1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 *
29 * Copyright (c) 2004 Christian Limpach.
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. This section intentionally left blank.
41 * 4. The name of the author may not be used to endorse or promote products
42 * derived from this software without specific prior written permission.
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
45 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
46 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
47 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
48 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
49 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
53 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55 /*
56 * Section 3 of the above license was updated in response to bug 6379571.
57 */
58
59 /*
60 * xnf.c - GLDv3 network driver for domU.
61 */
62
63 /*
64 * This driver uses four per-instance locks:
65 *
66 * xnf_gref_lock:
67 *
68 * Protects access to the grant reference list stored in
69 * xnf_gref_head. Grant references should be acquired and released
70 * using gref_get() and gref_put() respectively.
71 *
72 * xnf_schedlock:
73 *
74 * Protects:
75 * xnf_need_sched - used to record that a previous transmit attempt
76 * failed (and consequently it will be necessary to call
77 * mac_tx_update() when transmit resources are available).
78 * xnf_pending_multicast - the number of multicast requests that
79 * have been submitted to the backend for which we have not
80 * processed responses.
81 *
82 * xnf_txlock:
83 *
84 * Protects the transmit ring (xnf_tx_ring) and associated
85 * structures (notably xnf_tx_pkt_id and xnf_tx_pkt_id_head).
86 *
87 * xnf_rxlock:
88 *
89 * Protects the receive ring (xnf_rx_ring) and associated
90 * structures (notably xnf_rx_pkt_info).
91 *
92 * If driver-global state that affects both the transmit and receive
93 * rings is manipulated, both xnf_txlock and xnf_rxlock should be
94 * held, in that order.
95 *
96 * xnf_schedlock is acquired both whilst holding xnf_txlock and
97 * without. It should always be acquired after xnf_txlock if both are
98 * held.
99 *
100 * Notes:
101 * - atomic_add_64() is used to manipulate counters where we require
102 * accuracy. For counters intended only for observation by humans,
103 * post increment/decrement are used instead.
104 */
105
106 #include <sys/types.h>
107 #include <sys/errno.h>
108 #include <sys/param.h>
109 #include <sys/sysmacros.h>
110 #include <sys/systm.h>
111 #include <sys/stream.h>
112 #include <sys/strsubr.h>
113 #include <sys/strsun.h>
114 #include <sys/conf.h>
115 #include <sys/ddi.h>
116 #include <sys/devops.h>
117 #include <sys/sunddi.h>
118 #include <sys/sunndi.h>
119 #include <sys/dlpi.h>
120 #include <sys/ethernet.h>
121 #include <sys/strsun.h>
122 #include <sys/pattr.h>
123 #include <inet/ip.h>
124 #include <inet/ip_impl.h>
125 #include <sys/gld.h>
126 #include <sys/modctl.h>
127 #include <sys/mac_provider.h>
128 #include <sys/mac_ether.h>
129 #include <sys/bootinfo.h>
130 #include <sys/mach_mmu.h>
131 #ifdef XPV_HVM_DRIVER
132 #include <sys/xpv_support.h>
133 #include <sys/hypervisor.h>
134 #else
135 #include <sys/hypervisor.h>
136 #include <sys/evtchn_impl.h>
137 #include <sys/balloon_impl.h>
138 #endif
139 #include <xen/public/io/netif.h>
140 #include <sys/gnttab.h>
141 #include <xen/sys/xendev.h>
142 #include <sys/sdt.h>
143 #include <sys/note.h>
144 #include <sys/debug.h>
145
146 #include <io/xnf.h>
147
148 #if defined(DEBUG) || defined(__lint)
149 #define XNF_DEBUG
150 #endif
151
152 #ifdef XNF_DEBUG
153 int xnf_debug = 0;
154 xnf_t *xnf_debug_instance = NULL;
155 #endif
156
157 /*
158 * On a 32 bit PAE system physical and machine addresses are larger
159 * than 32 bits. ddi_btop() on such systems take an unsigned long
160 * argument, and so addresses above 4G are truncated before ddi_btop()
161 * gets to see them. To avoid this, code the shift operation here.
162 */
163 #define xnf_btop(addr) ((addr) >> PAGESHIFT)
164
165 unsigned int xnf_max_tx_frags = 1;
166
167 /*
168 * Should we use the multicast control feature if the backend provides
169 * it?
170 */
171 boolean_t xnf_multicast_control = B_TRUE;
172
173 /*
174 * Received packets below this size are copied to a new streams buffer
175 * rather than being desballoc'ed.
176 *
177 * This value is chosen to accommodate traffic where there are a large
178 * number of small packets. For data showing a typical distribution,
179 * see:
180 *
181 * Sinha07a:
182 * Rishi Sinha, Christos Papadopoulos, and John
183 * Heidemann. Internet Packet Size Distributions: Some
184 * Observations. Technical Report ISI-TR-2007-643,
185 * USC/Information Sciences Institute, May, 2007. Orignally
186 * released October 2005 as web page
187 * http://netweb.usc.edu/~sinha/pkt-sizes/.
188 * <http://www.isi.edu/~johnh/PAPERS/Sinha07a.html>.
189 */
190 size_t xnf_rx_copy_limit = 64;
191
192 #define INVALID_GRANT_HANDLE ((grant_handle_t)-1)
193 #define INVALID_GRANT_REF ((grant_ref_t)-1)
194 #define INVALID_TX_ID ((uint16_t)-1)
195
196 #define TX_ID_TO_TXID(p, id) (&((p)->xnf_tx_pkt_id[(id)]))
197 #define TX_ID_VALID(i) (((i) != INVALID_TX_ID) && ((i) < NET_TX_RING_SIZE))
198
199 /* Required system entry points */
200 static int xnf_attach(dev_info_t *, ddi_attach_cmd_t);
201 static int xnf_detach(dev_info_t *, ddi_detach_cmd_t);
202
203 /* Required driver entry points for Nemo */
204 static int xnf_start(void *);
205 static void xnf_stop(void *);
206 static int xnf_set_mac_addr(void *, const uint8_t *);
207 static int xnf_set_multicast(void *, boolean_t, const uint8_t *);
208 static int xnf_set_promiscuous(void *, boolean_t);
209 static mblk_t *xnf_send(void *, mblk_t *);
210 static uint_t xnf_intr(caddr_t);
211 static int xnf_stat(void *, uint_t, uint64_t *);
212 static boolean_t xnf_getcapab(void *, mac_capab_t, void *);
213
214 /* Driver private functions */
215 static int xnf_alloc_dma_resources(xnf_t *);
216 static void xnf_release_dma_resources(xnf_t *);
217 static void xnf_release_mblks(xnf_t *);
218
219 static int xnf_buf_constructor(void *, void *, int);
220 static void xnf_buf_destructor(void *, void *);
221 static xnf_buf_t *xnf_buf_get(xnf_t *, int, boolean_t);
222 #pragma inline(xnf_buf_get)
223 static void xnf_buf_put(xnf_t *, xnf_buf_t *, boolean_t);
224 #pragma inline(xnf_buf_put)
225 static void xnf_buf_refresh(xnf_buf_t *);
226 #pragma inline(xnf_buf_refresh)
227 static void xnf_buf_recycle(xnf_buf_t *);
228
229 static int xnf_tx_buf_constructor(void *, void *, int);
230 static void xnf_tx_buf_destructor(void *, void *);
231
232 static grant_ref_t gref_get(xnf_t *);
233 #pragma inline(gref_get)
234 static void gref_put(xnf_t *, grant_ref_t);
235 #pragma inline(gref_put)
236
237 static xnf_txid_t *txid_get(xnf_t *);
238 #pragma inline(txid_get)
239 static void txid_put(xnf_t *, xnf_txid_t *);
240 #pragma inline(txid_put)
241
242 void xnf_send_driver_status(int, int);
243 static void xnf_rxbuf_hang(xnf_t *, xnf_buf_t *);
244 static int xnf_tx_clean_ring(xnf_t *);
245 static void oe_state_change(dev_info_t *, ddi_eventcookie_t,
246 void *, void *);
247 static boolean_t xnf_kstat_init(xnf_t *);
248 static void xnf_rx_collect(xnf_t *);
249
250 static mac_callbacks_t xnf_callbacks = {
251 MC_GETCAPAB,
252 xnf_stat,
253 xnf_start,
254 xnf_stop,
255 xnf_set_promiscuous,
256 xnf_set_multicast,
257 xnf_set_mac_addr,
258 xnf_send,
259 NULL,
260 NULL,
261 xnf_getcapab
262 };
263
264 /* DMA attributes for network ring buffer */
265 static ddi_dma_attr_t ringbuf_dma_attr = {
266 DMA_ATTR_V0, /* version of this structure */
267 0, /* lowest usable address */
268 0xffffffffffffffffULL, /* highest usable address */
269 0x7fffffff, /* maximum DMAable byte count */
270 MMU_PAGESIZE, /* alignment in bytes */
271 0x7ff, /* bitmap of burst sizes */
272 1, /* minimum transfer */
273 0xffffffffU, /* maximum transfer */
274 0xffffffffffffffffULL, /* maximum segment length */
275 1, /* maximum number of segments */
276 1, /* granularity */
277 0, /* flags (reserved) */
278 };
279
280 /* DMA attributes for transmit and receive data */
281 static ddi_dma_attr_t buf_dma_attr = {
282 DMA_ATTR_V0, /* version of this structure */
283 0, /* lowest usable address */
284 0xffffffffffffffffULL, /* highest usable address */
285 0x7fffffff, /* maximum DMAable byte count */
286 MMU_PAGESIZE, /* alignment in bytes */
287 0x7ff, /* bitmap of burst sizes */
288 1, /* minimum transfer */
289 0xffffffffU, /* maximum transfer */
290 0xffffffffffffffffULL, /* maximum segment length */
291 1, /* maximum number of segments */
292 1, /* granularity */
293 0, /* flags (reserved) */
294 };
295
296 /* DMA access attributes for registers and descriptors */
297 static ddi_device_acc_attr_t accattr = {
298 DDI_DEVICE_ATTR_V0,
299 DDI_STRUCTURE_LE_ACC, /* This is a little-endian device */
300 DDI_STRICTORDER_ACC
301 };
302
303 /* DMA access attributes for data: NOT to be byte swapped. */
304 static ddi_device_acc_attr_t data_accattr = {
305 DDI_DEVICE_ATTR_V0,
306 DDI_NEVERSWAP_ACC,
307 DDI_STRICTORDER_ACC
308 };
309
310 DDI_DEFINE_STREAM_OPS(xnf_dev_ops, nulldev, nulldev, xnf_attach, xnf_detach,
311 nodev, NULL, D_MP, NULL, ddi_quiesce_not_supported);
312
313 static struct modldrv xnf_modldrv = {
314 &mod_driverops,
315 "Virtual Ethernet driver",
316 &xnf_dev_ops
317 };
318
319 static struct modlinkage modlinkage = {
320 MODREV_1, &xnf_modldrv, NULL
321 };
322
323 int
_init(void)324 _init(void)
325 {
326 int r;
327
328 mac_init_ops(&xnf_dev_ops, "xnf");
329 r = mod_install(&modlinkage);
330 if (r != DDI_SUCCESS)
331 mac_fini_ops(&xnf_dev_ops);
332
333 return (r);
334 }
335
336 int
_fini(void)337 _fini(void)
338 {
339 return (EBUSY); /* XXPV should be removable */
340 }
341
342 int
_info(struct modinfo * modinfop)343 _info(struct modinfo *modinfop)
344 {
345 return (mod_info(&modlinkage, modinfop));
346 }
347
348 /*
349 * Acquire a grant reference.
350 */
351 static grant_ref_t
gref_get(xnf_t * xnfp)352 gref_get(xnf_t *xnfp)
353 {
354 grant_ref_t gref;
355
356 mutex_enter(&xnfp->xnf_gref_lock);
357
358 do {
359 gref = gnttab_claim_grant_reference(&xnfp->xnf_gref_head);
360
361 } while ((gref == INVALID_GRANT_REF) &&
362 (gnttab_alloc_grant_references(16, &xnfp->xnf_gref_head) == 0));
363
364 mutex_exit(&xnfp->xnf_gref_lock);
365
366 if (gref == INVALID_GRANT_REF) {
367 xnfp->xnf_stat_gref_failure++;
368 } else {
369 atomic_inc_64(&xnfp->xnf_stat_gref_outstanding);
370 if (xnfp->xnf_stat_gref_outstanding > xnfp->xnf_stat_gref_peak)
371 xnfp->xnf_stat_gref_peak =
372 xnfp->xnf_stat_gref_outstanding;
373 }
374
375 return (gref);
376 }
377
378 /*
379 * Release a grant reference.
380 */
381 static void
gref_put(xnf_t * xnfp,grant_ref_t gref)382 gref_put(xnf_t *xnfp, grant_ref_t gref)
383 {
384 ASSERT(gref != INVALID_GRANT_REF);
385
386 mutex_enter(&xnfp->xnf_gref_lock);
387 gnttab_release_grant_reference(&xnfp->xnf_gref_head, gref);
388 mutex_exit(&xnfp->xnf_gref_lock);
389
390 atomic_dec_64(&xnfp->xnf_stat_gref_outstanding);
391 }
392
393 /*
394 * Acquire a transmit id.
395 */
396 static xnf_txid_t *
txid_get(xnf_t * xnfp)397 txid_get(xnf_t *xnfp)
398 {
399 xnf_txid_t *tidp;
400
401 ASSERT(MUTEX_HELD(&xnfp->xnf_txlock));
402
403 if (xnfp->xnf_tx_pkt_id_head == INVALID_TX_ID)
404 return (NULL);
405
406 ASSERT(TX_ID_VALID(xnfp->xnf_tx_pkt_id_head));
407
408 tidp = TX_ID_TO_TXID(xnfp, xnfp->xnf_tx_pkt_id_head);
409 xnfp->xnf_tx_pkt_id_head = tidp->next;
410 tidp->next = INVALID_TX_ID;
411
412 ASSERT(tidp->txbuf == NULL);
413
414 return (tidp);
415 }
416
417 /*
418 * Release a transmit id.
419 */
420 static void
txid_put(xnf_t * xnfp,xnf_txid_t * tidp)421 txid_put(xnf_t *xnfp, xnf_txid_t *tidp)
422 {
423 ASSERT(MUTEX_HELD(&xnfp->xnf_txlock));
424 ASSERT(TX_ID_VALID(tidp->id));
425 ASSERT(tidp->next == INVALID_TX_ID);
426
427 tidp->txbuf = NULL;
428 tidp->next = xnfp->xnf_tx_pkt_id_head;
429 xnfp->xnf_tx_pkt_id_head = tidp->id;
430 }
431
432 /*
433 * Get `wanted' slots in the transmit ring, waiting for at least that
434 * number if `wait' is B_TRUE. Force the ring to be cleaned by setting
435 * `wanted' to zero.
436 *
437 * Return the number of slots available.
438 */
439 static int
tx_slots_get(xnf_t * xnfp,int wanted,boolean_t wait)440 tx_slots_get(xnf_t *xnfp, int wanted, boolean_t wait)
441 {
442 int slotsfree;
443 boolean_t forced_clean = (wanted == 0);
444
445 ASSERT(MUTEX_HELD(&xnfp->xnf_txlock));
446
447 /* LINTED: constant in conditional context */
448 while (B_TRUE) {
449 slotsfree = RING_FREE_REQUESTS(&xnfp->xnf_tx_ring);
450
451 if ((slotsfree < wanted) || forced_clean)
452 slotsfree = xnf_tx_clean_ring(xnfp);
453
454 /*
455 * If there are more than we need free, tell other
456 * people to come looking again. We hold txlock, so we
457 * are able to take our slots before anyone else runs.
458 */
459 if (slotsfree > wanted)
460 cv_broadcast(&xnfp->xnf_cv_tx_slots);
461
462 if (slotsfree >= wanted)
463 break;
464
465 if (!wait)
466 break;
467
468 cv_wait(&xnfp->xnf_cv_tx_slots, &xnfp->xnf_txlock);
469 }
470
471 ASSERT(slotsfree <= RING_SIZE(&(xnfp->xnf_tx_ring)));
472
473 return (slotsfree);
474 }
475
476 static int
xnf_setup_rings(xnf_t * xnfp)477 xnf_setup_rings(xnf_t *xnfp)
478 {
479 domid_t oeid;
480 struct xenbus_device *xsd;
481 RING_IDX i;
482 int err;
483 xnf_txid_t *tidp;
484 xnf_buf_t **bdescp;
485
486 oeid = xvdi_get_oeid(xnfp->xnf_devinfo);
487 xsd = xvdi_get_xsd(xnfp->xnf_devinfo);
488
489 if (xnfp->xnf_tx_ring_ref != INVALID_GRANT_REF)
490 gnttab_end_foreign_access(xnfp->xnf_tx_ring_ref, 0, 0);
491
492 err = gnttab_grant_foreign_access(oeid,
493 xnf_btop(pa_to_ma(xnfp->xnf_tx_ring_phys_addr)), 0);
494 if (err <= 0) {
495 err = -err;
496 xenbus_dev_error(xsd, err, "granting access to tx ring page");
497 goto out;
498 }
499 xnfp->xnf_tx_ring_ref = (grant_ref_t)err;
500
501 if (xnfp->xnf_rx_ring_ref != INVALID_GRANT_REF)
502 gnttab_end_foreign_access(xnfp->xnf_rx_ring_ref, 0, 0);
503
504 err = gnttab_grant_foreign_access(oeid,
505 xnf_btop(pa_to_ma(xnfp->xnf_rx_ring_phys_addr)), 0);
506 if (err <= 0) {
507 err = -err;
508 xenbus_dev_error(xsd, err, "granting access to rx ring page");
509 goto out;
510 }
511 xnfp->xnf_rx_ring_ref = (grant_ref_t)err;
512
513 mutex_enter(&xnfp->xnf_txlock);
514
515 /*
516 * Setup/cleanup the TX ring. Note that this can lose packets
517 * after a resume, but we expect to stagger on.
518 */
519 xnfp->xnf_tx_pkt_id_head = INVALID_TX_ID; /* I.e. emtpy list. */
520 for (i = 0, tidp = &xnfp->xnf_tx_pkt_id[0];
521 i < NET_TX_RING_SIZE;
522 i++, tidp++) {
523 xnf_txbuf_t *txp;
524
525 tidp->id = i;
526
527 txp = tidp->txbuf;
528 if (txp == NULL) {
529 tidp->next = INVALID_TX_ID; /* Appease txid_put(). */
530 txid_put(xnfp, tidp);
531 continue;
532 }
533
534 ASSERT(txp->tx_txreq.gref != INVALID_GRANT_REF);
535 ASSERT(txp->tx_mp != NULL);
536
537 switch (txp->tx_type) {
538 case TX_DATA:
539 VERIFY(gnttab_query_foreign_access(txp->tx_txreq.gref)
540 == 0);
541
542 if (txp->tx_bdesc == NULL) {
543 (void) gnttab_end_foreign_access_ref(
544 txp->tx_txreq.gref, 1);
545 gref_put(xnfp, txp->tx_txreq.gref);
546 (void) ddi_dma_unbind_handle(
547 txp->tx_dma_handle);
548 } else {
549 xnf_buf_put(xnfp, txp->tx_bdesc, B_TRUE);
550 }
551
552 freemsg(txp->tx_mp);
553 txid_put(xnfp, tidp);
554 kmem_cache_free(xnfp->xnf_tx_buf_cache, txp);
555
556 break;
557
558 case TX_MCAST_REQ:
559 txp->tx_type = TX_MCAST_RSP;
560 txp->tx_status = NETIF_RSP_DROPPED;
561 cv_broadcast(&xnfp->xnf_cv_multicast);
562
563 /*
564 * The request consumed two slots in the ring,
565 * yet only a single xnf_txid_t is used. Step
566 * over the empty slot.
567 */
568 i++;
569 ASSERT(i < NET_TX_RING_SIZE);
570
571 break;
572
573 case TX_MCAST_RSP:
574 break;
575 }
576 }
577
578 /* LINTED: constant in conditional context */
579 SHARED_RING_INIT(xnfp->xnf_tx_ring.sring);
580 /* LINTED: constant in conditional context */
581 FRONT_RING_INIT(&xnfp->xnf_tx_ring,
582 xnfp->xnf_tx_ring.sring, PAGESIZE);
583
584 mutex_exit(&xnfp->xnf_txlock);
585
586 mutex_enter(&xnfp->xnf_rxlock);
587
588 /*
589 * Clean out any buffers currently posted to the receive ring
590 * before we reset it.
591 */
592 for (i = 0, bdescp = &xnfp->xnf_rx_pkt_info[0];
593 i < NET_RX_RING_SIZE;
594 i++, bdescp++) {
595 if (*bdescp != NULL) {
596 xnf_buf_put(xnfp, *bdescp, B_FALSE);
597 *bdescp = NULL;
598 }
599 }
600
601 /* LINTED: constant in conditional context */
602 SHARED_RING_INIT(xnfp->xnf_rx_ring.sring);
603 /* LINTED: constant in conditional context */
604 FRONT_RING_INIT(&xnfp->xnf_rx_ring,
605 xnfp->xnf_rx_ring.sring, PAGESIZE);
606
607 /*
608 * Fill the ring with buffers.
609 */
610 for (i = 0; i < NET_RX_RING_SIZE; i++) {
611 xnf_buf_t *bdesc;
612
613 bdesc = xnf_buf_get(xnfp, KM_SLEEP, B_FALSE);
614 VERIFY(bdesc != NULL);
615 xnf_rxbuf_hang(xnfp, bdesc);
616 }
617
618 /* LINTED: constant in conditional context */
619 RING_PUSH_REQUESTS(&xnfp->xnf_rx_ring);
620
621 mutex_exit(&xnfp->xnf_rxlock);
622
623 return (0);
624
625 out:
626 if (xnfp->xnf_tx_ring_ref != INVALID_GRANT_REF)
627 gnttab_end_foreign_access(xnfp->xnf_tx_ring_ref, 0, 0);
628 xnfp->xnf_tx_ring_ref = INVALID_GRANT_REF;
629
630 if (xnfp->xnf_rx_ring_ref != INVALID_GRANT_REF)
631 gnttab_end_foreign_access(xnfp->xnf_rx_ring_ref, 0, 0);
632 xnfp->xnf_rx_ring_ref = INVALID_GRANT_REF;
633
634 return (err);
635 }
636
637 /*
638 * Connect driver to back end, called to set up communication with
639 * back end driver both initially and on resume after restore/migrate.
640 */
641 void
xnf_be_connect(xnf_t * xnfp)642 xnf_be_connect(xnf_t *xnfp)
643 {
644 const char *message;
645 xenbus_transaction_t xbt;
646 struct xenbus_device *xsd;
647 char *xsname;
648 int err;
649
650 ASSERT(!xnfp->xnf_connected);
651
652 xsd = xvdi_get_xsd(xnfp->xnf_devinfo);
653 xsname = xvdi_get_xsname(xnfp->xnf_devinfo);
654
655 err = xnf_setup_rings(xnfp);
656 if (err != 0) {
657 cmn_err(CE_WARN, "failed to set up tx/rx rings");
658 xenbus_dev_error(xsd, err, "setting up ring");
659 return;
660 }
661
662 again:
663 err = xenbus_transaction_start(&xbt);
664 if (err != 0) {
665 xenbus_dev_error(xsd, EIO, "starting transaction");
666 return;
667 }
668
669 err = xenbus_printf(xbt, xsname, "tx-ring-ref", "%u",
670 xnfp->xnf_tx_ring_ref);
671 if (err != 0) {
672 message = "writing tx ring-ref";
673 goto abort_transaction;
674 }
675
676 err = xenbus_printf(xbt, xsname, "rx-ring-ref", "%u",
677 xnfp->xnf_rx_ring_ref);
678 if (err != 0) {
679 message = "writing rx ring-ref";
680 goto abort_transaction;
681 }
682
683 err = xenbus_printf(xbt, xsname, "event-channel", "%u",
684 xnfp->xnf_evtchn);
685 if (err != 0) {
686 message = "writing event-channel";
687 goto abort_transaction;
688 }
689
690 err = xenbus_printf(xbt, xsname, "feature-rx-notify", "%d", 1);
691 if (err != 0) {
692 message = "writing feature-rx-notify";
693 goto abort_transaction;
694 }
695
696 err = xenbus_printf(xbt, xsname, "request-rx-copy", "%d", 1);
697 if (err != 0) {
698 message = "writing request-rx-copy";
699 goto abort_transaction;
700 }
701
702 if (xnfp->xnf_be_mcast_control) {
703 err = xenbus_printf(xbt, xsname, "request-multicast-control",
704 "%d", 1);
705 if (err != 0) {
706 message = "writing request-multicast-control";
707 goto abort_transaction;
708 }
709 }
710
711 err = xvdi_switch_state(xnfp->xnf_devinfo, xbt, XenbusStateConnected);
712 if (err != 0) {
713 message = "switching state to XenbusStateConnected";
714 goto abort_transaction;
715 }
716
717 err = xenbus_transaction_end(xbt, 0);
718 if (err != 0) {
719 if (err == EAGAIN)
720 goto again;
721 xenbus_dev_error(xsd, err, "completing transaction");
722 }
723
724 return;
725
726 abort_transaction:
727 (void) xenbus_transaction_end(xbt, 1);
728 xenbus_dev_error(xsd, err, "%s", message);
729 }
730
731 /*
732 * Read configuration information from xenstore.
733 */
734 void
xnf_read_config(xnf_t * xnfp)735 xnf_read_config(xnf_t *xnfp)
736 {
737 int err, be_cap;
738 char mac[ETHERADDRL * 3];
739 char *oename = xvdi_get_oename(xnfp->xnf_devinfo);
740
741 err = xenbus_scanf(XBT_NULL, oename, "mac",
742 "%s", (char *)&mac[0]);
743 if (err != 0) {
744 /*
745 * bad: we're supposed to be set up with a proper mac
746 * addr. at this point
747 */
748 cmn_err(CE_WARN, "%s%d: no mac address",
749 ddi_driver_name(xnfp->xnf_devinfo),
750 ddi_get_instance(xnfp->xnf_devinfo));
751 return;
752 }
753 if (ether_aton(mac, xnfp->xnf_mac_addr) != ETHERADDRL) {
754 err = ENOENT;
755 xenbus_dev_error(xvdi_get_xsd(xnfp->xnf_devinfo), ENOENT,
756 "parsing %s/mac", xvdi_get_xsname(xnfp->xnf_devinfo));
757 return;
758 }
759
760 err = xenbus_scanf(XBT_NULL, oename,
761 "feature-rx-copy", "%d", &be_cap);
762 /*
763 * If we fail to read the store we assume that the key is
764 * absent, implying an older domain at the far end. Older
765 * domains cannot do HV copy.
766 */
767 if (err != 0)
768 be_cap = 0;
769 xnfp->xnf_be_rx_copy = (be_cap != 0);
770
771 err = xenbus_scanf(XBT_NULL, oename,
772 "feature-multicast-control", "%d", &be_cap);
773 /*
774 * If we fail to read the store we assume that the key is
775 * absent, implying an older domain at the far end. Older
776 * domains do not support multicast control.
777 */
778 if (err != 0)
779 be_cap = 0;
780 xnfp->xnf_be_mcast_control = (be_cap != 0) && xnf_multicast_control;
781 }
782
783 /*
784 * attach(9E) -- Attach a device to the system
785 */
786 static int
xnf_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)787 xnf_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
788 {
789 mac_register_t *macp;
790 xnf_t *xnfp;
791 int err;
792 char cachename[32];
793
794 #ifdef XNF_DEBUG
795 if (xnf_debug & XNF_DEBUG_DDI)
796 printf("xnf%d: attach(0x%p)\n", ddi_get_instance(devinfo),
797 (void *)devinfo);
798 #endif
799
800 switch (cmd) {
801 case DDI_RESUME:
802 xnfp = ddi_get_driver_private(devinfo);
803 xnfp->xnf_gen++;
804
805 (void) xvdi_resume(devinfo);
806 (void) xvdi_alloc_evtchn(devinfo);
807 xnfp->xnf_evtchn = xvdi_get_evtchn(devinfo);
808 #ifdef XPV_HVM_DRIVER
809 ec_bind_evtchn_to_handler(xnfp->xnf_evtchn, IPL_VIF, xnf_intr,
810 xnfp);
811 #else
812 (void) ddi_add_intr(devinfo, 0, NULL, NULL, xnf_intr,
813 (caddr_t)xnfp);
814 #endif
815 return (DDI_SUCCESS);
816
817 case DDI_ATTACH:
818 break;
819
820 default:
821 return (DDI_FAILURE);
822 }
823
824 /*
825 * Allocate gld_mac_info_t and xnf_instance structures
826 */
827 macp = mac_alloc(MAC_VERSION);
828 if (macp == NULL)
829 return (DDI_FAILURE);
830 xnfp = kmem_zalloc(sizeof (*xnfp), KM_SLEEP);
831
832 macp->m_dip = devinfo;
833 macp->m_driver = xnfp;
834 xnfp->xnf_devinfo = devinfo;
835
836 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
837 macp->m_src_addr = xnfp->xnf_mac_addr;
838 macp->m_callbacks = &xnf_callbacks;
839 macp->m_min_sdu = 0;
840 macp->m_max_sdu = XNF_MAXPKT;
841
842 xnfp->xnf_running = B_FALSE;
843 xnfp->xnf_connected = B_FALSE;
844 xnfp->xnf_be_rx_copy = B_FALSE;
845 xnfp->xnf_be_mcast_control = B_FALSE;
846 xnfp->xnf_need_sched = B_FALSE;
847
848 xnfp->xnf_rx_head = NULL;
849 xnfp->xnf_rx_tail = NULL;
850 xnfp->xnf_rx_new_buffers_posted = B_FALSE;
851
852 #ifdef XPV_HVM_DRIVER
853 /*
854 * Report our version to dom0.
855 */
856 if (xenbus_printf(XBT_NULL, "guest/xnf", "version", "%d",
857 HVMPV_XNF_VERS))
858 cmn_err(CE_WARN, "xnf: couldn't write version\n");
859 #endif
860
861 /*
862 * Get the iblock cookie with which to initialize the mutexes.
863 */
864 if (ddi_get_iblock_cookie(devinfo, 0, &xnfp->xnf_icookie)
865 != DDI_SUCCESS)
866 goto failure;
867
868 mutex_init(&xnfp->xnf_txlock,
869 NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
870 mutex_init(&xnfp->xnf_rxlock,
871 NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
872 mutex_init(&xnfp->xnf_schedlock,
873 NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
874 mutex_init(&xnfp->xnf_gref_lock,
875 NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
876
877 cv_init(&xnfp->xnf_cv_state, NULL, CV_DEFAULT, NULL);
878 cv_init(&xnfp->xnf_cv_multicast, NULL, CV_DEFAULT, NULL);
879 cv_init(&xnfp->xnf_cv_tx_slots, NULL, CV_DEFAULT, NULL);
880
881 (void) sprintf(cachename, "xnf_buf_cache_%d",
882 ddi_get_instance(devinfo));
883 xnfp->xnf_buf_cache = kmem_cache_create(cachename,
884 sizeof (xnf_buf_t), 0,
885 xnf_buf_constructor, xnf_buf_destructor,
886 NULL, xnfp, NULL, 0);
887 if (xnfp->xnf_buf_cache == NULL)
888 goto failure_0;
889
890 (void) sprintf(cachename, "xnf_tx_buf_cache_%d",
891 ddi_get_instance(devinfo));
892 xnfp->xnf_tx_buf_cache = kmem_cache_create(cachename,
893 sizeof (xnf_txbuf_t), 0,
894 xnf_tx_buf_constructor, xnf_tx_buf_destructor,
895 NULL, xnfp, NULL, 0);
896 if (xnfp->xnf_tx_buf_cache == NULL)
897 goto failure_1;
898
899 xnfp->xnf_gref_head = INVALID_GRANT_REF;
900
901 if (xnf_alloc_dma_resources(xnfp) == DDI_FAILURE) {
902 cmn_err(CE_WARN, "xnf%d: failed to allocate and initialize "
903 "driver data structures",
904 ddi_get_instance(xnfp->xnf_devinfo));
905 goto failure_2;
906 }
907
908 xnfp->xnf_rx_ring.sring->rsp_event =
909 xnfp->xnf_tx_ring.sring->rsp_event = 1;
910
911 xnfp->xnf_tx_ring_ref = INVALID_GRANT_REF;
912 xnfp->xnf_rx_ring_ref = INVALID_GRANT_REF;
913
914 /* set driver private pointer now */
915 ddi_set_driver_private(devinfo, xnfp);
916
917 if (!xnf_kstat_init(xnfp))
918 goto failure_3;
919
920 /*
921 * Allocate an event channel, add the interrupt handler and
922 * bind it to the event channel.
923 */
924 (void) xvdi_alloc_evtchn(devinfo);
925 xnfp->xnf_evtchn = xvdi_get_evtchn(devinfo);
926 #ifdef XPV_HVM_DRIVER
927 ec_bind_evtchn_to_handler(xnfp->xnf_evtchn, IPL_VIF, xnf_intr, xnfp);
928 #else
929 (void) ddi_add_intr(devinfo, 0, NULL, NULL, xnf_intr, (caddr_t)xnfp);
930 #endif
931
932 err = mac_register(macp, &xnfp->xnf_mh);
933 mac_free(macp);
934 macp = NULL;
935 if (err != 0)
936 goto failure_4;
937
938 if (xvdi_add_event_handler(devinfo, XS_OE_STATE, oe_state_change, NULL)
939 != DDI_SUCCESS)
940 goto failure_5;
941
942 #ifdef XPV_HVM_DRIVER
943 /*
944 * In the HVM case, this driver essentially replaces a driver for
945 * a 'real' PCI NIC. Without the "model" property set to
946 * "Ethernet controller", like the PCI code does, netbooting does
947 * not work correctly, as strplumb_get_netdev_path() will not find
948 * this interface.
949 */
950 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devinfo, "model",
951 "Ethernet controller");
952 #endif
953
954 #ifdef XNF_DEBUG
955 if (xnf_debug_instance == NULL)
956 xnf_debug_instance = xnfp;
957 #endif
958
959 return (DDI_SUCCESS);
960
961 failure_5:
962 (void) mac_unregister(xnfp->xnf_mh);
963
964 failure_4:
965 #ifdef XPV_HVM_DRIVER
966 ec_unbind_evtchn(xnfp->xnf_evtchn);
967 xvdi_free_evtchn(devinfo);
968 #else
969 ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie);
970 #endif
971 xnfp->xnf_evtchn = INVALID_EVTCHN;
972 kstat_delete(xnfp->xnf_kstat_aux);
973
974 failure_3:
975 xnf_release_dma_resources(xnfp);
976
977 failure_2:
978 kmem_cache_destroy(xnfp->xnf_tx_buf_cache);
979
980 failure_1:
981 kmem_cache_destroy(xnfp->xnf_buf_cache);
982
983 failure_0:
984 cv_destroy(&xnfp->xnf_cv_tx_slots);
985 cv_destroy(&xnfp->xnf_cv_multicast);
986 cv_destroy(&xnfp->xnf_cv_state);
987
988 mutex_destroy(&xnfp->xnf_gref_lock);
989 mutex_destroy(&xnfp->xnf_schedlock);
990 mutex_destroy(&xnfp->xnf_rxlock);
991 mutex_destroy(&xnfp->xnf_txlock);
992
993 failure:
994 kmem_free(xnfp, sizeof (*xnfp));
995 if (macp != NULL)
996 mac_free(macp);
997
998 return (DDI_FAILURE);
999 }
1000
1001 /* detach(9E) -- Detach a device from the system */
1002 static int
xnf_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)1003 xnf_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1004 {
1005 xnf_t *xnfp; /* Our private device info */
1006
1007 #ifdef XNF_DEBUG
1008 if (xnf_debug & XNF_DEBUG_DDI)
1009 printf("xnf_detach(0x%p)\n", (void *)devinfo);
1010 #endif
1011
1012 xnfp = ddi_get_driver_private(devinfo);
1013
1014 switch (cmd) {
1015 case DDI_SUSPEND:
1016 #ifdef XPV_HVM_DRIVER
1017 ec_unbind_evtchn(xnfp->xnf_evtchn);
1018 xvdi_free_evtchn(devinfo);
1019 #else
1020 ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie);
1021 #endif
1022
1023 xvdi_suspend(devinfo);
1024
1025 mutex_enter(&xnfp->xnf_rxlock);
1026 mutex_enter(&xnfp->xnf_txlock);
1027
1028 xnfp->xnf_evtchn = INVALID_EVTCHN;
1029 xnfp->xnf_connected = B_FALSE;
1030 mutex_exit(&xnfp->xnf_txlock);
1031 mutex_exit(&xnfp->xnf_rxlock);
1032
1033 /* claim link to be down after disconnect */
1034 mac_link_update(xnfp->xnf_mh, LINK_STATE_DOWN);
1035 return (DDI_SUCCESS);
1036
1037 case DDI_DETACH:
1038 break;
1039
1040 default:
1041 return (DDI_FAILURE);
1042 }
1043
1044 if (xnfp->xnf_connected)
1045 return (DDI_FAILURE);
1046
1047 /*
1048 * Cannot detach if we have xnf_buf_t outstanding.
1049 */
1050 if (xnfp->xnf_stat_buf_allocated > 0)
1051 return (DDI_FAILURE);
1052
1053 if (mac_unregister(xnfp->xnf_mh) != 0)
1054 return (DDI_FAILURE);
1055
1056 kstat_delete(xnfp->xnf_kstat_aux);
1057
1058 /* Stop the receiver */
1059 xnf_stop(xnfp);
1060
1061 xvdi_remove_event_handler(devinfo, XS_OE_STATE);
1062
1063 /* Remove the interrupt */
1064 #ifdef XPV_HVM_DRIVER
1065 ec_unbind_evtchn(xnfp->xnf_evtchn);
1066 xvdi_free_evtchn(devinfo);
1067 #else
1068 ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie);
1069 #endif
1070
1071 /* Release any pending xmit mblks */
1072 xnf_release_mblks(xnfp);
1073
1074 /* Release all DMA resources */
1075 xnf_release_dma_resources(xnfp);
1076
1077 cv_destroy(&xnfp->xnf_cv_tx_slots);
1078 cv_destroy(&xnfp->xnf_cv_multicast);
1079 cv_destroy(&xnfp->xnf_cv_state);
1080
1081 kmem_cache_destroy(xnfp->xnf_tx_buf_cache);
1082 kmem_cache_destroy(xnfp->xnf_buf_cache);
1083
1084 mutex_destroy(&xnfp->xnf_gref_lock);
1085 mutex_destroy(&xnfp->xnf_schedlock);
1086 mutex_destroy(&xnfp->xnf_rxlock);
1087 mutex_destroy(&xnfp->xnf_txlock);
1088
1089 kmem_free(xnfp, sizeof (*xnfp));
1090
1091 return (DDI_SUCCESS);
1092 }
1093
1094 /*
1095 * xnf_set_mac_addr() -- set the physical network address on the board.
1096 */
1097 static int
xnf_set_mac_addr(void * arg,const uint8_t * macaddr)1098 xnf_set_mac_addr(void *arg, const uint8_t *macaddr)
1099 {
1100 _NOTE(ARGUNUSED(arg, macaddr));
1101
1102 /*
1103 * We can't set our macaddr.
1104 */
1105 return (ENOTSUP);
1106 }
1107
1108 /*
1109 * xnf_set_multicast() -- set (enable) or disable a multicast address.
1110 *
1111 * Program the hardware to enable/disable the multicast address
1112 * in "mca". Enable if "add" is true, disable if false.
1113 */
1114 static int
xnf_set_multicast(void * arg,boolean_t add,const uint8_t * mca)1115 xnf_set_multicast(void *arg, boolean_t add, const uint8_t *mca)
1116 {
1117 xnf_t *xnfp = arg;
1118 xnf_txbuf_t *txp;
1119 int n_slots;
1120 RING_IDX slot;
1121 xnf_txid_t *tidp;
1122 netif_tx_request_t *txrp;
1123 struct netif_extra_info *erp;
1124 boolean_t notify, result;
1125
1126 /*
1127 * If the backend does not support multicast control then we
1128 * must assume that the right packets will just arrive.
1129 */
1130 if (!xnfp->xnf_be_mcast_control)
1131 return (0);
1132
1133 txp = kmem_cache_alloc(xnfp->xnf_tx_buf_cache, KM_SLEEP);
1134
1135 mutex_enter(&xnfp->xnf_txlock);
1136
1137 /*
1138 * If we're not yet connected then claim success. This is
1139 * acceptable because we refresh the entire set of multicast
1140 * addresses when we get connected.
1141 *
1142 * We can't wait around here because the MAC layer expects
1143 * this to be a non-blocking operation - waiting ends up
1144 * causing a deadlock during resume.
1145 */
1146 if (!xnfp->xnf_connected) {
1147 mutex_exit(&xnfp->xnf_txlock);
1148 return (0);
1149 }
1150
1151 /*
1152 * 1. Acquire two slots in the ring.
1153 * 2. Fill in the slots.
1154 * 3. Request notification when the operation is done.
1155 * 4. Kick the peer.
1156 * 5. Wait for the response via xnf_tx_clean_ring().
1157 */
1158
1159 n_slots = tx_slots_get(xnfp, 2, B_TRUE);
1160 ASSERT(n_slots >= 2);
1161
1162 slot = xnfp->xnf_tx_ring.req_prod_pvt;
1163 tidp = txid_get(xnfp);
1164 VERIFY(tidp != NULL);
1165
1166 txp->tx_type = TX_MCAST_REQ;
1167 txp->tx_slot = slot;
1168
1169 txrp = RING_GET_REQUEST(&xnfp->xnf_tx_ring, slot);
1170 erp = (struct netif_extra_info *)
1171 RING_GET_REQUEST(&xnfp->xnf_tx_ring, slot + 1);
1172
1173 txrp->gref = 0;
1174 txrp->size = 0;
1175 txrp->offset = 0;
1176 /* Set tx_txreq.id to appease xnf_tx_clean_ring(). */
1177 txrp->id = txp->tx_txreq.id = tidp->id;
1178 txrp->flags = NETTXF_extra_info;
1179
1180 erp->type = add ? XEN_NETIF_EXTRA_TYPE_MCAST_ADD :
1181 XEN_NETIF_EXTRA_TYPE_MCAST_DEL;
1182 bcopy((void *)mca, &erp->u.mcast.addr, ETHERADDRL);
1183
1184 tidp->txbuf = txp;
1185
1186 xnfp->xnf_tx_ring.req_prod_pvt = slot + 2;
1187
1188 mutex_enter(&xnfp->xnf_schedlock);
1189 xnfp->xnf_pending_multicast++;
1190 mutex_exit(&xnfp->xnf_schedlock);
1191
1192 /* LINTED: constant in conditional context */
1193 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_tx_ring,
1194 notify);
1195 if (notify)
1196 ec_notify_via_evtchn(xnfp->xnf_evtchn);
1197
1198 while (txp->tx_type == TX_MCAST_REQ)
1199 cv_wait(&xnfp->xnf_cv_multicast,
1200 &xnfp->xnf_txlock);
1201
1202 ASSERT(txp->tx_type == TX_MCAST_RSP);
1203
1204 mutex_enter(&xnfp->xnf_schedlock);
1205 xnfp->xnf_pending_multicast--;
1206 mutex_exit(&xnfp->xnf_schedlock);
1207
1208 result = (txp->tx_status == NETIF_RSP_OKAY);
1209
1210 txid_put(xnfp, tidp);
1211
1212 mutex_exit(&xnfp->xnf_txlock);
1213
1214 kmem_cache_free(xnfp->xnf_tx_buf_cache, txp);
1215
1216 return (result ? 0 : 1);
1217 }
1218
1219 /*
1220 * xnf_set_promiscuous() -- set or reset promiscuous mode on the board
1221 *
1222 * Program the hardware to enable/disable promiscuous mode.
1223 */
1224 static int
xnf_set_promiscuous(void * arg,boolean_t on)1225 xnf_set_promiscuous(void *arg, boolean_t on)
1226 {
1227 _NOTE(ARGUNUSED(arg, on));
1228
1229 /*
1230 * We can't really do this, but we pretend that we can in
1231 * order that snoop will work.
1232 */
1233 return (0);
1234 }
1235
1236 /*
1237 * Clean buffers that we have responses for from the transmit ring.
1238 */
1239 static int
xnf_tx_clean_ring(xnf_t * xnfp)1240 xnf_tx_clean_ring(xnf_t *xnfp)
1241 {
1242 boolean_t work_to_do;
1243
1244 ASSERT(MUTEX_HELD(&xnfp->xnf_txlock));
1245
1246 loop:
1247 while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_tx_ring)) {
1248 RING_IDX cons, prod, i;
1249
1250 cons = xnfp->xnf_tx_ring.rsp_cons;
1251 prod = xnfp->xnf_tx_ring.sring->rsp_prod;
1252 membar_consumer();
1253 /*
1254 * Clean tx requests from ring that we have responses
1255 * for.
1256 */
1257 DTRACE_PROBE2(xnf_tx_clean_range, int, cons, int, prod);
1258 for (i = cons; i != prod; i++) {
1259 netif_tx_response_t *trp;
1260 xnf_txid_t *tidp;
1261 xnf_txbuf_t *txp;
1262
1263 trp = RING_GET_RESPONSE(&xnfp->xnf_tx_ring, i);
1264 ASSERT(TX_ID_VALID(trp->id));
1265
1266 tidp = TX_ID_TO_TXID(xnfp, trp->id);
1267 ASSERT(tidp->id == trp->id);
1268 ASSERT(tidp->next == INVALID_TX_ID);
1269
1270 txp = tidp->txbuf;
1271 ASSERT(txp != NULL);
1272 ASSERT(txp->tx_txreq.id == trp->id);
1273
1274 switch (txp->tx_type) {
1275 case TX_DATA:
1276 if (gnttab_query_foreign_access(
1277 txp->tx_txreq.gref) != 0)
1278 cmn_err(CE_PANIC,
1279 "tx grant %d still in use by "
1280 "backend domain",
1281 txp->tx_txreq.gref);
1282
1283 if (txp->tx_bdesc == NULL) {
1284 (void) gnttab_end_foreign_access_ref(
1285 txp->tx_txreq.gref, 1);
1286 gref_put(xnfp, txp->tx_txreq.gref);
1287 (void) ddi_dma_unbind_handle(
1288 txp->tx_dma_handle);
1289 } else {
1290 xnf_buf_put(xnfp, txp->tx_bdesc,
1291 B_TRUE);
1292 }
1293
1294 freemsg(txp->tx_mp);
1295 txid_put(xnfp, tidp);
1296 kmem_cache_free(xnfp->xnf_tx_buf_cache, txp);
1297
1298 break;
1299
1300 case TX_MCAST_REQ:
1301 txp->tx_type = TX_MCAST_RSP;
1302 txp->tx_status = trp->status;
1303 cv_broadcast(&xnfp->xnf_cv_multicast);
1304
1305 break;
1306
1307 case TX_MCAST_RSP:
1308 break;
1309
1310 default:
1311 cmn_err(CE_PANIC, "xnf_tx_clean_ring: "
1312 "invalid xnf_txbuf_t type: %d",
1313 txp->tx_type);
1314 break;
1315 }
1316 }
1317 /*
1318 * Record the last response we dealt with so that we
1319 * know where to start next time around.
1320 */
1321 xnfp->xnf_tx_ring.rsp_cons = prod;
1322 membar_enter();
1323 }
1324
1325 /* LINTED: constant in conditional context */
1326 RING_FINAL_CHECK_FOR_RESPONSES(&xnfp->xnf_tx_ring, work_to_do);
1327 if (work_to_do)
1328 goto loop;
1329
1330 return (RING_FREE_REQUESTS(&xnfp->xnf_tx_ring));
1331 }
1332
1333 /*
1334 * Allocate and fill in a look-aside buffer for the packet `mp'. Used
1335 * to ensure that the packet is physically contiguous and contained
1336 * within a single page.
1337 */
1338 static xnf_buf_t *
xnf_tx_pullup(xnf_t * xnfp,mblk_t * mp)1339 xnf_tx_pullup(xnf_t *xnfp, mblk_t *mp)
1340 {
1341 xnf_buf_t *bd;
1342 caddr_t bp;
1343
1344 bd = xnf_buf_get(xnfp, KM_SLEEP, B_TRUE);
1345 if (bd == NULL)
1346 return (NULL);
1347
1348 bp = bd->buf;
1349 while (mp != NULL) {
1350 size_t len = MBLKL(mp);
1351
1352 bcopy(mp->b_rptr, bp, len);
1353 bp += len;
1354
1355 mp = mp->b_cont;
1356 }
1357
1358 ASSERT((bp - bd->buf) <= PAGESIZE);
1359
1360 xnfp->xnf_stat_tx_pullup++;
1361
1362 return (bd);
1363 }
1364
1365 /*
1366 * Insert the pseudo-header checksum into the packet `buf'.
1367 */
1368 void
xnf_pseudo_cksum(caddr_t buf,int length)1369 xnf_pseudo_cksum(caddr_t buf, int length)
1370 {
1371 struct ether_header *ehp;
1372 uint16_t sap, len, *stuff;
1373 uint32_t cksum;
1374 size_t offset;
1375 ipha_t *ipha;
1376 ipaddr_t src, dst;
1377
1378 ASSERT(length >= sizeof (*ehp));
1379 ehp = (struct ether_header *)buf;
1380
1381 if (ntohs(ehp->ether_type) == VLAN_TPID) {
1382 struct ether_vlan_header *evhp;
1383
1384 ASSERT(length >= sizeof (*evhp));
1385 evhp = (struct ether_vlan_header *)buf;
1386 sap = ntohs(evhp->ether_type);
1387 offset = sizeof (*evhp);
1388 } else {
1389 sap = ntohs(ehp->ether_type);
1390 offset = sizeof (*ehp);
1391 }
1392
1393 ASSERT(sap == ETHERTYPE_IP);
1394
1395 /* Packet should have been pulled up by the caller. */
1396 if ((offset + sizeof (ipha_t)) > length) {
1397 cmn_err(CE_WARN, "xnf_pseudo_cksum: no room for checksum");
1398 return;
1399 }
1400
1401 ipha = (ipha_t *)(buf + offset);
1402
1403 ASSERT(IPH_HDR_LENGTH(ipha) == IP_SIMPLE_HDR_LENGTH);
1404
1405 len = ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH;
1406
1407 switch (ipha->ipha_protocol) {
1408 case IPPROTO_TCP:
1409 stuff = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1410 cksum = IP_TCP_CSUM_COMP;
1411 break;
1412 case IPPROTO_UDP:
1413 stuff = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1414 cksum = IP_UDP_CSUM_COMP;
1415 break;
1416 default:
1417 cmn_err(CE_WARN, "xnf_pseudo_cksum: unexpected protocol %d",
1418 ipha->ipha_protocol);
1419 return;
1420 }
1421
1422 src = ipha->ipha_src;
1423 dst = ipha->ipha_dst;
1424
1425 cksum += (dst >> 16) + (dst & 0xFFFF);
1426 cksum += (src >> 16) + (src & 0xFFFF);
1427 cksum += htons(len);
1428
1429 cksum = (cksum >> 16) + (cksum & 0xFFFF);
1430 cksum = (cksum >> 16) + (cksum & 0xFFFF);
1431
1432 ASSERT(cksum <= 0xFFFF);
1433
1434 *stuff = (uint16_t)(cksum ? cksum : ~cksum);
1435 }
1436
1437 /*
1438 * Push a list of prepared packets (`txp') into the transmit ring.
1439 */
1440 static xnf_txbuf_t *
tx_push_packets(xnf_t * xnfp,xnf_txbuf_t * txp)1441 tx_push_packets(xnf_t *xnfp, xnf_txbuf_t *txp)
1442 {
1443 int slots_free;
1444 RING_IDX slot;
1445 boolean_t notify;
1446
1447 mutex_enter(&xnfp->xnf_txlock);
1448
1449 ASSERT(xnfp->xnf_running);
1450
1451 /*
1452 * Wait until we are connected to the backend.
1453 */
1454 while (!xnfp->xnf_connected)
1455 cv_wait(&xnfp->xnf_cv_state, &xnfp->xnf_txlock);
1456
1457 slots_free = tx_slots_get(xnfp, 1, B_FALSE);
1458 DTRACE_PROBE1(xnf_send_slotsfree, int, slots_free);
1459
1460 slot = xnfp->xnf_tx_ring.req_prod_pvt;
1461
1462 while ((txp != NULL) && (slots_free > 0)) {
1463 xnf_txid_t *tidp;
1464 netif_tx_request_t *txrp;
1465
1466 tidp = txid_get(xnfp);
1467 VERIFY(tidp != NULL);
1468
1469 txrp = RING_GET_REQUEST(&xnfp->xnf_tx_ring, slot);
1470
1471 txp->tx_slot = slot;
1472 txp->tx_txreq.id = tidp->id;
1473 *txrp = txp->tx_txreq;
1474
1475 tidp->txbuf = txp;
1476
1477 xnfp->xnf_stat_opackets++;
1478 xnfp->xnf_stat_obytes += txp->tx_txreq.size;
1479
1480 txp = txp->tx_next;
1481 slots_free--;
1482 slot++;
1483
1484 }
1485
1486 xnfp->xnf_tx_ring.req_prod_pvt = slot;
1487
1488 /*
1489 * Tell the peer that we sent something, if it cares.
1490 */
1491 /* LINTED: constant in conditional context */
1492 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_tx_ring,
1493 notify);
1494 if (notify)
1495 ec_notify_via_evtchn(xnfp->xnf_evtchn);
1496
1497 mutex_exit(&xnfp->xnf_txlock);
1498
1499 return (txp);
1500 }
1501
1502 /*
1503 * Send the chain of packets `mp'. Called by the MAC framework.
1504 */
1505 static mblk_t *
xnf_send(void * arg,mblk_t * mp)1506 xnf_send(void *arg, mblk_t *mp)
1507 {
1508 xnf_t *xnfp = arg;
1509 domid_t oeid;
1510 xnf_txbuf_t *head, *tail;
1511 mblk_t *ml;
1512 int prepared;
1513
1514 oeid = xvdi_get_oeid(xnfp->xnf_devinfo);
1515
1516 /*
1517 * Prepare packets for transmission.
1518 */
1519 head = tail = NULL;
1520 prepared = 0;
1521 while (mp != NULL) {
1522 xnf_txbuf_t *txp;
1523 int n_chunks, length;
1524 boolean_t page_oops;
1525 uint32_t pflags;
1526
1527 for (ml = mp, n_chunks = length = 0, page_oops = B_FALSE;
1528 ml != NULL;
1529 ml = ml->b_cont, n_chunks++) {
1530
1531 /*
1532 * Test if this buffer includes a page
1533 * boundary. The test assumes that the range
1534 * b_rptr...b_wptr can include only a single
1535 * boundary.
1536 */
1537 if (xnf_btop((size_t)ml->b_rptr) !=
1538 xnf_btop((size_t)ml->b_wptr)) {
1539 xnfp->xnf_stat_tx_pagebndry++;
1540 page_oops = B_TRUE;
1541 }
1542
1543 length += MBLKL(ml);
1544 }
1545 DTRACE_PROBE1(xnf_send_b_cont, int, n_chunks);
1546
1547 /*
1548 * Make sure packet isn't too large.
1549 */
1550 if (length > XNF_FRAMESIZE) {
1551 cmn_err(CE_WARN,
1552 "xnf%d: oversized packet (%d bytes) dropped",
1553 ddi_get_instance(xnfp->xnf_devinfo), length);
1554 freemsg(mp);
1555 continue;
1556 }
1557
1558 txp = kmem_cache_alloc(xnfp->xnf_tx_buf_cache, KM_SLEEP);
1559
1560 txp->tx_type = TX_DATA;
1561
1562 if ((n_chunks > xnf_max_tx_frags) || page_oops) {
1563 /*
1564 * Loan a side buffer rather than the mblk
1565 * itself.
1566 */
1567 txp->tx_bdesc = xnf_tx_pullup(xnfp, mp);
1568 if (txp->tx_bdesc == NULL) {
1569 kmem_cache_free(xnfp->xnf_tx_buf_cache, txp);
1570 break;
1571 }
1572
1573 txp->tx_bufp = txp->tx_bdesc->buf;
1574 txp->tx_mfn = txp->tx_bdesc->buf_mfn;
1575 txp->tx_txreq.gref = txp->tx_bdesc->grant_ref;
1576
1577 } else {
1578 int rc;
1579 ddi_dma_cookie_t dma_cookie;
1580 uint_t ncookies;
1581
1582 rc = ddi_dma_addr_bind_handle(txp->tx_dma_handle,
1583 NULL, (char *)mp->b_rptr, length,
1584 DDI_DMA_WRITE | DDI_DMA_STREAMING,
1585 DDI_DMA_DONTWAIT, 0, &dma_cookie,
1586 &ncookies);
1587 if (rc != DDI_DMA_MAPPED) {
1588 ASSERT(rc != DDI_DMA_INUSE);
1589 ASSERT(rc != DDI_DMA_PARTIAL_MAP);
1590
1591 #ifdef XNF_DEBUG
1592 if (rc != DDI_DMA_NORESOURCES)
1593 cmn_err(CE_WARN,
1594 "xnf%d: bind_handle failed (%x)",
1595 ddi_get_instance(xnfp->xnf_devinfo),
1596 rc);
1597 #endif
1598 kmem_cache_free(xnfp->xnf_tx_buf_cache, txp);
1599 break;
1600 }
1601 ASSERT(ncookies == 1);
1602
1603 txp->tx_bdesc = NULL;
1604 txp->tx_bufp = (caddr_t)mp->b_rptr;
1605 txp->tx_mfn =
1606 xnf_btop(pa_to_ma(dma_cookie.dmac_laddress));
1607 txp->tx_txreq.gref = gref_get(xnfp);
1608 if (txp->tx_txreq.gref == INVALID_GRANT_REF) {
1609 (void) ddi_dma_unbind_handle(
1610 txp->tx_dma_handle);
1611 kmem_cache_free(xnfp->xnf_tx_buf_cache, txp);
1612 break;
1613 }
1614 gnttab_grant_foreign_access_ref(txp->tx_txreq.gref,
1615 oeid, txp->tx_mfn, 1);
1616 }
1617
1618 txp->tx_next = NULL;
1619 txp->tx_mp = mp;
1620 txp->tx_txreq.size = length;
1621 txp->tx_txreq.offset = (uintptr_t)txp->tx_bufp & PAGEOFFSET;
1622 txp->tx_txreq.flags = 0;
1623 mac_hcksum_get(mp, NULL, NULL, NULL, NULL, &pflags);
1624 if (pflags != 0) {
1625 /*
1626 * If the local protocol stack requests checksum
1627 * offload we set the 'checksum blank' flag,
1628 * indicating to the peer that we need the checksum
1629 * calculated for us.
1630 *
1631 * We _don't_ set the validated flag, because we haven't
1632 * validated that the data and the checksum match.
1633 */
1634 xnf_pseudo_cksum(txp->tx_bufp, length);
1635 txp->tx_txreq.flags |= NETTXF_csum_blank;
1636
1637 xnfp->xnf_stat_tx_cksum_deferred++;
1638 }
1639
1640 if (head == NULL) {
1641 ASSERT(tail == NULL);
1642
1643 head = txp;
1644 } else {
1645 ASSERT(tail != NULL);
1646
1647 tail->tx_next = txp;
1648 }
1649 tail = txp;
1650
1651 mp = mp->b_next;
1652 prepared++;
1653
1654 /*
1655 * There is no point in preparing more than
1656 * NET_TX_RING_SIZE, as we won't be able to push them
1657 * into the ring in one go and would hence have to
1658 * un-prepare the extra.
1659 */
1660 if (prepared == NET_TX_RING_SIZE)
1661 break;
1662 }
1663
1664 DTRACE_PROBE1(xnf_send_prepared, int, prepared);
1665
1666 if (mp != NULL) {
1667 #ifdef XNF_DEBUG
1668 int notprepared = 0;
1669 mblk_t *l = mp;
1670
1671 while (l != NULL) {
1672 notprepared++;
1673 l = l->b_next;
1674 }
1675
1676 DTRACE_PROBE1(xnf_send_notprepared, int, notprepared);
1677 #else /* !XNF_DEBUG */
1678 DTRACE_PROBE1(xnf_send_notprepared, int, -1);
1679 #endif /* XNF_DEBUG */
1680 }
1681
1682 /*
1683 * Push the packets we have prepared into the ring. They may
1684 * not all go.
1685 */
1686 if (head != NULL)
1687 head = tx_push_packets(xnfp, head);
1688
1689 /*
1690 * If some packets that we prepared were not sent, unprepare
1691 * them and add them back to the head of those we didn't
1692 * prepare.
1693 */
1694 {
1695 xnf_txbuf_t *loop;
1696 mblk_t *mp_head, *mp_tail;
1697 int unprepared = 0;
1698
1699 mp_head = mp_tail = NULL;
1700 loop = head;
1701
1702 while (loop != NULL) {
1703 xnf_txbuf_t *next = loop->tx_next;
1704
1705 if (loop->tx_bdesc == NULL) {
1706 (void) gnttab_end_foreign_access_ref(
1707 loop->tx_txreq.gref, 1);
1708 gref_put(xnfp, loop->tx_txreq.gref);
1709 (void) ddi_dma_unbind_handle(
1710 loop->tx_dma_handle);
1711 } else {
1712 xnf_buf_put(xnfp, loop->tx_bdesc, B_TRUE);
1713 }
1714
1715 ASSERT(loop->tx_mp != NULL);
1716 if (mp_head == NULL)
1717 mp_head = loop->tx_mp;
1718 mp_tail = loop->tx_mp;
1719
1720 kmem_cache_free(xnfp->xnf_tx_buf_cache, loop);
1721 loop = next;
1722 unprepared++;
1723 }
1724
1725 if (mp_tail == NULL) {
1726 ASSERT(mp_head == NULL);
1727 } else {
1728 ASSERT(mp_head != NULL);
1729
1730 mp_tail->b_next = mp;
1731 mp = mp_head;
1732 }
1733
1734 DTRACE_PROBE1(xnf_send_unprepared, int, unprepared);
1735 }
1736
1737 /*
1738 * If any mblks are left then we have deferred for some reason
1739 * and need to ask for a re-schedule later. This is typically
1740 * due to the ring filling.
1741 */
1742 if (mp != NULL) {
1743 mutex_enter(&xnfp->xnf_schedlock);
1744 xnfp->xnf_need_sched = B_TRUE;
1745 mutex_exit(&xnfp->xnf_schedlock);
1746
1747 xnfp->xnf_stat_tx_defer++;
1748 }
1749
1750 return (mp);
1751 }
1752
1753 /*
1754 * Notification of RX packets. Currently no TX-complete interrupt is
1755 * used, as we clean the TX ring lazily.
1756 */
1757 static uint_t
xnf_intr(caddr_t arg)1758 xnf_intr(caddr_t arg)
1759 {
1760 xnf_t *xnfp = (xnf_t *)arg;
1761 mblk_t *mp;
1762 boolean_t need_sched, clean_ring;
1763
1764 mutex_enter(&xnfp->xnf_rxlock);
1765
1766 /*
1767 * Interrupts before we are connected are spurious.
1768 */
1769 if (!xnfp->xnf_connected) {
1770 mutex_exit(&xnfp->xnf_rxlock);
1771 xnfp->xnf_stat_unclaimed_interrupts++;
1772 return (DDI_INTR_UNCLAIMED);
1773 }
1774
1775 /*
1776 * Receive side processing.
1777 */
1778 do {
1779 /*
1780 * Collect buffers from the ring.
1781 */
1782 xnf_rx_collect(xnfp);
1783
1784 /*
1785 * Interrupt me when the next receive buffer is consumed.
1786 */
1787 xnfp->xnf_rx_ring.sring->rsp_event =
1788 xnfp->xnf_rx_ring.rsp_cons + 1;
1789 xen_mb();
1790
1791 } while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring));
1792
1793 if (xnfp->xnf_rx_new_buffers_posted) {
1794 boolean_t notify;
1795
1796 /*
1797 * Indicate to the peer that we have re-filled the
1798 * receive ring, if it cares.
1799 */
1800 /* LINTED: constant in conditional context */
1801 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_rx_ring, notify);
1802 if (notify)
1803 ec_notify_via_evtchn(xnfp->xnf_evtchn);
1804 xnfp->xnf_rx_new_buffers_posted = B_FALSE;
1805 }
1806
1807 mp = xnfp->xnf_rx_head;
1808 xnfp->xnf_rx_head = xnfp->xnf_rx_tail = NULL;
1809
1810 xnfp->xnf_stat_interrupts++;
1811 mutex_exit(&xnfp->xnf_rxlock);
1812
1813 if (mp != NULL)
1814 mac_rx(xnfp->xnf_mh, NULL, mp);
1815
1816 /*
1817 * Transmit side processing.
1818 *
1819 * If a previous transmit attempt failed or we have pending
1820 * multicast requests, clean the ring.
1821 *
1822 * If we previously stalled transmission and cleaning produces
1823 * some free slots, tell upstream to attempt sending again.
1824 *
1825 * The odd style is to avoid acquiring xnf_txlock unless we
1826 * will actually look inside the tx machinery.
1827 */
1828 mutex_enter(&xnfp->xnf_schedlock);
1829 need_sched = xnfp->xnf_need_sched;
1830 clean_ring = need_sched || (xnfp->xnf_pending_multicast > 0);
1831 mutex_exit(&xnfp->xnf_schedlock);
1832
1833 if (clean_ring) {
1834 int free_slots;
1835
1836 mutex_enter(&xnfp->xnf_txlock);
1837 free_slots = tx_slots_get(xnfp, 0, B_FALSE);
1838
1839 if (need_sched && (free_slots > 0)) {
1840 mutex_enter(&xnfp->xnf_schedlock);
1841 xnfp->xnf_need_sched = B_FALSE;
1842 mutex_exit(&xnfp->xnf_schedlock);
1843
1844 mac_tx_update(xnfp->xnf_mh);
1845 }
1846 mutex_exit(&xnfp->xnf_txlock);
1847 }
1848
1849 return (DDI_INTR_CLAIMED);
1850 }
1851
1852 /*
1853 * xnf_start() -- start the board receiving and enable interrupts.
1854 */
1855 static int
xnf_start(void * arg)1856 xnf_start(void *arg)
1857 {
1858 xnf_t *xnfp = arg;
1859
1860 #ifdef XNF_DEBUG
1861 if (xnf_debug & XNF_DEBUG_TRACE)
1862 printf("xnf%d start(0x%p)\n",
1863 ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp);
1864 #endif
1865
1866 mutex_enter(&xnfp->xnf_rxlock);
1867 mutex_enter(&xnfp->xnf_txlock);
1868
1869 /* Accept packets from above. */
1870 xnfp->xnf_running = B_TRUE;
1871
1872 mutex_exit(&xnfp->xnf_txlock);
1873 mutex_exit(&xnfp->xnf_rxlock);
1874
1875 return (0);
1876 }
1877
1878 /* xnf_stop() - disable hardware */
1879 static void
xnf_stop(void * arg)1880 xnf_stop(void *arg)
1881 {
1882 xnf_t *xnfp = arg;
1883
1884 #ifdef XNF_DEBUG
1885 if (xnf_debug & XNF_DEBUG_TRACE)
1886 printf("xnf%d stop(0x%p)\n",
1887 ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp);
1888 #endif
1889
1890 mutex_enter(&xnfp->xnf_rxlock);
1891 mutex_enter(&xnfp->xnf_txlock);
1892
1893 xnfp->xnf_running = B_FALSE;
1894
1895 mutex_exit(&xnfp->xnf_txlock);
1896 mutex_exit(&xnfp->xnf_rxlock);
1897 }
1898
1899 /*
1900 * Hang buffer `bdesc' on the RX ring.
1901 */
1902 static void
xnf_rxbuf_hang(xnf_t * xnfp,xnf_buf_t * bdesc)1903 xnf_rxbuf_hang(xnf_t *xnfp, xnf_buf_t *bdesc)
1904 {
1905 netif_rx_request_t *reqp;
1906 RING_IDX hang_ix;
1907
1908 ASSERT(MUTEX_HELD(&xnfp->xnf_rxlock));
1909
1910 reqp = RING_GET_REQUEST(&xnfp->xnf_rx_ring,
1911 xnfp->xnf_rx_ring.req_prod_pvt);
1912 hang_ix = (RING_IDX) (reqp - RING_GET_REQUEST(&xnfp->xnf_rx_ring, 0));
1913 ASSERT(xnfp->xnf_rx_pkt_info[hang_ix] == NULL);
1914
1915 reqp->id = bdesc->id = hang_ix;
1916 reqp->gref = bdesc->grant_ref;
1917
1918 xnfp->xnf_rx_pkt_info[hang_ix] = bdesc;
1919 xnfp->xnf_rx_ring.req_prod_pvt++;
1920
1921 xnfp->xnf_rx_new_buffers_posted = B_TRUE;
1922 }
1923
1924 /*
1925 * Collect packets from the RX ring, storing them in `xnfp' for later
1926 * use.
1927 */
1928 static void
xnf_rx_collect(xnf_t * xnfp)1929 xnf_rx_collect(xnf_t *xnfp)
1930 {
1931 mblk_t *head, *tail;
1932
1933 ASSERT(MUTEX_HELD(&xnfp->xnf_rxlock));
1934
1935 /*
1936 * Loop over unconsumed responses:
1937 * 1. get a response
1938 * 2. take corresponding buffer off recv. ring
1939 * 3. indicate this by setting slot to NULL
1940 * 4. create a new message and
1941 * 5. copy data in, adjust ptr
1942 */
1943
1944 head = tail = NULL;
1945
1946 while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring)) {
1947 netif_rx_response_t *rxpkt;
1948 xnf_buf_t *bdesc;
1949 ssize_t len;
1950 size_t off;
1951 mblk_t *mp = NULL;
1952 boolean_t hwcsum = B_FALSE;
1953 grant_ref_t ref;
1954
1955 /* 1. */
1956 rxpkt = RING_GET_RESPONSE(&xnfp->xnf_rx_ring,
1957 xnfp->xnf_rx_ring.rsp_cons);
1958
1959 DTRACE_PROBE4(xnf_rx_got_rsp, int, (int)rxpkt->id,
1960 int, (int)rxpkt->offset,
1961 int, (int)rxpkt->flags,
1962 int, (int)rxpkt->status);
1963
1964 /*
1965 * 2.
1966 */
1967 bdesc = xnfp->xnf_rx_pkt_info[rxpkt->id];
1968
1969 /*
1970 * 3.
1971 */
1972 xnfp->xnf_rx_pkt_info[rxpkt->id] = NULL;
1973 ASSERT(bdesc->id == rxpkt->id);
1974
1975 ref = bdesc->grant_ref;
1976 off = rxpkt->offset;
1977 len = rxpkt->status;
1978
1979 if (!xnfp->xnf_running) {
1980 DTRACE_PROBE4(xnf_rx_not_running,
1981 int, rxpkt->status,
1982 char *, bdesc->buf, int, rxpkt->offset,
1983 char *, ((char *)bdesc->buf) + rxpkt->offset);
1984
1985 xnfp->xnf_stat_drop++;
1986
1987 } else if (len <= 0) {
1988 DTRACE_PROBE4(xnf_rx_pkt_status_negative,
1989 int, rxpkt->status,
1990 char *, bdesc->buf, int, rxpkt->offset,
1991 char *, ((char *)bdesc->buf) + rxpkt->offset);
1992
1993 xnfp->xnf_stat_errrx++;
1994
1995 switch (len) {
1996 case 0:
1997 xnfp->xnf_stat_runt++;
1998 break;
1999 case NETIF_RSP_ERROR:
2000 xnfp->xnf_stat_mac_rcv_error++;
2001 break;
2002 case NETIF_RSP_DROPPED:
2003 xnfp->xnf_stat_norxbuf++;
2004 break;
2005 }
2006
2007 } else if (bdesc->grant_ref == INVALID_GRANT_REF) {
2008 cmn_err(CE_WARN, "Bad rx grant reference %d "
2009 "from domain %d", ref,
2010 xvdi_get_oeid(xnfp->xnf_devinfo));
2011
2012 } else if ((off + len) > PAGESIZE) {
2013 cmn_err(CE_WARN, "Rx packet overflows page "
2014 "(offset %ld, length %ld) from domain %d",
2015 off, len, xvdi_get_oeid(xnfp->xnf_devinfo));
2016 } else {
2017 xnf_buf_t *nbuf = NULL;
2018
2019 DTRACE_PROBE4(xnf_rx_packet, int, len,
2020 char *, bdesc->buf, int, off,
2021 char *, ((char *)bdesc->buf) + off);
2022
2023 ASSERT(off + len <= PAGEOFFSET);
2024
2025 if (rxpkt->flags & NETRXF_data_validated)
2026 hwcsum = B_TRUE;
2027
2028 /*
2029 * If the packet is below a pre-determined
2030 * size we will copy data out rather than
2031 * replace it.
2032 */
2033 if (len > xnf_rx_copy_limit)
2034 nbuf = xnf_buf_get(xnfp, KM_NOSLEEP, B_FALSE);
2035
2036 /*
2037 * If we have a replacement buffer, attempt to
2038 * wrap the existing one with an mblk_t in
2039 * order that the upper layers of the stack
2040 * might use it directly.
2041 */
2042 if (nbuf != NULL) {
2043 mp = desballoc((unsigned char *)bdesc->buf,
2044 bdesc->len, 0, &bdesc->free_rtn);
2045 if (mp == NULL) {
2046 xnfp->xnf_stat_rx_desballoc_fail++;
2047 xnfp->xnf_stat_norxbuf++;
2048
2049 xnf_buf_put(xnfp, nbuf, B_FALSE);
2050 nbuf = NULL;
2051 } else {
2052 mp->b_rptr = mp->b_rptr + off;
2053 mp->b_wptr = mp->b_rptr + len;
2054
2055 /*
2056 * Release the grant reference
2057 * associated with this buffer
2058 * - they are scarce and the
2059 * upper layers of the stack
2060 * don't need it.
2061 */
2062 (void) gnttab_end_foreign_access_ref(
2063 bdesc->grant_ref, 0);
2064 gref_put(xnfp, bdesc->grant_ref);
2065 bdesc->grant_ref = INVALID_GRANT_REF;
2066
2067 bdesc = nbuf;
2068 }
2069 }
2070
2071 if (nbuf == NULL) {
2072 /*
2073 * No replacement buffer allocated -
2074 * attempt to copy the data out and
2075 * re-hang the existing buffer.
2076 */
2077
2078 /* 4. */
2079 mp = allocb(len, BPRI_MED);
2080 if (mp == NULL) {
2081 xnfp->xnf_stat_rx_allocb_fail++;
2082 xnfp->xnf_stat_norxbuf++;
2083 } else {
2084 /* 5. */
2085 bcopy(bdesc->buf + off, mp->b_wptr,
2086 len);
2087 mp->b_wptr += len;
2088 }
2089 }
2090 }
2091
2092 /* Re-hang the buffer. */
2093 xnf_rxbuf_hang(xnfp, bdesc);
2094
2095 if (mp != NULL) {
2096 if (hwcsum) {
2097 /*
2098 * If the peer says that the data has
2099 * been validated then we declare that
2100 * the full checksum has been
2101 * verified.
2102 *
2103 * We don't look at the "checksum
2104 * blank" flag, and hence could have a
2105 * packet here that we are asserting
2106 * is good with a blank checksum.
2107 */
2108 mac_hcksum_set(mp, 0, 0, 0, 0,
2109 HCK_FULLCKSUM_OK);
2110 xnfp->xnf_stat_rx_cksum_no_need++;
2111 }
2112 if (head == NULL) {
2113 ASSERT(tail == NULL);
2114
2115 head = mp;
2116 } else {
2117 ASSERT(tail != NULL);
2118
2119 tail->b_next = mp;
2120 }
2121 tail = mp;
2122
2123 ASSERT(mp->b_next == NULL);
2124
2125 xnfp->xnf_stat_ipackets++;
2126 xnfp->xnf_stat_rbytes += len;
2127 }
2128
2129 xnfp->xnf_rx_ring.rsp_cons++;
2130 }
2131
2132 /*
2133 * Store the mblks we have collected.
2134 */
2135 if (head != NULL) {
2136 ASSERT(tail != NULL);
2137
2138 if (xnfp->xnf_rx_head == NULL) {
2139 ASSERT(xnfp->xnf_rx_tail == NULL);
2140
2141 xnfp->xnf_rx_head = head;
2142 } else {
2143 ASSERT(xnfp->xnf_rx_tail != NULL);
2144
2145 xnfp->xnf_rx_tail->b_next = head;
2146 }
2147 xnfp->xnf_rx_tail = tail;
2148 }
2149 }
2150
2151 /*
2152 * xnf_alloc_dma_resources() -- initialize the drivers structures
2153 */
2154 static int
xnf_alloc_dma_resources(xnf_t * xnfp)2155 xnf_alloc_dma_resources(xnf_t *xnfp)
2156 {
2157 dev_info_t *devinfo = xnfp->xnf_devinfo;
2158 size_t len;
2159 ddi_dma_cookie_t dma_cookie;
2160 uint_t ncookies;
2161 int rc;
2162 caddr_t rptr;
2163
2164 /*
2165 * The code below allocates all the DMA data structures that
2166 * need to be released when the driver is detached.
2167 *
2168 * Allocate page for the transmit descriptor ring.
2169 */
2170 if (ddi_dma_alloc_handle(devinfo, &ringbuf_dma_attr,
2171 DDI_DMA_SLEEP, 0, &xnfp->xnf_tx_ring_dma_handle) != DDI_SUCCESS)
2172 goto alloc_error;
2173
2174 if (ddi_dma_mem_alloc(xnfp->xnf_tx_ring_dma_handle,
2175 PAGESIZE, &accattr, DDI_DMA_CONSISTENT,
2176 DDI_DMA_SLEEP, 0, &rptr, &len,
2177 &xnfp->xnf_tx_ring_dma_acchandle) != DDI_SUCCESS) {
2178 ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle);
2179 xnfp->xnf_tx_ring_dma_handle = NULL;
2180 goto alloc_error;
2181 }
2182
2183 if ((rc = ddi_dma_addr_bind_handle(xnfp->xnf_tx_ring_dma_handle, NULL,
2184 rptr, PAGESIZE, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2185 DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies)) != DDI_DMA_MAPPED) {
2186 ddi_dma_mem_free(&xnfp->xnf_tx_ring_dma_acchandle);
2187 ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle);
2188 xnfp->xnf_tx_ring_dma_handle = NULL;
2189 xnfp->xnf_tx_ring_dma_acchandle = NULL;
2190 if (rc == DDI_DMA_NORESOURCES)
2191 goto alloc_error;
2192 else
2193 goto error;
2194 }
2195
2196 ASSERT(ncookies == 1);
2197 bzero(rptr, PAGESIZE);
2198 /* LINTED: constant in conditional context */
2199 SHARED_RING_INIT((netif_tx_sring_t *)rptr);
2200 /* LINTED: constant in conditional context */
2201 FRONT_RING_INIT(&xnfp->xnf_tx_ring, (netif_tx_sring_t *)rptr, PAGESIZE);
2202 xnfp->xnf_tx_ring_phys_addr = dma_cookie.dmac_laddress;
2203
2204 /*
2205 * Allocate page for the receive descriptor ring.
2206 */
2207 if (ddi_dma_alloc_handle(devinfo, &ringbuf_dma_attr,
2208 DDI_DMA_SLEEP, 0, &xnfp->xnf_rx_ring_dma_handle) != DDI_SUCCESS)
2209 goto alloc_error;
2210
2211 if (ddi_dma_mem_alloc(xnfp->xnf_rx_ring_dma_handle,
2212 PAGESIZE, &accattr, DDI_DMA_CONSISTENT,
2213 DDI_DMA_SLEEP, 0, &rptr, &len,
2214 &xnfp->xnf_rx_ring_dma_acchandle) != DDI_SUCCESS) {
2215 ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle);
2216 xnfp->xnf_rx_ring_dma_handle = NULL;
2217 goto alloc_error;
2218 }
2219
2220 if ((rc = ddi_dma_addr_bind_handle(xnfp->xnf_rx_ring_dma_handle, NULL,
2221 rptr, PAGESIZE, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2222 DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies)) != DDI_DMA_MAPPED) {
2223 ddi_dma_mem_free(&xnfp->xnf_rx_ring_dma_acchandle);
2224 ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle);
2225 xnfp->xnf_rx_ring_dma_handle = NULL;
2226 xnfp->xnf_rx_ring_dma_acchandle = NULL;
2227 if (rc == DDI_DMA_NORESOURCES)
2228 goto alloc_error;
2229 else
2230 goto error;
2231 }
2232
2233 ASSERT(ncookies == 1);
2234 bzero(rptr, PAGESIZE);
2235 /* LINTED: constant in conditional context */
2236 SHARED_RING_INIT((netif_rx_sring_t *)rptr);
2237 /* LINTED: constant in conditional context */
2238 FRONT_RING_INIT(&xnfp->xnf_rx_ring, (netif_rx_sring_t *)rptr, PAGESIZE);
2239 xnfp->xnf_rx_ring_phys_addr = dma_cookie.dmac_laddress;
2240
2241 return (DDI_SUCCESS);
2242
2243 alloc_error:
2244 cmn_err(CE_WARN, "xnf%d: could not allocate enough DMA memory",
2245 ddi_get_instance(xnfp->xnf_devinfo));
2246 error:
2247 xnf_release_dma_resources(xnfp);
2248 return (DDI_FAILURE);
2249 }
2250
2251 /*
2252 * Release all DMA resources in the opposite order from acquisition
2253 */
2254 static void
xnf_release_dma_resources(xnf_t * xnfp)2255 xnf_release_dma_resources(xnf_t *xnfp)
2256 {
2257 int i;
2258
2259 /*
2260 * Free receive buffers which are currently associated with
2261 * descriptors.
2262 */
2263 mutex_enter(&xnfp->xnf_rxlock);
2264 for (i = 0; i < NET_RX_RING_SIZE; i++) {
2265 xnf_buf_t *bp;
2266
2267 if ((bp = xnfp->xnf_rx_pkt_info[i]) == NULL)
2268 continue;
2269 xnfp->xnf_rx_pkt_info[i] = NULL;
2270 xnf_buf_put(xnfp, bp, B_FALSE);
2271 }
2272 mutex_exit(&xnfp->xnf_rxlock);
2273
2274 /* Free the receive ring buffer. */
2275 if (xnfp->xnf_rx_ring_dma_acchandle != NULL) {
2276 (void) ddi_dma_unbind_handle(xnfp->xnf_rx_ring_dma_handle);
2277 ddi_dma_mem_free(&xnfp->xnf_rx_ring_dma_acchandle);
2278 ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle);
2279 xnfp->xnf_rx_ring_dma_acchandle = NULL;
2280 }
2281 /* Free the transmit ring buffer. */
2282 if (xnfp->xnf_tx_ring_dma_acchandle != NULL) {
2283 (void) ddi_dma_unbind_handle(xnfp->xnf_tx_ring_dma_handle);
2284 ddi_dma_mem_free(&xnfp->xnf_tx_ring_dma_acchandle);
2285 ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle);
2286 xnfp->xnf_tx_ring_dma_acchandle = NULL;
2287 }
2288
2289 }
2290
2291 /*
2292 * Release any packets and associated structures used by the TX ring.
2293 */
2294 static void
xnf_release_mblks(xnf_t * xnfp)2295 xnf_release_mblks(xnf_t *xnfp)
2296 {
2297 RING_IDX i;
2298 xnf_txid_t *tidp;
2299
2300 for (i = 0, tidp = &xnfp->xnf_tx_pkt_id[0];
2301 i < NET_TX_RING_SIZE;
2302 i++, tidp++) {
2303 xnf_txbuf_t *txp = tidp->txbuf;
2304
2305 if (txp != NULL) {
2306 ASSERT(txp->tx_mp != NULL);
2307 freemsg(txp->tx_mp);
2308
2309 txid_put(xnfp, tidp);
2310 kmem_cache_free(xnfp->xnf_tx_buf_cache, txp);
2311 }
2312 }
2313 }
2314
2315 static int
xnf_buf_constructor(void * buf,void * arg,int kmflag)2316 xnf_buf_constructor(void *buf, void *arg, int kmflag)
2317 {
2318 int (*ddiflags)(caddr_t) = DDI_DMA_SLEEP;
2319 xnf_buf_t *bdesc = buf;
2320 xnf_t *xnfp = arg;
2321 ddi_dma_cookie_t dma_cookie;
2322 uint_t ncookies;
2323 size_t len;
2324
2325 if (kmflag & KM_NOSLEEP)
2326 ddiflags = DDI_DMA_DONTWAIT;
2327
2328 /* Allocate a DMA access handle for the buffer. */
2329 if (ddi_dma_alloc_handle(xnfp->xnf_devinfo, &buf_dma_attr,
2330 ddiflags, 0, &bdesc->dma_handle) != DDI_SUCCESS)
2331 goto failure;
2332
2333 /* Allocate DMA-able memory for buffer. */
2334 if (ddi_dma_mem_alloc(bdesc->dma_handle,
2335 PAGESIZE, &data_accattr, DDI_DMA_STREAMING, ddiflags, 0,
2336 &bdesc->buf, &len, &bdesc->acc_handle) != DDI_SUCCESS)
2337 goto failure_1;
2338
2339 /* Bind to virtual address of buffer to get physical address. */
2340 if (ddi_dma_addr_bind_handle(bdesc->dma_handle, NULL,
2341 bdesc->buf, len, DDI_DMA_RDWR | DDI_DMA_STREAMING,
2342 ddiflags, 0, &dma_cookie, &ncookies) != DDI_DMA_MAPPED)
2343 goto failure_2;
2344 ASSERT(ncookies == 1);
2345
2346 bdesc->free_rtn.free_func = xnf_buf_recycle;
2347 bdesc->free_rtn.free_arg = (caddr_t)bdesc;
2348 bdesc->xnfp = xnfp;
2349 bdesc->buf_phys = dma_cookie.dmac_laddress;
2350 bdesc->buf_mfn = pfn_to_mfn(xnf_btop(bdesc->buf_phys));
2351 bdesc->len = dma_cookie.dmac_size;
2352 bdesc->grant_ref = INVALID_GRANT_REF;
2353 bdesc->gen = xnfp->xnf_gen;
2354
2355 atomic_inc_64(&xnfp->xnf_stat_buf_allocated);
2356
2357 return (0);
2358
2359 failure_2:
2360 ddi_dma_mem_free(&bdesc->acc_handle);
2361
2362 failure_1:
2363 ddi_dma_free_handle(&bdesc->dma_handle);
2364
2365 failure:
2366
2367 ASSERT(kmflag & KM_NOSLEEP); /* Cannot fail for KM_SLEEP. */
2368 return (-1);
2369 }
2370
2371 static void
xnf_buf_destructor(void * buf,void * arg)2372 xnf_buf_destructor(void *buf, void *arg)
2373 {
2374 xnf_buf_t *bdesc = buf;
2375 xnf_t *xnfp = arg;
2376
2377 (void) ddi_dma_unbind_handle(bdesc->dma_handle);
2378 ddi_dma_mem_free(&bdesc->acc_handle);
2379 ddi_dma_free_handle(&bdesc->dma_handle);
2380
2381 atomic_dec_64(&xnfp->xnf_stat_buf_allocated);
2382 }
2383
2384 static xnf_buf_t *
xnf_buf_get(xnf_t * xnfp,int flags,boolean_t readonly)2385 xnf_buf_get(xnf_t *xnfp, int flags, boolean_t readonly)
2386 {
2387 grant_ref_t gref;
2388 xnf_buf_t *bufp;
2389
2390 /*
2391 * Usually grant references are more scarce than memory, so we
2392 * attempt to acquire a grant reference first.
2393 */
2394 gref = gref_get(xnfp);
2395 if (gref == INVALID_GRANT_REF)
2396 return (NULL);
2397
2398 bufp = kmem_cache_alloc(xnfp->xnf_buf_cache, flags);
2399 if (bufp == NULL) {
2400 gref_put(xnfp, gref);
2401 return (NULL);
2402 }
2403
2404 ASSERT(bufp->grant_ref == INVALID_GRANT_REF);
2405
2406 bufp->grant_ref = gref;
2407
2408 if (bufp->gen != xnfp->xnf_gen)
2409 xnf_buf_refresh(bufp);
2410
2411 gnttab_grant_foreign_access_ref(bufp->grant_ref,
2412 xvdi_get_oeid(bufp->xnfp->xnf_devinfo),
2413 bufp->buf_mfn, readonly ? 1 : 0);
2414
2415 atomic_inc_64(&xnfp->xnf_stat_buf_outstanding);
2416
2417 return (bufp);
2418 }
2419
2420 static void
xnf_buf_put(xnf_t * xnfp,xnf_buf_t * bufp,boolean_t readonly)2421 xnf_buf_put(xnf_t *xnfp, xnf_buf_t *bufp, boolean_t readonly)
2422 {
2423 if (bufp->grant_ref != INVALID_GRANT_REF) {
2424 (void) gnttab_end_foreign_access_ref(
2425 bufp->grant_ref, readonly ? 1 : 0);
2426 gref_put(xnfp, bufp->grant_ref);
2427 bufp->grant_ref = INVALID_GRANT_REF;
2428 }
2429
2430 kmem_cache_free(xnfp->xnf_buf_cache, bufp);
2431
2432 atomic_dec_64(&xnfp->xnf_stat_buf_outstanding);
2433 }
2434
2435 /*
2436 * Refresh any cached data about a buffer after resume.
2437 */
2438 static void
xnf_buf_refresh(xnf_buf_t * bdesc)2439 xnf_buf_refresh(xnf_buf_t *bdesc)
2440 {
2441 bdesc->buf_mfn = pfn_to_mfn(xnf_btop(bdesc->buf_phys));
2442 bdesc->gen = bdesc->xnfp->xnf_gen;
2443 }
2444
2445 /*
2446 * Streams `freeb' routine for `xnf_buf_t' when used as transmit
2447 * look-aside buffers.
2448 */
2449 static void
xnf_buf_recycle(xnf_buf_t * bdesc)2450 xnf_buf_recycle(xnf_buf_t *bdesc)
2451 {
2452 xnf_t *xnfp = bdesc->xnfp;
2453
2454 xnf_buf_put(xnfp, bdesc, B_TRUE);
2455 }
2456
2457 static int
xnf_tx_buf_constructor(void * buf,void * arg,int kmflag)2458 xnf_tx_buf_constructor(void *buf, void *arg, int kmflag)
2459 {
2460 int (*ddiflags)(caddr_t) = DDI_DMA_SLEEP;
2461 xnf_txbuf_t *txp = buf;
2462 xnf_t *xnfp = arg;
2463
2464 if (kmflag & KM_NOSLEEP)
2465 ddiflags = DDI_DMA_DONTWAIT;
2466
2467 if (ddi_dma_alloc_handle(xnfp->xnf_devinfo, &buf_dma_attr,
2468 ddiflags, 0, &txp->tx_dma_handle) != DDI_SUCCESS) {
2469 ASSERT(kmflag & KM_NOSLEEP); /* Cannot fail for KM_SLEEP. */
2470 return (-1);
2471 }
2472
2473 return (0);
2474 }
2475
2476 static void
xnf_tx_buf_destructor(void * buf,void * arg)2477 xnf_tx_buf_destructor(void *buf, void *arg)
2478 {
2479 _NOTE(ARGUNUSED(arg));
2480 xnf_txbuf_t *txp = buf;
2481
2482 ddi_dma_free_handle(&txp->tx_dma_handle);
2483 }
2484
2485 /*
2486 * Statistics.
2487 */
2488 static char *xnf_aux_statistics[] = {
2489 "tx_cksum_deferred",
2490 "rx_cksum_no_need",
2491 "interrupts",
2492 "unclaimed_interrupts",
2493 "tx_pullup",
2494 "tx_pagebndry",
2495 "tx_attempt",
2496 "buf_allocated",
2497 "buf_outstanding",
2498 "gref_outstanding",
2499 "gref_failure",
2500 "gref_peak",
2501 "rx_allocb_fail",
2502 "rx_desballoc_fail",
2503 };
2504
2505 static int
xnf_kstat_aux_update(kstat_t * ksp,int flag)2506 xnf_kstat_aux_update(kstat_t *ksp, int flag)
2507 {
2508 xnf_t *xnfp;
2509 kstat_named_t *knp;
2510
2511 if (flag != KSTAT_READ)
2512 return (EACCES);
2513
2514 xnfp = ksp->ks_private;
2515 knp = ksp->ks_data;
2516
2517 /*
2518 * Assignment order must match that of the names in
2519 * xnf_aux_statistics.
2520 */
2521 (knp++)->value.ui64 = xnfp->xnf_stat_tx_cksum_deferred;
2522 (knp++)->value.ui64 = xnfp->xnf_stat_rx_cksum_no_need;
2523
2524 (knp++)->value.ui64 = xnfp->xnf_stat_interrupts;
2525 (knp++)->value.ui64 = xnfp->xnf_stat_unclaimed_interrupts;
2526 (knp++)->value.ui64 = xnfp->xnf_stat_tx_pullup;
2527 (knp++)->value.ui64 = xnfp->xnf_stat_tx_pagebndry;
2528 (knp++)->value.ui64 = xnfp->xnf_stat_tx_attempt;
2529
2530 (knp++)->value.ui64 = xnfp->xnf_stat_buf_allocated;
2531 (knp++)->value.ui64 = xnfp->xnf_stat_buf_outstanding;
2532 (knp++)->value.ui64 = xnfp->xnf_stat_gref_outstanding;
2533 (knp++)->value.ui64 = xnfp->xnf_stat_gref_failure;
2534 (knp++)->value.ui64 = xnfp->xnf_stat_gref_peak;
2535 (knp++)->value.ui64 = xnfp->xnf_stat_rx_allocb_fail;
2536 (knp++)->value.ui64 = xnfp->xnf_stat_rx_desballoc_fail;
2537
2538 return (0);
2539 }
2540
2541 static boolean_t
xnf_kstat_init(xnf_t * xnfp)2542 xnf_kstat_init(xnf_t *xnfp)
2543 {
2544 int nstat = sizeof (xnf_aux_statistics) /
2545 sizeof (xnf_aux_statistics[0]);
2546 char **cp = xnf_aux_statistics;
2547 kstat_named_t *knp;
2548
2549 /*
2550 * Create and initialise kstats.
2551 */
2552 if ((xnfp->xnf_kstat_aux = kstat_create("xnf",
2553 ddi_get_instance(xnfp->xnf_devinfo),
2554 "aux_statistics", "net", KSTAT_TYPE_NAMED,
2555 nstat, 0)) == NULL)
2556 return (B_FALSE);
2557
2558 xnfp->xnf_kstat_aux->ks_private = xnfp;
2559 xnfp->xnf_kstat_aux->ks_update = xnf_kstat_aux_update;
2560
2561 knp = xnfp->xnf_kstat_aux->ks_data;
2562 while (nstat > 0) {
2563 kstat_named_init(knp, *cp, KSTAT_DATA_UINT64);
2564
2565 knp++;
2566 cp++;
2567 nstat--;
2568 }
2569
2570 kstat_install(xnfp->xnf_kstat_aux);
2571
2572 return (B_TRUE);
2573 }
2574
2575 static int
xnf_stat(void * arg,uint_t stat,uint64_t * val)2576 xnf_stat(void *arg, uint_t stat, uint64_t *val)
2577 {
2578 xnf_t *xnfp = arg;
2579
2580 mutex_enter(&xnfp->xnf_rxlock);
2581 mutex_enter(&xnfp->xnf_txlock);
2582
2583 #define mac_stat(q, r) \
2584 case (MAC_STAT_##q): \
2585 *val = xnfp->xnf_stat_##r; \
2586 break
2587
2588 #define ether_stat(q, r) \
2589 case (ETHER_STAT_##q): \
2590 *val = xnfp->xnf_stat_##r; \
2591 break
2592
2593 switch (stat) {
2594
2595 mac_stat(IPACKETS, ipackets);
2596 mac_stat(OPACKETS, opackets);
2597 mac_stat(RBYTES, rbytes);
2598 mac_stat(OBYTES, obytes);
2599 mac_stat(NORCVBUF, norxbuf);
2600 mac_stat(IERRORS, errrx);
2601 mac_stat(NOXMTBUF, tx_defer);
2602
2603 ether_stat(MACRCV_ERRORS, mac_rcv_error);
2604 ether_stat(TOOSHORT_ERRORS, runt);
2605
2606 /* always claim to be in full duplex mode */
2607 case ETHER_STAT_LINK_DUPLEX:
2608 *val = LINK_DUPLEX_FULL;
2609 break;
2610
2611 /* always claim to be at 1Gb/s link speed */
2612 case MAC_STAT_IFSPEED:
2613 *val = 1000000000ull;
2614 break;
2615
2616 default:
2617 mutex_exit(&xnfp->xnf_txlock);
2618 mutex_exit(&xnfp->xnf_rxlock);
2619
2620 return (ENOTSUP);
2621 }
2622
2623 #undef mac_stat
2624 #undef ether_stat
2625
2626 mutex_exit(&xnfp->xnf_txlock);
2627 mutex_exit(&xnfp->xnf_rxlock);
2628
2629 return (0);
2630 }
2631
2632 static boolean_t
xnf_getcapab(void * arg,mac_capab_t cap,void * cap_data)2633 xnf_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2634 {
2635 _NOTE(ARGUNUSED(arg));
2636
2637 switch (cap) {
2638 case MAC_CAPAB_HCKSUM: {
2639 uint32_t *capab = cap_data;
2640
2641 /*
2642 * Whilst the flag used to communicate with the IO
2643 * domain is called "NETTXF_csum_blank", the checksum
2644 * in the packet must contain the pseudo-header
2645 * checksum and not zero.
2646 *
2647 * To help out the IO domain, we might use
2648 * HCKSUM_INET_PARTIAL. Unfortunately our stack will
2649 * then use checksum offload for IPv6 packets, which
2650 * the IO domain can't handle.
2651 *
2652 * As a result, we declare outselves capable of
2653 * HCKSUM_INET_FULL_V4. This means that we receive
2654 * IPv4 packets from the stack with a blank checksum
2655 * field and must insert the pseudo-header checksum
2656 * before passing the packet to the IO domain.
2657 */
2658 *capab = HCKSUM_INET_FULL_V4;
2659 break;
2660 }
2661 default:
2662 return (B_FALSE);
2663 }
2664
2665 return (B_TRUE);
2666 }
2667
2668 /*
2669 * The state of the peer has changed - react accordingly.
2670 */
2671 static void
oe_state_change(dev_info_t * dip,ddi_eventcookie_t id,void * arg,void * impl_data)2672 oe_state_change(dev_info_t *dip, ddi_eventcookie_t id,
2673 void *arg, void *impl_data)
2674 {
2675 _NOTE(ARGUNUSED(id, arg));
2676 xnf_t *xnfp = ddi_get_driver_private(dip);
2677 XenbusState new_state = *(XenbusState *)impl_data;
2678
2679 ASSERT(xnfp != NULL);
2680
2681 switch (new_state) {
2682 case XenbusStateUnknown:
2683 case XenbusStateInitialising:
2684 case XenbusStateInitialised:
2685 case XenbusStateClosing:
2686 case XenbusStateClosed:
2687 case XenbusStateReconfiguring:
2688 case XenbusStateReconfigured:
2689 break;
2690
2691 case XenbusStateInitWait:
2692 xnf_read_config(xnfp);
2693
2694 if (!xnfp->xnf_be_rx_copy) {
2695 cmn_err(CE_WARN,
2696 "The xnf driver requires a dom0 that "
2697 "supports 'feature-rx-copy'.");
2698 (void) xvdi_switch_state(xnfp->xnf_devinfo,
2699 XBT_NULL, XenbusStateClosed);
2700 break;
2701 }
2702
2703 /*
2704 * Connect to the backend.
2705 */
2706 xnf_be_connect(xnfp);
2707
2708 /*
2709 * Our MAC address as discovered by xnf_read_config().
2710 */
2711 mac_unicst_update(xnfp->xnf_mh, xnfp->xnf_mac_addr);
2712
2713 break;
2714
2715 case XenbusStateConnected:
2716 mutex_enter(&xnfp->xnf_rxlock);
2717 mutex_enter(&xnfp->xnf_txlock);
2718
2719 xnfp->xnf_connected = B_TRUE;
2720 /*
2721 * Wake up any threads waiting to send data to
2722 * backend.
2723 */
2724 cv_broadcast(&xnfp->xnf_cv_state);
2725
2726 mutex_exit(&xnfp->xnf_txlock);
2727 mutex_exit(&xnfp->xnf_rxlock);
2728
2729 /*
2730 * Kick the peer in case it missed any transmits
2731 * request in the TX ring.
2732 */
2733 ec_notify_via_evtchn(xnfp->xnf_evtchn);
2734
2735 /*
2736 * There may already be completed receive requests in
2737 * the ring sent by backend after it gets connected
2738 * but before we see its state change here, so we call
2739 * xnf_intr() to handle them, if any.
2740 */
2741 (void) xnf_intr((caddr_t)xnfp);
2742
2743 /*
2744 * Mark the link up now that we are connected.
2745 */
2746 mac_link_update(xnfp->xnf_mh, LINK_STATE_UP);
2747
2748 /*
2749 * Tell the backend about the multicast addresses in
2750 * which we are interested.
2751 */
2752 mac_multicast_refresh(xnfp->xnf_mh, NULL, xnfp, B_TRUE);
2753
2754 break;
2755
2756 default:
2757 break;
2758 }
2759 }
2760