1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 * Copyright (c) 2023, 2024, Klara Inc.
38 */
39
40 /*
41 * SPA: Storage Pool Allocator
42 *
43 * This file contains all the routines used when modifying on-disk SPA state.
44 * This includes opening, importing, destroying, exporting a pool, and syncing a
45 * pool.
46 */
47
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93
94 #ifdef _KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif /* _KERNEL */
101
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105
106 /*
107 * spa_thread() existed on Illumos as a parent thread for the various worker
108 * threads that actually run the pool, as a way to both reference the entire
109 * pool work as a single object, and to share properties like scheduling
110 * options. It has not yet been adapted to Linux or FreeBSD. This define is
111 * used to mark related parts of the code to make things easier for the reader,
112 * and to compile this code out. It can be removed when someone implements it,
113 * moves it to some Illumos-specific place, or removes it entirely.
114 */
115 #undef HAVE_SPA_THREAD
116
117 /*
118 * The "System Duty Cycle" scheduling class is an Illumos feature to help
119 * prevent CPU-intensive kernel threads from affecting latency on interactive
120 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121 * gated behind a define. On Illumos SDC depends on spa_thread(), but
122 * spa_thread() also has other uses, so this is a separate define.
123 */
124 #undef HAVE_SYSDC
125
126 /*
127 * The interval, in seconds, at which failed configuration cache file writes
128 * should be retried.
129 */
130 int zfs_ccw_retry_interval = 300;
131
132 typedef enum zti_modes {
133 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
134 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
135 ZTI_MODE_SYNC, /* sync thread assigned */
136 ZTI_MODE_NULL, /* don't create a taskq */
137 ZTI_NMODES
138 } zti_modes_t;
139
140 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
141 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
143 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
144 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
145
146 #define ZTI_N(n) ZTI_P(n, 1)
147 #define ZTI_ONE ZTI_N(1)
148
149 typedef struct zio_taskq_info {
150 zti_modes_t zti_mode;
151 uint_t zti_value;
152 uint_t zti_count;
153 } zio_taskq_info_t;
154
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 "iss", "iss_h", "int", "int_h"
157 };
158
159 /*
160 * This table defines the taskq settings for each ZFS I/O type. When
161 * initializing a pool, we use this table to create an appropriately sized
162 * taskq. Some operations are low volume and therefore have a small, static
163 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164 * macros. Other operations process a large amount of data; the ZTI_SCALE
165 * macro causes us to create a taskq oriented for throughput. Some operations
166 * are so high frequency and short-lived that the taskq itself can become a
167 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168 * additional degree of parallelism specified by the number of threads per-
169 * taskq and the number of taskqs; when dispatching an event in this case, the
170 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171 * that scales with the number of CPUs.
172 *
173 * The different taskq priorities are to handle the different contexts (issue
174 * and interrupt) and then to reserve threads for high priority I/Os that
175 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT
176 * implementation, so separate high priority threads are used there.
177 */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
180 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
181 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
182 #ifdef illumos
183 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
184 #else
185 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */
186 #endif
187 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
188 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */
190 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
191 };
192
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197 const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199
200 /*
201 * Percentage of all CPUs that can be used by the metaslab preload taskq.
202 */
203 static uint_t metaslab_preload_pct = 50;
204
205 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
206 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
207
208 #ifdef HAVE_SYSDC
209 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
211 #endif
212
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216
217 static uint_t zio_taskq_write_tpq = 16;
218
219 /*
220 * Report any spa_load_verify errors found, but do not fail spa_load.
221 * This is used by zdb to analyze non-idle pools.
222 */
223 boolean_t spa_load_verify_dryrun = B_FALSE;
224
225 /*
226 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227 * This is used by zdb for spacemaps verification.
228 */
229 boolean_t spa_mode_readable_spacemaps = B_FALSE;
230
231 /*
232 * This (illegal) pool name is used when temporarily importing a spa_t in order
233 * to get the vdev stats associated with the imported devices.
234 */
235 #define TRYIMPORT_NAME "$import"
236
237 /*
238 * For debugging purposes: print out vdev tree during pool import.
239 */
240 static int spa_load_print_vdev_tree = B_FALSE;
241
242 /*
243 * A non-zero value for zfs_max_missing_tvds means that we allow importing
244 * pools with missing top-level vdevs. This is strictly intended for advanced
245 * pool recovery cases since missing data is almost inevitable. Pools with
246 * missing devices can only be imported read-only for safety reasons, and their
247 * fail-mode will be automatically set to "continue".
248 *
249 * With 1 missing vdev we should be able to import the pool and mount all
250 * datasets. User data that was not modified after the missing device has been
251 * added should be recoverable. This means that snapshots created prior to the
252 * addition of that device should be completely intact.
253 *
254 * With 2 missing vdevs, some datasets may fail to mount since there are
255 * dataset statistics that are stored as regular metadata. Some data might be
256 * recoverable if those vdevs were added recently.
257 *
258 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259 * may be missing entirely. Chances of data recovery are very low. Note that
260 * there are also risks of performing an inadvertent rewind as we might be
261 * missing all the vdevs with the latest uberblocks.
262 */
263 uint64_t zfs_max_missing_tvds = 0;
264
265 /*
266 * The parameters below are similar to zfs_max_missing_tvds but are only
267 * intended for a preliminary open of the pool with an untrusted config which
268 * might be incomplete or out-dated.
269 *
270 * We are more tolerant for pools opened from a cachefile since we could have
271 * an out-dated cachefile where a device removal was not registered.
272 * We could have set the limit arbitrarily high but in the case where devices
273 * are really missing we would want to return the proper error codes; we chose
274 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275 * and we get a chance to retrieve the trusted config.
276 */
277 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278
279 /*
280 * In the case where config was assembled by scanning device paths (/dev/dsks
281 * by default) we are less tolerant since all the existing devices should have
282 * been detected and we want spa_load to return the right error codes.
283 */
284 uint64_t zfs_max_missing_tvds_scan = 0;
285
286 /*
287 * Debugging aid that pauses spa_sync() towards the end.
288 */
289 static const boolean_t zfs_pause_spa_sync = B_FALSE;
290
291 /*
292 * Variables to indicate the livelist condense zthr func should wait at certain
293 * points for the livelist to be removed - used to test condense/destroy races
294 */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297
298 /*
299 * Variables to track whether or not condense cancellation has been
300 * triggered in testing.
301 */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304
305 /*
306 * Variable to track whether or not extra ALLOC blkptrs were added to a
307 * livelist entry while it was being condensed (caused by the way we track
308 * remapped blkptrs in dbuf_remap_impl)
309 */
310 static int zfs_livelist_condense_new_alloc = 0;
311
312 /*
313 * ==========================================================================
314 * SPA properties routines
315 * ==========================================================================
316 */
317
318 /*
319 * Add a (source=src, propname=propval) list to an nvlist.
320 */
321 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323 uint64_t intval, zprop_source_t src)
324 {
325 const char *propname = zpool_prop_to_name(prop);
326 nvlist_t *propval;
327
328 propval = fnvlist_alloc();
329 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330
331 if (strval != NULL)
332 fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 else
334 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335
336 fnvlist_add_nvlist(nvl, propname, propval);
337 nvlist_free(propval);
338 }
339
340 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 zpool_prop_t prop = zpool_name_to_prop(propname);
344 zprop_source_t src = ZPROP_SRC_NONE;
345 uint64_t intval;
346 int err;
347
348 /*
349 * NB: Not all properties lookups via this API require
350 * the spa props lock, so they must explicitly grab it here.
351 */
352 switch (prop) {
353 case ZPOOL_PROP_DEDUPCACHED:
354 err = ddt_get_pool_dedup_cached(spa, &intval);
355 if (err != 0)
356 return (SET_ERROR(err));
357 break;
358 default:
359 return (SET_ERROR(EINVAL));
360 }
361
362 spa_prop_add_list(outnvl, prop, NULL, intval, src);
363
364 return (0);
365 }
366
367 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369 nvlist_t *outnvl)
370 {
371 int err = 0;
372
373 if (props == NULL)
374 return (0);
375
376 for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 err = spa_prop_add(spa, props[i], outnvl);
378 }
379
380 return (err);
381 }
382
383 /*
384 * Add a user property (source=src, propname=propval) to an nvlist.
385 */
386 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388 zprop_source_t src)
389 {
390 nvlist_t *propval;
391
392 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 nvlist_free(propval);
397 }
398
399 /*
400 * Get property values from the spa configuration.
401 */
402 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
404 {
405 vdev_t *rvd = spa->spa_root_vdev;
406 dsl_pool_t *pool = spa->spa_dsl_pool;
407 uint64_t size, alloc, cap, version;
408 const zprop_source_t src = ZPROP_SRC_NONE;
409 spa_config_dirent_t *dp;
410 metaslab_class_t *mc = spa_normal_class(spa);
411
412 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
413
414 if (rvd != NULL) {
415 alloc = metaslab_class_get_alloc(mc);
416 alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
419
420 size = metaslab_class_get_space(mc);
421 size += metaslab_class_get_space(spa_special_class(spa));
422 size += metaslab_class_get_space(spa_dedup_class(spa));
423 size += metaslab_class_get_space(spa_embedded_log_class(spa));
424
425 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 size - alloc, src);
430 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 spa->spa_checkpoint_info.sci_dspace, src);
432
433 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 metaslab_class_fragmentation(mc), src);
435 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 metaslab_class_expandable_space(mc), src);
437 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 (spa_mode(spa) == SPA_MODE_READ), src);
439
440 cap = (size == 0) ? 0 : (alloc * 100 / size);
441 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
442
443 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 ddt_get_pool_dedup_ratio(spa), src);
445 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 brt_get_used(spa), src);
447 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 brt_get_saved(spa), src);
449 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 brt_get_ratio(spa), src);
451
452 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 ddt_get_ddt_dsize(spa), src);
454
455 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
456 rvd->vdev_state, src);
457
458 version = spa_version(spa);
459 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
460 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
461 version, ZPROP_SRC_DEFAULT);
462 } else {
463 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
464 version, ZPROP_SRC_LOCAL);
465 }
466 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
467 NULL, spa_load_guid(spa), src);
468 }
469
470 if (pool != NULL) {
471 /*
472 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
473 * when opening pools before this version freedir will be NULL.
474 */
475 if (pool->dp_free_dir != NULL) {
476 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
477 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
478 src);
479 } else {
480 spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
481 NULL, 0, src);
482 }
483
484 if (pool->dp_leak_dir != NULL) {
485 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
486 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
487 src);
488 } else {
489 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
490 NULL, 0, src);
491 }
492 }
493
494 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
495
496 if (spa->spa_comment != NULL) {
497 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
498 0, ZPROP_SRC_LOCAL);
499 }
500
501 if (spa->spa_compatibility != NULL) {
502 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
503 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
504 }
505
506 if (spa->spa_root != NULL)
507 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
508 0, ZPROP_SRC_LOCAL);
509
510 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
511 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
512 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
513 } else {
514 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
515 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
516 }
517
518 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
519 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
520 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
521 } else {
522 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
523 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
524 }
525
526 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
527 if (dp->scd_path == NULL) {
528 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
529 "none", 0, ZPROP_SRC_LOCAL);
530 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
531 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
532 dp->scd_path, 0, ZPROP_SRC_LOCAL);
533 }
534 }
535 }
536
537 /*
538 * Get zpool property values.
539 */
540 int
spa_prop_get(spa_t * spa,nvlist_t * nv)541 spa_prop_get(spa_t *spa, nvlist_t *nv)
542 {
543 objset_t *mos = spa->spa_meta_objset;
544 zap_cursor_t zc;
545 zap_attribute_t *za;
546 dsl_pool_t *dp;
547 int err = 0;
548
549 dp = spa_get_dsl(spa);
550 dsl_pool_config_enter(dp, FTAG);
551 za = zap_attribute_alloc();
552 mutex_enter(&spa->spa_props_lock);
553
554 /*
555 * Get properties from the spa config.
556 */
557 spa_prop_get_config(spa, nv);
558
559 /* If no pool property object, no more prop to get. */
560 if (mos == NULL || spa->spa_pool_props_object == 0)
561 goto out;
562
563 /*
564 * Get properties from the MOS pool property object.
565 */
566 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
567 (err = zap_cursor_retrieve(&zc, za)) == 0;
568 zap_cursor_advance(&zc)) {
569 uint64_t intval = 0;
570 char *strval = NULL;
571 zprop_source_t src = ZPROP_SRC_DEFAULT;
572 zpool_prop_t prop;
573
574 if ((prop = zpool_name_to_prop(za->za_name)) ==
575 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
576 continue;
577
578 switch (za->za_integer_length) {
579 case 8:
580 /* integer property */
581 if (za->za_first_integer !=
582 zpool_prop_default_numeric(prop))
583 src = ZPROP_SRC_LOCAL;
584
585 if (prop == ZPOOL_PROP_BOOTFS) {
586 dsl_dataset_t *ds = NULL;
587
588 err = dsl_dataset_hold_obj(dp,
589 za->za_first_integer, FTAG, &ds);
590 if (err != 0)
591 break;
592
593 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
594 KM_SLEEP);
595 dsl_dataset_name(ds, strval);
596 dsl_dataset_rele(ds, FTAG);
597 } else {
598 strval = NULL;
599 intval = za->za_first_integer;
600 }
601
602 spa_prop_add_list(nv, prop, strval, intval, src);
603
604 if (strval != NULL)
605 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
606
607 break;
608
609 case 1:
610 /* string property */
611 strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
612 err = zap_lookup(mos, spa->spa_pool_props_object,
613 za->za_name, 1, za->za_num_integers, strval);
614 if (err) {
615 kmem_free(strval, za->za_num_integers);
616 break;
617 }
618 if (prop != ZPOOL_PROP_INVAL) {
619 spa_prop_add_list(nv, prop, strval, 0, src);
620 } else {
621 src = ZPROP_SRC_LOCAL;
622 spa_prop_add_user(nv, za->za_name, strval,
623 src);
624 }
625 kmem_free(strval, za->za_num_integers);
626 break;
627
628 default:
629 break;
630 }
631 }
632 zap_cursor_fini(&zc);
633 out:
634 mutex_exit(&spa->spa_props_lock);
635 dsl_pool_config_exit(dp, FTAG);
636 zap_attribute_free(za);
637
638 if (err && err != ENOENT)
639 return (err);
640
641 return (0);
642 }
643
644 /*
645 * Validate the given pool properties nvlist and modify the list
646 * for the property values to be set.
647 */
648 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)649 spa_prop_validate(spa_t *spa, nvlist_t *props)
650 {
651 nvpair_t *elem;
652 int error = 0, reset_bootfs = 0;
653 uint64_t objnum = 0;
654 boolean_t has_feature = B_FALSE;
655
656 elem = NULL;
657 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
658 uint64_t intval;
659 const char *strval, *slash, *check, *fname;
660 const char *propname = nvpair_name(elem);
661 zpool_prop_t prop = zpool_name_to_prop(propname);
662
663 switch (prop) {
664 case ZPOOL_PROP_INVAL:
665 /*
666 * Sanitize the input.
667 */
668 if (zfs_prop_user(propname)) {
669 if (strlen(propname) >= ZAP_MAXNAMELEN) {
670 error = SET_ERROR(ENAMETOOLONG);
671 break;
672 }
673
674 if (strlen(fnvpair_value_string(elem)) >=
675 ZAP_MAXVALUELEN) {
676 error = SET_ERROR(E2BIG);
677 break;
678 }
679 } else if (zpool_prop_feature(propname)) {
680 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
681 error = SET_ERROR(EINVAL);
682 break;
683 }
684
685 if (nvpair_value_uint64(elem, &intval) != 0) {
686 error = SET_ERROR(EINVAL);
687 break;
688 }
689
690 if (intval != 0) {
691 error = SET_ERROR(EINVAL);
692 break;
693 }
694
695 fname = strchr(propname, '@') + 1;
696 if (zfeature_lookup_name(fname, NULL) != 0) {
697 error = SET_ERROR(EINVAL);
698 break;
699 }
700
701 has_feature = B_TRUE;
702 } else {
703 error = SET_ERROR(EINVAL);
704 break;
705 }
706 break;
707
708 case ZPOOL_PROP_VERSION:
709 error = nvpair_value_uint64(elem, &intval);
710 if (!error &&
711 (intval < spa_version(spa) ||
712 intval > SPA_VERSION_BEFORE_FEATURES ||
713 has_feature))
714 error = SET_ERROR(EINVAL);
715 break;
716
717 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
718 error = nvpair_value_uint64(elem, &intval);
719 break;
720
721 case ZPOOL_PROP_DELEGATION:
722 case ZPOOL_PROP_AUTOREPLACE:
723 case ZPOOL_PROP_LISTSNAPS:
724 case ZPOOL_PROP_AUTOEXPAND:
725 case ZPOOL_PROP_AUTOTRIM:
726 error = nvpair_value_uint64(elem, &intval);
727 if (!error && intval > 1)
728 error = SET_ERROR(EINVAL);
729 break;
730
731 case ZPOOL_PROP_MULTIHOST:
732 error = nvpair_value_uint64(elem, &intval);
733 if (!error && intval > 1)
734 error = SET_ERROR(EINVAL);
735
736 if (!error) {
737 uint32_t hostid = zone_get_hostid(NULL);
738 if (hostid)
739 spa->spa_hostid = hostid;
740 else
741 error = SET_ERROR(ENOTSUP);
742 }
743
744 break;
745
746 case ZPOOL_PROP_BOOTFS:
747 /*
748 * If the pool version is less than SPA_VERSION_BOOTFS,
749 * or the pool is still being created (version == 0),
750 * the bootfs property cannot be set.
751 */
752 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
753 error = SET_ERROR(ENOTSUP);
754 break;
755 }
756
757 /*
758 * Make sure the vdev config is bootable
759 */
760 if (!vdev_is_bootable(spa->spa_root_vdev)) {
761 error = SET_ERROR(ENOTSUP);
762 break;
763 }
764
765 reset_bootfs = 1;
766
767 error = nvpair_value_string(elem, &strval);
768
769 if (!error) {
770 objset_t *os;
771
772 if (strval == NULL || strval[0] == '\0') {
773 objnum = zpool_prop_default_numeric(
774 ZPOOL_PROP_BOOTFS);
775 break;
776 }
777
778 error = dmu_objset_hold(strval, FTAG, &os);
779 if (error != 0)
780 break;
781
782 /* Must be ZPL. */
783 if (dmu_objset_type(os) != DMU_OST_ZFS) {
784 error = SET_ERROR(ENOTSUP);
785 } else {
786 objnum = dmu_objset_id(os);
787 }
788 dmu_objset_rele(os, FTAG);
789 }
790 break;
791
792 case ZPOOL_PROP_FAILUREMODE:
793 error = nvpair_value_uint64(elem, &intval);
794 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
795 error = SET_ERROR(EINVAL);
796
797 /*
798 * This is a special case which only occurs when
799 * the pool has completely failed. This allows
800 * the user to change the in-core failmode property
801 * without syncing it out to disk (I/Os might
802 * currently be blocked). We do this by returning
803 * EIO to the caller (spa_prop_set) to trick it
804 * into thinking we encountered a property validation
805 * error.
806 */
807 if (!error && spa_suspended(spa)) {
808 spa->spa_failmode = intval;
809 error = SET_ERROR(EIO);
810 }
811 break;
812
813 case ZPOOL_PROP_CACHEFILE:
814 if ((error = nvpair_value_string(elem, &strval)) != 0)
815 break;
816
817 if (strval[0] == '\0')
818 break;
819
820 if (strcmp(strval, "none") == 0)
821 break;
822
823 if (strval[0] != '/') {
824 error = SET_ERROR(EINVAL);
825 break;
826 }
827
828 slash = strrchr(strval, '/');
829 ASSERT(slash != NULL);
830
831 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
832 strcmp(slash, "/..") == 0)
833 error = SET_ERROR(EINVAL);
834 break;
835
836 case ZPOOL_PROP_COMMENT:
837 if ((error = nvpair_value_string(elem, &strval)) != 0)
838 break;
839 for (check = strval; *check != '\0'; check++) {
840 if (!isprint(*check)) {
841 error = SET_ERROR(EINVAL);
842 break;
843 }
844 }
845 if (strlen(strval) > ZPROP_MAX_COMMENT)
846 error = SET_ERROR(E2BIG);
847 break;
848
849 default:
850 break;
851 }
852
853 if (error)
854 break;
855 }
856
857 (void) nvlist_remove_all(props,
858 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
859
860 if (!error && reset_bootfs) {
861 error = nvlist_remove(props,
862 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
863
864 if (!error) {
865 error = nvlist_add_uint64(props,
866 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
867 }
868 }
869
870 return (error);
871 }
872
873 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)874 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
875 {
876 const char *cachefile;
877 spa_config_dirent_t *dp;
878
879 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
880 &cachefile) != 0)
881 return;
882
883 dp = kmem_alloc(sizeof (spa_config_dirent_t),
884 KM_SLEEP);
885
886 if (cachefile[0] == '\0')
887 dp->scd_path = spa_strdup(spa_config_path);
888 else if (strcmp(cachefile, "none") == 0)
889 dp->scd_path = NULL;
890 else
891 dp->scd_path = spa_strdup(cachefile);
892
893 list_insert_head(&spa->spa_config_list, dp);
894 if (need_sync)
895 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
896 }
897
898 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)899 spa_prop_set(spa_t *spa, nvlist_t *nvp)
900 {
901 int error;
902 nvpair_t *elem = NULL;
903 boolean_t need_sync = B_FALSE;
904
905 if ((error = spa_prop_validate(spa, nvp)) != 0)
906 return (error);
907
908 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
909 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
910
911 if (prop == ZPOOL_PROP_CACHEFILE ||
912 prop == ZPOOL_PROP_ALTROOT ||
913 prop == ZPOOL_PROP_READONLY)
914 continue;
915
916 if (prop == ZPOOL_PROP_INVAL &&
917 zfs_prop_user(nvpair_name(elem))) {
918 need_sync = B_TRUE;
919 break;
920 }
921
922 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
923 uint64_t ver = 0;
924
925 if (prop == ZPOOL_PROP_VERSION) {
926 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
927 } else {
928 ASSERT(zpool_prop_feature(nvpair_name(elem)));
929 ver = SPA_VERSION_FEATURES;
930 need_sync = B_TRUE;
931 }
932
933 /* Save time if the version is already set. */
934 if (ver == spa_version(spa))
935 continue;
936
937 /*
938 * In addition to the pool directory object, we might
939 * create the pool properties object, the features for
940 * read object, the features for write object, or the
941 * feature descriptions object.
942 */
943 error = dsl_sync_task(spa->spa_name, NULL,
944 spa_sync_version, &ver,
945 6, ZFS_SPACE_CHECK_RESERVED);
946 if (error)
947 return (error);
948 continue;
949 }
950
951 need_sync = B_TRUE;
952 break;
953 }
954
955 if (need_sync) {
956 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
957 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
958 }
959
960 return (0);
961 }
962
963 /*
964 * If the bootfs property value is dsobj, clear it.
965 */
966 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)967 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
968 {
969 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
970 VERIFY(zap_remove(spa->spa_meta_objset,
971 spa->spa_pool_props_object,
972 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
973 spa->spa_bootfs = 0;
974 }
975 }
976
977 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)978 spa_change_guid_check(void *arg, dmu_tx_t *tx)
979 {
980 uint64_t *newguid __maybe_unused = arg;
981 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
982 vdev_t *rvd = spa->spa_root_vdev;
983 uint64_t vdev_state;
984
985 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
986 int error = (spa_has_checkpoint(spa)) ?
987 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
988 return (SET_ERROR(error));
989 }
990
991 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
992 vdev_state = rvd->vdev_state;
993 spa_config_exit(spa, SCL_STATE, FTAG);
994
995 if (vdev_state != VDEV_STATE_HEALTHY)
996 return (SET_ERROR(ENXIO));
997
998 ASSERT3U(spa_guid(spa), !=, *newguid);
999
1000 return (0);
1001 }
1002
1003 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1004 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1005 {
1006 uint64_t *newguid = arg;
1007 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1008 uint64_t oldguid;
1009 vdev_t *rvd = spa->spa_root_vdev;
1010
1011 oldguid = spa_guid(spa);
1012
1013 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1014 rvd->vdev_guid = *newguid;
1015 rvd->vdev_guid_sum += (*newguid - oldguid);
1016 vdev_config_dirty(rvd);
1017 spa_config_exit(spa, SCL_STATE, FTAG);
1018
1019 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1020 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1021 }
1022
1023 /*
1024 * Change the GUID for the pool. This is done so that we can later
1025 * re-import a pool built from a clone of our own vdevs. We will modify
1026 * the root vdev's guid, our own pool guid, and then mark all of our
1027 * vdevs dirty. Note that we must make sure that all our vdevs are
1028 * online when we do this, or else any vdevs that weren't present
1029 * would be orphaned from our pool. We are also going to issue a
1030 * sysevent to update any watchers.
1031 *
1032 * The GUID of the pool will be changed to the value pointed to by guidp.
1033 * The GUID may not be set to the reserverd value of 0.
1034 * The new GUID will be generated if guidp is NULL.
1035 */
1036 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1037 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1038 {
1039 uint64_t guid;
1040 int error;
1041
1042 mutex_enter(&spa->spa_vdev_top_lock);
1043 mutex_enter(&spa_namespace_lock);
1044
1045 if (guidp != NULL) {
1046 guid = *guidp;
1047 if (guid == 0) {
1048 error = SET_ERROR(EINVAL);
1049 goto out;
1050 }
1051
1052 if (spa_guid_exists(guid, 0)) {
1053 error = SET_ERROR(EEXIST);
1054 goto out;
1055 }
1056 } else {
1057 guid = spa_generate_guid(NULL);
1058 }
1059
1060 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1061 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1062
1063 if (error == 0) {
1064 /*
1065 * Clear the kobj flag from all the vdevs to allow
1066 * vdev_cache_process_kobj_evt() to post events to all the
1067 * vdevs since GUID is updated.
1068 */
1069 vdev_clear_kobj_evt(spa->spa_root_vdev);
1070 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1071 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1072
1073 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1074 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1075 }
1076
1077 out:
1078 mutex_exit(&spa_namespace_lock);
1079 mutex_exit(&spa->spa_vdev_top_lock);
1080
1081 return (error);
1082 }
1083
1084 /*
1085 * ==========================================================================
1086 * SPA state manipulation (open/create/destroy/import/export)
1087 * ==========================================================================
1088 */
1089
1090 static int
spa_error_entry_compare(const void * a,const void * b)1091 spa_error_entry_compare(const void *a, const void *b)
1092 {
1093 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1094 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1095 int ret;
1096
1097 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1098 sizeof (zbookmark_phys_t));
1099
1100 return (TREE_ISIGN(ret));
1101 }
1102
1103 /*
1104 * Utility function which retrieves copies of the current logs and
1105 * re-initializes them in the process.
1106 */
1107 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1108 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1109 {
1110 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1111
1112 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1113 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1114
1115 avl_create(&spa->spa_errlist_scrub,
1116 spa_error_entry_compare, sizeof (spa_error_entry_t),
1117 offsetof(spa_error_entry_t, se_avl));
1118 avl_create(&spa->spa_errlist_last,
1119 spa_error_entry_compare, sizeof (spa_error_entry_t),
1120 offsetof(spa_error_entry_t, se_avl));
1121 }
1122
1123 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1124 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1125 {
1126 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1127 enum zti_modes mode = ztip->zti_mode;
1128 uint_t value = ztip->zti_value;
1129 uint_t count = ztip->zti_count;
1130 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1131 uint_t cpus, flags = TASKQ_DYNAMIC;
1132
1133 switch (mode) {
1134 case ZTI_MODE_FIXED:
1135 ASSERT3U(value, >, 0);
1136 break;
1137
1138 case ZTI_MODE_SYNC:
1139
1140 /*
1141 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1142 * not to exceed the number of spa allocators, and align to it.
1143 */
1144 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1145 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1146 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1147 count = MIN(count, spa->spa_alloc_count);
1148 while (spa->spa_alloc_count % count != 0 &&
1149 spa->spa_alloc_count < count * 2)
1150 count--;
1151
1152 /*
1153 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1154 * single taskq may have more threads than 100% of online cpus.
1155 */
1156 value = (zio_taskq_batch_pct + count / 2) / count;
1157 value = MIN(value, 100);
1158 flags |= TASKQ_THREADS_CPU_PCT;
1159 break;
1160
1161 case ZTI_MODE_SCALE:
1162 flags |= TASKQ_THREADS_CPU_PCT;
1163 /*
1164 * We want more taskqs to reduce lock contention, but we want
1165 * less for better request ordering and CPU utilization.
1166 */
1167 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1168 if (zio_taskq_batch_tpq > 0) {
1169 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1170 zio_taskq_batch_tpq);
1171 } else {
1172 /*
1173 * Prefer 6 threads per taskq, but no more taskqs
1174 * than threads in them on large systems. For 80%:
1175 *
1176 * taskq taskq total
1177 * cpus taskqs percent threads threads
1178 * ------- ------- ------- ------- -------
1179 * 1 1 80% 1 1
1180 * 2 1 80% 1 1
1181 * 4 1 80% 3 3
1182 * 8 2 40% 3 6
1183 * 16 3 27% 4 12
1184 * 32 5 16% 5 25
1185 * 64 7 11% 7 49
1186 * 128 10 8% 10 100
1187 * 256 14 6% 15 210
1188 */
1189 count = 1 + cpus / 6;
1190 while (count * count > cpus)
1191 count--;
1192 }
1193 /* Limit each taskq within 100% to not trigger assertion. */
1194 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1195 value = (zio_taskq_batch_pct + count / 2) / count;
1196 break;
1197
1198 case ZTI_MODE_NULL:
1199 tqs->stqs_count = 0;
1200 tqs->stqs_taskq = NULL;
1201 return;
1202
1203 default:
1204 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1205 "spa_taskqs_init()",
1206 zio_type_name[t], zio_taskq_types[q], mode, value);
1207 break;
1208 }
1209
1210 ASSERT3U(count, >, 0);
1211 tqs->stqs_count = count;
1212 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1213
1214 for (uint_t i = 0; i < count; i++) {
1215 taskq_t *tq;
1216 char name[32];
1217
1218 if (count > 1)
1219 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1220 zio_type_name[t], zio_taskq_types[q], i);
1221 else
1222 (void) snprintf(name, sizeof (name), "%s_%s",
1223 zio_type_name[t], zio_taskq_types[q]);
1224
1225 #ifdef HAVE_SYSDC
1226 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1227 (void) zio_taskq_basedc;
1228 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1229 spa->spa_proc, zio_taskq_basedc, flags);
1230 } else {
1231 #endif
1232 pri_t pri = maxclsyspri;
1233 /*
1234 * The write issue taskq can be extremely CPU
1235 * intensive. Run it at slightly less important
1236 * priority than the other taskqs.
1237 *
1238 * Under Linux and FreeBSD this means incrementing
1239 * the priority value as opposed to platforms like
1240 * illumos where it should be decremented.
1241 *
1242 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1243 * are equal then a difference between them is
1244 * insignificant.
1245 */
1246 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1247 #if defined(__linux__)
1248 pri++;
1249 #elif defined(__FreeBSD__)
1250 pri += 4;
1251 #else
1252 #error "unknown OS"
1253 #endif
1254 }
1255 tq = taskq_create_proc(name, value, pri, 50,
1256 INT_MAX, spa->spa_proc, flags);
1257 #ifdef HAVE_SYSDC
1258 }
1259 #endif
1260
1261 tqs->stqs_taskq[i] = tq;
1262 }
1263 }
1264
1265 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1266 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1267 {
1268 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1269
1270 if (tqs->stqs_taskq == NULL) {
1271 ASSERT3U(tqs->stqs_count, ==, 0);
1272 return;
1273 }
1274
1275 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1276 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1277 taskq_destroy(tqs->stqs_taskq[i]);
1278 }
1279
1280 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1281 tqs->stqs_taskq = NULL;
1282 }
1283
1284 #ifdef _KERNEL
1285 /*
1286 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1287 * by setting zio_taskq_read or zio_taskq_write.
1288 *
1289 * Example (the defaults for READ and WRITE)
1290 * zio_taskq_read='fixed,1,8 null scale null'
1291 * zio_taskq_write='sync null scale null'
1292 *
1293 * Each sets the entire row at a time.
1294 *
1295 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1296 * of threads per taskq.
1297 *
1298 * 'null' can only be set on the high-priority queues (queue selection for
1299 * high-priority queues will fall back to the regular queue if the high-pri
1300 * is NULL.
1301 */
1302 static const char *const modes[ZTI_NMODES] = {
1303 "fixed", "scale", "sync", "null"
1304 };
1305
1306 /* Parse the incoming config string. Modifies cfg */
1307 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1308 spa_taskq_param_set(zio_type_t t, char *cfg)
1309 {
1310 int err = 0;
1311
1312 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1313
1314 char *next = cfg, *tok, *c;
1315
1316 /*
1317 * Parse out each element from the string and fill `row`. The entire
1318 * row has to be set at once, so any errors are flagged by just
1319 * breaking out of this loop early.
1320 */
1321 uint_t q;
1322 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1323 /* `next` is the start of the config */
1324 if (next == NULL)
1325 break;
1326
1327 /* Eat up leading space */
1328 while (isspace(*next))
1329 next++;
1330 if (*next == '\0')
1331 break;
1332
1333 /* Mode ends at space or end of string */
1334 tok = next;
1335 next = strchr(tok, ' ');
1336 if (next != NULL) *next++ = '\0';
1337
1338 /* Parameters start after a comma */
1339 c = strchr(tok, ',');
1340 if (c != NULL) *c++ = '\0';
1341
1342 /* Match mode string */
1343 uint_t mode;
1344 for (mode = 0; mode < ZTI_NMODES; mode++)
1345 if (strcmp(tok, modes[mode]) == 0)
1346 break;
1347 if (mode == ZTI_NMODES)
1348 break;
1349
1350 /* Invalid canary */
1351 row[q].zti_mode = ZTI_NMODES;
1352
1353 /* Per-mode setup */
1354 switch (mode) {
1355
1356 /*
1357 * FIXED is parameterised: number of queues, and number of
1358 * threads per queue.
1359 */
1360 case ZTI_MODE_FIXED: {
1361 /* No parameters? */
1362 if (c == NULL || *c == '\0')
1363 break;
1364
1365 /* Find next parameter */
1366 tok = c;
1367 c = strchr(tok, ',');
1368 if (c == NULL)
1369 break;
1370
1371 /* Take digits and convert */
1372 unsigned long long nq;
1373 if (!(isdigit(*tok)))
1374 break;
1375 err = ddi_strtoull(tok, &tok, 10, &nq);
1376 /* Must succeed and also end at the next param sep */
1377 if (err != 0 || tok != c)
1378 break;
1379
1380 /* Move past the comma */
1381 tok++;
1382 /* Need another number */
1383 if (!(isdigit(*tok)))
1384 break;
1385 /* Remember start to make sure we moved */
1386 c = tok;
1387
1388 /* Take digits */
1389 unsigned long long ntpq;
1390 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1391 /* Must succeed, and moved forward */
1392 if (err != 0 || tok == c || *tok != '\0')
1393 break;
1394
1395 /*
1396 * sanity; zero queues/threads make no sense, and
1397 * 16K is almost certainly more than anyone will ever
1398 * need and avoids silly numbers like UINT32_MAX
1399 */
1400 if (nq == 0 || nq >= 16384 ||
1401 ntpq == 0 || ntpq >= 16384)
1402 break;
1403
1404 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1405 row[q] = zti;
1406 break;
1407 }
1408
1409 case ZTI_MODE_SCALE: {
1410 const zio_taskq_info_t zti = ZTI_SCALE;
1411 row[q] = zti;
1412 break;
1413 }
1414
1415 case ZTI_MODE_SYNC: {
1416 const zio_taskq_info_t zti = ZTI_SYNC;
1417 row[q] = zti;
1418 break;
1419 }
1420
1421 case ZTI_MODE_NULL: {
1422 /*
1423 * Can only null the high-priority queues; the general-
1424 * purpose ones have to exist.
1425 */
1426 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1427 q != ZIO_TASKQ_INTERRUPT_HIGH)
1428 break;
1429
1430 const zio_taskq_info_t zti = ZTI_NULL;
1431 row[q] = zti;
1432 break;
1433 }
1434
1435 default:
1436 break;
1437 }
1438
1439 /* Ensure we set a mode */
1440 if (row[q].zti_mode == ZTI_NMODES)
1441 break;
1442 }
1443
1444 /* Didn't get a full row, fail */
1445 if (q < ZIO_TASKQ_TYPES)
1446 return (SET_ERROR(EINVAL));
1447
1448 /* Eat trailing space */
1449 if (next != NULL)
1450 while (isspace(*next))
1451 next++;
1452
1453 /* If there's anything left over then fail */
1454 if (next != NULL && *next != '\0')
1455 return (SET_ERROR(EINVAL));
1456
1457 /* Success! Copy it into the real config */
1458 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1459 zio_taskqs[t][q] = row[q];
1460
1461 return (0);
1462 }
1463
1464 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1465 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1466 {
1467 int pos = 0;
1468
1469 /* Build paramater string from live config */
1470 const char *sep = "";
1471 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1472 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1473 if (zti->zti_mode == ZTI_MODE_FIXED)
1474 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1475 modes[zti->zti_mode], zti->zti_count,
1476 zti->zti_value);
1477 else
1478 pos += sprintf(&buf[pos], "%s%s", sep,
1479 modes[zti->zti_mode]);
1480 sep = " ";
1481 }
1482
1483 if (add_newline)
1484 buf[pos++] = '\n';
1485 buf[pos] = '\0';
1486
1487 return (pos);
1488 }
1489
1490 #ifdef __linux__
1491 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1492 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1493 {
1494 char *cfg = kmem_strdup(val);
1495 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1496 kmem_free(cfg, strlen(val)+1);
1497 return (-err);
1498 }
1499 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1500 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1501 {
1502 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1503 }
1504
1505 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1506 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1507 {
1508 char *cfg = kmem_strdup(val);
1509 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1510 kmem_free(cfg, strlen(val)+1);
1511 return (-err);
1512 }
1513 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1514 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1515 {
1516 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1517 }
1518 #else
1519 /*
1520 * On FreeBSD load-time parameters can be set up before malloc() is available,
1521 * so we have to do all the parsing work on the stack.
1522 */
1523 #define SPA_TASKQ_PARAM_MAX (128)
1524
1525 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1526 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1527 {
1528 char buf[SPA_TASKQ_PARAM_MAX];
1529 int err;
1530
1531 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1532 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1533 if (err || req->newptr == NULL)
1534 return (err);
1535 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1536 }
1537
1538 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1539 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1540 {
1541 char buf[SPA_TASKQ_PARAM_MAX];
1542 int err;
1543
1544 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1545 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1546 if (err || req->newptr == NULL)
1547 return (err);
1548 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1549 }
1550 #endif
1551 #endif /* _KERNEL */
1552
1553 /*
1554 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1555 * Note that a type may have multiple discrete taskqs to avoid lock contention
1556 * on the taskq itself.
1557 */
1558 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1559 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1560 task_func_t *func, zio_t *zio, boolean_t cutinline)
1561 {
1562 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1563 taskq_t *tq;
1564
1565 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1566 ASSERT3U(tqs->stqs_count, !=, 0);
1567
1568 /*
1569 * NB: We are assuming that the zio can only be dispatched
1570 * to a single taskq at a time. It would be a grievous error
1571 * to dispatch the zio to another taskq at the same time.
1572 */
1573 ASSERT(zio);
1574 ASSERT(taskq_empty_ent(&zio->io_tqent));
1575
1576 if (tqs->stqs_count == 1) {
1577 tq = tqs->stqs_taskq[0];
1578 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1579 ZIO_HAS_ALLOCATOR(zio)) {
1580 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1581 } else {
1582 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1583 }
1584
1585 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1586 &zio->io_tqent);
1587 }
1588
1589 static void
spa_create_zio_taskqs(spa_t * spa)1590 spa_create_zio_taskqs(spa_t *spa)
1591 {
1592 for (int t = 0; t < ZIO_TYPES; t++) {
1593 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1594 spa_taskqs_init(spa, t, q);
1595 }
1596 }
1597 }
1598
1599 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1600 static void
spa_thread(void * arg)1601 spa_thread(void *arg)
1602 {
1603 psetid_t zio_taskq_psrset_bind = PS_NONE;
1604 callb_cpr_t cprinfo;
1605
1606 spa_t *spa = arg;
1607 user_t *pu = PTOU(curproc);
1608
1609 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1610 spa->spa_name);
1611
1612 ASSERT(curproc != &p0);
1613 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1614 "zpool-%s", spa->spa_name);
1615 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1616
1617 /* bind this thread to the requested psrset */
1618 if (zio_taskq_psrset_bind != PS_NONE) {
1619 pool_lock();
1620 mutex_enter(&cpu_lock);
1621 mutex_enter(&pidlock);
1622 mutex_enter(&curproc->p_lock);
1623
1624 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1625 0, NULL, NULL) == 0) {
1626 curthread->t_bind_pset = zio_taskq_psrset_bind;
1627 } else {
1628 cmn_err(CE_WARN,
1629 "Couldn't bind process for zfs pool \"%s\" to "
1630 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1631 }
1632
1633 mutex_exit(&curproc->p_lock);
1634 mutex_exit(&pidlock);
1635 mutex_exit(&cpu_lock);
1636 pool_unlock();
1637 }
1638
1639 #ifdef HAVE_SYSDC
1640 if (zio_taskq_sysdc) {
1641 sysdc_thread_enter(curthread, 100, 0);
1642 }
1643 #endif
1644
1645 spa->spa_proc = curproc;
1646 spa->spa_did = curthread->t_did;
1647
1648 spa_create_zio_taskqs(spa);
1649
1650 mutex_enter(&spa->spa_proc_lock);
1651 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1652
1653 spa->spa_proc_state = SPA_PROC_ACTIVE;
1654 cv_broadcast(&spa->spa_proc_cv);
1655
1656 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1657 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1658 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1659 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1660
1661 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1662 spa->spa_proc_state = SPA_PROC_GONE;
1663 spa->spa_proc = &p0;
1664 cv_broadcast(&spa->spa_proc_cv);
1665 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1666
1667 mutex_enter(&curproc->p_lock);
1668 lwp_exit();
1669 }
1670 #endif
1671
1672 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1673
1674 /*
1675 * Activate an uninitialized pool.
1676 */
1677 static void
spa_activate(spa_t * spa,spa_mode_t mode)1678 spa_activate(spa_t *spa, spa_mode_t mode)
1679 {
1680 metaslab_ops_t *msp = metaslab_allocator(spa);
1681 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1682
1683 spa->spa_state = POOL_STATE_ACTIVE;
1684 spa->spa_mode = mode;
1685 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1686
1687 spa->spa_normal_class = metaslab_class_create(spa, msp);
1688 spa->spa_log_class = metaslab_class_create(spa, msp);
1689 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1690 spa->spa_special_class = metaslab_class_create(spa, msp);
1691 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1692
1693 /* Try to create a covering process */
1694 mutex_enter(&spa->spa_proc_lock);
1695 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1696 ASSERT(spa->spa_proc == &p0);
1697 spa->spa_did = 0;
1698
1699 #ifdef HAVE_SPA_THREAD
1700 /* Only create a process if we're going to be around a while. */
1701 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1702 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1703 NULL, 0) == 0) {
1704 spa->spa_proc_state = SPA_PROC_CREATED;
1705 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1706 cv_wait(&spa->spa_proc_cv,
1707 &spa->spa_proc_lock);
1708 }
1709 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1710 ASSERT(spa->spa_proc != &p0);
1711 ASSERT(spa->spa_did != 0);
1712 } else {
1713 #ifdef _KERNEL
1714 cmn_err(CE_WARN,
1715 "Couldn't create process for zfs pool \"%s\"\n",
1716 spa->spa_name);
1717 #endif
1718 }
1719 }
1720 #endif /* HAVE_SPA_THREAD */
1721 mutex_exit(&spa->spa_proc_lock);
1722
1723 /* If we didn't create a process, we need to create our taskqs. */
1724 if (spa->spa_proc == &p0) {
1725 spa_create_zio_taskqs(spa);
1726 }
1727
1728 for (size_t i = 0; i < TXG_SIZE; i++) {
1729 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1730 ZIO_FLAG_CANFAIL);
1731 }
1732
1733 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1734 offsetof(vdev_t, vdev_config_dirty_node));
1735 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1736 offsetof(objset_t, os_evicting_node));
1737 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1738 offsetof(vdev_t, vdev_state_dirty_node));
1739
1740 txg_list_create(&spa->spa_vdev_txg_list, spa,
1741 offsetof(struct vdev, vdev_txg_node));
1742
1743 avl_create(&spa->spa_errlist_scrub,
1744 spa_error_entry_compare, sizeof (spa_error_entry_t),
1745 offsetof(spa_error_entry_t, se_avl));
1746 avl_create(&spa->spa_errlist_last,
1747 spa_error_entry_compare, sizeof (spa_error_entry_t),
1748 offsetof(spa_error_entry_t, se_avl));
1749 avl_create(&spa->spa_errlist_healed,
1750 spa_error_entry_compare, sizeof (spa_error_entry_t),
1751 offsetof(spa_error_entry_t, se_avl));
1752
1753 spa_activate_os(spa);
1754
1755 spa_keystore_init(&spa->spa_keystore);
1756
1757 /*
1758 * This taskq is used to perform zvol-minor-related tasks
1759 * asynchronously. This has several advantages, including easy
1760 * resolution of various deadlocks.
1761 *
1762 * The taskq must be single threaded to ensure tasks are always
1763 * processed in the order in which they were dispatched.
1764 *
1765 * A taskq per pool allows one to keep the pools independent.
1766 * This way if one pool is suspended, it will not impact another.
1767 *
1768 * The preferred location to dispatch a zvol minor task is a sync
1769 * task. In this context, there is easy access to the spa_t and minimal
1770 * error handling is required because the sync task must succeed.
1771 */
1772 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1773 1, INT_MAX, 0);
1774
1775 /*
1776 * The taskq to preload metaslabs.
1777 */
1778 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1779 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1780 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1781
1782 /*
1783 * Taskq dedicated to prefetcher threads: this is used to prevent the
1784 * pool traverse code from monopolizing the global (and limited)
1785 * system_taskq by inappropriately scheduling long running tasks on it.
1786 */
1787 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1788 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1789
1790 /*
1791 * The taskq to upgrade datasets in this pool. Currently used by
1792 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1793 */
1794 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1795 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1796 }
1797
1798 /*
1799 * Opposite of spa_activate().
1800 */
1801 static void
spa_deactivate(spa_t * spa)1802 spa_deactivate(spa_t *spa)
1803 {
1804 ASSERT(spa->spa_sync_on == B_FALSE);
1805 ASSERT(spa->spa_dsl_pool == NULL);
1806 ASSERT(spa->spa_root_vdev == NULL);
1807 ASSERT(spa->spa_async_zio_root == NULL);
1808 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1809
1810 spa_evicting_os_wait(spa);
1811
1812 if (spa->spa_zvol_taskq) {
1813 taskq_destroy(spa->spa_zvol_taskq);
1814 spa->spa_zvol_taskq = NULL;
1815 }
1816
1817 if (spa->spa_metaslab_taskq) {
1818 taskq_destroy(spa->spa_metaslab_taskq);
1819 spa->spa_metaslab_taskq = NULL;
1820 }
1821
1822 if (spa->spa_prefetch_taskq) {
1823 taskq_destroy(spa->spa_prefetch_taskq);
1824 spa->spa_prefetch_taskq = NULL;
1825 }
1826
1827 if (spa->spa_upgrade_taskq) {
1828 taskq_destroy(spa->spa_upgrade_taskq);
1829 spa->spa_upgrade_taskq = NULL;
1830 }
1831
1832 txg_list_destroy(&spa->spa_vdev_txg_list);
1833
1834 list_destroy(&spa->spa_config_dirty_list);
1835 list_destroy(&spa->spa_evicting_os_list);
1836 list_destroy(&spa->spa_state_dirty_list);
1837
1838 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1839
1840 for (int t = 0; t < ZIO_TYPES; t++) {
1841 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1842 spa_taskqs_fini(spa, t, q);
1843 }
1844 }
1845
1846 for (size_t i = 0; i < TXG_SIZE; i++) {
1847 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1848 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1849 spa->spa_txg_zio[i] = NULL;
1850 }
1851
1852 metaslab_class_destroy(spa->spa_normal_class);
1853 spa->spa_normal_class = NULL;
1854
1855 metaslab_class_destroy(spa->spa_log_class);
1856 spa->spa_log_class = NULL;
1857
1858 metaslab_class_destroy(spa->spa_embedded_log_class);
1859 spa->spa_embedded_log_class = NULL;
1860
1861 metaslab_class_destroy(spa->spa_special_class);
1862 spa->spa_special_class = NULL;
1863
1864 metaslab_class_destroy(spa->spa_dedup_class);
1865 spa->spa_dedup_class = NULL;
1866
1867 /*
1868 * If this was part of an import or the open otherwise failed, we may
1869 * still have errors left in the queues. Empty them just in case.
1870 */
1871 spa_errlog_drain(spa);
1872 avl_destroy(&spa->spa_errlist_scrub);
1873 avl_destroy(&spa->spa_errlist_last);
1874 avl_destroy(&spa->spa_errlist_healed);
1875
1876 spa_keystore_fini(&spa->spa_keystore);
1877
1878 spa->spa_state = POOL_STATE_UNINITIALIZED;
1879
1880 mutex_enter(&spa->spa_proc_lock);
1881 if (spa->spa_proc_state != SPA_PROC_NONE) {
1882 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1883 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1884 cv_broadcast(&spa->spa_proc_cv);
1885 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1886 ASSERT(spa->spa_proc != &p0);
1887 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1888 }
1889 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1890 spa->spa_proc_state = SPA_PROC_NONE;
1891 }
1892 ASSERT(spa->spa_proc == &p0);
1893 mutex_exit(&spa->spa_proc_lock);
1894
1895 /*
1896 * We want to make sure spa_thread() has actually exited the ZFS
1897 * module, so that the module can't be unloaded out from underneath
1898 * it.
1899 */
1900 if (spa->spa_did != 0) {
1901 thread_join(spa->spa_did);
1902 spa->spa_did = 0;
1903 }
1904
1905 spa_deactivate_os(spa);
1906
1907 }
1908
1909 /*
1910 * Verify a pool configuration, and construct the vdev tree appropriately. This
1911 * will create all the necessary vdevs in the appropriate layout, with each vdev
1912 * in the CLOSED state. This will prep the pool before open/creation/import.
1913 * All vdev validation is done by the vdev_alloc() routine.
1914 */
1915 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1916 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1917 uint_t id, int atype)
1918 {
1919 nvlist_t **child;
1920 uint_t children;
1921 int error;
1922
1923 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1924 return (error);
1925
1926 if ((*vdp)->vdev_ops->vdev_op_leaf)
1927 return (0);
1928
1929 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1930 &child, &children);
1931
1932 if (error == ENOENT)
1933 return (0);
1934
1935 if (error) {
1936 vdev_free(*vdp);
1937 *vdp = NULL;
1938 return (SET_ERROR(EINVAL));
1939 }
1940
1941 for (int c = 0; c < children; c++) {
1942 vdev_t *vd;
1943 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1944 atype)) != 0) {
1945 vdev_free(*vdp);
1946 *vdp = NULL;
1947 return (error);
1948 }
1949 }
1950
1951 ASSERT(*vdp != NULL);
1952
1953 return (0);
1954 }
1955
1956 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1957 spa_should_flush_logs_on_unload(spa_t *spa)
1958 {
1959 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1960 return (B_FALSE);
1961
1962 if (!spa_writeable(spa))
1963 return (B_FALSE);
1964
1965 if (!spa->spa_sync_on)
1966 return (B_FALSE);
1967
1968 if (spa_state(spa) != POOL_STATE_EXPORTED)
1969 return (B_FALSE);
1970
1971 if (zfs_keep_log_spacemaps_at_export)
1972 return (B_FALSE);
1973
1974 return (B_TRUE);
1975 }
1976
1977 /*
1978 * Opens a transaction that will set the flag that will instruct
1979 * spa_sync to attempt to flush all the metaslabs for that txg.
1980 */
1981 static void
spa_unload_log_sm_flush_all(spa_t * spa)1982 spa_unload_log_sm_flush_all(spa_t *spa)
1983 {
1984 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1985 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1986
1987 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1988 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1989
1990 dmu_tx_commit(tx);
1991 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1992 }
1993
1994 static void
spa_unload_log_sm_metadata(spa_t * spa)1995 spa_unload_log_sm_metadata(spa_t *spa)
1996 {
1997 void *cookie = NULL;
1998 spa_log_sm_t *sls;
1999 log_summary_entry_t *e;
2000
2001 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2002 &cookie)) != NULL) {
2003 VERIFY0(sls->sls_mscount);
2004 kmem_free(sls, sizeof (spa_log_sm_t));
2005 }
2006
2007 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2008 VERIFY0(e->lse_mscount);
2009 kmem_free(e, sizeof (log_summary_entry_t));
2010 }
2011
2012 spa->spa_unflushed_stats.sus_nblocks = 0;
2013 spa->spa_unflushed_stats.sus_memused = 0;
2014 spa->spa_unflushed_stats.sus_blocklimit = 0;
2015 }
2016
2017 static void
spa_destroy_aux_threads(spa_t * spa)2018 spa_destroy_aux_threads(spa_t *spa)
2019 {
2020 if (spa->spa_condense_zthr != NULL) {
2021 zthr_destroy(spa->spa_condense_zthr);
2022 spa->spa_condense_zthr = NULL;
2023 }
2024 if (spa->spa_checkpoint_discard_zthr != NULL) {
2025 zthr_destroy(spa->spa_checkpoint_discard_zthr);
2026 spa->spa_checkpoint_discard_zthr = NULL;
2027 }
2028 if (spa->spa_livelist_delete_zthr != NULL) {
2029 zthr_destroy(spa->spa_livelist_delete_zthr);
2030 spa->spa_livelist_delete_zthr = NULL;
2031 }
2032 if (spa->spa_livelist_condense_zthr != NULL) {
2033 zthr_destroy(spa->spa_livelist_condense_zthr);
2034 spa->spa_livelist_condense_zthr = NULL;
2035 }
2036 if (spa->spa_raidz_expand_zthr != NULL) {
2037 zthr_destroy(spa->spa_raidz_expand_zthr);
2038 spa->spa_raidz_expand_zthr = NULL;
2039 }
2040 }
2041
2042 /*
2043 * Opposite of spa_load().
2044 */
2045 static void
spa_unload(spa_t * spa)2046 spa_unload(spa_t *spa)
2047 {
2048 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2049 spa->spa_export_thread == curthread);
2050 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2051
2052 spa_import_progress_remove(spa_guid(spa));
2053 spa_load_note(spa, "UNLOADING");
2054
2055 spa_wake_waiters(spa);
2056
2057 /*
2058 * If we have set the spa_final_txg, we have already performed the
2059 * tasks below in spa_export_common(). We should not redo it here since
2060 * we delay the final TXGs beyond what spa_final_txg is set at.
2061 */
2062 if (spa->spa_final_txg == UINT64_MAX) {
2063 /*
2064 * If the log space map feature is enabled and the pool is
2065 * getting exported (but not destroyed), we want to spend some
2066 * time flushing as many metaslabs as we can in an attempt to
2067 * destroy log space maps and save import time.
2068 */
2069 if (spa_should_flush_logs_on_unload(spa))
2070 spa_unload_log_sm_flush_all(spa);
2071
2072 /*
2073 * Stop async tasks.
2074 */
2075 spa_async_suspend(spa);
2076
2077 if (spa->spa_root_vdev) {
2078 vdev_t *root_vdev = spa->spa_root_vdev;
2079 vdev_initialize_stop_all(root_vdev,
2080 VDEV_INITIALIZE_ACTIVE);
2081 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2082 vdev_autotrim_stop_all(spa);
2083 vdev_rebuild_stop_all(spa);
2084 l2arc_spa_rebuild_stop(spa);
2085 }
2086 }
2087
2088 /*
2089 * Stop syncing.
2090 */
2091 if (spa->spa_sync_on) {
2092 txg_sync_stop(spa->spa_dsl_pool);
2093 spa->spa_sync_on = B_FALSE;
2094 }
2095
2096 /*
2097 * This ensures that there is no async metaslab prefetching
2098 * while we attempt to unload the spa.
2099 */
2100 taskq_wait(spa->spa_metaslab_taskq);
2101
2102 if (spa->spa_mmp.mmp_thread)
2103 mmp_thread_stop(spa);
2104
2105 /*
2106 * Wait for any outstanding async I/O to complete.
2107 */
2108 if (spa->spa_async_zio_root != NULL) {
2109 for (int i = 0; i < max_ncpus; i++)
2110 (void) zio_wait(spa->spa_async_zio_root[i]);
2111 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2112 spa->spa_async_zio_root = NULL;
2113 }
2114
2115 if (spa->spa_vdev_removal != NULL) {
2116 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2117 spa->spa_vdev_removal = NULL;
2118 }
2119
2120 spa_destroy_aux_threads(spa);
2121
2122 spa_condense_fini(spa);
2123
2124 bpobj_close(&spa->spa_deferred_bpobj);
2125
2126 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2127
2128 /*
2129 * Close all vdevs.
2130 */
2131 if (spa->spa_root_vdev)
2132 vdev_free(spa->spa_root_vdev);
2133 ASSERT(spa->spa_root_vdev == NULL);
2134
2135 /*
2136 * Close the dsl pool.
2137 */
2138 if (spa->spa_dsl_pool) {
2139 dsl_pool_close(spa->spa_dsl_pool);
2140 spa->spa_dsl_pool = NULL;
2141 spa->spa_meta_objset = NULL;
2142 }
2143
2144 ddt_unload(spa);
2145 brt_unload(spa);
2146 spa_unload_log_sm_metadata(spa);
2147
2148 /*
2149 * Drop and purge level 2 cache
2150 */
2151 spa_l2cache_drop(spa);
2152
2153 if (spa->spa_spares.sav_vdevs) {
2154 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2155 vdev_free(spa->spa_spares.sav_vdevs[i]);
2156 kmem_free(spa->spa_spares.sav_vdevs,
2157 spa->spa_spares.sav_count * sizeof (void *));
2158 spa->spa_spares.sav_vdevs = NULL;
2159 }
2160 if (spa->spa_spares.sav_config) {
2161 nvlist_free(spa->spa_spares.sav_config);
2162 spa->spa_spares.sav_config = NULL;
2163 }
2164 spa->spa_spares.sav_count = 0;
2165
2166 if (spa->spa_l2cache.sav_vdevs) {
2167 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2168 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2169 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2170 }
2171 kmem_free(spa->spa_l2cache.sav_vdevs,
2172 spa->spa_l2cache.sav_count * sizeof (void *));
2173 spa->spa_l2cache.sav_vdevs = NULL;
2174 }
2175 if (spa->spa_l2cache.sav_config) {
2176 nvlist_free(spa->spa_l2cache.sav_config);
2177 spa->spa_l2cache.sav_config = NULL;
2178 }
2179 spa->spa_l2cache.sav_count = 0;
2180
2181 spa->spa_async_suspended = 0;
2182
2183 spa->spa_indirect_vdevs_loaded = B_FALSE;
2184
2185 if (spa->spa_comment != NULL) {
2186 spa_strfree(spa->spa_comment);
2187 spa->spa_comment = NULL;
2188 }
2189 if (spa->spa_compatibility != NULL) {
2190 spa_strfree(spa->spa_compatibility);
2191 spa->spa_compatibility = NULL;
2192 }
2193
2194 spa->spa_raidz_expand = NULL;
2195
2196 spa_config_exit(spa, SCL_ALL, spa);
2197 }
2198
2199 /*
2200 * Load (or re-load) the current list of vdevs describing the active spares for
2201 * this pool. When this is called, we have some form of basic information in
2202 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2203 * then re-generate a more complete list including status information.
2204 */
2205 void
spa_load_spares(spa_t * spa)2206 spa_load_spares(spa_t *spa)
2207 {
2208 nvlist_t **spares;
2209 uint_t nspares;
2210 int i;
2211 vdev_t *vd, *tvd;
2212
2213 #ifndef _KERNEL
2214 /*
2215 * zdb opens both the current state of the pool and the
2216 * checkpointed state (if present), with a different spa_t.
2217 *
2218 * As spare vdevs are shared among open pools, we skip loading
2219 * them when we load the checkpointed state of the pool.
2220 */
2221 if (!spa_writeable(spa))
2222 return;
2223 #endif
2224
2225 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2226
2227 /*
2228 * First, close and free any existing spare vdevs.
2229 */
2230 if (spa->spa_spares.sav_vdevs) {
2231 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2232 vd = spa->spa_spares.sav_vdevs[i];
2233
2234 /* Undo the call to spa_activate() below */
2235 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2236 B_FALSE)) != NULL && tvd->vdev_isspare)
2237 spa_spare_remove(tvd);
2238 vdev_close(vd);
2239 vdev_free(vd);
2240 }
2241
2242 kmem_free(spa->spa_spares.sav_vdevs,
2243 spa->spa_spares.sav_count * sizeof (void *));
2244 }
2245
2246 if (spa->spa_spares.sav_config == NULL)
2247 nspares = 0;
2248 else
2249 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2250 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2251
2252 spa->spa_spares.sav_count = (int)nspares;
2253 spa->spa_spares.sav_vdevs = NULL;
2254
2255 if (nspares == 0)
2256 return;
2257
2258 /*
2259 * Construct the array of vdevs, opening them to get status in the
2260 * process. For each spare, there is potentially two different vdev_t
2261 * structures associated with it: one in the list of spares (used only
2262 * for basic validation purposes) and one in the active vdev
2263 * configuration (if it's spared in). During this phase we open and
2264 * validate each vdev on the spare list. If the vdev also exists in the
2265 * active configuration, then we also mark this vdev as an active spare.
2266 */
2267 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2268 KM_SLEEP);
2269 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2270 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2271 VDEV_ALLOC_SPARE) == 0);
2272 ASSERT(vd != NULL);
2273
2274 spa->spa_spares.sav_vdevs[i] = vd;
2275
2276 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2277 B_FALSE)) != NULL) {
2278 if (!tvd->vdev_isspare)
2279 spa_spare_add(tvd);
2280
2281 /*
2282 * We only mark the spare active if we were successfully
2283 * able to load the vdev. Otherwise, importing a pool
2284 * with a bad active spare would result in strange
2285 * behavior, because multiple pool would think the spare
2286 * is actively in use.
2287 *
2288 * There is a vulnerability here to an equally bizarre
2289 * circumstance, where a dead active spare is later
2290 * brought back to life (onlined or otherwise). Given
2291 * the rarity of this scenario, and the extra complexity
2292 * it adds, we ignore the possibility.
2293 */
2294 if (!vdev_is_dead(tvd))
2295 spa_spare_activate(tvd);
2296 }
2297
2298 vd->vdev_top = vd;
2299 vd->vdev_aux = &spa->spa_spares;
2300
2301 if (vdev_open(vd) != 0)
2302 continue;
2303
2304 if (vdev_validate_aux(vd) == 0)
2305 spa_spare_add(vd);
2306 }
2307
2308 /*
2309 * Recompute the stashed list of spares, with status information
2310 * this time.
2311 */
2312 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2313
2314 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2315 KM_SLEEP);
2316 for (i = 0; i < spa->spa_spares.sav_count; i++)
2317 spares[i] = vdev_config_generate(spa,
2318 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2319 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2320 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2321 spa->spa_spares.sav_count);
2322 for (i = 0; i < spa->spa_spares.sav_count; i++)
2323 nvlist_free(spares[i]);
2324 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2325 }
2326
2327 /*
2328 * Load (or re-load) the current list of vdevs describing the active l2cache for
2329 * this pool. When this is called, we have some form of basic information in
2330 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2331 * then re-generate a more complete list including status information.
2332 * Devices which are already active have their details maintained, and are
2333 * not re-opened.
2334 */
2335 void
spa_load_l2cache(spa_t * spa)2336 spa_load_l2cache(spa_t *spa)
2337 {
2338 nvlist_t **l2cache = NULL;
2339 uint_t nl2cache;
2340 int i, j, oldnvdevs;
2341 uint64_t guid;
2342 vdev_t *vd, **oldvdevs, **newvdevs;
2343 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2344
2345 #ifndef _KERNEL
2346 /*
2347 * zdb opens both the current state of the pool and the
2348 * checkpointed state (if present), with a different spa_t.
2349 *
2350 * As L2 caches are part of the ARC which is shared among open
2351 * pools, we skip loading them when we load the checkpointed
2352 * state of the pool.
2353 */
2354 if (!spa_writeable(spa))
2355 return;
2356 #endif
2357
2358 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2359
2360 oldvdevs = sav->sav_vdevs;
2361 oldnvdevs = sav->sav_count;
2362 sav->sav_vdevs = NULL;
2363 sav->sav_count = 0;
2364
2365 if (sav->sav_config == NULL) {
2366 nl2cache = 0;
2367 newvdevs = NULL;
2368 goto out;
2369 }
2370
2371 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2372 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2373 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2374
2375 /*
2376 * Process new nvlist of vdevs.
2377 */
2378 for (i = 0; i < nl2cache; i++) {
2379 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2380
2381 newvdevs[i] = NULL;
2382 for (j = 0; j < oldnvdevs; j++) {
2383 vd = oldvdevs[j];
2384 if (vd != NULL && guid == vd->vdev_guid) {
2385 /*
2386 * Retain previous vdev for add/remove ops.
2387 */
2388 newvdevs[i] = vd;
2389 oldvdevs[j] = NULL;
2390 break;
2391 }
2392 }
2393
2394 if (newvdevs[i] == NULL) {
2395 /*
2396 * Create new vdev
2397 */
2398 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2399 VDEV_ALLOC_L2CACHE) == 0);
2400 ASSERT(vd != NULL);
2401 newvdevs[i] = vd;
2402
2403 /*
2404 * Commit this vdev as an l2cache device,
2405 * even if it fails to open.
2406 */
2407 spa_l2cache_add(vd);
2408
2409 vd->vdev_top = vd;
2410 vd->vdev_aux = sav;
2411
2412 spa_l2cache_activate(vd);
2413
2414 if (vdev_open(vd) != 0)
2415 continue;
2416
2417 (void) vdev_validate_aux(vd);
2418
2419 if (!vdev_is_dead(vd))
2420 l2arc_add_vdev(spa, vd);
2421
2422 /*
2423 * Upon cache device addition to a pool or pool
2424 * creation with a cache device or if the header
2425 * of the device is invalid we issue an async
2426 * TRIM command for the whole device which will
2427 * execute if l2arc_trim_ahead > 0.
2428 */
2429 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2430 }
2431 }
2432
2433 sav->sav_vdevs = newvdevs;
2434 sav->sav_count = (int)nl2cache;
2435
2436 /*
2437 * Recompute the stashed list of l2cache devices, with status
2438 * information this time.
2439 */
2440 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2441
2442 if (sav->sav_count > 0)
2443 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2444 KM_SLEEP);
2445 for (i = 0; i < sav->sav_count; i++)
2446 l2cache[i] = vdev_config_generate(spa,
2447 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2448 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2449 (const nvlist_t * const *)l2cache, sav->sav_count);
2450
2451 out:
2452 /*
2453 * Purge vdevs that were dropped
2454 */
2455 if (oldvdevs) {
2456 for (i = 0; i < oldnvdevs; i++) {
2457 uint64_t pool;
2458
2459 vd = oldvdevs[i];
2460 if (vd != NULL) {
2461 ASSERT(vd->vdev_isl2cache);
2462
2463 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2464 pool != 0ULL && l2arc_vdev_present(vd))
2465 l2arc_remove_vdev(vd);
2466 vdev_clear_stats(vd);
2467 vdev_free(vd);
2468 }
2469 }
2470
2471 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2472 }
2473
2474 for (i = 0; i < sav->sav_count; i++)
2475 nvlist_free(l2cache[i]);
2476 if (sav->sav_count)
2477 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2478 }
2479
2480 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2481 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2482 {
2483 dmu_buf_t *db;
2484 char *packed = NULL;
2485 size_t nvsize = 0;
2486 int error;
2487 *value = NULL;
2488
2489 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2490 if (error)
2491 return (error);
2492
2493 nvsize = *(uint64_t *)db->db_data;
2494 dmu_buf_rele(db, FTAG);
2495
2496 packed = vmem_alloc(nvsize, KM_SLEEP);
2497 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2498 DMU_READ_PREFETCH);
2499 if (error == 0)
2500 error = nvlist_unpack(packed, nvsize, value, 0);
2501 vmem_free(packed, nvsize);
2502
2503 return (error);
2504 }
2505
2506 /*
2507 * Concrete top-level vdevs that are not missing and are not logs. At every
2508 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2509 */
2510 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2511 spa_healthy_core_tvds(spa_t *spa)
2512 {
2513 vdev_t *rvd = spa->spa_root_vdev;
2514 uint64_t tvds = 0;
2515
2516 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2517 vdev_t *vd = rvd->vdev_child[i];
2518 if (vd->vdev_islog)
2519 continue;
2520 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2521 tvds++;
2522 }
2523
2524 return (tvds);
2525 }
2526
2527 /*
2528 * Checks to see if the given vdev could not be opened, in which case we post a
2529 * sysevent to notify the autoreplace code that the device has been removed.
2530 */
2531 static void
spa_check_removed(vdev_t * vd)2532 spa_check_removed(vdev_t *vd)
2533 {
2534 for (uint64_t c = 0; c < vd->vdev_children; c++)
2535 spa_check_removed(vd->vdev_child[c]);
2536
2537 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2538 vdev_is_concrete(vd)) {
2539 zfs_post_autoreplace(vd->vdev_spa, vd);
2540 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2541 }
2542 }
2543
2544 static int
spa_check_for_missing_logs(spa_t * spa)2545 spa_check_for_missing_logs(spa_t *spa)
2546 {
2547 vdev_t *rvd = spa->spa_root_vdev;
2548
2549 /*
2550 * If we're doing a normal import, then build up any additional
2551 * diagnostic information about missing log devices.
2552 * We'll pass this up to the user for further processing.
2553 */
2554 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2555 nvlist_t **child, *nv;
2556 uint64_t idx = 0;
2557
2558 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2559 KM_SLEEP);
2560 nv = fnvlist_alloc();
2561
2562 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2563 vdev_t *tvd = rvd->vdev_child[c];
2564
2565 /*
2566 * We consider a device as missing only if it failed
2567 * to open (i.e. offline or faulted is not considered
2568 * as missing).
2569 */
2570 if (tvd->vdev_islog &&
2571 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2572 child[idx++] = vdev_config_generate(spa, tvd,
2573 B_FALSE, VDEV_CONFIG_MISSING);
2574 }
2575 }
2576
2577 if (idx > 0) {
2578 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2579 (const nvlist_t * const *)child, idx);
2580 fnvlist_add_nvlist(spa->spa_load_info,
2581 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2582
2583 for (uint64_t i = 0; i < idx; i++)
2584 nvlist_free(child[i]);
2585 }
2586 nvlist_free(nv);
2587 kmem_free(child, rvd->vdev_children * sizeof (char **));
2588
2589 if (idx > 0) {
2590 spa_load_failed(spa, "some log devices are missing");
2591 vdev_dbgmsg_print_tree(rvd, 2);
2592 return (SET_ERROR(ENXIO));
2593 }
2594 } else {
2595 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2596 vdev_t *tvd = rvd->vdev_child[c];
2597
2598 if (tvd->vdev_islog &&
2599 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2600 spa_set_log_state(spa, SPA_LOG_CLEAR);
2601 spa_load_note(spa, "some log devices are "
2602 "missing, ZIL is dropped.");
2603 vdev_dbgmsg_print_tree(rvd, 2);
2604 break;
2605 }
2606 }
2607 }
2608
2609 return (0);
2610 }
2611
2612 /*
2613 * Check for missing log devices
2614 */
2615 static boolean_t
spa_check_logs(spa_t * spa)2616 spa_check_logs(spa_t *spa)
2617 {
2618 boolean_t rv = B_FALSE;
2619 dsl_pool_t *dp = spa_get_dsl(spa);
2620
2621 switch (spa->spa_log_state) {
2622 default:
2623 break;
2624 case SPA_LOG_MISSING:
2625 /* need to recheck in case slog has been restored */
2626 case SPA_LOG_UNKNOWN:
2627 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2628 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2629 if (rv)
2630 spa_set_log_state(spa, SPA_LOG_MISSING);
2631 break;
2632 }
2633 return (rv);
2634 }
2635
2636 /*
2637 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2638 */
2639 static boolean_t
spa_passivate_log(spa_t * spa)2640 spa_passivate_log(spa_t *spa)
2641 {
2642 vdev_t *rvd = spa->spa_root_vdev;
2643 boolean_t slog_found = B_FALSE;
2644
2645 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2646
2647 for (int c = 0; c < rvd->vdev_children; c++) {
2648 vdev_t *tvd = rvd->vdev_child[c];
2649
2650 if (tvd->vdev_islog) {
2651 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2652 metaslab_group_passivate(tvd->vdev_mg);
2653 slog_found = B_TRUE;
2654 }
2655 }
2656
2657 return (slog_found);
2658 }
2659
2660 /*
2661 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2662 */
2663 static void
spa_activate_log(spa_t * spa)2664 spa_activate_log(spa_t *spa)
2665 {
2666 vdev_t *rvd = spa->spa_root_vdev;
2667
2668 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2669
2670 for (int c = 0; c < rvd->vdev_children; c++) {
2671 vdev_t *tvd = rvd->vdev_child[c];
2672
2673 if (tvd->vdev_islog) {
2674 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2675 metaslab_group_activate(tvd->vdev_mg);
2676 }
2677 }
2678 }
2679
2680 int
spa_reset_logs(spa_t * spa)2681 spa_reset_logs(spa_t *spa)
2682 {
2683 int error;
2684
2685 error = dmu_objset_find(spa_name(spa), zil_reset,
2686 NULL, DS_FIND_CHILDREN);
2687 if (error == 0) {
2688 /*
2689 * We successfully offlined the log device, sync out the
2690 * current txg so that the "stubby" block can be removed
2691 * by zil_sync().
2692 */
2693 txg_wait_synced(spa->spa_dsl_pool, 0);
2694 }
2695 return (error);
2696 }
2697
2698 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2699 spa_aux_check_removed(spa_aux_vdev_t *sav)
2700 {
2701 for (int i = 0; i < sav->sav_count; i++)
2702 spa_check_removed(sav->sav_vdevs[i]);
2703 }
2704
2705 void
spa_claim_notify(zio_t * zio)2706 spa_claim_notify(zio_t *zio)
2707 {
2708 spa_t *spa = zio->io_spa;
2709
2710 if (zio->io_error)
2711 return;
2712
2713 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2714 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2715 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2716 mutex_exit(&spa->spa_props_lock);
2717 }
2718
2719 typedef struct spa_load_error {
2720 boolean_t sle_verify_data;
2721 uint64_t sle_meta_count;
2722 uint64_t sle_data_count;
2723 } spa_load_error_t;
2724
2725 static void
spa_load_verify_done(zio_t * zio)2726 spa_load_verify_done(zio_t *zio)
2727 {
2728 blkptr_t *bp = zio->io_bp;
2729 spa_load_error_t *sle = zio->io_private;
2730 dmu_object_type_t type = BP_GET_TYPE(bp);
2731 int error = zio->io_error;
2732 spa_t *spa = zio->io_spa;
2733
2734 abd_free(zio->io_abd);
2735 if (error) {
2736 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2737 type != DMU_OT_INTENT_LOG)
2738 atomic_inc_64(&sle->sle_meta_count);
2739 else
2740 atomic_inc_64(&sle->sle_data_count);
2741 }
2742
2743 mutex_enter(&spa->spa_scrub_lock);
2744 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2745 cv_broadcast(&spa->spa_scrub_io_cv);
2746 mutex_exit(&spa->spa_scrub_lock);
2747 }
2748
2749 /*
2750 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2751 * By default, we set it to 1/16th of the arc.
2752 */
2753 static uint_t spa_load_verify_shift = 4;
2754 static int spa_load_verify_metadata = B_TRUE;
2755 static int spa_load_verify_data = B_TRUE;
2756
2757 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2758 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2759 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2760 {
2761 zio_t *rio = arg;
2762 spa_load_error_t *sle = rio->io_private;
2763
2764 (void) zilog, (void) dnp;
2765
2766 /*
2767 * Note: normally this routine will not be called if
2768 * spa_load_verify_metadata is not set. However, it may be useful
2769 * to manually set the flag after the traversal has begun.
2770 */
2771 if (!spa_load_verify_metadata)
2772 return (0);
2773
2774 /*
2775 * Sanity check the block pointer in order to detect obvious damage
2776 * before using the contents in subsequent checks or in zio_read().
2777 * When damaged consider it to be a metadata error since we cannot
2778 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2779 */
2780 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2781 atomic_inc_64(&sle->sle_meta_count);
2782 return (0);
2783 }
2784
2785 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2786 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2787 return (0);
2788
2789 if (!BP_IS_METADATA(bp) &&
2790 (!spa_load_verify_data || !sle->sle_verify_data))
2791 return (0);
2792
2793 uint64_t maxinflight_bytes =
2794 arc_target_bytes() >> spa_load_verify_shift;
2795 size_t size = BP_GET_PSIZE(bp);
2796
2797 mutex_enter(&spa->spa_scrub_lock);
2798 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2799 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2800 spa->spa_load_verify_bytes += size;
2801 mutex_exit(&spa->spa_scrub_lock);
2802
2803 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2804 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2805 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2806 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2807 return (0);
2808 }
2809
2810 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2811 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2812 {
2813 (void) dp, (void) arg;
2814
2815 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2816 return (SET_ERROR(ENAMETOOLONG));
2817
2818 return (0);
2819 }
2820
2821 static int
spa_load_verify(spa_t * spa)2822 spa_load_verify(spa_t *spa)
2823 {
2824 zio_t *rio;
2825 spa_load_error_t sle = { 0 };
2826 zpool_load_policy_t policy;
2827 boolean_t verify_ok = B_FALSE;
2828 int error = 0;
2829
2830 zpool_get_load_policy(spa->spa_config, &policy);
2831
2832 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2833 policy.zlp_maxmeta == UINT64_MAX)
2834 return (0);
2835
2836 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2837 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2838 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2839 DS_FIND_CHILDREN);
2840 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2841 if (error != 0)
2842 return (error);
2843
2844 /*
2845 * Verify data only if we are rewinding or error limit was set.
2846 * Otherwise nothing except dbgmsg care about it to waste time.
2847 */
2848 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2849 (policy.zlp_maxdata < UINT64_MAX);
2850
2851 rio = zio_root(spa, NULL, &sle,
2852 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2853
2854 if (spa_load_verify_metadata) {
2855 if (spa->spa_extreme_rewind) {
2856 spa_load_note(spa, "performing a complete scan of the "
2857 "pool since extreme rewind is on. This may take "
2858 "a very long time.\n (spa_load_verify_data=%u, "
2859 "spa_load_verify_metadata=%u)",
2860 spa_load_verify_data, spa_load_verify_metadata);
2861 }
2862
2863 error = traverse_pool(spa, spa->spa_verify_min_txg,
2864 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2865 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2866 }
2867
2868 (void) zio_wait(rio);
2869 ASSERT0(spa->spa_load_verify_bytes);
2870
2871 spa->spa_load_meta_errors = sle.sle_meta_count;
2872 spa->spa_load_data_errors = sle.sle_data_count;
2873
2874 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2875 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2876 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2877 (u_longlong_t)sle.sle_data_count);
2878 }
2879
2880 if (spa_load_verify_dryrun ||
2881 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2882 sle.sle_data_count <= policy.zlp_maxdata)) {
2883 int64_t loss = 0;
2884
2885 verify_ok = B_TRUE;
2886 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2887 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2888
2889 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2890 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2891 spa->spa_load_txg_ts);
2892 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2893 loss);
2894 fnvlist_add_uint64(spa->spa_load_info,
2895 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2896 fnvlist_add_uint64(spa->spa_load_info,
2897 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2898 } else {
2899 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2900 }
2901
2902 if (spa_load_verify_dryrun)
2903 return (0);
2904
2905 if (error) {
2906 if (error != ENXIO && error != EIO)
2907 error = SET_ERROR(EIO);
2908 return (error);
2909 }
2910
2911 return (verify_ok ? 0 : EIO);
2912 }
2913
2914 /*
2915 * Find a value in the pool props object.
2916 */
2917 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2918 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2919 {
2920 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2921 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2922 }
2923
2924 /*
2925 * Find a value in the pool directory object.
2926 */
2927 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2928 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2929 {
2930 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2931 name, sizeof (uint64_t), 1, val);
2932
2933 if (error != 0 && (error != ENOENT || log_enoent)) {
2934 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2935 "[error=%d]", name, error);
2936 }
2937
2938 return (error);
2939 }
2940
2941 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2942 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2943 {
2944 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2945 return (SET_ERROR(err));
2946 }
2947
2948 boolean_t
spa_livelist_delete_check(spa_t * spa)2949 spa_livelist_delete_check(spa_t *spa)
2950 {
2951 return (spa->spa_livelists_to_delete != 0);
2952 }
2953
2954 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)2955 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2956 {
2957 (void) z;
2958 spa_t *spa = arg;
2959 return (spa_livelist_delete_check(spa));
2960 }
2961
2962 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2963 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2964 {
2965 spa_t *spa = arg;
2966 zio_free(spa, tx->tx_txg, bp);
2967 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2968 -bp_get_dsize_sync(spa, bp),
2969 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2970 return (0);
2971 }
2972
2973 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)2974 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2975 {
2976 int err;
2977 zap_cursor_t zc;
2978 zap_attribute_t *za = zap_attribute_alloc();
2979 zap_cursor_init(&zc, os, zap_obj);
2980 err = zap_cursor_retrieve(&zc, za);
2981 zap_cursor_fini(&zc);
2982 if (err == 0)
2983 *llp = za->za_first_integer;
2984 zap_attribute_free(za);
2985 return (err);
2986 }
2987
2988 /*
2989 * Components of livelist deletion that must be performed in syncing
2990 * context: freeing block pointers and updating the pool-wide data
2991 * structures to indicate how much work is left to do
2992 */
2993 typedef struct sublist_delete_arg {
2994 spa_t *spa;
2995 dsl_deadlist_t *ll;
2996 uint64_t key;
2997 bplist_t *to_free;
2998 } sublist_delete_arg_t;
2999
3000 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3001 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3002 {
3003 sublist_delete_arg_t *sda = arg;
3004 spa_t *spa = sda->spa;
3005 dsl_deadlist_t *ll = sda->ll;
3006 uint64_t key = sda->key;
3007 bplist_t *to_free = sda->to_free;
3008
3009 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3010 dsl_deadlist_remove_entry(ll, key, tx);
3011 }
3012
3013 typedef struct livelist_delete_arg {
3014 spa_t *spa;
3015 uint64_t ll_obj;
3016 uint64_t zap_obj;
3017 } livelist_delete_arg_t;
3018
3019 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3020 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3021 {
3022 livelist_delete_arg_t *lda = arg;
3023 spa_t *spa = lda->spa;
3024 uint64_t ll_obj = lda->ll_obj;
3025 uint64_t zap_obj = lda->zap_obj;
3026 objset_t *mos = spa->spa_meta_objset;
3027 uint64_t count;
3028
3029 /* free the livelist and decrement the feature count */
3030 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3031 dsl_deadlist_free(mos, ll_obj, tx);
3032 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3033 VERIFY0(zap_count(mos, zap_obj, &count));
3034 if (count == 0) {
3035 /* no more livelists to delete */
3036 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3037 DMU_POOL_DELETED_CLONES, tx));
3038 VERIFY0(zap_destroy(mos, zap_obj, tx));
3039 spa->spa_livelists_to_delete = 0;
3040 spa_notify_waiters(spa);
3041 }
3042 }
3043
3044 /*
3045 * Load in the value for the livelist to be removed and open it. Then,
3046 * load its first sublist and determine which block pointers should actually
3047 * be freed. Then, call a synctask which performs the actual frees and updates
3048 * the pool-wide livelist data.
3049 */
3050 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3051 spa_livelist_delete_cb(void *arg, zthr_t *z)
3052 {
3053 spa_t *spa = arg;
3054 uint64_t ll_obj = 0, count;
3055 objset_t *mos = spa->spa_meta_objset;
3056 uint64_t zap_obj = spa->spa_livelists_to_delete;
3057 /*
3058 * Determine the next livelist to delete. This function should only
3059 * be called if there is at least one deleted clone.
3060 */
3061 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3062 VERIFY0(zap_count(mos, ll_obj, &count));
3063 if (count > 0) {
3064 dsl_deadlist_t *ll;
3065 dsl_deadlist_entry_t *dle;
3066 bplist_t to_free;
3067 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3068 dsl_deadlist_open(ll, mos, ll_obj);
3069 dle = dsl_deadlist_first(ll);
3070 ASSERT3P(dle, !=, NULL);
3071 bplist_create(&to_free);
3072 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3073 z, NULL);
3074 if (err == 0) {
3075 sublist_delete_arg_t sync_arg = {
3076 .spa = spa,
3077 .ll = ll,
3078 .key = dle->dle_mintxg,
3079 .to_free = &to_free
3080 };
3081 zfs_dbgmsg("deleting sublist (id %llu) from"
3082 " livelist %llu, %lld remaining",
3083 (u_longlong_t)dle->dle_bpobj.bpo_object,
3084 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3085 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3086 sublist_delete_sync, &sync_arg, 0,
3087 ZFS_SPACE_CHECK_DESTROY));
3088 } else {
3089 VERIFY3U(err, ==, EINTR);
3090 }
3091 bplist_clear(&to_free);
3092 bplist_destroy(&to_free);
3093 dsl_deadlist_close(ll);
3094 kmem_free(ll, sizeof (dsl_deadlist_t));
3095 } else {
3096 livelist_delete_arg_t sync_arg = {
3097 .spa = spa,
3098 .ll_obj = ll_obj,
3099 .zap_obj = zap_obj
3100 };
3101 zfs_dbgmsg("deletion of livelist %llu completed",
3102 (u_longlong_t)ll_obj);
3103 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3104 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3105 }
3106 }
3107
3108 static void
spa_start_livelist_destroy_thread(spa_t * spa)3109 spa_start_livelist_destroy_thread(spa_t *spa)
3110 {
3111 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3112 spa->spa_livelist_delete_zthr =
3113 zthr_create("z_livelist_destroy",
3114 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3115 minclsyspri);
3116 }
3117
3118 typedef struct livelist_new_arg {
3119 bplist_t *allocs;
3120 bplist_t *frees;
3121 } livelist_new_arg_t;
3122
3123 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3124 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3125 dmu_tx_t *tx)
3126 {
3127 ASSERT(tx == NULL);
3128 livelist_new_arg_t *lna = arg;
3129 if (bp_freed) {
3130 bplist_append(lna->frees, bp);
3131 } else {
3132 bplist_append(lna->allocs, bp);
3133 zfs_livelist_condense_new_alloc++;
3134 }
3135 return (0);
3136 }
3137
3138 typedef struct livelist_condense_arg {
3139 spa_t *spa;
3140 bplist_t to_keep;
3141 uint64_t first_size;
3142 uint64_t next_size;
3143 } livelist_condense_arg_t;
3144
3145 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3146 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3147 {
3148 livelist_condense_arg_t *lca = arg;
3149 spa_t *spa = lca->spa;
3150 bplist_t new_frees;
3151 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3152
3153 /* Have we been cancelled? */
3154 if (spa->spa_to_condense.cancelled) {
3155 zfs_livelist_condense_sync_cancel++;
3156 goto out;
3157 }
3158
3159 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3160 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3161 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3162
3163 /*
3164 * It's possible that the livelist was changed while the zthr was
3165 * running. Therefore, we need to check for new blkptrs in the two
3166 * entries being condensed and continue to track them in the livelist.
3167 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3168 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3169 * we need to sort them into two different bplists.
3170 */
3171 uint64_t first_obj = first->dle_bpobj.bpo_object;
3172 uint64_t next_obj = next->dle_bpobj.bpo_object;
3173 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3174 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3175
3176 bplist_create(&new_frees);
3177 livelist_new_arg_t new_bps = {
3178 .allocs = &lca->to_keep,
3179 .frees = &new_frees,
3180 };
3181
3182 if (cur_first_size > lca->first_size) {
3183 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3184 livelist_track_new_cb, &new_bps, lca->first_size));
3185 }
3186 if (cur_next_size > lca->next_size) {
3187 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3188 livelist_track_new_cb, &new_bps, lca->next_size));
3189 }
3190
3191 dsl_deadlist_clear_entry(first, ll, tx);
3192 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3193 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3194
3195 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3196 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3197 bplist_destroy(&new_frees);
3198
3199 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3200 dsl_dataset_name(ds, dsname);
3201 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3202 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3203 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3204 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3205 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3206 (u_longlong_t)cur_next_size,
3207 (u_longlong_t)first->dle_bpobj.bpo_object,
3208 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3209 out:
3210 dmu_buf_rele(ds->ds_dbuf, spa);
3211 spa->spa_to_condense.ds = NULL;
3212 bplist_clear(&lca->to_keep);
3213 bplist_destroy(&lca->to_keep);
3214 kmem_free(lca, sizeof (livelist_condense_arg_t));
3215 spa->spa_to_condense.syncing = B_FALSE;
3216 }
3217
3218 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3219 spa_livelist_condense_cb(void *arg, zthr_t *t)
3220 {
3221 while (zfs_livelist_condense_zthr_pause &&
3222 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3223 delay(1);
3224
3225 spa_t *spa = arg;
3226 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3227 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3228 uint64_t first_size, next_size;
3229
3230 livelist_condense_arg_t *lca =
3231 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3232 bplist_create(&lca->to_keep);
3233
3234 /*
3235 * Process the livelists (matching FREEs and ALLOCs) in open context
3236 * so we have minimal work in syncing context to condense.
3237 *
3238 * We save bpobj sizes (first_size and next_size) to use later in
3239 * syncing context to determine if entries were added to these sublists
3240 * while in open context. This is possible because the clone is still
3241 * active and open for normal writes and we want to make sure the new,
3242 * unprocessed blockpointers are inserted into the livelist normally.
3243 *
3244 * Note that dsl_process_sub_livelist() both stores the size number of
3245 * blockpointers and iterates over them while the bpobj's lock held, so
3246 * the sizes returned to us are consistent which what was actually
3247 * processed.
3248 */
3249 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3250 &first_size);
3251 if (err == 0)
3252 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3253 t, &next_size);
3254
3255 if (err == 0) {
3256 while (zfs_livelist_condense_sync_pause &&
3257 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3258 delay(1);
3259
3260 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3261 dmu_tx_mark_netfree(tx);
3262 dmu_tx_hold_space(tx, 1);
3263 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3264 if (err == 0) {
3265 /*
3266 * Prevent the condense zthr restarting before
3267 * the synctask completes.
3268 */
3269 spa->spa_to_condense.syncing = B_TRUE;
3270 lca->spa = spa;
3271 lca->first_size = first_size;
3272 lca->next_size = next_size;
3273 dsl_sync_task_nowait(spa_get_dsl(spa),
3274 spa_livelist_condense_sync, lca, tx);
3275 dmu_tx_commit(tx);
3276 return;
3277 }
3278 }
3279 /*
3280 * Condensing can not continue: either it was externally stopped or
3281 * we were unable to assign to a tx because the pool has run out of
3282 * space. In the second case, we'll just end up trying to condense
3283 * again in a later txg.
3284 */
3285 ASSERT(err != 0);
3286 bplist_clear(&lca->to_keep);
3287 bplist_destroy(&lca->to_keep);
3288 kmem_free(lca, sizeof (livelist_condense_arg_t));
3289 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3290 spa->spa_to_condense.ds = NULL;
3291 if (err == EINTR)
3292 zfs_livelist_condense_zthr_cancel++;
3293 }
3294
3295 /*
3296 * Check that there is something to condense but that a condense is not
3297 * already in progress and that condensing has not been cancelled.
3298 */
3299 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3300 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3301 {
3302 (void) z;
3303 spa_t *spa = arg;
3304 if ((spa->spa_to_condense.ds != NULL) &&
3305 (spa->spa_to_condense.syncing == B_FALSE) &&
3306 (spa->spa_to_condense.cancelled == B_FALSE)) {
3307 return (B_TRUE);
3308 }
3309 return (B_FALSE);
3310 }
3311
3312 static void
spa_start_livelist_condensing_thread(spa_t * spa)3313 spa_start_livelist_condensing_thread(spa_t *spa)
3314 {
3315 spa->spa_to_condense.ds = NULL;
3316 spa->spa_to_condense.first = NULL;
3317 spa->spa_to_condense.next = NULL;
3318 spa->spa_to_condense.syncing = B_FALSE;
3319 spa->spa_to_condense.cancelled = B_FALSE;
3320
3321 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3322 spa->spa_livelist_condense_zthr =
3323 zthr_create("z_livelist_condense",
3324 spa_livelist_condense_cb_check,
3325 spa_livelist_condense_cb, spa, minclsyspri);
3326 }
3327
3328 static void
spa_spawn_aux_threads(spa_t * spa)3329 spa_spawn_aux_threads(spa_t *spa)
3330 {
3331 ASSERT(spa_writeable(spa));
3332
3333 spa_start_raidz_expansion_thread(spa);
3334 spa_start_indirect_condensing_thread(spa);
3335 spa_start_livelist_destroy_thread(spa);
3336 spa_start_livelist_condensing_thread(spa);
3337
3338 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3339 spa->spa_checkpoint_discard_zthr =
3340 zthr_create("z_checkpoint_discard",
3341 spa_checkpoint_discard_thread_check,
3342 spa_checkpoint_discard_thread, spa, minclsyspri);
3343 }
3344
3345 /*
3346 * Fix up config after a partly-completed split. This is done with the
3347 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3348 * pool have that entry in their config, but only the splitting one contains
3349 * a list of all the guids of the vdevs that are being split off.
3350 *
3351 * This function determines what to do with that list: either rejoin
3352 * all the disks to the pool, or complete the splitting process. To attempt
3353 * the rejoin, each disk that is offlined is marked online again, and
3354 * we do a reopen() call. If the vdev label for every disk that was
3355 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3356 * then we call vdev_split() on each disk, and complete the split.
3357 *
3358 * Otherwise we leave the config alone, with all the vdevs in place in
3359 * the original pool.
3360 */
3361 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3362 spa_try_repair(spa_t *spa, nvlist_t *config)
3363 {
3364 uint_t extracted;
3365 uint64_t *glist;
3366 uint_t i, gcount;
3367 nvlist_t *nvl;
3368 vdev_t **vd;
3369 boolean_t attempt_reopen;
3370
3371 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3372 return;
3373
3374 /* check that the config is complete */
3375 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3376 &glist, &gcount) != 0)
3377 return;
3378
3379 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3380
3381 /* attempt to online all the vdevs & validate */
3382 attempt_reopen = B_TRUE;
3383 for (i = 0; i < gcount; i++) {
3384 if (glist[i] == 0) /* vdev is hole */
3385 continue;
3386
3387 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3388 if (vd[i] == NULL) {
3389 /*
3390 * Don't bother attempting to reopen the disks;
3391 * just do the split.
3392 */
3393 attempt_reopen = B_FALSE;
3394 } else {
3395 /* attempt to re-online it */
3396 vd[i]->vdev_offline = B_FALSE;
3397 }
3398 }
3399
3400 if (attempt_reopen) {
3401 vdev_reopen(spa->spa_root_vdev);
3402
3403 /* check each device to see what state it's in */
3404 for (extracted = 0, i = 0; i < gcount; i++) {
3405 if (vd[i] != NULL &&
3406 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3407 break;
3408 ++extracted;
3409 }
3410 }
3411
3412 /*
3413 * If every disk has been moved to the new pool, or if we never
3414 * even attempted to look at them, then we split them off for
3415 * good.
3416 */
3417 if (!attempt_reopen || gcount == extracted) {
3418 for (i = 0; i < gcount; i++)
3419 if (vd[i] != NULL)
3420 vdev_split(vd[i]);
3421 vdev_reopen(spa->spa_root_vdev);
3422 }
3423
3424 kmem_free(vd, gcount * sizeof (vdev_t *));
3425 }
3426
3427 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3428 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3429 {
3430 const char *ereport = FM_EREPORT_ZFS_POOL;
3431 int error;
3432
3433 spa->spa_load_state = state;
3434 (void) spa_import_progress_set_state(spa_guid(spa),
3435 spa_load_state(spa));
3436 spa_import_progress_set_notes(spa, "spa_load()");
3437
3438 gethrestime(&spa->spa_loaded_ts);
3439 error = spa_load_impl(spa, type, &ereport);
3440
3441 /*
3442 * Don't count references from objsets that are already closed
3443 * and are making their way through the eviction process.
3444 */
3445 spa_evicting_os_wait(spa);
3446 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3447 if (error) {
3448 if (error != EEXIST) {
3449 spa->spa_loaded_ts.tv_sec = 0;
3450 spa->spa_loaded_ts.tv_nsec = 0;
3451 }
3452 if (error != EBADF) {
3453 (void) zfs_ereport_post(ereport, spa,
3454 NULL, NULL, NULL, 0);
3455 }
3456 }
3457 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3458 spa->spa_ena = 0;
3459
3460 (void) spa_import_progress_set_state(spa_guid(spa),
3461 spa_load_state(spa));
3462
3463 return (error);
3464 }
3465
3466 #ifdef ZFS_DEBUG
3467 /*
3468 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3469 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3470 * spa's per-vdev ZAP list.
3471 */
3472 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3473 vdev_count_verify_zaps(vdev_t *vd)
3474 {
3475 spa_t *spa = vd->vdev_spa;
3476 uint64_t total = 0;
3477
3478 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3479 vd->vdev_root_zap != 0) {
3480 total++;
3481 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3482 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3483 }
3484 if (vd->vdev_top_zap != 0) {
3485 total++;
3486 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3487 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3488 }
3489 if (vd->vdev_leaf_zap != 0) {
3490 total++;
3491 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3492 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3493 }
3494
3495 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3496 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3497 }
3498
3499 return (total);
3500 }
3501 #else
3502 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3503 #endif
3504
3505 /*
3506 * Determine whether the activity check is required.
3507 */
3508 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3509 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3510 nvlist_t *config)
3511 {
3512 uint64_t state = 0;
3513 uint64_t hostid = 0;
3514 uint64_t tryconfig_txg = 0;
3515 uint64_t tryconfig_timestamp = 0;
3516 uint16_t tryconfig_mmp_seq = 0;
3517 nvlist_t *nvinfo;
3518
3519 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3520 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3521 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3522 &tryconfig_txg);
3523 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3524 &tryconfig_timestamp);
3525 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3526 &tryconfig_mmp_seq);
3527 }
3528
3529 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3530
3531 /*
3532 * Disable the MMP activity check - This is used by zdb which
3533 * is intended to be used on potentially active pools.
3534 */
3535 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3536 return (B_FALSE);
3537
3538 /*
3539 * Skip the activity check when the MMP feature is disabled.
3540 */
3541 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3542 return (B_FALSE);
3543
3544 /*
3545 * If the tryconfig_ values are nonzero, they are the results of an
3546 * earlier tryimport. If they all match the uberblock we just found,
3547 * then the pool has not changed and we return false so we do not test
3548 * a second time.
3549 */
3550 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3551 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3552 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3553 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3554 return (B_FALSE);
3555
3556 /*
3557 * Allow the activity check to be skipped when importing the pool
3558 * on the same host which last imported it. Since the hostid from
3559 * configuration may be stale use the one read from the label.
3560 */
3561 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3562 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3563
3564 if (hostid == spa_get_hostid(spa))
3565 return (B_FALSE);
3566
3567 /*
3568 * Skip the activity test when the pool was cleanly exported.
3569 */
3570 if (state != POOL_STATE_ACTIVE)
3571 return (B_FALSE);
3572
3573 return (B_TRUE);
3574 }
3575
3576 /*
3577 * Nanoseconds the activity check must watch for changes on-disk.
3578 */
3579 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3580 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3581 {
3582 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3583 uint64_t multihost_interval = MSEC2NSEC(
3584 MMP_INTERVAL_OK(zfs_multihost_interval));
3585 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3586 multihost_interval);
3587
3588 /*
3589 * Local tunables determine a minimum duration except for the case
3590 * where we know when the remote host will suspend the pool if MMP
3591 * writes do not land.
3592 *
3593 * See Big Theory comment at the top of mmp.c for the reasoning behind
3594 * these cases and times.
3595 */
3596
3597 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3598
3599 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3600 MMP_FAIL_INT(ub) > 0) {
3601
3602 /* MMP on remote host will suspend pool after failed writes */
3603 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3604 MMP_IMPORT_SAFETY_FACTOR / 100;
3605
3606 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3607 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3608 "import_intervals=%llu", (u_longlong_t)import_delay,
3609 (u_longlong_t)MMP_FAIL_INT(ub),
3610 (u_longlong_t)MMP_INTERVAL(ub),
3611 (u_longlong_t)import_intervals);
3612
3613 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3614 MMP_FAIL_INT(ub) == 0) {
3615
3616 /* MMP on remote host will never suspend pool */
3617 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3618 ub->ub_mmp_delay) * import_intervals);
3619
3620 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3621 "mmp_interval=%llu ub_mmp_delay=%llu "
3622 "import_intervals=%llu", (u_longlong_t)import_delay,
3623 (u_longlong_t)MMP_INTERVAL(ub),
3624 (u_longlong_t)ub->ub_mmp_delay,
3625 (u_longlong_t)import_intervals);
3626
3627 } else if (MMP_VALID(ub)) {
3628 /*
3629 * zfs-0.7 compatibility case
3630 */
3631
3632 import_delay = MAX(import_delay, (multihost_interval +
3633 ub->ub_mmp_delay) * import_intervals);
3634
3635 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3636 "import_intervals=%llu leaves=%u",
3637 (u_longlong_t)import_delay,
3638 (u_longlong_t)ub->ub_mmp_delay,
3639 (u_longlong_t)import_intervals,
3640 vdev_count_leaves(spa));
3641 } else {
3642 /* Using local tunings is the only reasonable option */
3643 zfs_dbgmsg("pool last imported on non-MMP aware "
3644 "host using import_delay=%llu multihost_interval=%llu "
3645 "import_intervals=%llu", (u_longlong_t)import_delay,
3646 (u_longlong_t)multihost_interval,
3647 (u_longlong_t)import_intervals);
3648 }
3649
3650 return (import_delay);
3651 }
3652
3653 /*
3654 * Remote host activity check.
3655 *
3656 * error results:
3657 * 0 - no activity detected
3658 * EREMOTEIO - remote activity detected
3659 * EINTR - user canceled the operation
3660 */
3661 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3662 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3663 boolean_t importing)
3664 {
3665 uint64_t txg = ub->ub_txg;
3666 uint64_t timestamp = ub->ub_timestamp;
3667 uint64_t mmp_config = ub->ub_mmp_config;
3668 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3669 uint64_t import_delay;
3670 hrtime_t import_expire, now;
3671 nvlist_t *mmp_label = NULL;
3672 vdev_t *rvd = spa->spa_root_vdev;
3673 kcondvar_t cv;
3674 kmutex_t mtx;
3675 int error = 0;
3676
3677 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3678 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3679 mutex_enter(&mtx);
3680
3681 /*
3682 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3683 * during the earlier tryimport. If the txg recorded there is 0 then
3684 * the pool is known to be active on another host.
3685 *
3686 * Otherwise, the pool might be in use on another host. Check for
3687 * changes in the uberblocks on disk if necessary.
3688 */
3689 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3690 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3691 ZPOOL_CONFIG_LOAD_INFO);
3692
3693 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3694 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3695 vdev_uberblock_load(rvd, ub, &mmp_label);
3696 error = SET_ERROR(EREMOTEIO);
3697 goto out;
3698 }
3699 }
3700
3701 import_delay = spa_activity_check_duration(spa, ub);
3702
3703 /* Add a small random factor in case of simultaneous imports (0-25%) */
3704 import_delay += import_delay * random_in_range(250) / 1000;
3705
3706 import_expire = gethrtime() + import_delay;
3707
3708 if (importing) {
3709 spa_import_progress_set_notes(spa, "Checking MMP activity, "
3710 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3711 }
3712
3713 int iterations = 0;
3714 while ((now = gethrtime()) < import_expire) {
3715 if (importing && iterations++ % 30 == 0) {
3716 spa_import_progress_set_notes(spa, "Checking MMP "
3717 "activity, %llu ms remaining",
3718 (u_longlong_t)NSEC2MSEC(import_expire - now));
3719 }
3720
3721 if (importing) {
3722 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3723 NSEC2SEC(import_expire - gethrtime()));
3724 }
3725
3726 vdev_uberblock_load(rvd, ub, &mmp_label);
3727
3728 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3729 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3730 zfs_dbgmsg("multihost activity detected "
3731 "txg %llu ub_txg %llu "
3732 "timestamp %llu ub_timestamp %llu "
3733 "mmp_config %#llx ub_mmp_config %#llx",
3734 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3735 (u_longlong_t)timestamp,
3736 (u_longlong_t)ub->ub_timestamp,
3737 (u_longlong_t)mmp_config,
3738 (u_longlong_t)ub->ub_mmp_config);
3739
3740 error = SET_ERROR(EREMOTEIO);
3741 break;
3742 }
3743
3744 if (mmp_label) {
3745 nvlist_free(mmp_label);
3746 mmp_label = NULL;
3747 }
3748
3749 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3750 if (error != -1) {
3751 error = SET_ERROR(EINTR);
3752 break;
3753 }
3754 error = 0;
3755 }
3756
3757 out:
3758 mutex_exit(&mtx);
3759 mutex_destroy(&mtx);
3760 cv_destroy(&cv);
3761
3762 /*
3763 * If the pool is determined to be active store the status in the
3764 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3765 * available from configuration read from disk store them as well.
3766 * This allows 'zpool import' to generate a more useful message.
3767 *
3768 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3769 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3770 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3771 */
3772 if (error == EREMOTEIO) {
3773 const char *hostname = "<unknown>";
3774 uint64_t hostid = 0;
3775
3776 if (mmp_label) {
3777 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3778 hostname = fnvlist_lookup_string(mmp_label,
3779 ZPOOL_CONFIG_HOSTNAME);
3780 fnvlist_add_string(spa->spa_load_info,
3781 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3782 }
3783
3784 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3785 hostid = fnvlist_lookup_uint64(mmp_label,
3786 ZPOOL_CONFIG_HOSTID);
3787 fnvlist_add_uint64(spa->spa_load_info,
3788 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3789 }
3790 }
3791
3792 fnvlist_add_uint64(spa->spa_load_info,
3793 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3794 fnvlist_add_uint64(spa->spa_load_info,
3795 ZPOOL_CONFIG_MMP_TXG, 0);
3796
3797 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3798 }
3799
3800 if (mmp_label)
3801 nvlist_free(mmp_label);
3802
3803 return (error);
3804 }
3805
3806 /*
3807 * Called from zfs_ioc_clear for a pool that was suspended
3808 * after failing mmp write checks.
3809 */
3810 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3811 spa_mmp_remote_host_activity(spa_t *spa)
3812 {
3813 ASSERT(spa_multihost(spa) && spa_suspended(spa));
3814
3815 nvlist_t *best_label;
3816 uberblock_t best_ub;
3817
3818 /*
3819 * Locate the best uberblock on disk
3820 */
3821 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3822 if (best_label) {
3823 /*
3824 * confirm that the best hostid matches our hostid
3825 */
3826 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3827 spa_get_hostid(spa) !=
3828 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3829 nvlist_free(best_label);
3830 return (B_TRUE);
3831 }
3832 nvlist_free(best_label);
3833 } else {
3834 return (B_TRUE);
3835 }
3836
3837 if (!MMP_VALID(&best_ub) ||
3838 !MMP_FAIL_INT_VALID(&best_ub) ||
3839 MMP_FAIL_INT(&best_ub) == 0) {
3840 return (B_TRUE);
3841 }
3842
3843 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3844 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3845 zfs_dbgmsg("txg mismatch detected during pool clear "
3846 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3847 (u_longlong_t)spa->spa_uberblock.ub_txg,
3848 (u_longlong_t)best_ub.ub_txg,
3849 (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3850 (u_longlong_t)best_ub.ub_timestamp);
3851 return (B_TRUE);
3852 }
3853
3854 /*
3855 * Perform an activity check looking for any remote writer
3856 */
3857 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3858 B_FALSE) != 0);
3859 }
3860
3861 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)3862 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3863 {
3864 uint64_t hostid;
3865 const char *hostname;
3866 uint64_t myhostid = 0;
3867
3868 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3869 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3870 hostname = fnvlist_lookup_string(mos_config,
3871 ZPOOL_CONFIG_HOSTNAME);
3872
3873 myhostid = zone_get_hostid(NULL);
3874
3875 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3876 cmn_err(CE_WARN, "pool '%s' could not be "
3877 "loaded as it was last accessed by "
3878 "another system (host: %s hostid: 0x%llx). "
3879 "See: https://openzfs.github.io/openzfs-docs/msg/"
3880 "ZFS-8000-EY",
3881 spa_name(spa), hostname, (u_longlong_t)hostid);
3882 spa_load_failed(spa, "hostid verification failed: pool "
3883 "last accessed by host: %s (hostid: 0x%llx)",
3884 hostname, (u_longlong_t)hostid);
3885 return (SET_ERROR(EBADF));
3886 }
3887 }
3888
3889 return (0);
3890 }
3891
3892 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)3893 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3894 {
3895 int error = 0;
3896 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3897 int parse;
3898 vdev_t *rvd;
3899 uint64_t pool_guid;
3900 const char *comment;
3901 const char *compatibility;
3902
3903 /*
3904 * Versioning wasn't explicitly added to the label until later, so if
3905 * it's not present treat it as the initial version.
3906 */
3907 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3908 &spa->spa_ubsync.ub_version) != 0)
3909 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3910
3911 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3912 spa_load_failed(spa, "invalid config provided: '%s' missing",
3913 ZPOOL_CONFIG_POOL_GUID);
3914 return (SET_ERROR(EINVAL));
3915 }
3916
3917 /*
3918 * If we are doing an import, ensure that the pool is not already
3919 * imported by checking if its pool guid already exists in the
3920 * spa namespace.
3921 *
3922 * The only case that we allow an already imported pool to be
3923 * imported again, is when the pool is checkpointed and we want to
3924 * look at its checkpointed state from userland tools like zdb.
3925 */
3926 #ifdef _KERNEL
3927 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3928 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3929 spa_guid_exists(pool_guid, 0)) {
3930 #else
3931 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3932 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3933 spa_guid_exists(pool_guid, 0) &&
3934 !spa_importing_readonly_checkpoint(spa)) {
3935 #endif
3936 spa_load_failed(spa, "a pool with guid %llu is already open",
3937 (u_longlong_t)pool_guid);
3938 return (SET_ERROR(EEXIST));
3939 }
3940
3941 spa->spa_config_guid = pool_guid;
3942
3943 nvlist_free(spa->spa_load_info);
3944 spa->spa_load_info = fnvlist_alloc();
3945
3946 ASSERT(spa->spa_comment == NULL);
3947 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3948 spa->spa_comment = spa_strdup(comment);
3949
3950 ASSERT(spa->spa_compatibility == NULL);
3951 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3952 &compatibility) == 0)
3953 spa->spa_compatibility = spa_strdup(compatibility);
3954
3955 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3956 &spa->spa_config_txg);
3957
3958 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3959 spa->spa_config_splitting = fnvlist_dup(nvl);
3960
3961 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3962 spa_load_failed(spa, "invalid config provided: '%s' missing",
3963 ZPOOL_CONFIG_VDEV_TREE);
3964 return (SET_ERROR(EINVAL));
3965 }
3966
3967 /*
3968 * Create "The Godfather" zio to hold all async IOs
3969 */
3970 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3971 KM_SLEEP);
3972 for (int i = 0; i < max_ncpus; i++) {
3973 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3974 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3975 ZIO_FLAG_GODFATHER);
3976 }
3977
3978 /*
3979 * Parse the configuration into a vdev tree. We explicitly set the
3980 * value that will be returned by spa_version() since parsing the
3981 * configuration requires knowing the version number.
3982 */
3983 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3984 parse = (type == SPA_IMPORT_EXISTING ?
3985 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3986 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3987 spa_config_exit(spa, SCL_ALL, FTAG);
3988
3989 if (error != 0) {
3990 spa_load_failed(spa, "unable to parse config [error=%d]",
3991 error);
3992 return (error);
3993 }
3994
3995 ASSERT(spa->spa_root_vdev == rvd);
3996 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3997 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3998
3999 if (type != SPA_IMPORT_ASSEMBLE) {
4000 ASSERT(spa_guid(spa) == pool_guid);
4001 }
4002
4003 return (0);
4004 }
4005
4006 /*
4007 * Recursively open all vdevs in the vdev tree. This function is called twice:
4008 * first with the untrusted config, then with the trusted config.
4009 */
4010 static int
4011 spa_ld_open_vdevs(spa_t *spa)
4012 {
4013 int error = 0;
4014
4015 /*
4016 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4017 * missing/unopenable for the root vdev to be still considered openable.
4018 */
4019 if (spa->spa_trust_config) {
4020 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4021 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4022 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4023 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4024 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4025 } else {
4026 spa->spa_missing_tvds_allowed = 0;
4027 }
4028
4029 spa->spa_missing_tvds_allowed =
4030 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4031
4032 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4033 error = vdev_open(spa->spa_root_vdev);
4034 spa_config_exit(spa, SCL_ALL, FTAG);
4035
4036 if (spa->spa_missing_tvds != 0) {
4037 spa_load_note(spa, "vdev tree has %lld missing top-level "
4038 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4039 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4040 /*
4041 * Although theoretically we could allow users to open
4042 * incomplete pools in RW mode, we'd need to add a lot
4043 * of extra logic (e.g. adjust pool space to account
4044 * for missing vdevs).
4045 * This limitation also prevents users from accidentally
4046 * opening the pool in RW mode during data recovery and
4047 * damaging it further.
4048 */
4049 spa_load_note(spa, "pools with missing top-level "
4050 "vdevs can only be opened in read-only mode.");
4051 error = SET_ERROR(ENXIO);
4052 } else {
4053 spa_load_note(spa, "current settings allow for maximum "
4054 "%lld missing top-level vdevs at this stage.",
4055 (u_longlong_t)spa->spa_missing_tvds_allowed);
4056 }
4057 }
4058 if (error != 0) {
4059 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4060 error);
4061 }
4062 if (spa->spa_missing_tvds != 0 || error != 0)
4063 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4064
4065 return (error);
4066 }
4067
4068 /*
4069 * We need to validate the vdev labels against the configuration that
4070 * we have in hand. This function is called twice: first with an untrusted
4071 * config, then with a trusted config. The validation is more strict when the
4072 * config is trusted.
4073 */
4074 static int
4075 spa_ld_validate_vdevs(spa_t *spa)
4076 {
4077 int error = 0;
4078 vdev_t *rvd = spa->spa_root_vdev;
4079
4080 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4081 error = vdev_validate(rvd);
4082 spa_config_exit(spa, SCL_ALL, FTAG);
4083
4084 if (error != 0) {
4085 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4086 return (error);
4087 }
4088
4089 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4090 spa_load_failed(spa, "cannot open vdev tree after invalidating "
4091 "some vdevs");
4092 vdev_dbgmsg_print_tree(rvd, 2);
4093 return (SET_ERROR(ENXIO));
4094 }
4095
4096 return (0);
4097 }
4098
4099 static void
4100 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4101 {
4102 spa->spa_state = POOL_STATE_ACTIVE;
4103 spa->spa_ubsync = spa->spa_uberblock;
4104 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4105 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4106 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4107 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4108 spa->spa_claim_max_txg = spa->spa_first_txg;
4109 spa->spa_prev_software_version = ub->ub_software_version;
4110 }
4111
4112 static int
4113 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4114 {
4115 vdev_t *rvd = spa->spa_root_vdev;
4116 nvlist_t *label;
4117 uberblock_t *ub = &spa->spa_uberblock;
4118 boolean_t activity_check = B_FALSE;
4119
4120 /*
4121 * If we are opening the checkpointed state of the pool by
4122 * rewinding to it, at this point we will have written the
4123 * checkpointed uberblock to the vdev labels, so searching
4124 * the labels will find the right uberblock. However, if
4125 * we are opening the checkpointed state read-only, we have
4126 * not modified the labels. Therefore, we must ignore the
4127 * labels and continue using the spa_uberblock that was set
4128 * by spa_ld_checkpoint_rewind.
4129 *
4130 * Note that it would be fine to ignore the labels when
4131 * rewinding (opening writeable) as well. However, if we
4132 * crash just after writing the labels, we will end up
4133 * searching the labels. Doing so in the common case means
4134 * that this code path gets exercised normally, rather than
4135 * just in the edge case.
4136 */
4137 if (ub->ub_checkpoint_txg != 0 &&
4138 spa_importing_readonly_checkpoint(spa)) {
4139 spa_ld_select_uberblock_done(spa, ub);
4140 return (0);
4141 }
4142
4143 /*
4144 * Find the best uberblock.
4145 */
4146 vdev_uberblock_load(rvd, ub, &label);
4147
4148 /*
4149 * If we weren't able to find a single valid uberblock, return failure.
4150 */
4151 if (ub->ub_txg == 0) {
4152 nvlist_free(label);
4153 spa_load_failed(spa, "no valid uberblock found");
4154 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4155 }
4156
4157 if (spa->spa_load_max_txg != UINT64_MAX) {
4158 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4159 (u_longlong_t)spa->spa_load_max_txg);
4160 }
4161 spa_load_note(spa, "using uberblock with txg=%llu",
4162 (u_longlong_t)ub->ub_txg);
4163 if (ub->ub_raidz_reflow_info != 0) {
4164 spa_load_note(spa, "uberblock raidz_reflow_info: "
4165 "state=%u offset=%llu",
4166 (int)RRSS_GET_STATE(ub),
4167 (u_longlong_t)RRSS_GET_OFFSET(ub));
4168 }
4169
4170
4171 /*
4172 * For pools which have the multihost property on determine if the
4173 * pool is truly inactive and can be safely imported. Prevent
4174 * hosts which don't have a hostid set from importing the pool.
4175 */
4176 activity_check = spa_activity_check_required(spa, ub, label,
4177 spa->spa_config);
4178 if (activity_check) {
4179 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4180 spa_get_hostid(spa) == 0) {
4181 nvlist_free(label);
4182 fnvlist_add_uint64(spa->spa_load_info,
4183 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4184 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4185 }
4186
4187 int error =
4188 spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4189 if (error) {
4190 nvlist_free(label);
4191 return (error);
4192 }
4193
4194 fnvlist_add_uint64(spa->spa_load_info,
4195 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4196 fnvlist_add_uint64(spa->spa_load_info,
4197 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4198 fnvlist_add_uint16(spa->spa_load_info,
4199 ZPOOL_CONFIG_MMP_SEQ,
4200 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4201 }
4202
4203 /*
4204 * If the pool has an unsupported version we can't open it.
4205 */
4206 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4207 nvlist_free(label);
4208 spa_load_failed(spa, "version %llu is not supported",
4209 (u_longlong_t)ub->ub_version);
4210 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4211 }
4212
4213 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4214 nvlist_t *features;
4215
4216 /*
4217 * If we weren't able to find what's necessary for reading the
4218 * MOS in the label, return failure.
4219 */
4220 if (label == NULL) {
4221 spa_load_failed(spa, "label config unavailable");
4222 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4223 ENXIO));
4224 }
4225
4226 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4227 &features) != 0) {
4228 nvlist_free(label);
4229 spa_load_failed(spa, "invalid label: '%s' missing",
4230 ZPOOL_CONFIG_FEATURES_FOR_READ);
4231 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4232 ENXIO));
4233 }
4234
4235 /*
4236 * Update our in-core representation with the definitive values
4237 * from the label.
4238 */
4239 nvlist_free(spa->spa_label_features);
4240 spa->spa_label_features = fnvlist_dup(features);
4241 }
4242
4243 nvlist_free(label);
4244
4245 /*
4246 * Look through entries in the label nvlist's features_for_read. If
4247 * there is a feature listed there which we don't understand then we
4248 * cannot open a pool.
4249 */
4250 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4251 nvlist_t *unsup_feat;
4252
4253 unsup_feat = fnvlist_alloc();
4254
4255 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4256 NULL); nvp != NULL;
4257 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4258 if (!zfeature_is_supported(nvpair_name(nvp))) {
4259 fnvlist_add_string(unsup_feat,
4260 nvpair_name(nvp), "");
4261 }
4262 }
4263
4264 if (!nvlist_empty(unsup_feat)) {
4265 fnvlist_add_nvlist(spa->spa_load_info,
4266 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4267 nvlist_free(unsup_feat);
4268 spa_load_failed(spa, "some features are unsupported");
4269 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4270 ENOTSUP));
4271 }
4272
4273 nvlist_free(unsup_feat);
4274 }
4275
4276 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4277 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4278 spa_try_repair(spa, spa->spa_config);
4279 spa_config_exit(spa, SCL_ALL, FTAG);
4280 nvlist_free(spa->spa_config_splitting);
4281 spa->spa_config_splitting = NULL;
4282 }
4283
4284 /*
4285 * Initialize internal SPA structures.
4286 */
4287 spa_ld_select_uberblock_done(spa, ub);
4288
4289 return (0);
4290 }
4291
4292 static int
4293 spa_ld_open_rootbp(spa_t *spa)
4294 {
4295 int error = 0;
4296 vdev_t *rvd = spa->spa_root_vdev;
4297
4298 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4299 if (error != 0) {
4300 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4301 "[error=%d]", error);
4302 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4303 }
4304 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4305
4306 return (0);
4307 }
4308
4309 static int
4310 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4311 boolean_t reloading)
4312 {
4313 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4314 nvlist_t *nv, *mos_config, *policy;
4315 int error = 0, copy_error;
4316 uint64_t healthy_tvds, healthy_tvds_mos;
4317 uint64_t mos_config_txg;
4318
4319 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4320 != 0)
4321 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4322
4323 /*
4324 * If we're assembling a pool from a split, the config provided is
4325 * already trusted so there is nothing to do.
4326 */
4327 if (type == SPA_IMPORT_ASSEMBLE)
4328 return (0);
4329
4330 healthy_tvds = spa_healthy_core_tvds(spa);
4331
4332 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4333 != 0) {
4334 spa_load_failed(spa, "unable to retrieve MOS config");
4335 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4336 }
4337
4338 /*
4339 * If we are doing an open, pool owner wasn't verified yet, thus do
4340 * the verification here.
4341 */
4342 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4343 error = spa_verify_host(spa, mos_config);
4344 if (error != 0) {
4345 nvlist_free(mos_config);
4346 return (error);
4347 }
4348 }
4349
4350 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4351
4352 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4353
4354 /*
4355 * Build a new vdev tree from the trusted config
4356 */
4357 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4358 if (error != 0) {
4359 nvlist_free(mos_config);
4360 spa_config_exit(spa, SCL_ALL, FTAG);
4361 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4362 error);
4363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4364 }
4365
4366 /*
4367 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4368 * obtained by scanning /dev/dsk, then it will have the right vdev
4369 * paths. We update the trusted MOS config with this information.
4370 * We first try to copy the paths with vdev_copy_path_strict, which
4371 * succeeds only when both configs have exactly the same vdev tree.
4372 * If that fails, we fall back to a more flexible method that has a
4373 * best effort policy.
4374 */
4375 copy_error = vdev_copy_path_strict(rvd, mrvd);
4376 if (copy_error != 0 || spa_load_print_vdev_tree) {
4377 spa_load_note(spa, "provided vdev tree:");
4378 vdev_dbgmsg_print_tree(rvd, 2);
4379 spa_load_note(spa, "MOS vdev tree:");
4380 vdev_dbgmsg_print_tree(mrvd, 2);
4381 }
4382 if (copy_error != 0) {
4383 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4384 "back to vdev_copy_path_relaxed");
4385 vdev_copy_path_relaxed(rvd, mrvd);
4386 }
4387
4388 vdev_close(rvd);
4389 vdev_free(rvd);
4390 spa->spa_root_vdev = mrvd;
4391 rvd = mrvd;
4392 spa_config_exit(spa, SCL_ALL, FTAG);
4393
4394 /*
4395 * If 'zpool import' used a cached config, then the on-disk hostid and
4396 * hostname may be different to the cached config in ways that should
4397 * prevent import. Userspace can't discover this without a scan, but
4398 * we know, so we add these values to LOAD_INFO so the caller can know
4399 * the difference.
4400 *
4401 * Note that we have to do this before the config is regenerated,
4402 * because the new config will have the hostid and hostname for this
4403 * host, in readiness for import.
4404 */
4405 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4406 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4407 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4408 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4409 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4410 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4411
4412 /*
4413 * We will use spa_config if we decide to reload the spa or if spa_load
4414 * fails and we rewind. We must thus regenerate the config using the
4415 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4416 * pass settings on how to load the pool and is not stored in the MOS.
4417 * We copy it over to our new, trusted config.
4418 */
4419 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4420 ZPOOL_CONFIG_POOL_TXG);
4421 nvlist_free(mos_config);
4422 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4423 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4424 &policy) == 0)
4425 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4426 spa_config_set(spa, mos_config);
4427 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4428
4429 /*
4430 * Now that we got the config from the MOS, we should be more strict
4431 * in checking blkptrs and can make assumptions about the consistency
4432 * of the vdev tree. spa_trust_config must be set to true before opening
4433 * vdevs in order for them to be writeable.
4434 */
4435 spa->spa_trust_config = B_TRUE;
4436
4437 /*
4438 * Open and validate the new vdev tree
4439 */
4440 error = spa_ld_open_vdevs(spa);
4441 if (error != 0)
4442 return (error);
4443
4444 error = spa_ld_validate_vdevs(spa);
4445 if (error != 0)
4446 return (error);
4447
4448 if (copy_error != 0 || spa_load_print_vdev_tree) {
4449 spa_load_note(spa, "final vdev tree:");
4450 vdev_dbgmsg_print_tree(rvd, 2);
4451 }
4452
4453 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4454 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4455 /*
4456 * Sanity check to make sure that we are indeed loading the
4457 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4458 * in the config provided and they happened to be the only ones
4459 * to have the latest uberblock, we could involuntarily perform
4460 * an extreme rewind.
4461 */
4462 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4463 if (healthy_tvds_mos - healthy_tvds >=
4464 SPA_SYNC_MIN_VDEVS) {
4465 spa_load_note(spa, "config provided misses too many "
4466 "top-level vdevs compared to MOS (%lld vs %lld). ",
4467 (u_longlong_t)healthy_tvds,
4468 (u_longlong_t)healthy_tvds_mos);
4469 spa_load_note(spa, "vdev tree:");
4470 vdev_dbgmsg_print_tree(rvd, 2);
4471 if (reloading) {
4472 spa_load_failed(spa, "config was already "
4473 "provided from MOS. Aborting.");
4474 return (spa_vdev_err(rvd,
4475 VDEV_AUX_CORRUPT_DATA, EIO));
4476 }
4477 spa_load_note(spa, "spa must be reloaded using MOS "
4478 "config");
4479 return (SET_ERROR(EAGAIN));
4480 }
4481 }
4482
4483 error = spa_check_for_missing_logs(spa);
4484 if (error != 0)
4485 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4486
4487 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4488 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4489 "guid sum (%llu != %llu)",
4490 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4491 (u_longlong_t)rvd->vdev_guid_sum);
4492 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4493 ENXIO));
4494 }
4495
4496 return (0);
4497 }
4498
4499 static int
4500 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4501 {
4502 int error = 0;
4503 vdev_t *rvd = spa->spa_root_vdev;
4504
4505 /*
4506 * Everything that we read before spa_remove_init() must be stored
4507 * on concreted vdevs. Therefore we do this as early as possible.
4508 */
4509 error = spa_remove_init(spa);
4510 if (error != 0) {
4511 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4512 error);
4513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4514 }
4515
4516 /*
4517 * Retrieve information needed to condense indirect vdev mappings.
4518 */
4519 error = spa_condense_init(spa);
4520 if (error != 0) {
4521 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4522 error);
4523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4524 }
4525
4526 return (0);
4527 }
4528
4529 static int
4530 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4531 {
4532 int error = 0;
4533 vdev_t *rvd = spa->spa_root_vdev;
4534
4535 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4536 boolean_t missing_feat_read = B_FALSE;
4537 nvlist_t *unsup_feat, *enabled_feat;
4538
4539 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4540 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4541 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4542 }
4543
4544 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4545 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4546 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4547 }
4548
4549 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4550 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4551 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4552 }
4553
4554 enabled_feat = fnvlist_alloc();
4555 unsup_feat = fnvlist_alloc();
4556
4557 if (!spa_features_check(spa, B_FALSE,
4558 unsup_feat, enabled_feat))
4559 missing_feat_read = B_TRUE;
4560
4561 if (spa_writeable(spa) ||
4562 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4563 if (!spa_features_check(spa, B_TRUE,
4564 unsup_feat, enabled_feat)) {
4565 *missing_feat_writep = B_TRUE;
4566 }
4567 }
4568
4569 fnvlist_add_nvlist(spa->spa_load_info,
4570 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4571
4572 if (!nvlist_empty(unsup_feat)) {
4573 fnvlist_add_nvlist(spa->spa_load_info,
4574 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4575 }
4576
4577 fnvlist_free(enabled_feat);
4578 fnvlist_free(unsup_feat);
4579
4580 if (!missing_feat_read) {
4581 fnvlist_add_boolean(spa->spa_load_info,
4582 ZPOOL_CONFIG_CAN_RDONLY);
4583 }
4584
4585 /*
4586 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4587 * twofold: to determine whether the pool is available for
4588 * import in read-write mode and (if it is not) whether the
4589 * pool is available for import in read-only mode. If the pool
4590 * is available for import in read-write mode, it is displayed
4591 * as available in userland; if it is not available for import
4592 * in read-only mode, it is displayed as unavailable in
4593 * userland. If the pool is available for import in read-only
4594 * mode but not read-write mode, it is displayed as unavailable
4595 * in userland with a special note that the pool is actually
4596 * available for open in read-only mode.
4597 *
4598 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4599 * missing a feature for write, we must first determine whether
4600 * the pool can be opened read-only before returning to
4601 * userland in order to know whether to display the
4602 * abovementioned note.
4603 */
4604 if (missing_feat_read || (*missing_feat_writep &&
4605 spa_writeable(spa))) {
4606 spa_load_failed(spa, "pool uses unsupported features");
4607 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4608 ENOTSUP));
4609 }
4610
4611 /*
4612 * Load refcounts for ZFS features from disk into an in-memory
4613 * cache during SPA initialization.
4614 */
4615 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4616 uint64_t refcount;
4617
4618 error = feature_get_refcount_from_disk(spa,
4619 &spa_feature_table[i], &refcount);
4620 if (error == 0) {
4621 spa->spa_feat_refcount_cache[i] = refcount;
4622 } else if (error == ENOTSUP) {
4623 spa->spa_feat_refcount_cache[i] =
4624 SPA_FEATURE_DISABLED;
4625 } else {
4626 spa_load_failed(spa, "error getting refcount "
4627 "for feature %s [error=%d]",
4628 spa_feature_table[i].fi_guid, error);
4629 return (spa_vdev_err(rvd,
4630 VDEV_AUX_CORRUPT_DATA, EIO));
4631 }
4632 }
4633 }
4634
4635 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4636 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4637 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4638 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4639 }
4640
4641 /*
4642 * Encryption was added before bookmark_v2, even though bookmark_v2
4643 * is now a dependency. If this pool has encryption enabled without
4644 * bookmark_v2, trigger an errata message.
4645 */
4646 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4647 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4648 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4649 }
4650
4651 return (0);
4652 }
4653
4654 static int
4655 spa_ld_load_special_directories(spa_t *spa)
4656 {
4657 int error = 0;
4658 vdev_t *rvd = spa->spa_root_vdev;
4659
4660 spa->spa_is_initializing = B_TRUE;
4661 error = dsl_pool_open(spa->spa_dsl_pool);
4662 spa->spa_is_initializing = B_FALSE;
4663 if (error != 0) {
4664 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4665 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4666 }
4667
4668 return (0);
4669 }
4670
4671 static int
4672 spa_ld_get_props(spa_t *spa)
4673 {
4674 int error = 0;
4675 uint64_t obj;
4676 vdev_t *rvd = spa->spa_root_vdev;
4677
4678 /* Grab the checksum salt from the MOS. */
4679 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4680 DMU_POOL_CHECKSUM_SALT, 1,
4681 sizeof (spa->spa_cksum_salt.zcs_bytes),
4682 spa->spa_cksum_salt.zcs_bytes);
4683 if (error == ENOENT) {
4684 /* Generate a new salt for subsequent use */
4685 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4686 sizeof (spa->spa_cksum_salt.zcs_bytes));
4687 } else if (error != 0) {
4688 spa_load_failed(spa, "unable to retrieve checksum salt from "
4689 "MOS [error=%d]", error);
4690 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4691 }
4692
4693 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4694 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4695 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4696 if (error != 0) {
4697 spa_load_failed(spa, "error opening deferred-frees bpobj "
4698 "[error=%d]", error);
4699 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4700 }
4701
4702 /*
4703 * Load the bit that tells us to use the new accounting function
4704 * (raid-z deflation). If we have an older pool, this will not
4705 * be present.
4706 */
4707 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4708 if (error != 0 && error != ENOENT)
4709 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4710
4711 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4712 &spa->spa_creation_version, B_FALSE);
4713 if (error != 0 && error != ENOENT)
4714 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4715
4716 /*
4717 * Load the persistent error log. If we have an older pool, this will
4718 * not be present.
4719 */
4720 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4721 B_FALSE);
4722 if (error != 0 && error != ENOENT)
4723 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4724
4725 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4726 &spa->spa_errlog_scrub, B_FALSE);
4727 if (error != 0 && error != ENOENT)
4728 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4729
4730 /*
4731 * Load the livelist deletion field. If a livelist is queued for
4732 * deletion, indicate that in the spa
4733 */
4734 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4735 &spa->spa_livelists_to_delete, B_FALSE);
4736 if (error != 0 && error != ENOENT)
4737 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4738
4739 /*
4740 * Load the history object. If we have an older pool, this
4741 * will not be present.
4742 */
4743 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4744 if (error != 0 && error != ENOENT)
4745 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4746
4747 /*
4748 * Load the per-vdev ZAP map. If we have an older pool, this will not
4749 * be present; in this case, defer its creation to a later time to
4750 * avoid dirtying the MOS this early / out of sync context. See
4751 * spa_sync_config_object.
4752 */
4753
4754 /* The sentinel is only available in the MOS config. */
4755 nvlist_t *mos_config;
4756 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4757 spa_load_failed(spa, "unable to retrieve MOS config");
4758 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4759 }
4760
4761 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4762 &spa->spa_all_vdev_zaps, B_FALSE);
4763
4764 if (error == ENOENT) {
4765 VERIFY(!nvlist_exists(mos_config,
4766 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4767 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4768 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4769 } else if (error != 0) {
4770 nvlist_free(mos_config);
4771 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4772 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4773 /*
4774 * An older version of ZFS overwrote the sentinel value, so
4775 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4776 * destruction to later; see spa_sync_config_object.
4777 */
4778 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4779 /*
4780 * We're assuming that no vdevs have had their ZAPs created
4781 * before this. Better be sure of it.
4782 */
4783 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4784 }
4785 nvlist_free(mos_config);
4786
4787 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4788
4789 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4790 B_FALSE);
4791 if (error && error != ENOENT)
4792 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4793
4794 if (error == 0) {
4795 uint64_t autoreplace = 0;
4796
4797 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4798 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4799 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4800 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4801 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4802 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4803 &spa->spa_dedup_table_quota);
4804 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4805 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4806 spa->spa_autoreplace = (autoreplace != 0);
4807 }
4808
4809 /*
4810 * If we are importing a pool with missing top-level vdevs,
4811 * we enforce that the pool doesn't panic or get suspended on
4812 * error since the likelihood of missing data is extremely high.
4813 */
4814 if (spa->spa_missing_tvds > 0 &&
4815 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4816 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4817 spa_load_note(spa, "forcing failmode to 'continue' "
4818 "as some top level vdevs are missing");
4819 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4820 }
4821
4822 return (0);
4823 }
4824
4825 static int
4826 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4827 {
4828 int error = 0;
4829 vdev_t *rvd = spa->spa_root_vdev;
4830
4831 /*
4832 * If we're assembling the pool from the split-off vdevs of
4833 * an existing pool, we don't want to attach the spares & cache
4834 * devices.
4835 */
4836
4837 /*
4838 * Load any hot spares for this pool.
4839 */
4840 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4841 B_FALSE);
4842 if (error != 0 && error != ENOENT)
4843 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4844 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4845 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4846 if (load_nvlist(spa, spa->spa_spares.sav_object,
4847 &spa->spa_spares.sav_config) != 0) {
4848 spa_load_failed(spa, "error loading spares nvlist");
4849 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4850 }
4851
4852 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4853 spa_load_spares(spa);
4854 spa_config_exit(spa, SCL_ALL, FTAG);
4855 } else if (error == 0) {
4856 spa->spa_spares.sav_sync = B_TRUE;
4857 }
4858
4859 /*
4860 * Load any level 2 ARC devices for this pool.
4861 */
4862 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4863 &spa->spa_l2cache.sav_object, B_FALSE);
4864 if (error != 0 && error != ENOENT)
4865 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4866 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4867 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4868 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4869 &spa->spa_l2cache.sav_config) != 0) {
4870 spa_load_failed(spa, "error loading l2cache nvlist");
4871 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4872 }
4873
4874 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4875 spa_load_l2cache(spa);
4876 spa_config_exit(spa, SCL_ALL, FTAG);
4877 } else if (error == 0) {
4878 spa->spa_l2cache.sav_sync = B_TRUE;
4879 }
4880
4881 return (0);
4882 }
4883
4884 static int
4885 spa_ld_load_vdev_metadata(spa_t *spa)
4886 {
4887 int error = 0;
4888 vdev_t *rvd = spa->spa_root_vdev;
4889
4890 /*
4891 * If the 'multihost' property is set, then never allow a pool to
4892 * be imported when the system hostid is zero. The exception to
4893 * this rule is zdb which is always allowed to access pools.
4894 */
4895 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4896 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4897 fnvlist_add_uint64(spa->spa_load_info,
4898 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4899 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4900 }
4901
4902 /*
4903 * If the 'autoreplace' property is set, then post a resource notifying
4904 * the ZFS DE that it should not issue any faults for unopenable
4905 * devices. We also iterate over the vdevs, and post a sysevent for any
4906 * unopenable vdevs so that the normal autoreplace handler can take
4907 * over.
4908 */
4909 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4910 spa_check_removed(spa->spa_root_vdev);
4911 /*
4912 * For the import case, this is done in spa_import(), because
4913 * at this point we're using the spare definitions from
4914 * the MOS config, not necessarily from the userland config.
4915 */
4916 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4917 spa_aux_check_removed(&spa->spa_spares);
4918 spa_aux_check_removed(&spa->spa_l2cache);
4919 }
4920 }
4921
4922 /*
4923 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4924 */
4925 error = vdev_load(rvd);
4926 if (error != 0) {
4927 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4928 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4929 }
4930
4931 error = spa_ld_log_spacemaps(spa);
4932 if (error != 0) {
4933 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4934 error);
4935 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4936 }
4937
4938 /*
4939 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4940 */
4941 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4942 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4943 spa_config_exit(spa, SCL_ALL, FTAG);
4944
4945 return (0);
4946 }
4947
4948 static int
4949 spa_ld_load_dedup_tables(spa_t *spa)
4950 {
4951 int error = 0;
4952 vdev_t *rvd = spa->spa_root_vdev;
4953
4954 error = ddt_load(spa);
4955 if (error != 0) {
4956 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4957 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4958 }
4959
4960 return (0);
4961 }
4962
4963 static int
4964 spa_ld_load_brt(spa_t *spa)
4965 {
4966 int error = 0;
4967 vdev_t *rvd = spa->spa_root_vdev;
4968
4969 error = brt_load(spa);
4970 if (error != 0) {
4971 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4972 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4973 }
4974
4975 return (0);
4976 }
4977
4978 static int
4979 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4980 {
4981 vdev_t *rvd = spa->spa_root_vdev;
4982
4983 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4984 boolean_t missing = spa_check_logs(spa);
4985 if (missing) {
4986 if (spa->spa_missing_tvds != 0) {
4987 spa_load_note(spa, "spa_check_logs failed "
4988 "so dropping the logs");
4989 } else {
4990 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4991 spa_load_failed(spa, "spa_check_logs failed");
4992 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4993 ENXIO));
4994 }
4995 }
4996 }
4997
4998 return (0);
4999 }
5000
5001 static int
5002 spa_ld_verify_pool_data(spa_t *spa)
5003 {
5004 int error = 0;
5005 vdev_t *rvd = spa->spa_root_vdev;
5006
5007 /*
5008 * We've successfully opened the pool, verify that we're ready
5009 * to start pushing transactions.
5010 */
5011 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5012 error = spa_load_verify(spa);
5013 if (error != 0) {
5014 spa_load_failed(spa, "spa_load_verify failed "
5015 "[error=%d]", error);
5016 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5017 error));
5018 }
5019 }
5020
5021 return (0);
5022 }
5023
5024 static void
5025 spa_ld_claim_log_blocks(spa_t *spa)
5026 {
5027 dmu_tx_t *tx;
5028 dsl_pool_t *dp = spa_get_dsl(spa);
5029
5030 /*
5031 * Claim log blocks that haven't been committed yet.
5032 * This must all happen in a single txg.
5033 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5034 * invoked from zil_claim_log_block()'s i/o done callback.
5035 * Price of rollback is that we abandon the log.
5036 */
5037 spa->spa_claiming = B_TRUE;
5038
5039 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5040 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5041 zil_claim, tx, DS_FIND_CHILDREN);
5042 dmu_tx_commit(tx);
5043
5044 spa->spa_claiming = B_FALSE;
5045
5046 spa_set_log_state(spa, SPA_LOG_GOOD);
5047 }
5048
5049 static void
5050 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5051 boolean_t update_config_cache)
5052 {
5053 vdev_t *rvd = spa->spa_root_vdev;
5054 int need_update = B_FALSE;
5055
5056 /*
5057 * If the config cache is stale, or we have uninitialized
5058 * metaslabs (see spa_vdev_add()), then update the config.
5059 *
5060 * If this is a verbatim import, trust the current
5061 * in-core spa_config and update the disk labels.
5062 */
5063 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5064 spa->spa_load_state == SPA_LOAD_IMPORT ||
5065 spa->spa_load_state == SPA_LOAD_RECOVER ||
5066 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5067 need_update = B_TRUE;
5068
5069 for (int c = 0; c < rvd->vdev_children; c++)
5070 if (rvd->vdev_child[c]->vdev_ms_array == 0)
5071 need_update = B_TRUE;
5072
5073 /*
5074 * Update the config cache asynchronously in case we're the
5075 * root pool, in which case the config cache isn't writable yet.
5076 */
5077 if (need_update)
5078 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5079 }
5080
5081 static void
5082 spa_ld_prepare_for_reload(spa_t *spa)
5083 {
5084 spa_mode_t mode = spa->spa_mode;
5085 int async_suspended = spa->spa_async_suspended;
5086
5087 spa_unload(spa);
5088 spa_deactivate(spa);
5089 spa_activate(spa, mode);
5090
5091 /*
5092 * We save the value of spa_async_suspended as it gets reset to 0 by
5093 * spa_unload(). We want to restore it back to the original value before
5094 * returning as we might be calling spa_async_resume() later.
5095 */
5096 spa->spa_async_suspended = async_suspended;
5097 }
5098
5099 static int
5100 spa_ld_read_checkpoint_txg(spa_t *spa)
5101 {
5102 uberblock_t checkpoint;
5103 int error = 0;
5104
5105 ASSERT0(spa->spa_checkpoint_txg);
5106 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5107 spa->spa_load_thread == curthread);
5108
5109 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5110 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5111 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5112
5113 if (error == ENOENT)
5114 return (0);
5115
5116 if (error != 0)
5117 return (error);
5118
5119 ASSERT3U(checkpoint.ub_txg, !=, 0);
5120 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5121 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5122 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5123 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5124
5125 return (0);
5126 }
5127
5128 static int
5129 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5130 {
5131 int error = 0;
5132
5133 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5134 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5135
5136 /*
5137 * Never trust the config that is provided unless we are assembling
5138 * a pool following a split.
5139 * This means don't trust blkptrs and the vdev tree in general. This
5140 * also effectively puts the spa in read-only mode since
5141 * spa_writeable() checks for spa_trust_config to be true.
5142 * We will later load a trusted config from the MOS.
5143 */
5144 if (type != SPA_IMPORT_ASSEMBLE)
5145 spa->spa_trust_config = B_FALSE;
5146
5147 /*
5148 * Parse the config provided to create a vdev tree.
5149 */
5150 error = spa_ld_parse_config(spa, type);
5151 if (error != 0)
5152 return (error);
5153
5154 spa_import_progress_add(spa);
5155
5156 /*
5157 * Now that we have the vdev tree, try to open each vdev. This involves
5158 * opening the underlying physical device, retrieving its geometry and
5159 * probing the vdev with a dummy I/O. The state of each vdev will be set
5160 * based on the success of those operations. After this we'll be ready
5161 * to read from the vdevs.
5162 */
5163 error = spa_ld_open_vdevs(spa);
5164 if (error != 0)
5165 return (error);
5166
5167 /*
5168 * Read the label of each vdev and make sure that the GUIDs stored
5169 * there match the GUIDs in the config provided.
5170 * If we're assembling a new pool that's been split off from an
5171 * existing pool, the labels haven't yet been updated so we skip
5172 * validation for now.
5173 */
5174 if (type != SPA_IMPORT_ASSEMBLE) {
5175 error = spa_ld_validate_vdevs(spa);
5176 if (error != 0)
5177 return (error);
5178 }
5179
5180 /*
5181 * Read all vdev labels to find the best uberblock (i.e. latest,
5182 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5183 * get the list of features required to read blkptrs in the MOS from
5184 * the vdev label with the best uberblock and verify that our version
5185 * of zfs supports them all.
5186 */
5187 error = spa_ld_select_uberblock(spa, type);
5188 if (error != 0)
5189 return (error);
5190
5191 /*
5192 * Pass that uberblock to the dsl_pool layer which will open the root
5193 * blkptr. This blkptr points to the latest version of the MOS and will
5194 * allow us to read its contents.
5195 */
5196 error = spa_ld_open_rootbp(spa);
5197 if (error != 0)
5198 return (error);
5199
5200 return (0);
5201 }
5202
5203 static int
5204 spa_ld_checkpoint_rewind(spa_t *spa)
5205 {
5206 uberblock_t checkpoint;
5207 int error = 0;
5208
5209 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5210 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5211
5212 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5213 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5214 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5215
5216 if (error != 0) {
5217 spa_load_failed(spa, "unable to retrieve checkpointed "
5218 "uberblock from the MOS config [error=%d]", error);
5219
5220 if (error == ENOENT)
5221 error = ZFS_ERR_NO_CHECKPOINT;
5222
5223 return (error);
5224 }
5225
5226 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5227 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5228
5229 /*
5230 * We need to update the txg and timestamp of the checkpointed
5231 * uberblock to be higher than the latest one. This ensures that
5232 * the checkpointed uberblock is selected if we were to close and
5233 * reopen the pool right after we've written it in the vdev labels.
5234 * (also see block comment in vdev_uberblock_compare)
5235 */
5236 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5237 checkpoint.ub_timestamp = gethrestime_sec();
5238
5239 /*
5240 * Set current uberblock to be the checkpointed uberblock.
5241 */
5242 spa->spa_uberblock = checkpoint;
5243
5244 /*
5245 * If we are doing a normal rewind, then the pool is open for
5246 * writing and we sync the "updated" checkpointed uberblock to
5247 * disk. Once this is done, we've basically rewound the whole
5248 * pool and there is no way back.
5249 *
5250 * There are cases when we don't want to attempt and sync the
5251 * checkpointed uberblock to disk because we are opening a
5252 * pool as read-only. Specifically, verifying the checkpointed
5253 * state with zdb, and importing the checkpointed state to get
5254 * a "preview" of its content.
5255 */
5256 if (spa_writeable(spa)) {
5257 vdev_t *rvd = spa->spa_root_vdev;
5258
5259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5260 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5261 int svdcount = 0;
5262 int children = rvd->vdev_children;
5263 int c0 = random_in_range(children);
5264
5265 for (int c = 0; c < children; c++) {
5266 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5267
5268 /* Stop when revisiting the first vdev */
5269 if (c > 0 && svd[0] == vd)
5270 break;
5271
5272 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5273 !vdev_is_concrete(vd))
5274 continue;
5275
5276 svd[svdcount++] = vd;
5277 if (svdcount == SPA_SYNC_MIN_VDEVS)
5278 break;
5279 }
5280 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5281 if (error == 0)
5282 spa->spa_last_synced_guid = rvd->vdev_guid;
5283 spa_config_exit(spa, SCL_ALL, FTAG);
5284
5285 if (error != 0) {
5286 spa_load_failed(spa, "failed to write checkpointed "
5287 "uberblock to the vdev labels [error=%d]", error);
5288 return (error);
5289 }
5290 }
5291
5292 return (0);
5293 }
5294
5295 static int
5296 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5297 boolean_t *update_config_cache)
5298 {
5299 int error;
5300
5301 /*
5302 * Parse the config for pool, open and validate vdevs,
5303 * select an uberblock, and use that uberblock to open
5304 * the MOS.
5305 */
5306 error = spa_ld_mos_init(spa, type);
5307 if (error != 0)
5308 return (error);
5309
5310 /*
5311 * Retrieve the trusted config stored in the MOS and use it to create
5312 * a new, exact version of the vdev tree, then reopen all vdevs.
5313 */
5314 error = spa_ld_trusted_config(spa, type, B_FALSE);
5315 if (error == EAGAIN) {
5316 if (update_config_cache != NULL)
5317 *update_config_cache = B_TRUE;
5318
5319 /*
5320 * Redo the loading process with the trusted config if it is
5321 * too different from the untrusted config.
5322 */
5323 spa_ld_prepare_for_reload(spa);
5324 spa_load_note(spa, "RELOADING");
5325 error = spa_ld_mos_init(spa, type);
5326 if (error != 0)
5327 return (error);
5328
5329 error = spa_ld_trusted_config(spa, type, B_TRUE);
5330 if (error != 0)
5331 return (error);
5332
5333 } else if (error != 0) {
5334 return (error);
5335 }
5336
5337 return (0);
5338 }
5339
5340 /*
5341 * Load an existing storage pool, using the config provided. This config
5342 * describes which vdevs are part of the pool and is later validated against
5343 * partial configs present in each vdev's label and an entire copy of the
5344 * config stored in the MOS.
5345 */
5346 static int
5347 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5348 {
5349 int error = 0;
5350 boolean_t missing_feat_write = B_FALSE;
5351 boolean_t checkpoint_rewind =
5352 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5353 boolean_t update_config_cache = B_FALSE;
5354 hrtime_t load_start = gethrtime();
5355
5356 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5357 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5358
5359 spa_load_note(spa, "LOADING");
5360
5361 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5362 if (error != 0)
5363 return (error);
5364
5365 /*
5366 * If we are rewinding to the checkpoint then we need to repeat
5367 * everything we've done so far in this function but this time
5368 * selecting the checkpointed uberblock and using that to open
5369 * the MOS.
5370 */
5371 if (checkpoint_rewind) {
5372 /*
5373 * If we are rewinding to the checkpoint update config cache
5374 * anyway.
5375 */
5376 update_config_cache = B_TRUE;
5377
5378 /*
5379 * Extract the checkpointed uberblock from the current MOS
5380 * and use this as the pool's uberblock from now on. If the
5381 * pool is imported as writeable we also write the checkpoint
5382 * uberblock to the labels, making the rewind permanent.
5383 */
5384 error = spa_ld_checkpoint_rewind(spa);
5385 if (error != 0)
5386 return (error);
5387
5388 /*
5389 * Redo the loading process again with the
5390 * checkpointed uberblock.
5391 */
5392 spa_ld_prepare_for_reload(spa);
5393 spa_load_note(spa, "LOADING checkpointed uberblock");
5394 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5395 if (error != 0)
5396 return (error);
5397 }
5398
5399 /*
5400 * Drop the namespace lock for the rest of the function.
5401 */
5402 spa->spa_load_thread = curthread;
5403 mutex_exit(&spa_namespace_lock);
5404
5405 /*
5406 * Retrieve the checkpoint txg if the pool has a checkpoint.
5407 */
5408 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5409 error = spa_ld_read_checkpoint_txg(spa);
5410 if (error != 0)
5411 goto fail;
5412
5413 /*
5414 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5415 * from the pool and their contents were re-mapped to other vdevs. Note
5416 * that everything that we read before this step must have been
5417 * rewritten on concrete vdevs after the last device removal was
5418 * initiated. Otherwise we could be reading from indirect vdevs before
5419 * we have loaded their mappings.
5420 */
5421 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5422 error = spa_ld_open_indirect_vdev_metadata(spa);
5423 if (error != 0)
5424 goto fail;
5425
5426 /*
5427 * Retrieve the full list of active features from the MOS and check if
5428 * they are all supported.
5429 */
5430 spa_import_progress_set_notes(spa, "Checking feature flags");
5431 error = spa_ld_check_features(spa, &missing_feat_write);
5432 if (error != 0)
5433 goto fail;
5434
5435 /*
5436 * Load several special directories from the MOS needed by the dsl_pool
5437 * layer.
5438 */
5439 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5440 error = spa_ld_load_special_directories(spa);
5441 if (error != 0)
5442 goto fail;
5443
5444 /*
5445 * Retrieve pool properties from the MOS.
5446 */
5447 spa_import_progress_set_notes(spa, "Loading properties");
5448 error = spa_ld_get_props(spa);
5449 if (error != 0)
5450 goto fail;
5451
5452 /*
5453 * Retrieve the list of auxiliary devices - cache devices and spares -
5454 * and open them.
5455 */
5456 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5457 error = spa_ld_open_aux_vdevs(spa, type);
5458 if (error != 0)
5459 goto fail;
5460
5461 /*
5462 * Load the metadata for all vdevs. Also check if unopenable devices
5463 * should be autoreplaced.
5464 */
5465 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5466 error = spa_ld_load_vdev_metadata(spa);
5467 if (error != 0)
5468 goto fail;
5469
5470 spa_import_progress_set_notes(spa, "Loading dedup tables");
5471 error = spa_ld_load_dedup_tables(spa);
5472 if (error != 0)
5473 goto fail;
5474
5475 spa_import_progress_set_notes(spa, "Loading BRT");
5476 error = spa_ld_load_brt(spa);
5477 if (error != 0)
5478 goto fail;
5479
5480 /*
5481 * Verify the logs now to make sure we don't have any unexpected errors
5482 * when we claim log blocks later.
5483 */
5484 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5485 error = spa_ld_verify_logs(spa, type, ereport);
5486 if (error != 0)
5487 goto fail;
5488
5489 if (missing_feat_write) {
5490 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5491
5492 /*
5493 * At this point, we know that we can open the pool in
5494 * read-only mode but not read-write mode. We now have enough
5495 * information and can return to userland.
5496 */
5497 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5498 ENOTSUP);
5499 goto fail;
5500 }
5501
5502 /*
5503 * Traverse the last txgs to make sure the pool was left off in a safe
5504 * state. When performing an extreme rewind, we verify the whole pool,
5505 * which can take a very long time.
5506 */
5507 spa_import_progress_set_notes(spa, "Verifying pool data");
5508 error = spa_ld_verify_pool_data(spa);
5509 if (error != 0)
5510 goto fail;
5511
5512 /*
5513 * Calculate the deflated space for the pool. This must be done before
5514 * we write anything to the pool because we'd need to update the space
5515 * accounting using the deflated sizes.
5516 */
5517 spa_import_progress_set_notes(spa, "Calculating deflated space");
5518 spa_update_dspace(spa);
5519
5520 /*
5521 * We have now retrieved all the information we needed to open the
5522 * pool. If we are importing the pool in read-write mode, a few
5523 * additional steps must be performed to finish the import.
5524 */
5525 spa_import_progress_set_notes(spa, "Starting import");
5526 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5527 spa->spa_load_max_txg == UINT64_MAX)) {
5528 uint64_t config_cache_txg = spa->spa_config_txg;
5529
5530 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5531
5532 /*
5533 * Before we do any zio_write's, complete the raidz expansion
5534 * scratch space copying, if necessary.
5535 */
5536 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5537 vdev_raidz_reflow_copy_scratch(spa);
5538
5539 /*
5540 * In case of a checkpoint rewind, log the original txg
5541 * of the checkpointed uberblock.
5542 */
5543 if (checkpoint_rewind) {
5544 spa_history_log_internal(spa, "checkpoint rewind",
5545 NULL, "rewound state to txg=%llu",
5546 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5547 }
5548
5549 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5550 /*
5551 * Traverse the ZIL and claim all blocks.
5552 */
5553 spa_ld_claim_log_blocks(spa);
5554
5555 /*
5556 * Kick-off the syncing thread.
5557 */
5558 spa->spa_sync_on = B_TRUE;
5559 txg_sync_start(spa->spa_dsl_pool);
5560 mmp_thread_start(spa);
5561
5562 /*
5563 * Wait for all claims to sync. We sync up to the highest
5564 * claimed log block birth time so that claimed log blocks
5565 * don't appear to be from the future. spa_claim_max_txg
5566 * will have been set for us by ZIL traversal operations
5567 * performed above.
5568 */
5569 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5570 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5571
5572 /*
5573 * Check if we need to request an update of the config. On the
5574 * next sync, we would update the config stored in vdev labels
5575 * and the cachefile (by default /etc/zfs/zpool.cache).
5576 */
5577 spa_import_progress_set_notes(spa, "Updating configs");
5578 spa_ld_check_for_config_update(spa, config_cache_txg,
5579 update_config_cache);
5580
5581 /*
5582 * Check if a rebuild was in progress and if so resume it.
5583 * Then check all DTLs to see if anything needs resilvering.
5584 * The resilver will be deferred if a rebuild was started.
5585 */
5586 spa_import_progress_set_notes(spa, "Starting resilvers");
5587 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5588 vdev_rebuild_restart(spa);
5589 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5590 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5591 spa_async_request(spa, SPA_ASYNC_RESILVER);
5592 }
5593
5594 /*
5595 * Log the fact that we booted up (so that we can detect if
5596 * we rebooted in the middle of an operation).
5597 */
5598 spa_history_log_version(spa, "open", NULL);
5599
5600 spa_import_progress_set_notes(spa,
5601 "Restarting device removals");
5602 spa_restart_removal(spa);
5603 spa_spawn_aux_threads(spa);
5604
5605 /*
5606 * Delete any inconsistent datasets.
5607 *
5608 * Note:
5609 * Since we may be issuing deletes for clones here,
5610 * we make sure to do so after we've spawned all the
5611 * auxiliary threads above (from which the livelist
5612 * deletion zthr is part of).
5613 */
5614 spa_import_progress_set_notes(spa,
5615 "Cleaning up inconsistent objsets");
5616 (void) dmu_objset_find(spa_name(spa),
5617 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5618
5619 /*
5620 * Clean up any stale temporary dataset userrefs.
5621 */
5622 spa_import_progress_set_notes(spa,
5623 "Cleaning up temporary userrefs");
5624 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5625
5626 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5627 spa_import_progress_set_notes(spa, "Restarting initialize");
5628 vdev_initialize_restart(spa->spa_root_vdev);
5629 spa_import_progress_set_notes(spa, "Restarting TRIM");
5630 vdev_trim_restart(spa->spa_root_vdev);
5631 vdev_autotrim_restart(spa);
5632 spa_config_exit(spa, SCL_CONFIG, FTAG);
5633 spa_import_progress_set_notes(spa, "Finished importing");
5634 }
5635 zio_handle_import_delay(spa, gethrtime() - load_start);
5636
5637 spa_import_progress_remove(spa_guid(spa));
5638 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5639
5640 spa_load_note(spa, "LOADED");
5641 fail:
5642 mutex_enter(&spa_namespace_lock);
5643 spa->spa_load_thread = NULL;
5644 cv_broadcast(&spa_namespace_cv);
5645
5646 return (error);
5647
5648 }
5649
5650 static int
5651 spa_load_retry(spa_t *spa, spa_load_state_t state)
5652 {
5653 spa_mode_t mode = spa->spa_mode;
5654
5655 spa_unload(spa);
5656 spa_deactivate(spa);
5657
5658 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5659
5660 spa_activate(spa, mode);
5661 spa_async_suspend(spa);
5662
5663 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5664 (u_longlong_t)spa->spa_load_max_txg);
5665
5666 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5667 }
5668
5669 /*
5670 * If spa_load() fails this function will try loading prior txg's. If
5671 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5672 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5673 * function will not rewind the pool and will return the same error as
5674 * spa_load().
5675 */
5676 static int
5677 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5678 int rewind_flags)
5679 {
5680 nvlist_t *loadinfo = NULL;
5681 nvlist_t *config = NULL;
5682 int load_error, rewind_error;
5683 uint64_t safe_rewind_txg;
5684 uint64_t min_txg;
5685
5686 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5687 spa->spa_load_max_txg = spa->spa_load_txg;
5688 spa_set_log_state(spa, SPA_LOG_CLEAR);
5689 } else {
5690 spa->spa_load_max_txg = max_request;
5691 if (max_request != UINT64_MAX)
5692 spa->spa_extreme_rewind = B_TRUE;
5693 }
5694
5695 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5696 if (load_error == 0)
5697 return (0);
5698 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5699 /*
5700 * When attempting checkpoint-rewind on a pool with no
5701 * checkpoint, we should not attempt to load uberblocks
5702 * from previous txgs when spa_load fails.
5703 */
5704 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5705 spa_import_progress_remove(spa_guid(spa));
5706 return (load_error);
5707 }
5708
5709 if (spa->spa_root_vdev != NULL)
5710 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5711
5712 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5713 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5714
5715 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5716 nvlist_free(config);
5717 spa_import_progress_remove(spa_guid(spa));
5718 return (load_error);
5719 }
5720
5721 if (state == SPA_LOAD_RECOVER) {
5722 /* Price of rolling back is discarding txgs, including log */
5723 spa_set_log_state(spa, SPA_LOG_CLEAR);
5724 } else {
5725 /*
5726 * If we aren't rolling back save the load info from our first
5727 * import attempt so that we can restore it after attempting
5728 * to rewind.
5729 */
5730 loadinfo = spa->spa_load_info;
5731 spa->spa_load_info = fnvlist_alloc();
5732 }
5733
5734 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5735 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5736 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5737 TXG_INITIAL : safe_rewind_txg;
5738
5739 /*
5740 * Continue as long as we're finding errors, we're still within
5741 * the acceptable rewind range, and we're still finding uberblocks
5742 */
5743 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5744 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5745 if (spa->spa_load_max_txg < safe_rewind_txg)
5746 spa->spa_extreme_rewind = B_TRUE;
5747 rewind_error = spa_load_retry(spa, state);
5748 }
5749
5750 spa->spa_extreme_rewind = B_FALSE;
5751 spa->spa_load_max_txg = UINT64_MAX;
5752
5753 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5754 spa_config_set(spa, config);
5755 else
5756 nvlist_free(config);
5757
5758 if (state == SPA_LOAD_RECOVER) {
5759 ASSERT3P(loadinfo, ==, NULL);
5760 spa_import_progress_remove(spa_guid(spa));
5761 return (rewind_error);
5762 } else {
5763 /* Store the rewind info as part of the initial load info */
5764 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5765 spa->spa_load_info);
5766
5767 /* Restore the initial load info */
5768 fnvlist_free(spa->spa_load_info);
5769 spa->spa_load_info = loadinfo;
5770
5771 spa_import_progress_remove(spa_guid(spa));
5772 return (load_error);
5773 }
5774 }
5775
5776 /*
5777 * Pool Open/Import
5778 *
5779 * The import case is identical to an open except that the configuration is sent
5780 * down from userland, instead of grabbed from the configuration cache. For the
5781 * case of an open, the pool configuration will exist in the
5782 * POOL_STATE_UNINITIALIZED state.
5783 *
5784 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5785 * the same time open the pool, without having to keep around the spa_t in some
5786 * ambiguous state.
5787 */
5788 static int
5789 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5790 nvlist_t *nvpolicy, nvlist_t **config)
5791 {
5792 spa_t *spa;
5793 spa_load_state_t state = SPA_LOAD_OPEN;
5794 int error;
5795 int locked = B_FALSE;
5796 int firstopen = B_FALSE;
5797
5798 *spapp = NULL;
5799
5800 /*
5801 * As disgusting as this is, we need to support recursive calls to this
5802 * function because dsl_dir_open() is called during spa_load(), and ends
5803 * up calling spa_open() again. The real fix is to figure out how to
5804 * avoid dsl_dir_open() calling this in the first place.
5805 */
5806 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5807 mutex_enter(&spa_namespace_lock);
5808 locked = B_TRUE;
5809 }
5810
5811 if ((spa = spa_lookup(pool)) == NULL) {
5812 if (locked)
5813 mutex_exit(&spa_namespace_lock);
5814 return (SET_ERROR(ENOENT));
5815 }
5816
5817 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5818 zpool_load_policy_t policy;
5819
5820 firstopen = B_TRUE;
5821
5822 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5823 &policy);
5824 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5825 state = SPA_LOAD_RECOVER;
5826
5827 spa_activate(spa, spa_mode_global);
5828
5829 if (state != SPA_LOAD_RECOVER)
5830 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5831 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5832
5833 zfs_dbgmsg("spa_open_common: opening %s", pool);
5834 error = spa_load_best(spa, state, policy.zlp_txg,
5835 policy.zlp_rewind);
5836
5837 if (error == EBADF) {
5838 /*
5839 * If vdev_validate() returns failure (indicated by
5840 * EBADF), it indicates that one of the vdevs indicates
5841 * that the pool has been exported or destroyed. If
5842 * this is the case, the config cache is out of sync and
5843 * we should remove the pool from the namespace.
5844 */
5845 spa_unload(spa);
5846 spa_deactivate(spa);
5847 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5848 spa_remove(spa);
5849 if (locked)
5850 mutex_exit(&spa_namespace_lock);
5851 return (SET_ERROR(ENOENT));
5852 }
5853
5854 if (error) {
5855 /*
5856 * We can't open the pool, but we still have useful
5857 * information: the state of each vdev after the
5858 * attempted vdev_open(). Return this to the user.
5859 */
5860 if (config != NULL && spa->spa_config) {
5861 *config = fnvlist_dup(spa->spa_config);
5862 fnvlist_add_nvlist(*config,
5863 ZPOOL_CONFIG_LOAD_INFO,
5864 spa->spa_load_info);
5865 }
5866 spa_unload(spa);
5867 spa_deactivate(spa);
5868 spa->spa_last_open_failed = error;
5869 if (locked)
5870 mutex_exit(&spa_namespace_lock);
5871 *spapp = NULL;
5872 return (error);
5873 }
5874 }
5875
5876 spa_open_ref(spa, tag);
5877
5878 if (config != NULL)
5879 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5880
5881 /*
5882 * If we've recovered the pool, pass back any information we
5883 * gathered while doing the load.
5884 */
5885 if (state == SPA_LOAD_RECOVER && config != NULL) {
5886 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5887 spa->spa_load_info);
5888 }
5889
5890 if (locked) {
5891 spa->spa_last_open_failed = 0;
5892 spa->spa_last_ubsync_txg = 0;
5893 spa->spa_load_txg = 0;
5894 mutex_exit(&spa_namespace_lock);
5895 }
5896
5897 if (firstopen)
5898 zvol_create_minors_recursive(spa_name(spa));
5899
5900 *spapp = spa;
5901
5902 return (0);
5903 }
5904
5905 int
5906 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5907 nvlist_t *policy, nvlist_t **config)
5908 {
5909 return (spa_open_common(name, spapp, tag, policy, config));
5910 }
5911
5912 int
5913 spa_open(const char *name, spa_t **spapp, const void *tag)
5914 {
5915 return (spa_open_common(name, spapp, tag, NULL, NULL));
5916 }
5917
5918 /*
5919 * Lookup the given spa_t, incrementing the inject count in the process,
5920 * preventing it from being exported or destroyed.
5921 */
5922 spa_t *
5923 spa_inject_addref(char *name)
5924 {
5925 spa_t *spa;
5926
5927 mutex_enter(&spa_namespace_lock);
5928 if ((spa = spa_lookup(name)) == NULL) {
5929 mutex_exit(&spa_namespace_lock);
5930 return (NULL);
5931 }
5932 spa->spa_inject_ref++;
5933 mutex_exit(&spa_namespace_lock);
5934
5935 return (spa);
5936 }
5937
5938 void
5939 spa_inject_delref(spa_t *spa)
5940 {
5941 mutex_enter(&spa_namespace_lock);
5942 spa->spa_inject_ref--;
5943 mutex_exit(&spa_namespace_lock);
5944 }
5945
5946 /*
5947 * Add spares device information to the nvlist.
5948 */
5949 static void
5950 spa_add_spares(spa_t *spa, nvlist_t *config)
5951 {
5952 nvlist_t **spares;
5953 uint_t i, nspares;
5954 nvlist_t *nvroot;
5955 uint64_t guid;
5956 vdev_stat_t *vs;
5957 uint_t vsc;
5958 uint64_t pool;
5959
5960 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5961
5962 if (spa->spa_spares.sav_count == 0)
5963 return;
5964
5965 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5966 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5967 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5968 if (nspares != 0) {
5969 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5970 (const nvlist_t * const *)spares, nspares);
5971 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5972 &spares, &nspares));
5973
5974 /*
5975 * Go through and find any spares which have since been
5976 * repurposed as an active spare. If this is the case, update
5977 * their status appropriately.
5978 */
5979 for (i = 0; i < nspares; i++) {
5980 guid = fnvlist_lookup_uint64(spares[i],
5981 ZPOOL_CONFIG_GUID);
5982 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5983 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5984 if (spa_spare_exists(guid, &pool, NULL) &&
5985 pool != 0ULL) {
5986 vs->vs_state = VDEV_STATE_CANT_OPEN;
5987 vs->vs_aux = VDEV_AUX_SPARED;
5988 } else {
5989 vs->vs_state =
5990 spa->spa_spares.sav_vdevs[i]->vdev_state;
5991 }
5992 }
5993 }
5994 }
5995
5996 /*
5997 * Add l2cache device information to the nvlist, including vdev stats.
5998 */
5999 static void
6000 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6001 {
6002 nvlist_t **l2cache;
6003 uint_t i, j, nl2cache;
6004 nvlist_t *nvroot;
6005 uint64_t guid;
6006 vdev_t *vd;
6007 vdev_stat_t *vs;
6008 uint_t vsc;
6009
6010 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6011
6012 if (spa->spa_l2cache.sav_count == 0)
6013 return;
6014
6015 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6016 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6017 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6018 if (nl2cache != 0) {
6019 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6020 (const nvlist_t * const *)l2cache, nl2cache);
6021 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6022 &l2cache, &nl2cache));
6023
6024 /*
6025 * Update level 2 cache device stats.
6026 */
6027
6028 for (i = 0; i < nl2cache; i++) {
6029 guid = fnvlist_lookup_uint64(l2cache[i],
6030 ZPOOL_CONFIG_GUID);
6031
6032 vd = NULL;
6033 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6034 if (guid ==
6035 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6036 vd = spa->spa_l2cache.sav_vdevs[j];
6037 break;
6038 }
6039 }
6040 ASSERT(vd != NULL);
6041
6042 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6043 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6044 vdev_get_stats(vd, vs);
6045 vdev_config_generate_stats(vd, l2cache[i]);
6046
6047 }
6048 }
6049 }
6050
6051 static void
6052 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6053 {
6054 zap_cursor_t zc;
6055 zap_attribute_t *za = zap_attribute_alloc();
6056
6057 if (spa->spa_feat_for_read_obj != 0) {
6058 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6059 spa->spa_feat_for_read_obj);
6060 zap_cursor_retrieve(&zc, za) == 0;
6061 zap_cursor_advance(&zc)) {
6062 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6063 za->za_num_integers == 1);
6064 VERIFY0(nvlist_add_uint64(features, za->za_name,
6065 za->za_first_integer));
6066 }
6067 zap_cursor_fini(&zc);
6068 }
6069
6070 if (spa->spa_feat_for_write_obj != 0) {
6071 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6072 spa->spa_feat_for_write_obj);
6073 zap_cursor_retrieve(&zc, za) == 0;
6074 zap_cursor_advance(&zc)) {
6075 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6076 za->za_num_integers == 1);
6077 VERIFY0(nvlist_add_uint64(features, za->za_name,
6078 za->za_first_integer));
6079 }
6080 zap_cursor_fini(&zc);
6081 }
6082 zap_attribute_free(za);
6083 }
6084
6085 static void
6086 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6087 {
6088 int i;
6089
6090 for (i = 0; i < SPA_FEATURES; i++) {
6091 zfeature_info_t feature = spa_feature_table[i];
6092 uint64_t refcount;
6093
6094 if (feature_get_refcount(spa, &feature, &refcount) != 0)
6095 continue;
6096
6097 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6098 }
6099 }
6100
6101 /*
6102 * Store a list of pool features and their reference counts in the
6103 * config.
6104 *
6105 * The first time this is called on a spa, allocate a new nvlist, fetch
6106 * the pool features and reference counts from disk, then save the list
6107 * in the spa. In subsequent calls on the same spa use the saved nvlist
6108 * and refresh its values from the cached reference counts. This
6109 * ensures we don't block here on I/O on a suspended pool so 'zpool
6110 * clear' can resume the pool.
6111 */
6112 static void
6113 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6114 {
6115 nvlist_t *features;
6116
6117 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6118
6119 mutex_enter(&spa->spa_feat_stats_lock);
6120 features = spa->spa_feat_stats;
6121
6122 if (features != NULL) {
6123 spa_feature_stats_from_cache(spa, features);
6124 } else {
6125 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6126 spa->spa_feat_stats = features;
6127 spa_feature_stats_from_disk(spa, features);
6128 }
6129
6130 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6131 features));
6132
6133 mutex_exit(&spa->spa_feat_stats_lock);
6134 }
6135
6136 int
6137 spa_get_stats(const char *name, nvlist_t **config,
6138 char *altroot, size_t buflen)
6139 {
6140 int error;
6141 spa_t *spa;
6142
6143 *config = NULL;
6144 error = spa_open_common(name, &spa, FTAG, NULL, config);
6145
6146 if (spa != NULL) {
6147 /*
6148 * This still leaves a window of inconsistency where the spares
6149 * or l2cache devices could change and the config would be
6150 * self-inconsistent.
6151 */
6152 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6153
6154 if (*config != NULL) {
6155 uint64_t loadtimes[2];
6156
6157 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6158 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6159 fnvlist_add_uint64_array(*config,
6160 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6161
6162 fnvlist_add_uint64(*config,
6163 ZPOOL_CONFIG_ERRCOUNT,
6164 spa_approx_errlog_size(spa));
6165
6166 if (spa_suspended(spa)) {
6167 fnvlist_add_uint64(*config,
6168 ZPOOL_CONFIG_SUSPENDED,
6169 spa->spa_failmode);
6170 fnvlist_add_uint64(*config,
6171 ZPOOL_CONFIG_SUSPENDED_REASON,
6172 spa->spa_suspended);
6173 }
6174
6175 spa_add_spares(spa, *config);
6176 spa_add_l2cache(spa, *config);
6177 spa_add_feature_stats(spa, *config);
6178 }
6179 }
6180
6181 /*
6182 * We want to get the alternate root even for faulted pools, so we cheat
6183 * and call spa_lookup() directly.
6184 */
6185 if (altroot) {
6186 if (spa == NULL) {
6187 mutex_enter(&spa_namespace_lock);
6188 spa = spa_lookup(name);
6189 if (spa)
6190 spa_altroot(spa, altroot, buflen);
6191 else
6192 altroot[0] = '\0';
6193 spa = NULL;
6194 mutex_exit(&spa_namespace_lock);
6195 } else {
6196 spa_altroot(spa, altroot, buflen);
6197 }
6198 }
6199
6200 if (spa != NULL) {
6201 spa_config_exit(spa, SCL_CONFIG, FTAG);
6202 spa_close(spa, FTAG);
6203 }
6204
6205 return (error);
6206 }
6207
6208 /*
6209 * Validate that the auxiliary device array is well formed. We must have an
6210 * array of nvlists, each which describes a valid leaf vdev. If this is an
6211 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6212 * specified, as long as they are well-formed.
6213 */
6214 static int
6215 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6216 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6217 vdev_labeltype_t label)
6218 {
6219 nvlist_t **dev;
6220 uint_t i, ndev;
6221 vdev_t *vd;
6222 int error;
6223
6224 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6225
6226 /*
6227 * It's acceptable to have no devs specified.
6228 */
6229 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6230 return (0);
6231
6232 if (ndev == 0)
6233 return (SET_ERROR(EINVAL));
6234
6235 /*
6236 * Make sure the pool is formatted with a version that supports this
6237 * device type.
6238 */
6239 if (spa_version(spa) < version)
6240 return (SET_ERROR(ENOTSUP));
6241
6242 /*
6243 * Set the pending device list so we correctly handle device in-use
6244 * checking.
6245 */
6246 sav->sav_pending = dev;
6247 sav->sav_npending = ndev;
6248
6249 for (i = 0; i < ndev; i++) {
6250 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6251 mode)) != 0)
6252 goto out;
6253
6254 if (!vd->vdev_ops->vdev_op_leaf) {
6255 vdev_free(vd);
6256 error = SET_ERROR(EINVAL);
6257 goto out;
6258 }
6259
6260 vd->vdev_top = vd;
6261
6262 if ((error = vdev_open(vd)) == 0 &&
6263 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6264 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6265 vd->vdev_guid);
6266 }
6267
6268 vdev_free(vd);
6269
6270 if (error &&
6271 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6272 goto out;
6273 else
6274 error = 0;
6275 }
6276
6277 out:
6278 sav->sav_pending = NULL;
6279 sav->sav_npending = 0;
6280 return (error);
6281 }
6282
6283 static int
6284 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6285 {
6286 int error;
6287
6288 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6289
6290 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6291 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6292 VDEV_LABEL_SPARE)) != 0) {
6293 return (error);
6294 }
6295
6296 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6297 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6298 VDEV_LABEL_L2CACHE));
6299 }
6300
6301 static void
6302 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6303 const char *config)
6304 {
6305 int i;
6306
6307 if (sav->sav_config != NULL) {
6308 nvlist_t **olddevs;
6309 uint_t oldndevs;
6310 nvlist_t **newdevs;
6311
6312 /*
6313 * Generate new dev list by concatenating with the
6314 * current dev list.
6315 */
6316 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6317 &olddevs, &oldndevs));
6318
6319 newdevs = kmem_alloc(sizeof (void *) *
6320 (ndevs + oldndevs), KM_SLEEP);
6321 for (i = 0; i < oldndevs; i++)
6322 newdevs[i] = fnvlist_dup(olddevs[i]);
6323 for (i = 0; i < ndevs; i++)
6324 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6325
6326 fnvlist_remove(sav->sav_config, config);
6327
6328 fnvlist_add_nvlist_array(sav->sav_config, config,
6329 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6330 for (i = 0; i < oldndevs + ndevs; i++)
6331 nvlist_free(newdevs[i]);
6332 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6333 } else {
6334 /*
6335 * Generate a new dev list.
6336 */
6337 sav->sav_config = fnvlist_alloc();
6338 fnvlist_add_nvlist_array(sav->sav_config, config,
6339 (const nvlist_t * const *)devs, ndevs);
6340 }
6341 }
6342
6343 /*
6344 * Stop and drop level 2 ARC devices
6345 */
6346 void
6347 spa_l2cache_drop(spa_t *spa)
6348 {
6349 vdev_t *vd;
6350 int i;
6351 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6352
6353 for (i = 0; i < sav->sav_count; i++) {
6354 uint64_t pool;
6355
6356 vd = sav->sav_vdevs[i];
6357 ASSERT(vd != NULL);
6358
6359 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6360 pool != 0ULL && l2arc_vdev_present(vd))
6361 l2arc_remove_vdev(vd);
6362 }
6363 }
6364
6365 /*
6366 * Verify encryption parameters for spa creation. If we are encrypting, we must
6367 * have the encryption feature flag enabled.
6368 */
6369 static int
6370 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6371 boolean_t has_encryption)
6372 {
6373 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6374 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6375 !has_encryption)
6376 return (SET_ERROR(ENOTSUP));
6377
6378 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6379 }
6380
6381 /*
6382 * Pool Creation
6383 */
6384 int
6385 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6386 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6387 {
6388 spa_t *spa;
6389 const char *altroot = NULL;
6390 vdev_t *rvd;
6391 dsl_pool_t *dp;
6392 dmu_tx_t *tx;
6393 int error = 0;
6394 uint64_t txg = TXG_INITIAL;
6395 nvlist_t **spares, **l2cache;
6396 uint_t nspares, nl2cache;
6397 uint64_t version, obj, ndraid = 0;
6398 boolean_t has_features;
6399 boolean_t has_encryption;
6400 boolean_t has_allocclass;
6401 spa_feature_t feat;
6402 const char *feat_name;
6403 const char *poolname;
6404 nvlist_t *nvl;
6405
6406 if (props == NULL ||
6407 nvlist_lookup_string(props,
6408 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6409 poolname = (char *)pool;
6410
6411 /*
6412 * If this pool already exists, return failure.
6413 */
6414 mutex_enter(&spa_namespace_lock);
6415 if (spa_lookup(poolname) != NULL) {
6416 mutex_exit(&spa_namespace_lock);
6417 return (SET_ERROR(EEXIST));
6418 }
6419
6420 /*
6421 * Allocate a new spa_t structure.
6422 */
6423 nvl = fnvlist_alloc();
6424 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6425 (void) nvlist_lookup_string(props,
6426 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6427 spa = spa_add(poolname, nvl, altroot);
6428 fnvlist_free(nvl);
6429 spa_activate(spa, spa_mode_global);
6430
6431 if (props && (error = spa_prop_validate(spa, props))) {
6432 spa_deactivate(spa);
6433 spa_remove(spa);
6434 mutex_exit(&spa_namespace_lock);
6435 return (error);
6436 }
6437
6438 /*
6439 * Temporary pool names should never be written to disk.
6440 */
6441 if (poolname != pool)
6442 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6443
6444 has_features = B_FALSE;
6445 has_encryption = B_FALSE;
6446 has_allocclass = B_FALSE;
6447 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6448 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6449 if (zpool_prop_feature(nvpair_name(elem))) {
6450 has_features = B_TRUE;
6451
6452 feat_name = strchr(nvpair_name(elem), '@') + 1;
6453 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6454 if (feat == SPA_FEATURE_ENCRYPTION)
6455 has_encryption = B_TRUE;
6456 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6457 has_allocclass = B_TRUE;
6458 }
6459 }
6460
6461 /* verify encryption params, if they were provided */
6462 if (dcp != NULL) {
6463 error = spa_create_check_encryption_params(dcp, has_encryption);
6464 if (error != 0) {
6465 spa_deactivate(spa);
6466 spa_remove(spa);
6467 mutex_exit(&spa_namespace_lock);
6468 return (error);
6469 }
6470 }
6471 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6472 spa_deactivate(spa);
6473 spa_remove(spa);
6474 mutex_exit(&spa_namespace_lock);
6475 return (ENOTSUP);
6476 }
6477
6478 if (has_features || nvlist_lookup_uint64(props,
6479 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6480 version = SPA_VERSION;
6481 }
6482 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6483
6484 spa->spa_first_txg = txg;
6485 spa->spa_uberblock.ub_txg = txg - 1;
6486 spa->spa_uberblock.ub_version = version;
6487 spa->spa_ubsync = spa->spa_uberblock;
6488 spa->spa_load_state = SPA_LOAD_CREATE;
6489 spa->spa_removing_phys.sr_state = DSS_NONE;
6490 spa->spa_removing_phys.sr_removing_vdev = -1;
6491 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6492 spa->spa_indirect_vdevs_loaded = B_TRUE;
6493
6494 /*
6495 * Create "The Godfather" zio to hold all async IOs
6496 */
6497 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6498 KM_SLEEP);
6499 for (int i = 0; i < max_ncpus; i++) {
6500 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6501 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6502 ZIO_FLAG_GODFATHER);
6503 }
6504
6505 /*
6506 * Create the root vdev.
6507 */
6508 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6509
6510 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6511
6512 ASSERT(error != 0 || rvd != NULL);
6513 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6514
6515 if (error == 0 && !zfs_allocatable_devs(nvroot))
6516 error = SET_ERROR(EINVAL);
6517
6518 if (error == 0 &&
6519 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6520 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6521 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6522 /*
6523 * instantiate the metaslab groups (this will dirty the vdevs)
6524 * we can no longer error exit past this point
6525 */
6526 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6527 vdev_t *vd = rvd->vdev_child[c];
6528
6529 vdev_metaslab_set_size(vd);
6530 vdev_expand(vd, txg);
6531 }
6532 }
6533
6534 spa_config_exit(spa, SCL_ALL, FTAG);
6535
6536 if (error != 0) {
6537 spa_unload(spa);
6538 spa_deactivate(spa);
6539 spa_remove(spa);
6540 mutex_exit(&spa_namespace_lock);
6541 return (error);
6542 }
6543
6544 /*
6545 * Get the list of spares, if specified.
6546 */
6547 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6548 &spares, &nspares) == 0) {
6549 spa->spa_spares.sav_config = fnvlist_alloc();
6550 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6551 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6552 nspares);
6553 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6554 spa_load_spares(spa);
6555 spa_config_exit(spa, SCL_ALL, FTAG);
6556 spa->spa_spares.sav_sync = B_TRUE;
6557 }
6558
6559 /*
6560 * Get the list of level 2 cache devices, if specified.
6561 */
6562 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6563 &l2cache, &nl2cache) == 0) {
6564 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6565 NV_UNIQUE_NAME, KM_SLEEP));
6566 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6567 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6568 nl2cache);
6569 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6570 spa_load_l2cache(spa);
6571 spa_config_exit(spa, SCL_ALL, FTAG);
6572 spa->spa_l2cache.sav_sync = B_TRUE;
6573 }
6574
6575 spa->spa_is_initializing = B_TRUE;
6576 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6577 spa->spa_is_initializing = B_FALSE;
6578
6579 /*
6580 * Create DDTs (dedup tables).
6581 */
6582 ddt_create(spa);
6583 /*
6584 * Create BRT table and BRT table object.
6585 */
6586 brt_create(spa);
6587
6588 spa_update_dspace(spa);
6589
6590 tx = dmu_tx_create_assigned(dp, txg);
6591
6592 /*
6593 * Create the pool's history object.
6594 */
6595 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6596 spa_history_create_obj(spa, tx);
6597
6598 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6599 spa_history_log_version(spa, "create", tx);
6600
6601 /*
6602 * Create the pool config object.
6603 */
6604 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6605 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6606 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6607
6608 if (zap_add(spa->spa_meta_objset,
6609 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6610 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6611 cmn_err(CE_PANIC, "failed to add pool config");
6612 }
6613
6614 if (zap_add(spa->spa_meta_objset,
6615 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6616 sizeof (uint64_t), 1, &version, tx) != 0) {
6617 cmn_err(CE_PANIC, "failed to add pool version");
6618 }
6619
6620 /* Newly created pools with the right version are always deflated. */
6621 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6622 spa->spa_deflate = TRUE;
6623 if (zap_add(spa->spa_meta_objset,
6624 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6625 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6626 cmn_err(CE_PANIC, "failed to add deflate");
6627 }
6628 }
6629
6630 /*
6631 * Create the deferred-free bpobj. Turn off compression
6632 * because sync-to-convergence takes longer if the blocksize
6633 * keeps changing.
6634 */
6635 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6636 dmu_object_set_compress(spa->spa_meta_objset, obj,
6637 ZIO_COMPRESS_OFF, tx);
6638 if (zap_add(spa->spa_meta_objset,
6639 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6640 sizeof (uint64_t), 1, &obj, tx) != 0) {
6641 cmn_err(CE_PANIC, "failed to add bpobj");
6642 }
6643 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6644 spa->spa_meta_objset, obj));
6645
6646 /*
6647 * Generate some random noise for salted checksums to operate on.
6648 */
6649 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6650 sizeof (spa->spa_cksum_salt.zcs_bytes));
6651
6652 /*
6653 * Set pool properties.
6654 */
6655 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6656 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6657 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6658 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6659 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6660 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6661 spa->spa_dedup_table_quota =
6662 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6663
6664 if (props != NULL) {
6665 spa_configfile_set(spa, props, B_FALSE);
6666 spa_sync_props(props, tx);
6667 }
6668
6669 for (int i = 0; i < ndraid; i++)
6670 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6671
6672 dmu_tx_commit(tx);
6673
6674 spa->spa_sync_on = B_TRUE;
6675 txg_sync_start(dp);
6676 mmp_thread_start(spa);
6677 txg_wait_synced(dp, txg);
6678
6679 spa_spawn_aux_threads(spa);
6680
6681 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6682
6683 /*
6684 * Don't count references from objsets that are already closed
6685 * and are making their way through the eviction process.
6686 */
6687 spa_evicting_os_wait(spa);
6688 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6689 spa->spa_load_state = SPA_LOAD_NONE;
6690
6691 spa_import_os(spa);
6692
6693 mutex_exit(&spa_namespace_lock);
6694
6695 return (0);
6696 }
6697
6698 /*
6699 * Import a non-root pool into the system.
6700 */
6701 int
6702 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6703 {
6704 spa_t *spa;
6705 const char *altroot = NULL;
6706 spa_load_state_t state = SPA_LOAD_IMPORT;
6707 zpool_load_policy_t policy;
6708 spa_mode_t mode = spa_mode_global;
6709 uint64_t readonly = B_FALSE;
6710 int error;
6711 nvlist_t *nvroot;
6712 nvlist_t **spares, **l2cache;
6713 uint_t nspares, nl2cache;
6714
6715 /*
6716 * If a pool with this name exists, return failure.
6717 */
6718 mutex_enter(&spa_namespace_lock);
6719 if (spa_lookup(pool) != NULL) {
6720 mutex_exit(&spa_namespace_lock);
6721 return (SET_ERROR(EEXIST));
6722 }
6723
6724 /*
6725 * Create and initialize the spa structure.
6726 */
6727 (void) nvlist_lookup_string(props,
6728 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6729 (void) nvlist_lookup_uint64(props,
6730 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6731 if (readonly)
6732 mode = SPA_MODE_READ;
6733 spa = spa_add(pool, config, altroot);
6734 spa->spa_import_flags = flags;
6735
6736 /*
6737 * Verbatim import - Take a pool and insert it into the namespace
6738 * as if it had been loaded at boot.
6739 */
6740 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6741 if (props != NULL)
6742 spa_configfile_set(spa, props, B_FALSE);
6743
6744 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6745 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6746 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6747 mutex_exit(&spa_namespace_lock);
6748 return (0);
6749 }
6750
6751 spa_activate(spa, mode);
6752
6753 /*
6754 * Don't start async tasks until we know everything is healthy.
6755 */
6756 spa_async_suspend(spa);
6757
6758 zpool_get_load_policy(config, &policy);
6759 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6760 state = SPA_LOAD_RECOVER;
6761
6762 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6763
6764 if (state != SPA_LOAD_RECOVER) {
6765 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6766 zfs_dbgmsg("spa_import: importing %s", pool);
6767 } else {
6768 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6769 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6770 }
6771 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6772
6773 /*
6774 * Propagate anything learned while loading the pool and pass it
6775 * back to caller (i.e. rewind info, missing devices, etc).
6776 */
6777 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6778
6779 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6780 /*
6781 * Toss any existing sparelist, as it doesn't have any validity
6782 * anymore, and conflicts with spa_has_spare().
6783 */
6784 if (spa->spa_spares.sav_config) {
6785 nvlist_free(spa->spa_spares.sav_config);
6786 spa->spa_spares.sav_config = NULL;
6787 spa_load_spares(spa);
6788 }
6789 if (spa->spa_l2cache.sav_config) {
6790 nvlist_free(spa->spa_l2cache.sav_config);
6791 spa->spa_l2cache.sav_config = NULL;
6792 spa_load_l2cache(spa);
6793 }
6794
6795 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6796 spa_config_exit(spa, SCL_ALL, FTAG);
6797
6798 if (props != NULL)
6799 spa_configfile_set(spa, props, B_FALSE);
6800
6801 if (error != 0 || (props && spa_writeable(spa) &&
6802 (error = spa_prop_set(spa, props)))) {
6803 spa_unload(spa);
6804 spa_deactivate(spa);
6805 spa_remove(spa);
6806 mutex_exit(&spa_namespace_lock);
6807 return (error);
6808 }
6809
6810 spa_async_resume(spa);
6811
6812 /*
6813 * Override any spares and level 2 cache devices as specified by
6814 * the user, as these may have correct device names/devids, etc.
6815 */
6816 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6817 &spares, &nspares) == 0) {
6818 if (spa->spa_spares.sav_config)
6819 fnvlist_remove(spa->spa_spares.sav_config,
6820 ZPOOL_CONFIG_SPARES);
6821 else
6822 spa->spa_spares.sav_config = fnvlist_alloc();
6823 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6824 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6825 nspares);
6826 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6827 spa_load_spares(spa);
6828 spa_config_exit(spa, SCL_ALL, FTAG);
6829 spa->spa_spares.sav_sync = B_TRUE;
6830 spa->spa_spares.sav_label_sync = B_TRUE;
6831 }
6832 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6833 &l2cache, &nl2cache) == 0) {
6834 if (spa->spa_l2cache.sav_config)
6835 fnvlist_remove(spa->spa_l2cache.sav_config,
6836 ZPOOL_CONFIG_L2CACHE);
6837 else
6838 spa->spa_l2cache.sav_config = fnvlist_alloc();
6839 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6840 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6841 nl2cache);
6842 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6843 spa_load_l2cache(spa);
6844 spa_config_exit(spa, SCL_ALL, FTAG);
6845 spa->spa_l2cache.sav_sync = B_TRUE;
6846 spa->spa_l2cache.sav_label_sync = B_TRUE;
6847 }
6848
6849 /*
6850 * Check for any removed devices.
6851 */
6852 if (spa->spa_autoreplace) {
6853 spa_aux_check_removed(&spa->spa_spares);
6854 spa_aux_check_removed(&spa->spa_l2cache);
6855 }
6856
6857 if (spa_writeable(spa)) {
6858 /*
6859 * Update the config cache to include the newly-imported pool.
6860 */
6861 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6862 }
6863
6864 /*
6865 * It's possible that the pool was expanded while it was exported.
6866 * We kick off an async task to handle this for us.
6867 */
6868 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6869
6870 spa_history_log_version(spa, "import", NULL);
6871
6872 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6873
6874 mutex_exit(&spa_namespace_lock);
6875
6876 zvol_create_minors_recursive(pool);
6877
6878 spa_import_os(spa);
6879
6880 return (0);
6881 }
6882
6883 nvlist_t *
6884 spa_tryimport(nvlist_t *tryconfig)
6885 {
6886 nvlist_t *config = NULL;
6887 const char *poolname, *cachefile;
6888 spa_t *spa;
6889 uint64_t state;
6890 int error;
6891 zpool_load_policy_t policy;
6892
6893 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6894 return (NULL);
6895
6896 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6897 return (NULL);
6898
6899 /*
6900 * Create and initialize the spa structure.
6901 */
6902 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6903 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6904 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6905
6906 mutex_enter(&spa_namespace_lock);
6907 spa = spa_add(name, tryconfig, NULL);
6908 spa_activate(spa, SPA_MODE_READ);
6909 kmem_free(name, MAXPATHLEN);
6910
6911 /*
6912 * Rewind pool if a max txg was provided.
6913 */
6914 zpool_get_load_policy(spa->spa_config, &policy);
6915 if (policy.zlp_txg != UINT64_MAX) {
6916 spa->spa_load_max_txg = policy.zlp_txg;
6917 spa->spa_extreme_rewind = B_TRUE;
6918 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6919 poolname, (longlong_t)policy.zlp_txg);
6920 } else {
6921 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6922 }
6923
6924 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6925 == 0) {
6926 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6927 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6928 } else {
6929 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6930 }
6931
6932 /*
6933 * spa_import() relies on a pool config fetched by spa_try_import()
6934 * for spare/cache devices. Import flags are not passed to
6935 * spa_tryimport(), which makes it return early due to a missing log
6936 * device and missing retrieving the cache device and spare eventually.
6937 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6938 * the correct configuration regardless of the missing log device.
6939 */
6940 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6941
6942 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6943
6944 /*
6945 * If 'tryconfig' was at least parsable, return the current config.
6946 */
6947 if (spa->spa_root_vdev != NULL) {
6948 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6949 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6950 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6951 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6952 spa->spa_uberblock.ub_timestamp);
6953 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6954 spa->spa_load_info);
6955 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6956 spa->spa_errata);
6957
6958 /*
6959 * If the bootfs property exists on this pool then we
6960 * copy it out so that external consumers can tell which
6961 * pools are bootable.
6962 */
6963 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6964 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6965
6966 /*
6967 * We have to play games with the name since the
6968 * pool was opened as TRYIMPORT_NAME.
6969 */
6970 if (dsl_dsobj_to_dsname(spa_name(spa),
6971 spa->spa_bootfs, tmpname) == 0) {
6972 char *cp;
6973 char *dsname;
6974
6975 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6976
6977 cp = strchr(tmpname, '/');
6978 if (cp == NULL) {
6979 (void) strlcpy(dsname, tmpname,
6980 MAXPATHLEN);
6981 } else {
6982 (void) snprintf(dsname, MAXPATHLEN,
6983 "%s/%s", poolname, ++cp);
6984 }
6985 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6986 dsname);
6987 kmem_free(dsname, MAXPATHLEN);
6988 }
6989 kmem_free(tmpname, MAXPATHLEN);
6990 }
6991
6992 /*
6993 * Add the list of hot spares and level 2 cache devices.
6994 */
6995 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6996 spa_add_spares(spa, config);
6997 spa_add_l2cache(spa, config);
6998 spa_config_exit(spa, SCL_CONFIG, FTAG);
6999 }
7000
7001 spa_unload(spa);
7002 spa_deactivate(spa);
7003 spa_remove(spa);
7004 mutex_exit(&spa_namespace_lock);
7005
7006 return (config);
7007 }
7008
7009 /*
7010 * Pool export/destroy
7011 *
7012 * The act of destroying or exporting a pool is very simple. We make sure there
7013 * is no more pending I/O and any references to the pool are gone. Then, we
7014 * update the pool state and sync all the labels to disk, removing the
7015 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7016 * we don't sync the labels or remove the configuration cache.
7017 */
7018 static int
7019 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7020 boolean_t force, boolean_t hardforce)
7021 {
7022 int error = 0;
7023 spa_t *spa;
7024 hrtime_t export_start = gethrtime();
7025
7026 if (oldconfig)
7027 *oldconfig = NULL;
7028
7029 if (!(spa_mode_global & SPA_MODE_WRITE))
7030 return (SET_ERROR(EROFS));
7031
7032 mutex_enter(&spa_namespace_lock);
7033 if ((spa = spa_lookup(pool)) == NULL) {
7034 mutex_exit(&spa_namespace_lock);
7035 return (SET_ERROR(ENOENT));
7036 }
7037
7038 if (spa->spa_is_exporting) {
7039 /* the pool is being exported by another thread */
7040 mutex_exit(&spa_namespace_lock);
7041 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7042 }
7043 spa->spa_is_exporting = B_TRUE;
7044
7045 /*
7046 * Put a hold on the pool, drop the namespace lock, stop async tasks
7047 * and see if we can export.
7048 */
7049 spa_open_ref(spa, FTAG);
7050 mutex_exit(&spa_namespace_lock);
7051 spa_async_suspend(spa);
7052 if (spa->spa_zvol_taskq) {
7053 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7054 taskq_wait(spa->spa_zvol_taskq);
7055 }
7056 mutex_enter(&spa_namespace_lock);
7057 spa->spa_export_thread = curthread;
7058 spa_close(spa, FTAG);
7059
7060 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7061 mutex_exit(&spa_namespace_lock);
7062 goto export_spa;
7063 }
7064
7065 /*
7066 * The pool will be in core if it's openable, in which case we can
7067 * modify its state. Objsets may be open only because they're dirty,
7068 * so we have to force it to sync before checking spa_refcnt.
7069 */
7070 if (spa->spa_sync_on) {
7071 txg_wait_synced(spa->spa_dsl_pool, 0);
7072 spa_evicting_os_wait(spa);
7073 }
7074
7075 /*
7076 * A pool cannot be exported or destroyed if there are active
7077 * references. If we are resetting a pool, allow references by
7078 * fault injection handlers.
7079 */
7080 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7081 error = SET_ERROR(EBUSY);
7082 goto fail;
7083 }
7084
7085 mutex_exit(&spa_namespace_lock);
7086 /*
7087 * At this point we no longer hold the spa_namespace_lock and
7088 * there were no references on the spa. Future spa_lookups will
7089 * notice the spa->spa_export_thread and wait until we signal
7090 * that we are finshed.
7091 */
7092
7093 if (spa->spa_sync_on) {
7094 vdev_t *rvd = spa->spa_root_vdev;
7095 /*
7096 * A pool cannot be exported if it has an active shared spare.
7097 * This is to prevent other pools stealing the active spare
7098 * from an exported pool. At user's own will, such pool can
7099 * be forcedly exported.
7100 */
7101 if (!force && new_state == POOL_STATE_EXPORTED &&
7102 spa_has_active_shared_spare(spa)) {
7103 error = SET_ERROR(EXDEV);
7104 mutex_enter(&spa_namespace_lock);
7105 goto fail;
7106 }
7107
7108 /*
7109 * We're about to export or destroy this pool. Make sure
7110 * we stop all initialization and trim activity here before
7111 * we set the spa_final_txg. This will ensure that all
7112 * dirty data resulting from the initialization is
7113 * committed to disk before we unload the pool.
7114 */
7115 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7116 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7117 vdev_autotrim_stop_all(spa);
7118 vdev_rebuild_stop_all(spa);
7119 l2arc_spa_rebuild_stop(spa);
7120
7121 /*
7122 * We want this to be reflected on every label,
7123 * so mark them all dirty. spa_unload() will do the
7124 * final sync that pushes these changes out.
7125 */
7126 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7127 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7128 spa->spa_state = new_state;
7129 vdev_config_dirty(rvd);
7130 spa_config_exit(spa, SCL_ALL, FTAG);
7131 }
7132
7133 /*
7134 * If the log space map feature is enabled and the pool is
7135 * getting exported (but not destroyed), we want to spend some
7136 * time flushing as many metaslabs as we can in an attempt to
7137 * destroy log space maps and save import time. This has to be
7138 * done before we set the spa_final_txg, otherwise
7139 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7140 * spa_should_flush_logs_on_unload() should be called after
7141 * spa_state has been set to the new_state.
7142 */
7143 if (spa_should_flush_logs_on_unload(spa))
7144 spa_unload_log_sm_flush_all(spa);
7145
7146 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7147 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7148 spa->spa_final_txg = spa_last_synced_txg(spa) +
7149 TXG_DEFER_SIZE + 1;
7150 spa_config_exit(spa, SCL_ALL, FTAG);
7151 }
7152 }
7153
7154 export_spa:
7155 spa_export_os(spa);
7156
7157 if (new_state == POOL_STATE_DESTROYED)
7158 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7159 else if (new_state == POOL_STATE_EXPORTED)
7160 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7161
7162 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7163 spa_unload(spa);
7164 spa_deactivate(spa);
7165 }
7166
7167 if (oldconfig && spa->spa_config)
7168 *oldconfig = fnvlist_dup(spa->spa_config);
7169
7170 if (new_state == POOL_STATE_EXPORTED)
7171 zio_handle_export_delay(spa, gethrtime() - export_start);
7172
7173 /*
7174 * Take the namespace lock for the actual spa_t removal
7175 */
7176 mutex_enter(&spa_namespace_lock);
7177 if (new_state != POOL_STATE_UNINITIALIZED) {
7178 if (!hardforce)
7179 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7180 spa_remove(spa);
7181 } else {
7182 /*
7183 * If spa_remove() is not called for this spa_t and
7184 * there is any possibility that it can be reused,
7185 * we make sure to reset the exporting flag.
7186 */
7187 spa->spa_is_exporting = B_FALSE;
7188 spa->spa_export_thread = NULL;
7189 }
7190
7191 /*
7192 * Wake up any waiters in spa_lookup()
7193 */
7194 cv_broadcast(&spa_namespace_cv);
7195 mutex_exit(&spa_namespace_lock);
7196 return (0);
7197
7198 fail:
7199 spa->spa_is_exporting = B_FALSE;
7200 spa->spa_export_thread = NULL;
7201
7202 spa_async_resume(spa);
7203 /*
7204 * Wake up any waiters in spa_lookup()
7205 */
7206 cv_broadcast(&spa_namespace_cv);
7207 mutex_exit(&spa_namespace_lock);
7208 return (error);
7209 }
7210
7211 /*
7212 * Destroy a storage pool.
7213 */
7214 int
7215 spa_destroy(const char *pool)
7216 {
7217 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7218 B_FALSE, B_FALSE));
7219 }
7220
7221 /*
7222 * Export a storage pool.
7223 */
7224 int
7225 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7226 boolean_t hardforce)
7227 {
7228 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7229 force, hardforce));
7230 }
7231
7232 /*
7233 * Similar to spa_export(), this unloads the spa_t without actually removing it
7234 * from the namespace in any way.
7235 */
7236 int
7237 spa_reset(const char *pool)
7238 {
7239 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7240 B_FALSE, B_FALSE));
7241 }
7242
7243 /*
7244 * ==========================================================================
7245 * Device manipulation
7246 * ==========================================================================
7247 */
7248
7249 /*
7250 * This is called as a synctask to increment the draid feature flag
7251 */
7252 static void
7253 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7254 {
7255 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7256 int draid = (int)(uintptr_t)arg;
7257
7258 for (int c = 0; c < draid; c++)
7259 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7260 }
7261
7262 /*
7263 * Add a device to a storage pool.
7264 */
7265 int
7266 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7267 {
7268 uint64_t txg, ndraid = 0;
7269 int error;
7270 vdev_t *rvd = spa->spa_root_vdev;
7271 vdev_t *vd, *tvd;
7272 nvlist_t **spares, **l2cache;
7273 uint_t nspares, nl2cache;
7274
7275 ASSERT(spa_writeable(spa));
7276
7277 txg = spa_vdev_enter(spa);
7278
7279 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7280 VDEV_ALLOC_ADD)) != 0)
7281 return (spa_vdev_exit(spa, NULL, txg, error));
7282
7283 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7284
7285 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7286 &nspares) != 0)
7287 nspares = 0;
7288
7289 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7290 &nl2cache) != 0)
7291 nl2cache = 0;
7292
7293 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7294 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7295
7296 if (vd->vdev_children != 0 &&
7297 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7298 return (spa_vdev_exit(spa, vd, txg, error));
7299 }
7300
7301 /*
7302 * The virtual dRAID spares must be added after vdev tree is created
7303 * and the vdev guids are generated. The guid of their associated
7304 * dRAID is stored in the config and used when opening the spare.
7305 */
7306 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7307 rvd->vdev_children)) == 0) {
7308 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7309 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7310 nspares = 0;
7311 } else {
7312 return (spa_vdev_exit(spa, vd, txg, error));
7313 }
7314
7315 /*
7316 * We must validate the spares and l2cache devices after checking the
7317 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7318 */
7319 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7320 return (spa_vdev_exit(spa, vd, txg, error));
7321
7322 /*
7323 * If we are in the middle of a device removal, we can only add
7324 * devices which match the existing devices in the pool.
7325 * If we are in the middle of a removal, or have some indirect
7326 * vdevs, we can not add raidz or dRAID top levels.
7327 */
7328 if (spa->spa_vdev_removal != NULL ||
7329 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7330 for (int c = 0; c < vd->vdev_children; c++) {
7331 tvd = vd->vdev_child[c];
7332 if (spa->spa_vdev_removal != NULL &&
7333 tvd->vdev_ashift != spa->spa_max_ashift) {
7334 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7335 }
7336 /* Fail if top level vdev is raidz or a dRAID */
7337 if (vdev_get_nparity(tvd) != 0)
7338 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7339
7340 /*
7341 * Need the top level mirror to be
7342 * a mirror of leaf vdevs only
7343 */
7344 if (tvd->vdev_ops == &vdev_mirror_ops) {
7345 for (uint64_t cid = 0;
7346 cid < tvd->vdev_children; cid++) {
7347 vdev_t *cvd = tvd->vdev_child[cid];
7348 if (!cvd->vdev_ops->vdev_op_leaf) {
7349 return (spa_vdev_exit(spa, vd,
7350 txg, EINVAL));
7351 }
7352 }
7353 }
7354 }
7355 }
7356
7357 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7358 for (int c = 0; c < vd->vdev_children; c++) {
7359 tvd = vd->vdev_child[c];
7360 if (tvd->vdev_ashift != spa->spa_max_ashift) {
7361 return (spa_vdev_exit(spa, vd, txg,
7362 ZFS_ERR_ASHIFT_MISMATCH));
7363 }
7364 }
7365 }
7366
7367 for (int c = 0; c < vd->vdev_children; c++) {
7368 tvd = vd->vdev_child[c];
7369 vdev_remove_child(vd, tvd);
7370 tvd->vdev_id = rvd->vdev_children;
7371 vdev_add_child(rvd, tvd);
7372 vdev_config_dirty(tvd);
7373 }
7374
7375 if (nspares != 0) {
7376 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7377 ZPOOL_CONFIG_SPARES);
7378 spa_load_spares(spa);
7379 spa->spa_spares.sav_sync = B_TRUE;
7380 }
7381
7382 if (nl2cache != 0) {
7383 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7384 ZPOOL_CONFIG_L2CACHE);
7385 spa_load_l2cache(spa);
7386 spa->spa_l2cache.sav_sync = B_TRUE;
7387 }
7388
7389 /*
7390 * We can't increment a feature while holding spa_vdev so we
7391 * have to do it in a synctask.
7392 */
7393 if (ndraid != 0) {
7394 dmu_tx_t *tx;
7395
7396 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7397 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7398 (void *)(uintptr_t)ndraid, tx);
7399 dmu_tx_commit(tx);
7400 }
7401
7402 /*
7403 * We have to be careful when adding new vdevs to an existing pool.
7404 * If other threads start allocating from these vdevs before we
7405 * sync the config cache, and we lose power, then upon reboot we may
7406 * fail to open the pool because there are DVAs that the config cache
7407 * can't translate. Therefore, we first add the vdevs without
7408 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7409 * and then let spa_config_update() initialize the new metaslabs.
7410 *
7411 * spa_load() checks for added-but-not-initialized vdevs, so that
7412 * if we lose power at any point in this sequence, the remaining
7413 * steps will be completed the next time we load the pool.
7414 */
7415 (void) spa_vdev_exit(spa, vd, txg, 0);
7416
7417 mutex_enter(&spa_namespace_lock);
7418 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7419 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7420 mutex_exit(&spa_namespace_lock);
7421
7422 return (0);
7423 }
7424
7425 /*
7426 * Attach a device to a vdev specified by its guid. The vdev type can be
7427 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7428 * single device). When the vdev is a single device, a mirror vdev will be
7429 * automatically inserted.
7430 *
7431 * If 'replacing' is specified, the new device is intended to replace the
7432 * existing device; in this case the two devices are made into their own
7433 * mirror using the 'replacing' vdev, which is functionally identical to
7434 * the mirror vdev (it actually reuses all the same ops) but has a few
7435 * extra rules: you can't attach to it after it's been created, and upon
7436 * completion of resilvering, the first disk (the one being replaced)
7437 * is automatically detached.
7438 *
7439 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7440 * should be performed instead of traditional healing reconstruction. From
7441 * an administrators perspective these are both resilver operations.
7442 */
7443 int
7444 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7445 int rebuild)
7446 {
7447 uint64_t txg, dtl_max_txg;
7448 vdev_t *rvd = spa->spa_root_vdev;
7449 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7450 vdev_ops_t *pvops;
7451 char *oldvdpath, *newvdpath;
7452 int newvd_isspare = B_FALSE;
7453 int error;
7454
7455 ASSERT(spa_writeable(spa));
7456
7457 txg = spa_vdev_enter(spa);
7458
7459 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7460
7461 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7462 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7463 error = (spa_has_checkpoint(spa)) ?
7464 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7465 return (spa_vdev_exit(spa, NULL, txg, error));
7466 }
7467
7468 if (rebuild) {
7469 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7470 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7471
7472 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7473 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7474 return (spa_vdev_exit(spa, NULL, txg,
7475 ZFS_ERR_RESILVER_IN_PROGRESS));
7476 }
7477 } else {
7478 if (vdev_rebuild_active(rvd))
7479 return (spa_vdev_exit(spa, NULL, txg,
7480 ZFS_ERR_REBUILD_IN_PROGRESS));
7481 }
7482
7483 if (spa->spa_vdev_removal != NULL) {
7484 return (spa_vdev_exit(spa, NULL, txg,
7485 ZFS_ERR_DEVRM_IN_PROGRESS));
7486 }
7487
7488 if (oldvd == NULL)
7489 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7490
7491 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7492
7493 if (raidz) {
7494 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7495 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7496
7497 /*
7498 * Can't expand a raidz while prior expand is in progress.
7499 */
7500 if (spa->spa_raidz_expand != NULL) {
7501 return (spa_vdev_exit(spa, NULL, txg,
7502 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7503 }
7504 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7505 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7506 }
7507
7508 if (raidz)
7509 pvd = oldvd;
7510 else
7511 pvd = oldvd->vdev_parent;
7512
7513 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7514 VDEV_ALLOC_ATTACH) != 0)
7515 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7516
7517 if (newrootvd->vdev_children != 1)
7518 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7519
7520 newvd = newrootvd->vdev_child[0];
7521
7522 if (!newvd->vdev_ops->vdev_op_leaf)
7523 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7524
7525 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7526 return (spa_vdev_exit(spa, newrootvd, txg, error));
7527
7528 /*
7529 * log, dedup and special vdevs should not be replaced by spares.
7530 */
7531 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7532 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7533 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7534 }
7535
7536 /*
7537 * A dRAID spare can only replace a child of its parent dRAID vdev.
7538 */
7539 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7540 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7541 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7542 }
7543
7544 if (rebuild) {
7545 /*
7546 * For rebuilds, the top vdev must support reconstruction
7547 * using only space maps. This means the only allowable
7548 * vdevs types are the root vdev, a mirror, or dRAID.
7549 */
7550 tvd = pvd;
7551 if (pvd->vdev_top != NULL)
7552 tvd = pvd->vdev_top;
7553
7554 if (tvd->vdev_ops != &vdev_mirror_ops &&
7555 tvd->vdev_ops != &vdev_root_ops &&
7556 tvd->vdev_ops != &vdev_draid_ops) {
7557 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7558 }
7559 }
7560
7561 if (!replacing) {
7562 /*
7563 * For attach, the only allowable parent is a mirror or
7564 * the root vdev. A raidz vdev can be attached to, but
7565 * you cannot attach to a raidz child.
7566 */
7567 if (pvd->vdev_ops != &vdev_mirror_ops &&
7568 pvd->vdev_ops != &vdev_root_ops &&
7569 !raidz)
7570 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7571
7572 pvops = &vdev_mirror_ops;
7573 } else {
7574 /*
7575 * Active hot spares can only be replaced by inactive hot
7576 * spares.
7577 */
7578 if (pvd->vdev_ops == &vdev_spare_ops &&
7579 oldvd->vdev_isspare &&
7580 !spa_has_spare(spa, newvd->vdev_guid))
7581 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7582
7583 /*
7584 * If the source is a hot spare, and the parent isn't already a
7585 * spare, then we want to create a new hot spare. Otherwise, we
7586 * want to create a replacing vdev. The user is not allowed to
7587 * attach to a spared vdev child unless the 'isspare' state is
7588 * the same (spare replaces spare, non-spare replaces
7589 * non-spare).
7590 */
7591 if (pvd->vdev_ops == &vdev_replacing_ops &&
7592 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7593 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7594 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7595 newvd->vdev_isspare != oldvd->vdev_isspare) {
7596 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7597 }
7598
7599 if (newvd->vdev_isspare)
7600 pvops = &vdev_spare_ops;
7601 else
7602 pvops = &vdev_replacing_ops;
7603 }
7604
7605 /*
7606 * Make sure the new device is big enough.
7607 */
7608 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7609 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7610 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7611
7612 /*
7613 * The new device cannot have a higher alignment requirement
7614 * than the top-level vdev.
7615 */
7616 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7617 return (spa_vdev_exit(spa, newrootvd, txg,
7618 ZFS_ERR_ASHIFT_MISMATCH));
7619 }
7620
7621 /*
7622 * RAIDZ-expansion-specific checks.
7623 */
7624 if (raidz) {
7625 if (vdev_raidz_attach_check(newvd) != 0)
7626 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7627
7628 /*
7629 * Fail early if a child is not healthy or being replaced
7630 */
7631 for (int i = 0; i < oldvd->vdev_children; i++) {
7632 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7633 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7634 return (spa_vdev_exit(spa, newrootvd, txg,
7635 ENXIO));
7636 }
7637 /* Also fail if reserved boot area is in-use */
7638 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7639 != 0) {
7640 return (spa_vdev_exit(spa, newrootvd, txg,
7641 EADDRINUSE));
7642 }
7643 }
7644 }
7645
7646 if (raidz) {
7647 /*
7648 * Note: oldvdpath is freed by spa_strfree(), but
7649 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7650 * move it to a spa_strdup-ed string.
7651 */
7652 char *tmp = kmem_asprintf("raidz%u-%u",
7653 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7654 oldvdpath = spa_strdup(tmp);
7655 kmem_strfree(tmp);
7656 } else {
7657 oldvdpath = spa_strdup(oldvd->vdev_path);
7658 }
7659 newvdpath = spa_strdup(newvd->vdev_path);
7660
7661 /*
7662 * If this is an in-place replacement, update oldvd's path and devid
7663 * to make it distinguishable from newvd, and unopenable from now on.
7664 */
7665 if (strcmp(oldvdpath, newvdpath) == 0) {
7666 spa_strfree(oldvd->vdev_path);
7667 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7668 KM_SLEEP);
7669 (void) sprintf(oldvd->vdev_path, "%s/old",
7670 newvdpath);
7671 if (oldvd->vdev_devid != NULL) {
7672 spa_strfree(oldvd->vdev_devid);
7673 oldvd->vdev_devid = NULL;
7674 }
7675 spa_strfree(oldvdpath);
7676 oldvdpath = spa_strdup(oldvd->vdev_path);
7677 }
7678
7679 /*
7680 * If the parent is not a mirror, or if we're replacing, insert the new
7681 * mirror/replacing/spare vdev above oldvd.
7682 */
7683 if (!raidz && pvd->vdev_ops != pvops) {
7684 pvd = vdev_add_parent(oldvd, pvops);
7685 ASSERT(pvd->vdev_ops == pvops);
7686 ASSERT(oldvd->vdev_parent == pvd);
7687 }
7688
7689 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7690
7691 /*
7692 * Extract the new device from its root and add it to pvd.
7693 */
7694 vdev_remove_child(newrootvd, newvd);
7695 newvd->vdev_id = pvd->vdev_children;
7696 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7697 vdev_add_child(pvd, newvd);
7698
7699 /*
7700 * Reevaluate the parent vdev state.
7701 */
7702 vdev_propagate_state(pvd);
7703
7704 tvd = newvd->vdev_top;
7705 ASSERT(pvd->vdev_top == tvd);
7706 ASSERT(tvd->vdev_parent == rvd);
7707
7708 vdev_config_dirty(tvd);
7709
7710 /*
7711 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7712 * for any dmu_sync-ed blocks. It will propagate upward when
7713 * spa_vdev_exit() calls vdev_dtl_reassess().
7714 */
7715 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7716
7717 if (raidz) {
7718 /*
7719 * Wait for the youngest allocations and frees to sync,
7720 * and then wait for the deferral of those frees to finish.
7721 */
7722 spa_vdev_config_exit(spa, NULL,
7723 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7724
7725 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7726 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7727 vdev_autotrim_stop_wait(tvd);
7728
7729 dtl_max_txg = spa_vdev_config_enter(spa);
7730
7731 tvd->vdev_rz_expanding = B_TRUE;
7732
7733 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7734 vdev_config_dirty(tvd);
7735
7736 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7737 dtl_max_txg);
7738 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7739 newvd, tx);
7740 dmu_tx_commit(tx);
7741 } else {
7742 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7743 dtl_max_txg - TXG_INITIAL);
7744
7745 if (newvd->vdev_isspare) {
7746 spa_spare_activate(newvd);
7747 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7748 }
7749
7750 newvd_isspare = newvd->vdev_isspare;
7751
7752 /*
7753 * Mark newvd's DTL dirty in this txg.
7754 */
7755 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7756
7757 /*
7758 * Schedule the resilver or rebuild to restart in the future.
7759 * We do this to ensure that dmu_sync-ed blocks have been
7760 * stitched into the respective datasets.
7761 */
7762 if (rebuild) {
7763 newvd->vdev_rebuild_txg = txg;
7764
7765 vdev_rebuild(tvd);
7766 } else {
7767 newvd->vdev_resilver_txg = txg;
7768
7769 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7770 spa_feature_is_enabled(spa,
7771 SPA_FEATURE_RESILVER_DEFER)) {
7772 vdev_defer_resilver(newvd);
7773 } else {
7774 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7775 dtl_max_txg);
7776 }
7777 }
7778 }
7779
7780 if (spa->spa_bootfs)
7781 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7782
7783 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7784
7785 /*
7786 * Commit the config
7787 */
7788 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7789
7790 spa_history_log_internal(spa, "vdev attach", NULL,
7791 "%s vdev=%s %s vdev=%s",
7792 replacing && newvd_isspare ? "spare in" :
7793 replacing ? "replace" : "attach", newvdpath,
7794 replacing ? "for" : "to", oldvdpath);
7795
7796 spa_strfree(oldvdpath);
7797 spa_strfree(newvdpath);
7798
7799 return (0);
7800 }
7801
7802 /*
7803 * Detach a device from a mirror or replacing vdev.
7804 *
7805 * If 'replace_done' is specified, only detach if the parent
7806 * is a replacing or a spare vdev.
7807 */
7808 int
7809 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7810 {
7811 uint64_t txg;
7812 int error;
7813 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7814 vdev_t *vd, *pvd, *cvd, *tvd;
7815 boolean_t unspare = B_FALSE;
7816 uint64_t unspare_guid = 0;
7817 char *vdpath;
7818
7819 ASSERT(spa_writeable(spa));
7820
7821 txg = spa_vdev_detach_enter(spa, guid);
7822
7823 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7824
7825 /*
7826 * Besides being called directly from the userland through the
7827 * ioctl interface, spa_vdev_detach() can be potentially called
7828 * at the end of spa_vdev_resilver_done().
7829 *
7830 * In the regular case, when we have a checkpoint this shouldn't
7831 * happen as we never empty the DTLs of a vdev during the scrub
7832 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7833 * should never get here when we have a checkpoint.
7834 *
7835 * That said, even in a case when we checkpoint the pool exactly
7836 * as spa_vdev_resilver_done() calls this function everything
7837 * should be fine as the resilver will return right away.
7838 */
7839 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7840 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7841 error = (spa_has_checkpoint(spa)) ?
7842 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7843 return (spa_vdev_exit(spa, NULL, txg, error));
7844 }
7845
7846 if (vd == NULL)
7847 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7848
7849 if (!vd->vdev_ops->vdev_op_leaf)
7850 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7851
7852 pvd = vd->vdev_parent;
7853
7854 /*
7855 * If the parent/child relationship is not as expected, don't do it.
7856 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7857 * vdev that's replacing B with C. The user's intent in replacing
7858 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7859 * the replace by detaching C, the expected behavior is to end up
7860 * M(A,B). But suppose that right after deciding to detach C,
7861 * the replacement of B completes. We would have M(A,C), and then
7862 * ask to detach C, which would leave us with just A -- not what
7863 * the user wanted. To prevent this, we make sure that the
7864 * parent/child relationship hasn't changed -- in this example,
7865 * that C's parent is still the replacing vdev R.
7866 */
7867 if (pvd->vdev_guid != pguid && pguid != 0)
7868 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7869
7870 /*
7871 * Only 'replacing' or 'spare' vdevs can be replaced.
7872 */
7873 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7874 pvd->vdev_ops != &vdev_spare_ops)
7875 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7876
7877 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7878 spa_version(spa) >= SPA_VERSION_SPARES);
7879
7880 /*
7881 * Only mirror, replacing, and spare vdevs support detach.
7882 */
7883 if (pvd->vdev_ops != &vdev_replacing_ops &&
7884 pvd->vdev_ops != &vdev_mirror_ops &&
7885 pvd->vdev_ops != &vdev_spare_ops)
7886 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7887
7888 /*
7889 * If this device has the only valid copy of some data,
7890 * we cannot safely detach it.
7891 */
7892 if (vdev_dtl_required(vd))
7893 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7894
7895 ASSERT(pvd->vdev_children >= 2);
7896
7897 /*
7898 * If we are detaching the second disk from a replacing vdev, then
7899 * check to see if we changed the original vdev's path to have "/old"
7900 * at the end in spa_vdev_attach(). If so, undo that change now.
7901 */
7902 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7903 vd->vdev_path != NULL) {
7904 size_t len = strlen(vd->vdev_path);
7905
7906 for (int c = 0; c < pvd->vdev_children; c++) {
7907 cvd = pvd->vdev_child[c];
7908
7909 if (cvd == vd || cvd->vdev_path == NULL)
7910 continue;
7911
7912 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7913 strcmp(cvd->vdev_path + len, "/old") == 0) {
7914 spa_strfree(cvd->vdev_path);
7915 cvd->vdev_path = spa_strdup(vd->vdev_path);
7916 break;
7917 }
7918 }
7919 }
7920
7921 /*
7922 * If we are detaching the original disk from a normal spare, then it
7923 * implies that the spare should become a real disk, and be removed
7924 * from the active spare list for the pool. dRAID spares on the
7925 * other hand are coupled to the pool and thus should never be removed
7926 * from the spares list.
7927 */
7928 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7929 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7930
7931 if (last_cvd->vdev_isspare &&
7932 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7933 unspare = B_TRUE;
7934 }
7935 }
7936
7937 /*
7938 * Erase the disk labels so the disk can be used for other things.
7939 * This must be done after all other error cases are handled,
7940 * but before we disembowel vd (so we can still do I/O to it).
7941 * But if we can't do it, don't treat the error as fatal --
7942 * it may be that the unwritability of the disk is the reason
7943 * it's being detached!
7944 */
7945 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7946
7947 /*
7948 * Remove vd from its parent and compact the parent's children.
7949 */
7950 vdev_remove_child(pvd, vd);
7951 vdev_compact_children(pvd);
7952
7953 /*
7954 * Remember one of the remaining children so we can get tvd below.
7955 */
7956 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7957
7958 /*
7959 * If we need to remove the remaining child from the list of hot spares,
7960 * do it now, marking the vdev as no longer a spare in the process.
7961 * We must do this before vdev_remove_parent(), because that can
7962 * change the GUID if it creates a new toplevel GUID. For a similar
7963 * reason, we must remove the spare now, in the same txg as the detach;
7964 * otherwise someone could attach a new sibling, change the GUID, and
7965 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7966 */
7967 if (unspare) {
7968 ASSERT(cvd->vdev_isspare);
7969 spa_spare_remove(cvd);
7970 unspare_guid = cvd->vdev_guid;
7971 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7972 cvd->vdev_unspare = B_TRUE;
7973 }
7974
7975 /*
7976 * If the parent mirror/replacing vdev only has one child,
7977 * the parent is no longer needed. Remove it from the tree.
7978 */
7979 if (pvd->vdev_children == 1) {
7980 if (pvd->vdev_ops == &vdev_spare_ops)
7981 cvd->vdev_unspare = B_FALSE;
7982 vdev_remove_parent(cvd);
7983 }
7984
7985 /*
7986 * We don't set tvd until now because the parent we just removed
7987 * may have been the previous top-level vdev.
7988 */
7989 tvd = cvd->vdev_top;
7990 ASSERT(tvd->vdev_parent == rvd);
7991
7992 /*
7993 * Reevaluate the parent vdev state.
7994 */
7995 vdev_propagate_state(cvd);
7996
7997 /*
7998 * If the 'autoexpand' property is set on the pool then automatically
7999 * try to expand the size of the pool. For example if the device we
8000 * just detached was smaller than the others, it may be possible to
8001 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8002 * first so that we can obtain the updated sizes of the leaf vdevs.
8003 */
8004 if (spa->spa_autoexpand) {
8005 vdev_reopen(tvd);
8006 vdev_expand(tvd, txg);
8007 }
8008
8009 vdev_config_dirty(tvd);
8010
8011 /*
8012 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
8013 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8014 * But first make sure we're not on any *other* txg's DTL list, to
8015 * prevent vd from being accessed after it's freed.
8016 */
8017 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8018 for (int t = 0; t < TXG_SIZE; t++)
8019 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8020 vd->vdev_detached = B_TRUE;
8021 vdev_dirty(tvd, VDD_DTL, vd, txg);
8022
8023 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8024 spa_notify_waiters(spa);
8025
8026 /* hang on to the spa before we release the lock */
8027 spa_open_ref(spa, FTAG);
8028
8029 error = spa_vdev_exit(spa, vd, txg, 0);
8030
8031 spa_history_log_internal(spa, "detach", NULL,
8032 "vdev=%s", vdpath);
8033 spa_strfree(vdpath);
8034
8035 /*
8036 * If this was the removal of the original device in a hot spare vdev,
8037 * then we want to go through and remove the device from the hot spare
8038 * list of every other pool.
8039 */
8040 if (unspare) {
8041 spa_t *altspa = NULL;
8042
8043 mutex_enter(&spa_namespace_lock);
8044 while ((altspa = spa_next(altspa)) != NULL) {
8045 if (altspa->spa_state != POOL_STATE_ACTIVE ||
8046 altspa == spa)
8047 continue;
8048
8049 spa_open_ref(altspa, FTAG);
8050 mutex_exit(&spa_namespace_lock);
8051 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8052 mutex_enter(&spa_namespace_lock);
8053 spa_close(altspa, FTAG);
8054 }
8055 mutex_exit(&spa_namespace_lock);
8056
8057 /* search the rest of the vdevs for spares to remove */
8058 spa_vdev_resilver_done(spa);
8059 }
8060
8061 /* all done with the spa; OK to release */
8062 mutex_enter(&spa_namespace_lock);
8063 spa_close(spa, FTAG);
8064 mutex_exit(&spa_namespace_lock);
8065
8066 return (error);
8067 }
8068
8069 static int
8070 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8071 list_t *vd_list)
8072 {
8073 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8074
8075 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8076
8077 /* Look up vdev and ensure it's a leaf. */
8078 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8079 if (vd == NULL || vd->vdev_detached) {
8080 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8081 return (SET_ERROR(ENODEV));
8082 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8083 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8084 return (SET_ERROR(EINVAL));
8085 } else if (!vdev_writeable(vd)) {
8086 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8087 return (SET_ERROR(EROFS));
8088 }
8089 mutex_enter(&vd->vdev_initialize_lock);
8090 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8091
8092 /*
8093 * When we activate an initialize action we check to see
8094 * if the vdev_initialize_thread is NULL. We do this instead
8095 * of using the vdev_initialize_state since there might be
8096 * a previous initialization process which has completed but
8097 * the thread is not exited.
8098 */
8099 if (cmd_type == POOL_INITIALIZE_START &&
8100 (vd->vdev_initialize_thread != NULL ||
8101 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8102 mutex_exit(&vd->vdev_initialize_lock);
8103 return (SET_ERROR(EBUSY));
8104 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8105 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8106 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8107 mutex_exit(&vd->vdev_initialize_lock);
8108 return (SET_ERROR(ESRCH));
8109 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8110 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8111 mutex_exit(&vd->vdev_initialize_lock);
8112 return (SET_ERROR(ESRCH));
8113 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8114 vd->vdev_initialize_thread != NULL) {
8115 mutex_exit(&vd->vdev_initialize_lock);
8116 return (SET_ERROR(EBUSY));
8117 }
8118
8119 switch (cmd_type) {
8120 case POOL_INITIALIZE_START:
8121 vdev_initialize(vd);
8122 break;
8123 case POOL_INITIALIZE_CANCEL:
8124 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8125 break;
8126 case POOL_INITIALIZE_SUSPEND:
8127 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8128 break;
8129 case POOL_INITIALIZE_UNINIT:
8130 vdev_uninitialize(vd);
8131 break;
8132 default:
8133 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8134 }
8135 mutex_exit(&vd->vdev_initialize_lock);
8136
8137 return (0);
8138 }
8139
8140 int
8141 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8142 nvlist_t *vdev_errlist)
8143 {
8144 int total_errors = 0;
8145 list_t vd_list;
8146
8147 list_create(&vd_list, sizeof (vdev_t),
8148 offsetof(vdev_t, vdev_initialize_node));
8149
8150 /*
8151 * We hold the namespace lock through the whole function
8152 * to prevent any changes to the pool while we're starting or
8153 * stopping initialization. The config and state locks are held so that
8154 * we can properly assess the vdev state before we commit to
8155 * the initializing operation.
8156 */
8157 mutex_enter(&spa_namespace_lock);
8158
8159 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8160 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8161 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8162
8163 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8164 &vd_list);
8165 if (error != 0) {
8166 char guid_as_str[MAXNAMELEN];
8167
8168 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8169 "%llu", (unsigned long long)vdev_guid);
8170 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8171 total_errors++;
8172 }
8173 }
8174
8175 /* Wait for all initialize threads to stop. */
8176 vdev_initialize_stop_wait(spa, &vd_list);
8177
8178 /* Sync out the initializing state */
8179 txg_wait_synced(spa->spa_dsl_pool, 0);
8180 mutex_exit(&spa_namespace_lock);
8181
8182 list_destroy(&vd_list);
8183
8184 return (total_errors);
8185 }
8186
8187 static int
8188 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8189 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8190 {
8191 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8192
8193 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8194
8195 /* Look up vdev and ensure it's a leaf. */
8196 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8197 if (vd == NULL || vd->vdev_detached) {
8198 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8199 return (SET_ERROR(ENODEV));
8200 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8201 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8202 return (SET_ERROR(EINVAL));
8203 } else if (!vdev_writeable(vd)) {
8204 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8205 return (SET_ERROR(EROFS));
8206 } else if (!vd->vdev_has_trim) {
8207 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8208 return (SET_ERROR(EOPNOTSUPP));
8209 } else if (secure && !vd->vdev_has_securetrim) {
8210 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8211 return (SET_ERROR(EOPNOTSUPP));
8212 }
8213 mutex_enter(&vd->vdev_trim_lock);
8214 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8215
8216 /*
8217 * When we activate a TRIM action we check to see if the
8218 * vdev_trim_thread is NULL. We do this instead of using the
8219 * vdev_trim_state since there might be a previous TRIM process
8220 * which has completed but the thread is not exited.
8221 */
8222 if (cmd_type == POOL_TRIM_START &&
8223 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8224 vd->vdev_top->vdev_rz_expanding)) {
8225 mutex_exit(&vd->vdev_trim_lock);
8226 return (SET_ERROR(EBUSY));
8227 } else if (cmd_type == POOL_TRIM_CANCEL &&
8228 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8229 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8230 mutex_exit(&vd->vdev_trim_lock);
8231 return (SET_ERROR(ESRCH));
8232 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8233 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8234 mutex_exit(&vd->vdev_trim_lock);
8235 return (SET_ERROR(ESRCH));
8236 }
8237
8238 switch (cmd_type) {
8239 case POOL_TRIM_START:
8240 vdev_trim(vd, rate, partial, secure);
8241 break;
8242 case POOL_TRIM_CANCEL:
8243 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8244 break;
8245 case POOL_TRIM_SUSPEND:
8246 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8247 break;
8248 default:
8249 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8250 }
8251 mutex_exit(&vd->vdev_trim_lock);
8252
8253 return (0);
8254 }
8255
8256 /*
8257 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8258 * TRIM threads for each child vdev. These threads pass over all of the free
8259 * space in the vdev's metaslabs and issues TRIM commands for that space.
8260 */
8261 int
8262 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8263 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8264 {
8265 int total_errors = 0;
8266 list_t vd_list;
8267
8268 list_create(&vd_list, sizeof (vdev_t),
8269 offsetof(vdev_t, vdev_trim_node));
8270
8271 /*
8272 * We hold the namespace lock through the whole function
8273 * to prevent any changes to the pool while we're starting or
8274 * stopping TRIM. The config and state locks are held so that
8275 * we can properly assess the vdev state before we commit to
8276 * the TRIM operation.
8277 */
8278 mutex_enter(&spa_namespace_lock);
8279
8280 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8281 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8282 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8283
8284 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8285 rate, partial, secure, &vd_list);
8286 if (error != 0) {
8287 char guid_as_str[MAXNAMELEN];
8288
8289 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8290 "%llu", (unsigned long long)vdev_guid);
8291 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8292 total_errors++;
8293 }
8294 }
8295
8296 /* Wait for all TRIM threads to stop. */
8297 vdev_trim_stop_wait(spa, &vd_list);
8298
8299 /* Sync out the TRIM state */
8300 txg_wait_synced(spa->spa_dsl_pool, 0);
8301 mutex_exit(&spa_namespace_lock);
8302
8303 list_destroy(&vd_list);
8304
8305 return (total_errors);
8306 }
8307
8308 /*
8309 * Split a set of devices from their mirrors, and create a new pool from them.
8310 */
8311 int
8312 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8313 nvlist_t *props, boolean_t exp)
8314 {
8315 int error = 0;
8316 uint64_t txg, *glist;
8317 spa_t *newspa;
8318 uint_t c, children, lastlog;
8319 nvlist_t **child, *nvl, *tmp;
8320 dmu_tx_t *tx;
8321 const char *altroot = NULL;
8322 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8323 boolean_t activate_slog;
8324
8325 ASSERT(spa_writeable(spa));
8326
8327 txg = spa_vdev_enter(spa);
8328
8329 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8330 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8331 error = (spa_has_checkpoint(spa)) ?
8332 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8333 return (spa_vdev_exit(spa, NULL, txg, error));
8334 }
8335
8336 /* clear the log and flush everything up to now */
8337 activate_slog = spa_passivate_log(spa);
8338 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8339 error = spa_reset_logs(spa);
8340 txg = spa_vdev_config_enter(spa);
8341
8342 if (activate_slog)
8343 spa_activate_log(spa);
8344
8345 if (error != 0)
8346 return (spa_vdev_exit(spa, NULL, txg, error));
8347
8348 /* check new spa name before going any further */
8349 if (spa_lookup(newname) != NULL)
8350 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8351
8352 /*
8353 * scan through all the children to ensure they're all mirrors
8354 */
8355 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8356 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8357 &children) != 0)
8358 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8359
8360 /* first, check to ensure we've got the right child count */
8361 rvd = spa->spa_root_vdev;
8362 lastlog = 0;
8363 for (c = 0; c < rvd->vdev_children; c++) {
8364 vdev_t *vd = rvd->vdev_child[c];
8365
8366 /* don't count the holes & logs as children */
8367 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8368 !vdev_is_concrete(vd))) {
8369 if (lastlog == 0)
8370 lastlog = c;
8371 continue;
8372 }
8373
8374 lastlog = 0;
8375 }
8376 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8377 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8378
8379 /* next, ensure no spare or cache devices are part of the split */
8380 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8381 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8382 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8383
8384 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8385 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8386
8387 /* then, loop over each vdev and validate it */
8388 for (c = 0; c < children; c++) {
8389 uint64_t is_hole = 0;
8390
8391 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8392 &is_hole);
8393
8394 if (is_hole != 0) {
8395 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8396 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8397 continue;
8398 } else {
8399 error = SET_ERROR(EINVAL);
8400 break;
8401 }
8402 }
8403
8404 /* deal with indirect vdevs */
8405 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8406 &vdev_indirect_ops)
8407 continue;
8408
8409 /* which disk is going to be split? */
8410 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8411 &glist[c]) != 0) {
8412 error = SET_ERROR(EINVAL);
8413 break;
8414 }
8415
8416 /* look it up in the spa */
8417 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8418 if (vml[c] == NULL) {
8419 error = SET_ERROR(ENODEV);
8420 break;
8421 }
8422
8423 /* make sure there's nothing stopping the split */
8424 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8425 vml[c]->vdev_islog ||
8426 !vdev_is_concrete(vml[c]) ||
8427 vml[c]->vdev_isspare ||
8428 vml[c]->vdev_isl2cache ||
8429 !vdev_writeable(vml[c]) ||
8430 vml[c]->vdev_children != 0 ||
8431 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8432 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8433 error = SET_ERROR(EINVAL);
8434 break;
8435 }
8436
8437 if (vdev_dtl_required(vml[c]) ||
8438 vdev_resilver_needed(vml[c], NULL, NULL)) {
8439 error = SET_ERROR(EBUSY);
8440 break;
8441 }
8442
8443 /* we need certain info from the top level */
8444 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8445 vml[c]->vdev_top->vdev_ms_array);
8446 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8447 vml[c]->vdev_top->vdev_ms_shift);
8448 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8449 vml[c]->vdev_top->vdev_asize);
8450 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8451 vml[c]->vdev_top->vdev_ashift);
8452
8453 /* transfer per-vdev ZAPs */
8454 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8455 VERIFY0(nvlist_add_uint64(child[c],
8456 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8457
8458 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8459 VERIFY0(nvlist_add_uint64(child[c],
8460 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8461 vml[c]->vdev_parent->vdev_top_zap));
8462 }
8463
8464 if (error != 0) {
8465 kmem_free(vml, children * sizeof (vdev_t *));
8466 kmem_free(glist, children * sizeof (uint64_t));
8467 return (spa_vdev_exit(spa, NULL, txg, error));
8468 }
8469
8470 /* stop writers from using the disks */
8471 for (c = 0; c < children; c++) {
8472 if (vml[c] != NULL)
8473 vml[c]->vdev_offline = B_TRUE;
8474 }
8475 vdev_reopen(spa->spa_root_vdev);
8476
8477 /*
8478 * Temporarily record the splitting vdevs in the spa config. This
8479 * will disappear once the config is regenerated.
8480 */
8481 nvl = fnvlist_alloc();
8482 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8483 kmem_free(glist, children * sizeof (uint64_t));
8484
8485 mutex_enter(&spa->spa_props_lock);
8486 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8487 mutex_exit(&spa->spa_props_lock);
8488 spa->spa_config_splitting = nvl;
8489 vdev_config_dirty(spa->spa_root_vdev);
8490
8491 /* configure and create the new pool */
8492 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8493 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8494 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8495 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8496 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8497 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8498 spa_generate_guid(NULL));
8499 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8500 (void) nvlist_lookup_string(props,
8501 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8502
8503 /* add the new pool to the namespace */
8504 newspa = spa_add(newname, config, altroot);
8505 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8506 newspa->spa_config_txg = spa->spa_config_txg;
8507 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8508
8509 /* release the spa config lock, retaining the namespace lock */
8510 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8511
8512 if (zio_injection_enabled)
8513 zio_handle_panic_injection(spa, FTAG, 1);
8514
8515 spa_activate(newspa, spa_mode_global);
8516 spa_async_suspend(newspa);
8517
8518 /*
8519 * Temporarily stop the initializing and TRIM activity. We set the
8520 * state to ACTIVE so that we know to resume initializing or TRIM
8521 * once the split has completed.
8522 */
8523 list_t vd_initialize_list;
8524 list_create(&vd_initialize_list, sizeof (vdev_t),
8525 offsetof(vdev_t, vdev_initialize_node));
8526
8527 list_t vd_trim_list;
8528 list_create(&vd_trim_list, sizeof (vdev_t),
8529 offsetof(vdev_t, vdev_trim_node));
8530
8531 for (c = 0; c < children; c++) {
8532 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8533 mutex_enter(&vml[c]->vdev_initialize_lock);
8534 vdev_initialize_stop(vml[c],
8535 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8536 mutex_exit(&vml[c]->vdev_initialize_lock);
8537
8538 mutex_enter(&vml[c]->vdev_trim_lock);
8539 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8540 mutex_exit(&vml[c]->vdev_trim_lock);
8541 }
8542 }
8543
8544 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8545 vdev_trim_stop_wait(spa, &vd_trim_list);
8546
8547 list_destroy(&vd_initialize_list);
8548 list_destroy(&vd_trim_list);
8549
8550 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8551 newspa->spa_is_splitting = B_TRUE;
8552
8553 /* create the new pool from the disks of the original pool */
8554 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8555 if (error)
8556 goto out;
8557
8558 /* if that worked, generate a real config for the new pool */
8559 if (newspa->spa_root_vdev != NULL) {
8560 newspa->spa_config_splitting = fnvlist_alloc();
8561 fnvlist_add_uint64(newspa->spa_config_splitting,
8562 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8563 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8564 B_TRUE));
8565 }
8566
8567 /* set the props */
8568 if (props != NULL) {
8569 spa_configfile_set(newspa, props, B_FALSE);
8570 error = spa_prop_set(newspa, props);
8571 if (error)
8572 goto out;
8573 }
8574
8575 /* flush everything */
8576 txg = spa_vdev_config_enter(newspa);
8577 vdev_config_dirty(newspa->spa_root_vdev);
8578 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8579
8580 if (zio_injection_enabled)
8581 zio_handle_panic_injection(spa, FTAG, 2);
8582
8583 spa_async_resume(newspa);
8584
8585 /* finally, update the original pool's config */
8586 txg = spa_vdev_config_enter(spa);
8587 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8588 error = dmu_tx_assign(tx, TXG_WAIT);
8589 if (error != 0)
8590 dmu_tx_abort(tx);
8591 for (c = 0; c < children; c++) {
8592 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8593 vdev_t *tvd = vml[c]->vdev_top;
8594
8595 /*
8596 * Need to be sure the detachable VDEV is not
8597 * on any *other* txg's DTL list to prevent it
8598 * from being accessed after it's freed.
8599 */
8600 for (int t = 0; t < TXG_SIZE; t++) {
8601 (void) txg_list_remove_this(
8602 &tvd->vdev_dtl_list, vml[c], t);
8603 }
8604
8605 vdev_split(vml[c]);
8606 if (error == 0)
8607 spa_history_log_internal(spa, "detach", tx,
8608 "vdev=%s", vml[c]->vdev_path);
8609
8610 vdev_free(vml[c]);
8611 }
8612 }
8613 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8614 vdev_config_dirty(spa->spa_root_vdev);
8615 spa->spa_config_splitting = NULL;
8616 nvlist_free(nvl);
8617 if (error == 0)
8618 dmu_tx_commit(tx);
8619 (void) spa_vdev_exit(spa, NULL, txg, 0);
8620
8621 if (zio_injection_enabled)
8622 zio_handle_panic_injection(spa, FTAG, 3);
8623
8624 /* split is complete; log a history record */
8625 spa_history_log_internal(newspa, "split", NULL,
8626 "from pool %s", spa_name(spa));
8627
8628 newspa->spa_is_splitting = B_FALSE;
8629 kmem_free(vml, children * sizeof (vdev_t *));
8630
8631 /* if we're not going to mount the filesystems in userland, export */
8632 if (exp)
8633 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8634 B_FALSE, B_FALSE);
8635
8636 return (error);
8637
8638 out:
8639 spa_unload(newspa);
8640 spa_deactivate(newspa);
8641 spa_remove(newspa);
8642
8643 txg = spa_vdev_config_enter(spa);
8644
8645 /* re-online all offlined disks */
8646 for (c = 0; c < children; c++) {
8647 if (vml[c] != NULL)
8648 vml[c]->vdev_offline = B_FALSE;
8649 }
8650
8651 /* restart initializing or trimming disks as necessary */
8652 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8653 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8654 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8655
8656 vdev_reopen(spa->spa_root_vdev);
8657
8658 nvlist_free(spa->spa_config_splitting);
8659 spa->spa_config_splitting = NULL;
8660 (void) spa_vdev_exit(spa, NULL, txg, error);
8661
8662 kmem_free(vml, children * sizeof (vdev_t *));
8663 return (error);
8664 }
8665
8666 /*
8667 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8668 * currently spared, so we can detach it.
8669 */
8670 static vdev_t *
8671 spa_vdev_resilver_done_hunt(vdev_t *vd)
8672 {
8673 vdev_t *newvd, *oldvd;
8674
8675 for (int c = 0; c < vd->vdev_children; c++) {
8676 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8677 if (oldvd != NULL)
8678 return (oldvd);
8679 }
8680
8681 /*
8682 * Check for a completed replacement. We always consider the first
8683 * vdev in the list to be the oldest vdev, and the last one to be
8684 * the newest (see spa_vdev_attach() for how that works). In
8685 * the case where the newest vdev is faulted, we will not automatically
8686 * remove it after a resilver completes. This is OK as it will require
8687 * user intervention to determine which disk the admin wishes to keep.
8688 */
8689 if (vd->vdev_ops == &vdev_replacing_ops) {
8690 ASSERT(vd->vdev_children > 1);
8691
8692 newvd = vd->vdev_child[vd->vdev_children - 1];
8693 oldvd = vd->vdev_child[0];
8694
8695 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8696 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8697 !vdev_dtl_required(oldvd))
8698 return (oldvd);
8699 }
8700
8701 /*
8702 * Check for a completed resilver with the 'unspare' flag set.
8703 * Also potentially update faulted state.
8704 */
8705 if (vd->vdev_ops == &vdev_spare_ops) {
8706 vdev_t *first = vd->vdev_child[0];
8707 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8708
8709 if (last->vdev_unspare) {
8710 oldvd = first;
8711 newvd = last;
8712 } else if (first->vdev_unspare) {
8713 oldvd = last;
8714 newvd = first;
8715 } else {
8716 oldvd = NULL;
8717 }
8718
8719 if (oldvd != NULL &&
8720 vdev_dtl_empty(newvd, DTL_MISSING) &&
8721 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8722 !vdev_dtl_required(oldvd))
8723 return (oldvd);
8724
8725 vdev_propagate_state(vd);
8726
8727 /*
8728 * If there are more than two spares attached to a disk,
8729 * and those spares are not required, then we want to
8730 * attempt to free them up now so that they can be used
8731 * by other pools. Once we're back down to a single
8732 * disk+spare, we stop removing them.
8733 */
8734 if (vd->vdev_children > 2) {
8735 newvd = vd->vdev_child[1];
8736
8737 if (newvd->vdev_isspare && last->vdev_isspare &&
8738 vdev_dtl_empty(last, DTL_MISSING) &&
8739 vdev_dtl_empty(last, DTL_OUTAGE) &&
8740 !vdev_dtl_required(newvd))
8741 return (newvd);
8742 }
8743 }
8744
8745 return (NULL);
8746 }
8747
8748 static void
8749 spa_vdev_resilver_done(spa_t *spa)
8750 {
8751 vdev_t *vd, *pvd, *ppvd;
8752 uint64_t guid, sguid, pguid, ppguid;
8753
8754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8755
8756 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8757 pvd = vd->vdev_parent;
8758 ppvd = pvd->vdev_parent;
8759 guid = vd->vdev_guid;
8760 pguid = pvd->vdev_guid;
8761 ppguid = ppvd->vdev_guid;
8762 sguid = 0;
8763 /*
8764 * If we have just finished replacing a hot spared device, then
8765 * we need to detach the parent's first child (the original hot
8766 * spare) as well.
8767 */
8768 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8769 ppvd->vdev_children == 2) {
8770 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8771 sguid = ppvd->vdev_child[1]->vdev_guid;
8772 }
8773 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8774
8775 spa_config_exit(spa, SCL_ALL, FTAG);
8776 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8777 return;
8778 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8779 return;
8780 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8781 }
8782
8783 spa_config_exit(spa, SCL_ALL, FTAG);
8784
8785 /*
8786 * If a detach was not performed above replace waiters will not have
8787 * been notified. In which case we must do so now.
8788 */
8789 spa_notify_waiters(spa);
8790 }
8791
8792 /*
8793 * Update the stored path or FRU for this vdev.
8794 */
8795 static int
8796 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8797 boolean_t ispath)
8798 {
8799 vdev_t *vd;
8800 boolean_t sync = B_FALSE;
8801
8802 ASSERT(spa_writeable(spa));
8803
8804 spa_vdev_state_enter(spa, SCL_ALL);
8805
8806 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8807 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8808
8809 if (!vd->vdev_ops->vdev_op_leaf)
8810 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8811
8812 if (ispath) {
8813 if (strcmp(value, vd->vdev_path) != 0) {
8814 spa_strfree(vd->vdev_path);
8815 vd->vdev_path = spa_strdup(value);
8816 sync = B_TRUE;
8817 }
8818 } else {
8819 if (vd->vdev_fru == NULL) {
8820 vd->vdev_fru = spa_strdup(value);
8821 sync = B_TRUE;
8822 } else if (strcmp(value, vd->vdev_fru) != 0) {
8823 spa_strfree(vd->vdev_fru);
8824 vd->vdev_fru = spa_strdup(value);
8825 sync = B_TRUE;
8826 }
8827 }
8828
8829 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8830 }
8831
8832 int
8833 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8834 {
8835 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8836 }
8837
8838 int
8839 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8840 {
8841 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8842 }
8843
8844 /*
8845 * ==========================================================================
8846 * SPA Scanning
8847 * ==========================================================================
8848 */
8849 int
8850 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8851 {
8852 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8853
8854 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8855 return (SET_ERROR(EBUSY));
8856
8857 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8858 }
8859
8860 int
8861 spa_scan_stop(spa_t *spa)
8862 {
8863 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8864 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8865 return (SET_ERROR(EBUSY));
8866
8867 return (dsl_scan_cancel(spa->spa_dsl_pool));
8868 }
8869
8870 int
8871 spa_scan(spa_t *spa, pool_scan_func_t func)
8872 {
8873 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8874
8875 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8876 return (SET_ERROR(ENOTSUP));
8877
8878 if (func == POOL_SCAN_RESILVER &&
8879 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8880 return (SET_ERROR(ENOTSUP));
8881
8882 /*
8883 * If a resilver was requested, but there is no DTL on a
8884 * writeable leaf device, we have nothing to do.
8885 */
8886 if (func == POOL_SCAN_RESILVER &&
8887 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8888 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8889 return (0);
8890 }
8891
8892 if (func == POOL_SCAN_ERRORSCRUB &&
8893 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8894 return (SET_ERROR(ENOTSUP));
8895
8896 return (dsl_scan(spa->spa_dsl_pool, func));
8897 }
8898
8899 /*
8900 * ==========================================================================
8901 * SPA async task processing
8902 * ==========================================================================
8903 */
8904
8905 static void
8906 spa_async_remove(spa_t *spa, vdev_t *vd)
8907 {
8908 if (vd->vdev_remove_wanted) {
8909 vd->vdev_remove_wanted = B_FALSE;
8910 vd->vdev_delayed_close = B_FALSE;
8911 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8912
8913 /*
8914 * We want to clear the stats, but we don't want to do a full
8915 * vdev_clear() as that will cause us to throw away
8916 * degraded/faulted state as well as attempt to reopen the
8917 * device, all of which is a waste.
8918 */
8919 vd->vdev_stat.vs_read_errors = 0;
8920 vd->vdev_stat.vs_write_errors = 0;
8921 vd->vdev_stat.vs_checksum_errors = 0;
8922
8923 vdev_state_dirty(vd->vdev_top);
8924
8925 /* Tell userspace that the vdev is gone. */
8926 zfs_post_remove(spa, vd);
8927 }
8928
8929 for (int c = 0; c < vd->vdev_children; c++)
8930 spa_async_remove(spa, vd->vdev_child[c]);
8931 }
8932
8933 static void
8934 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8935 {
8936 if (vd->vdev_fault_wanted) {
8937 vd->vdev_fault_wanted = B_FALSE;
8938 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8939 VDEV_AUX_ERR_EXCEEDED);
8940 }
8941
8942 for (int c = 0; c < vd->vdev_children; c++)
8943 spa_async_fault_vdev(spa, vd->vdev_child[c]);
8944 }
8945
8946 static void
8947 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8948 {
8949 if (!spa->spa_autoexpand)
8950 return;
8951
8952 for (int c = 0; c < vd->vdev_children; c++) {
8953 vdev_t *cvd = vd->vdev_child[c];
8954 spa_async_autoexpand(spa, cvd);
8955 }
8956
8957 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8958 return;
8959
8960 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8961 }
8962
8963 static __attribute__((noreturn)) void
8964 spa_async_thread(void *arg)
8965 {
8966 spa_t *spa = (spa_t *)arg;
8967 dsl_pool_t *dp = spa->spa_dsl_pool;
8968 int tasks;
8969
8970 ASSERT(spa->spa_sync_on);
8971
8972 mutex_enter(&spa->spa_async_lock);
8973 tasks = spa->spa_async_tasks;
8974 spa->spa_async_tasks = 0;
8975 mutex_exit(&spa->spa_async_lock);
8976
8977 /*
8978 * See if the config needs to be updated.
8979 */
8980 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8981 uint64_t old_space, new_space;
8982
8983 mutex_enter(&spa_namespace_lock);
8984 old_space = metaslab_class_get_space(spa_normal_class(spa));
8985 old_space += metaslab_class_get_space(spa_special_class(spa));
8986 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8987 old_space += metaslab_class_get_space(
8988 spa_embedded_log_class(spa));
8989
8990 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8991
8992 new_space = metaslab_class_get_space(spa_normal_class(spa));
8993 new_space += metaslab_class_get_space(spa_special_class(spa));
8994 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8995 new_space += metaslab_class_get_space(
8996 spa_embedded_log_class(spa));
8997 mutex_exit(&spa_namespace_lock);
8998
8999 /*
9000 * If the pool grew as a result of the config update,
9001 * then log an internal history event.
9002 */
9003 if (new_space != old_space) {
9004 spa_history_log_internal(spa, "vdev online", NULL,
9005 "pool '%s' size: %llu(+%llu)",
9006 spa_name(spa), (u_longlong_t)new_space,
9007 (u_longlong_t)(new_space - old_space));
9008 }
9009 }
9010
9011 /*
9012 * See if any devices need to be marked REMOVED.
9013 */
9014 if (tasks & SPA_ASYNC_REMOVE) {
9015 spa_vdev_state_enter(spa, SCL_NONE);
9016 spa_async_remove(spa, spa->spa_root_vdev);
9017 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9018 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9019 for (int i = 0; i < spa->spa_spares.sav_count; i++)
9020 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9021 (void) spa_vdev_state_exit(spa, NULL, 0);
9022 }
9023
9024 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9025 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9026 spa_async_autoexpand(spa, spa->spa_root_vdev);
9027 spa_config_exit(spa, SCL_CONFIG, FTAG);
9028 }
9029
9030 /*
9031 * See if any devices need to be marked faulted.
9032 */
9033 if (tasks & SPA_ASYNC_FAULT_VDEV) {
9034 spa_vdev_state_enter(spa, SCL_NONE);
9035 spa_async_fault_vdev(spa, spa->spa_root_vdev);
9036 (void) spa_vdev_state_exit(spa, NULL, 0);
9037 }
9038
9039 /*
9040 * If any devices are done replacing, detach them.
9041 */
9042 if (tasks & SPA_ASYNC_RESILVER_DONE ||
9043 tasks & SPA_ASYNC_REBUILD_DONE ||
9044 tasks & SPA_ASYNC_DETACH_SPARE) {
9045 spa_vdev_resilver_done(spa);
9046 }
9047
9048 /*
9049 * Kick off a resilver.
9050 */
9051 if (tasks & SPA_ASYNC_RESILVER &&
9052 !vdev_rebuild_active(spa->spa_root_vdev) &&
9053 (!dsl_scan_resilvering(dp) ||
9054 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9055 dsl_scan_restart_resilver(dp, 0);
9056
9057 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9058 mutex_enter(&spa_namespace_lock);
9059 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9060 vdev_initialize_restart(spa->spa_root_vdev);
9061 spa_config_exit(spa, SCL_CONFIG, FTAG);
9062 mutex_exit(&spa_namespace_lock);
9063 }
9064
9065 if (tasks & SPA_ASYNC_TRIM_RESTART) {
9066 mutex_enter(&spa_namespace_lock);
9067 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9068 vdev_trim_restart(spa->spa_root_vdev);
9069 spa_config_exit(spa, SCL_CONFIG, FTAG);
9070 mutex_exit(&spa_namespace_lock);
9071 }
9072
9073 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9074 mutex_enter(&spa_namespace_lock);
9075 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9076 vdev_autotrim_restart(spa);
9077 spa_config_exit(spa, SCL_CONFIG, FTAG);
9078 mutex_exit(&spa_namespace_lock);
9079 }
9080
9081 /*
9082 * Kick off L2 cache whole device TRIM.
9083 */
9084 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9085 mutex_enter(&spa_namespace_lock);
9086 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9087 vdev_trim_l2arc(spa);
9088 spa_config_exit(spa, SCL_CONFIG, FTAG);
9089 mutex_exit(&spa_namespace_lock);
9090 }
9091
9092 /*
9093 * Kick off L2 cache rebuilding.
9094 */
9095 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9096 mutex_enter(&spa_namespace_lock);
9097 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9098 l2arc_spa_rebuild_start(spa);
9099 spa_config_exit(spa, SCL_L2ARC, FTAG);
9100 mutex_exit(&spa_namespace_lock);
9101 }
9102
9103 /*
9104 * Let the world know that we're done.
9105 */
9106 mutex_enter(&spa->spa_async_lock);
9107 spa->spa_async_thread = NULL;
9108 cv_broadcast(&spa->spa_async_cv);
9109 mutex_exit(&spa->spa_async_lock);
9110 thread_exit();
9111 }
9112
9113 void
9114 spa_async_suspend(spa_t *spa)
9115 {
9116 mutex_enter(&spa->spa_async_lock);
9117 spa->spa_async_suspended++;
9118 while (spa->spa_async_thread != NULL)
9119 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9120 mutex_exit(&spa->spa_async_lock);
9121
9122 spa_vdev_remove_suspend(spa);
9123
9124 zthr_t *condense_thread = spa->spa_condense_zthr;
9125 if (condense_thread != NULL)
9126 zthr_cancel(condense_thread);
9127
9128 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9129 if (raidz_expand_thread != NULL)
9130 zthr_cancel(raidz_expand_thread);
9131
9132 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9133 if (discard_thread != NULL)
9134 zthr_cancel(discard_thread);
9135
9136 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9137 if (ll_delete_thread != NULL)
9138 zthr_cancel(ll_delete_thread);
9139
9140 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9141 if (ll_condense_thread != NULL)
9142 zthr_cancel(ll_condense_thread);
9143 }
9144
9145 void
9146 spa_async_resume(spa_t *spa)
9147 {
9148 mutex_enter(&spa->spa_async_lock);
9149 ASSERT(spa->spa_async_suspended != 0);
9150 spa->spa_async_suspended--;
9151 mutex_exit(&spa->spa_async_lock);
9152 spa_restart_removal(spa);
9153
9154 zthr_t *condense_thread = spa->spa_condense_zthr;
9155 if (condense_thread != NULL)
9156 zthr_resume(condense_thread);
9157
9158 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9159 if (raidz_expand_thread != NULL)
9160 zthr_resume(raidz_expand_thread);
9161
9162 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9163 if (discard_thread != NULL)
9164 zthr_resume(discard_thread);
9165
9166 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9167 if (ll_delete_thread != NULL)
9168 zthr_resume(ll_delete_thread);
9169
9170 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9171 if (ll_condense_thread != NULL)
9172 zthr_resume(ll_condense_thread);
9173 }
9174
9175 static boolean_t
9176 spa_async_tasks_pending(spa_t *spa)
9177 {
9178 uint_t non_config_tasks;
9179 uint_t config_task;
9180 boolean_t config_task_suspended;
9181
9182 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9183 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9184 if (spa->spa_ccw_fail_time == 0) {
9185 config_task_suspended = B_FALSE;
9186 } else {
9187 config_task_suspended =
9188 (gethrtime() - spa->spa_ccw_fail_time) <
9189 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9190 }
9191
9192 return (non_config_tasks || (config_task && !config_task_suspended));
9193 }
9194
9195 static void
9196 spa_async_dispatch(spa_t *spa)
9197 {
9198 mutex_enter(&spa->spa_async_lock);
9199 if (spa_async_tasks_pending(spa) &&
9200 !spa->spa_async_suspended &&
9201 spa->spa_async_thread == NULL)
9202 spa->spa_async_thread = thread_create(NULL, 0,
9203 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9204 mutex_exit(&spa->spa_async_lock);
9205 }
9206
9207 void
9208 spa_async_request(spa_t *spa, int task)
9209 {
9210 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9211 mutex_enter(&spa->spa_async_lock);
9212 spa->spa_async_tasks |= task;
9213 mutex_exit(&spa->spa_async_lock);
9214 }
9215
9216 int
9217 spa_async_tasks(spa_t *spa)
9218 {
9219 return (spa->spa_async_tasks);
9220 }
9221
9222 /*
9223 * ==========================================================================
9224 * SPA syncing routines
9225 * ==========================================================================
9226 */
9227
9228
9229 static int
9230 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9231 dmu_tx_t *tx)
9232 {
9233 bpobj_t *bpo = arg;
9234 bpobj_enqueue(bpo, bp, bp_freed, tx);
9235 return (0);
9236 }
9237
9238 int
9239 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9240 {
9241 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9242 }
9243
9244 int
9245 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9246 {
9247 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9248 }
9249
9250 static int
9251 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9252 {
9253 zio_t *pio = arg;
9254
9255 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9256 pio->io_flags));
9257 return (0);
9258 }
9259
9260 static int
9261 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9262 dmu_tx_t *tx)
9263 {
9264 ASSERT(!bp_freed);
9265 return (spa_free_sync_cb(arg, bp, tx));
9266 }
9267
9268 /*
9269 * Note: this simple function is not inlined to make it easier to dtrace the
9270 * amount of time spent syncing frees.
9271 */
9272 static void
9273 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9274 {
9275 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9276 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9277 VERIFY(zio_wait(zio) == 0);
9278 }
9279
9280 /*
9281 * Note: this simple function is not inlined to make it easier to dtrace the
9282 * amount of time spent syncing deferred frees.
9283 */
9284 static void
9285 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9286 {
9287 if (spa_sync_pass(spa) != 1)
9288 return;
9289
9290 /*
9291 * Note:
9292 * If the log space map feature is active, we stop deferring
9293 * frees to the next TXG and therefore running this function
9294 * would be considered a no-op as spa_deferred_bpobj should
9295 * not have any entries.
9296 *
9297 * That said we run this function anyway (instead of returning
9298 * immediately) for the edge-case scenario where we just
9299 * activated the log space map feature in this TXG but we have
9300 * deferred frees from the previous TXG.
9301 */
9302 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9303 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9304 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9305 VERIFY0(zio_wait(zio));
9306 }
9307
9308 static void
9309 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9310 {
9311 char *packed = NULL;
9312 size_t bufsize;
9313 size_t nvsize = 0;
9314 dmu_buf_t *db;
9315
9316 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9317
9318 /*
9319 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9320 * information. This avoids the dmu_buf_will_dirty() path and
9321 * saves us a pre-read to get data we don't actually care about.
9322 */
9323 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9324 packed = vmem_alloc(bufsize, KM_SLEEP);
9325
9326 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9327 KM_SLEEP) == 0);
9328 memset(packed + nvsize, 0, bufsize - nvsize);
9329
9330 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9331
9332 vmem_free(packed, bufsize);
9333
9334 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9335 dmu_buf_will_dirty(db, tx);
9336 *(uint64_t *)db->db_data = nvsize;
9337 dmu_buf_rele(db, FTAG);
9338 }
9339
9340 static void
9341 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9342 const char *config, const char *entry)
9343 {
9344 nvlist_t *nvroot;
9345 nvlist_t **list;
9346 int i;
9347
9348 if (!sav->sav_sync)
9349 return;
9350
9351 /*
9352 * Update the MOS nvlist describing the list of available devices.
9353 * spa_validate_aux() will have already made sure this nvlist is
9354 * valid and the vdevs are labeled appropriately.
9355 */
9356 if (sav->sav_object == 0) {
9357 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9358 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9359 sizeof (uint64_t), tx);
9360 VERIFY(zap_update(spa->spa_meta_objset,
9361 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9362 &sav->sav_object, tx) == 0);
9363 }
9364
9365 nvroot = fnvlist_alloc();
9366 if (sav->sav_count == 0) {
9367 fnvlist_add_nvlist_array(nvroot, config,
9368 (const nvlist_t * const *)NULL, 0);
9369 } else {
9370 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9371 for (i = 0; i < sav->sav_count; i++)
9372 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9373 B_FALSE, VDEV_CONFIG_L2CACHE);
9374 fnvlist_add_nvlist_array(nvroot, config,
9375 (const nvlist_t * const *)list, sav->sav_count);
9376 for (i = 0; i < sav->sav_count; i++)
9377 nvlist_free(list[i]);
9378 kmem_free(list, sav->sav_count * sizeof (void *));
9379 }
9380
9381 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9382 nvlist_free(nvroot);
9383
9384 sav->sav_sync = B_FALSE;
9385 }
9386
9387 /*
9388 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9389 * The all-vdev ZAP must be empty.
9390 */
9391 static void
9392 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9393 {
9394 spa_t *spa = vd->vdev_spa;
9395
9396 if (vd->vdev_root_zap != 0 &&
9397 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9398 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9399 vd->vdev_root_zap, tx));
9400 }
9401 if (vd->vdev_top_zap != 0) {
9402 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9403 vd->vdev_top_zap, tx));
9404 }
9405 if (vd->vdev_leaf_zap != 0) {
9406 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9407 vd->vdev_leaf_zap, tx));
9408 }
9409 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9410 spa_avz_build(vd->vdev_child[i], avz, tx);
9411 }
9412 }
9413
9414 static void
9415 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9416 {
9417 nvlist_t *config;
9418
9419 /*
9420 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9421 * its config may not be dirty but we still need to build per-vdev ZAPs.
9422 * Similarly, if the pool is being assembled (e.g. after a split), we
9423 * need to rebuild the AVZ although the config may not be dirty.
9424 */
9425 if (list_is_empty(&spa->spa_config_dirty_list) &&
9426 spa->spa_avz_action == AVZ_ACTION_NONE)
9427 return;
9428
9429 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9430
9431 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9432 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9433 spa->spa_all_vdev_zaps != 0);
9434
9435 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9436 /* Make and build the new AVZ */
9437 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9438 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9439 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9440
9441 /* Diff old AVZ with new one */
9442 zap_cursor_t zc;
9443 zap_attribute_t *za = zap_attribute_alloc();
9444
9445 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9446 spa->spa_all_vdev_zaps);
9447 zap_cursor_retrieve(&zc, za) == 0;
9448 zap_cursor_advance(&zc)) {
9449 uint64_t vdzap = za->za_first_integer;
9450 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9451 vdzap) == ENOENT) {
9452 /*
9453 * ZAP is listed in old AVZ but not in new one;
9454 * destroy it
9455 */
9456 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9457 tx));
9458 }
9459 }
9460
9461 zap_cursor_fini(&zc);
9462 zap_attribute_free(za);
9463
9464 /* Destroy the old AVZ */
9465 VERIFY0(zap_destroy(spa->spa_meta_objset,
9466 spa->spa_all_vdev_zaps, tx));
9467
9468 /* Replace the old AVZ in the dir obj with the new one */
9469 VERIFY0(zap_update(spa->spa_meta_objset,
9470 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9471 sizeof (new_avz), 1, &new_avz, tx));
9472
9473 spa->spa_all_vdev_zaps = new_avz;
9474 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9475 zap_cursor_t zc;
9476 zap_attribute_t *za = zap_attribute_alloc();
9477
9478 /* Walk through the AVZ and destroy all listed ZAPs */
9479 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9480 spa->spa_all_vdev_zaps);
9481 zap_cursor_retrieve(&zc, za) == 0;
9482 zap_cursor_advance(&zc)) {
9483 uint64_t zap = za->za_first_integer;
9484 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9485 }
9486
9487 zap_cursor_fini(&zc);
9488 zap_attribute_free(za);
9489
9490 /* Destroy and unlink the AVZ itself */
9491 VERIFY0(zap_destroy(spa->spa_meta_objset,
9492 spa->spa_all_vdev_zaps, tx));
9493 VERIFY0(zap_remove(spa->spa_meta_objset,
9494 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9495 spa->spa_all_vdev_zaps = 0;
9496 }
9497
9498 if (spa->spa_all_vdev_zaps == 0) {
9499 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9500 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9501 DMU_POOL_VDEV_ZAP_MAP, tx);
9502 }
9503 spa->spa_avz_action = AVZ_ACTION_NONE;
9504
9505 /* Create ZAPs for vdevs that don't have them. */
9506 vdev_construct_zaps(spa->spa_root_vdev, tx);
9507
9508 config = spa_config_generate(spa, spa->spa_root_vdev,
9509 dmu_tx_get_txg(tx), B_FALSE);
9510
9511 /*
9512 * If we're upgrading the spa version then make sure that
9513 * the config object gets updated with the correct version.
9514 */
9515 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9516 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9517 spa->spa_uberblock.ub_version);
9518
9519 spa_config_exit(spa, SCL_STATE, FTAG);
9520
9521 nvlist_free(spa->spa_config_syncing);
9522 spa->spa_config_syncing = config;
9523
9524 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9525 }
9526
9527 static void
9528 spa_sync_version(void *arg, dmu_tx_t *tx)
9529 {
9530 uint64_t *versionp = arg;
9531 uint64_t version = *versionp;
9532 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9533
9534 /*
9535 * Setting the version is special cased when first creating the pool.
9536 */
9537 ASSERT(tx->tx_txg != TXG_INITIAL);
9538
9539 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9540 ASSERT(version >= spa_version(spa));
9541
9542 spa->spa_uberblock.ub_version = version;
9543 vdev_config_dirty(spa->spa_root_vdev);
9544 spa_history_log_internal(spa, "set", tx, "version=%lld",
9545 (longlong_t)version);
9546 }
9547
9548 /*
9549 * Set zpool properties.
9550 */
9551 static void
9552 spa_sync_props(void *arg, dmu_tx_t *tx)
9553 {
9554 nvlist_t *nvp = arg;
9555 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9556 objset_t *mos = spa->spa_meta_objset;
9557 nvpair_t *elem = NULL;
9558
9559 mutex_enter(&spa->spa_props_lock);
9560
9561 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9562 uint64_t intval;
9563 const char *strval, *fname;
9564 zpool_prop_t prop;
9565 const char *propname;
9566 const char *elemname = nvpair_name(elem);
9567 zprop_type_t proptype;
9568 spa_feature_t fid;
9569
9570 switch (prop = zpool_name_to_prop(elemname)) {
9571 case ZPOOL_PROP_VERSION:
9572 intval = fnvpair_value_uint64(elem);
9573 /*
9574 * The version is synced separately before other
9575 * properties and should be correct by now.
9576 */
9577 ASSERT3U(spa_version(spa), >=, intval);
9578 break;
9579
9580 case ZPOOL_PROP_ALTROOT:
9581 /*
9582 * 'altroot' is a non-persistent property. It should
9583 * have been set temporarily at creation or import time.
9584 */
9585 ASSERT(spa->spa_root != NULL);
9586 break;
9587
9588 case ZPOOL_PROP_READONLY:
9589 case ZPOOL_PROP_CACHEFILE:
9590 /*
9591 * 'readonly' and 'cachefile' are also non-persistent
9592 * properties.
9593 */
9594 break;
9595 case ZPOOL_PROP_COMMENT:
9596 strval = fnvpair_value_string(elem);
9597 if (spa->spa_comment != NULL)
9598 spa_strfree(spa->spa_comment);
9599 spa->spa_comment = spa_strdup(strval);
9600 /*
9601 * We need to dirty the configuration on all the vdevs
9602 * so that their labels get updated. We also need to
9603 * update the cache file to keep it in sync with the
9604 * MOS version. It's unnecessary to do this for pool
9605 * creation since the vdev's configuration has already
9606 * been dirtied.
9607 */
9608 if (tx->tx_txg != TXG_INITIAL) {
9609 vdev_config_dirty(spa->spa_root_vdev);
9610 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9611 }
9612 spa_history_log_internal(spa, "set", tx,
9613 "%s=%s", elemname, strval);
9614 break;
9615 case ZPOOL_PROP_COMPATIBILITY:
9616 strval = fnvpair_value_string(elem);
9617 if (spa->spa_compatibility != NULL)
9618 spa_strfree(spa->spa_compatibility);
9619 spa->spa_compatibility = spa_strdup(strval);
9620 /*
9621 * Dirty the configuration on vdevs as above.
9622 */
9623 if (tx->tx_txg != TXG_INITIAL) {
9624 vdev_config_dirty(spa->spa_root_vdev);
9625 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9626 }
9627
9628 spa_history_log_internal(spa, "set", tx,
9629 "%s=%s", nvpair_name(elem), strval);
9630 break;
9631
9632 case ZPOOL_PROP_INVAL:
9633 if (zpool_prop_feature(elemname)) {
9634 fname = strchr(elemname, '@') + 1;
9635 VERIFY0(zfeature_lookup_name(fname, &fid));
9636
9637 spa_feature_enable(spa, fid, tx);
9638 spa_history_log_internal(spa, "set", tx,
9639 "%s=enabled", elemname);
9640 break;
9641 } else if (!zfs_prop_user(elemname)) {
9642 ASSERT(zpool_prop_feature(elemname));
9643 break;
9644 }
9645 zfs_fallthrough;
9646 default:
9647 /*
9648 * Set pool property values in the poolprops mos object.
9649 */
9650 if (spa->spa_pool_props_object == 0) {
9651 spa->spa_pool_props_object =
9652 zap_create_link(mos, DMU_OT_POOL_PROPS,
9653 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9654 tx);
9655 }
9656
9657 /* normalize the property name */
9658 if (prop == ZPOOL_PROP_INVAL) {
9659 propname = elemname;
9660 proptype = PROP_TYPE_STRING;
9661 } else {
9662 propname = zpool_prop_to_name(prop);
9663 proptype = zpool_prop_get_type(prop);
9664 }
9665
9666 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9667 ASSERT(proptype == PROP_TYPE_STRING);
9668 strval = fnvpair_value_string(elem);
9669 VERIFY0(zap_update(mos,
9670 spa->spa_pool_props_object, propname,
9671 1, strlen(strval) + 1, strval, tx));
9672 spa_history_log_internal(spa, "set", tx,
9673 "%s=%s", elemname, strval);
9674 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9675 intval = fnvpair_value_uint64(elem);
9676
9677 if (proptype == PROP_TYPE_INDEX) {
9678 const char *unused;
9679 VERIFY0(zpool_prop_index_to_string(
9680 prop, intval, &unused));
9681 }
9682 VERIFY0(zap_update(mos,
9683 spa->spa_pool_props_object, propname,
9684 8, 1, &intval, tx));
9685 spa_history_log_internal(spa, "set", tx,
9686 "%s=%lld", elemname,
9687 (longlong_t)intval);
9688
9689 switch (prop) {
9690 case ZPOOL_PROP_DELEGATION:
9691 spa->spa_delegation = intval;
9692 break;
9693 case ZPOOL_PROP_BOOTFS:
9694 spa->spa_bootfs = intval;
9695 break;
9696 case ZPOOL_PROP_FAILUREMODE:
9697 spa->spa_failmode = intval;
9698 break;
9699 case ZPOOL_PROP_AUTOTRIM:
9700 spa->spa_autotrim = intval;
9701 spa_async_request(spa,
9702 SPA_ASYNC_AUTOTRIM_RESTART);
9703 break;
9704 case ZPOOL_PROP_AUTOEXPAND:
9705 spa->spa_autoexpand = intval;
9706 if (tx->tx_txg != TXG_INITIAL)
9707 spa_async_request(spa,
9708 SPA_ASYNC_AUTOEXPAND);
9709 break;
9710 case ZPOOL_PROP_MULTIHOST:
9711 spa->spa_multihost = intval;
9712 break;
9713 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9714 spa->spa_dedup_table_quota = intval;
9715 break;
9716 default:
9717 break;
9718 }
9719 } else {
9720 ASSERT(0); /* not allowed */
9721 }
9722 }
9723
9724 }
9725
9726 mutex_exit(&spa->spa_props_lock);
9727 }
9728
9729 /*
9730 * Perform one-time upgrade on-disk changes. spa_version() does not
9731 * reflect the new version this txg, so there must be no changes this
9732 * txg to anything that the upgrade code depends on after it executes.
9733 * Therefore this must be called after dsl_pool_sync() does the sync
9734 * tasks.
9735 */
9736 static void
9737 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9738 {
9739 if (spa_sync_pass(spa) != 1)
9740 return;
9741
9742 dsl_pool_t *dp = spa->spa_dsl_pool;
9743 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9744
9745 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9746 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9747 dsl_pool_create_origin(dp, tx);
9748
9749 /* Keeping the origin open increases spa_minref */
9750 spa->spa_minref += 3;
9751 }
9752
9753 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9754 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9755 dsl_pool_upgrade_clones(dp, tx);
9756 }
9757
9758 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9759 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9760 dsl_pool_upgrade_dir_clones(dp, tx);
9761
9762 /* Keeping the freedir open increases spa_minref */
9763 spa->spa_minref += 3;
9764 }
9765
9766 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9767 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9768 spa_feature_create_zap_objects(spa, tx);
9769 }
9770
9771 /*
9772 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9773 * when possibility to use lz4 compression for metadata was added
9774 * Old pools that have this feature enabled must be upgraded to have
9775 * this feature active
9776 */
9777 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9778 boolean_t lz4_en = spa_feature_is_enabled(spa,
9779 SPA_FEATURE_LZ4_COMPRESS);
9780 boolean_t lz4_ac = spa_feature_is_active(spa,
9781 SPA_FEATURE_LZ4_COMPRESS);
9782
9783 if (lz4_en && !lz4_ac)
9784 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9785 }
9786
9787 /*
9788 * If we haven't written the salt, do so now. Note that the
9789 * feature may not be activated yet, but that's fine since
9790 * the presence of this ZAP entry is backwards compatible.
9791 */
9792 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9793 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9794 VERIFY0(zap_add(spa->spa_meta_objset,
9795 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9796 sizeof (spa->spa_cksum_salt.zcs_bytes),
9797 spa->spa_cksum_salt.zcs_bytes, tx));
9798 }
9799
9800 rrw_exit(&dp->dp_config_rwlock, FTAG);
9801 }
9802
9803 static void
9804 vdev_indirect_state_sync_verify(vdev_t *vd)
9805 {
9806 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9807 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9808
9809 if (vd->vdev_ops == &vdev_indirect_ops) {
9810 ASSERT(vim != NULL);
9811 ASSERT(vib != NULL);
9812 }
9813
9814 uint64_t obsolete_sm_object = 0;
9815 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9816 if (obsolete_sm_object != 0) {
9817 ASSERT(vd->vdev_obsolete_sm != NULL);
9818 ASSERT(vd->vdev_removing ||
9819 vd->vdev_ops == &vdev_indirect_ops);
9820 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9821 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9822 ASSERT3U(obsolete_sm_object, ==,
9823 space_map_object(vd->vdev_obsolete_sm));
9824 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9825 space_map_allocated(vd->vdev_obsolete_sm));
9826 }
9827 ASSERT(vd->vdev_obsolete_segments != NULL);
9828
9829 /*
9830 * Since frees / remaps to an indirect vdev can only
9831 * happen in syncing context, the obsolete segments
9832 * tree must be empty when we start syncing.
9833 */
9834 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9835 }
9836
9837 /*
9838 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9839 * async write queue depth in case it changed. The max queue depth will
9840 * not change in the middle of syncing out this txg.
9841 */
9842 static void
9843 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9844 {
9845 ASSERT(spa_writeable(spa));
9846
9847 vdev_t *rvd = spa->spa_root_vdev;
9848 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9849 zfs_vdev_queue_depth_pct / 100;
9850 metaslab_class_t *normal = spa_normal_class(spa);
9851 metaslab_class_t *special = spa_special_class(spa);
9852 metaslab_class_t *dedup = spa_dedup_class(spa);
9853
9854 uint64_t slots_per_allocator = 0;
9855 for (int c = 0; c < rvd->vdev_children; c++) {
9856 vdev_t *tvd = rvd->vdev_child[c];
9857
9858 metaslab_group_t *mg = tvd->vdev_mg;
9859 if (mg == NULL || !metaslab_group_initialized(mg))
9860 continue;
9861
9862 metaslab_class_t *mc = mg->mg_class;
9863 if (mc != normal && mc != special && mc != dedup)
9864 continue;
9865
9866 /*
9867 * It is safe to do a lock-free check here because only async
9868 * allocations look at mg_max_alloc_queue_depth, and async
9869 * allocations all happen from spa_sync().
9870 */
9871 for (int i = 0; i < mg->mg_allocators; i++) {
9872 ASSERT0(zfs_refcount_count(
9873 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9874 }
9875 mg->mg_max_alloc_queue_depth = max_queue_depth;
9876
9877 for (int i = 0; i < mg->mg_allocators; i++) {
9878 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9879 zfs_vdev_def_queue_depth;
9880 }
9881 slots_per_allocator += zfs_vdev_def_queue_depth;
9882 }
9883
9884 for (int i = 0; i < spa->spa_alloc_count; i++) {
9885 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9886 mca_alloc_slots));
9887 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9888 mca_alloc_slots));
9889 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9890 mca_alloc_slots));
9891 normal->mc_allocator[i].mca_alloc_max_slots =
9892 slots_per_allocator;
9893 special->mc_allocator[i].mca_alloc_max_slots =
9894 slots_per_allocator;
9895 dedup->mc_allocator[i].mca_alloc_max_slots =
9896 slots_per_allocator;
9897 }
9898 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9899 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9900 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9901 }
9902
9903 static void
9904 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9905 {
9906 ASSERT(spa_writeable(spa));
9907
9908 vdev_t *rvd = spa->spa_root_vdev;
9909 for (int c = 0; c < rvd->vdev_children; c++) {
9910 vdev_t *vd = rvd->vdev_child[c];
9911 vdev_indirect_state_sync_verify(vd);
9912
9913 if (vdev_indirect_should_condense(vd)) {
9914 spa_condense_indirect_start_sync(vd, tx);
9915 break;
9916 }
9917 }
9918 }
9919
9920 static void
9921 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9922 {
9923 objset_t *mos = spa->spa_meta_objset;
9924 dsl_pool_t *dp = spa->spa_dsl_pool;
9925 uint64_t txg = tx->tx_txg;
9926 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9927
9928 do {
9929 int pass = ++spa->spa_sync_pass;
9930
9931 spa_sync_config_object(spa, tx);
9932 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9933 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9934 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9935 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9936 spa_errlog_sync(spa, txg);
9937 dsl_pool_sync(dp, txg);
9938
9939 if (pass < zfs_sync_pass_deferred_free ||
9940 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9941 /*
9942 * If the log space map feature is active we don't
9943 * care about deferred frees and the deferred bpobj
9944 * as the log space map should effectively have the
9945 * same results (i.e. appending only to one object).
9946 */
9947 spa_sync_frees(spa, free_bpl, tx);
9948 } else {
9949 /*
9950 * We can not defer frees in pass 1, because
9951 * we sync the deferred frees later in pass 1.
9952 */
9953 ASSERT3U(pass, >, 1);
9954 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9955 &spa->spa_deferred_bpobj, tx);
9956 }
9957
9958 brt_sync(spa, txg);
9959 ddt_sync(spa, txg);
9960 dsl_scan_sync(dp, tx);
9961 dsl_errorscrub_sync(dp, tx);
9962 svr_sync(spa, tx);
9963 spa_sync_upgrades(spa, tx);
9964
9965 spa_flush_metaslabs(spa, tx);
9966
9967 vdev_t *vd = NULL;
9968 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9969 != NULL)
9970 vdev_sync(vd, txg);
9971
9972 if (pass == 1) {
9973 /*
9974 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9975 * the config. If that happens, this txg should not
9976 * be a no-op. So we must sync the config to the MOS
9977 * before checking for no-op.
9978 *
9979 * Note that when the config is dirty, it will
9980 * be written to the MOS (i.e. the MOS will be
9981 * dirtied) every time we call spa_sync_config_object()
9982 * in this txg. Therefore we can't call this after
9983 * dsl_pool_sync() every pass, because it would
9984 * prevent us from converging, since we'd dirty
9985 * the MOS every pass.
9986 *
9987 * Sync tasks can only be processed in pass 1, so
9988 * there's no need to do this in later passes.
9989 */
9990 spa_sync_config_object(spa, tx);
9991 }
9992
9993 /*
9994 * Note: We need to check if the MOS is dirty because we could
9995 * have marked the MOS dirty without updating the uberblock
9996 * (e.g. if we have sync tasks but no dirty user data). We need
9997 * to check the uberblock's rootbp because it is updated if we
9998 * have synced out dirty data (though in this case the MOS will
9999 * most likely also be dirty due to second order effects, we
10000 * don't want to rely on that here).
10001 */
10002 if (pass == 1 &&
10003 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10004 !dmu_objset_is_dirty(mos, txg)) {
10005 /*
10006 * Nothing changed on the first pass, therefore this
10007 * TXG is a no-op. Avoid syncing deferred frees, so
10008 * that we can keep this TXG as a no-op.
10009 */
10010 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10011 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10012 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10013 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10014 break;
10015 }
10016
10017 spa_sync_deferred_frees(spa, tx);
10018 } while (dmu_objset_is_dirty(mos, txg));
10019 }
10020
10021 /*
10022 * Rewrite the vdev configuration (which includes the uberblock) to
10023 * commit the transaction group.
10024 *
10025 * If there are no dirty vdevs, we sync the uberblock to a few random
10026 * top-level vdevs that are known to be visible in the config cache
10027 * (see spa_vdev_add() for a complete description). If there *are* dirty
10028 * vdevs, sync the uberblock to all vdevs.
10029 */
10030 static void
10031 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10032 {
10033 vdev_t *rvd = spa->spa_root_vdev;
10034 uint64_t txg = tx->tx_txg;
10035
10036 for (;;) {
10037 int error = 0;
10038
10039 /*
10040 * We hold SCL_STATE to prevent vdev open/close/etc.
10041 * while we're attempting to write the vdev labels.
10042 */
10043 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10044
10045 if (list_is_empty(&spa->spa_config_dirty_list)) {
10046 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10047 int svdcount = 0;
10048 int children = rvd->vdev_children;
10049 int c0 = random_in_range(children);
10050
10051 for (int c = 0; c < children; c++) {
10052 vdev_t *vd =
10053 rvd->vdev_child[(c0 + c) % children];
10054
10055 /* Stop when revisiting the first vdev */
10056 if (c > 0 && svd[0] == vd)
10057 break;
10058
10059 if (vd->vdev_ms_array == 0 ||
10060 vd->vdev_islog ||
10061 !vdev_is_concrete(vd))
10062 continue;
10063
10064 svd[svdcount++] = vd;
10065 if (svdcount == SPA_SYNC_MIN_VDEVS)
10066 break;
10067 }
10068 error = vdev_config_sync(svd, svdcount, txg);
10069 } else {
10070 error = vdev_config_sync(rvd->vdev_child,
10071 rvd->vdev_children, txg);
10072 }
10073
10074 if (error == 0)
10075 spa->spa_last_synced_guid = rvd->vdev_guid;
10076
10077 spa_config_exit(spa, SCL_STATE, FTAG);
10078
10079 if (error == 0)
10080 break;
10081 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10082 zio_resume_wait(spa);
10083 }
10084 }
10085
10086 /*
10087 * Sync the specified transaction group. New blocks may be dirtied as
10088 * part of the process, so we iterate until it converges.
10089 */
10090 void
10091 spa_sync(spa_t *spa, uint64_t txg)
10092 {
10093 vdev_t *vd = NULL;
10094
10095 VERIFY(spa_writeable(spa));
10096
10097 /*
10098 * Wait for i/os issued in open context that need to complete
10099 * before this txg syncs.
10100 */
10101 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10102 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10103 ZIO_FLAG_CANFAIL);
10104
10105 /*
10106 * Now that there can be no more cloning in this transaction group,
10107 * but we are still before issuing frees, we can process pending BRT
10108 * updates.
10109 */
10110 brt_pending_apply(spa, txg);
10111
10112 /*
10113 * Lock out configuration changes.
10114 */
10115 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10116
10117 spa->spa_syncing_txg = txg;
10118 spa->spa_sync_pass = 0;
10119
10120 for (int i = 0; i < spa->spa_alloc_count; i++) {
10121 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10122 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10123 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10124 }
10125
10126 /*
10127 * If there are any pending vdev state changes, convert them
10128 * into config changes that go out with this transaction group.
10129 */
10130 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10131 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10132 /* Avoid holding the write lock unless actually necessary */
10133 if (vd->vdev_aux == NULL) {
10134 vdev_state_clean(vd);
10135 vdev_config_dirty(vd);
10136 continue;
10137 }
10138 /*
10139 * We need the write lock here because, for aux vdevs,
10140 * calling vdev_config_dirty() modifies sav_config.
10141 * This is ugly and will become unnecessary when we
10142 * eliminate the aux vdev wart by integrating all vdevs
10143 * into the root vdev tree.
10144 */
10145 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10146 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10147 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10148 vdev_state_clean(vd);
10149 vdev_config_dirty(vd);
10150 }
10151 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10152 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10153 }
10154 spa_config_exit(spa, SCL_STATE, FTAG);
10155
10156 dsl_pool_t *dp = spa->spa_dsl_pool;
10157 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10158
10159 spa->spa_sync_starttime = gethrtime();
10160 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10161 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10162 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10163 NSEC_TO_TICK(spa->spa_deadman_synctime));
10164
10165 /*
10166 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10167 * set spa_deflate if we have no raid-z vdevs.
10168 */
10169 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10170 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10171 vdev_t *rvd = spa->spa_root_vdev;
10172
10173 int i;
10174 for (i = 0; i < rvd->vdev_children; i++) {
10175 vd = rvd->vdev_child[i];
10176 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10177 break;
10178 }
10179 if (i == rvd->vdev_children) {
10180 spa->spa_deflate = TRUE;
10181 VERIFY0(zap_add(spa->spa_meta_objset,
10182 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10183 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10184 }
10185 }
10186
10187 spa_sync_adjust_vdev_max_queue_depth(spa);
10188
10189 spa_sync_condense_indirect(spa, tx);
10190
10191 spa_sync_iterate_to_convergence(spa, tx);
10192
10193 #ifdef ZFS_DEBUG
10194 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10195 /*
10196 * Make sure that the number of ZAPs for all the vdevs matches
10197 * the number of ZAPs in the per-vdev ZAP list. This only gets
10198 * called if the config is dirty; otherwise there may be
10199 * outstanding AVZ operations that weren't completed in
10200 * spa_sync_config_object.
10201 */
10202 uint64_t all_vdev_zap_entry_count;
10203 ASSERT0(zap_count(spa->spa_meta_objset,
10204 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10205 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10206 all_vdev_zap_entry_count);
10207 }
10208 #endif
10209
10210 if (spa->spa_vdev_removal != NULL) {
10211 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10212 }
10213
10214 spa_sync_rewrite_vdev_config(spa, tx);
10215 dmu_tx_commit(tx);
10216
10217 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10218 spa->spa_deadman_tqid = 0;
10219
10220 /*
10221 * Clear the dirty config list.
10222 */
10223 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10224 vdev_config_clean(vd);
10225
10226 /*
10227 * Now that the new config has synced transactionally,
10228 * let it become visible to the config cache.
10229 */
10230 if (spa->spa_config_syncing != NULL) {
10231 spa_config_set(spa, spa->spa_config_syncing);
10232 spa->spa_config_txg = txg;
10233 spa->spa_config_syncing = NULL;
10234 }
10235
10236 dsl_pool_sync_done(dp, txg);
10237
10238 for (int i = 0; i < spa->spa_alloc_count; i++) {
10239 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10240 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10241 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10242 }
10243
10244 /*
10245 * Update usable space statistics.
10246 */
10247 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10248 != NULL)
10249 vdev_sync_done(vd, txg);
10250
10251 metaslab_class_evict_old(spa->spa_normal_class, txg);
10252 metaslab_class_evict_old(spa->spa_log_class, txg);
10253 /* spa_embedded_log_class has only one metaslab per vdev. */
10254 metaslab_class_evict_old(spa->spa_special_class, txg);
10255 metaslab_class_evict_old(spa->spa_dedup_class, txg);
10256
10257 spa_sync_close_syncing_log_sm(spa);
10258
10259 spa_update_dspace(spa);
10260
10261 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10262 vdev_autotrim_kick(spa);
10263
10264 /*
10265 * It had better be the case that we didn't dirty anything
10266 * since vdev_config_sync().
10267 */
10268 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10269 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10270 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10271
10272 while (zfs_pause_spa_sync)
10273 delay(1);
10274
10275 spa->spa_sync_pass = 0;
10276
10277 /*
10278 * Update the last synced uberblock here. We want to do this at
10279 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10280 * will be guaranteed that all the processing associated with
10281 * that txg has been completed.
10282 */
10283 spa->spa_ubsync = spa->spa_uberblock;
10284 spa_config_exit(spa, SCL_CONFIG, FTAG);
10285
10286 spa_handle_ignored_writes(spa);
10287
10288 /*
10289 * If any async tasks have been requested, kick them off.
10290 */
10291 spa_async_dispatch(spa);
10292 }
10293
10294 /*
10295 * Sync all pools. We don't want to hold the namespace lock across these
10296 * operations, so we take a reference on the spa_t and drop the lock during the
10297 * sync.
10298 */
10299 void
10300 spa_sync_allpools(void)
10301 {
10302 spa_t *spa = NULL;
10303 mutex_enter(&spa_namespace_lock);
10304 while ((spa = spa_next(spa)) != NULL) {
10305 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10306 !spa_writeable(spa) || spa_suspended(spa))
10307 continue;
10308 spa_open_ref(spa, FTAG);
10309 mutex_exit(&spa_namespace_lock);
10310 txg_wait_synced(spa_get_dsl(spa), 0);
10311 mutex_enter(&spa_namespace_lock);
10312 spa_close(spa, FTAG);
10313 }
10314 mutex_exit(&spa_namespace_lock);
10315 }
10316
10317 taskq_t *
10318 spa_sync_tq_create(spa_t *spa, const char *name)
10319 {
10320 kthread_t **kthreads;
10321
10322 ASSERT(spa->spa_sync_tq == NULL);
10323 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10324
10325 /*
10326 * - do not allow more allocators than cpus.
10327 * - there may be more cpus than allocators.
10328 * - do not allow more sync taskq threads than allocators or cpus.
10329 */
10330 int nthreads = spa->spa_alloc_count;
10331 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10332 nthreads, KM_SLEEP);
10333
10334 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10335 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10336 VERIFY(spa->spa_sync_tq != NULL);
10337 VERIFY(kthreads != NULL);
10338
10339 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10340 for (int i = 0; i < nthreads; i++, ti++) {
10341 ti->sti_thread = kthreads[i];
10342 ti->sti_allocator = i;
10343 }
10344
10345 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10346 return (spa->spa_sync_tq);
10347 }
10348
10349 void
10350 spa_sync_tq_destroy(spa_t *spa)
10351 {
10352 ASSERT(spa->spa_sync_tq != NULL);
10353
10354 taskq_wait(spa->spa_sync_tq);
10355 taskq_destroy(spa->spa_sync_tq);
10356 kmem_free(spa->spa_syncthreads,
10357 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10358 spa->spa_sync_tq = NULL;
10359 }
10360
10361 uint_t
10362 spa_acq_allocator(spa_t *spa)
10363 {
10364 int i;
10365
10366 if (spa->spa_alloc_count == 1)
10367 return (0);
10368
10369 mutex_enter(&spa->spa_allocs_use->sau_lock);
10370 uint_t r = spa->spa_allocs_use->sau_rotor;
10371 do {
10372 if (++r == spa->spa_alloc_count)
10373 r = 0;
10374 } while (spa->spa_allocs_use->sau_inuse[r]);
10375 spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10376 spa->spa_allocs_use->sau_rotor = r;
10377 mutex_exit(&spa->spa_allocs_use->sau_lock);
10378
10379 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10380 for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10381 if (ti->sti_thread == curthread) {
10382 ti->sti_allocator = r;
10383 break;
10384 }
10385 }
10386 ASSERT3S(i, <, spa->spa_alloc_count);
10387 return (r);
10388 }
10389
10390 void
10391 spa_rel_allocator(spa_t *spa, uint_t allocator)
10392 {
10393 if (spa->spa_alloc_count > 1)
10394 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10395 }
10396
10397 void
10398 spa_select_allocator(zio_t *zio)
10399 {
10400 zbookmark_phys_t *bm = &zio->io_bookmark;
10401 spa_t *spa = zio->io_spa;
10402
10403 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10404
10405 /*
10406 * A gang block (for example) may have inherited its parent's
10407 * allocator, in which case there is nothing further to do here.
10408 */
10409 if (ZIO_HAS_ALLOCATOR(zio))
10410 return;
10411
10412 ASSERT(spa != NULL);
10413 ASSERT(bm != NULL);
10414
10415 /*
10416 * First try to use an allocator assigned to the syncthread, and set
10417 * the corresponding write issue taskq for the allocator.
10418 * Note, we must have an open pool to do this.
10419 */
10420 if (spa->spa_sync_tq != NULL) {
10421 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10422 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10423 if (ti->sti_thread == curthread) {
10424 zio->io_allocator = ti->sti_allocator;
10425 return;
10426 }
10427 }
10428 }
10429
10430 /*
10431 * We want to try to use as many allocators as possible to help improve
10432 * performance, but we also want logically adjacent IOs to be physically
10433 * adjacent to improve sequential read performance. We chunk each object
10434 * into 2^20 block regions, and then hash based on the objset, object,
10435 * level, and region to accomplish both of these goals.
10436 */
10437 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10438 bm->zb_blkid >> 20);
10439
10440 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10441 }
10442
10443 /*
10444 * ==========================================================================
10445 * Miscellaneous routines
10446 * ==========================================================================
10447 */
10448
10449 /*
10450 * Remove all pools in the system.
10451 */
10452 void
10453 spa_evict_all(void)
10454 {
10455 spa_t *spa;
10456
10457 /*
10458 * Remove all cached state. All pools should be closed now,
10459 * so every spa in the AVL tree should be unreferenced.
10460 */
10461 mutex_enter(&spa_namespace_lock);
10462 while ((spa = spa_next(NULL)) != NULL) {
10463 /*
10464 * Stop async tasks. The async thread may need to detach
10465 * a device that's been replaced, which requires grabbing
10466 * spa_namespace_lock, so we must drop it here.
10467 */
10468 spa_open_ref(spa, FTAG);
10469 mutex_exit(&spa_namespace_lock);
10470 spa_async_suspend(spa);
10471 mutex_enter(&spa_namespace_lock);
10472 spa_close(spa, FTAG);
10473
10474 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10475 spa_unload(spa);
10476 spa_deactivate(spa);
10477 }
10478 spa_remove(spa);
10479 }
10480 mutex_exit(&spa_namespace_lock);
10481 }
10482
10483 vdev_t *
10484 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10485 {
10486 vdev_t *vd;
10487 int i;
10488
10489 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10490 return (vd);
10491
10492 if (aux) {
10493 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10494 vd = spa->spa_l2cache.sav_vdevs[i];
10495 if (vd->vdev_guid == guid)
10496 return (vd);
10497 }
10498
10499 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10500 vd = spa->spa_spares.sav_vdevs[i];
10501 if (vd->vdev_guid == guid)
10502 return (vd);
10503 }
10504 }
10505
10506 return (NULL);
10507 }
10508
10509 void
10510 spa_upgrade(spa_t *spa, uint64_t version)
10511 {
10512 ASSERT(spa_writeable(spa));
10513
10514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10515
10516 /*
10517 * This should only be called for a non-faulted pool, and since a
10518 * future version would result in an unopenable pool, this shouldn't be
10519 * possible.
10520 */
10521 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10522 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10523
10524 spa->spa_uberblock.ub_version = version;
10525 vdev_config_dirty(spa->spa_root_vdev);
10526
10527 spa_config_exit(spa, SCL_ALL, FTAG);
10528
10529 txg_wait_synced(spa_get_dsl(spa), 0);
10530 }
10531
10532 static boolean_t
10533 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10534 {
10535 (void) spa;
10536 int i;
10537 uint64_t vdev_guid;
10538
10539 for (i = 0; i < sav->sav_count; i++)
10540 if (sav->sav_vdevs[i]->vdev_guid == guid)
10541 return (B_TRUE);
10542
10543 for (i = 0; i < sav->sav_npending; i++) {
10544 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10545 &vdev_guid) == 0 && vdev_guid == guid)
10546 return (B_TRUE);
10547 }
10548
10549 return (B_FALSE);
10550 }
10551
10552 boolean_t
10553 spa_has_l2cache(spa_t *spa, uint64_t guid)
10554 {
10555 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10556 }
10557
10558 boolean_t
10559 spa_has_spare(spa_t *spa, uint64_t guid)
10560 {
10561 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10562 }
10563
10564 /*
10565 * Check if a pool has an active shared spare device.
10566 * Note: reference count of an active spare is 2, as a spare and as a replace
10567 */
10568 static boolean_t
10569 spa_has_active_shared_spare(spa_t *spa)
10570 {
10571 int i, refcnt;
10572 uint64_t pool;
10573 spa_aux_vdev_t *sav = &spa->spa_spares;
10574
10575 for (i = 0; i < sav->sav_count; i++) {
10576 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10577 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10578 refcnt > 2)
10579 return (B_TRUE);
10580 }
10581
10582 return (B_FALSE);
10583 }
10584
10585 uint64_t
10586 spa_total_metaslabs(spa_t *spa)
10587 {
10588 vdev_t *rvd = spa->spa_root_vdev;
10589
10590 uint64_t m = 0;
10591 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10592 vdev_t *vd = rvd->vdev_child[c];
10593 if (!vdev_is_concrete(vd))
10594 continue;
10595 m += vd->vdev_ms_count;
10596 }
10597 return (m);
10598 }
10599
10600 /*
10601 * Notify any waiting threads that some activity has switched from being in-
10602 * progress to not-in-progress so that the thread can wake up and determine
10603 * whether it is finished waiting.
10604 */
10605 void
10606 spa_notify_waiters(spa_t *spa)
10607 {
10608 /*
10609 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10610 * happening between the waiting thread's check and cv_wait.
10611 */
10612 mutex_enter(&spa->spa_activities_lock);
10613 cv_broadcast(&spa->spa_activities_cv);
10614 mutex_exit(&spa->spa_activities_lock);
10615 }
10616
10617 /*
10618 * Notify any waiting threads that the pool is exporting, and then block until
10619 * they are finished using the spa_t.
10620 */
10621 void
10622 spa_wake_waiters(spa_t *spa)
10623 {
10624 mutex_enter(&spa->spa_activities_lock);
10625 spa->spa_waiters_cancel = B_TRUE;
10626 cv_broadcast(&spa->spa_activities_cv);
10627 while (spa->spa_waiters != 0)
10628 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10629 spa->spa_waiters_cancel = B_FALSE;
10630 mutex_exit(&spa->spa_activities_lock);
10631 }
10632
10633 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10634 static boolean_t
10635 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10636 {
10637 spa_t *spa = vd->vdev_spa;
10638
10639 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10640 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10641 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10642 activity == ZPOOL_WAIT_TRIM);
10643
10644 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10645 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10646
10647 mutex_exit(&spa->spa_activities_lock);
10648 mutex_enter(lock);
10649 mutex_enter(&spa->spa_activities_lock);
10650
10651 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10652 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10653 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10654 mutex_exit(lock);
10655
10656 if (in_progress)
10657 return (B_TRUE);
10658
10659 for (int i = 0; i < vd->vdev_children; i++) {
10660 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10661 activity))
10662 return (B_TRUE);
10663 }
10664
10665 return (B_FALSE);
10666 }
10667
10668 /*
10669 * If use_guid is true, this checks whether the vdev specified by guid is
10670 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10671 * is being initialized/trimmed. The caller must hold the config lock and
10672 * spa_activities_lock.
10673 */
10674 static int
10675 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10676 zpool_wait_activity_t activity, boolean_t *in_progress)
10677 {
10678 mutex_exit(&spa->spa_activities_lock);
10679 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10680 mutex_enter(&spa->spa_activities_lock);
10681
10682 vdev_t *vd;
10683 if (use_guid) {
10684 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10685 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10686 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10687 return (EINVAL);
10688 }
10689 } else {
10690 vd = spa->spa_root_vdev;
10691 }
10692
10693 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10694
10695 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10696 return (0);
10697 }
10698
10699 /*
10700 * Locking for waiting threads
10701 * ---------------------------
10702 *
10703 * Waiting threads need a way to check whether a given activity is in progress,
10704 * and then, if it is, wait for it to complete. Each activity will have some
10705 * in-memory representation of the relevant on-disk state which can be used to
10706 * determine whether or not the activity is in progress. The in-memory state and
10707 * the locking used to protect it will be different for each activity, and may
10708 * not be suitable for use with a cvar (e.g., some state is protected by the
10709 * config lock). To allow waiting threads to wait without any races, another
10710 * lock, spa_activities_lock, is used.
10711 *
10712 * When the state is checked, both the activity-specific lock (if there is one)
10713 * and spa_activities_lock are held. In some cases, the activity-specific lock
10714 * is acquired explicitly (e.g. the config lock). In others, the locking is
10715 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10716 * thread releases the activity-specific lock and, if the activity is in
10717 * progress, then cv_waits using spa_activities_lock.
10718 *
10719 * The waiting thread is woken when another thread, one completing some
10720 * activity, updates the state of the activity and then calls
10721 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10722 * needs to hold its activity-specific lock when updating the state, and this
10723 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10724 *
10725 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10726 * and because it is held when the waiting thread checks the state of the
10727 * activity, it can never be the case that the completing thread both updates
10728 * the activity state and cv_broadcasts in between the waiting thread's check
10729 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10730 *
10731 * In order to prevent deadlock, when the waiting thread does its check, in some
10732 * cases it will temporarily drop spa_activities_lock in order to acquire the
10733 * activity-specific lock. The order in which spa_activities_lock and the
10734 * activity specific lock are acquired in the waiting thread is determined by
10735 * the order in which they are acquired in the completing thread; if the
10736 * completing thread calls spa_notify_waiters with the activity-specific lock
10737 * held, then the waiting thread must also acquire the activity-specific lock
10738 * first.
10739 */
10740
10741 static int
10742 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10743 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10744 {
10745 int error = 0;
10746
10747 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10748
10749 switch (activity) {
10750 case ZPOOL_WAIT_CKPT_DISCARD:
10751 *in_progress =
10752 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10753 zap_contains(spa_meta_objset(spa),
10754 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10755 ENOENT);
10756 break;
10757 case ZPOOL_WAIT_FREE:
10758 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10759 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10760 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10761 spa_livelist_delete_check(spa));
10762 break;
10763 case ZPOOL_WAIT_INITIALIZE:
10764 case ZPOOL_WAIT_TRIM:
10765 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10766 activity, in_progress);
10767 break;
10768 case ZPOOL_WAIT_REPLACE:
10769 mutex_exit(&spa->spa_activities_lock);
10770 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10771 mutex_enter(&spa->spa_activities_lock);
10772
10773 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10774 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10775 break;
10776 case ZPOOL_WAIT_REMOVE:
10777 *in_progress = (spa->spa_removing_phys.sr_state ==
10778 DSS_SCANNING);
10779 break;
10780 case ZPOOL_WAIT_RESILVER:
10781 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10782 if (*in_progress)
10783 break;
10784 zfs_fallthrough;
10785 case ZPOOL_WAIT_SCRUB:
10786 {
10787 boolean_t scanning, paused, is_scrub;
10788 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10789
10790 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10791 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10792 paused = dsl_scan_is_paused_scrub(scn);
10793 *in_progress = (scanning && !paused &&
10794 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10795 break;
10796 }
10797 case ZPOOL_WAIT_RAIDZ_EXPAND:
10798 {
10799 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10800 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10801 break;
10802 }
10803 default:
10804 panic("unrecognized value for activity %d", activity);
10805 }
10806
10807 return (error);
10808 }
10809
10810 static int
10811 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10812 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10813 {
10814 /*
10815 * The tag is used to distinguish between instances of an activity.
10816 * 'initialize' and 'trim' are the only activities that we use this for.
10817 * The other activities can only have a single instance in progress in a
10818 * pool at one time, making the tag unnecessary.
10819 *
10820 * There can be multiple devices being replaced at once, but since they
10821 * all finish once resilvering finishes, we don't bother keeping track
10822 * of them individually, we just wait for them all to finish.
10823 */
10824 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10825 activity != ZPOOL_WAIT_TRIM)
10826 return (EINVAL);
10827
10828 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10829 return (EINVAL);
10830
10831 spa_t *spa;
10832 int error = spa_open(pool, &spa, FTAG);
10833 if (error != 0)
10834 return (error);
10835
10836 /*
10837 * Increment the spa's waiter count so that we can call spa_close and
10838 * still ensure that the spa_t doesn't get freed before this thread is
10839 * finished with it when the pool is exported. We want to call spa_close
10840 * before we start waiting because otherwise the additional ref would
10841 * prevent the pool from being exported or destroyed throughout the
10842 * potentially long wait.
10843 */
10844 mutex_enter(&spa->spa_activities_lock);
10845 spa->spa_waiters++;
10846 spa_close(spa, FTAG);
10847
10848 *waited = B_FALSE;
10849 for (;;) {
10850 boolean_t in_progress;
10851 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10852 &in_progress);
10853
10854 if (error || !in_progress || spa->spa_waiters_cancel)
10855 break;
10856
10857 *waited = B_TRUE;
10858
10859 if (cv_wait_sig(&spa->spa_activities_cv,
10860 &spa->spa_activities_lock) == 0) {
10861 error = EINTR;
10862 break;
10863 }
10864 }
10865
10866 spa->spa_waiters--;
10867 cv_signal(&spa->spa_waiters_cv);
10868 mutex_exit(&spa->spa_activities_lock);
10869
10870 return (error);
10871 }
10872
10873 /*
10874 * Wait for a particular instance of the specified activity to complete, where
10875 * the instance is identified by 'tag'
10876 */
10877 int
10878 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10879 boolean_t *waited)
10880 {
10881 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10882 }
10883
10884 /*
10885 * Wait for all instances of the specified activity complete
10886 */
10887 int
10888 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10889 {
10890
10891 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10892 }
10893
10894 sysevent_t *
10895 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10896 {
10897 sysevent_t *ev = NULL;
10898 #ifdef _KERNEL
10899 nvlist_t *resource;
10900
10901 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10902 if (resource) {
10903 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10904 ev->resource = resource;
10905 }
10906 #else
10907 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10908 #endif
10909 return (ev);
10910 }
10911
10912 void
10913 spa_event_post(sysevent_t *ev)
10914 {
10915 #ifdef _KERNEL
10916 if (ev) {
10917 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10918 kmem_free(ev, sizeof (*ev));
10919 }
10920 #else
10921 (void) ev;
10922 #endif
10923 }
10924
10925 /*
10926 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10927 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10928 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10929 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10930 * or zdb as real changes.
10931 */
10932 void
10933 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10934 {
10935 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10936 }
10937
10938 /* state manipulation functions */
10939 EXPORT_SYMBOL(spa_open);
10940 EXPORT_SYMBOL(spa_open_rewind);
10941 EXPORT_SYMBOL(spa_get_stats);
10942 EXPORT_SYMBOL(spa_create);
10943 EXPORT_SYMBOL(spa_import);
10944 EXPORT_SYMBOL(spa_tryimport);
10945 EXPORT_SYMBOL(spa_destroy);
10946 EXPORT_SYMBOL(spa_export);
10947 EXPORT_SYMBOL(spa_reset);
10948 EXPORT_SYMBOL(spa_async_request);
10949 EXPORT_SYMBOL(spa_async_suspend);
10950 EXPORT_SYMBOL(spa_async_resume);
10951 EXPORT_SYMBOL(spa_inject_addref);
10952 EXPORT_SYMBOL(spa_inject_delref);
10953 EXPORT_SYMBOL(spa_scan_stat_init);
10954 EXPORT_SYMBOL(spa_scan_get_stats);
10955
10956 /* device manipulation */
10957 EXPORT_SYMBOL(spa_vdev_add);
10958 EXPORT_SYMBOL(spa_vdev_attach);
10959 EXPORT_SYMBOL(spa_vdev_detach);
10960 EXPORT_SYMBOL(spa_vdev_setpath);
10961 EXPORT_SYMBOL(spa_vdev_setfru);
10962 EXPORT_SYMBOL(spa_vdev_split_mirror);
10963
10964 /* spare statech is global across all pools) */
10965 EXPORT_SYMBOL(spa_spare_add);
10966 EXPORT_SYMBOL(spa_spare_remove);
10967 EXPORT_SYMBOL(spa_spare_exists);
10968 EXPORT_SYMBOL(spa_spare_activate);
10969
10970 /* L2ARC statech is global across all pools) */
10971 EXPORT_SYMBOL(spa_l2cache_add);
10972 EXPORT_SYMBOL(spa_l2cache_remove);
10973 EXPORT_SYMBOL(spa_l2cache_exists);
10974 EXPORT_SYMBOL(spa_l2cache_activate);
10975 EXPORT_SYMBOL(spa_l2cache_drop);
10976
10977 /* scanning */
10978 EXPORT_SYMBOL(spa_scan);
10979 EXPORT_SYMBOL(spa_scan_stop);
10980
10981 /* spa syncing */
10982 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10983 EXPORT_SYMBOL(spa_sync_allpools);
10984
10985 /* properties */
10986 EXPORT_SYMBOL(spa_prop_set);
10987 EXPORT_SYMBOL(spa_prop_get);
10988 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10989
10990 /* asynchronous event notification */
10991 EXPORT_SYMBOL(spa_event_notify);
10992
10993 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10994 "Percentage of CPUs to run a metaslab preload taskq");
10995
10996 /* BEGIN CSTYLED */
10997 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10998 "log2 fraction of arc that can be used by inflight I/Os when "
10999 "verifying pool during import");
11000 /* END CSTYLED */
11001
11002 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11003 "Set to traverse metadata on pool import");
11004
11005 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11006 "Set to traverse data on pool import");
11007
11008 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11009 "Print vdev tree to zfs_dbgmsg during pool import");
11010
11011 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11012 "Percentage of CPUs to run an IO worker thread");
11013
11014 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11015 "Number of threads per IO worker taskqueue");
11016
11017 /* BEGIN CSTYLED */
11018 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11019 "Allow importing pool with up to this number of missing top-level "
11020 "vdevs (in read-only mode)");
11021 /* END CSTYLED */
11022
11023 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11024 ZMOD_RW, "Set the livelist condense zthr to pause");
11025
11026 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11027 ZMOD_RW, "Set the livelist condense synctask to pause");
11028
11029 /* BEGIN CSTYLED */
11030 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11031 INT, ZMOD_RW,
11032 "Whether livelist condensing was canceled in the synctask");
11033
11034 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11035 INT, ZMOD_RW,
11036 "Whether livelist condensing was canceled in the zthr function");
11037
11038 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11039 ZMOD_RW,
11040 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
11041 "was being condensed");
11042
11043 #ifdef _KERNEL
11044 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11045 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11046 "Configure IO queues for read IO");
11047 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11048 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11049 "Configure IO queues for write IO");
11050 #endif
11051 /* END CSTYLED */
11052
11053 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11054 "Number of CPUs per write issue taskq");
11055