xref: /titanic_50/usr/src/uts/common/io/afe/afe.c (revision 0dc2366f7b9f9f36e10909b1e95edbf2a261c2ac)
1 /*
2  * Solaris driver for ethernet cards based on the ADMtek Centaur
3  *
4  * Copyright (c) 2007 by Garrett D'Amore <garrett@damore.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the author nor the names of any co-contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS''
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
33  * Use is subject to license terms.
34  */
35 
36 
37 #include <sys/varargs.h>
38 #include <sys/types.h>
39 #include <sys/modctl.h>
40 #include <sys/conf.h>
41 #include <sys/devops.h>
42 #include <sys/stream.h>
43 #include <sys/strsun.h>
44 #include <sys/cmn_err.h>
45 #include <sys/ethernet.h>
46 #include <sys/kmem.h>
47 #include <sys/time.h>
48 #include <sys/crc32.h>
49 #include <sys/mii.h>
50 #include <sys/miiregs.h>
51 #include <sys/mac.h>
52 #include <sys/mac_ether.h>
53 #include <sys/ddi.h>
54 #include <sys/sunddi.h>
55 #include <sys/vlan.h>
56 
57 #include "afe.h"
58 #include "afeimpl.h"
59 
60 /*
61  * Driver globals.
62  */
63 
64 /* table of supported devices */
65 static afe_card_t afe_cards[] = {
66 
67 	/*
68 	 * ADMtek Centaur and Comet
69 	 */
70 	{ 0x1317, 0x0981, "ADMtek AL981", MODEL_COMET },
71 	{ 0x1317, 0x0985, "ADMtek AN983", MODEL_CENTAUR },
72 	{ 0x1317, 0x1985, "ADMtek AN985", MODEL_CENTAUR },
73 	{ 0x1317, 0x9511, "ADMtek ADM9511", MODEL_CENTAUR },
74 	{ 0x1317, 0x9513, "ADMtek ADM9513", MODEL_CENTAUR },
75 	/*
76 	 * Accton just relabels other companies' controllers
77 	 */
78 	{ 0x1113, 0x1216, "Accton EN5251", MODEL_CENTAUR },
79 	/*
80 	 * Models listed here.
81 	 */
82 	{ 0x10b7, 0x9300, "3Com 3CSOHO100B-TX", MODEL_CENTAUR },
83 	{ 0x1113, 0xec02, "SMC SMC1244TX", MODEL_CENTAUR },
84 	{ 0x10b8, 0x1255, "SMC SMC1255TX", MODEL_CENTAUR },
85 	{ 0x111a, 0x1020, "Siemens SpeedStream PCI 10/100", MODEL_CENTAUR },
86 	{ 0x1113, 0x1207, "Accton EN1207F", MODEL_CENTAUR },
87 	{ 0x1113, 0x2242, "Accton EN2242", MODEL_CENTAUR },
88 	{ 0x1113, 0x2220, "Accton EN2220", MODEL_CENTAUR },
89 	{ 0x1113, 0x9216, "3M VOL-N100VF+TX", MODEL_CENTAUR },
90 	{ 0x1317, 0x0574, "Linksys LNE100TX", MODEL_CENTAUR },
91 	{ 0x1317, 0x0570, "Linksys NC100", MODEL_CENTAUR },
92 	{ 0x1385, 0x511a, "Netgear FA511", MODEL_CENTAUR },
93 	{ 0x13d1, 0xab02, "AboCom FE2500", MODEL_CENTAUR },
94 	{ 0x13d1, 0xab03, "AboCom PCM200", MODEL_CENTAUR },
95 	{ 0x13d1, 0xab08, "AboCom FE2500MX", MODEL_CENTAUR },
96 	{ 0x1414, 0x0001, "Microsoft MN-120", MODEL_CENTAUR },
97 	{ 0x16ec, 0x00ed, "U.S. Robotics USR997900", MODEL_CENTAUR },
98 	{ 0x1734, 0x100c, "Fujitsu-Siemens D1961", MODEL_CENTAUR },
99 	{ 0x1737, 0xab08, "Linksys PCMPC200", MODEL_CENTAUR },
100 	{ 0x1737, 0xab09, "Linksys PCM200", MODEL_CENTAUR },
101 	{ 0x17b3, 0xab08, "Hawking PN672TX", MODEL_CENTAUR },
102 };
103 
104 #define	ETHERVLANMTU	(ETHERMAX + 4)
105 
106 /*
107  * Function prototypes
108  */
109 static int	afe_attach(dev_info_t *, ddi_attach_cmd_t);
110 static int	afe_detach(dev_info_t *, ddi_detach_cmd_t);
111 static int	afe_resume(dev_info_t *);
112 static int	afe_quiesce(dev_info_t *);
113 static int	afe_m_unicst(void *, const uint8_t *);
114 static int	afe_m_multicst(void *, boolean_t, const uint8_t *);
115 static int	afe_m_promisc(void *, boolean_t);
116 static mblk_t	*afe_m_tx(void *, mblk_t *);
117 static void	afe_m_ioctl(void *, queue_t *, mblk_t *);
118 static int	afe_m_stat(void *, uint_t, uint64_t *);
119 static int	afe_m_start(void *);
120 static void	afe_m_stop(void *);
121 static int	afe_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
122     void *);
123 static int	afe_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
124     const void *);
125 static void	afe_m_propinfo(void *, const char *, mac_prop_id_t,
126     mac_prop_info_handle_t);
127 static unsigned	afe_intr(caddr_t);
128 static void	afe_startmac(afe_t *);
129 static void	afe_stopmac(afe_t *);
130 static void	afe_resetrings(afe_t *);
131 static boolean_t	afe_initialize(afe_t *);
132 static void	afe_startall(afe_t *);
133 static void	afe_stopall(afe_t *);
134 static void	afe_resetall(afe_t *);
135 static afe_txbuf_t *afe_alloctxbuf(afe_t *);
136 static void	afe_destroytxbuf(afe_txbuf_t *);
137 static afe_rxbuf_t *afe_allocrxbuf(afe_t *);
138 static void	afe_destroyrxbuf(afe_rxbuf_t *);
139 static boolean_t	afe_send(afe_t *, mblk_t *);
140 static int	afe_allocrxring(afe_t *);
141 static void	afe_freerxring(afe_t *);
142 static int	afe_alloctxring(afe_t *);
143 static void	afe_freetxring(afe_t *);
144 static void	afe_error(dev_info_t *, char *, ...);
145 static void	afe_setrxfilt(afe_t *);
146 static int	afe_watchdog(afe_t *);
147 static uint8_t	afe_sromwidth(afe_t *);
148 static uint16_t	afe_readsromword(afe_t *, unsigned);
149 static void	afe_readsrom(afe_t *, unsigned, unsigned, char *);
150 static void	afe_getfactaddr(afe_t *, uchar_t *);
151 static uint8_t	afe_miireadbit(afe_t *);
152 static void	afe_miiwritebit(afe_t *, uint8_t);
153 static void	afe_miitristate(afe_t *);
154 static uint16_t	afe_miireadgeneral(afe_t *, uint8_t, uint8_t);
155 static void	afe_miiwritegeneral(afe_t *, uint8_t, uint8_t, uint16_t);
156 static uint16_t	afe_miireadcomet(afe_t *, uint8_t, uint8_t);
157 static void	afe_miiwritecomet(afe_t *, uint8_t, uint8_t, uint16_t);
158 static uint16_t	afe_mii_read(void *, uint8_t, uint8_t);
159 static void	afe_mii_write(void *, uint8_t, uint8_t, uint16_t);
160 static void	afe_mii_notify(void *, link_state_t);
161 static void	afe_mii_reset(void *);
162 static void	afe_disableinterrupts(afe_t *);
163 static void	afe_enableinterrupts(afe_t *);
164 static void	afe_reclaim(afe_t *);
165 static mblk_t	*afe_receive(afe_t *);
166 
167 #define	KIOIP	KSTAT_INTR_PTR(afep->afe_intrstat)
168 
169 static mii_ops_t afe_mii_ops = {
170 	MII_OPS_VERSION,
171 	afe_mii_read,
172 	afe_mii_write,
173 	afe_mii_notify,
174 	afe_mii_reset
175 };
176 
177 static mac_callbacks_t afe_m_callbacks = {
178 	MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
179 	afe_m_stat,
180 	afe_m_start,
181 	afe_m_stop,
182 	afe_m_promisc,
183 	afe_m_multicst,
184 	afe_m_unicst,
185 	afe_m_tx,
186 	NULL,
187 	afe_m_ioctl,	/* mc_ioctl */
188 	NULL,		/* mc_getcapab */
189 	NULL,		/* mc_open */
190 	NULL,		/* mc_close */
191 	afe_m_setprop,
192 	afe_m_getprop,
193 	afe_m_propinfo
194 };
195 
196 
197 /*
198  * Stream information
199  */
200 DDI_DEFINE_STREAM_OPS(afe_devops, nulldev, nulldev, afe_attach, afe_detach,
201     nodev, NULL, D_MP, NULL, afe_quiesce);
202 
203 /*
204  * Module linkage information.
205  */
206 
207 static struct modldrv afe_modldrv = {
208 	&mod_driverops,			/* drv_modops */
209 	"ADMtek Fast Ethernet",		/* drv_linkinfo */
210 	&afe_devops			/* drv_dev_ops */
211 };
212 
213 static struct modlinkage afe_modlinkage = {
214 	MODREV_1,		/* ml_rev */
215 	{ &afe_modldrv, NULL }	/* ml_linkage */
216 };
217 
218 /*
219  * Device attributes.
220  */
221 static ddi_device_acc_attr_t afe_devattr = {
222 	DDI_DEVICE_ATTR_V0,
223 	DDI_STRUCTURE_LE_ACC,
224 	DDI_STRICTORDER_ACC
225 };
226 
227 static ddi_device_acc_attr_t afe_bufattr = {
228 	DDI_DEVICE_ATTR_V0,
229 	DDI_NEVERSWAP_ACC,
230 	DDI_STRICTORDER_ACC
231 };
232 
233 static ddi_dma_attr_t afe_dma_attr = {
234 	DMA_ATTR_V0,		/* dma_attr_version */
235 	0,			/* dma_attr_addr_lo */
236 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
237 	0x7FFFFFFFU,		/* dma_attr_count_max */
238 	4,			/* dma_attr_align */
239 	0x3F,			/* dma_attr_burstsizes */
240 	1,			/* dma_attr_minxfer */
241 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
242 	0xFFFFFFFFU,		/* dma_attr_seg */
243 	1,			/* dma_attr_sgllen */
244 	1,			/* dma_attr_granular */
245 	0			/* dma_attr_flags */
246 };
247 
248 /*
249  * Tx buffers can be arbitrarily aligned.  Additionally, they can
250  * cross a page boundary, so we use the two buffer addresses of the
251  * chip to provide a two-entry scatter-gather list.
252  */
253 static ddi_dma_attr_t afe_dma_txattr = {
254 	DMA_ATTR_V0,		/* dma_attr_version */
255 	0,			/* dma_attr_addr_lo */
256 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
257 	0x7FFFFFFFU,		/* dma_attr_count_max */
258 	1,			/* dma_attr_align */
259 	0x3F,			/* dma_attr_burstsizes */
260 	1,			/* dma_attr_minxfer */
261 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
262 	0xFFFFFFFFU,		/* dma_attr_seg */
263 	2,			/* dma_attr_sgllen */
264 	1,			/* dma_attr_granular */
265 	0			/* dma_attr_flags */
266 };
267 
268 /*
269  * Ethernet addresses.
270  */
271 static uchar_t afe_broadcast[ETHERADDRL] = {
272 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
273 };
274 
275 /*
276  * DDI entry points.
277  */
278 int
_init(void)279 _init(void)
280 {
281 	int	rv;
282 	mac_init_ops(&afe_devops, "afe");
283 	if ((rv = mod_install(&afe_modlinkage)) != DDI_SUCCESS) {
284 		mac_fini_ops(&afe_devops);
285 	}
286 	return (rv);
287 }
288 
289 int
_fini(void)290 _fini(void)
291 {
292 	int	rv;
293 	if ((rv = mod_remove(&afe_modlinkage)) == DDI_SUCCESS) {
294 		mac_fini_ops(&afe_devops);
295 	}
296 	return (rv);
297 }
298 
299 int
_info(struct modinfo * modinfop)300 _info(struct modinfo *modinfop)
301 {
302 	return (mod_info(&afe_modlinkage, modinfop));
303 }
304 
305 int
afe_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)306 afe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
307 {
308 	afe_t			*afep;
309 	mac_register_t		*macp;
310 	int			inst = ddi_get_instance(dip);
311 	ddi_acc_handle_t	pci;
312 	uint16_t		venid;
313 	uint16_t		devid;
314 	uint16_t		svid;
315 	uint16_t		ssid;
316 	uint16_t		cachesize;
317 	afe_card_t		*cardp;
318 	int			i;
319 
320 	switch (cmd) {
321 	case DDI_RESUME:
322 		return (afe_resume(dip));
323 
324 	case DDI_ATTACH:
325 		break;
326 
327 	default:
328 		return (DDI_FAILURE);
329 	}
330 
331 	/* this card is a bus master, reject any slave-only slot */
332 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
333 		afe_error(dip, "slot does not support PCI bus-master");
334 		return (DDI_FAILURE);
335 	}
336 	/* PCI devices shouldn't generate hilevel interrupts */
337 	if (ddi_intr_hilevel(dip, 0) != 0) {
338 		afe_error(dip, "hilevel interrupts not supported");
339 		return (DDI_FAILURE);
340 	}
341 	if (pci_config_setup(dip, &pci) != DDI_SUCCESS) {
342 		afe_error(dip, "unable to setup PCI config handle");
343 		return (DDI_FAILURE);
344 	}
345 
346 	venid = pci_config_get16(pci, PCI_VID);
347 	devid = pci_config_get16(pci, PCI_DID);
348 	svid = pci_config_get16(pci, PCI_SVID);
349 	ssid = pci_config_get16(pci, PCI_SSID);
350 
351 	/*
352 	 * Note: ADMtek boards seem to misprogram themselves with bogus
353 	 * timings, which do not seem to work properly on SPARC.  We
354 	 * reprogram them zero (but only if they appear to be broken),
355 	 * which seems to at least work.  Its unclear that this is a
356 	 * legal or wise practice to me, but it certainly works better
357 	 * than the original values.  (I would love to hear
358 	 * suggestions for better values, or a better strategy.)
359 	 */
360 	if ((pci_config_get8(pci, PCI_MINGNT) == 0xff) &&
361 	    (pci_config_get8(pci, PCI_MAXLAT) == 0xff)) {
362 		pci_config_put8(pci, PCI_MINGNT, 0);
363 		pci_config_put8(pci, PCI_MAXLAT, 0);
364 	}
365 
366 	/*
367 	 * the last entry in the card table matches every possible
368 	 * card, so the for-loop always terminates properly.
369 	 */
370 	cardp = NULL;
371 	for (i = 0; i < (sizeof (afe_cards) / sizeof (afe_card_t)); i++) {
372 		if ((venid == afe_cards[i].card_venid) &&
373 		    (devid == afe_cards[i].card_devid)) {
374 			cardp = &afe_cards[i];
375 		}
376 		if ((svid == afe_cards[i].card_venid) &&
377 		    (ssid == afe_cards[i].card_devid)) {
378 			cardp = &afe_cards[i];
379 			break;
380 		}
381 	}
382 
383 	if (cardp == NULL) {
384 		pci_config_teardown(&pci);
385 		afe_error(dip, "Unable to identify PCI card");
386 		return (DDI_FAILURE);
387 	}
388 
389 	if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
390 	    cardp->card_cardname) != DDI_PROP_SUCCESS) {
391 		pci_config_teardown(&pci);
392 		afe_error(dip, "Unable to create model property");
393 		return (DDI_FAILURE);
394 	}
395 
396 	/*
397 	 * Grab the PCI cachesize -- we use this to program the
398 	 * cache-optimization bus access bits.
399 	 */
400 	cachesize = pci_config_get8(pci, PCI_CLS);
401 
402 	/* this cannot fail */
403 	afep = kmem_zalloc(sizeof (afe_t), KM_SLEEP);
404 	ddi_set_driver_private(dip, afep);
405 
406 	/* get the interrupt block cookie */
407 	if (ddi_get_iblock_cookie(dip, 0, &afep->afe_icookie) != DDI_SUCCESS) {
408 		afe_error(dip, "ddi_get_iblock_cookie failed");
409 		pci_config_teardown(&pci);
410 		kmem_free(afep, sizeof (afe_t));
411 		return (DDI_FAILURE);
412 	}
413 
414 	afep->afe_dip = dip;
415 	afep->afe_cardp = cardp;
416 	afep->afe_phyaddr = -1;
417 	afep->afe_cachesize = cachesize;
418 
419 	afep->afe_forcefiber = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
420 	    "fiber", 0);
421 
422 	mutex_init(&afep->afe_xmtlock, NULL, MUTEX_DRIVER, afep->afe_icookie);
423 	mutex_init(&afep->afe_intrlock, NULL, MUTEX_DRIVER, afep->afe_icookie);
424 
425 	/*
426 	 * Enable bus master, IO space, and memory space accesses.
427 	 */
428 	pci_config_put16(pci, PCI_CMD,
429 	    pci_config_get16(pci, PCI_CMD) | PCI_CMD_BME | PCI_CMD_MAE);
430 
431 	/* we're done with this now, drop it */
432 	pci_config_teardown(&pci);
433 
434 	/*
435 	 * Initialize interrupt kstat.  This should not normally fail, since
436 	 * we don't use a persistent stat.  We do it this way to avoid having
437 	 * to test for it at run time on the hot path.
438 	 */
439 	afep->afe_intrstat = kstat_create("afe", inst, "intr", "controller",
440 	    KSTAT_TYPE_INTR, 1, 0);
441 	if (afep->afe_intrstat == NULL) {
442 		afe_error(dip, "kstat_create failed");
443 		goto failed;
444 	}
445 	kstat_install(afep->afe_intrstat);
446 
447 	/*
448 	 * Set up the MII.
449 	 */
450 	if ((afep->afe_mii = mii_alloc(afep, dip, &afe_mii_ops)) == NULL) {
451 		goto failed;
452 	}
453 
454 	/*
455 	 * Centaur can support PAUSE, but Comet can't.
456 	 */
457 	if (AFE_MODEL(afep) == MODEL_CENTAUR) {
458 		mii_set_pauseable(afep->afe_mii, B_TRUE, B_FALSE);
459 	} else {
460 		mii_set_pauseable(afep->afe_mii, B_FALSE, B_FALSE);
461 	}
462 
463 	/*
464 	 * Map in the device registers.
465 	 */
466 	if (ddi_regs_map_setup(dip, 1, (caddr_t *)&afep->afe_regs,
467 	    0, 0, &afe_devattr, &afep->afe_regshandle)) {
468 		afe_error(dip, "ddi_regs_map_setup failed");
469 		goto failed;
470 	}
471 
472 	/*
473 	 * Allocate DMA resources (descriptor rings and buffers).
474 	 */
475 	if ((afe_allocrxring(afep) != DDI_SUCCESS) ||
476 	    (afe_alloctxring(afep) != DDI_SUCCESS)) {
477 		afe_error(dip, "unable to allocate DMA resources");
478 		goto failed;
479 	}
480 
481 	/* Initialize the chip. */
482 	mutex_enter(&afep->afe_intrlock);
483 	mutex_enter(&afep->afe_xmtlock);
484 	if (!afe_initialize(afep)) {
485 		mutex_exit(&afep->afe_xmtlock);
486 		mutex_exit(&afep->afe_intrlock);
487 		goto failed;
488 	}
489 	mutex_exit(&afep->afe_xmtlock);
490 	mutex_exit(&afep->afe_intrlock);
491 
492 	/* Determine the number of address bits to our EEPROM. */
493 	afep->afe_sromwidth = afe_sromwidth(afep);
494 
495 	/*
496 	 * Get the factory ethernet address.  This becomes the current
497 	 * ethernet address (it can be overridden later via ifconfig).
498 	 */
499 	afe_getfactaddr(afep, afep->afe_curraddr);
500 	afep->afe_promisc = B_FALSE;
501 
502 	/* make sure we add configure the initial filter */
503 	(void) afe_m_unicst(afep, afep->afe_curraddr);
504 	(void) afe_m_multicst(afep, B_TRUE, afe_broadcast);
505 
506 	/*
507 	 * Establish interrupt handler.
508 	 */
509 	if (ddi_add_intr(dip, 0, NULL, NULL, afe_intr, (caddr_t)afep) !=
510 	    DDI_SUCCESS) {
511 		afe_error(dip, "unable to add interrupt");
512 		goto failed;
513 	}
514 
515 	/* TODO: do the power management stuff */
516 
517 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
518 		afe_error(dip, "mac_alloc failed");
519 		goto failed;
520 	}
521 
522 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
523 	macp->m_driver = afep;
524 	macp->m_dip = dip;
525 	macp->m_src_addr = afep->afe_curraddr;
526 	macp->m_callbacks = &afe_m_callbacks;
527 	macp->m_min_sdu = 0;
528 	macp->m_max_sdu = ETHERMTU;
529 	macp->m_margin = VLAN_TAGSZ;
530 
531 	if (mac_register(macp, &afep->afe_mh) == DDI_SUCCESS) {
532 		mac_free(macp);
533 		return (DDI_SUCCESS);
534 	}
535 
536 	/* failed to register with MAC */
537 	mac_free(macp);
538 failed:
539 	if (afep->afe_icookie != NULL) {
540 		ddi_remove_intr(dip, 0, afep->afe_icookie);
541 	}
542 	if (afep->afe_intrstat) {
543 		kstat_delete(afep->afe_intrstat);
544 	}
545 	mutex_destroy(&afep->afe_intrlock);
546 	mutex_destroy(&afep->afe_xmtlock);
547 
548 	afe_freerxring(afep);
549 	afe_freetxring(afep);
550 
551 	if (afep->afe_regshandle != NULL) {
552 		ddi_regs_map_free(&afep->afe_regshandle);
553 	}
554 	kmem_free(afep, sizeof (afe_t));
555 	return (DDI_FAILURE);
556 }
557 
558 int
afe_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)559 afe_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
560 {
561 	afe_t		*afep;
562 
563 	afep = ddi_get_driver_private(dip);
564 	if (afep == NULL) {
565 		afe_error(dip, "no soft state in detach!");
566 		return (DDI_FAILURE);
567 	}
568 
569 	switch (cmd) {
570 	case DDI_DETACH:
571 
572 		if (mac_unregister(afep->afe_mh) != 0) {
573 			return (DDI_FAILURE);
574 		}
575 
576 		/* make sure hardware is quiesced */
577 		mutex_enter(&afep->afe_intrlock);
578 		mutex_enter(&afep->afe_xmtlock);
579 		afep->afe_flags &= ~AFE_RUNNING;
580 		afe_stopall(afep);
581 		mutex_exit(&afep->afe_xmtlock);
582 		mutex_exit(&afep->afe_intrlock);
583 
584 		/* clean up and shut down device */
585 		ddi_remove_intr(dip, 0, afep->afe_icookie);
586 
587 		/* clean up MII layer */
588 		mii_free(afep->afe_mii);
589 
590 		/* clean up kstats */
591 		kstat_delete(afep->afe_intrstat);
592 
593 		ddi_prop_remove_all(dip);
594 
595 		/* free up any left over buffers or DMA resources */
596 		afe_freerxring(afep);
597 		afe_freetxring(afep);
598 
599 		ddi_regs_map_free(&afep->afe_regshandle);
600 		mutex_destroy(&afep->afe_intrlock);
601 		mutex_destroy(&afep->afe_xmtlock);
602 
603 		kmem_free(afep, sizeof (afe_t));
604 		return (DDI_SUCCESS);
605 
606 	case DDI_SUSPEND:
607 		/* stop MII monitoring */
608 		mii_suspend(afep->afe_mii);
609 
610 		/* quiesce the hardware */
611 		mutex_enter(&afep->afe_intrlock);
612 		mutex_enter(&afep->afe_xmtlock);
613 		afep->afe_flags |= AFE_SUSPENDED;
614 		afe_stopall(afep);
615 		mutex_exit(&afep->afe_xmtlock);
616 		mutex_exit(&afep->afe_intrlock);
617 		return (DDI_SUCCESS);
618 	default:
619 		return (DDI_FAILURE);
620 	}
621 }
622 
623 int
afe_resume(dev_info_t * dip)624 afe_resume(dev_info_t *dip)
625 {
626 	afe_t	*afep;
627 
628 	if ((afep = ddi_get_driver_private(dip)) == NULL) {
629 		return (DDI_FAILURE);
630 	}
631 
632 	mutex_enter(&afep->afe_intrlock);
633 	mutex_enter(&afep->afe_xmtlock);
634 
635 	afep->afe_flags &= ~AFE_SUSPENDED;
636 
637 	/* re-initialize chip */
638 	if (!afe_initialize(afep)) {
639 		afe_error(afep->afe_dip, "unable to resume chip!");
640 		afep->afe_flags |= AFE_SUSPENDED;
641 		mutex_exit(&afep->afe_intrlock);
642 		mutex_exit(&afep->afe_xmtlock);
643 		return (DDI_SUCCESS);
644 	}
645 
646 	/* start the chip */
647 	if (afep->afe_flags & AFE_RUNNING) {
648 		afe_startall(afep);
649 	}
650 
651 	/* drop locks */
652 	mutex_exit(&afep->afe_xmtlock);
653 	mutex_exit(&afep->afe_intrlock);
654 
655 	mii_resume(afep->afe_mii);
656 
657 	return (DDI_SUCCESS);
658 }
659 
660 int
afe_quiesce(dev_info_t * dip)661 afe_quiesce(dev_info_t *dip)
662 {
663 	afe_t	*afep;
664 
665 	if ((afep = ddi_get_driver_private(dip)) == NULL) {
666 		return (DDI_FAILURE);
667 	}
668 
669 	SETBIT(afep, CSR_PAR, PAR_RESET);
670 	/*
671 	 * At 66 MHz it is 16 nsec per access or more (always more)
672 	 * So we need 3,333 times to retry for 50 usec.  We just
673 	 * round up to 5000 times.  Unless the hardware is horked,
674 	 * it will always terminate *well* before that anyway.
675 	 */
676 	for (int i = 0; i < 5000; i++) {
677 		if ((GETCSR(afep, CSR_PAR) & PAR_RESET) == 0) {
678 			return (DDI_SUCCESS);
679 		}
680 	}
681 
682 	/* hardware didn't quiesce - force a full reboot (PCI reset) */
683 	return (DDI_FAILURE);
684 }
685 
686 void
afe_setrxfilt(afe_t * afep)687 afe_setrxfilt(afe_t *afep)
688 {
689 	unsigned rxen, pa0, pa1;
690 
691 	if (afep->afe_flags & AFE_SUSPENDED) {
692 		/* don't touch a suspended interface */
693 		return;
694 	}
695 
696 	rxen = GETCSR(afep, CSR_NAR) & NAR_RX_ENABLE;
697 
698 	/* stop receiver */
699 	if (rxen) {
700 		afe_stopmac(afep);
701 	}
702 
703 	/* program promiscuous mode */
704 	if (afep->afe_promisc)
705 		SETBIT(afep, CSR_NAR, NAR_RX_PROMISC);
706 	else
707 		CLRBIT(afep, CSR_NAR, NAR_RX_PROMISC);
708 
709 	/* program mac address */
710 	pa0 = (afep->afe_curraddr[3] << 24) | (afep->afe_curraddr[2] << 16) |
711 	    (afep->afe_curraddr[1] << 8) | afep->afe_curraddr[0];
712 	pa1 = (afep->afe_curraddr[5] << 8) | afep->afe_curraddr[4];
713 
714 	PUTCSR(afep, CSR_PAR0, pa0);
715 	PUTCSR(afep, CSR_PAR1, pa1);
716 	if (rxen) {
717 		SETBIT(afep, CSR_NAR, rxen);
718 	}
719 
720 	/* program multicast filter */
721 	if (AFE_MODEL(afep) == MODEL_COMET) {
722 		if (afep->afe_mctab[0] || afep->afe_mctab[1]) {
723 			SETBIT(afep, CSR_NAR, NAR_RX_MULTI);
724 		} else {
725 			CLRBIT(afep, CSR_NAR, NAR_RX_MULTI);
726 		}
727 	} else {
728 		CLRBIT(afep, CSR_NAR, NAR_RX_MULTI);
729 		PUTCSR(afep, CSR_MAR0, afep->afe_mctab[0]);
730 		PUTCSR(afep, CSR_MAR1, afep->afe_mctab[1]);
731 	}
732 
733 	/* restart receiver */
734 	if (rxen) {
735 		afe_startmac(afep);
736 	}
737 }
738 
739 int
afe_watchdog(afe_t * afep)740 afe_watchdog(afe_t *afep)
741 {
742 	if ((afep->afe_txstall_time != 0) &&
743 	    (gethrtime() > afep->afe_txstall_time) &&
744 	    (afep->afe_txavail != AFE_TXRING)) {
745 		afep->afe_txstall_time = 0;
746 		afe_error(afep->afe_dip, "TX stall detected!");
747 		return (DDI_FAILURE);
748 	} else {
749 		return (DDI_SUCCESS);
750 	}
751 }
752 
753 int
afe_m_multicst(void * arg,boolean_t add,const uint8_t * macaddr)754 afe_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
755 {
756 	afe_t		*afep = arg;
757 	int		index;
758 	uint32_t	crc;
759 	uint32_t	bit;
760 	uint32_t	newval, oldval;
761 
762 	CRC32(crc, macaddr, ETHERADDRL, -1U, crc32_table);
763 	crc %= AFE_MCHASH;
764 
765 	/* bit within a 32-bit word */
766 	index = crc / 32;
767 	bit = (1 << (crc % 32));
768 
769 	mutex_enter(&afep->afe_intrlock);
770 	mutex_enter(&afep->afe_xmtlock);
771 	newval = oldval = afep->afe_mctab[index];
772 
773 	if (add) {
774 		afep->afe_mccount[crc]++;
775 		if (afep->afe_mccount[crc] == 1)
776 			newval |= bit;
777 	} else {
778 		afep->afe_mccount[crc]--;
779 		if (afep->afe_mccount[crc] == 0)
780 			newval &= ~bit;
781 	}
782 	if (newval != oldval) {
783 		afep->afe_mctab[index] = newval;
784 		afe_setrxfilt(afep);
785 	}
786 
787 	mutex_exit(&afep->afe_xmtlock);
788 	mutex_exit(&afep->afe_intrlock);
789 
790 	return (0);
791 }
792 
793 int
afe_m_promisc(void * arg,boolean_t on)794 afe_m_promisc(void *arg, boolean_t on)
795 {
796 	afe_t		*afep = arg;
797 
798 	/* exclusive access to the card while we reprogram it */
799 	mutex_enter(&afep->afe_intrlock);
800 	mutex_enter(&afep->afe_xmtlock);
801 	/* save current promiscuous mode state for replay in resume */
802 	afep->afe_promisc = on;
803 
804 	afe_setrxfilt(afep);
805 	mutex_exit(&afep->afe_xmtlock);
806 	mutex_exit(&afep->afe_intrlock);
807 
808 	return (0);
809 }
810 
811 int
afe_m_unicst(void * arg,const uint8_t * macaddr)812 afe_m_unicst(void *arg, const uint8_t *macaddr)
813 {
814 	afe_t		*afep = arg;
815 
816 	/* exclusive access to the card while we reprogram it */
817 	mutex_enter(&afep->afe_intrlock);
818 	mutex_enter(&afep->afe_xmtlock);
819 
820 	bcopy(macaddr, afep->afe_curraddr, ETHERADDRL);
821 	afe_setrxfilt(afep);
822 
823 	mutex_exit(&afep->afe_xmtlock);
824 	mutex_exit(&afep->afe_intrlock);
825 
826 	return (0);
827 }
828 
829 mblk_t *
afe_m_tx(void * arg,mblk_t * mp)830 afe_m_tx(void *arg, mblk_t *mp)
831 {
832 	afe_t	*afep = arg;
833 	mblk_t	*nmp;
834 
835 	mutex_enter(&afep->afe_xmtlock);
836 
837 	if (afep->afe_flags & AFE_SUSPENDED) {
838 		while ((nmp = mp) != NULL) {
839 			afep->afe_carrier_errors++;
840 			mp = mp->b_next;
841 			freemsg(nmp);
842 		}
843 		mutex_exit(&afep->afe_xmtlock);
844 		return (NULL);
845 	}
846 
847 	while (mp != NULL) {
848 		nmp = mp->b_next;
849 		mp->b_next = NULL;
850 
851 		if (!afe_send(afep, mp)) {
852 			mp->b_next = nmp;
853 			break;
854 		}
855 		mp = nmp;
856 	}
857 	mutex_exit(&afep->afe_xmtlock);
858 
859 	return (mp);
860 }
861 
862 void
afe_m_ioctl(void * arg,queue_t * wq,mblk_t * mp)863 afe_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
864 {
865 	afe_t	*afep = arg;
866 
867 	if (mii_m_loop_ioctl(afep->afe_mii, wq, mp))
868 		return;
869 
870 	miocnak(wq, mp, 0, EINVAL);
871 }
872 
873 /*
874  * Hardware management.
875  */
876 static boolean_t
afe_initialize(afe_t * afep)877 afe_initialize(afe_t *afep)
878 {
879 	int		i;
880 	unsigned	val;
881 	uint32_t	par, nar;
882 
883 	ASSERT(mutex_owned(&afep->afe_intrlock));
884 	ASSERT(mutex_owned(&afep->afe_xmtlock));
885 
886 	SETBIT(afep, CSR_PAR, PAR_RESET);
887 	for (i = 1; i < 10; i++) {
888 		drv_usecwait(5);
889 		val = GETCSR(afep, CSR_PAR);
890 		if (!(val & PAR_RESET)) {
891 			break;
892 		}
893 	}
894 	if (i == 10) {
895 		afe_error(afep->afe_dip, "timed out waiting for reset!");
896 		return (B_FALSE);
897 	}
898 
899 	/*
900 	 * Updated Centaur data sheets show that the Comet and Centaur are
901 	 * alike here (contrary to earlier versions of the data sheet).
902 	 */
903 	/* XXX:? chip problems */
904 	/* par = PAR_MRLE | PAR_MRME | PAR_MWIE; */
905 	par = 0;
906 	switch (afep->afe_cachesize) {
907 	case 8:
908 		par |= PAR_CALIGN_8 | PAR_BURST_8;
909 		break;
910 	case 16:
911 		par |= PAR_CALIGN_16 | PAR_BURST_16;
912 		break;
913 	case 32:
914 		par |= PAR_CALIGN_32 | PAR_BURST_32;
915 		break;
916 	default:
917 		par |= PAR_BURST_32;
918 		par &= ~(PAR_MWIE | PAR_MRLE | PAR_MRME);
919 		break;
920 
921 	}
922 
923 	PUTCSR(afep, CSR_PAR, par);
924 
925 	/* enable transmit underrun auto-recovery */
926 	SETBIT(afep, CSR_CR, CR_TXURAUTOR);
927 
928 	afe_resetrings(afep);
929 
930 	/* clear the lost packet counter (cleared on read) */
931 	(void) GETCSR(afep, CSR_LPC);
932 
933 	nar = GETCSR(afep, CSR_NAR);
934 	nar &= ~NAR_TR;		/* clear tx threshold */
935 	nar |= NAR_SF;		/* store-and-forward */
936 	nar |= NAR_HBD;		/* disable SQE test */
937 	PUTCSR(afep, CSR_NAR, nar);
938 
939 	afe_setrxfilt(afep);
940 
941 	return (B_TRUE);
942 }
943 
944 /*
945  * Serial EEPROM access - inspired by the FreeBSD implementation.
946  */
947 
948 uint8_t
afe_sromwidth(afe_t * afep)949 afe_sromwidth(afe_t *afep)
950 {
951 	int		i;
952 	uint32_t	eeread;
953 	uint8_t		addrlen = 8;
954 
955 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
956 
957 	PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
958 	drv_usecwait(1);
959 	PUTCSR(afep, CSR_SPR, eeread);
960 
961 	/* command bits first */
962 	for (i = 4; i != 0; i >>= 1) {
963 		unsigned val = (SROM_READCMD & i) ? SPR_SROM_DIN : 0;
964 
965 		PUTCSR(afep, CSR_SPR, eeread | val);
966 		drv_usecwait(1);
967 		PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
968 		drv_usecwait(1);
969 	}
970 
971 	PUTCSR(afep, CSR_SPR, eeread);
972 
973 	for (addrlen = 1; addrlen <= 12; addrlen++) {
974 		PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK);
975 		drv_usecwait(1);
976 		if (!(GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT)) {
977 			PUTCSR(afep, CSR_SPR, eeread);
978 			drv_usecwait(1);
979 			break;
980 		}
981 		PUTCSR(afep, CSR_SPR, eeread);
982 		drv_usecwait(1);
983 	}
984 
985 	/* turn off accesses to the EEPROM */
986 	PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
987 
988 	return ((addrlen < 4 || addrlen > 12) ? 6 : addrlen);
989 }
990 
991 /*
992  * The words in EEPROM are stored in little endian order.  We
993  * shift bits out in big endian order, though.  This requires
994  * a byte swap on some platforms.
995  */
996 uint16_t
afe_readsromword(afe_t * afep,unsigned romaddr)997 afe_readsromword(afe_t *afep, unsigned romaddr)
998 {
999 	int		i;
1000 	uint16_t	word = 0;
1001 	uint16_t	retval;
1002 	int		eeread;
1003 	uint8_t		addrlen;
1004 	int		readcmd;
1005 	uchar_t		*ptr;
1006 
1007 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
1008 	addrlen = afep->afe_sromwidth;
1009 	readcmd = (SROM_READCMD << addrlen) | romaddr;
1010 
1011 	if (romaddr >= (1 << addrlen)) {
1012 		/* too big to fit! */
1013 		return (0);
1014 	}
1015 
1016 	PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
1017 	PUTCSR(afep, CSR_SPR, eeread);
1018 
1019 	/* command and address bits */
1020 	for (i = 4 + addrlen; i >= 0; i--) {
1021 		short val = (readcmd & (1 << i)) ? SPR_SROM_DIN : 0;
1022 
1023 		PUTCSR(afep, CSR_SPR, eeread | val);
1024 		drv_usecwait(1);
1025 		PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
1026 		drv_usecwait(1);
1027 	}
1028 
1029 	PUTCSR(afep, CSR_SPR, eeread);
1030 
1031 	for (i = 0; i < 16; i++) {
1032 		PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK);
1033 		drv_usecwait(1);
1034 		word <<= 1;
1035 		if (GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT) {
1036 			word |= 1;
1037 		}
1038 		PUTCSR(afep, CSR_SPR, eeread);
1039 		drv_usecwait(1);
1040 	}
1041 
1042 	/* turn off accesses to the EEPROM */
1043 	PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
1044 
1045 	/*
1046 	 * Fix up the endianness thing.  Note that the values
1047 	 * are stored in little endian format on the SROM.
1048 	 */
1049 	ptr = (uchar_t *)&word;
1050 	retval = (ptr[1] << 8) | ptr[0];
1051 	return (retval);
1052 }
1053 
1054 void
afe_readsrom(afe_t * afep,unsigned romaddr,unsigned len,char * dest)1055 afe_readsrom(afe_t *afep, unsigned romaddr, unsigned len, char *dest)
1056 {
1057 	int	i;
1058 	uint16_t	word;
1059 	uint16_t	*ptr = (uint16_t *)((void *)dest);
1060 	for (i = 0; i < len; i++) {
1061 		word = afe_readsromword(afep, romaddr + i);
1062 		*ptr = word;
1063 		ptr++;
1064 	}
1065 }
1066 
1067 void
afe_getfactaddr(afe_t * afep,uchar_t * eaddr)1068 afe_getfactaddr(afe_t *afep, uchar_t *eaddr)
1069 {
1070 	afe_readsrom(afep, SROM_ENADDR, ETHERADDRL / 2, (char *)eaddr);
1071 }
1072 
1073 
1074 
1075 /*
1076  * MII management.
1077  */
1078 void
afe_mii_reset(void * arg)1079 afe_mii_reset(void *arg)
1080 {
1081 	afe_t		*afep = arg;
1082 	int		fiber;
1083 	uint16_t	mcr;
1084 	uint16_t	pilr;
1085 	uint8_t		phyaddr;
1086 
1087 	/*
1088 	 * Its entirely possible that this belongs as a PHY specific
1089 	 * override.
1090 	 */
1091 	if ((mii_get_id(afep->afe_mii) & 0xfffffff0) != 0x225410) {
1092 		/* if its not an AN983B, we don't care */
1093 		return;
1094 	}
1095 
1096 	phyaddr = mii_get_addr(afep->afe_mii);
1097 
1098 	fiber = 0;
1099 
1100 	switch (afep->afe_forcefiber) {
1101 	case 0:
1102 		/* UTP Port */
1103 		fiber = 0;
1104 		break;
1105 	case 1:
1106 		/* Fiber Port */
1107 		fiber = 1;
1108 		break;
1109 	}
1110 
1111 	mcr = afe_mii_read(afep, phyaddr, PHY_MCR);
1112 	switch (fiber) {
1113 	case 0:
1114 		mcr &= ~MCR_FIBER;
1115 		break;
1116 
1117 	case 1:
1118 		mcr |= MCR_FIBER;
1119 		break;
1120 	}
1121 	afe_mii_write(afep, phyaddr, PHY_MCR, mcr);
1122 	drv_usecwait(500);
1123 
1124 	/*
1125 	 * work around for errata 983B_0416 -- duplex light flashes
1126 	 * in 10 HDX.  we just disable SQE testing on the device.
1127 	 */
1128 	pilr = afe_mii_read(afep, phyaddr, PHY_PILR);
1129 	pilr |= PILR_NOSQE;
1130 	afe_mii_write(afep, phyaddr, PHY_PILR, pilr);
1131 }
1132 
1133 void
afe_mii_notify(void * arg,link_state_t link)1134 afe_mii_notify(void *arg, link_state_t link)
1135 {
1136 	afe_t	*afep = arg;
1137 
1138 	if (AFE_MODEL(afep) == MODEL_CENTAUR) {
1139 		if (mii_get_flowctrl(afep->afe_mii) == LINK_FLOWCTRL_BI) {
1140 			SETBIT(afep, CSR_CR, CR_PAUSE);
1141 		} else {
1142 			CLRBIT(afep, CSR_CR, CR_PAUSE);
1143 		}
1144 	}
1145 	mac_link_update(afep->afe_mh, link);
1146 }
1147 
1148 void
afe_miitristate(afe_t * afep)1149 afe_miitristate(afe_t *afep)
1150 {
1151 	uint32_t val = SPR_SROM_WRITE | SPR_MII_CTRL;
1152 
1153 	PUTCSR(afep, CSR_SPR, val);
1154 	drv_usecwait(1);
1155 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1156 	drv_usecwait(1);
1157 }
1158 
1159 void
afe_miiwritebit(afe_t * afep,uint8_t bit)1160 afe_miiwritebit(afe_t *afep, uint8_t bit)
1161 {
1162 	uint32_t val = bit ? SPR_MII_DOUT : 0;
1163 
1164 	PUTCSR(afep, CSR_SPR, val);
1165 	drv_usecwait(1);
1166 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1167 	drv_usecwait(1);
1168 }
1169 
1170 uint8_t
afe_miireadbit(afe_t * afep)1171 afe_miireadbit(afe_t *afep)
1172 {
1173 	uint32_t	val = SPR_MII_CTRL | SPR_SROM_READ;
1174 	uint8_t		bit;
1175 
1176 	PUTCSR(afep, CSR_SPR, val);
1177 	drv_usecwait(1);
1178 	bit = (GETCSR(afep, CSR_SPR) & SPR_MII_DIN) ? 1 : 0;
1179 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1180 	drv_usecwait(1);
1181 	return (bit);
1182 }
1183 
1184 uint16_t
afe_mii_read(void * arg,uint8_t phy,uint8_t reg)1185 afe_mii_read(void *arg, uint8_t phy, uint8_t reg)
1186 {
1187 	afe_t *afep = arg;
1188 	/*
1189 	 * ADMtek bugs ignore address decode bits -- they only
1190 	 * support PHY at 1.
1191 	 */
1192 	if (phy != 1) {
1193 		return (0xffff);
1194 	}
1195 	switch (AFE_MODEL(afep)) {
1196 	case MODEL_COMET:
1197 		return (afe_miireadcomet(afep, phy, reg));
1198 	case MODEL_CENTAUR:
1199 		return (afe_miireadgeneral(afep, phy, reg));
1200 	}
1201 	return (0xffff);
1202 }
1203 
1204 uint16_t
afe_miireadgeneral(afe_t * afep,uint8_t phy,uint8_t reg)1205 afe_miireadgeneral(afe_t *afep, uint8_t phy, uint8_t reg)
1206 {
1207 	uint16_t	value = 0;
1208 	int		i;
1209 
1210 	/* send the 32 bit preamble */
1211 	for (i = 0; i < 32; i++) {
1212 		afe_miiwritebit(afep, 1);
1213 	}
1214 
1215 	/* send the start code - 01b */
1216 	afe_miiwritebit(afep, 0);
1217 	afe_miiwritebit(afep, 1);
1218 
1219 	/* send the opcode for read, - 10b */
1220 	afe_miiwritebit(afep, 1);
1221 	afe_miiwritebit(afep, 0);
1222 
1223 	/* next we send the 5 bit phy address */
1224 	for (i = 0x10; i > 0; i >>= 1) {
1225 		afe_miiwritebit(afep, (phy & i) ? 1 : 0);
1226 	}
1227 
1228 	/* the 5 bit register address goes next */
1229 	for (i = 0x10; i > 0; i >>= 1) {
1230 		afe_miiwritebit(afep, (reg & i) ? 1 : 0);
1231 	}
1232 
1233 	/* turnaround - tristate followed by logic 0 */
1234 	afe_miitristate(afep);
1235 	afe_miiwritebit(afep, 0);
1236 
1237 	/* read the 16 bit register value */
1238 	for (i = 0x8000; i > 0; i >>= 1) {
1239 		value <<= 1;
1240 		value |= afe_miireadbit(afep);
1241 	}
1242 	afe_miitristate(afep);
1243 	return (value);
1244 }
1245 
1246 uint16_t
afe_miireadcomet(afe_t * afep,uint8_t phy,uint8_t reg)1247 afe_miireadcomet(afe_t *afep, uint8_t phy, uint8_t reg)
1248 {
1249 	if (phy != 1) {
1250 		return (0xffff);
1251 	}
1252 	switch (reg) {
1253 	case MII_CONTROL:
1254 		reg = CSR_BMCR;
1255 		break;
1256 	case MII_STATUS:
1257 		reg = CSR_BMSR;
1258 		break;
1259 	case MII_PHYIDH:
1260 		reg = CSR_PHYIDR1;
1261 		break;
1262 	case MII_PHYIDL:
1263 		reg = CSR_PHYIDR2;
1264 		break;
1265 	case MII_AN_ADVERT:
1266 		reg = CSR_ANAR;
1267 		break;
1268 	case MII_AN_LPABLE:
1269 		reg = CSR_ANLPAR;
1270 		break;
1271 	case MII_AN_EXPANSION:
1272 		reg = CSR_ANER;
1273 		break;
1274 	default:
1275 		return (0);
1276 	}
1277 	return (GETCSR16(afep, reg) & 0xFFFF);
1278 }
1279 
1280 void
afe_mii_write(void * arg,uint8_t phy,uint8_t reg,uint16_t val)1281 afe_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t val)
1282 {
1283 	afe_t	*afep = arg;
1284 
1285 	/*
1286 	 * ADMtek bugs ignore address decode bits -- they only
1287 	 * support PHY at 1.
1288 	 */
1289 	if (phy != 1) {
1290 		return;
1291 	}
1292 	switch (AFE_MODEL(afep)) {
1293 	case MODEL_COMET:
1294 		afe_miiwritecomet(afep, phy, reg, val);
1295 		break;
1296 	case MODEL_CENTAUR:
1297 		afe_miiwritegeneral(afep, phy, reg, val);
1298 		break;
1299 	}
1300 }
1301 
1302 void
afe_miiwritegeneral(afe_t * afep,uint8_t phy,uint8_t reg,uint16_t val)1303 afe_miiwritegeneral(afe_t *afep, uint8_t phy, uint8_t reg, uint16_t val)
1304 {
1305 	int i;
1306 
1307 	/* send the 32 bit preamble */
1308 	for (i = 0; i < 32; i++) {
1309 		afe_miiwritebit(afep, 1);
1310 	}
1311 
1312 	/* send the start code - 01b */
1313 	afe_miiwritebit(afep, 0);
1314 	afe_miiwritebit(afep, 1);
1315 
1316 	/* send the opcode for write, - 01b */
1317 	afe_miiwritebit(afep, 0);
1318 	afe_miiwritebit(afep, 1);
1319 
1320 	/* next we send the 5 bit phy address */
1321 	for (i = 0x10; i > 0; i >>= 1) {
1322 		afe_miiwritebit(afep, (phy & i) ? 1 : 0);
1323 	}
1324 
1325 	/* the 5 bit register address goes next */
1326 	for (i = 0x10; i > 0; i >>= 1) {
1327 		afe_miiwritebit(afep, (reg & i) ? 1 : 0);
1328 	}
1329 
1330 	/* turnaround - 1 bit followed by logic 0 */
1331 	afe_miiwritebit(afep, 1);
1332 	afe_miiwritebit(afep, 0);
1333 
1334 	/* now write out our data (16 bits) */
1335 	for (i = 0x8000; i > 0; i >>= 1) {
1336 		afe_miiwritebit(afep, (val & i) ? 1 : 0);
1337 	}
1338 
1339 	/* idle mode */
1340 	afe_miitristate(afep);
1341 }
1342 
1343 void
afe_miiwritecomet(afe_t * afep,uint8_t phy,uint8_t reg,uint16_t val)1344 afe_miiwritecomet(afe_t *afep, uint8_t phy, uint8_t reg, uint16_t val)
1345 {
1346 	if (phy != 1) {
1347 		return;
1348 	}
1349 	switch (reg) {
1350 	case MII_CONTROL:
1351 		reg = CSR_BMCR;
1352 		break;
1353 	case MII_STATUS:
1354 		reg = CSR_BMSR;
1355 		break;
1356 	case MII_PHYIDH:
1357 		reg = CSR_PHYIDR1;
1358 		break;
1359 	case MII_PHYIDL:
1360 		reg = CSR_PHYIDR2;
1361 		break;
1362 	case MII_AN_ADVERT:
1363 		reg = CSR_ANAR;
1364 		break;
1365 	case MII_AN_LPABLE:
1366 		reg = CSR_ANLPAR;
1367 		break;
1368 	case MII_AN_EXPANSION:
1369 		reg = CSR_ANER;
1370 		break;
1371 	default:
1372 		return;
1373 	}
1374 	PUTCSR16(afep, reg, val);
1375 }
1376 
1377 int
afe_m_start(void * arg)1378 afe_m_start(void *arg)
1379 {
1380 	afe_t	*afep = arg;
1381 
1382 	/* grab exclusive access to the card */
1383 	mutex_enter(&afep->afe_intrlock);
1384 	mutex_enter(&afep->afe_xmtlock);
1385 
1386 	afe_startall(afep);
1387 	afep->afe_flags |= AFE_RUNNING;
1388 
1389 	mutex_exit(&afep->afe_xmtlock);
1390 	mutex_exit(&afep->afe_intrlock);
1391 
1392 	mii_start(afep->afe_mii);
1393 
1394 	return (0);
1395 }
1396 
1397 void
afe_m_stop(void * arg)1398 afe_m_stop(void *arg)
1399 {
1400 	afe_t	*afep = arg;
1401 
1402 	mii_stop(afep->afe_mii);
1403 
1404 	/* exclusive access to the hardware! */
1405 	mutex_enter(&afep->afe_intrlock);
1406 	mutex_enter(&afep->afe_xmtlock);
1407 
1408 	afe_stopall(afep);
1409 	afep->afe_flags &= ~AFE_RUNNING;
1410 
1411 	mutex_exit(&afep->afe_xmtlock);
1412 	mutex_exit(&afep->afe_intrlock);
1413 }
1414 
1415 void
afe_startmac(afe_t * afep)1416 afe_startmac(afe_t *afep)
1417 {
1418 	/* verify exclusive access to the card */
1419 	ASSERT(mutex_owned(&afep->afe_intrlock));
1420 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1421 
1422 	/* start the card */
1423 	SETBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1424 
1425 	if (afep->afe_txavail != AFE_TXRING)
1426 		PUTCSR(afep, CSR_TDR, 0);
1427 
1428 	/* tell the mac that we are ready to go! */
1429 	if (afep->afe_flags & AFE_RUNNING)
1430 		mac_tx_update(afep->afe_mh);
1431 
1432 	/* start watchdog timer */
1433 	PUTCSR(afep, CSR_TIMER, TIMER_LOOP |
1434 	    (AFE_WDOGTIMER * 1000 / TIMER_USEC));
1435 }
1436 
1437 void
afe_stopmac(afe_t * afep)1438 afe_stopmac(afe_t *afep)
1439 {
1440 	int		i;
1441 
1442 	/* exclusive access to the hardware! */
1443 	ASSERT(mutex_owned(&afep->afe_intrlock));
1444 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1445 
1446 	CLRBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1447 
1448 	/*
1449 	 * A 1518 byte frame at 10Mbps takes about 1.2 msec to drain.
1450 	 * We just add up to the nearest msec (2), which should be
1451 	 * plenty to complete.
1452 	 *
1453 	 * Note that some chips never seem to indicate the transition to
1454 	 * the stopped state properly.  Experience shows that we can safely
1455 	 * proceed anyway, after waiting the requisite timeout.
1456 	 */
1457 	for (i = 2000; i != 0; i -= 10) {
1458 		if ((GETCSR(afep, CSR_SR) & (SR_TX_STATE | SR_RX_STATE)) == 0)
1459 			break;
1460 		drv_usecwait(10);
1461 	}
1462 
1463 	/* prevent an interrupt */
1464 	PUTCSR(afep, CSR_SR2, INT_RXSTOPPED | INT_TXSTOPPED);
1465 
1466 	/* stop the watchdog timer */
1467 	PUTCSR(afep, CSR_TIMER, 0);
1468 }
1469 
1470 void
afe_resetrings(afe_t * afep)1471 afe_resetrings(afe_t *afep)
1472 {
1473 	int	i;
1474 
1475 	/* now we need to reset the pointers... */
1476 	PUTCSR(afep, CSR_RDB, 0);
1477 	PUTCSR(afep, CSR_TDB, 0);
1478 
1479 	/* reset the descriptor ring pointers */
1480 	afep->afe_rxhead = 0;
1481 	afep->afe_txreclaim = 0;
1482 	afep->afe_txsend = 0;
1483 	afep->afe_txavail = AFE_TXRING;
1484 
1485 	/* set up transmit descriptor ring */
1486 	for (i = 0; i < AFE_TXRING; i++) {
1487 		afe_desc_t	*tmdp = &afep->afe_txdescp[i];
1488 		unsigned	control = 0;
1489 		if (i == (AFE_TXRING - 1)) {
1490 			control |= TXCTL_ENDRING;
1491 		}
1492 		PUTTXDESC(afep, tmdp->desc_status, 0);
1493 		PUTTXDESC(afep, tmdp->desc_control, control);
1494 		PUTTXDESC(afep, tmdp->desc_buffer1, 0);
1495 		PUTTXDESC(afep, tmdp->desc_buffer2, 0);
1496 		SYNCTXDESC(afep, i, DDI_DMA_SYNC_FORDEV);
1497 	}
1498 	PUTCSR(afep, CSR_TDB, afep->afe_txdesc_paddr);
1499 
1500 	/* make the receive buffers available */
1501 	for (i = 0; i < AFE_RXRING; i++) {
1502 		afe_rxbuf_t	*rxb = afep->afe_rxbufs[i];
1503 		afe_desc_t	*rmdp = &afep->afe_rxdescp[i];
1504 		unsigned	control;
1505 
1506 		control = AFE_BUFSZ & RXCTL_BUFLEN1;
1507 		if (i == (AFE_RXRING - 1)) {
1508 			control |= RXCTL_ENDRING;
1509 		}
1510 		PUTRXDESC(afep, rmdp->desc_buffer1, rxb->rxb_paddr);
1511 		PUTRXDESC(afep, rmdp->desc_buffer2, 0);
1512 		PUTRXDESC(afep, rmdp->desc_control, control);
1513 		PUTRXDESC(afep, rmdp->desc_status, RXSTAT_OWN);
1514 		SYNCRXDESC(afep, i, DDI_DMA_SYNC_FORDEV);
1515 	}
1516 	PUTCSR(afep, CSR_RDB, afep->afe_rxdesc_paddr);
1517 }
1518 
1519 void
afe_stopall(afe_t * afep)1520 afe_stopall(afe_t *afep)
1521 {
1522 	afe_disableinterrupts(afep);
1523 	afe_stopmac(afep);
1524 }
1525 
1526 void
afe_startall(afe_t * afep)1527 afe_startall(afe_t *afep)
1528 {
1529 	ASSERT(mutex_owned(&afep->afe_intrlock));
1530 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1531 
1532 	/* make sure interrupts are disabled to begin */
1533 	afe_disableinterrupts(afep);
1534 
1535 	/* initialize the chip */
1536 	(void) afe_initialize(afep);
1537 
1538 	/* now we can enable interrupts */
1539 	afe_enableinterrupts(afep);
1540 
1541 	/* start up the mac */
1542 	afe_startmac(afep);
1543 }
1544 
1545 void
afe_resetall(afe_t * afep)1546 afe_resetall(afe_t *afep)
1547 {
1548 	afe_stopall(afep);
1549 	afe_startall(afep);
1550 }
1551 
1552 afe_txbuf_t *
afe_alloctxbuf(afe_t * afep)1553 afe_alloctxbuf(afe_t *afep)
1554 {
1555 	ddi_dma_cookie_t	dmac;
1556 	unsigned		ncookies;
1557 	afe_txbuf_t		*txb;
1558 	size_t			len;
1559 
1560 	txb = kmem_zalloc(sizeof (*txb), KM_SLEEP);
1561 
1562 	if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_txattr,
1563 	    DDI_DMA_SLEEP, NULL, &txb->txb_dmah) != DDI_SUCCESS) {
1564 		return (NULL);
1565 	}
1566 
1567 	if (ddi_dma_mem_alloc(txb->txb_dmah, AFE_BUFSZ, &afe_bufattr,
1568 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &txb->txb_buf, &len,
1569 	    &txb->txb_acch) != DDI_SUCCESS) {
1570 		return (NULL);
1571 	}
1572 	if (ddi_dma_addr_bind_handle(txb->txb_dmah, NULL, txb->txb_buf,
1573 	    len, DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
1574 	    &dmac, &ncookies) != DDI_DMA_MAPPED) {
1575 		return (NULL);
1576 	}
1577 	txb->txb_paddr = dmac.dmac_address;
1578 
1579 	return (txb);
1580 }
1581 
1582 void
afe_destroytxbuf(afe_txbuf_t * txb)1583 afe_destroytxbuf(afe_txbuf_t *txb)
1584 {
1585 	if (txb != NULL) {
1586 		if (txb->txb_paddr)
1587 			(void) ddi_dma_unbind_handle(txb->txb_dmah);
1588 		if (txb->txb_acch)
1589 			ddi_dma_mem_free(&txb->txb_acch);
1590 		if (txb->txb_dmah)
1591 			ddi_dma_free_handle(&txb->txb_dmah);
1592 		kmem_free(txb, sizeof (*txb));
1593 	}
1594 }
1595 
1596 afe_rxbuf_t *
afe_allocrxbuf(afe_t * afep)1597 afe_allocrxbuf(afe_t *afep)
1598 {
1599 	afe_rxbuf_t		*rxb;
1600 	size_t			len;
1601 	unsigned		ccnt;
1602 	ddi_dma_cookie_t	dmac;
1603 
1604 	rxb = kmem_zalloc(sizeof (*rxb), KM_SLEEP);
1605 
1606 	if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
1607 	    DDI_DMA_SLEEP, NULL, &rxb->rxb_dmah) != DDI_SUCCESS) {
1608 		kmem_free(rxb, sizeof (*rxb));
1609 		return (NULL);
1610 	}
1611 	if (ddi_dma_mem_alloc(rxb->rxb_dmah, AFE_BUFSZ, &afe_bufattr,
1612 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &rxb->rxb_buf, &len,
1613 	    &rxb->rxb_acch) != DDI_SUCCESS) {
1614 		ddi_dma_free_handle(&rxb->rxb_dmah);
1615 		kmem_free(rxb, sizeof (*rxb));
1616 		return (NULL);
1617 	}
1618 	if (ddi_dma_addr_bind_handle(rxb->rxb_dmah, NULL, rxb->rxb_buf, len,
1619 	    DDI_DMA_READ | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac,
1620 	    &ccnt) != DDI_DMA_MAPPED) {
1621 		ddi_dma_mem_free(&rxb->rxb_acch);
1622 		ddi_dma_free_handle(&rxb->rxb_dmah);
1623 		kmem_free(rxb, sizeof (*rxb));
1624 		return (NULL);
1625 	}
1626 	rxb->rxb_paddr = dmac.dmac_address;
1627 
1628 	return (rxb);
1629 }
1630 
1631 void
afe_destroyrxbuf(afe_rxbuf_t * rxb)1632 afe_destroyrxbuf(afe_rxbuf_t *rxb)
1633 {
1634 	if (rxb) {
1635 		(void) ddi_dma_unbind_handle(rxb->rxb_dmah);
1636 		ddi_dma_mem_free(&rxb->rxb_acch);
1637 		ddi_dma_free_handle(&rxb->rxb_dmah);
1638 		kmem_free(rxb, sizeof (*rxb));
1639 	}
1640 }
1641 
1642 /*
1643  * Allocate receive resources.
1644  */
1645 int
afe_allocrxring(afe_t * afep)1646 afe_allocrxring(afe_t *afep)
1647 {
1648 	int			rval;
1649 	int			i;
1650 	size_t			size;
1651 	size_t			len;
1652 	ddi_dma_cookie_t	dmac;
1653 	unsigned		ncookies;
1654 	caddr_t			kaddr;
1655 
1656 	size = AFE_RXRING * sizeof (afe_desc_t);
1657 
1658 	rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
1659 	    DDI_DMA_SLEEP, NULL, &afep->afe_rxdesc_dmah);
1660 	if (rval != DDI_SUCCESS) {
1661 		afe_error(afep->afe_dip,
1662 		    "unable to allocate DMA handle for rx descriptors");
1663 		return (DDI_FAILURE);
1664 	}
1665 
1666 	rval = ddi_dma_mem_alloc(afep->afe_rxdesc_dmah, size, &afe_devattr,
1667 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
1668 	    &afep->afe_rxdesc_acch);
1669 	if (rval != DDI_SUCCESS) {
1670 		afe_error(afep->afe_dip,
1671 		    "unable to allocate DMA memory for rx descriptors");
1672 		return (DDI_FAILURE);
1673 	}
1674 
1675 	rval = ddi_dma_addr_bind_handle(afep->afe_rxdesc_dmah, NULL, kaddr,
1676 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
1677 	    &dmac, &ncookies);
1678 	if (rval != DDI_DMA_MAPPED) {
1679 		afe_error(afep->afe_dip,
1680 		    "unable to bind DMA for rx descriptors");
1681 		return (DDI_FAILURE);
1682 	}
1683 
1684 	/* because of afe_dma_attr */
1685 	ASSERT(ncookies == 1);
1686 
1687 	/* we take the 32-bit physical address out of the cookie */
1688 	afep->afe_rxdesc_paddr = dmac.dmac_address;
1689 	afep->afe_rxdescp = (void *)kaddr;
1690 
1691 	/* allocate buffer pointers (not the buffers themselves, yet) */
1692 	afep->afe_rxbufs = kmem_zalloc(AFE_RXRING * sizeof (afe_rxbuf_t *),
1693 	    KM_SLEEP);
1694 
1695 	/* now allocate rx buffers */
1696 	for (i = 0; i < AFE_RXRING; i++) {
1697 		afe_rxbuf_t *rxb = afe_allocrxbuf(afep);
1698 		if (rxb == NULL)
1699 			return (DDI_FAILURE);
1700 		afep->afe_rxbufs[i] = rxb;
1701 	}
1702 
1703 	return (DDI_SUCCESS);
1704 }
1705 
1706 /*
1707  * Allocate transmit resources.
1708  */
1709 int
afe_alloctxring(afe_t * afep)1710 afe_alloctxring(afe_t *afep)
1711 {
1712 	int			rval;
1713 	int			i;
1714 	size_t			size;
1715 	size_t			len;
1716 	ddi_dma_cookie_t	dmac;
1717 	unsigned		ncookies;
1718 	caddr_t			kaddr;
1719 
1720 	size = AFE_TXRING * sizeof (afe_desc_t);
1721 
1722 	rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
1723 	    DDI_DMA_SLEEP, NULL, &afep->afe_txdesc_dmah);
1724 	if (rval != DDI_SUCCESS) {
1725 		afe_error(afep->afe_dip,
1726 		    "unable to allocate DMA handle for tx descriptors");
1727 		return (DDI_FAILURE);
1728 	}
1729 
1730 	rval = ddi_dma_mem_alloc(afep->afe_txdesc_dmah, size, &afe_devattr,
1731 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
1732 	    &afep->afe_txdesc_acch);
1733 	if (rval != DDI_SUCCESS) {
1734 		afe_error(afep->afe_dip,
1735 		    "unable to allocate DMA memory for tx descriptors");
1736 		return (DDI_FAILURE);
1737 	}
1738 
1739 	rval = ddi_dma_addr_bind_handle(afep->afe_txdesc_dmah, NULL, kaddr,
1740 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
1741 	    &dmac, &ncookies);
1742 	if (rval != DDI_DMA_MAPPED) {
1743 		afe_error(afep->afe_dip,
1744 		    "unable to bind DMA for tx descriptors");
1745 		return (DDI_FAILURE);
1746 	}
1747 
1748 	/* because of afe_dma_attr */
1749 	ASSERT(ncookies == 1);
1750 
1751 	/* we take the 32-bit physical address out of the cookie */
1752 	afep->afe_txdesc_paddr = dmac.dmac_address;
1753 	afep->afe_txdescp = (void *)kaddr;
1754 
1755 	/* allocate buffer pointers (not the buffers themselves, yet) */
1756 	afep->afe_txbufs = kmem_zalloc(AFE_TXRING * sizeof (afe_txbuf_t *),
1757 	    KM_SLEEP);
1758 
1759 	/* now allocate tx buffers */
1760 	for (i = 0; i < AFE_TXRING; i++) {
1761 		afe_txbuf_t *txb = afe_alloctxbuf(afep);
1762 		if (txb == NULL)
1763 			return (DDI_FAILURE);
1764 		afep->afe_txbufs[i] = txb;
1765 	}
1766 
1767 	return (DDI_SUCCESS);
1768 }
1769 
1770 void
afe_freerxring(afe_t * afep)1771 afe_freerxring(afe_t *afep)
1772 {
1773 	int		i;
1774 
1775 	for (i = 0; i < AFE_RXRING; i++) {
1776 		afe_destroyrxbuf(afep->afe_rxbufs[i]);
1777 	}
1778 
1779 	if (afep->afe_rxbufs) {
1780 		kmem_free(afep->afe_rxbufs,
1781 		    AFE_RXRING * sizeof (afe_rxbuf_t *));
1782 	}
1783 
1784 	if (afep->afe_rxdesc_paddr)
1785 		(void) ddi_dma_unbind_handle(afep->afe_rxdesc_dmah);
1786 	if (afep->afe_rxdesc_acch)
1787 		ddi_dma_mem_free(&afep->afe_rxdesc_acch);
1788 	if (afep->afe_rxdesc_dmah)
1789 		ddi_dma_free_handle(&afep->afe_rxdesc_dmah);
1790 }
1791 
1792 void
afe_freetxring(afe_t * afep)1793 afe_freetxring(afe_t *afep)
1794 {
1795 	int			i;
1796 
1797 	for (i = 0; i < AFE_TXRING; i++) {
1798 		afe_destroytxbuf(afep->afe_txbufs[i]);
1799 	}
1800 
1801 	if (afep->afe_txbufs) {
1802 		kmem_free(afep->afe_txbufs,
1803 		    AFE_TXRING * sizeof (afe_txbuf_t *));
1804 	}
1805 	if (afep->afe_txdesc_paddr)
1806 		(void) ddi_dma_unbind_handle(afep->afe_txdesc_dmah);
1807 	if (afep->afe_txdesc_acch)
1808 		ddi_dma_mem_free(&afep->afe_txdesc_acch);
1809 	if (afep->afe_txdesc_dmah)
1810 		ddi_dma_free_handle(&afep->afe_txdesc_dmah);
1811 }
1812 
1813 /*
1814  * Interrupt service routine.
1815  */
1816 unsigned
afe_intr(caddr_t arg)1817 afe_intr(caddr_t arg)
1818 {
1819 	afe_t		*afep = (void *)arg;
1820 	uint32_t	status;
1821 	mblk_t		*mp = NULL;
1822 	boolean_t	doreset = B_FALSE;
1823 
1824 	mutex_enter(&afep->afe_intrlock);
1825 
1826 	if (afep->afe_flags & AFE_SUSPENDED) {
1827 		/* we cannot receive interrupts! */
1828 		mutex_exit(&afep->afe_intrlock);
1829 		return (DDI_INTR_UNCLAIMED);
1830 	}
1831 
1832 	/* check interrupt status bits, did we interrupt? */
1833 	status = GETCSR(afep, CSR_SR2) & INT_ALL;
1834 
1835 	if (status == 0) {
1836 		KIOIP->intrs[KSTAT_INTR_SPURIOUS]++;
1837 		mutex_exit(&afep->afe_intrlock);
1838 		return (DDI_INTR_UNCLAIMED);
1839 	}
1840 	/* ack the interrupt */
1841 	PUTCSR(afep, CSR_SR2, status);
1842 	KIOIP->intrs[KSTAT_INTR_HARD]++;
1843 
1844 	if (!(afep->afe_flags & AFE_RUNNING)) {
1845 		/* not running, don't touch anything */
1846 		mutex_exit(&afep->afe_intrlock);
1847 		return (DDI_INTR_CLAIMED);
1848 	}
1849 
1850 	if (status & (INT_RXOK|INT_RXNOBUF)) {
1851 		/* receive packets */
1852 		mp = afe_receive(afep);
1853 		if (status & INT_RXNOBUF)
1854 			PUTCSR(afep, CSR_RDR, 0);	/* wake up chip */
1855 	}
1856 
1857 	if (status & INT_TXOK) {
1858 		/* transmit completed */
1859 		mutex_enter(&afep->afe_xmtlock);
1860 		afe_reclaim(afep);
1861 		mutex_exit(&afep->afe_xmtlock);
1862 	}
1863 
1864 	if ((status & INT_TIMER) && (afe_watchdog(afep) != DDI_SUCCESS)) {
1865 		doreset = B_TRUE;
1866 	}
1867 
1868 	if (status & (INT_RXSTOPPED|INT_TXSTOPPED|
1869 	    INT_RXJABBER|INT_TXJABBER|INT_TXUNDERFLOW)) {
1870 
1871 		if (status & (INT_RXJABBER | INT_TXJABBER)) {
1872 			afep->afe_jabber++;
1873 		}
1874 		doreset = B_TRUE;
1875 	}
1876 
1877 	if (status & INT_BUSERR) {
1878 		switch (GETCSR(afep, CSR_SR) & SR_BERR_TYPE) {
1879 		case SR_BERR_PARITY:
1880 			afe_error(afep->afe_dip, "PCI parity error");
1881 			break;
1882 		case SR_BERR_TARGET_ABORT:
1883 			afe_error(afep->afe_dip, "PCI target abort");
1884 			break;
1885 		case SR_BERR_MASTER_ABORT:
1886 			afe_error(afep->afe_dip, "PCI master abort");
1887 			break;
1888 		default:
1889 			afe_error(afep->afe_dip, "Unknown PCI error");
1890 			break;
1891 		}
1892 
1893 		/* reset the chip in an attempt to fix things */
1894 		doreset = B_TRUE;
1895 	}
1896 
1897 
1898 	if (doreset) {
1899 		mutex_enter(&afep->afe_xmtlock);
1900 		afe_resetall(afep);
1901 		mutex_exit(&afep->afe_xmtlock);
1902 		mutex_exit(&afep->afe_intrlock);
1903 
1904 		mii_reset(afep->afe_mii);
1905 	} else {
1906 		mutex_exit(&afep->afe_intrlock);
1907 	}
1908 
1909 	if (status & INT_LINKCHG) {
1910 		mii_check(afep->afe_mii);
1911 	}
1912 
1913 	/*
1914 	 * Send up packets.  We do this outside of the intrlock.
1915 	 */
1916 	if (mp) {
1917 		mac_rx(afep->afe_mh, NULL, mp);
1918 	}
1919 
1920 	return (DDI_INTR_CLAIMED);
1921 }
1922 
1923 void
afe_enableinterrupts(afe_t * afep)1924 afe_enableinterrupts(afe_t *afep)
1925 {
1926 	unsigned mask = INT_WANTED;
1927 
1928 	if (afep->afe_wantw)
1929 		mask |= INT_TXOK;
1930 
1931 	PUTCSR(afep, CSR_IER2, mask);
1932 
1933 	if (AFE_MODEL(afep) == MODEL_COMET) {
1934 		/*
1935 		 * On the Comet, this is the internal transceiver
1936 		 * interrupt.  We program the Comet's built-in PHY to
1937 		 * enable certain interrupts.
1938 		 */
1939 		PUTCSR16(afep, CSR_XIE, XIE_LDE | XIE_ANCE);
1940 	}
1941 }
1942 
1943 void
afe_disableinterrupts(afe_t * afep)1944 afe_disableinterrupts(afe_t *afep)
1945 {
1946 	/* disable further interrupts */
1947 	PUTCSR(afep, CSR_IER2, INT_NONE);
1948 
1949 	/* clear any pending interrupts */
1950 	PUTCSR(afep, CSR_SR2, INT_ALL);
1951 }
1952 
1953 boolean_t
afe_send(afe_t * afep,mblk_t * mp)1954 afe_send(afe_t *afep, mblk_t *mp)
1955 {
1956 	size_t			len;
1957 	afe_txbuf_t		*txb;
1958 	afe_desc_t		*tmd;
1959 	uint32_t		control;
1960 	int			txsend;
1961 
1962 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1963 	ASSERT(mp != NULL);
1964 
1965 	len = msgsize(mp);
1966 	if (len > ETHERVLANMTU) {
1967 		afep->afe_macxmt_errors++;
1968 		freemsg(mp);
1969 		return (B_TRUE);
1970 	}
1971 
1972 	if (afep->afe_txavail < AFE_TXRECLAIM)
1973 		afe_reclaim(afep);
1974 
1975 	if (afep->afe_txavail == 0) {
1976 		/* no more tmds */
1977 		afep->afe_wantw = B_TRUE;
1978 		/* enable TX interrupt */
1979 		afe_enableinterrupts(afep);
1980 		return (B_FALSE);
1981 	}
1982 
1983 	txsend = afep->afe_txsend;
1984 
1985 	/*
1986 	 * For simplicity, we just do a copy into a preallocated
1987 	 * DMA buffer.
1988 	 */
1989 
1990 	txb = afep->afe_txbufs[txsend];
1991 	mcopymsg(mp, txb->txb_buf);	/* frees mp! */
1992 
1993 	/*
1994 	 * Statistics.
1995 	 */
1996 	afep->afe_opackets++;
1997 	afep->afe_obytes += len;
1998 	if (txb->txb_buf[0] & 0x1) {
1999 		if (bcmp(txb->txb_buf, afe_broadcast, ETHERADDRL) != 0)
2000 			afep->afe_multixmt++;
2001 		else
2002 			afep->afe_brdcstxmt++;
2003 	}
2004 
2005 	/* note len is already known to be a small unsigned */
2006 	control = len | TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE;
2007 
2008 	if (txsend == (AFE_TXRING - 1))
2009 		control |= TXCTL_ENDRING;
2010 
2011 	tmd = &afep->afe_txdescp[txsend];
2012 
2013 	SYNCTXBUF(txb, len, DDI_DMA_SYNC_FORDEV);
2014 	PUTTXDESC(afep, tmd->desc_control, control);
2015 	PUTTXDESC(afep, tmd->desc_buffer1, txb->txb_paddr);
2016 	PUTTXDESC(afep, tmd->desc_buffer2, 0);
2017 	PUTTXDESC(afep, tmd->desc_status, TXSTAT_OWN);
2018 	/* sync the descriptor out to the device */
2019 	SYNCTXDESC(afep, txsend, DDI_DMA_SYNC_FORDEV);
2020 
2021 	/*
2022 	 * Note the new values of txavail and txsend.
2023 	 */
2024 	afep->afe_txavail--;
2025 	afep->afe_txsend = (txsend + 1) % AFE_TXRING;
2026 
2027 	/*
2028 	 * It should never, ever take more than 5 seconds to drain
2029 	 * the ring.  If it happens, then we are stuck!
2030 	 */
2031 	afep->afe_txstall_time = gethrtime() + (5 * 1000000000ULL);
2032 
2033 	/*
2034 	 * wake up the chip ... inside the lock to protect against DR suspend,
2035 	 * etc.
2036 	 */
2037 	PUTCSR(afep, CSR_TDR, 0);
2038 
2039 	return (B_TRUE);
2040 }
2041 
2042 /*
2043  * Reclaim buffers that have completed transmission.
2044  */
2045 void
afe_reclaim(afe_t * afep)2046 afe_reclaim(afe_t *afep)
2047 {
2048 	afe_desc_t	*tmdp;
2049 
2050 	while (afep->afe_txavail != AFE_TXRING) {
2051 		uint32_t	status;
2052 		uint32_t	control;
2053 		int		index = afep->afe_txreclaim;
2054 
2055 		tmdp = &afep->afe_txdescp[index];
2056 
2057 		/* sync it before we read it */
2058 		SYNCTXDESC(afep, index, DDI_DMA_SYNC_FORKERNEL);
2059 
2060 		control = GETTXDESC(afep, tmdp->desc_control);
2061 		status = GETTXDESC(afep, tmdp->desc_status);
2062 
2063 		if (status & TXSTAT_OWN) {
2064 			/* chip is still working on it, we're done */
2065 			break;
2066 		}
2067 
2068 		afep->afe_txavail++;
2069 		afep->afe_txreclaim = (index + 1) % AFE_TXRING;
2070 
2071 		/* in the most common successful case, all bits are clear */
2072 		if (status == 0)
2073 			continue;
2074 
2075 		if ((control & TXCTL_LAST) == 0)
2076 			continue;
2077 
2078 		if (status & TXSTAT_TXERR) {
2079 			afep->afe_errxmt++;
2080 
2081 			if (status & TXSTAT_JABBER) {
2082 				/* transmit jabber timeout */
2083 				afep->afe_macxmt_errors++;
2084 			}
2085 			if (status &
2086 			    (TXSTAT_CARRLOST | TXSTAT_NOCARR)) {
2087 				afep->afe_carrier_errors++;
2088 			}
2089 			if (status & TXSTAT_UFLOW) {
2090 				afep->afe_underflow++;
2091 			}
2092 			if (status & TXSTAT_LATECOL) {
2093 				afep->afe_tx_late_collisions++;
2094 			}
2095 			if (status & TXSTAT_EXCOLL) {
2096 				afep->afe_ex_collisions++;
2097 				afep->afe_collisions += 16;
2098 			}
2099 		}
2100 
2101 		if (status & TXSTAT_DEFER) {
2102 			afep->afe_defer_xmts++;
2103 		}
2104 
2105 		/* collision counting */
2106 		if (TXCOLLCNT(status) == 1) {
2107 			afep->afe_collisions++;
2108 			afep->afe_first_collisions++;
2109 		} else if (TXCOLLCNT(status)) {
2110 			afep->afe_collisions += TXCOLLCNT(status);
2111 			afep->afe_multi_collisions += TXCOLLCNT(status);
2112 		}
2113 	}
2114 
2115 	if (afep->afe_txavail >= AFE_TXRESCHED) {
2116 		if (afep->afe_wantw) {
2117 			/*
2118 			 * we were able to reclaim some packets, so
2119 			 * disable tx interrupts
2120 			 */
2121 			afep->afe_wantw = B_FALSE;
2122 			afe_enableinterrupts(afep);
2123 			mac_tx_update(afep->afe_mh);
2124 		}
2125 	}
2126 }
2127 
2128 mblk_t *
afe_receive(afe_t * afep)2129 afe_receive(afe_t *afep)
2130 {
2131 	unsigned		len;
2132 	afe_rxbuf_t		*rxb;
2133 	afe_desc_t		*rmd;
2134 	uint32_t		status;
2135 	mblk_t			*mpchain, **mpp, *mp;
2136 	int			head, cnt;
2137 
2138 	mpchain = NULL;
2139 	mpp = &mpchain;
2140 	head = afep->afe_rxhead;
2141 
2142 	/* limit the number of packets we process to a half ring size */
2143 	for (cnt = 0; cnt < AFE_RXRING / 2; cnt++) {
2144 
2145 		rmd = &afep->afe_rxdescp[head];
2146 		rxb = afep->afe_rxbufs[head];
2147 
2148 		SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORKERNEL);
2149 		status = GETRXDESC(afep, rmd->desc_status);
2150 		if (status & RXSTAT_OWN) {
2151 			/* chip is still chewing on it */
2152 			break;
2153 		}
2154 
2155 		/* discard the ethernet frame checksum */
2156 		len = RXLENGTH(status) - ETHERFCSL;
2157 
2158 		if ((status & (RXSTAT_ERRS | RXSTAT_FIRST | RXSTAT_LAST)) !=
2159 		    (RXSTAT_FIRST | RXSTAT_LAST)) {
2160 
2161 			afep->afe_errrcv++;
2162 
2163 			/*
2164 			 * Abnormal status bits detected, analyze further.
2165 			 */
2166 			if ((status & (RXSTAT_LAST|RXSTAT_FIRST)) !=
2167 			    (RXSTAT_LAST|RXSTAT_FIRST)) {
2168 
2169 				if (status & RXSTAT_FIRST) {
2170 					afep->afe_toolong_errors++;
2171 				}
2172 			} else if (status & RXSTAT_DESCERR) {
2173 				afep->afe_macrcv_errors++;
2174 
2175 			} else if (status & RXSTAT_RUNT) {
2176 				afep->afe_runt++;
2177 
2178 			} else if (status & RXSTAT_COLLSEEN) {
2179 				/* this should really be rx_late_collisions */
2180 				afep->afe_macrcv_errors++;
2181 
2182 			} else if (status & RXSTAT_DRIBBLE) {
2183 				afep->afe_align_errors++;
2184 
2185 			} else if (status & RXSTAT_CRCERR) {
2186 				afep->afe_fcs_errors++;
2187 
2188 			} else if (status & RXSTAT_OFLOW) {
2189 				afep->afe_overflow++;
2190 			}
2191 		}
2192 
2193 		else if (len > ETHERVLANMTU) {
2194 			afep->afe_errrcv++;
2195 			afep->afe_toolong_errors++;
2196 		}
2197 
2198 		/*
2199 		 * At this point, the chip thinks the packet is OK.
2200 		 */
2201 		else {
2202 			mp = allocb(len + AFE_HEADROOM, 0);
2203 			if (mp == NULL) {
2204 				afep->afe_errrcv++;
2205 				afep->afe_norcvbuf++;
2206 				goto skip;
2207 			}
2208 
2209 			/* sync the buffer before we look at it */
2210 			SYNCRXBUF(rxb, len, DDI_DMA_SYNC_FORKERNEL);
2211 			mp->b_rptr += AFE_HEADROOM;
2212 			mp->b_wptr = mp->b_rptr + len;
2213 			bcopy((char *)rxb->rxb_buf, mp->b_rptr, len);
2214 
2215 			afep->afe_ipackets++;
2216 			afep->afe_rbytes += len;
2217 			if (status & RXSTAT_GROUP) {
2218 				if (bcmp(mp->b_rptr, afe_broadcast,
2219 				    ETHERADDRL) == 0)
2220 					afep->afe_brdcstrcv++;
2221 				else
2222 					afep->afe_multircv++;
2223 			}
2224 			*mpp = mp;
2225 			mpp = &mp->b_next;
2226 		}
2227 
2228 skip:
2229 		/* return ring entry to the hardware */
2230 		PUTRXDESC(afep, rmd->desc_status, RXSTAT_OWN);
2231 		SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORDEV);
2232 
2233 		/* advance to next RMD */
2234 		head = (head + 1) % AFE_RXRING;
2235 	}
2236 
2237 	afep->afe_rxhead = head;
2238 
2239 	return (mpchain);
2240 }
2241 
2242 int
afe_m_stat(void * arg,uint_t stat,uint64_t * val)2243 afe_m_stat(void *arg, uint_t stat, uint64_t *val)
2244 {
2245 	afe_t	*afep = arg;
2246 
2247 	mutex_enter(&afep->afe_xmtlock);
2248 	if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) == AFE_RUNNING)
2249 		afe_reclaim(afep);
2250 	mutex_exit(&afep->afe_xmtlock);
2251 
2252 	if (mii_m_getstat(afep->afe_mii, stat, val) == 0) {
2253 		return (0);
2254 	}
2255 	switch (stat) {
2256 	case MAC_STAT_MULTIRCV:
2257 		*val = afep->afe_multircv;
2258 		break;
2259 
2260 	case MAC_STAT_BRDCSTRCV:
2261 		*val = afep->afe_brdcstrcv;
2262 		break;
2263 
2264 	case MAC_STAT_MULTIXMT:
2265 		*val = afep->afe_multixmt;
2266 		break;
2267 
2268 	case MAC_STAT_BRDCSTXMT:
2269 		*val = afep->afe_brdcstxmt;
2270 		break;
2271 
2272 	case MAC_STAT_IPACKETS:
2273 		*val = afep->afe_ipackets;
2274 		break;
2275 
2276 	case MAC_STAT_RBYTES:
2277 		*val = afep->afe_rbytes;
2278 		break;
2279 
2280 	case MAC_STAT_OPACKETS:
2281 		*val = afep->afe_opackets;
2282 		break;
2283 
2284 	case MAC_STAT_OBYTES:
2285 		*val = afep->afe_obytes;
2286 		break;
2287 
2288 	case MAC_STAT_NORCVBUF:
2289 		*val = afep->afe_norcvbuf;
2290 		break;
2291 
2292 	case MAC_STAT_NOXMTBUF:
2293 		*val = 0;
2294 		break;
2295 
2296 	case MAC_STAT_COLLISIONS:
2297 		*val = afep->afe_collisions;
2298 		break;
2299 
2300 	case MAC_STAT_IERRORS:
2301 		*val = afep->afe_errrcv;
2302 		break;
2303 
2304 	case MAC_STAT_OERRORS:
2305 		*val = afep->afe_errxmt;
2306 		break;
2307 
2308 	case ETHER_STAT_ALIGN_ERRORS:
2309 		*val = afep->afe_align_errors;
2310 		break;
2311 
2312 	case ETHER_STAT_FCS_ERRORS:
2313 		*val = afep->afe_fcs_errors;
2314 		break;
2315 
2316 	case ETHER_STAT_SQE_ERRORS:
2317 		*val = afep->afe_sqe_errors;
2318 		break;
2319 
2320 	case ETHER_STAT_DEFER_XMTS:
2321 		*val = afep->afe_defer_xmts;
2322 		break;
2323 
2324 	case ETHER_STAT_FIRST_COLLISIONS:
2325 		*val = afep->afe_first_collisions;
2326 		break;
2327 
2328 	case ETHER_STAT_MULTI_COLLISIONS:
2329 		*val = afep->afe_multi_collisions;
2330 		break;
2331 
2332 	case ETHER_STAT_TX_LATE_COLLISIONS:
2333 		*val = afep->afe_tx_late_collisions;
2334 		break;
2335 
2336 	case ETHER_STAT_EX_COLLISIONS:
2337 		*val = afep->afe_ex_collisions;
2338 		break;
2339 
2340 	case ETHER_STAT_MACXMT_ERRORS:
2341 		*val = afep->afe_macxmt_errors;
2342 		break;
2343 
2344 	case ETHER_STAT_CARRIER_ERRORS:
2345 		*val = afep->afe_carrier_errors;
2346 		break;
2347 
2348 	case ETHER_STAT_TOOLONG_ERRORS:
2349 		*val = afep->afe_toolong_errors;
2350 		break;
2351 
2352 	case ETHER_STAT_MACRCV_ERRORS:
2353 		*val = afep->afe_macrcv_errors;
2354 		break;
2355 
2356 	case MAC_STAT_OVERFLOWS:
2357 		*val = afep->afe_overflow;
2358 		break;
2359 
2360 	case MAC_STAT_UNDERFLOWS:
2361 		*val = afep->afe_underflow;
2362 		break;
2363 
2364 	case ETHER_STAT_TOOSHORT_ERRORS:
2365 		*val = afep->afe_runt;
2366 		break;
2367 
2368 	case ETHER_STAT_JABBER_ERRORS:
2369 		*val = afep->afe_jabber;
2370 		break;
2371 
2372 	default:
2373 		return (ENOTSUP);
2374 	}
2375 	return (0);
2376 }
2377 
2378 int
afe_m_getprop(void * arg,const char * name,mac_prop_id_t num,uint_t sz,void * val)2379 afe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz,
2380     void *val)
2381 {
2382 	afe_t		*afep = arg;
2383 
2384 	return (mii_m_getprop(afep->afe_mii, name, num, sz, val));
2385 }
2386 
2387 int
afe_m_setprop(void * arg,const char * name,mac_prop_id_t num,uint_t sz,const void * val)2388 afe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz,
2389     const void *val)
2390 {
2391 	afe_t		*afep = arg;
2392 
2393 	return (mii_m_setprop(afep->afe_mii, name, num, sz, val));
2394 }
2395 
2396 static void
afe_m_propinfo(void * arg,const char * name,mac_prop_id_t num,mac_prop_info_handle_t prh)2397 afe_m_propinfo(void *arg, const char *name, mac_prop_id_t num,
2398     mac_prop_info_handle_t prh)
2399 {
2400 	afe_t		*afep = arg;
2401 
2402 	mii_m_propinfo(afep->afe_mii, name, num, prh);
2403 }
2404 
2405 /*
2406  * Debugging and error reporting.
2407  */
2408 void
afe_error(dev_info_t * dip,char * fmt,...)2409 afe_error(dev_info_t *dip, char *fmt, ...)
2410 {
2411 	va_list	ap;
2412 	char	buf[256];
2413 
2414 	va_start(ap, fmt);
2415 	(void) vsnprintf(buf, sizeof (buf), fmt, ap);
2416 	va_end(ap);
2417 
2418 	if (dip) {
2419 		cmn_err(CE_WARN, "%s%d: %s",
2420 		    ddi_driver_name(dip), ddi_get_instance(dip), buf);
2421 	} else {
2422 		cmn_err(CE_WARN, "afe: %s", buf);
2423 	}
2424 }
2425