full, then must be forced */
166 if (!drba->drba_cookie->drc_force)
167 return (SET_ERROR(EEXIST));
168
169 /*
170 * We don't support using zfs recv -F to blow away
171 * encrypted filesystems. This would require the
172 * dsl dir to point to the old encryption key and
173 * the new one at the same time during the receive.
174 */
175 if ((!encrypted && raw) || encrypted)
176 return (SET_ERROR(EINVAL));
177
178 /*
179 * Perform the same encryption checks we would if
180 * we were creating a new dataset from scratch.
181 */
182 if (!raw) {
183 boolean_t will_encrypt;
184
185 error = dmu_objset_create_crypt_check(
186 ds->ds_dir->dd_parent, drba->drba_dcp,
187 &will_encrypt);
188 if (error != 0)
189 return (error);
190
191 if (will_encrypt && embed)
192 return (SET_ERROR(EINVAL));
193 }
194
195 drba->drba_cookie->drc_fromsnapobj = 0;
196 }
197
198 return (0);
199
200 }
201
202 static int
dmu_recv_begin_check(void * arg,dmu_tx_t * tx)203 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
204 {
205 dmu_recv_begin_arg_t *drba = arg;
206 dsl_pool_t *dp = dmu_tx_pool(tx);
207 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
208 uint64_t fromguid = drrb->drr_fromguid;
209 int flags = drrb->drr_flags;
210 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
211 int error;
212 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
213 dsl_dataset_t *ds;
214 const char *tofs = drba->drba_cookie->drc_tofs;
215
216 /* already checked */
217 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
218 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
219
220 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
221 DMU_COMPOUNDSTREAM ||
222 drrb->drr_type >= DMU_OST_NUMTYPES ||
223 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
224 return (SET_ERROR(EINVAL));
225
226 /* Verify pool version supports SA if SA_SPILL feature set */
227 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
228 spa_version(dp->dp_spa) < SPA_VERSION_SA)
229 return (SET_ERROR(ENOTSUP));
230
231 if (drba->drba_cookie->drc_resumable &&
232 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
233 return (SET_ERROR(ENOTSUP));
234
235 /*
236 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
237 * record to a plain WRITE record, so the pool must have the
238 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
239 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
240 */
241 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
242 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
243 return (SET_ERROR(ENOTSUP));
244 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
245 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
246 return (SET_ERROR(ENOTSUP));
247
248 /*
249 * The receiving code doesn't know how to translate large blocks
250 * to smaller ones, so the pool must have the LARGE_BLOCKS
251 * feature enabled if the stream has LARGE_BLOCKS. Same with
252 * large dnodes.
253 */
254 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
255 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
256 return (SET_ERROR(ENOTSUP));
257 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
258 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
259 return (SET_ERROR(ENOTSUP));
260
261 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
262 /* raw receives require the encryption feature */
263 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
264 return (SET_ERROR(ENOTSUP));
265
266 /* embedded data is incompatible with encryption and raw recv */
267 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
268 return (SET_ERROR(EINVAL));
269
270 /* raw receives require spill block allocation flag */
271 if (!(flags & DRR_FLAG_SPILL_BLOCK))
272 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
273 } else {
274 dsflags |= DS_HOLD_FLAG_DECRYPT;
275 }
276
277 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
278 if (error == 0) {
279 /* target fs already exists; recv into temp clone */
280
281 /* Can't recv a clone into an existing fs */
282 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
283 dsl_dataset_rele_flags(ds, dsflags, FTAG);
284 return (SET_ERROR(EINVAL));
285 }
286
287 error = recv_begin_check_existing_impl(drba, ds, fromguid,
288 featureflags);
289 dsl_dataset_rele_flags(ds, dsflags, FTAG);
290 } else if (error == ENOENT) {
291 /* target fs does not exist; must be a full backup or clone */
292 char buf[ZFS_MAX_DATASET_NAME_LEN];
293
294 /*
295 * If it's a non-clone incremental, we are missing the
296 * target fs, so fail the recv.
297 */
298 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
299 drba->drba_origin))
300 return (SET_ERROR(ENOENT));
301
302 /*
303 * If we're receiving a full send as a clone, and it doesn't
304 * contain all the necessary free records and freeobject
305 * records, reject it.
306 */
307 if (fromguid == 0 && drba->drba_origin &&
308 !(flags & DRR_FLAG_FREERECORDS))
309 return (SET_ERROR(EINVAL));
310
311 /* Open the parent of tofs */
312 ASSERT3U(strlen(tofs), <, sizeof (buf));
313 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
314 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
315 if (error != 0)
316 return (error);
317
318 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
319 drba->drba_origin == NULL) {
320 boolean_t will_encrypt;
321
322 /*
323 * Check that we aren't breaking any encryption rules
324 * and that we have all the parameters we need to
325 * create an encrypted dataset if necessary. If we are
326 * making an encrypted dataset the stream can't have
327 * embedded data.
328 */
329 error = dmu_objset_create_crypt_check(ds->ds_dir,
330 drba->drba_dcp, &will_encrypt);
331 if (error != 0) {
332 dsl_dataset_rele(ds, FTAG);
333 return (error);
334 }
335
336 if (will_encrypt &&
337 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
338 dsl_dataset_rele(ds, FTAG);
339 return (SET_ERROR(EINVAL));
340 }
341 }
342
343 /*
344 * Check filesystem and snapshot limits before receiving. We'll
345 * recheck snapshot limits again at the end (we create the
346 * filesystems and increment those counts during begin_sync).
347 */
348 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
349 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
350 if (error != 0) {
351 dsl_dataset_rele(ds, FTAG);
352 return (error);
353 }
354
355 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
356 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
357 if (error != 0) {
358 dsl_dataset_rele(ds, FTAG);
359 return (error);
360 }
361
362 if (drba->drba_origin != NULL) {
363 dsl_dataset_t *origin;
364
365 error = dsl_dataset_hold(dp, drba->drba_origin,
366 FTAG, &origin);
367 if (error != 0) {
368 dsl_dataset_rele(ds, FTAG);
369 return (error);
370 }
371 if (!origin->ds_is_snapshot) {
372 dsl_dataset_rele(origin, FTAG);
373 dsl_dataset_rele(ds, FTAG);
374 return (SET_ERROR(EINVAL));
375 }
376 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
377 fromguid != 0) {
378 dsl_dataset_rele(origin, FTAG);
379 dsl_dataset_rele(ds, FTAG);
380 return (SET_ERROR(ENODEV));
381 }
382 if (origin->ds_dir->dd_crypto_obj != 0 &&
383 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
384 dsl_dataset_rele(origin, FTAG);
385 dsl_dataset_rele(ds, FTAG);
386 return (SET_ERROR(EINVAL));
387 }
388 dsl_dataset_rele(origin, FTAG);
389 }
390 dsl_dataset_rele(ds, FTAG);
391 error = 0;
392 }
393 return (error);
394 }
395
396 static void
dmu_recv_begin_sync(void * arg,dmu_tx_t * tx)397 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
398 {
399 dmu_recv_begin_arg_t *drba = arg;
400 dsl_pool_t *dp = dmu_tx_pool(tx);
401 objset_t *mos = dp->dp_meta_objset;
402 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
403 const char *tofs = drba->drba_cookie->drc_tofs;
404 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
405 dsl_dataset_t *ds, *newds;
406 objset_t *os;
407 uint64_t dsobj;
408 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
409 int error;
410 uint64_t crflags = 0;
411 dsl_crypto_params_t dummy_dcp = { 0 };
412 dsl_crypto_params_t *dcp = drba->drba_dcp;
413
414 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
415 crflags |= DS_FLAG_CI_DATASET;
416
417 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
418 dsflags |= DS_HOLD_FLAG_DECRYPT;
419
420 /*
421 * Raw, non-incremental recvs always use a dummy dcp with
422 * the raw cmd set. Raw incremental recvs do not use a dcp
423 * since the encryption parameters are already set in stone.
424 */
425 if (dcp == NULL && drba->drba_cookie->drc_fromsnapobj == 0 &&
426 drba->drba_origin == NULL) {
427 ASSERT3P(dcp, ==, NULL);
428 dcp = &dummy_dcp;
429
430 if (featureflags & DMU_BACKUP_FEATURE_RAW)
431 dcp->cp_cmd = DCP_CMD_RAW_RECV;
432 }
433
434 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
435 if (error == 0) {
436 /* create temporary clone */
437 dsl_dataset_t *snap = NULL;
438
439 if (drba->drba_cookie->drc_fromsnapobj != 0) {
440 VERIFY0(dsl_dataset_hold_obj(dp,
441 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
442 ASSERT3P(dcp, ==, NULL);
443 }
444
445 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
446 snap, crflags, drba->drba_cred, dcp, tx);
447 if (drba->drba_cookie->drc_fromsnapobj != 0)
448 dsl_dataset_rele(snap, FTAG);
449 dsl_dataset_rele_flags(ds, dsflags, FTAG);
450 } else {
451 dsl_dir_t *dd;
452 const char *tail;
453 dsl_dataset_t *origin = NULL;
454
455 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
456
457 if (drba->drba_origin != NULL) {
458 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
459 FTAG, &origin));
460 ASSERT3P(dcp, ==, NULL);
461 }
462
463 /* Create new dataset. */
464 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
465 origin, crflags, drba->drba_cred, dcp, tx);
466 if (origin != NULL)
467 dsl_dataset_rele(origin, FTAG);
468 dsl_dir_rele(dd, FTAG);
469 drba->drba_cookie->drc_newfs = B_TRUE;
470 }
471
472 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
473 VERIFY0(dmu_objset_from_ds(newds, &os));
474
475 if (drba->drba_cookie->drc_resumable) {
476 dsl_dataset_zapify(newds, tx);
477 if (drrb->drr_fromguid != 0) {
478 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
479 8, 1, &drrb->drr_fromguid, tx));
480 }
481 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
482 8, 1, &drrb->drr_toguid, tx));
483 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
484 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
485 uint64_t one = 1;
486 uint64_t zero = 0;
487 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
488 8, 1, &one, tx));
489 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
490 8, 1, &zero, tx));
491 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
492 8, 1, &zero, tx));
493 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
494 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
495 8, 1, &one, tx));
496 }
497 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
498 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
499 8, 1, &one, tx));
500 }
501 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
502 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
503 8, 1, &one, tx));
504 }
505 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
506 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
507 8, 1, &one, tx));
508 }
509 }
510
511 /*
512 * Usually the os->os_encrypted value is tied to the presence of a
513 * DSL Crypto Key object in the dd. However, that will not be received
514 * until dmu_recv_stream(), so we set the value manually for now.
515 */
516 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
517 os->os_encrypted = B_TRUE;
518 drba->drba_cookie->drc_raw = B_TRUE;
519 }
520
521 dmu_buf_will_dirty(newds->ds_dbuf, tx);
522 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
523
524 /*
525 * If we actually created a non-clone, we need to create the objset
526 * in our new dataset. If this is a raw send we postpone this until
527 * dmu_recv_stream() so that we can allocate the metadnode with the
528 * properties from the DRR_BEGIN payload.
529 */
530 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
531 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
532 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
533 (void) dmu_objset_create_impl(dp->dp_spa,
534 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
535 }
536 rrw_exit(&newds->ds_bp_rwlock, FTAG);
537
538 drba->drba_cookie->drc_ds = newds;
539
540 spa_history_log_internal_ds(newds, "receive", tx, "");
541 }
542
543 static int
dmu_recv_resume_begin_check(void * arg,dmu_tx_t * tx)544 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
545 {
546 dmu_recv_begin_arg_t *drba = arg;
547 dsl_pool_t *dp = dmu_tx_pool(tx);
548 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
549 int error;
550 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
551 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
552 dsl_dataset_t *ds;
553 const char *tofs = drba->drba_cookie->drc_tofs;
554
555 /* 6 extra bytes for /%recv */
556 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
557
558 /* already checked */
559 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
560 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
561
562 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
563 DMU_COMPOUNDSTREAM ||
564 drrb->drr_type >= DMU_OST_NUMTYPES)
565 return (SET_ERROR(EINVAL));
566
567 /* Verify pool version supports SA if SA_SPILL feature set */
568 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
569 spa_version(dp->dp_spa) < SPA_VERSION_SA)
570 return (SET_ERROR(ENOTSUP));
571
572 /*
573 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
574 * record to a plain WRITE record, so the pool must have the
575 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
576 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
577 */
578 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
579 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
580 return (SET_ERROR(ENOTSUP));
581 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
583 return (SET_ERROR(ENOTSUP));
584
585 /*
586 * The receiving code doesn't know how to translate large blocks
587 * to smaller ones, so the pool must have the LARGE_BLOCKS
588 * feature enabled if the stream has LARGE_BLOCKS. Same with
589 * large dnodes.
590 */
591 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
592 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
593 return (SET_ERROR(ENOTSUP));
594 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
595 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
596 return (SET_ERROR(ENOTSUP));
597
598 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
599 tofs, recv_clone_name);
600
601 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
602 /* raw receives require spill block allocation flag */
603 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
604 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
605 } else {
606 dsflags |= DS_HOLD_FLAG_DECRYPT;
607 }
608
609 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
610 /* %recv does not exist; continue in tofs */
611 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
612 if (error != 0)
613 return (error);
614 }
615
616 /* check that ds is marked inconsistent */
617 if (!DS_IS_INCONSISTENT(ds)) {
618 dsl_dataset_rele_flags(ds, dsflags, FTAG);
619 return (SET_ERROR(EINVAL));
620 }
621
622 /* check that there is resuming data, and that the toguid matches */
623 if (!dsl_dataset_is_zapified(ds)) {
624 dsl_dataset_rele_flags(ds, dsflags, FTAG);
625 return (SET_ERROR(EINVAL));
626 }
627 uint64_t val;
628 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
629 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
630 if (error != 0 || drrb->drr_toguid != val) {
631 dsl_dataset_rele_flags(ds, dsflags, FTAG);
632 return (SET_ERROR(EINVAL));
633 }
634
635 /*
636 * Check if the receive is still running. If so, it will be owned.
637 * Note that nothing else can own the dataset (e.g. after the receive
638 * fails) because it will be marked inconsistent.
639 */
640 if (dsl_dataset_has_owner(ds)) {
641 dsl_dataset_rele_flags(ds, dsflags, FTAG);
642 return (SET_ERROR(EBUSY));
643 }
644
645 /* There should not be any snapshots of this fs yet. */
646 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
647 dsl_dataset_rele_flags(ds, dsflags, FTAG);
648 return (SET_ERROR(EINVAL));
649 }
650
651 /*
652 * Note: resume point will be checked when we process the first WRITE
653 * record.
654 */
655
656 /* check that the origin matches */
657 val = 0;
658 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
659 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
660 if (drrb->drr_fromguid != val) {
661 dsl_dataset_rele_flags(ds, dsflags, FTAG);
662 return (SET_ERROR(EINVAL));
663 }
664
665 dsl_dataset_rele_flags(ds, dsflags, FTAG);
666 return (0);
667 }
668
669 static void
dmu_recv_resume_begin_sync(void * arg,dmu_tx_t * tx)670 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
671 {
672 dmu_recv_begin_arg_t *drba = arg;
673 dsl_pool_t *dp = dmu_tx_pool(tx);
674 const char *tofs = drba->drba_cookie->drc_tofs;
675 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
676 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
677 dsl_dataset_t *ds;
678 objset_t *os;
679 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
680 uint64_t dsobj;
681 /* 6 extra bytes for /%recv */
682 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
683
684 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
685 tofs, recv_clone_name);
686
687 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
688 drba->drba_cookie->drc_raw = B_TRUE;
689 } else {
690 dsflags |= DS_HOLD_FLAG_DECRYPT;
691 }
692
693 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
694 /* %recv does not exist; continue in tofs */
695 VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
696 drba->drba_cookie->drc_newfs = B_TRUE;
697 }
698
699 /* clear the inconsistent flag so that we can own it */
700 ASSERT(DS_IS_INCONSISTENT(ds));
701 dmu_buf_will_dirty(ds->ds_dbuf, tx);
702 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
703 dsobj = ds->ds_object;
704 dsl_dataset_rele_flags(ds, dsflags, FTAG);
705
706 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
707 VERIFY0(dmu_objset_from_ds(ds, &os));
708
709 dmu_buf_will_dirty(ds->ds_dbuf, tx);
710 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
711
712 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
713 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
714 drba->drba_cookie->drc_raw);
715 rrw_exit(&ds->ds_bp_rwlock, FTAG);
716
717 drba->drba_cookie->drc_ds = ds;
718
719 spa_history_log_internal_ds(ds, "resume receive", tx, "");
720 }
721
722 /*
723 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
724 * succeeds; otherwise we will leak the holds on the datasets.
725 */
726 int
dmu_recv_begin(char * tofs,char * tosnap,dmu_replay_record_t * drr_begin,boolean_t force,boolean_t resumable,nvlist_t * localprops,nvlist_t * hidden_args,char * origin,dmu_recv_cookie_t * drc)727 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
728 boolean_t force, boolean_t resumable, nvlist_t *localprops,
729 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc)
730 {
731 dmu_recv_begin_arg_t drba = { 0 };
732
733 bzero(drc, sizeof (dmu_recv_cookie_t));
734 drc->drc_drr_begin = drr_begin;
735 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
736 drc->drc_tosnap = tosnap;
737 drc->drc_tofs = tofs;
738 drc->drc_force = force;
739 drc->drc_resumable = resumable;
740 drc->drc_cred = CRED();
741 drc->drc_clone = (origin != NULL);
742
743 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
744 drc->drc_byteswap = B_TRUE;
745 (void) fletcher_4_incremental_byteswap(drr_begin,
746 sizeof (dmu_replay_record_t), &drc->drc_cksum);
747 byteswap_record(drr_begin);
748 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
749 (void) fletcher_4_incremental_native(drr_begin,
750 sizeof (dmu_replay_record_t), &drc->drc_cksum);
751 } else {
752 return (SET_ERROR(EINVAL));
753 }
754
755 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
756 drc->drc_spill = B_TRUE;
757
758 drba.drba_origin = origin;
759 drba.drba_cookie = drc;
760 drba.drba_cred = CRED();
761
762 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
763 DMU_BACKUP_FEATURE_RESUMING) {
764 return (dsl_sync_task(tofs,
765 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
766 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
767 } else {
768 int err;
769
770 /*
771 * For non-raw, non-incremental, non-resuming receives the
772 * user can specify encryption parameters on the command line
773 * with "zfs recv -o". For these receives we create a dcp and
774 * pass it to the sync task. Creating the dcp will implicitly
775 * remove the encryption params from the localprops nvlist,
776 * which avoids errors when trying to set these normally
777 * read-only properties. Any other kind of receive that
778 * attempts to set these properties will fail as a result.
779 */
780 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
781 DMU_BACKUP_FEATURE_RAW) == 0 &&
782 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
783 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
784 localprops, hidden_args, &drba.drba_dcp);
785 if (err != 0)
786 return (err);
787 }
788
789 err = dsl_sync_task(tofs,
790 dmu_recv_begin_check, dmu_recv_begin_sync,
791 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
792 dsl_crypto_params_free(drba.drba_dcp, !!err);
793
794 return (err);
795 }
796 }
797
798 struct receive_record_arg {
799 dmu_replay_record_t header;
800 void *payload; /* Pointer to a buffer containing the payload */
801 /*
802 * If the record is a write, pointer to the arc_buf_t containing the
803 * payload.
804 */
805 arc_buf_t *arc_buf;
806 int payload_size;
807 uint64_t bytes_read; /* bytes read from stream when record created */
808 boolean_t eos_marker; /* Marks the end of the stream */
809 bqueue_node_t node;
810 };
811
812 struct receive_writer_arg {
813 objset_t *os;
814 boolean_t byteswap;
815 bqueue_t q;
816
817 /*
818 * These three args are used to signal to the main thread that we're
819 * done.
820 */
821 kmutex_t mutex;
822 kcondvar_t cv;
823 boolean_t done;
824
825 int err;
826 /* A map from guid to dataset to help handle dedup'd streams. */
827 avl_tree_t *guid_to_ds_map;
828 boolean_t resumable;
829 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
830 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
831 uint64_t last_object;
832 uint64_t last_offset;
833 uint64_t max_object; /* highest object ID referenced in stream */
834 uint64_t bytes_read; /* bytes read when current record created */
835
836 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
837 boolean_t or_crypt_params_present;
838 uint64_t or_firstobj;
839 uint64_t or_numslots;
840 uint8_t or_salt[ZIO_DATA_SALT_LEN];
841 uint8_t or_iv[ZIO_DATA_IV_LEN];
842 uint8_t or_mac[ZIO_DATA_MAC_LEN];
843 boolean_t or_byteorder;
844
845 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
846 or_need_sync_t or_need_sync;
847 };
848
849 struct objlist {
850 list_t list; /* List of struct receive_objnode. */
851 /*
852 * Last object looked up. Used to assert that objects are being looked
853 * up in ascending order.
854 */
855 uint64_t last_lookup;
856 };
857
858 struct receive_objnode {
859 list_node_t node;
860 uint64_t object;
861 };
862
863 struct receive_arg {
864 objset_t *os;
865 vnode_t *vp; /* The vnode to read the stream from */
866 uint64_t voff; /* The current offset in the stream */
867 uint64_t bytes_read;
868 /*
869 * A record that has had its payload read in, but hasn't yet been handed
870 * off to the worker thread.
871 */
872 struct receive_record_arg *rrd;
873 /* A record that has had its header read in, but not its payload. */
874 struct receive_record_arg *next_rrd;
875 zio_cksum_t cksum;
876 zio_cksum_t prev_cksum;
877 int err;
878 boolean_t byteswap;
879 boolean_t raw;
880 uint64_t featureflags;
881 /* Sorted list of objects not to issue prefetches for. */
882 struct objlist ignore_objlist;
883 };
884
885 typedef struct guid_map_entry {
886 uint64_t guid;
887 boolean_t raw;
888 dsl_dataset_t *gme_ds;
889 avl_node_t avlnode;
890 } guid_map_entry_t;
891
892 static int
guid_compare(const void * arg1,const void * arg2)893 guid_compare(const void *arg1, const void *arg2)
894 {
895 const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
896 const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
897
898 return (TREE_CMP(gmep1->guid, gmep2->guid));
899 }
900
901 static void
free_guid_map_onexit(void * arg)902 free_guid_map_onexit(void *arg)
903 {
904 avl_tree_t *ca = arg;
905 void *cookie = NULL;
906 guid_map_entry_t *gmep;
907
908 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
909 ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT;
910
911 if (gmep->raw) {
912 gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE;
913 dsflags &= ~DS_HOLD_FLAG_DECRYPT;
914 }
915
916 dsl_dataset_disown(gmep->gme_ds, dsflags, gmep);
917 kmem_free(gmep, sizeof (guid_map_entry_t));
918 }
919 avl_destroy(ca);
920 kmem_free(ca, sizeof (avl_tree_t));
921 }
922
923 static int
receive_read(struct receive_arg * ra,int len,void * buf)924 receive_read(struct receive_arg *ra, int len, void *buf)
925 {
926 int done = 0;
927
928 /*
929 * The code doesn't rely on this (lengths being multiples of 8). See
930 * comment in dump_bytes.
931 */
932 ASSERT(len % 8 == 0 ||
933 (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
934
935 while (done < len) {
936 ssize_t resid;
937
938 ra->err = vn_rdwr(UIO_READ, ra->vp,
939 (char *)buf + done, len - done,
940 ra->voff, UIO_SYSSPACE, FAPPEND,
941 RLIM64_INFINITY, CRED(), &resid);
942
943 if (resid == len - done) {
944 /*
945 * Note: ECKSUM indicates that the receive
946 * was interrupted and can potentially be resumed.
947 */
948 ra->err = SET_ERROR(ECKSUM);
949 }
950 ra->voff += len - done - resid;
951 done = len - resid;
952 if (ra->err != 0)
953 return (ra->err);
954 }
955
956 ra->bytes_read += len;
957
958 ASSERT3U(done, ==, len);
959 return (0);
960 }
961
962 static void
byteswap_record(dmu_replay_record_t * drr)963 byteswap_record(dmu_replay_record_t *drr)
964 {
965 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
966 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
967 drr->drr_type = BSWAP_32(drr->drr_type);
968 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
969
970 switch (drr->drr_type) {
971 case DRR_BEGIN:
972 DO64(drr_begin.drr_magic);
973 DO64(drr_begin.drr_versioninfo);
974 DO64(drr_begin.drr_creation_time);
975 DO32(drr_begin.drr_type);
976 DO32(drr_begin.drr_flags);
977 DO64(drr_begin.drr_toguid);
978 DO64(drr_begin.drr_fromguid);
979 break;
980 case DRR_OBJECT:
981 DO64(drr_object.drr_object);
982 DO32(drr_object.drr_type);
983 DO32(drr_object.drr_bonustype);
984 DO32(drr_object.drr_blksz);
985 DO32(drr_object.drr_bonuslen);
986 DO32(drr_object.drr_raw_bonuslen);
987 DO64(drr_object.drr_toguid);
988 DO64(drr_object.drr_maxblkid);
989 break;
990 case DRR_FREEOBJECTS:
991 DO64(drr_freeobjects.drr_firstobj);
992 DO64(drr_freeobjects.drr_numobjs);
993 DO64(drr_freeobjects.drr_toguid);
994 break;
995 case DRR_WRITE:
996 DO64(drr_write.drr_object);
997 DO32(drr_write.drr_type);
998 DO64(drr_write.drr_offset);
999 DO64(drr_write.drr_logical_size);
1000 DO64(drr_write.drr_toguid);
1001 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1002 DO64(drr_write.drr_key.ddk_prop);
1003 DO64(drr_write.drr_compressed_size);
1004 break;
1005 case DRR_WRITE_BYREF:
1006 DO64(drr_write_byref.drr_object);
1007 DO64(drr_write_byref.drr_offset);
1008 DO64(drr_write_byref.drr_length);
1009 DO64(drr_write_byref.drr_toguid);
1010 DO64(drr_write_byref.drr_refguid);
1011 DO64(drr_write_byref.drr_refobject);
1012 DO64(drr_write_byref.drr_refoffset);
1013 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1014 drr_key.ddk_cksum);
1015 DO64(drr_write_byref.drr_key.ddk_prop);
1016 break;
1017 case DRR_WRITE_EMBEDDED:
1018 DO64(drr_write_embedded.drr_object);
1019 DO64(drr_write_embedded.drr_offset);
1020 DO64(drr_write_embedded.drr_length);
1021 DO64(drr_write_embedded.drr_toguid);
1022 DO32(drr_write_embedded.drr_lsize);
1023 DO32(drr_write_embedded.drr_psize);
1024 break;
1025 case DRR_FREE:
1026 DO64(drr_free.drr_object);
1027 DO64(drr_free.drr_offset);
1028 DO64(drr_free.drr_length);
1029 DO64(drr_free.drr_toguid);
1030 break;
1031 case DRR_SPILL:
1032 DO64(drr_spill.drr_object);
1033 DO64(drr_spill.drr_length);
1034 DO64(drr_spill.drr_toguid);
1035 DO64(drr_spill.drr_compressed_size);
1036 DO32(drr_spill.drr_type);
1037 break;
1038 case DRR_OBJECT_RANGE:
1039 DO64(drr_object_range.drr_firstobj);
1040 DO64(drr_object_range.drr_numslots);
1041 DO64(drr_object_range.drr_toguid);
1042 break;
1043 case DRR_END:
1044 DO64(drr_end.drr_toguid);
1045 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1046 break;
1047 }
1048
1049 if (drr->drr_type != DRR_BEGIN) {
1050 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1051 }
1052
1053 #undef DO64
1054 #undef DO32
1055 }
1056
1057 static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type,uint64_t bonus_size)1058 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1059 {
1060 if (bonus_type == DMU_OT_SA) {
1061 return (1);
1062 } else {
1063 return (1 +
1064 ((DN_OLD_MAX_BONUSLEN -
1065 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1066 }
1067 }
1068
1069 static void
save_resume_state(struct receive_writer_arg * rwa,uint64_t object,uint64_t offset,dmu_tx_t * tx)1070 save_resume_state(struct receive_writer_arg *rwa,
1071 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1072 {
1073 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1074
1075 if (!rwa->resumable)
1076 return;
1077
1078 /*
1079 * We use ds_resume_bytes[] != 0 to indicate that we need to
1080 * update this on disk, so it must not be 0.
1081 */
1082 ASSERT(rwa->bytes_read != 0);
1083
1084 /*
1085 * We only resume from write records, which have a valid
1086 * (non-meta-dnode) object number.
1087 */
1088 ASSERT(object != 0);
1089
1090 /*
1091 * For resuming to work correctly, we must receive records in order,
1092 * sorted by object,offset. This is checked by the callers, but
1093 * assert it here for good measure.
1094 */
1095 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1096 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1097 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1098 ASSERT3U(rwa->bytes_read, >=,
1099 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1100
1101 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1102 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1103 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1104 }
1105
1106 int receive_object_delay_frac = 0;
1107
1108 static int
receive_object(struct receive_writer_arg * rwa,struct drr_object * drro,void * data)1109 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1110 void *data)
1111 {
1112 dmu_object_info_t doi;
1113 dmu_tx_t *tx;
1114 uint64_t object;
1115 int err;
1116 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1117 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1118
1119 if (receive_object_delay_frac != 0 &&
1120 spa_get_random(receive_object_delay_frac) == 0)
1121 delay(1);
1122
1123 if (drro->drr_type == DMU_OT_NONE ||
1124 !DMU_OT_IS_VALID(drro->drr_type) ||
1125 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1126 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1127 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1128 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1129 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1130 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1131 drro->drr_bonuslen >
1132 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1133 dn_slots >
1134 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1135 return (SET_ERROR(EINVAL));
1136 }
1137
1138 if (rwa->raw) {
1139 /*
1140 * We should have received a DRR_OBJECT_RANGE record
1141 * containing this block and stored it in rwa.
1142 */
1143 if (drro->drr_object < rwa->or_firstobj ||
1144 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1145 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1146 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1147 drro->drr_nlevels > DN_MAX_LEVELS ||
1148 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1149 DN_SLOTS_TO_BONUSLEN(drro->drr_dn_slots) <
1150 drro->drr_raw_bonuslen)
1151 return (SET_ERROR(EINVAL));
1152 } else {
1153
1154 /*
1155 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1156 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1157 */
1158 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1159 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1160 return (SET_ERROR(EINVAL));
1161 }
1162
1163 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1164 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1165 return (SET_ERROR(EINVAL));
1166 }
1167 }
1168
1169 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1170
1171 if (err != 0 && err != ENOENT && err != EEXIST)
1172 return (SET_ERROR(EINVAL));
1173
1174 if (drro->drr_object > rwa->max_object)
1175 rwa->max_object = drro->drr_object;
1176
1177 /*
1178 * If we are losing blkptrs or changing the block size this must
1179 * be a new file instance. We must clear out the previous file
1180 * contents before we can change this type of metadata in the dnode.
1181 * Raw receives will also check that the indirect structure of the
1182 * dnode hasn't changed.
1183 */
1184 if (err == 0) {
1185 uint32_t indblksz = drro->drr_indblkshift ?
1186 1ULL << drro->drr_indblkshift : 0;
1187 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1188 drro->drr_bonuslen);
1189 boolean_t did_free = B_FALSE;
1190
1191 object = drro->drr_object;
1192
1193 /* nblkptr should be bounded by the bonus size and type */
1194 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1195 return (SET_ERROR(EINVAL));
1196
1197 /*
1198 * Check for indicators that the object was freed and
1199 * reallocated. For all sends, these indicators are:
1200 * - A changed block size
1201 * - A smaller nblkptr
1202 * - A changed dnode size
1203 * For raw sends we also check a few other fields to
1204 * ensure we are preserving the objset structure exactly
1205 * as it was on the receive side:
1206 * - A changed indirect block size
1207 * - A smaller nlevels
1208 */
1209 if (drro->drr_blksz != doi.doi_data_block_size ||
1210 nblkptr < doi.doi_nblkptr ||
1211 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT ||
1212 (rwa->raw &&
1213 (indblksz != doi.doi_metadata_block_size ||
1214 drro->drr_nlevels < doi.doi_indirection))) {
1215 err = dmu_free_long_range(rwa->os,
1216 drro->drr_object, 0, DMU_OBJECT_END);
1217 if (err != 0)
1218 return (SET_ERROR(EINVAL));
1219 else
1220 did_free = B_TRUE;
1221 }
1222
1223 /*
1224 * The dmu does not currently support decreasing nlevels
1225 * or changing the number of dnode slots on an object. For
1226 * non-raw sends, this does not matter and the new object
1227 * can just use the previous one's nlevels. For raw sends,
1228 * however, the structure of the received dnode (including
1229 * nlevels and dnode slots) must match that of the send
1230 * side. Therefore, instead of using dmu_object_reclaim(),
1231 * we must free the object completely and call
1232 * dmu_object_claim_dnsize() instead.
1233 */
1234 if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) ||
1235 dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
1236 err = dmu_free_long_object(rwa->os, drro->drr_object);
1237 if (err != 0)
1238 return (SET_ERROR(EINVAL));
1239
1240 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1241 object = DMU_NEW_OBJECT;
1242 }
1243
1244 /*
1245 * For raw receives, free everything beyond the new incoming
1246 * maxblkid. Normally this would be done with a DRR_FREE
1247 * record that would come after this DRR_OBJECT record is
1248 * processed. However, for raw receives we manually set the
1249 * maxblkid from the drr_maxblkid and so we must first free
1250 * everything above that blkid to ensure the DMU is always
1251 * consistent with itself. We will never free the first block
1252 * of the object here because a maxblkid of 0 could indicate
1253 * an object with a single block or one with no blocks. This
1254 * free may be skipped when dmu_free_long_range() was called
1255 * above since it covers the entire object's contents.
1256 */
1257 if (rwa->raw && object != DMU_NEW_OBJECT && !did_free) {
1258 err = dmu_free_long_range(rwa->os, drro->drr_object,
1259 (drro->drr_maxblkid + 1) * doi.doi_data_block_size,
1260 DMU_OBJECT_END);
1261 if (err != 0)
1262 return (SET_ERROR(EINVAL));
1263 }
1264 } else if (err == EEXIST) {
1265 /*
1266 * The object requested is currently an interior slot of a
1267 * multi-slot dnode. This will be resolved when the next txg
1268 * is synced out, since the send stream will have told us
1269 * to free this slot when we freed the associated dnode
1270 * earlier in the stream.
1271 */
1272 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1273
1274 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1275 return (SET_ERROR(EINVAL));
1276
1277 /* object was freed and we are about to allocate a new one */
1278 object = DMU_NEW_OBJECT;
1279 } else {
1280 /*
1281 * If the only record in this range so far was DRR_FREEOBJECTS
1282 * with at least one actually freed object, it's possible that
1283 * the block will now be converted to a hole. We need to wait
1284 * for the txg to sync to prevent races.
1285 */
1286 if (rwa->or_need_sync == ORNS_YES)
1287 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1288
1289 /* object is free and we are about to allocate a new one */
1290 object = DMU_NEW_OBJECT;
1291 }
1292
1293 /* Only relevant for the first object in the range */
1294 rwa->or_need_sync = ORNS_NO;
1295
1296 /*
1297 * If this is a multi-slot dnode there is a chance that this
1298 * object will expand into a slot that is already used by
1299 * another object from the previous snapshot. We must free
1300 * these objects before we attempt to allocate the new dnode.
1301 */
1302 if (dn_slots > 1) {
1303 boolean_t need_sync = B_FALSE;
1304
1305 for (uint64_t slot = drro->drr_object + 1;
1306 slot < drro->drr_object + dn_slots;
1307 slot++) {
1308 dmu_object_info_t slot_doi;
1309
1310 err = dmu_object_info(rwa->os, slot, &slot_doi);
1311 if (err == ENOENT || err == EEXIST)
1312 continue;
1313 else if (err != 0)
1314 return (err);
1315
1316 err = dmu_free_long_object(rwa->os, slot);
1317
1318 if (err != 0)
1319 return (err);
1320
1321 need_sync = B_TRUE;
1322 }
1323
1324 if (need_sync)
1325 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1326 }
1327
1328 tx = dmu_tx_create(rwa->os);
1329 dmu_tx_hold_bonus(tx, object);
1330 dmu_tx_hold_write(tx, object, 0, 0);
1331 err = dmu_tx_assign(tx, TXG_WAIT);
1332 if (err != 0) {
1333 dmu_tx_abort(tx);
1334 return (err);
1335 }
1336
1337 if (object == DMU_NEW_OBJECT) {
1338 /* Currently free, wants to be allocated */
1339 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1340 drro->drr_type, drro->drr_blksz,
1341 drro->drr_bonustype, drro->drr_bonuslen,
1342 dn_slots << DNODE_SHIFT, tx);
1343 } else if (drro->drr_type != doi.doi_type ||
1344 drro->drr_blksz != doi.doi_data_block_size ||
1345 drro->drr_bonustype != doi.doi_bonus_type ||
1346 drro->drr_bonuslen != doi.doi_bonus_size) {
1347 /* Currently allocated, but with different properties */
1348 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1349 drro->drr_type, drro->drr_blksz,
1350 drro->drr_bonustype, drro->drr_bonuslen,
1351 dn_slots << DNODE_SHIFT, rwa->spill ?
1352 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1353 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1354 /*
1355 * Currently allocated, the existing version of this object
1356 * may reference a spill block that is no longer allocated
1357 * at the source and needs to be freed.
1358 */
1359 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1360 }
1361
1362 if (err != 0) {
1363 dmu_tx_commit(tx);
1364 return (SET_ERROR(EINVAL));
1365 }
1366
1367 if (rwa->or_crypt_params_present) {
1368 /*
1369 * Set the crypt params for the buffer associated with this
1370 * range of dnodes. This causes the blkptr_t to have the
1371 * same crypt params (byteorder, salt, iv, mac) as on the
1372 * sending side.
1373 *
1374 * Since we are committing this tx now, it is possible for
1375 * the dnode block to end up on-disk with the incorrect MAC,
1376 * if subsequent objects in this block are received in a
1377 * different txg. However, since the dataset is marked as
1378 * inconsistent, no code paths will do a non-raw read (or
1379 * decrypt the block / verify the MAC). The receive code and
1380 * scrub code can safely do raw reads and verify the
1381 * checksum. They don't need to verify the MAC.
1382 */
1383 dmu_buf_t *db = NULL;
1384 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1385
1386 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1387 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1388 if (err != 0) {
1389 dmu_tx_commit(tx);
1390 return (SET_ERROR(EINVAL));
1391 }
1392
1393 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1394 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1395
1396 dmu_buf_rele(db, FTAG);
1397
1398 rwa->or_crypt_params_present = B_FALSE;
1399 }
1400
1401 dmu_object_set_checksum(rwa->os, drro->drr_object,
1402 drro->drr_checksumtype, tx);
1403 dmu_object_set_compress(rwa->os, drro->drr_object,
1404 drro->drr_compress, tx);
1405
1406 /* handle more restrictive dnode structuring for raw recvs */
1407 if (rwa->raw) {
1408 /*
1409 * Set the indirect block size, block shift, nlevels.
1410 * This will not fail because we ensured all of the
1411 * blocks were freed earlier if this is a new object.
1412 * For non-new objects block size and indirect block
1413 * shift cannot change and nlevels can only increase.
1414 */
1415 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1416 drro->drr_blksz, drro->drr_indblkshift, tx));
1417 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1418 drro->drr_nlevels, tx));
1419
1420 /*
1421 * Set the maxblkid. This will always succeed because
1422 * we freed all blocks beyond the new maxblkid above.
1423 */
1424 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1425 drro->drr_maxblkid, tx));
1426 }
1427
1428 if (data != NULL) {
1429 dmu_buf_t *db;
1430 dnode_t *dn;
1431 uint32_t flags = DMU_READ_NO_PREFETCH;
1432
1433 if (rwa->raw)
1434 flags |= DMU_READ_NO_DECRYPT;
1435
1436 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1437 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1438
1439 dmu_buf_will_dirty(db, tx);
1440
1441 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1442 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1443
1444 /*
1445 * Raw bonus buffers have their byteorder determined by the
1446 * DRR_OBJECT_RANGE record.
1447 */
1448 if (rwa->byteswap && !rwa->raw) {
1449 dmu_object_byteswap_t byteswap =
1450 DMU_OT_BYTESWAP(drro->drr_bonustype);
1451 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1452 DRR_OBJECT_PAYLOAD_SIZE(drro));
1453 }
1454 dmu_buf_rele(db, FTAG);
1455 dnode_rele(dn, FTAG);
1456 }
1457 dmu_tx_commit(tx);
1458
1459 return (0);
1460 }
1461
1462 /* ARGSUSED */
1463 static int
receive_freeobjects(struct receive_writer_arg * rwa,struct drr_freeobjects * drrfo)1464 receive_freeobjects(struct receive_writer_arg *rwa,
1465 struct drr_freeobjects *drrfo)
1466 {
1467 uint64_t obj;
1468 int next_err = 0;
1469
1470 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1471 return (SET_ERROR(EINVAL));
1472
1473 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1474 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
1475 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1476 dmu_object_info_t doi;
1477 int err;
1478
1479 err = dmu_object_info(rwa->os, obj, &doi);
1480 if (err == ENOENT)
1481 continue;
1482 else if (err != 0)
1483 return (err);
1484
1485 err = dmu_free_long_object(rwa->os, obj);
1486
1487 if (err != 0)
1488 return (err);
1489
1490 if (rwa->or_need_sync == ORNS_MAYBE)
1491 rwa->or_need_sync = ORNS_YES;
1492
1493 if (obj > rwa->max_object)
1494 rwa->max_object = obj;
1495 }
1496 if (next_err != ESRCH)
1497 return (next_err);
1498 return (0);
1499 }
1500
1501 static int
receive_write(struct receive_writer_arg * rwa,struct drr_write * drrw,arc_buf_t * abuf)1502 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
1503 arc_buf_t *abuf)
1504 {
1505 int err;
1506 dmu_tx_t *tx;
1507 dnode_t *dn;
1508
1509 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
1510 !DMU_OT_IS_VALID(drrw->drr_type))
1511 return (SET_ERROR(EINVAL));
1512
1513 /*
1514 * For resuming to work, records must be in increasing order
1515 * by (object, offset).
1516 */
1517 if (drrw->drr_object < rwa->last_object ||
1518 (drrw->drr_object == rwa->last_object &&
1519 drrw->drr_offset < rwa->last_offset)) {
1520 return (SET_ERROR(EINVAL));
1521 }
1522 rwa->last_object = drrw->drr_object;
1523 rwa->last_offset = drrw->drr_offset;
1524
1525 if (rwa->last_object > rwa->max_object)
1526 rwa->max_object = rwa->last_object;
1527
1528 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
1529 return (SET_ERROR(EINVAL));
1530
1531 tx = dmu_tx_create(rwa->os);
1532 dmu_tx_hold_write(tx, drrw->drr_object,
1533 drrw->drr_offset, drrw->drr_logical_size);
1534 err = dmu_tx_assign(tx, TXG_WAIT);
1535 if (err != 0) {
1536 dmu_tx_abort(tx);
1537 return (err);
1538 }
1539
1540 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1541 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1542 dmu_object_byteswap_t byteswap =
1543 DMU_OT_BYTESWAP(drrw->drr_type);
1544 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1545 DRR_WRITE_PAYLOAD_SIZE(drrw));
1546 }
1547
1548 VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn));
1549 err = dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx);
1550 if (err != 0) {
1551 dnode_rele(dn, FTAG);
1552 dmu_tx_commit(tx);
1553 return (err);
1554 }
1555 dnode_rele(dn, FTAG);
1556
1557 /*
1558 * Note: If the receive fails, we want the resume stream to start
1559 * with the same record that we last successfully received (as opposed
1560 * to the next record), so that we can verify that we are
1561 * resuming from the correct location.
1562 */
1563 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
1564 dmu_tx_commit(tx);
1565
1566 return (0);
1567 }
1568
1569 /*
1570 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
1571 * streams to refer to a copy of the data that is already on the
1572 * system because it came in earlier in the stream. This function
1573 * finds the earlier copy of the data, and uses that copy instead of
1574 * data from the stream to fulfill this write.
1575 */
1576 static int
receive_write_byref(struct receive_writer_arg * rwa,struct drr_write_byref * drrwbr)1577 receive_write_byref(struct receive_writer_arg *rwa,
1578 struct drr_write_byref *drrwbr)
1579 {
1580 dmu_tx_t *tx;
1581 int err;
1582 guid_map_entry_t gmesrch;
1583 guid_map_entry_t *gmep;
1584 avl_index_t where;
1585 objset_t *ref_os = NULL;
1586 int flags = DMU_READ_PREFETCH;
1587 dmu_buf_t *dbp;
1588
1589 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
1590 return (SET_ERROR(EINVAL));
1591
1592 /*
1593 * If the GUID of the referenced dataset is different from the
1594 * GUID of the target dataset, find the referenced dataset.
1595 */
1596 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
1597 gmesrch.guid = drrwbr->drr_refguid;
1598 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
1599 &where)) == NULL) {
1600 return (SET_ERROR(EINVAL));
1601 }
1602 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
1603 return (SET_ERROR(EINVAL));
1604 } else {
1605 ref_os = rwa->os;
1606 }
1607
1608 if (drrwbr->drr_object > rwa->max_object)
1609 rwa->max_object = drrwbr->drr_object;
1610
1611 if (rwa->raw)
1612 flags |= DMU_READ_NO_DECRYPT;
1613
1614 /* may return either a regular db or an encrypted one */
1615 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
1616 drrwbr->drr_refoffset, FTAG, &dbp, flags);
1617 if (err != 0)
1618 return (err);
1619
1620 tx = dmu_tx_create(rwa->os);
1621
1622 dmu_tx_hold_write(tx, drrwbr->drr_object,
1623 drrwbr->drr_offset, drrwbr->drr_length);
1624 err = dmu_tx_assign(tx, TXG_WAIT);
1625 if (err != 0) {
1626 dmu_tx_abort(tx);
1627 return (err);
1628 }
1629
1630 if (rwa->raw) {
1631 dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
1632 drrwbr->drr_offset, dbp, tx);
1633 } else {
1634 dmu_write(rwa->os, drrwbr->drr_object,
1635 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
1636 }
1637 dmu_buf_rele(dbp, FTAG);
1638
1639 /* See comment in restore_write. */
1640 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
1641 dmu_tx_commit(tx);
1642 return (0);
1643 }
1644
1645 static int
receive_write_embedded(struct receive_writer_arg * rwa,struct drr_write_embedded * drrwe,void * data)1646 receive_write_embedded(struct receive_writer_arg *rwa,
1647 struct drr_write_embedded *drrwe, void *data)
1648 {
1649 dmu_tx_t *tx;
1650 int err;
1651
1652 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
1653 return (EINVAL);
1654
1655 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
1656 return (EINVAL);
1657
1658 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
1659 return (EINVAL);
1660 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
1661 return (EINVAL);
1662 if (rwa->raw)
1663 return (SET_ERROR(EINVAL));
1664
1665 if (drrwe->drr_object > rwa->max_object)
1666 rwa->max_object = drrwe->drr_object;
1667
1668 tx = dmu_tx_create(rwa->os);
1669
1670 dmu_tx_hold_write(tx, drrwe->drr_object,
1671 drrwe->drr_offset, drrwe->drr_length);
1672 err = dmu_tx_assign(tx, TXG_WAIT);
1673 if (err != 0) {
1674 dmu_tx_abort(tx);
1675 return (err);
1676 }
1677
1678 dmu_write_embedded(rwa->os, drrwe->drr_object,
1679 drrwe->drr_offset, data, drrwe->drr_etype,
1680 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
1681 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
1682
1683 /* See comment in restore_write. */
1684 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
1685 dmu_tx_commit(tx);
1686 return (0);
1687 }
1688
1689 static int
receive_spill(struct receive_writer_arg * rwa,struct drr_spill * drrs,arc_buf_t * abuf)1690 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
1691 arc_buf_t *abuf)
1692 {
1693 dmu_tx_t *tx;
1694 dmu_buf_t *db, *db_spill;
1695 int err;
1696 uint32_t flags = 0;
1697
1698 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
1699 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
1700 return (SET_ERROR(EINVAL));
1701
1702 /*
1703 * This is an unmodified spill block which was added to the stream
1704 * to resolve an issue with incorrectly removing spill blocks. It
1705 * should be ignored by current versions of the code which support
1706 * the DRR_FLAG_SPILL_BLOCK flag.
1707 */
1708 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
1709 dmu_return_arcbuf(abuf);
1710 return (0);
1711 }
1712
1713 if (rwa->raw) {
1714 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
1715 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
1716 drrs->drr_compressed_size == 0)
1717 return (SET_ERROR(EINVAL));
1718
1719 flags |= DMU_READ_NO_DECRYPT;
1720 }
1721
1722 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
1723 return (SET_ERROR(EINVAL));
1724
1725 if (drrs->drr_object > rwa->max_object)
1726 rwa->max_object = drrs->drr_object;
1727
1728 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
1729 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
1730 &db_spill)) != 0) {
1731 dmu_buf_rele(db, FTAG);
1732 return (err);
1733 }
1734
1735 tx = dmu_tx_create(rwa->os);
1736
1737 dmu_tx_hold_spill(tx, db->db_object);
1738
1739 err = dmu_tx_assign(tx, TXG_WAIT);
1740 if (err != 0) {
1741 dmu_buf_rele(db, FTAG);
1742 dmu_buf_rele(db_spill, FTAG);
1743 dmu_tx_abort(tx);
1744 return (err);
1745 }
1746
1747 /*
1748 * Spill blocks may both grow and shrink. When a change in size
1749 * occurs any existing dbuf must be updated to match the logical
1750 * size of the provided arc_buf_t.
1751 */
1752 if (db_spill->db_size != drrs->drr_length) {
1753 dmu_buf_will_fill(db_spill, tx);
1754 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
1755 drrs->drr_length, tx));
1756 }
1757
1758 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1759 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1760 dmu_object_byteswap_t byteswap =
1761 DMU_OT_BYTESWAP(drrs->drr_type);
1762 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1763 DRR_SPILL_PAYLOAD_SIZE(drrs));
1764 }
1765
1766 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
1767
1768 dmu_buf_rele(db, FTAG);
1769 dmu_buf_rele(db_spill, FTAG);
1770
1771 dmu_tx_commit(tx);
1772 return (0);
1773 }
1774
1775 /* ARGSUSED */
1776 static int
receive_free(struct receive_writer_arg * rwa,struct drr_free * drrf)1777 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
1778 {
1779 int err;
1780
1781 if (drrf->drr_length != DMU_OBJECT_END &&
1782 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
1783 return (SET_ERROR(EINVAL));
1784
1785 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
1786 return (SET_ERROR(EINVAL));
1787
1788 if (drrf->drr_object > rwa->max_object)
1789 rwa->max_object = drrf->drr_object;
1790
1791 err = dmu_free_long_range(rwa->os, drrf->drr_object,
1792 drrf->drr_offset, drrf->drr_length);
1793
1794 return (err);
1795 }
1796
1797 static int
receive_object_range(struct receive_writer_arg * rwa,struct drr_object_range * drror)1798 receive_object_range(struct receive_writer_arg *rwa,
1799 struct drr_object_range *drror)
1800 {
1801 /*
1802 * By default, we assume this block is in our native format
1803 * (ZFS_HOST_BYTEORDER). We then take into account whether
1804 * the send stream is byteswapped (rwa->byteswap). Finally,
1805 * we need to byteswap again if this particular block was
1806 * in non-native format on the send side.
1807 */
1808 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
1809 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
1810
1811 /*
1812 * Since dnode block sizes are constant, we should not need to worry
1813 * about making sure that the dnode block size is the same on the
1814 * sending and receiving sides for the time being. For non-raw sends,
1815 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
1816 * record at all). Raw sends require this record type because the
1817 * encryption parameters are used to protect an entire block of bonus
1818 * buffers. If the size of dnode blocks ever becomes variable,
1819 * handling will need to be added to ensure that dnode block sizes
1820 * match on the sending and receiving side.
1821 */
1822 if (drror->drr_numslots != DNODES_PER_BLOCK ||
1823 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
1824 !rwa->raw)
1825 return (SET_ERROR(EINVAL));
1826
1827 if (drror->drr_firstobj > rwa->max_object)
1828 rwa->max_object = drror->drr_firstobj;
1829
1830 /*
1831 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
1832 * so that the block of dnodes is not written out when it's empty,
1833 * and converted to a HOLE BP.
1834 */
1835 rwa->or_crypt_params_present = B_TRUE;
1836 rwa->or_firstobj = drror->drr_firstobj;
1837 rwa->or_numslots = drror->drr_numslots;
1838 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
1839 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
1840 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
1841 rwa->or_byteorder = byteorder;
1842
1843 rwa->or_need_sync = ORNS_MAYBE;
1844
1845 return (0);
1846 }
1847
1848 /* used to destroy the drc_ds on error */
1849 static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t * drc)1850 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
1851 {
1852 dsl_dataset_t *ds = drc->drc_ds;
1853 ds_hold_flags_t dsflags;
1854
1855 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
1856 /*
1857 * Wait for the txg sync before cleaning up the receive. For
1858 * resumable receives, this ensures that our resume state has
1859 * been written out to disk. For raw receives, this ensures
1860 * that the user accounting code will not attempt to do anything
1861 * after we stopped receiving the dataset.
1862 */
1863 txg_wait_synced(ds->ds_dir->dd_pool, 0);
1864 ds->ds_objset->os_raw_receive = B_FALSE;
1865
1866 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1867 if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
1868 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1869 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
1870 } else {
1871 char name[ZFS_MAX_DATASET_NAME_LEN];
1872 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1873 dsl_dataset_name(ds, name);
1874 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
1875 (void) dsl_destroy_head(name);
1876 }
1877 }
1878
1879 static void
receive_cksum(struct receive_arg * ra,int len,void * buf)1880 receive_cksum(struct receive_arg *ra, int len, void *buf)
1881 {
1882 if (ra->byteswap) {
1883 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
1884 } else {
1885 (void) fletcher_4_incremental_native(buf, len, &ra->cksum);
1886 }
1887 }
1888
1889 /*
1890 * Read the payload into a buffer of size len, and update the current record's
1891 * payload field.
1892 * Allocate ra->next_rrd and read the next record's header into
1893 * ra->next_rrd->header.
1894 * Verify checksum of payload and next record.
1895 */
1896 static int
receive_read_payload_and_next_header(struct receive_arg * ra,int len,void * buf)1897 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
1898 {
1899 int err;
1900
1901 if (len != 0) {
1902 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
1903 err = receive_read(ra, len, buf);
1904 if (err != 0)
1905 return (err);
1906 receive_cksum(ra, len, buf);
1907
1908 /* note: rrd is NULL when reading the begin record's payload */
1909 if (ra->rrd != NULL) {
1910 ra->rrd->payload = buf;
1911 ra->rrd->payload_size = len;
1912 ra->rrd->bytes_read = ra->bytes_read;
1913 }
1914 }
1915
1916 ra->prev_cksum = ra->cksum;
1917
1918 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
1919 err = receive_read(ra, sizeof (ra->next_rrd->header),
1920 &ra->next_rrd->header);
1921 ra->next_rrd->bytes_read = ra->bytes_read;
1922
1923 if (err != 0) {
1924 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1925 ra->next_rrd = NULL;
1926 return (err);
1927 }
1928 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
1929 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1930 ra->next_rrd = NULL;
1931 return (SET_ERROR(EINVAL));
1932 }
1933
1934 /*
1935 * Note: checksum is of everything up to but not including the
1936 * checksum itself.
1937 */
1938 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
1939 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
1940 receive_cksum(ra,
1941 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
1942 &ra->next_rrd->header);
1943
1944 zio_cksum_t cksum_orig =
1945 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
1946 zio_cksum_t *cksump =
1947 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
1948
1949 if (ra->byteswap)
1950 byteswap_record(&ra->next_rrd->header);
1951
1952 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
1953 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
1954 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
1955 ra->next_rrd = NULL;
1956 return (SET_ERROR(ECKSUM));
1957 }
1958
1959 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
1960
1961 return (0);
1962 }
1963
1964 static void
objlist_create(struct objlist * list)1965 objlist_create(struct objlist *list)
1966 {
1967 list_create(&list->list, sizeof (struct receive_objnode),
1968 offsetof(struct receive_objnode, node));
1969 list->last_lookup = 0;
1970 }
1971
1972 static void
objlist_destroy(struct objlist * list)1973 objlist_destroy(struct objlist *list)
1974 {
1975 for (struct receive_objnode *n = list_remove_head(&list->list);
1976 n != NULL; n = list_remove_head(&list->list)) {
1977 kmem_free(n, sizeof (*n));
1978 }
1979 list_destroy(&list->list);
1980 }
1981
1982 /*
1983 * This function looks through the objlist to see if the specified object number
1984 * is contained in the objlist. In the process, it will remove all object
1985 * numbers in the list that are smaller than the specified object number. Thus,
1986 * any lookup of an object number smaller than a previously looked up object
1987 * number will always return false; therefore, all lookups should be done in
1988 * ascending order.
1989 */
1990 static boolean_t
objlist_exists(struct objlist * list,uint64_t object)1991 objlist_exists(struct objlist *list, uint64_t object)
1992 {
1993 struct receive_objnode *node = list_head(&list->list);
1994 ASSERT3U(object, >=, list->last_lookup);
1995 list->last_lookup = object;
1996 while (node != NULL && node->object < object) {
1997 VERIFY3P(node, ==, list_remove_head(&list->list));
1998 kmem_free(node, sizeof (*node));
1999 node = list_head(&list->list);
2000 }
2001 return (node != NULL && node->object == object);
2002 }
2003
2004 /*
2005 * The objlist is a list of object numbers stored in ascending order. However,
2006 * the insertion of new object numbers does not seek out the correct location to
2007 * store a new object number; instead, it appends it to the list for simplicity.
2008 * Thus, any users must take care to only insert new object numbers in ascending
2009 * order.
2010 */
2011 static void
objlist_insert(struct objlist * list,uint64_t object)2012 objlist_insert(struct objlist *list, uint64_t object)
2013 {
2014 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2015 node->object = object;
2016 #ifdef ZFS_DEBUG
2017 struct receive_objnode *last_object = list_tail(&list->list);
2018 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2019 ASSERT3U(node->object, >, last_objnum);
2020 #endif
2021 list_insert_tail(&list->list, node);
2022 }
2023
2024 /*
2025 * Issue the prefetch reads for any necessary indirect blocks.
2026 *
2027 * We use the object ignore list to tell us whether or not to issue prefetches
2028 * for a given object. We do this for both correctness (in case the blocksize
2029 * of an object has changed) and performance (if the object doesn't exist, don't
2030 * needlessly try to issue prefetches). We also trim the list as we go through
2031 * the stream to prevent it from growing to an unbounded size.
2032 *
2033 * The object numbers within will always be in sorted order, and any write
2034 * records we see will also be in sorted order, but they're not sorted with
2035 * respect to each other (i.e. we can get several object records before
2036 * receiving each object's write records). As a result, once we've reached a
2037 * given object number, we can safely remove any reference to lower object
2038 * numbers in the ignore list. In practice, we receive up to 32 object records
2039 * before receiving write records, so the list can have up to 32 nodes in it.
2040 */
2041 /* ARGSUSED */
2042 static void
receive_read_prefetch(struct receive_arg * ra,uint64_t object,uint64_t offset,uint64_t length)2043 receive_read_prefetch(struct receive_arg *ra,
2044 uint64_t object, uint64_t offset, uint64_t length)
2045 {
2046 if (!objlist_exists(&ra->ignore_objlist, object)) {
2047 dmu_prefetch(ra->os, object, 1, offset, length,
2048 ZIO_PRIORITY_SYNC_READ);
2049 }
2050 }
2051
2052 /*
2053 * Read records off the stream, issuing any necessary prefetches.
2054 */
2055 static int
receive_read_record(struct receive_arg * ra)2056 receive_read_record(struct receive_arg *ra)
2057 {
2058 int err;
2059
2060 switch (ra->rrd->header.drr_type) {
2061 case DRR_OBJECT:
2062 {
2063 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2064 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2065 void *buf = NULL;
2066 dmu_object_info_t doi;
2067
2068 if (size != 0)
2069 buf = kmem_zalloc(size, KM_SLEEP);
2070
2071 err = receive_read_payload_and_next_header(ra, size, buf);
2072 if (err != 0) {
2073 kmem_free(buf, size);
2074 return (err);
2075 }
2076 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2077 /*
2078 * See receive_read_prefetch for an explanation why we're
2079 * storing this object in the ignore_obj_list.
2080 */
2081 if (err == ENOENT || err == EEXIST ||
2082 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2083 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2084 err = 0;
2085 }
2086 return (err);
2087 }
2088 case DRR_FREEOBJECTS:
2089 {
2090 err = receive_read_payload_and_next_header(ra, 0, NULL);
2091 return (err);
2092 }
2093 case DRR_WRITE:
2094 {
2095 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2096 arc_buf_t *abuf;
2097 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2098
2099 if (ra->raw) {
2100 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2101 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2102 ra->byteswap;
2103
2104 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
2105 drrw->drr_object, byteorder, drrw->drr_salt,
2106 drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
2107 drrw->drr_compressed_size, drrw->drr_logical_size,
2108 drrw->drr_compressiontype);
2109 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2110 ASSERT3U(drrw->drr_compressed_size, >, 0);
2111 ASSERT3U(drrw->drr_logical_size, >=,
2112 drrw->drr_compressed_size);
2113 ASSERT(!is_meta);
2114 abuf = arc_loan_compressed_buf(
2115 dmu_objset_spa(ra->os),
2116 drrw->drr_compressed_size, drrw->drr_logical_size,
2117 drrw->drr_compressiontype);
2118 } else {
2119 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2120 is_meta, drrw->drr_logical_size);
2121 }
2122
2123 err = receive_read_payload_and_next_header(ra,
2124 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2125 if (err != 0) {
2126 dmu_return_arcbuf(abuf);
2127 return (err);
2128 }
2129 ra->rrd->arc_buf = abuf;
2130 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2131 drrw->drr_logical_size);
2132 return (err);
2133 }
2134 case DRR_WRITE_BYREF:
2135 {
2136 struct drr_write_byref *drrwb =
2137 &ra->rrd->header.drr_u.drr_write_byref;
2138 err = receive_read_payload_and_next_header(ra, 0, NULL);
2139 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2140 drrwb->drr_length);
2141 return (err);
2142 }
2143 case DRR_WRITE_EMBEDDED:
2144 {
2145 struct drr_write_embedded *drrwe =
2146 &ra->rrd->header.drr_u.drr_write_embedded;
2147 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2148 void *buf = kmem_zalloc(size, KM_SLEEP);
2149
2150 err = receive_read_payload_and_next_header(ra, size, buf);
2151 if (err != 0) {
2152 kmem_free(buf, size);
2153 return (err);
2154 }
2155
2156 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2157 drrwe->drr_length);
2158 return (err);
2159 }
2160 case DRR_FREE:
2161 {
2162 /*
2163 * It might be beneficial to prefetch indirect blocks here, but
2164 * we don't really have the data to decide for sure.
2165 */
2166 err = receive_read_payload_and_next_header(ra, 0, NULL);
2167 return (err);
2168 }
2169 case DRR_END:
2170 {
2171 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2172 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2173 return (SET_ERROR(ECKSUM));
2174 return (0);
2175 }
2176 case DRR_SPILL:
2177 {
2178 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2179 arc_buf_t *abuf;
2180 int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
2181
2182 /* DRR_SPILL records are either raw or uncompressed */
2183 if (ra->raw) {
2184 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2185 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2186 ra->byteswap;
2187
2188 abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
2189 dmu_objset_id(ra->os), byteorder, drrs->drr_salt,
2190 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2191 drrs->drr_compressed_size, drrs->drr_length,
2192 drrs->drr_compressiontype);
2193 } else {
2194 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2195 DMU_OT_IS_METADATA(drrs->drr_type),
2196 drrs->drr_length);
2197 }
2198
2199 err = receive_read_payload_and_next_header(ra, len,
2200 abuf->b_data);
2201 if (err != 0) {
2202 dmu_return_arcbuf(abuf);
2203 return (err);
2204 }
2205 ra->rrd->arc_buf = abuf;
2206 return (err);
2207 }
2208 case DRR_OBJECT_RANGE:
2209 {
2210 err = receive_read_payload_and_next_header(ra, 0, NULL);
2211 return (err);
2212 }
2213 default:
2214 return (SET_ERROR(EINVAL));
2215 }
2216 }
2217
2218 /*
2219 * Commit the records to the pool.
2220 */
2221 static int
receive_process_record(struct receive_writer_arg * rwa,struct receive_record_arg * rrd)2222 receive_process_record(struct receive_writer_arg *rwa,
2223 struct receive_record_arg *rrd)
2224 {
2225 int err;
2226
2227 /* Processing in order, therefore bytes_read should be increasing. */
2228 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2229 rwa->bytes_read = rrd->bytes_read;
2230
2231 switch (rrd->header.drr_type) {
2232 case DRR_OBJECT:
2233 {
2234 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2235 err = receive_object(rwa, drro, rrd->payload);
2236 kmem_free(rrd->payload, rrd->payload_size);
2237 rrd->payload = NULL;
2238 return (err);
2239 }
2240 case DRR_FREEOBJECTS:
2241 {
2242 struct drr_freeobjects *drrfo =
2243 &rrd->header.drr_u.drr_freeobjects;
2244 return (receive_freeobjects(rwa, drrfo));
2245 }
2246 case DRR_WRITE:
2247 {
2248 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2249 err = receive_write(rwa, drrw, rrd->arc_buf);
2250 /* if receive_write() is successful, it consumes the arc_buf */
2251 if (err != 0)
2252 dmu_return_arcbuf(rrd->arc_buf);
2253 rrd->arc_buf = NULL;
2254 rrd->payload = NULL;
2255 return (err);
2256 }
2257 case DRR_WRITE_BYREF:
2258 {
2259 struct drr_write_byref *drrwbr =
2260 &rrd->header.drr_u.drr_write_byref;
2261 return (receive_write_byref(rwa, drrwbr));
2262 }
2263 case DRR_WRITE_EMBEDDED:
2264 {
2265 struct drr_write_embedded *drrwe =
2266 &rrd->header.drr_u.drr_write_embedded;
2267 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2268 kmem_free(rrd->payload, rrd->payload_size);
2269 rrd->payload = NULL;
2270 return (err);
2271 }
2272 case DRR_FREE:
2273 {
2274 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2275 return (receive_free(rwa, drrf));
2276 }
2277 case DRR_SPILL:
2278 {
2279 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2280 err = receive_spill(rwa, drrs, rrd->arc_buf);
2281 /* if receive_spill() is successful, it consumes the arc_buf */
2282 if (err != 0)
2283 dmu_return_arcbuf(rrd->arc_buf);
2284 rrd->arc_buf = NULL;
2285 rrd->payload = NULL;
2286 return (err);
2287 }
2288 case DRR_OBJECT_RANGE:
2289 {
2290 struct drr_object_range *drror =
2291 &rrd->header.drr_u.drr_object_range;
2292 return (receive_object_range(rwa, drror));
2293 }
2294 default:
2295 return (SET_ERROR(EINVAL));
2296 }
2297 }
2298
2299 /*
2300 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2301 * receive_process_record When we're done, signal the main thread and exit.
2302 */
2303 static void
receive_writer_thread(void * arg)2304 receive_writer_thread(void *arg)
2305 {
2306 struct receive_writer_arg *rwa = arg;
2307 struct receive_record_arg *rrd;
2308 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2309 rrd = bqueue_dequeue(&rwa->q)) {
2310 /*
2311 * If there's an error, the main thread will stop putting things
2312 * on the queue, but we need to clear everything in it before we
2313 * can exit.
2314 */
2315 if (rwa->err == 0) {
2316 rwa->err = receive_process_record(rwa, rrd);
2317 } else if (rrd->arc_buf != NULL) {
2318 dmu_return_arcbuf(rrd->arc_buf);
2319 rrd->arc_buf = NULL;
2320 rrd->payload = NULL;
2321 } else if (rrd->payload != NULL) {
2322 kmem_free(rrd->payload, rrd->payload_size);
2323 rrd->payload = NULL;
2324 }
2325 kmem_free(rrd, sizeof (*rrd));
2326 }
2327 kmem_free(rrd, sizeof (*rrd));
2328 mutex_enter(&rwa->mutex);
2329 rwa->done = B_TRUE;
2330 cv_signal(&rwa->cv);
2331 mutex_exit(&rwa->mutex);
2332 thread_exit();
2333 }
2334
2335 static int
resume_check(struct receive_arg * ra,nvlist_t * begin_nvl)2336 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2337 {
2338 uint64_t val;
2339 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2340 uint64_t dsobj = dmu_objset_id(ra->os);
2341 uint64_t resume_obj, resume_off;
2342
2343 if (nvlist_lookup_uint64(begin_nvl,
2344 "resume_object", &resume_obj) != 0 ||
2345 nvlist_lookup_uint64(begin_nvl,
2346 "resume_offset", &resume_off) != 0) {
2347 return (SET_ERROR(EINVAL));
2348 }
2349 VERIFY0(zap_lookup(mos, dsobj,
2350 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2351 if (resume_obj != val)
2352 return (SET_ERROR(EINVAL));
2353 VERIFY0(zap_lookup(mos, dsobj,
2354 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2355 if (resume_off != val)
2356 return (SET_ERROR(EINVAL));
2357
2358 return (0);
2359 }
2360
2361 /*
2362 * Read in the stream's records, one by one, and apply them to the pool. There
2363 * are two threads involved; the thread that calls this function will spin up a
2364 * worker thread, read the records off the stream one by one, and issue
2365 * prefetches for any necessary indirect blocks. It will then push the records
2366 * onto an internal blocking queue. The worker thread will pull the records off
2367 * the queue, and actually write the data into the DMU. This way, the worker
2368 * thread doesn't have to wait for reads to complete, since everything it needs
2369 * (the indirect blocks) will be prefetched.
2370 *
2371 * NB: callers *must* call dmu_recv_end() if this succeeds.
2372 */
2373 int
dmu_recv_stream(dmu_recv_cookie_t * drc,vnode_t * vp,offset_t * voffp,int cleanup_fd,uint64_t * action_handlep)2374 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2375 int cleanup_fd, uint64_t *action_handlep)
2376 {
2377 int err = 0;
2378 struct receive_arg ra = { 0 };
2379 struct receive_writer_arg rwa = { 0 };
2380 int featureflags;
2381 nvlist_t *begin_nvl = NULL;
2382
2383 ra.byteswap = drc->drc_byteswap;
2384 ra.raw = drc->drc_raw;
2385 ra.cksum = drc->drc_cksum;
2386 ra.vp = vp;
2387 ra.voff = *voffp;
2388
2389 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2390 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2391 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2392 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2393 }
2394
2395 objlist_create(&ra.ignore_objlist);
2396
2397 /* these were verified in dmu_recv_begin */
2398 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2399 DMU_SUBSTREAM);
2400 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2401
2402 /*
2403 * Open the objset we are modifying.
2404 */
2405 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2406
2407 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2408
2409 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2410 ra.featureflags = featureflags;
2411
2412 ASSERT0(ra.os->os_encrypted &&
2413 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2414
2415 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2416 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2417 minor_t minor;
2418
2419 if (cleanup_fd == -1) {
2420 err = SET_ERROR(EBADF);
2421 goto out;
2422 }
2423 err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2424 if (err != 0) {
2425 cleanup_fd = -1;
2426 goto out;
2427 }
2428
2429 if (*action_handlep == 0) {
2430 rwa.guid_to_ds_map =
2431 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2432 avl_create(rwa.guid_to_ds_map, guid_compare,
2433 sizeof (guid_map_entry_t),
2434 offsetof(guid_map_entry_t, avlnode));
2435 err = zfs_onexit_add_cb(minor,
2436 free_guid_map_onexit, rwa.guid_to_ds_map,
2437 action_handlep);
2438 if (err != 0)
2439 goto out;
2440 } else {
2441 err = zfs_onexit_cb_data(minor, *action_handlep,
2442 (void **)&rwa.guid_to_ds_map);
2443 if (err != 0)
2444 goto out;
2445 }
2446
2447 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2448 }
2449
2450 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2451 void *payload = NULL;
2452 if (payloadlen != 0)
2453 payload = kmem_alloc(payloadlen, KM_SLEEP);
2454
2455 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2456 if (err != 0) {
2457 if (payloadlen != 0)
2458 kmem_free(payload, payloadlen);
2459 goto out;
2460 }
2461 if (payloadlen != 0) {
2462 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2463 kmem_free(payload, payloadlen);
2464 if (err != 0)
2465 goto out;
2466 }
2467
2468 /* handle DSL encryption key payload */
2469 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
2470 nvlist_t *keynvl = NULL;
2471
2472 ASSERT(ra.os->os_encrypted);
2473 ASSERT(drc->drc_raw);
2474
2475 err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
2476 if (err != 0)
2477 goto out;
2478
2479 /*
2480 * If this is a new dataset we set the key immediately.
2481 * Otherwise we don't want to change the key until we
2482 * are sure the rest of the receive succeeded so we stash
2483 * the keynvl away until then.
2484 */
2485 err = dsl_crypto_recv_raw(spa_name(ra.os->os_spa),
2486 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2487 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2488 if (err != 0)
2489 goto out;
2490
2491 /* see comment in dmu_recv_end_sync() */
2492 drc->drc_ivset_guid = 0;
2493 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2494 &drc->drc_ivset_guid);
2495
2496 if (!drc->drc_newfs)
2497 drc->drc_keynvl = fnvlist_dup(keynvl);
2498 }
2499
2500 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2501 err = resume_check(&ra, begin_nvl);
2502 if (err != 0)
2503 goto out;
2504 }
2505
2506 (void) bqueue_init(&rwa.q,
2507 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2508 offsetof(struct receive_record_arg, node));
2509 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2510 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2511 rwa.os = ra.os;
2512 rwa.byteswap = drc->drc_byteswap;
2513 rwa.resumable = drc->drc_resumable;
2514 rwa.raw = drc->drc_raw;
2515 rwa.spill = drc->drc_spill;
2516 rwa.os->os_raw_receive = drc->drc_raw;
2517
2518 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2519 TS_RUN, minclsyspri);
2520 /*
2521 * We're reading rwa.err without locks, which is safe since we are the
2522 * only reader, and the worker thread is the only writer. It's ok if we
2523 * miss a write for an iteration or two of the loop, since the writer
2524 * thread will keep freeing records we send it until we send it an eos
2525 * marker.
2526 *
2527 * We can leave this loop in 3 ways: First, if rwa.err is
2528 * non-zero. In that case, the writer thread will free the rrd we just
2529 * pushed. Second, if we're interrupted; in that case, either it's the
2530 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2531 * has been handed off to the writer thread who will free it. Finally,
2532 * if receive_read_record fails or we're at the end of the stream, then
2533 * we free ra.rrd and exit.
2534 */
2535 while (rwa.err == 0) {
2536 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2537 err = SET_ERROR(EINTR);
2538 break;
2539 }
2540
2541 ASSERT3P(ra.rrd, ==, NULL);
2542 ra.rrd = ra.next_rrd;
2543 ra.next_rrd = NULL;
2544 /* Allocates and loads header into ra.next_rrd */
2545 err = receive_read_record(&ra);
2546
2547 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2548 kmem_free(ra.rrd, sizeof (*ra.rrd));
2549 ra.rrd = NULL;
2550 break;
2551 }
2552
2553 bqueue_enqueue(&rwa.q, ra.rrd,
2554 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2555 ra.rrd = NULL;
2556 }
2557 ASSERT3P(ra.rrd, ==, NULL);
2558 ra.rrd = kmem_zalloc(sizeof (*ra.rrd), KM_SLEEP);
2559 ra.rrd->eos_marker = B_TRUE;
2560 bqueue_enqueue(&rwa.q, ra.rrd, 1);
2561
2562 mutex_enter(&rwa.mutex);
2563 while (!rwa.done) {
2564 cv_wait(&rwa.cv, &rwa.mutex);
2565 }
2566 mutex_exit(&rwa.mutex);
2567
2568 /*
2569 * If we are receiving a full stream as a clone, all object IDs which
2570 * are greater than the maximum ID referenced in the stream are
2571 * by definition unused and must be freed. Note that it's possible that
2572 * we've resumed this send and the first record we received was the END
2573 * record. In that case, max_object would be 0, but we shouldn't start
2574 * freeing all objects from there; instead we should start from the
2575 * resumeobj.
2576 */
2577 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
2578 uint64_t obj;
2579 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0)
2580 obj = 0;
2581 if (rwa.max_object > obj)
2582 obj = rwa.max_object;
2583 obj++;
2584 int free_err = 0;
2585 int next_err = 0;
2586
2587 while (next_err == 0) {
2588 free_err = dmu_free_long_object(rwa.os, obj);
2589 if (free_err != 0 && free_err != ENOENT)
2590 break;
2591
2592 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0);
2593 }
2594
2595 if (err == 0) {
2596 if (free_err != 0 && free_err != ENOENT)
2597 err = free_err;
2598 else if (next_err != ESRCH)
2599 err = next_err;
2600 }
2601 }
2602
2603 cv_destroy(&rwa.cv);
2604 mutex_destroy(&rwa.mutex);
2605 bqueue_destroy(&rwa.q);
2606 if (err == 0)
2607 err = rwa.err;
2608
2609 out:
2610 /*
2611 * If we hit an error before we started the receive_writer_thread
2612 * we need to clean up the next_rrd we create by processing the
2613 * DRR_BEGIN record.
2614 */
2615 if (ra.next_rrd != NULL)
2616 kmem_free(ra.next_rrd, sizeof (*ra.next_rrd));
2617
2618 nvlist_free(begin_nvl);
2619 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2620 zfs_onexit_fd_rele(cleanup_fd);
2621
2622 if (err != 0) {
2623 /*
2624 * Clean up references. If receive is not resumable,
2625 * destroy what we created, so we don't leave it in
2626 * the inconsistent state.
2627 */
2628 dmu_recv_cleanup_ds(drc);
2629 nvlist_free(drc->drc_keynvl);
2630 }
2631
2632 *voffp = ra.voff;
2633 objlist_destroy(&ra.ignore_objlist);
2634 return (err);
2635 }
2636
2637 static int
dmu_recv_end_check(void * arg,dmu_tx_t * tx)2638 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2639 {
2640 dmu_recv_cookie_t *drc = arg;
2641 dsl_pool_t *dp = dmu_tx_pool(tx);
2642 int error;
2643
2644 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2645
2646 if (!drc->drc_newfs) {
2647 dsl_dataset_t *origin_head;
2648
2649 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2650 if (error != 0)
2651 return (error);
2652 if (drc->drc_force) {
2653 /*
2654 * We will destroy any snapshots in tofs (i.e. before
2655 * origin_head) that are after the origin (which is
2656 * the snap before drc_ds, because drc_ds can not
2657 * have any snaps of its own).
2658 */
2659 uint64_t obj;
2660
2661 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2662 while (obj !=
2663 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2664 dsl_dataset_t *snap;
2665 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2666 &snap);
2667 if (error != 0)
2668 break;
2669 if (snap->ds_dir != origin_head->ds_dir)
2670 error = SET_ERROR(EINVAL);
2671 if (error == 0) {
2672 error = dsl_destroy_snapshot_check_impl(
2673 snap, B_FALSE);
2674 }
2675 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2676 dsl_dataset_rele(snap, FTAG);
2677 if (error != 0)
2678 break;
2679 }
2680 if (error != 0) {
2681 dsl_dataset_rele(origin_head, FTAG);
2682 return (error);
2683 }
2684 }
2685 if (drc->drc_keynvl != NULL) {
2686 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
2687 drc->drc_keynvl, tx);
2688 if (error != 0) {
2689 dsl_dataset_rele(origin_head, FTAG);
2690 return (error);
2691 }
2692 }
2693
2694 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2695 origin_head, drc->drc_force, drc->drc_owner, tx);
2696 if (error != 0) {
2697 dsl_dataset_rele(origin_head, FTAG);
2698 return (error);
2699 }
2700 error = dsl_dataset_snapshot_check_impl(origin_head,
2701 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2702 dsl_dataset_rele(origin_head, FTAG);
2703 if (error != 0)
2704 return (error);
2705
2706 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2707 } else {
2708 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2709 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2710 }
2711 return (error);
2712 }
2713
2714 static void
dmu_recv_end_sync(void * arg,dmu_tx_t * tx)2715 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2716 {
2717 dmu_recv_cookie_t *drc = arg;
2718 dsl_pool_t *dp = dmu_tx_pool(tx);
2719 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
2720
2721 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2722 tx, "snap=%s", drc->drc_tosnap);
2723 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
2724
2725 if (!drc->drc_newfs) {
2726 dsl_dataset_t *origin_head;
2727
2728 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2729 &origin_head));
2730
2731 if (drc->drc_force) {
2732 /*
2733 * Destroy any snapshots of drc_tofs (origin_head)
2734 * after the origin (the snap before drc_ds).
2735 */
2736 uint64_t obj;
2737
2738 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2739 while (obj !=
2740 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2741 dsl_dataset_t *snap;
2742 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
2743 &snap));
2744 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
2745 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2746 dsl_destroy_snapshot_sync_impl(snap,
2747 B_FALSE, tx);
2748 dsl_dataset_rele(snap, FTAG);
2749 }
2750 }
2751 if (drc->drc_keynvl != NULL) {
2752 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
2753 drc->drc_keynvl, tx);
2754 nvlist_free(drc->drc_keynvl);
2755 drc->drc_keynvl = NULL;
2756 }
2757
2758 VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev);
2759
2760 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
2761 origin_head, tx);
2762 dsl_dataset_snapshot_sync_impl(origin_head,
2763 drc->drc_tosnap, tx);
2764
2765 /* set snapshot's creation time and guid */
2766 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
2767 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
2768 drc->drc_drrb->drr_creation_time;
2769 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
2770 drc->drc_drrb->drr_toguid;
2771 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
2772 ~DS_FLAG_INCONSISTENT;
2773
2774 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
2775 dsl_dataset_phys(origin_head)->ds_flags &=
2776 ~DS_FLAG_INCONSISTENT;
2777
2778 drc->drc_newsnapobj =
2779 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2780
2781 dsl_dataset_rele(origin_head, FTAG);
2782 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
2783
2784 if (drc->drc_owner != NULL)
2785 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
2786 } else {
2787 dsl_dataset_t *ds = drc->drc_ds;
2788
2789 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
2790
2791 /* set snapshot's creation time and guid */
2792 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
2793 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
2794 drc->drc_drrb->drr_creation_time;
2795 dsl_dataset_phys(ds->ds_prev)->ds_guid =
2796 drc->drc_drrb->drr_toguid;
2797 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
2798 ~DS_FLAG_INCONSISTENT;
2799
2800 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2801 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
2802 if (dsl_dataset_has_resume_receive_state(ds)) {
2803 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2804 DS_FIELD_RESUME_FROMGUID, tx);
2805 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2806 DS_FIELD_RESUME_OBJECT, tx);
2807 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2808 DS_FIELD_RESUME_OFFSET, tx);
2809 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2810 DS_FIELD_RESUME_BYTES, tx);
2811 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2812 DS_FIELD_RESUME_TOGUID, tx);
2813 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
2814 DS_FIELD_RESUME_TONAME, tx);
2815 }
2816 drc->drc_newsnapobj =
2817 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
2818 }
2819
2820 /*
2821 * If this is a raw receive, the crypt_keydata nvlist will include
2822 * a to_ivset_guid for us to set on the new snapshot. This value
2823 * will override the value generated by the snapshot code. However,
2824 * this value may not be present, because older implementations of
2825 * the raw send code did not include this value, and we are still
2826 * allowed to receive them if the zfs_disable_ivset_guid_check
2827 * tunable is set, in which case we will leave the newly-generated
2828 * value.
2829 */
2830 if (drc->drc_raw && drc->drc_ivset_guid != 0) {
2831 dmu_object_zapify(dp->dp_meta_objset, drc->drc_newsnapobj,
2832 DMU_OT_DSL_DATASET, tx);
2833 VERIFY0(zap_update(dp->dp_meta_objset, drc->drc_newsnapobj,
2834 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
2835 &drc->drc_ivset_guid, tx));
2836 }
2837
2838 /*
2839 * Release the hold from dmu_recv_begin. This must be done before
2840 * we return to open context, so that when we free the dataset's dnode
2841 * we can evict its bonus buffer. Since the dataset may be destroyed
2842 * at this point (and therefore won't have a valid pointer to the spa)
2843 * we release the key mapping manually here while we do have a valid
2844 * pointer, if it exists.
2845 */
2846 if (!drc->drc_raw && encrypted) {
2847 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
2848 drc->drc_ds->ds_object, drc->drc_ds);
2849 }
2850 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
2851 drc->drc_ds = NULL;
2852 }
2853
2854 static int
add_ds_to_guidmap(const char * name,avl_tree_t * guid_map,uint64_t snapobj,boolean_t raw)2855 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
2856 boolean_t raw)
2857 {
2858 dsl_pool_t *dp;
2859 dsl_dataset_t *snapds;
2860 guid_map_entry_t *gmep;
2861 objset_t *os;
2862 ds_hold_flags_t dsflags;
2863 int err;
2864
2865 ASSERT(guid_map != NULL);
2866
2867 dsflags = (raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2868 err = dsl_pool_hold(name, FTAG, &dp);
2869 if (err != 0)
2870 return (err);
2871 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
2872 err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds);
2873 if (err == 0) {
2874 /*
2875 * If this is a deduplicated raw send stream, we need
2876 * to make sure that we can still read raw blocks from
2877 * earlier datasets in the stream, so we set the
2878 * os_raw_receive flag now.
2879 */
2880 if (raw) {
2881 err = dmu_objset_from_ds(snapds, &os);
2882 if (err != 0) {
2883 dsl_dataset_disown(snapds, dsflags, FTAG);
2884 dsl_pool_rele(dp, FTAG);
2885 kmem_free(gmep, sizeof (*gmep));
2886 return (err);
2887 }
2888 os->os_raw_receive = B_TRUE;
2889 }
2890
2891 gmep->raw = raw;
2892 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
2893 gmep->gme_ds = snapds;
2894 avl_add(guid_map, gmep);
2895 } else {
2896 kmem_free(gmep, sizeof (*gmep));
2897 }
2898
2899 dsl_pool_rele(dp, FTAG);
2900 return (err);
2901 }
2902
2903 static int dmu_recv_end_modified_blocks = 3;
2904
2905 static int
dmu_recv_existing_end(dmu_recv_cookie_t * drc)2906 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
2907 {
2908 #ifdef _KERNEL
2909 /*
2910 * We will be destroying the ds; make sure its origin is unmounted if
2911 * necessary.
2912 */
2913 char name[ZFS_MAX_DATASET_NAME_LEN];
2914 dsl_dataset_name(drc->drc_ds, name);
2915 zfs_destroy_unmount_origin(name);
2916 #endif
2917
2918 return (dsl_sync_task(drc->drc_tofs,
2919 dmu_recv_end_check, dmu_recv_end_sync, drc,
2920 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
2921 }
2922
2923 static int
dmu_recv_new_end(dmu_recv_cookie_t * drc)2924 dmu_recv_new_end(dmu_recv_cookie_t *drc)
2925 {
2926 return (dsl_sync_task(drc->drc_tofs,
2927 dmu_recv_end_check, dmu_recv_end_sync, drc,
2928 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
2929 }
2930
2931 int
dmu_recv_end(dmu_recv_cookie_t * drc,void * owner)2932 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
2933 {
2934 int error;
2935
2936 drc->drc_owner = owner;
2937
2938 if (drc->drc_newfs)
2939 error = dmu_recv_new_end(drc);
2940 else
2941 error = dmu_recv_existing_end(drc);
2942
2943 if (error != 0) {
2944 dmu_recv_cleanup_ds(drc);
2945 nvlist_free(drc->drc_keynvl);
2946 } else if (drc->drc_guid_to_ds_map != NULL) {
2947 (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
2948 drc->drc_newsnapobj, drc->drc_raw);
2949 }
2950 return (error);
2951 }
2952
2953 /*
2954 * Return TRUE if this objset is currently being received into.
2955 */
2956 boolean_t
dmu_objset_is_receiving(objset_t * os)2957 dmu_objset_is_receiving(objset_t *os)
2958 {
2959 return (os->os_dsl_dataset != NULL &&
2960 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
2961 }
2962