xref: /linux/net/ipv4/tcp_minisocks.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/tcp_ecn.h>
24 #include <net/xfrm.h>
25 #include <net/busy_poll.h>
26 #include <net/rstreason.h>
27 #include <net/psp.h>
28 
29 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
30 {
31 	if (seq == s_win)
32 		return true;
33 	if (after(end_seq, s_win) && before(seq, e_win))
34 		return true;
35 	return seq == e_win && seq == end_seq;
36 }
37 
38 static enum tcp_tw_status
39 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
40 				  const struct sk_buff *skb, int mib_idx)
41 {
42 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
43 
44 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
45 				  &tcptw->tw_last_oow_ack_time)) {
46 		/* Send ACK. Note, we do not put the bucket,
47 		 * it will be released by caller.
48 		 */
49 		return TCP_TW_ACK_OOW;
50 	}
51 
52 	/* We are rate-limiting, so just release the tw sock and drop skb. */
53 	inet_twsk_put(tw);
54 	return TCP_TW_SUCCESS;
55 }
56 
57 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
58 				u32 rcv_nxt)
59 {
60 #ifdef CONFIG_TCP_AO
61 	struct tcp_ao_info *ao;
62 
63 	ao = rcu_dereference(tcptw->ao_info);
64 	if (unlikely(ao && seq < rcv_nxt))
65 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
66 #endif
67 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
68 }
69 
70 /*
71  * * Main purpose of TIME-WAIT state is to close connection gracefully,
72  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
73  *   (and, probably, tail of data) and one or more our ACKs are lost.
74  * * What is TIME-WAIT timeout? It is associated with maximal packet
75  *   lifetime in the internet, which results in wrong conclusion, that
76  *   it is set to catch "old duplicate segments" wandering out of their path.
77  *   It is not quite correct. This timeout is calculated so that it exceeds
78  *   maximal retransmission timeout enough to allow to lose one (or more)
79  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
80  * * When TIME-WAIT socket receives RST, it means that another end
81  *   finally closed and we are allowed to kill TIME-WAIT too.
82  * * Second purpose of TIME-WAIT is catching old duplicate segments.
83  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
84  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
85  * * If we invented some more clever way to catch duplicates
86  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
87  *
88  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
89  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
90  * from the very beginning.
91  *
92  * NOTE. With recycling (and later with fin-wait-2) TW bucket
93  * is _not_ stateless. It means, that strictly speaking we must
94  * spinlock it. I do not want! Well, probability of misbehaviour
95  * is ridiculously low and, seems, we could use some mb() tricks
96  * to avoid misread sequence numbers, states etc.  --ANK
97  *
98  * We don't need to initialize tmp_out.sack_ok as we don't use the results
99  */
100 enum tcp_tw_status
101 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
102 			   const struct tcphdr *th, u32 *tw_isn,
103 			   enum skb_drop_reason *drop_reason)
104 {
105 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
106 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
107 	struct tcp_options_received tmp_opt;
108 	enum skb_drop_reason psp_drop;
109 	bool paws_reject = false;
110 	int ts_recent_stamp;
111 
112 	/* Instead of dropping immediately, wait to see what value is
113 	 * returned. We will accept a non psp-encapsulated syn in the
114 	 * case where TCP_TW_SYN is returned.
115 	 */
116 	psp_drop = psp_twsk_rx_policy_check(tw, skb);
117 
118 	tmp_opt.saw_tstamp = 0;
119 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
120 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
121 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
122 
123 		if (tmp_opt.saw_tstamp) {
124 			if (tmp_opt.rcv_tsecr)
125 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
126 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
127 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
128 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
129 		}
130 	}
131 
132 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
133 		/* Just repeat all the checks of tcp_rcv_state_process() */
134 
135 		if (psp_drop)
136 			goto out_put;
137 
138 		/* Out of window, send ACK */
139 		if (paws_reject ||
140 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
141 				   rcv_nxt,
142 				   rcv_nxt + tcptw->tw_rcv_wnd))
143 			return tcp_timewait_check_oow_rate_limit(
144 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
145 
146 		if (th->rst)
147 			goto kill;
148 
149 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
150 			return TCP_TW_RST;
151 
152 		/* Dup ACK? */
153 		if (!th->ack ||
154 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
155 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
156 			inet_twsk_put(tw);
157 			return TCP_TW_SUCCESS;
158 		}
159 
160 		/* New data or FIN. If new data arrive after half-duplex close,
161 		 * reset.
162 		 */
163 		if (!th->fin ||
164 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
165 			return TCP_TW_RST;
166 
167 		/* FIN arrived, enter true time-wait state. */
168 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
169 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
170 				    rcv_nxt);
171 
172 		if (tmp_opt.saw_tstamp) {
173 			u64 ts = tcp_clock_ms();
174 
175 			WRITE_ONCE(tw->tw_entry_stamp, ts);
176 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
177 				   div_u64(ts, MSEC_PER_SEC));
178 			WRITE_ONCE(tcptw->tw_ts_recent,
179 				   tmp_opt.rcv_tsval);
180 		}
181 
182 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183 		return TCP_TW_ACK;
184 	}
185 
186 	/*
187 	 *	Now real TIME-WAIT state.
188 	 *
189 	 *	RFC 1122:
190 	 *	"When a connection is [...] on TIME-WAIT state [...]
191 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
192 	 *	reopen the connection directly, if it:
193 	 *
194 	 *	(1)  assigns its initial sequence number for the new
195 	 *	connection to be larger than the largest sequence
196 	 *	number it used on the previous connection incarnation,
197 	 *	and
198 	 *
199 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
200 	 *	to be an old duplicate".
201 	 */
202 
203 	if (!paws_reject &&
204 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
205 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
206 		/* In window segment, it may be only reset or bare ack. */
207 
208 		if (psp_drop)
209 			goto out_put;
210 
211 		if (th->rst) {
212 			/* This is TIME_WAIT assassination, in two flavors.
213 			 * Oh well... nobody has a sufficient solution to this
214 			 * protocol bug yet.
215 			 */
216 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
217 kill:
218 				inet_twsk_deschedule_put(tw);
219 				return TCP_TW_SUCCESS;
220 			}
221 		} else {
222 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
223 		}
224 
225 		if (tmp_opt.saw_tstamp) {
226 			WRITE_ONCE(tcptw->tw_ts_recent,
227 				   tmp_opt.rcv_tsval);
228 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
229 				   ktime_get_seconds());
230 		}
231 
232 		inet_twsk_put(tw);
233 		return TCP_TW_SUCCESS;
234 	}
235 
236 	/* Out of window segment.
237 
238 	   All the segments are ACKed immediately.
239 
240 	   The only exception is new SYN. We accept it, if it is
241 	   not old duplicate and we are not in danger to be killed
242 	   by delayed old duplicates. RFC check is that it has
243 	   newer sequence number works at rates <40Mbit/sec.
244 	   However, if paws works, it is reliable AND even more,
245 	   we even may relax silly seq space cutoff.
246 
247 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
248 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
249 	   we must return socket to time-wait state. It is not good,
250 	   but not fatal yet.
251 	 */
252 
253 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
254 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
255 	     (tmp_opt.saw_tstamp &&
256 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
257 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
258 		if (isn == 0)
259 			isn++;
260 		*tw_isn = isn;
261 		return TCP_TW_SYN;
262 	}
263 
264 	if (psp_drop)
265 		goto out_put;
266 
267 	if (paws_reject) {
268 		*drop_reason = SKB_DROP_REASON_TCP_RFC7323_TW_PAWS;
269 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWS_TW_REJECTED);
270 	}
271 
272 	if (!th->rst) {
273 		/* In this case we must reset the TIMEWAIT timer.
274 		 *
275 		 * If it is ACKless SYN it may be both old duplicate
276 		 * and new good SYN with random sequence number <rcv_nxt.
277 		 * Do not reschedule in the last case.
278 		 */
279 		if (paws_reject || th->ack)
280 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
281 
282 		return tcp_timewait_check_oow_rate_limit(
283 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
284 	}
285 
286 out_put:
287 	inet_twsk_put(tw);
288 	return TCP_TW_SUCCESS;
289 }
290 EXPORT_IPV6_MOD(tcp_timewait_state_process);
291 
292 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
293 {
294 #ifdef CONFIG_TCP_MD5SIG
295 	const struct tcp_sock *tp = tcp_sk(sk);
296 	struct tcp_md5sig_key *key;
297 
298 	/*
299 	 * The timewait bucket does not have the key DB from the
300 	 * sock structure. We just make a quick copy of the
301 	 * md5 key being used (if indeed we are using one)
302 	 * so the timewait ack generating code has the key.
303 	 */
304 	tcptw->tw_md5_key = NULL;
305 	if (!static_branch_unlikely(&tcp_md5_needed.key))
306 		return;
307 
308 	key = tp->af_specific->md5_lookup(sk, sk);
309 	if (key) {
310 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
311 		if (!tcptw->tw_md5_key)
312 			return;
313 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
314 			goto out_free;
315 		tcp_md5_add_sigpool();
316 	}
317 	return;
318 out_free:
319 	WARN_ON_ONCE(1);
320 	kfree(tcptw->tw_md5_key);
321 	tcptw->tw_md5_key = NULL;
322 #endif
323 }
324 
325 /*
326  * Move a socket to time-wait or dead fin-wait-2 state.
327  */
328 void tcp_time_wait(struct sock *sk, int state, int timeo)
329 {
330 	const struct inet_connection_sock *icsk = inet_csk(sk);
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	struct net *net = sock_net(sk);
333 	struct inet_timewait_sock *tw;
334 
335 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
336 
337 	if (tw) {
338 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
339 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
340 
341 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
342 		tw->tw_mark		= sk->sk_mark;
343 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
344 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
345 		/* refreshed when we enter true TIME-WAIT state */
346 		tw->tw_entry_stamp	= tcp_time_stamp_ms(tp);
347 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
348 		tcptw->tw_snd_nxt	= tp->snd_nxt;
349 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
350 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
351 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
352 		tcptw->tw_ts_offset	= tp->tsoffset;
353 		tw->tw_usec_ts		= tp->tcp_usec_ts;
354 		tcptw->tw_last_oow_ack_time = 0;
355 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
356 		tw->tw_txhash		= sk->sk_txhash;
357 		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
358 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
359 		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
360 #endif
361 #if IS_ENABLED(CONFIG_IPV6)
362 		if (tw->tw_family == PF_INET6) {
363 			struct ipv6_pinfo *np = inet6_sk(sk);
364 
365 			tw->tw_v6_daddr = sk->sk_v6_daddr;
366 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
367 			tw->tw_tclass = np->tclass;
368 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
369 			tw->tw_ipv6only = sk->sk_ipv6only;
370 		}
371 #endif
372 
373 		tcp_time_wait_init(sk, tcptw);
374 		tcp_ao_time_wait(tcptw, tp);
375 
376 		/* Get the TIME_WAIT timeout firing. */
377 		if (timeo < rto)
378 			timeo = rto;
379 
380 		if (state == TCP_TIME_WAIT)
381 			timeo = TCP_TIMEWAIT_LEN;
382 
383 		/* Linkage updates.
384 		 * Note that access to tw after this point is illegal.
385 		 */
386 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
387 	} else {
388 		/* Sorry, if we're out of memory, just CLOSE this
389 		 * socket up.  We've got bigger problems than
390 		 * non-graceful socket closings.
391 		 */
392 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
393 	}
394 
395 	tcp_update_metrics(sk);
396 	tcp_done(sk);
397 }
398 EXPORT_SYMBOL(tcp_time_wait);
399 
400 void tcp_twsk_destructor(struct sock *sk)
401 {
402 #ifdef CONFIG_TCP_MD5SIG
403 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
404 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
405 
406 		if (twsk->tw_md5_key) {
407 			kfree(twsk->tw_md5_key);
408 			static_branch_slow_dec_deferred(&tcp_md5_needed);
409 			tcp_md5_release_sigpool();
410 		}
411 	}
412 #endif
413 	tcp_ao_destroy_sock(sk, true);
414 	psp_twsk_assoc_free(inet_twsk(sk));
415 }
416 
417 void tcp_twsk_purge(struct list_head *net_exit_list)
418 {
419 	bool purged_once = false;
420 	struct net *net;
421 
422 	list_for_each_entry(net, net_exit_list, exit_list) {
423 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
424 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
425 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
426 		} else if (!purged_once) {
427 			inet_twsk_purge(&tcp_hashinfo);
428 			purged_once = true;
429 		}
430 	}
431 }
432 
433 /* Warning : This function is called without sk_listener being locked.
434  * Be sure to read socket fields once, as their value could change under us.
435  */
436 void tcp_openreq_init_rwin(struct request_sock *req,
437 			   const struct sock *sk_listener,
438 			   const struct dst_entry *dst)
439 {
440 	struct inet_request_sock *ireq = inet_rsk(req);
441 	const struct tcp_sock *tp = tcp_sk(sk_listener);
442 	int full_space = tcp_full_space(sk_listener);
443 	u32 window_clamp;
444 	__u8 rcv_wscale;
445 	u32 rcv_wnd;
446 	int mss;
447 
448 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
449 	window_clamp = READ_ONCE(tp->window_clamp);
450 	/* Set this up on the first call only */
451 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
452 
453 	/* limit the window selection if the user enforce a smaller rx buffer */
454 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
455 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
456 		req->rsk_window_clamp = full_space;
457 
458 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
459 	if (rcv_wnd == 0)
460 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
461 	else if (full_space < rcv_wnd * mss)
462 		full_space = rcv_wnd * mss;
463 
464 	/* tcp_full_space because it is guaranteed to be the first packet */
465 	tcp_select_initial_window(sk_listener, full_space,
466 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
467 		&req->rsk_rcv_wnd,
468 		&req->rsk_window_clamp,
469 		ireq->wscale_ok,
470 		&rcv_wscale,
471 		rcv_wnd);
472 	ireq->rcv_wscale = rcv_wscale;
473 }
474 
475 static void tcp_ecn_openreq_child(struct sock *sk,
476 				  const struct request_sock *req,
477 				  const struct sk_buff *skb)
478 {
479 	const struct tcp_request_sock *treq = tcp_rsk(req);
480 	struct tcp_sock *tp = tcp_sk(sk);
481 
482 	if (treq->accecn_ok) {
483 		tcp_ecn_mode_set(tp, TCP_ECN_MODE_ACCECN);
484 		tp->syn_ect_snt = treq->syn_ect_snt;
485 		tcp_accecn_third_ack(sk, skb, treq->syn_ect_snt);
486 		tp->saw_accecn_opt = treq->saw_accecn_opt;
487 		tp->prev_ecnfield = treq->syn_ect_rcv;
488 		tp->accecn_opt_demand = 1;
489 		tcp_ecn_received_counters_payload(sk, skb);
490 	} else {
491 		tcp_ecn_mode_set(tp, inet_rsk(req)->ecn_ok ?
492 				     TCP_ECN_MODE_RFC3168 :
493 				     TCP_ECN_DISABLED);
494 	}
495 }
496 
497 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
498 {
499 	struct inet_connection_sock *icsk = inet_csk(sk);
500 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
501 	bool ca_got_dst = false;
502 
503 	if (ca_key != TCP_CA_UNSPEC) {
504 		const struct tcp_congestion_ops *ca;
505 
506 		rcu_read_lock();
507 		ca = tcp_ca_find_key(ca_key);
508 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
509 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
510 			icsk->icsk_ca_ops = ca;
511 			ca_got_dst = true;
512 		}
513 		rcu_read_unlock();
514 	}
515 
516 	/* If no valid choice made yet, assign current system default ca. */
517 	if (!ca_got_dst &&
518 	    (!icsk->icsk_ca_setsockopt ||
519 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
520 		tcp_assign_congestion_control(sk);
521 
522 	tcp_set_ca_state(sk, TCP_CA_Open);
523 }
524 EXPORT_IPV6_MOD_GPL(tcp_ca_openreq_child);
525 
526 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
527 				    struct request_sock *req,
528 				    struct tcp_sock *newtp)
529 {
530 #if IS_ENABLED(CONFIG_SMC)
531 	struct inet_request_sock *ireq;
532 
533 	if (static_branch_unlikely(&tcp_have_smc)) {
534 		ireq = inet_rsk(req);
535 		if (oldtp->syn_smc && !ireq->smc_ok)
536 			newtp->syn_smc = 0;
537 	}
538 #endif
539 }
540 
541 /* This is not only more efficient than what we used to do, it eliminates
542  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
543  *
544  * Actually, we could lots of memory writes here. tp of listening
545  * socket contains all necessary default parameters.
546  */
547 struct sock *tcp_create_openreq_child(const struct sock *sk,
548 				      struct request_sock *req,
549 				      struct sk_buff *skb)
550 {
551 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
552 	const struct inet_request_sock *ireq = inet_rsk(req);
553 	struct tcp_request_sock *treq = tcp_rsk(req);
554 	struct inet_connection_sock *newicsk;
555 	const struct tcp_sock *oldtp;
556 	struct tcp_sock *newtp;
557 	u32 seq;
558 
559 	if (!newsk)
560 		return NULL;
561 
562 	newicsk = inet_csk(newsk);
563 	newtp = tcp_sk(newsk);
564 	oldtp = tcp_sk(sk);
565 
566 	smc_check_reset_syn_req(oldtp, req, newtp);
567 
568 	/* Now setup tcp_sock */
569 	newtp->pred_flags = 0;
570 
571 	seq = treq->rcv_isn + 1;
572 	newtp->rcv_wup = seq;
573 	WRITE_ONCE(newtp->copied_seq, seq);
574 	WRITE_ONCE(newtp->rcv_nxt, seq);
575 	newtp->segs_in = 1;
576 
577 	seq = treq->snt_isn + 1;
578 	newtp->snd_sml = newtp->snd_una = seq;
579 	WRITE_ONCE(newtp->snd_nxt, seq);
580 	newtp->snd_up = seq;
581 
582 	INIT_LIST_HEAD(&newtp->tsq_node);
583 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
584 
585 	tcp_init_wl(newtp, treq->rcv_isn);
586 
587 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
588 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
589 
590 	newtp->lsndtime = tcp_jiffies32;
591 	newsk->sk_txhash = READ_ONCE(treq->txhash);
592 	newtp->total_retrans = req->num_retrans;
593 
594 	tcp_init_xmit_timers(newsk);
595 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
596 
597 	if (sock_flag(newsk, SOCK_KEEPOPEN))
598 		tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp));
599 
600 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
601 	newtp->rx_opt.sack_ok = ireq->sack_ok;
602 	newtp->window_clamp = req->rsk_window_clamp;
603 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
604 	newtp->rcv_wnd = req->rsk_rcv_wnd;
605 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
606 	if (newtp->rx_opt.wscale_ok) {
607 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
608 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
609 	} else {
610 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
611 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
612 	}
613 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
614 	newtp->max_window = newtp->snd_wnd;
615 
616 	if (newtp->rx_opt.tstamp_ok) {
617 		newtp->tcp_usec_ts = treq->req_usec_ts;
618 		newtp->rx_opt.ts_recent = req->ts_recent;
619 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
620 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
621 	} else {
622 		newtp->tcp_usec_ts = 0;
623 		newtp->rx_opt.ts_recent_stamp = 0;
624 		newtp->tcp_header_len = sizeof(struct tcphdr);
625 	}
626 	if (req->num_timeout) {
627 		newtp->total_rto = req->num_timeout;
628 		newtp->undo_marker = treq->snt_isn;
629 		if (newtp->tcp_usec_ts) {
630 			newtp->retrans_stamp = treq->snt_synack;
631 			newtp->total_rto_time = (u32)(tcp_clock_us() -
632 						      newtp->retrans_stamp) / USEC_PER_MSEC;
633 		} else {
634 			newtp->retrans_stamp = div_u64(treq->snt_synack,
635 						       USEC_PER_SEC / TCP_TS_HZ);
636 			newtp->total_rto_time = tcp_clock_ms() -
637 						newtp->retrans_stamp;
638 		}
639 		newtp->total_rto_recoveries = 1;
640 	}
641 	newtp->tsoffset = treq->ts_off;
642 #ifdef CONFIG_TCP_MD5SIG
643 	newtp->md5sig_info = NULL;	/*XXX*/
644 #endif
645 #ifdef CONFIG_TCP_AO
646 	newtp->ao_info = NULL;
647 
648 	if (tcp_rsk_used_ao(req)) {
649 		struct tcp_ao_key *ao_key;
650 
651 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
652 		if (ao_key)
653 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
654 	}
655  #endif
656 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
657 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
658 	newtp->rx_opt.mss_clamp = req->mss;
659 	tcp_ecn_openreq_child(newsk, req, skb);
660 	newtp->fastopen_req = NULL;
661 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
662 
663 	newtp->bpf_chg_cc_inprogress = 0;
664 	tcp_bpf_clone(sk, newsk);
665 
666 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
667 
668 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
669 
670 	return newsk;
671 }
672 EXPORT_SYMBOL(tcp_create_openreq_child);
673 
674 /*
675  * Process an incoming packet for SYN_RECV sockets represented as a
676  * request_sock. Normally sk is the listener socket but for TFO it
677  * points to the child socket.
678  *
679  * XXX (TFO) - The current impl contains a special check for ack
680  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
681  *
682  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
683  *
684  * Note: If @fastopen is true, this can be called from process context.
685  *       Otherwise, this is from BH context.
686  */
687 
688 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
689 			   struct request_sock *req,
690 			   bool fastopen, bool *req_stolen,
691 			   enum skb_drop_reason *drop_reason)
692 {
693 	struct tcp_options_received tmp_opt;
694 	struct sock *child;
695 	const struct tcphdr *th = tcp_hdr(skb);
696 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
697 	bool tsecr_reject = false;
698 	bool paws_reject = false;
699 	bool own_req;
700 
701 	tmp_opt.saw_tstamp = 0;
702 	tmp_opt.accecn = 0;
703 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
704 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
705 
706 		if (tmp_opt.saw_tstamp) {
707 			tmp_opt.ts_recent = req->ts_recent;
708 			if (tmp_opt.rcv_tsecr) {
709 				if (inet_rsk(req)->tstamp_ok && !fastopen)
710 					tsecr_reject = !between(tmp_opt.rcv_tsecr,
711 							tcp_rsk(req)->snt_tsval_first,
712 							READ_ONCE(tcp_rsk(req)->snt_tsval_last));
713 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
714 			}
715 			/* We do not store true stamp, but it is not required,
716 			 * it can be estimated (approximately)
717 			 * from another data.
718 			 */
719 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
720 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
721 		}
722 	}
723 
724 	/* Check for pure retransmitted SYN. */
725 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
726 	    flg == TCP_FLAG_SYN &&
727 	    !paws_reject) {
728 		/*
729 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
730 		 * this case on figure 6 and figure 8, but formal
731 		 * protocol description says NOTHING.
732 		 * To be more exact, it says that we should send ACK,
733 		 * because this segment (at least, if it has no data)
734 		 * is out of window.
735 		 *
736 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
737 		 *  describe SYN-RECV state. All the description
738 		 *  is wrong, we cannot believe to it and should
739 		 *  rely only on common sense and implementation
740 		 *  experience.
741 		 *
742 		 * Enforce "SYN-ACK" according to figure 8, figure 6
743 		 * of RFC793, fixed by RFC1122.
744 		 *
745 		 * Note that even if there is new data in the SYN packet
746 		 * they will be thrown away too.
747 		 *
748 		 * Reset timer after retransmitting SYNACK, similar to
749 		 * the idea of fast retransmit in recovery.
750 		 */
751 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
752 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
753 					  &tcp_rsk(req)->last_oow_ack_time) &&
754 
755 		    !tcp_rtx_synack(sk, req)) {
756 			unsigned long expires = jiffies;
757 
758 			expires += reqsk_timeout(req, TCP_RTO_MAX);
759 			if (!fastopen)
760 				mod_timer_pending(&req->rsk_timer, expires);
761 			else
762 				req->rsk_timer.expires = expires;
763 		}
764 		return NULL;
765 	}
766 
767 	/* Further reproduces section "SEGMENT ARRIVES"
768 	   for state SYN-RECEIVED of RFC793.
769 	   It is broken, however, it does not work only
770 	   when SYNs are crossed.
771 
772 	   You would think that SYN crossing is impossible here, since
773 	   we should have a SYN_SENT socket (from connect()) on our end,
774 	   but this is not true if the crossed SYNs were sent to both
775 	   ends by a malicious third party.  We must defend against this,
776 	   and to do that we first verify the ACK (as per RFC793, page
777 	   36) and reset if it is invalid.  Is this a true full defense?
778 	   To convince ourselves, let us consider a way in which the ACK
779 	   test can still pass in this 'malicious crossed SYNs' case.
780 	   Malicious sender sends identical SYNs (and thus identical sequence
781 	   numbers) to both A and B:
782 
783 		A: gets SYN, seq=7
784 		B: gets SYN, seq=7
785 
786 	   By our good fortune, both A and B select the same initial
787 	   send sequence number of seven :-)
788 
789 		A: sends SYN|ACK, seq=7, ack_seq=8
790 		B: sends SYN|ACK, seq=7, ack_seq=8
791 
792 	   So we are now A eating this SYN|ACK, ACK test passes.  So
793 	   does sequence test, SYN is truncated, and thus we consider
794 	   it a bare ACK.
795 
796 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
797 	   bare ACK.  Otherwise, we create an established connection.  Both
798 	   ends (listening sockets) accept the new incoming connection and try
799 	   to talk to each other. 8-)
800 
801 	   Note: This case is both harmless, and rare.  Possibility is about the
802 	   same as us discovering intelligent life on another plant tomorrow.
803 
804 	   But generally, we should (RFC lies!) to accept ACK
805 	   from SYNACK both here and in tcp_rcv_state_process().
806 	   tcp_rcv_state_process() does not, hence, we do not too.
807 
808 	   Note that the case is absolutely generic:
809 	   we cannot optimize anything here without
810 	   violating protocol. All the checks must be made
811 	   before attempt to create socket.
812 	 */
813 
814 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
815 	 *                  and the incoming segment acknowledges something not yet
816 	 *                  sent (the segment carries an unacceptable ACK) ...
817 	 *                  a reset is sent."
818 	 *
819 	 * Invalid ACK: reset will be sent by listening socket.
820 	 * Note that the ACK validity check for a Fast Open socket is done
821 	 * elsewhere and is checked directly against the child socket rather
822 	 * than req because user data may have been sent out.
823 	 */
824 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
825 	    (TCP_SKB_CB(skb)->ack_seq !=
826 	     tcp_rsk(req)->snt_isn + 1))
827 		return sk;
828 
829 	/* RFC793: "first check sequence number". */
830 
831 	if (paws_reject || tsecr_reject ||
832 	    !tcp_in_window(TCP_SKB_CB(skb)->seq,
833 			   TCP_SKB_CB(skb)->end_seq,
834 			   tcp_rsk(req)->rcv_nxt,
835 			   tcp_rsk(req)->rcv_nxt +
836 			   tcp_synack_window(req))) {
837 		/* Out of window: send ACK and drop. */
838 		if (!(flg & TCP_FLAG_RST) &&
839 		    !tcp_oow_rate_limited(sock_net(sk), skb,
840 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
841 					  &tcp_rsk(req)->last_oow_ack_time))
842 			req->rsk_ops->send_ack(sk, skb, req);
843 		if (paws_reject) {
844 			SKB_DR_SET(*drop_reason, TCP_RFC7323_PAWS);
845 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
846 		} else if (tsecr_reject) {
847 			SKB_DR_SET(*drop_reason, TCP_RFC7323_TSECR);
848 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TSECRREJECTED);
849 		} else {
850 			SKB_DR_SET(*drop_reason, TCP_OVERWINDOW);
851 		}
852 		return NULL;
853 	}
854 
855 	/* In sequence, PAWS is OK. */
856 
857 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
858 		/* Truncate SYN, it is out of window starting
859 		   at tcp_rsk(req)->rcv_isn + 1. */
860 		flg &= ~TCP_FLAG_SYN;
861 	}
862 
863 	/* RFC793: "second check the RST bit" and
864 	 *	   "fourth, check the SYN bit"
865 	 */
866 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
867 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
868 		goto embryonic_reset;
869 	}
870 
871 	/* ACK sequence verified above, just make sure ACK is
872 	 * set.  If ACK not set, just silently drop the packet.
873 	 *
874 	 * XXX (TFO) - if we ever allow "data after SYN", the
875 	 * following check needs to be removed.
876 	 */
877 	if (!(flg & TCP_FLAG_ACK))
878 		return NULL;
879 
880 	if (tcp_rsk(req)->accecn_ok && tmp_opt.accecn &&
881 	    tcp_rsk(req)->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) {
882 		u8 saw_opt = tcp_accecn_option_init(skb, tmp_opt.accecn);
883 
884 		tcp_rsk(req)->saw_accecn_opt = saw_opt;
885 		if (tcp_rsk(req)->saw_accecn_opt == TCP_ACCECN_OPT_FAIL_SEEN) {
886 			u8 fail_mode = TCP_ACCECN_OPT_FAIL_RECV;
887 
888 			tcp_rsk(req)->accecn_fail_mode |= fail_mode;
889 		}
890 	}
891 
892 	/* For Fast Open no more processing is needed (sk is the
893 	 * child socket).
894 	 */
895 	if (fastopen)
896 		return sk;
897 
898 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
899 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
900 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
901 		inet_rsk(req)->acked = 1;
902 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
903 		return NULL;
904 	}
905 
906 	/* OK, ACK is valid, create big socket and
907 	 * feed this segment to it. It will repeat all
908 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
909 	 * ESTABLISHED STATE. If it will be dropped after
910 	 * socket is created, wait for troubles.
911 	 */
912 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
913 							 req, &own_req);
914 	if (!child)
915 		goto listen_overflow;
916 
917 	if (own_req && tmp_opt.saw_tstamp &&
918 	    !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
919 		tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
920 
921 	if (own_req && rsk_drop_req(req)) {
922 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
923 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
924 		return child;
925 	}
926 
927 	sock_rps_save_rxhash(child, skb);
928 	tcp_synack_rtt_meas(child, req);
929 	*req_stolen = !own_req;
930 	return inet_csk_complete_hashdance(sk, child, req, own_req);
931 
932 listen_overflow:
933 	SKB_DR_SET(*drop_reason, TCP_LISTEN_OVERFLOW);
934 	if (sk != req->rsk_listener)
935 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
936 
937 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
938 		inet_rsk(req)->acked = 1;
939 		return NULL;
940 	}
941 
942 embryonic_reset:
943 	if (!(flg & TCP_FLAG_RST)) {
944 		/* Received a bad SYN pkt - for TFO We try not to reset
945 		 * the local connection unless it's really necessary to
946 		 * avoid becoming vulnerable to outside attack aiming at
947 		 * resetting legit local connections.
948 		 */
949 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
950 	} else if (fastopen) { /* received a valid RST pkt */
951 		reqsk_fastopen_remove(sk, req, true);
952 		tcp_reset(sk, skb);
953 	}
954 	if (!fastopen) {
955 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
956 
957 		if (unlinked)
958 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
959 		*req_stolen = !unlinked;
960 	}
961 	return NULL;
962 }
963 EXPORT_IPV6_MOD(tcp_check_req);
964 
965 /*
966  * Queue segment on the new socket if the new socket is active,
967  * otherwise we just shortcircuit this and continue with
968  * the new socket.
969  *
970  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
971  * when entering. But other states are possible due to a race condition
972  * where after __inet_lookup_established() fails but before the listener
973  * locked is obtained, other packets cause the same connection to
974  * be created.
975  */
976 
977 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
978 				       struct sk_buff *skb)
979 	__releases(&((child)->sk_lock.slock))
980 {
981 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
982 	int state = child->sk_state;
983 
984 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
985 	sk_mark_napi_id_set(child, skb);
986 
987 	tcp_segs_in(tcp_sk(child), skb);
988 	if (!sock_owned_by_user(child)) {
989 		reason = tcp_rcv_state_process(child, skb);
990 		/* Wakeup parent, send SIGIO */
991 		if (state == TCP_SYN_RECV && child->sk_state != state)
992 			parent->sk_data_ready(parent);
993 	} else {
994 		/* Alas, it is possible again, because we do lookup
995 		 * in main socket hash table and lock on listening
996 		 * socket does not protect us more.
997 		 */
998 		__sk_add_backlog(child, skb);
999 	}
1000 
1001 	bh_unlock_sock(child);
1002 	sock_put(child);
1003 	return reason;
1004 }
1005 EXPORT_IPV6_MOD(tcp_child_process);
1006