xref: /linux/drivers/staging/media/atomisp/pci/sh_css_param_shading.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Support for Intel Camera Imaging ISP subsystem.
4  * Copyright (c) 2015, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/math.h>
17 #include <linux/slab.h>
18 
19 #include <math_support.h>
20 #include "sh_css_param_shading.h"
21 #include "ia_css_shading.h"
22 #include "assert_support.h"
23 #include "sh_css_defs.h"
24 #include "sh_css_internal.h"
25 #include "ia_css_debug.h"
26 #include "ia_css_pipe_binarydesc.h"
27 
28 #include "sh_css_hrt.h"
29 
30 #include "platform_support.h"
31 
32 /* Bilinear interpolation on shading tables:
33  * For each target point T, we calculate the 4 surrounding source points:
34  * ul (upper left), ur (upper right), ll (lower left) and lr (lower right).
35  * We then calculate the distances from the T to the source points: x0, x1,
36  * y0 and y1.
37  * We then calculate the value of T:
38  *   dx0*dy0*Slr + dx0*dy1*Sur + dx1*dy0*Sll + dx1*dy1*Sul.
39  * We choose a grid size of 1x1 which means:
40  *   dx1 = 1-dx0
41  *   dy1 = 1-dy0
42  *
43  *   Sul dx0         dx1      Sur
44  *    .<----->|<------------->.
45  *    ^
46  * dy0|
47  *    v        T
48  *    -        .
49  *    ^
50  *    |
51  * dy1|
52  *    v
53  *    .                        .
54  *   Sll                      Slr
55  *
56  * Padding:
57  * The area that the ISP operates on can include padding both on the left
58  * and the right. We need to padd the shading table such that the shading
59  * values end up on the correct pixel values. This means we must padd the
60  * shading table to match the ISP padding.
61  * We can have 5 cases:
62  * 1. All 4 points fall in the left padding.
63  * 2. The left 2 points fall in the left padding.
64  * 3. All 4 points fall in the cropped (target) region.
65  * 4. The right 2 points fall in the right padding.
66  * 5. All 4 points fall in the right padding.
67  * Cases 1 and 5 are easy to handle: we simply use the
68  * value 1 in the shading table.
69  * Cases 2 and 4 require interpolation that takes into
70  * account how far into the padding area the pixels
71  * fall. We extrapolate the shading table into the
72  * padded area and then interpolate.
73  */
74 static void
crop_and_interpolate(unsigned int cropped_width,unsigned int cropped_height,unsigned int left_padding,int right_padding,int top_padding,const struct ia_css_shading_table * in_table,struct ia_css_shading_table * out_table,enum ia_css_sc_color color)75 crop_and_interpolate(unsigned int cropped_width,
76 		     unsigned int cropped_height,
77 		     unsigned int left_padding,
78 		     int right_padding,
79 		     int top_padding,
80 		     const struct ia_css_shading_table *in_table,
81 		     struct ia_css_shading_table *out_table,
82 		     enum ia_css_sc_color color)
83 {
84 	unsigned int i, j,
85 		 sensor_width,
86 		 sensor_height,
87 		 table_width,
88 		 table_height,
89 		 table_cell_h,
90 		 out_cell_size,
91 		 in_cell_size,
92 		 out_start_row,
93 		 padded_width;
94 	int out_start_col, /* can be negative to indicate padded space */
95 	    table_cell_w;
96 	unsigned short *in_ptr,
97 		 *out_ptr;
98 
99 	assert(in_table);
100 	assert(out_table);
101 
102 	sensor_width  = in_table->sensor_width;
103 	sensor_height = in_table->sensor_height;
104 	table_width   = in_table->width;
105 	table_height  = in_table->height;
106 	in_ptr = in_table->data[color];
107 	out_ptr = out_table->data[color];
108 
109 	padded_width = cropped_width + left_padding + right_padding;
110 	out_cell_size = CEIL_DIV(padded_width, out_table->width - 1);
111 	in_cell_size  = CEIL_DIV(sensor_width, table_width - 1);
112 
113 	out_start_col = ((int)sensor_width - (int)cropped_width) / 2 - left_padding;
114 	out_start_row = ((int)sensor_height - (int)cropped_height) / 2 - top_padding;
115 	table_cell_w = (int)((table_width - 1) * in_cell_size);
116 	table_cell_h = (table_height - 1) * in_cell_size;
117 
118 	for (i = 0; i < out_table->height; i++) {
119 		int ty, src_y0, src_y1;
120 		unsigned int sy0, sy1, dy0, dy1, divy;
121 
122 		/*
123 		 * calculate target point and make sure it falls within
124 		 * the table
125 		 */
126 		ty = out_start_row + i * out_cell_size;
127 
128 		/* calculate closest source points in shading table and
129 		   make sure they fall within the table */
130 		src_y0 = ty / (int)in_cell_size;
131 		if (in_cell_size < out_cell_size)
132 			src_y1 = (ty + out_cell_size) / in_cell_size;
133 		else
134 			src_y1 = src_y0 + 1;
135 		src_y0 = clamp(src_y0, 0, (int)table_height - 1);
136 		src_y1 = clamp(src_y1, 0, (int)table_height - 1);
137 		ty = min(clamp(ty, 0, (int)sensor_height - 1),
138 			 (int)table_cell_h);
139 
140 		/* calculate closest source points for distance computation */
141 		sy0 = min(src_y0 * in_cell_size, sensor_height - 1);
142 		sy1 = min(src_y1 * in_cell_size, sensor_height - 1);
143 		/* calculate distance between source and target pixels */
144 		dy0 = ty - sy0;
145 		dy1 = sy1 - ty;
146 		divy = sy1 - sy0;
147 		if (divy == 0) {
148 			dy0 = 1;
149 			divy = 1;
150 		}
151 
152 		for (j = 0; j < out_table->width; j++, out_ptr++) {
153 			int tx, src_x0, src_x1;
154 			unsigned int sx0, sx1, dx0, dx1, divx;
155 			unsigned short s_ul, s_ur, s_ll, s_lr;
156 
157 			/* calculate target point */
158 			tx = out_start_col + j * out_cell_size;
159 			/* calculate closest source points. */
160 			src_x0 = tx / (int)in_cell_size;
161 			if (in_cell_size < out_cell_size) {
162 				src_x1 = (tx + out_cell_size) /
163 					 (int)in_cell_size;
164 			} else {
165 				src_x1 = src_x0 + 1;
166 			}
167 			/* if src points fall in padding, select closest ones.*/
168 			src_x0 = clamp(src_x0, 0, (int)table_width - 1);
169 			src_x1 = clamp(src_x1, 0, (int)table_width - 1);
170 			tx = min(clamp(tx, 0, (int)sensor_width - 1),
171 				 (int)table_cell_w);
172 			/*
173 			 * calculate closest source points for distance
174 			 * computation
175 			 */
176 			sx0 = min(src_x0 * in_cell_size, sensor_width - 1);
177 			sx1 = min(src_x1 * in_cell_size, sensor_width - 1);
178 			/*
179 			 * calculate distances between source and target
180 			 * pixels
181 			 */
182 			dx0 = tx - sx0;
183 			dx1 = sx1 - tx;
184 			divx = sx1 - sx0;
185 			/* if we're at the edge, we just use the closest
186 			 * point still in the grid. We make up for the divider
187 			 * in this case by setting the distance to
188 			 * out_cell_size, since it's actually 0.
189 			 */
190 			if (divx == 0) {
191 				dx0 = 1;
192 				divx = 1;
193 			}
194 
195 			/* get source pixel values */
196 			s_ul = in_ptr[(table_width * src_y0) + src_x0];
197 			s_ur = in_ptr[(table_width * src_y0) + src_x1];
198 			s_ll = in_ptr[(table_width * src_y1) + src_x0];
199 			s_lr = in_ptr[(table_width * src_y1) + src_x1];
200 
201 			*out_ptr = (unsigned short)((dx0 * dy0 * s_lr + dx0 * dy1 * s_ur + dx1 * dy0 *
202 						     s_ll + dx1 * dy1 * s_ul) /
203 						    (divx * divy));
204 		}
205 	}
206 }
207 
208 void
sh_css_params_shading_id_table_generate(struct ia_css_shading_table ** target_table,unsigned int table_width,unsigned int table_height)209 sh_css_params_shading_id_table_generate(
210     struct ia_css_shading_table **target_table,
211     unsigned int table_width,
212     unsigned int table_height)
213 {
214 	/* initialize table with ones, shift becomes zero */
215 	unsigned int i, j;
216 	struct ia_css_shading_table *result;
217 
218 	assert(target_table);
219 
220 	result = ia_css_shading_table_alloc(table_width, table_height);
221 	if (!result) {
222 		*target_table = NULL;
223 		return;
224 	}
225 
226 	for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
227 		for (j = 0; j < table_height * table_width; j++)
228 			result->data[i][j] = 1;
229 	}
230 	result->fraction_bits = 0;
231 	*target_table = result;
232 }
233 
234 void
prepare_shading_table(const struct ia_css_shading_table * in_table,unsigned int sensor_binning,struct ia_css_shading_table ** target_table,const struct ia_css_binary * binary,unsigned int bds_factor)235 prepare_shading_table(const struct ia_css_shading_table *in_table,
236 		      unsigned int sensor_binning,
237 		      struct ia_css_shading_table **target_table,
238 		      const struct ia_css_binary *binary,
239 		      unsigned int bds_factor)
240 {
241 	unsigned int input_width, input_height, table_width, table_height, i;
242 	unsigned int left_padding, top_padding, left_cropping;
243 	struct ia_css_shading_table *result;
244 	struct u32_fract bds;
245 	int right_padding;
246 
247 	assert(target_table);
248 	assert(binary);
249 
250 	if (!in_table) {
251 		sh_css_params_shading_id_table_generate(target_table,
252 							binary->sctbl_width_per_color,
253 							binary->sctbl_height);
254 		return;
255 	}
256 
257 	/*
258 	 * We use the ISP input resolution for the shading table because
259 	 * shading correction is performed in the bayer domain (before bayer
260 	 * down scaling).
261 	 */
262 	input_height  = binary->in_frame_info.res.height;
263 	input_width   = binary->in_frame_info.res.width;
264 	left_padding  = binary->left_padding;
265 	left_cropping = (binary->info->sp.pipeline.left_cropping == 0) ?
266 			binary->dvs_envelope.width : 2 * ISP_VEC_NELEMS;
267 
268 	sh_css_bds_factor_get_fract(bds_factor, &bds);
269 
270 	left_padding  = (left_padding + binary->info->sp.pipeline.left_cropping) *
271 			bds.numerator / bds.denominator -
272 			binary->info->sp.pipeline.left_cropping;
273 	right_padding = (binary->internal_frame_info.res.width -
274 			 binary->effective_in_frame_res.width * bds.denominator /
275 			 bds.numerator - left_cropping) * bds.numerator / bds.denominator;
276 	top_padding = binary->info->sp.pipeline.top_cropping * bds.numerator /
277 		      bds.denominator -
278 		      binary->info->sp.pipeline.top_cropping;
279 
280 	/*
281 	 * We take into account the binning done by the sensor. We do this
282 	 * by cropping the non-binned part of the shading table and then
283 	 * increasing the size of a grid cell with this same binning factor.
284 	 */
285 	input_width  <<= sensor_binning;
286 	input_height <<= sensor_binning;
287 	/*
288 	 * We also scale the padding by the same binning factor. This will
289 	 * make it much easier later on to calculate the padding of the
290 	 * shading table.
291 	 */
292 	left_padding  <<= sensor_binning;
293 	right_padding <<= sensor_binning;
294 	top_padding   <<= sensor_binning;
295 
296 	/*
297 	 * during simulation, the used resolution can exceed the sensor
298 	 * resolution, so we clip it.
299 	 */
300 	input_width  = min(input_width,  in_table->sensor_width);
301 	input_height = min(input_height, in_table->sensor_height);
302 
303 	/* This prepare_shading_table() function is called only in legacy API (not in new API).
304 	   Then, the legacy shading table width and height should be used. */
305 	table_width  = binary->sctbl_width_per_color;
306 	table_height = binary->sctbl_height;
307 
308 	result = ia_css_shading_table_alloc(table_width, table_height);
309 	if (!result) {
310 		*target_table = NULL;
311 		return;
312 	}
313 	result->sensor_width  = in_table->sensor_width;
314 	result->sensor_height = in_table->sensor_height;
315 	result->fraction_bits = in_table->fraction_bits;
316 
317 	/*
318 	 * now we crop the original shading table and then interpolate to the
319 	 * requested resolution and decimation factor.
320 	 */
321 	for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
322 		crop_and_interpolate(input_width, input_height,
323 				     left_padding, right_padding, top_padding,
324 				     in_table,
325 				     result, i);
326 	}
327 	*target_table = result;
328 }
329 
330 struct ia_css_shading_table *
ia_css_shading_table_alloc(unsigned int width,unsigned int height)331 ia_css_shading_table_alloc(
332     unsigned int width,
333     unsigned int height)
334 {
335 	unsigned int i;
336 	struct ia_css_shading_table *me;
337 
338 	IA_CSS_ENTER("");
339 
340 	me = kmalloc(sizeof(*me), GFP_KERNEL);
341 	if (!me)
342 		return me;
343 
344 	me->width         = width;
345 	me->height        = height;
346 	me->sensor_width  = 0;
347 	me->sensor_height = 0;
348 	me->fraction_bits = 0;
349 	for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
350 		me->data[i] =
351 		    kvmalloc(width * height * sizeof(*me->data[0]),
352 			     GFP_KERNEL);
353 		if (!me->data[i]) {
354 			unsigned int j;
355 
356 			for (j = 0; j < i; j++) {
357 				kvfree(me->data[j]);
358 				me->data[j] = NULL;
359 			}
360 			kfree(me);
361 			return NULL;
362 		}
363 	}
364 
365 	IA_CSS_LEAVE("");
366 	return me;
367 }
368 
369 void
ia_css_shading_table_free(struct ia_css_shading_table * table)370 ia_css_shading_table_free(struct ia_css_shading_table *table)
371 {
372 	unsigned int i;
373 
374 	if (!table)
375 		return;
376 
377 	/*
378 	 * We only output logging when the table is not NULL, otherwise
379 	 * logs will give the impression that a table was freed.
380 	 */
381 	IA_CSS_ENTER("");
382 
383 	for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
384 		if (table->data[i]) {
385 			kvfree(table->data[i]);
386 			table->data[i] = NULL;
387 		}
388 	}
389 	kfree(table);
390 
391 	IA_CSS_LEAVE("");
392 }
393